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ABSTRACT

We employ cross—sectional scanning tunneling microscopy (STM) to examine
how an as—grown InAs/InAsSb superlattice differs from the intended one as regards
translational invariance in (001) planes perpendicular to the growth direction. This
requires atomic—resolution, lateral surveys paralleling the buffer/epilayer interface for up
to a micron in orthogonal (—1-10) or (1-10) cross sections, together with repeated lateral
surveys at representative vertical locations (i.e., spanned superlattice repeats) within the
multilayer stack.

We show that STM may be used to accurately map the period fluctuations
throughout this superlattice. The concept, analogous to Bragg's law in high-resolution
x-ray diffraction, relies on an analysis of the [001]-convolved reciprocal-space satellite
peaks obtained from discrete Fourier transforms of individual STM images. Properly
implemented, the technique enables local period measurements that reliably discriminate
lateral fluctuations localized to within ~ 40 nm along <110> directions in the growth
plane. While not as accurate as x-ray, the inherent, single-image measurement error
associated with the method may be made as small as 0.1%, allowing the lateral period
fluctuations contributing to inhomogeneous energy broadening and carrier localization in
these structures to be pinpointed and quantified. The direct visualization of
unexpectedly—large fluctuations on nanometer length scales is tied to a stochastic

description of correlated interface roughness.
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We also introduce a new technique to automatically tabulate the crystalline
coordinates of previously—identified top-layer antimony atoms and construct the
antimony pair—correlation functions for orthogonal cross sections. Nearest—neighbor
correlations on opposing cleavage faces are inversely related, with the (—1-10) deficit at
nearest—neighbor sites balanced by a compensating (1-10) surplus. The logarithm of this
preference scales inversely with bulk antimony fraction. In more vivid physical terms,
the preferential [110]-incorporation of nearest—neighbor antimony atoms in the bulk is
traced to the inferred concentration of [110]-oriented antimony dimers at the growth

surface.
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CHAPTER 1

INTRODUCTION

Technological Motivation

Compact, efficient lasers and detectors that operate in the mid— to long—wave
infrared regions of the electromagnetic spectrum have potential applications ranging
from thermal imaging to molecular identification. This regime covers two transparent
atmospheric windows [1], facilitating military and security technologies, which rely
upon long-range detection of heat from human bodies in the darkness of night'.
Furthermore, many environmentally [2,3] and biologically [2,4,5] important molecules
vibrate with frequencies in the infrared, making trace—gas sensing feasible for non—
invasive medical diagnostics as well as air—quality or climate—change monitoring.

Mercury Cadmium Telluride (MCT) has historically been the detector material of
choice at these wavelengths [6], due in part to the high level of tunability (1-30 pm)
with changing composition, as well as favorable electrical properties, such as high
mobility and low dielectric constant. However work to replace this material has received
considerable attention for two principle reasons: the bandgap (and therefore the cutoff
wavelength) is highly sensitive to uniformity of the alloy composition and a weak Hg—
Te bond results in structural instabilities during epitaxial growth.

A number of compound semiconductors involving group-III and group—V

elements are viable candidates to replace MCT over different portions of the infrared

' The dominant wavelength in blackbody radiation from a human body is around 10 ym.
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spectrum (Fig. 1.1, [7]); it was recognized some time back that type—II superlattices (Fig.
1.2) in particular might hold distinct advantages over MCT [8] since the superlattice
energy gap [9] might be made smaller than that in either constituent material®.

Despite an early proposal for a simpler InAs / InAsSb superlattice [10], most
research over the past 20 years has been devoted to the InAs / GaSb system. Recent
demonstrations that the Ga—free superlattices exhibit minority carrier lifetimes up to
two—orders of magnitude greater [11,12] than their Ga—containing counterparts [13,14]
has renewed interest in the prospects for competitive devices based on InAs / InAsSb. In
addition reports of detectivities in InAs / InAsSb comparable with those of MCT [15]
have further elevated the hopes for this material system to become the cornerstone of
next—generation infrared detectors.

Rapid, industrial-scale production of semiconductor devices typically relies on
Metal-Organic Chemical Vapor Deposition (MOCVD), however in research settings the
preferred growth method tends to be Molecular Beam Epitaxy (MBE) where an ultra—
high vacuum (UHV) environment (Fig. 1.3, [16]) and slow growth rates routinely result
in better quality epitaxial layers.

The low background pressures (typically 1E-8 torr or better) employed in MBE
naturally limit the concentration of residual gas atoms that can potentially contaminate
epitaxial layers over the many hours it takes to grow a device. Just as importantly, the
mean—free path of atoms at these pressures is enormous (~ 5 km) [17]; so elemental

sources, once vaporized in effusion cells attached to the vacuum system (Fig. 1.3), form

* This allows detection of longer wavelengths than otherwise possible with a bulk alloy,
but comes at the expense of spatially—indirect electronic transitions.
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To buffer chamber

Mechanical feedthrough for
CAR assembly

/ ionization gauge

— Beam Flux Monitor

Cryo panels -

| Substrate (green)
Heating element (red)

\ N

| Mass spectrometer |

Effusion cells

FIGURE 1.3. Schematic illustrating the major components in a typical ultra—high vacuum
molecular beam epitaxy system. Reprinted from the internet [16].
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beams of anions and cations which travel from their source to the (heated and
continuously rotated) growth surface without experiencing collisions. Independently
controlled effusion cell temperatures determine the flux from each source. Under usual
growth conditions, it is the cation flux that controls the growth rate. The combined flux
of anions is typically kept several times greater to promote two—dimensional growth by
preventing cations from otherwise coalescing in metallic pools on the surface [18]. Once
deposited, anions and cations diffuse across the growth surface until they encounter
other adatoms® and nucleate in two—dimensional islands [19].

The elemental effusion cells in Fig. 1.3 are universally maintained at fixed
temperatures throughout superlattice growth (to preserve flux stability and uniform
growth rates) and a spatially-modulated structure formed by actuating shutters that
alternately open and close, selectively illuminating the growth surface with one or more
vapor streams. Shutter cycle timing sets the superlattice well-to—barrier ratio whereas
source fluxes (and therefore growth rate) set the actual layer thicknesses, each of which

bears on the resulting electron and hole energy levels in the device.

Materials Issues
Despite the abrupt change in vapor flux that follows actuation of a source shutter,
physical processes occurring at the growth surface prevent a similarly abrupt change in

superlattice composition (Fig. 1.4, [20]). A residual vapor background in the MBE

? Alternate models suggest that adatoms diffuse until they encounter a step, which then
expands across the growth surface to form terraces, this tends to occur more often on
substrates with a large vicinality where steps are closely spaced.
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chamber following source closure remains available to incorporate in subsequent
epitaxial layers (cross incorporation) [21], potentially compromising the compositional
differences between superlattice constituents. In addition, whenever an arsenide is grown
atop an antimonide, as is the case in an InAs/InAsSb superlattice, antimony tends to
collect on the surface (floating layer) [22,23] before a fixed fraction (segregation
coefficient) is subsequently incorporated in each monolayer. This segregation leads to an
exponentially—graded antimony fraction that extends well into the InAs layer. Anion
exchange also generally occurs at III-V heterojunctions [21], but is especially difficult
(if not impossible) to pinpoint in common—atom superlattices such as InAs/InAsSb.

We explore two further ways an as—grown superlattice may significantly differ
from design intentions in this manuscript. Spontaneous atomic order, typically attributed
to “dimer—induced subsurface stresses” when one atom in an alloy is significantly larger
than the other [24], occurs in many alloyed III-V materials grown on (001) substrates®.
Copper platinum (CuPt) order, with alternating {111} planes of arsenic and antimony
atoms (Fig. 1.5) [24], has previously been observed in InAsSb [25,26]. The
superimposed <111> translational symmetry in CuPt-ordered materials reduces the
bandgap by an amount that depends both on the range and magnitude of the order
present [27]. Indeed, efforts are now being made to deliberately engineer smaller
bandgaps in bulk InAsSb alloys [28] via strain—induced long-range order; transport and
band structure models for InAs/InAsSb superlattices would similarly benefit from a

thorough characterization of order in these materials.

* A notable exception is AlGaAs, where aluminum and gallium are very similar in size.
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Period fluctuations are a poorly understood source of larger—scale structural
disorder since they are difficult to appropriately characterize. Islands formed during
deposition (Fig. 1.6, left) that approach complete monolayers minimally perturb a device,
but those of intermediate size will result in (detectably) rough heterojunctions between
superlattice constituents (Fig. 1.6, right). If this vertical roughness is normally
distributed with a hypothetical standard deviation of ~ 1 ML, the periods bracketed by
any pair of like heterojunctions will be within + 1.4 ML of their mean value 70% of the
time (assuming the fluctuations at successive interfaces are statistically independent), but
fluctuations exceeding 1.4 ML will nevertheless occur 30% of the time.

On the other hand, correlations in the growth plane that suppress the statistical
independence of fluctuations along each interface will correspondingly amplify the
lateral period fluctuations between vertically independent interfaces. These lateral
variations in superlattice period break translational invariance in the growth—plane for
carriers with comparable wavelengths, resulting in inhomogeneous energy—level
broadening. This differs from the standard picture of inhomogeneous broadening that
accompanies a (laterally—uniform) vertical drift in superlattice period, which preserves
lateral translation invariance. Recent work attributes the occurrence of carrier
localization in InAs / InAsSb superlattices [29] to either (laterally invariant) layer—to—
layer thickness fluctuations or (vertically invariant) lateral thickness fluctuations similar
to those just described, but no connection between lateral period fluctuations and

interface roughness is made. An explicit understanding of this connection seems
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important, both in its own right and in light of the long-recognized role that roughness

plays in suppressing carrier mobility due to increased interface scattering [30].

Characterization Techniques

The engineering of MBE—grown devices is almost universally based on an
assumed structural integrity and several characterization techniques are available to
gauge the validity of these assumptions from the quality of as—grown heterostructures.
In—situ reflection high—energy electron diffraction (RHEED) is sometimes used (as
shown in Fig. 1.3) to calibrate growth rates, assess surface quality, and monitor surface
reconstruction during growth. Layer stoichiometry, which is tied to source fluxes and
shutter cycles, is almost always calibrated after the fact by the substrate mismatch
observed by high resolution x—ray diffraction (HRXRD); in this sense in—situ source flux
and temperature monitoring (Fig. 1.3) principally serve to establish reproducible
conditions. More exotic in—situ probes rely on growth surface curvature, thin—film stress,
or anion desorption [31,32] to assess alloy composition during the growth.

Ex—situ techniques in addition to HRXRD include transmission electron
microscopy (TEM) and scanning tunneling microscopy (STM). HRXRD is the gold
standard for determining superlattice periodicity and mismatch [33] over an entire
multilayer stack, and at times can even yield information about vertical period
fluctuations [34]. Cross—sectional TEM offers atomic—resolution information about a
structure [35,36] that could in principle facilitate the measurement of lateral superlattice

period fluctuations on nm length scales [37], however much like HRXRD, TEM

12



averages over a significant sample depth, making it difficult (if not impossible) to
identify order and disorder that present on short length scales; TEM has, however, been
successfully used to identify vertical period fluctuations [38].

With cross—sectional STM one images and identifies individual atoms within a
single plane representative of bulk III-V material. The natural cleavage of zincblende
semiconductors along orthogonal (110) and (1-10) surfaces (Fig. 1.7, [39]) then enables
the subsequent reconstruction of complimentary, monolayer—by—monolayer records of

the growth plane’s evolution across any chosen subset of superlattice repeats.

Scanning Tunneling Microscopy

STM relies on the quantum mechanical tunneling of electrons through a thin,
vacuum barrier separating a freshly cleaved semiconductor surface from a sharp metal
tip (Fig. 1.8). What constitutes an “atomically—sharp” tip is a matter of conjecture, but
theoretical considerations suggest that ~ 1 A lateral resolution is consistent with a single,
metal d—shell orbital [40]. Achieving this resolution in practice demands that extreme
care be taken to reduce ambient vibrations well below this number.

The tunneling current, which is fundamental to all STM measurements, is

typically approximated by

ev
I ocf ps(E,eV) exp(- 2ks) dE (1.1)
0

13



‘[6€] woiy pardepy "ALLS UM [QISSAIIB SUOIJIAS SSOID 9FBABI[O [BUOSOYLIO 0M) )
Sunensnyr onewyds apIsguoe adodsoIdru Jurpuun) Juruueds Y} sASnoY Yorym (3J3]) Ioquieyd AHN PP "L T AINDIA

[o11]

[1o0]

[o11]

siofe) |eixejdo — : w P

aoeLns yymoib r,




‘[6¢] wory pardepy *d Aq IYSIY ISLLIE] 93BIJAR AU) PUB ‘S £ JOLLIEQ WNNJBA AU} JO SSAUNIIY) )
‘2 AQ PIIOUAP SI 93IRYD AIRIUAWI[R Ay} JO sapmruiew Yy [, -opdwres (Jy3Lr) paseiq—A[oAanesau pue (3J9]) —A[eAnisod e 10j suonounl
ordwres—dn reued ‘pazifeopr Suneredas Jorreq [ouun) [eprozaden) Juresny[I SWRISLIP AFIQUS U0 INBWAYIS Q' [ AN

dny a1dups

«~ &

15



K= \/zh—TZn(GD(eV) —E)

where s is the thickness of the vacuum barrier, p, the energy—dependent sample density
of states, and k an exponential decay constant’ that reflects the average barrier height, @,
under applied sample bias eV (Fig. 1.8) [42].

The anion (filled state) and cation (empty state) sublattices at III-V <110>
cleavage surfaces can be imaged separately by changing the sign of the bias voltage
(negative for anions and positive for cations) [43]. Notwithstanding this atom—selective
imaging as well as (1.1), there is only a small range of acceptable voltages that, in
practice, produce high—quality large—area STM images. Biases that are too small risk
damaging the tip by forcing it towards the surface, whereas biases that are too large
result in field emission that also damages the tip, the surface, or both.

The principal cleavage directions in zincblende crystals lie in orthogonal (110)
and (1-10) planes [44], each of which contains the [001] growth direction (Fig. 1.7), but
only every second bulk growth plane terminates at the cleavage surface. This, at first,
appears a major drawback, but is experimentally circumvented by sampling multiple
surface repeats from which the bulk repeat may be reconstructed under the assumption

any changes across the multilayer stack occur slowly on the scale of a superlattice period.

5 The exponential decay constant k is ~ 1 A™ for typical semiconductor work functions
[41].
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Unlike other low-index faces, the <110> cleavage surfaces of zincblende
semiconductors do not reconstruct, but undergo a rigid—bond relaxation (Jahn Teller
effect [45]) that preserves the (in—plane) translational symmetry of the bulk. This
relaxation is driven by a simultaneous re-hybridization of, and (partial) charge transfer
between, cation and anion dangling bonds that spontaneously lowers the energy of the
system. As a result, the filled—states predominantly associated with anions are projected
outward, into the vacuum, whereas the empty—states predominantly associated with
cations remain more nearly planar, and thus more difficult to couple to the tip. Most
images obtained in this lab, and all images contained in this dissertation, are of the
filled—state anion sublattice.

The circumstances described above for a homogeneous semiconductor or lattice—
matched superlattice become more complex in strain-balanced systems where the
respective constituents are under compensating tensile and compressive strains.
Considering each superlattice component as an anisotropic, elastic continuum [46]
(whose properties follow alloy composition), the strain release attending removal of a
half-space normal to the growth direction is followed by relaxation of the tensile
component into, and relaxation of the compressive component out of, the remaining
half—space®. Thus in the case of the (tensile) InAlAs / (compressive) InGaAs superlattice
(considered in Chapter III) the entire tensile constituent sinks into the surface and the
entire compressive constituent bulges out of the surface to produce a surface topography

that closely tracks the well-to—barrier division in the superlattice.

% [001] relaxation is also possible in this continuum model.
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The continuum model described above is directly applicable to cleavage—induced
strain relaxation in compositionally abrupt systems, but this is clearly not the case for
InAs/InAsSb, which is compositionally graded. The contrast in these superlattice images
are almost entirely dominated by the strain relaxation of individual InSb bonds [47].

Since the tunneling current in (1.1) does not explicitly depend on elemental
composition, an individual atom can only be identified when all 118 possibilities
comprising the periodic table can be condensed down to those handful of elemental
sources attached to the MBE chamber (Fig. 1.3). These few possibilities can then often
be distinguished by the differences in natural bond length that become manifest
following post—cleavage, site—specific strain relaxation.

For example, there are only two possible anion—cation pairings in an InAsSb
alloy: InAs, whose lattice constant is 6.0513;, and InSb, whose lattice constant is 647A
[44]. A coherently—strained InSb bond will thus stick out further from the cleavage
surface than the corresponding InAs bond, once both are free to do so. Top—layer InSb
pairings are then pinpointed by the consequent increase in tunnel current as the STM tip
passes over each substitutional site (Fig. 1.9).

No matter which strain relaxation mechanism dominates at the cleavage surface,
the composition within this plane is representative of that in every other like plane

throughout the bulk, and this is what gives cross—sectional STM it’s unique power.
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anion sublattice (Sb, As)
70 nm

anion contour

FIGURE 1.9 Atomic-resolution STM image of the anion sublattice (Sb, As) for a type—II
InAs / InAsSb superlattice. Top—layer isovalent impurities are indicated by carets in the
image. The lower schematic illustrates the change in current contour as the tip encounters a

change in surface topography. Growth direction is from top—left to bottom-right. Adapted
from [39].
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Dissertation Overview

Chapter II details how atomically—flat cleavage across an InAs/InAsSb
superlattice 1s achieved and atomic-resolution STM images acquired. Particular care is
given to the discussion of STM non-idealities bearing on the accuracy and interpretation
of measurements central to the scientific objective pursued here, as well as new
techniques that effectively circumvent these shortcomings. Chapter III considers long—-
range structural disorder, beginning with an STM measurement of the average
InAs/InAsSb superlattice period; we then proceed to map the period fluctuations over
nm length scales (image—by—image) throughout micron—long lateral surveys; finally, we
connect these lateral fluctuations to a stochastic description of correlated interface
roughness. Chapter IV refocuses on short-range atomic order. We introduce a new
technique to automatically tabulate the crystalline coordinates of previously—identified
top—layer antimony atoms in InAs/InAsSb and construct the antimony pair—correlation
functions in both (-1-10) and (1-10) cross sections. These correlation functions are
then analyzed in terms of layer strain as well as antimony fraction, and comparisons

drawn between corresponding superlattice and bulk alloy experiments.
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CHAPTER 11

EXPERIMENTAL DETAILS

Introduction

Our test bed for an in—depth structural study of these III-V materials is a 33%
antimony InAs / InAsSb strain—layer superlattice (Fig. 2.1) — fabricated via MBE at
Sandia National Laboratories [23]. This growth nominally targeted 100 repeats of 15.4
ML InAs / 5.4 ML InAsSb atop a p—type GaSb buffer grown on one—quarter of a 2” n—
type GaSb substrate' for an intended superlattice period of 20.8 ML.

The as—grown structure has been shown [23] to differ measurably from the
intended one in three ways, only two of which are consequential. The superlattice period
measured by HRXRD is 0.2 ML shorter than design — indicating a comparatively minor
~ 1% growth-rate miscalibration — but the structure also displays antimony segregation
as well as antimony cross—incorporation. The succeeding chapters describe studies
performed with a cross—sectional scanning tunneling microscope (STM) that illustrate
two additional ways this as—grown structure differs significantly from engineering
design intentions. Here, we describe the scientific equipment and preparation necessary
to obtain device—scale, atomic resolution surveys, as well as potential pitfalls related to

the STM scanning mechanism, that must be overcome to analyze these images.

"There are two standards for semiconductor substrates. The GaSb substrate on which
this sample was grown uses the European—Japanese (EJ) standard. The United States
(US) standard differs in the orientation of the major and minor flats.
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The STM used in this study is a commercial unit made by Omicron
VakuumPhysik GmbH and housed inside an ultra—high vacuum (UHV) chamber resting
atop a custom vibration isolation table. The isolation table was designed [48,49] to
reduce vibrations to the pm level for all frequencies above ~ 2 Hz, through a
combination of pneumatic damping of the table and in—sifu spring suspension / magnetic
levitation of the stage that supports the STM sample and tip.

The vacuum chamber that houses the STM is pictured in Fig. 2.2 with key main
chamber components highlighted. The chamber is split into three stages’, each separated
by UHV compatible gate valves. Samples are introduced to vacuum in the first stage,
which is pumped by a turbo pump backed by a roughing pump. To avoid vibrations
during experiments these pumps are valved off and shut down after achieving base
pressure with the help of a thermal bake [50]. The next stage employs a non—evaporable
getter and small ion pump to reduce the pressure further before samples are introduced
to the main chamber where the cleavage carousel and STM sit. Two NEGs, an ion pump,
and a titanium sublimation pump bring the base pressure in the main chamber (following
isolation from the first two stages) to ~ 10 picotorr for hydrogen, and more importantly,
as seen in Fig. 2.3, below 0.1 picotorr’ for all reactive molecules (XHV regime).

To obtain these impressive pressures, the vacuum system received an overhaul in

2008 after it was found that aluminum-bearing samples reacted with dilute, background

*This three stage arrangement has proven particularly stable; while the load lock is
routinely cycled between atmosphere and UHV conditions, the main chamber has been
under continuous XHV conditions for seven years now.

* These pressures are some of the lowest on Earth, exceeded only by accelerator beam
lines [51], and are comparable to those in interplanetary space [52].
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levels of oxygen—containing molecules. Everything from pumping speed to sample
mounting and cleaving were scrutinized and optimized [20,39]. This affords us at least a
week to examine samples containing aluminum, and several months for samples such as

the Al-free InAs/InAsSb superlattice, studied here.

Sample Preparation

A representative history of the epitaxial growth can be reconstructed by studying
orthogonal <110> cross sections with STM; access to these cross sections is facilitated
by cleaving the sample along one of two principle crystal directions. In order to identify
individual atoms, the freshly exposed surface needs to be atomically flat across the
epitaxial layers and to navigate across the structure there shouldn’t be steps or debris that
stick out of the surface more than a few nm. Since the quality of the cleave is sensitive to
each step of the sample preparation, a second, ex—sifu cleaving station was constructed to
allow quick turnaround for optimization of each parameter bearing on this all-important
goal of atomically flat cleaves. As we explain the procedure here, we will briefly review
these parameters, but more thorough write—ups of the optimizations can be found in
previous theses [20,39].

Each quarter of a standard 2” wafer is diced into individual 5mm x Smm squares
suitable for transfer to the STM®. This dicing is done with a ESI laser trimmer system
using a Nd:YAG laser operating at 1064 nm. This same laser is then swept from the

center of the die outward (Fig. 2.4 (a)) along a specified <110> direction at a rate of

* Sandia National Labs kept a portion of the InAs/InAsSb quarter wafer for optical
characterization.
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12mm/s using 0.5 W to create a notch whose depth is nearly 1/3 the wafer thickness, and
whose length is ~ 0.07”. The sample is sandwiched between two stainless—steel anvils
secured to a sample platen, with the notch directed upwards and held in place by
pressure applied via a Be-Cu spring (Fig. 2.4 (b)); when struck during cleavage (Fig. 2.4
(c)) this notch initiates fracture along the chosen crystal axis. Both the sample and the
spring are aligned as close to the bottom of the two anvils as possible to encourage high—
quality cleaves near the bottom of the sample where the STM tip is subsequently
positioned.

Mounted samples are placed inside a load—lock that is initially pumped down to
high vacuum, then heated overnight to drive off residual water and bring the pressure to
ultra—high vacuum levels. The baked—out sample platens (Fig. 2.4 (b)) are subsequently
transferred to the main vacuum chamber and placed in a carousel where — after closing
all valves and letting the system equilibrate — a particular die is cleaved via impulsive
impact driven by pneumatic actuation of a vacuum feed through (Fig. 2.4 (c)). The speed
at impact for samples grown on GaSb substrates is targeted at ~ 300 mm/s for (—1-10)

cleavage and ~ 150 mm/s for (1-10) cleavage.

Sample Crystallography
To minimize the number of outgas—inducing movements post cleavage the
carousel and sample platen are oriented so that the sample is cleaved facing the same

direction it will face when loaded into the STM (Fig. 2.5 right). This orientation breaks
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with the historical precedent (Fig. 2.5 left) set by an earlier generation of students, so we
pause here to explore its crystallographic ramifications as they relate to STM.

We begin by describing the inherited sample mounting and cleavage, illustrated
schematically in Fig. 2.5 (left). The sample is always mounted notch up with the scribed
(001) surface facing the cleavage tool, as this is needed for reproducible cleaves.
Originally, the platen clamped the right half of the sample (as looked at from the
cleaving tool) and the cleaver impacted the left half, breaking this piece off. The
carousel was next rotated 180°, so that this cleaved surface then faced the tip, and the
sample was subsequently transferred to the STM. This reoriented the [001] growth
direction parallel to the cleaving rod and positioned the (001) growth surface to the right
of (i.e. behind) the STM tip.

Cleaves are currently conducted with the sample clamped on the left half (again
with the notch facing up and the [001] direction pointing towards the cleavage tool), and
the right half of the die is cleaved off to expose the epitaxial layers, as shown in Fig. 2.5
(right). The sample is then transferred into the STM without rotation since the cleavage
surface already faces the tip. If no other change is made, the surface examined with STM
will then be opposite that historically looked at: the (110) surface on the right half of the
die is the (—1-10) surface on the left half of the die, and likewise the (1-10) surface is
complemented by the (—110) surface. Since these complementary planes are physically
indistinguishable, the only visual change results from the 180° rotation of the (001)

growth surface with respect to the STM tip.
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To maintain the same (110) and (1-10) cleavage surfaces used historically, the
notch direction should be reflected and the sample rotated 180° about the [001] direction.
As seen in Fig. 2.6 this was done with the (1-10) cleave, where the laser scriber (Fig. 2.4
(a)) was previously swept in the [-1-10] direction but is now swept in the [110] instead.
Unfortunately, the same change was not implemented for the (110) cleave, where the
laser is still swept in the [-110] direction yielding a (—1-10) surface when the right half
of the die is cleaved off; this oversight is of no scientific consequence, however, since
both (110) and (—1-10) surfaces are physically equivalent. The currently accessible
cleavage planes, (-1-10) and (1-10), are shown in relation to the STM tip in Fig. 2.7.

The 180° rotation of the [001] growth direction is better appreciated by
considering the inherited and modified sample orientations from the viewpoint of the
piezo—tripod in which the tip illustrated in Figs. 2.5 and 2.7 is mounted. The 180°
carousel rotation needed to reorient the inherited sample mounting in Fig. 2.5 positions
either (110) or (1-10) cleavage faces towards the STM tip and the [001] growth
direction to the right — a linear combination of negative x and positive y — as shown in
Fig. 2.8 (left). The modified sample mounting, which requires no reorientation,
correspondingly positions either (—1-10) or (1-10) cleavage faces in front of the STM
tip, with the [001] growth direction now pointing to the left — a linear combination of
positive x and negative y— as shown in Fig. 2.8 (right).

Fig. 2.9 contrasts the resulting orientation of cleavage—exposed crystal axes
accompanying inherited and modified sample mountings with respect to the x—y scan

coordinates (image coordinates) in Fig. 2.8. As should be clear from Fig. 2.9, reversal of
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the [001] direction manifests in the STM images (Fig. 2.10) in the following way: with
an inherited sample mounting [001] runs from lower right to upper left, but with the
modified sample mounting it now runs from upper left to lower right.

The growth direction in an InAs / InAsSb superlattice is unambiguously
identified by symmetry—breaking antimony segregation, which creates a “charging” /
“discharging” cycle in the antimony fraction as a function of distance in the growth
direction’. Although we will adhere to the rigorously correct identification of crystal
directions here (Fig 2.10, black and Fig. 2.9, right) others [20,23,39] have opted for a
simplified labeling (Fig 2.10, grey and Fig. 2.9, left) that amounts to the presumption of

(110) versus (-1-10) cleavage.

Scan-related Image Distortion

As previously described in connection with Fig. 2.8, a sharp tip is placed at the
vertex of a piezoelectric tripod scanner whose mutually—perpendicular fast— and slow—
scan axes are fixed at + 45° with respect to (001) crystal planes, or, what amount to the
same thing, + 45° with respect to <110> directions. This scanner controls the fine
movement of the tip (in the first x—y quadrant) as needed to form an image as follows:
the fast-scan piezo is incrementally contracted stepping through the first line of an
image (increasing x, forward line scan), followed by an incremental expansion re—
sampling the first line (decreasing x, reverse line scan), before the slow—scan piezo is

incrementally contracted (increasing y) to move to the next line, each increment forming

> In some non-common-atom superlattices (such as InAs/GaSb) the growth direction
can also be identified by pinpointing heterojunction—specific interface bonds [47].
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FIGURE 2.10 Atomic-resolution STM image of the anion (Sb, As) sublattice from a type—
IT InAs / InAsSb superlattice. Antimony—for—arsenic replacement within the cleavage—
exposed plane is identified by carets. Growth direction is from top—left to bottom-right.
Simplified crystal axes (grey) assume the cleavage plane is (110), while rigorous axes
(black) correctly identify cleavage plane as (—1-10). Adapted from [20]
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the real—space pixels visualized in the simultaneously acquired forward and reverse STM
images. Images may be similarly obtained in quadrants 2—4 by inverting the rastered
directions of the x and / or y piezos (Fig. 2.8).

Elongation of the piezos with each computer controlled voltage step was
historically calibrated by counting the number of substrate atoms that fit into a given
window size, but two extraneous circuits in the piezo—driver control board have since
been disabled. The first fed a small portion of the slow—scan voltage into the fast—scan
signal, which could be used to counter image skew. The second circuit allowed for
arbitrary rotation of the scan frame, but was later found to have a defective bit that
prevented raster scans with a truly 0° scan angle. It was decided that any subsequent
recalibration would be enforced after the fact, using average lattice constants for the
entire image as described below, instead of adjusting the step size of the voltage input to
the piezo scanners to compensate for these modifications.

The fine movement of the tripod may also be used in another way. Offset
voltages may be applied to translate the tip between images — up to ~ 1 micron in either
the lateral, <110>, or vertical, [001], directions — so that successive images may be
strung together to form a continuous survey. Coarse movement® (any distance greater
than 1 micron) on the other hand, necessitates translating the entire sample with a slip—
and-stick piezo movement [53]. The drawback of this type of mechanism is that the
sample stage has a very large mechanical inertia and tends to continue drifting in the

same direction (Fig. 2.11) for several hours after intentional movement has ceased.

° This coarse movement is used to initially position the epitaxial layers directly beneath
the tip.
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[110]

sample—stage drift

—_— ——> ——> ——> ——> ——>

STM scan frame

substrate

«~——— [001]

epitaxial growth

FIGURE 2.11. Schematic diagram illustrating sample drift (left) due to piezo—inertia of
the sample stage as the scan frame is displaced vertically in the [1-10] direction. This
stage coarsely positions the epitaxial layers under the tip, and moves either left (in growth
direction), or right (opposite growth direction) with respect to the tip. The induced drift
typically requires several hours to settle. Also illustrated (right), an STM image is formed
via contraction of the x— and y—piezos. Cleavage plane coincides with plane of paper.
Growth direction is right to left. Reprinted with permission from [39].
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When planning an experiment this must be factored in to allow ample time for the
sample to settle in position; once settled the sample inertia is typically no longer a
concern.

The tripod itself also has inertia and will consequently display creep (where the
tip needs time to adjust to changing directions). This creep appears at the bottom of
every image (Fig. 2.12, left) due to a rapid return of the slow—scan piezo to the scan
origin at the conclusion of every image. It also shows up in a more subtle way, when the
image frame is offset parallel to the scan direction, as we discuss later in this chapter.
The piezoelectric ceramics that move the tripod scanner are also notoriously problematic
[54]. Under ideal expansion the change in length of the piezo material would depend
only on the change in voltage applied to the material; in a realistic piezo, however, the
amount the material expands depends not only on the size of the voltage step, but also on
the voltage itself, making the response nonlinear (Fig. 2.12 right). To make matters
worse, the expansion additionally depends on the history of the voltage applied to the
material, making the response hysteretic; this hysteresis affects forward and reverse
images differently. We will rely on forward images as examples in the remainder of this
chapter and comment on any differences that pertain to the reverse images. The severity
of the resulting distortions is also dependent on the size and history of the offset voltages
applied to the piezos, so for that reason it is important to analyze survey images, whose
offsets that are relatively small.

In a typical forward image the piezo nonlinearity just described results in curved,

or bowed, <110> rows and [001] columns. Bowing along the row is subtle, but is
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highlighted when a box is aligned to a single <110> row in the lower portion of an image
(Fig. 2.13, left) and then projected upward to compare with a box aligned to the same
<110> row in the upper portion of the image (Fig. 2.13, right). A deflection of between
one-half and one monolayers or ~ 0.5° is typical. A box likewise aligned to a single
[001] column in the lower portion of an image (Fig. 2.14, left) and projected up to
compare with a box aligned to the same [001] column in the upper portion of the image
(Fig. 2.14, right) shows a deflection of about five <110> lattice spacings equivalent to ~
2.7°.

Hysteresis in the piezos causes the magnitude of these row and column
deflections to interchange between forward and reverse images, where the [001]
columns are minimally bowed, but the <110> rows are deflected significantly. Thus
<110> interface profiles extracted from reverse images are hopelessly distorted, and only
forward images may be relied upon for measurements of interface roughness described
in Chapter III. Likewise the reciprocal lattice vectors inferred below from forward and
reverse images will differ, but the periods measurements outlined in Chapter III are

designed to be insensitive to these distinctions.

Image Analysis in Reciprocal Space

The deflections above are closer to a maximum angle, rather than an average, but
they serve to illustrate the challenge faced by analog correction circuitry or in our case a
naive computer algorithm employed to translate between the digitized image and the

physically meaningful [001] and <110> coordinates. We instead turn to reciprocal space
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where distortion averaged over an entire image may be judged by Fourier transforming
our real-space image, plotted as a logarithmically—scaled power spectrum in Fig. 2.15.
Four “peaks” (encircled in white) corresponding to the unit atomic mesh in real space
dominate this map; each of these reciprocal lattice vectors (RLV) is smeared out due to
the real-space bowing noted above, and close inspection reveals each peak is actually
split into two distinct maxima. As we’ll see in a moment, there is a certain amount of
symmetric ringing in the discrete Fourier transform (DFT) due to finite window effects,
however this ringing decreases rapidly with distance and therefore would not cause this
peak to bifurcate. It’s helpful to remember that large frequencies (such as the extent of
the DFT window) represent small distances (such as the real-space resolution), since all
images in this chapter have a resolution of 1 pixel / A, every DFT will have the same
extent, however each DFT has been cropped to the inner %4 (by area) of reciprocal space
to focus attention on the region inside the RLVs.

The frequency resolution in the power spectrum shown in Fig. 2.15 has been
artificially increased by zero—padding along both the x—and y—scan axes. Much like the
quantum uncertainty principle, real- and reciprocal-space resolutions cannot both be

made arbitrarily small. The reciprocal—space pixel size,

1 1

— S 2.1a
NAx L’ (2.1a)

Ak

is set by the inverse of the total length (L) [55] given by the number of pixels (N) times

the real-space pixel area (Ax). The power spectrum size, then, is given by
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1
= 2.1b
Nok =+, (2.1b)

where the real-space pixel area sets the high frequency limit’, which will remain
constant so long as the real-space image resolution remains unchanged. To decrease the
reciprocal-space pixel area we need to either obtain larger images — which are
experimentally limited by the distortions just described — or, alternatively, pad the data
with zeros to increase the total length (zeropadded length L' > L) over which the DFT is
calculated.

Parseval’s theorem®,

L-—1 L-—1
zlfnzszlelz, 22)
n=0 k=0

states that the sum of the direct—space image power is the same as the summed power in
the reciprocal—space spectrum. To account for zeropadding we can rewrite (2.2) in terms

of zeropadded values (labeled by primes) as

7 Since reciprocal space is inversion symmetric the range of k values is actually
-1 / (2NAX) to 1 / (2NAx)® and the maximum frequency is known as the Nyquist
frequency [55].

® The exact form of Parseval’s theorem depends on the DFT convention utilized. The

form in (2.1) corresponds to the signal processing convention [55] adopted in this
manuscript.
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L'-1 L'-1
Mgz =r Y Fl 23)
n=0 k'=0

The total power in the zeropadded direct—space image — the left-hand side of Eq. 2.3 —is
clearly the same as the power in the original image — the left-hand side of Eq. 2.2. In

order for the right-hand sides to be equivalent, the zeropadded powers at integer k must

be smaller than the original powers by two factors of L’/ L

L'\’
;12
|Fy|? = <f> |F| (2.4)
where
L L
k= klf when k' mod )= 0 (2.4a)

the first due to the scaling in (2.3) versus (2.2), and the second from computing the sum
over the densely—sampled points described by (2.1a).

To help visualize this concept, consider the one—dimensional example of a
rectangular box (Fig. 2.16, left), where the length has been increased 5—fold (L’/ L= 5)

by adding zeros to the end of the data stream; the resulting power spectrum (shifted so

that the reciprocal-space origin is centered) is interpolated (Fig. 2.16, right), reducing
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the uncertainty in the peak maximum by this same factor’. Rescaling both spectra to unit

2
amplitude eliminates the factor of (%) = % in Eq. (24).

Zeropadding is a standard technique in image processing [56] and is used for
calculating correlations and convolutions as well [57]. All image power spectra that are
shown in this document have been zeropadded. In this chapter, where we are focusing
more on qualitative behavior, the padded size was not consistently adhered to; the graphs
of RLVs have been scaled appropriately so that they can be compared regardless of the
zeropad utilized; in Chapter III, where the zeropad size directly determines the
uncertainty in the peak maxima and therefore the uncertainty in the measured period the
zeropad size 1s consistently 16000x16000. We will return to the relationship between
real- and reciprocal-space resolutions in Chapter III when we discuss the direct
measurement of interface roughness in QCL materials where zeropadding is actually a
poor idea.

The ability to convert from as—imaged (distorted) “nominal” Angstroms to either
dimensionless monolayers, in the [001] direction, or <110> lattice constants, in the
growth plane, is crucial for accurate measurements of both period fluctuations and alloy
order. We therefore pause, here, to thoroughly examine the frequencies present in a

given STM image in more detail.

° Fitting one—dimensional sections through reciprocal-space peaks along the fast-scan—
direction (we’ll see in the next section that this direction is preferred for our period
measurements) to a standard Sinc squared form also reduces the peak uncertainty. It was
experimentally established that zeropadding together with a simple search for local
maxima yields the same result as fitting the sections; however there is a strong
preference for zeropadding and peak finding, which can be easily automated, whereas
fitting cannot.
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Two series of measurements were made by cropping small-area windows out of
a forward—scan image (contracting the x piezo, Fig. 2.8). The image is first cropped to
remove all whiplash from the bottom (50 A) and then symmetrically cropped (25 A) to
maintain a square aspect ratio, producing a 700 A x 700 A image from a nominal 750 A
x 750 A scan. In the first series a 100 A x 100 A crop window was moved from left to
right in steps of 50 A, keeping the vertical location fixed midway between top and
bottom edges of the image (Fig. 2.17, left); in the second series this crop window was
moved in the same way from bottom to the keeping the horizontal location fixed midway
between the left and right edges of the image (Fig. 2.18, left).

The DFTs (Fig. 2.17 and Fig. 2.18, right) resulting from these small-area crops
show none of the smearing found in the full image DFTs, but instead exhibit pronounced
ringing emanating from the strong atomic spots (circled in white). This ringing is a
natural consequence of finite data; any experimental measurement can be thought of,
mathematically, as an infinite expanse gated by a rectangular box that zeros everything
outside a chosen frame'®. This real-space multiplication results in a reciprocal-space
convolution between the corresponding Fourier components found in an image and a
two—dimensional Sinc function, which is the Fourier transform of a rectangular box [55],
the one—dimensional version of which is shown in Fig. 2.16, right. Since the Sinc lobe
spacing is inversely proportional to the window size, this ringing falls off faster and is

therefore less noticeable with larger windows. Because this Sinc function is oriented

' In many ways this gating is complementary to zeropadding. By padding our data with
zeros we more accurately represent the infinite expanse that has been gated by our
measurement.
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perpendicular to the window, any change in window shape or alignment will produce in
a corresponding change to the ringing pattern. The ringing can be abated by softening
the edges of an image via a “windowing” function, such as a cosine function centered on
the image crop, but at the cost of throwing away unacceptably large amounts of hard—
won experimental data. This pattern is present in Fig. 2.15, but a combination of the
broadened peak and the Sinc suppression due to the larger image size made it difficult to
distinguish the ringing from background noise. It is natural to suspect the larger spot
sizes in Fig. 2.17 and Fig. 2.18 simply cover up the doubled peaks observed in Fig. 2.15,
but sections through the RLVs in Fig. 2.17 and Fig. 2.18 monotonically increase to
respective maxima whereas those in Fig. 2.15 likely would not.

Mapping out the x— and y—scan coordinates for the [001] (Fig. 2.19) and <110>
(Fig. 2.20) reciprocal lattice vectors, we observe that when the crop coordinate is held
constant (the slow—scan coordinate in the left graphs or the fast-scan coordinate in the
right graphs) there is no variation in the corresponding RLV component. This symmetry
between x (fast scan) and y (slow scan) with respect to small-area, vertical and
horizontal crops is at first surprising'', but indicates that despite all the aforementioned
shortcomings of these piezos, they reproducibly yield the same frequencies at the same
point in the scan over the relatively small ranges used to acquire individual images.

The crop coordinate that is systematically varied throughout each sequence tells a

different story however. As the crop window is swept from the left to the right across the

" While the two series of small-area measurements are symmetric in many ways with
respect to x and y coordinates, they are not symmetric with respect to the immediate
history of the fast—scan (x) piezo, since it is constantly being swept through a range of
values for each slow—scan (y) piezo increment.
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image (Fig. 2.17, left) the x—component (fast—scan) of both RLVs increases; likewise as
the crop window is swept from the bottom to the top of the image (Fig. 2.18, left) the y—
component (slow—scan) of both RLVs increases. This shift to higher spatial frequencies
means that the atoms appear closer in real space, but since the atoms in the underlying
substrate are, in reality, equidistant, the piezos must be physically contracting more for
each voltage step as the scan progresses.

The slope of the RLV x—component versus distance from the left side of the
reverse—scan image (fast—scan expanding) is opposite that in Fig. 2.19 (left) and Fig.
2.20 (left). Said another way, due to the hysteresis illustrated in Fig. 2.12, the x—
component of the RLV increases as the crop window is moved from the right to the left
across the reverse image, mirroring the left to right increase in the forward image. This
increase from right to left in the reverse image is nevertheless, consistent with the piezo
step size increasing for each additional voltage step as the scan progresses, since the
piezo is expanding in going from the right side of the image to the left side.

The image size can be increased from 100 A x 100 A to 400 A x 400 A with little
consequence to the quality of the FFT all the while suppressing ringing of the Sinc (and
therefore the width of the RLVs) due to the increase in window size. For DFT windows
larger than 400 A x 400 A the <110> RLV begins to bifurcate, and not long after, the
[001] RLV bifurcates as well as observed in Fig. 2.15. The best crop location,
empirically determined, is illustrated in Fig. 2.21, and marked by the scale bar positions
in Fig. 2.19 and Fig. 2.20. We instinctually chose the location of the standard crop

window in a region that happened to coincide with nearly linear spatial “chirp” in the

57



"JYSLI wo0q 0 1J9] do3 WOoIJ ST UONIAIP YIMOID) "G 7 "SI Ul pIAIdSqo Ajureaurjuou 0zard Jo $109JJ9
1SI0M 9} SUNUIAWNDIID Jods 9[3UIS B UT PAJLNUIOUOD ST J0JOA 01)e[—[2201d1031 yora ur 1omod o) ‘1" "SI pue L]°7 "SI ur
SY "USOW 9JBJINS [BUOISUIWIP—0M] A} SUTUGIP SI0JIIA 0133e[—[8201d10a1 <[ [> pue [100] U3 230uap sjods pay3ysry - (3ysu)
dew aoeds—eo01droar Surpuodsariod pue (3J9]) 9FeWI A LS UOIIN[OSAI-OTOIe Wwoij do1d wu (f X WU () [eNUd) "17°7 AANDIA

4

L T f— qQsen

58




RLVs. While not mathematically addressed here, it seems plausible that the RLVs

obtained this way are averages over this linear chirp within our standard crop window.

Survey Protocol

To collect the ensembles needed to drive down statistical uncertainties in our
measurements, we need to construct physically appropriate image surveys. Studying
interface roughness in QCL materials [39] required the development and adoption of
lateral survey protocols that follow a small subset of superlattice repeats for up to a
micron in the [110] or [1-10] directions, thereby sampling a fixed point in time during
the growth history. Additional time slices may then be similarly reconstructed through
successive vertical displacement of these lateral surveys along the [001] growth direction.

Given the need for lateral surveys, one must still choose which of two possible

navigation routes (Fig. 2.22, left) — affected by corresponding offsets applied to the

successive scan frames — to adopt. Simultaneous expansions of both fast— (- X, rse¢) and

slow—scan piezos (- ¥osrser) llustrated in Fig. 2.11 (right) and Fig. 2.22 (left), effects a
[1-10] translation of the scan—frame origin within the (—1-10) cleavage plane illustrated.
Simultaneous contraction of both piezos (+X,frser and +Yo5r5e¢) On the other hand
effects a [-110] translation of the scan—frame origin.

When we discussed piezo creep, which causes whiplash at the bottom of the
images, it was pointed out that this creep causes additional problems whenever an image
frame is offset parallel to the positive y scan direction. The problem, while subtle in real

space, becomes frustratingly apparent in reciprocal space (Fig. 2.22, right). There are
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two very different RLV y components present in the DFT when the frame offsets
contract (i.e. parallel) the slow—scan piezo. This effectively restricts the lateral survey
direction to a small choice'?, dictated by offsets that simultaneously expand x (fast-scan)
and y (slow—scan) piezos (Fig. 2.22, left).

Enforcing the standard 40 nm x 40 nm window size for DFTs we may map the
RLV components throughout an “allowed” lateral survey as shown in Fig. 2.23.
Surprisingly, the two components are not symmetric; the x (fast—scan) component is very
stable throughout the course of the survey while the y (slow—scan) component drifts by
as much as 4% of it’s value. This asymmetry can be reconciled by considering the time
scales involved with each piezo; the fast—scan piezo is actuated every few seconds while
the slow—scan piezo changes over the course of ~ 15 minutes; this longer time scale
makes it proportionally more sensitive to 1/f noise such as thermal drift of the sample.
For this reason we choose to rely on the fast—scan component in Chapter III.

The [001] and <110> lattice constants averaged over the 40 nm x 40 nm standard
crop (Fig. 2.24) can be calculated from the RLV components in Fig. 2.23; this image—
by—image conversion map in Figs. 2.23 and 2.24 is calculated for each and every survey
and provides the ruler we ultimately adopt to normalize our STM measurements, either
directly (correlation lengths in Chapters III and IV) or indirectly via the RLV (period

measurements in Chapter III).

"> The extreme doubling also restricts the vertical survey direction if minimally—distorted
images and DFTs are sought. It is worth calling attention to the serendipitous alignment
of the [001] direction with a minimally distorting survey route, given the modified
sample mounting in Fig. 2.8, this was not true of the inherited mounting so that vertical
surveys “naturally” progressing from repeat 1 through 100 were heavily distorted.
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Every lateral survey follows a chosen subset of superlattice repeats. These
repeats are then systematically varied via vertical surveys that extend the entire length of
the superlattice growth in the [001] direction. Representative examples, along with
arrows illustrating the allowed survey directions, are shown in Fig. 2.25. We will
develop additional methods for sidestepping the distortion present in each of these
survey images in the next two chapters as we seek to measure the local superlattice
period in Chapter III, and the growth—plane correlations between isovalent impurity

atoms in Chapter I'V.
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CHAPTER III

LONG-RANGE STRUCTURAL DISORDER

Introduction

It might seem natural to begin our discussion of the differences between as—
grown and intended structures with short-range alloy order since our data are comprised
of atomic—resolution STM images, but long-range disorder provides a more fitting
introduction to correlated statistics. We begin that discussion with a consideration of the
long-range disorder manifested in superlattice period measurements.

This chapter, like the next, relies on numerical calculations to build intuition and
inform analyses that might then be used with experimental measurements to extract
physically relevant insights. Before embarking on those calculations, we describe how
the [001]-convolved reciprocal-space satellite peaks obtained from discrete Fourier
transforms (DFTs) of individual STM images can be used to measure the period
variations in InAs / InAsSb superlattices. These measurements can be localized to within
~ 5 superlattice repeats in the [001] growth direction, as well as to within ~ 40 nm along
<110> directions in the growth plane, and either subsequently pooled (over lateral and/or
vertical survey ensembles) to compare with global measurements of the average
superlattice period, or treated independently to analyze the image-by-image period
fluctuations within a given set of repeats.

We show by way of semi—quantitative arguments that these localized fluctuations

are inconsistent with the naive assumption of laterally—uncorrelated interfaces for the
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system studied here. We then turn to numerical experiments that explore how correlated
interface roughness influences the local period — even when the correlation lengths
involved are small on the scale of our measurement window — and show how the
magnitude of image—to—image period fluctuations depend on the parent parameters in a
stochastic description of interface roughness. Finally, we use our numerical experiments
to fully explore the dependence of period fluctuations on interface roughness parameters.

Further insight is offered by a MOCVD—grown InAlAs / InGaAs superlattice,
whose strong layer contrast makes it amenable to direct measurement of the stochastic
parameters used to describe correlated interface roughness in our numerical experiments.
These directly measured roughness values confirm that the local period fluctuations in
InAlAs / InGaAs originate with interface roughness. We then use this knowledge to set
limits on the corresponding roughness parameters for our InAs / InAsSb material system.

The idea to use DFTs to measure superlattice periods was developed by Dr.
Federico Lopez to contrast layer uniformity of InAlAs / InGaAs superlattices grown by
MOCVD and by MBE. I am indebted to Dr. Lopez as well as Dr. Kara Kanedy for the

experimental benchmarks used in this chapter.

Analysis of Experimental Data

Chapter II concluded with the introduction of device—scale surveys (Fig. 3.1)
composed of atomic-resolution STM images (Fig. 3.2). As discussed at length in
Chapter II, these images are inevitably distorted, and that distortion undermines

straightforward attempts to measure a superlattice period in real space. We turn instead,
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FIGURE 3.2. Individual atomic—resolution image with antimony—for—arsenic substitutions
indicated by carets and approximate thickness of a single repeat annotated above. Solid
box identifies standard DFT crop window illustrated in Fig. 2.22; dashed box indicates a
representative counting window used to compile the antimony fraction in successive [001]
monolayers. Adapted from [20].
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to a measurement approach similar in spirit to high-resolution x-ray diffraction
(HRXRD), where Bragg’s Law yields a superlattice period of 20.62 + 0.01 ML (Fig. 3.3).
Just as the x-ray spectrum has superlattice peaks convolved with the (004) substrate
reflection, the DFT (Fig. 3.4) calculated from the standard image crop corresponding to
the solid box in Fig. 3.2 exhibits superlattice peaks (encircled in red) convolved with the
[001] reciprocal lattice vector'.

An [001] section through these data (Fig. 3.5, top) looks very similar to a
HRXRD rocking curve (Fig. 3.3, top) and can be analyzed in like manner, save one very
important difference. Recall from Chapter II that the DFT reciprocal-lattice vectors
(RLVs) vary from image—to—image; since the superlattice peaks are convolved with the
[001] RLV they must vary in exactly the same way. Normalizing the superlattice
satellite peaks to the [001] RLV image-by—-image therefore provides a measurement
denominated in units of the atomic mesh that is potentially insensitive to image
distortion. The x (fast-scan) component of each superlattice peak normalized to the x
component of the RLV is a linear function of satellite order whose slope is inversely
proportional to the superlattice period (Fig. 3.5, bottom). The slow—scan (y) axis is
proportionally more susceptible to 1/f noise than the fast—scan (x) axis, as described in
Chapter II, so while the slow—scan component yields perfectly serviceable period
measurements, we rely exclusively on the fast-scan component in what follows; in so

doing we’ve implicitly assumed our superlattice is perfectly oriented perpendicular to

' X—ray reflections from zinc blende structures require the Miller indices sum to 4*n and
all three indices to be either even or odd; the (004) plane therefore is the first allowed
reflection in these materials [58]. This does not apply to the two—dimensional STM
image, which is a rectangular lattice.
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- (004) triple—axis data

log intensity ( arbitrary units )

-10000 0 10000
A® (arcsec)

period: 20.62 +0.01 ML

2sin® / A

mismatch: —0.048 +0.001 %

satellite order

FIGURE 3.3. Triple—axis HRXRD measurement about the (004) reflection (top) and
superlattice period calculated using Bragg’s law (bottom). Adapted from [20].
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(001) STM

log power density

[001] wave vector

SL period: 20.66 +0.01 ML

k001 / b001

SL repeats: 47 — 52

satellite order

FIGURE 3.5. Section through survey—averaged reciprocal-space map (top) in Fig. 3.4
emphasizing superlattice satellites convolved with the [001] reciprocal lattice vector (tick).
The x—coordinate of each satellite is normalized image—by—image to the x—coordinate of
the reciprocal lattice vector and then averaged (bottom); the resulting slope versus satellite
order is inversely proportional to superlattice period. Adapted from [20].
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the [001] growth direction. This is not always strictly true, since even high—quality
substrates may have miscut angles on the order of 0.1°. Our particular sample was grown
on a substrate whose miscut was specified as < 0.03°, potentially introducing a
systematic error of less than 0.02%; this error is roughly eight times smaller than the
single-image Bragg errors’.

We see from Fig. 3.6 that as we survey along a <110> direction, the periods
extracted from interleaved forward and reverse (contraction and expansion of the x
piezo) images track one another. As described in Chapter II, these measurements are
taken on opposite sides of a piezo-hysteresis curve and are, in that sense, independent;
they may thus be averaged to reduce the experimental period uncertainty. The close
agreement between forward— and reverse—scan data in Fig. 3.6 explicitly demonstrates
that normalizing to the image-by—image RLVs effectively circumvents the piezo non—
idealities detailed in Chapter II. Interestingly, each set of measurements fluctuates well
outside experimental error and we return to consider this finding more thoughtfully in a
moment. First, however, we ask if the periods measured this way are as accurate as they

are reproducible.

*It’s important here to clarify the hierarchy of DFT—related errors in this discussion.
Each single—-image satellite peak as well as its associated reciprocal-lattice vector has an
uncertainty of + 1 reciprocal—space pixels. The resulting single—-image Bragg errors stem
from least-squares fits to the normalized satellite peaks, given these uncertainties.
Survey—pooled errors (as in Fig. 3.5) are the corresponding single—image uncertainties
reduced by the square root of the number of images.
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To answer this question, we compare the laterally-averaged periods’ from six*
disjoint, vertical subsets of superlattice repeats occurring early on, midway through, and
late in the growth. These periods, summarized together with their attending Bragg errors
in Fig. 3.7, are clustered near 20.67 ML and 20.5 ML. We see a vertical drift in (—1-10)
periods that is quantitatively mirrored in a similar set of (1-10) surveyed repeats taken
over a different location on the wafer (~ 10 mm apart). Careful re—examination of the x—
ray data guided by these STM results reveals each superlattice satellite can be modeled
as a sum of three overlapping Gaussian components whose minority side—bands are
consistent with the periods 20.53 and 20.69 + 0.01 ML respectively (Fig. 3.7). The
comparison with these x—ray side bands is made even more convincing by the following
observation: since there is a 1:1 correspondence between the coherently—strained lattice
constant and the survey—averaged alloy composition [20], our STM period
measurements can be converted from monolayers to absolute Angstroms. So doing (Fig.
3.8), we find that upper and lower clusters agree with their matching side band to better
than 0.2% in absolute terms.

It is also noteworthy that the dominant 20.62 ML component in the x-ray
spectrum (Fig. 3.3) is nowhere to be found across six STM surveys. Dynamical x-ray
simulations suggest this “period” could easily arise from a convolution of the two STM

side bands, identified here, with a previously described vertical evolution in substrate

* Averaging over all image-by—image measurements (Fig. 3.6) to obtain a representative
period and Bragg error for each surveyed set of repeats.

* A seventh survey containing reduced statistics was not included in these averages, it
nevertheless agrees well with the trends observed in the other six surveys.
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mismatch [23]. The beauty of such painstakingly acquired HRXRD data notwithstanding,
they may in fact be subtly misleading in the sense just described.

Independent support for the period drift documented in Fig. 3.7 comes from
altogether separate reasoning. Fits to the laterally—averaged [001]-monolayer—indexed
antimony profiles whose reconstruction via atomic counting is facilitated by the robust,
atomic—resolution, impurity discrimination in these materials (showcased in Fig. 3.2),
provide detailed, quantitative insights into the compositional grading associated with
antimony segregation and its effect on the resulting HRXRD spectrum [23]. Introducing
the superlattice period as an additional fit parameter to this well-established segregation
model [59] offers satisfying agreement between direct—and reciprocal-space period
measurements assembled over essentially identical spatial domains (Fig. 3.2).

The close agreement between HRXRD, STM DFT, and real-space, counting—
based period measurements again affirms that normalizing STM-satellite—peak spacings
to the image—-by—image DFT RLVs successfully circumvents all scan—related distortions
inherent to STM. We may thus return to Fig. 3.6 confident that the lateral fluctuations
exhibited there are not a measurement artifact, but the accurate sampling (with small
measurement uncertainty, namely the single-image Bragg error) of a comparatively—
larger—variance stochastic phenomenon "frozen into" the structure.

In light of the size of the image—to—-image fluctuations documented in Fig. 3.6,
we might ask, again, what uncertainty best characterizes the pooled period

measurements assembled in Fig. 3.7, since every lateral distribution of periods will also
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be characterized by its own variance (Fig. 3.9). Within error’, this survey variance
appears to be homogeneous (i.e. independent of superlattice repeat or location on the
wafer) as well as isotropic (independent of cleavage face), so that a better estimate may
be obtained by averaging over all surveys. We will see the utility in this later.

It turns out the squared uncertainties in the survey—averaged periods (Fig. 3.7)
are best estimated by the variance of each survey (Fig. 3.9) normalized to the number of
images in that survey, a quantity known as the standard error of the mean [61]. Even
though this standard error is approximately 4 times larger than our survey—averaged
Bragg uncertainty (Fig. 3.10), the period differences identified in Fig. 3.7 remain

statistically significant, with less than 1% probability they originate by chance [62].

Uncorrelated Interfaces and Comparison with Experiment

A superlattice is defined by the regularly spaced interfaces between two materials
and the period likewise defined by successive interfaces of like type (e.g. InAsSb—on—
InAs or InAs—on-InAsSb). Thus, at its core, the period we measure via the DFT is
simply the difference between two like interfaces averaged over the image pixels within
our window. Viewed this way, it is reasonable to examine how interface fluctuations
might translate into layer thickness fluctuations and thus period fluctuations.

To begin with, we consider whether a randomly fluctuating interface can cause
period fluctuations of the magnitude actually observed. To simplify matters, we first

address the case where the STM—scan axes, and hence the bounding edges of the image,

> The variance errors in Fig. 3.9 are calculated from the variance of the variance, and are
proportional to the variance itself [60].

80



0L

0¢

"TIN €000 F 81070 ST (oU1] paysep) anjea 95eIdAY “/'¢ "SI Ul UMOYS
SI 93BIOAE 9SOUYM AJAINS Yord JOJ PAJe[nNo[ed SI 9'¢ "SI Ul suonenidonyg 03 anp ddueleA porad afewr—01—o3ew] “6'¢ TANODIA

1eadar pakoAins

0l
/

08 0¢ 01

000

(TN [d]ea

00

81



"90uBYD £q SINO0 JLIP PAAIISqO a3 1ey) Ayriqeqoad o4 1 e uey
SSO[ [[13S ST 21U} ‘ SUTPURISYIIMIOU SATUTRLIAOUN JIFIR] *SI0IId F3eag oY) uey) Jo31e] sown) Inoj Aorewrxoidde ore s10119 piepuels
9SAYL, "9'¢ "SI Ul PAAIdsSqO SUonemodNy Y J99PaI Yorym ‘(A213) ueaw 9y} JO SIOLID piepur)s (daneiuasardar axow) pue (Yor[q)
sanurelduUN [eueWLddxe ayI—33eig Surpuape Yim /¢ “31 woij (s9[oa) spoudd [ padeioae—A[eIane] ‘01 € ANOIA

1eadar pakoAins
0L 0S 0l 08 0¢ 0T

- 0§°0¢

i w ® _ 90T

(T ) pouad oomepradns

82



are aligned with the crystal axes, setting aside for now the actual situation in which our
image crop is rotated 45° relative to these axes®. We also adopt the convention that all
explicit sums refer to a single interface in a single image and that all variances refer to
image—by—image calculations over lateral surveys.

Then a single interface sampled at N sequential points along a <110> direction in

a given image will have mean location

N
(z) = %ZZ“ (3.1)
=1

where the z; are statistically-independent, point—to—point [001] coordinates distributed
with parent mean y and parent variance 0. The image—to—image distribution of means

will then have expected variance

var[{z)] = var =—. (3.2)

In dealing with single-image experimental data, ¢ would be estimated from (3.1) and o2

from

® We hereafter distinguish between the simplified case and experimental reality by
referring to the former as a vertical window and the later as a rotated window.
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N
1
s? =—N_1z(zi—<z>)2. (3.3)
i=1

In dealing with lateral surveys, as in (3.2), u would instead be estimated from E[< z >]
and a2 from E[s?], where these expectation values are survey averages. Here we assume
these parent parameters are already known.

Let us ignore, for the time being, the interface located in the middle of the
superlattice repeat and focus on the two bounding interfaces, thereby assuming that any
asymmetry between interface templates is weak (so that (o4 — 05)/(04 + 05) < 1). The
single—-image, average period is then given by the difference in mean locations for every
second interface’, averaged over the integer number of repeats M in the [001] direction,
where M is calculated as the greatest integer of the ratio between our DFT window size
and the expected period (Fig. 3.7). Since each interface (labeled A through A+M) in a

vertical window has the same length, this sum of differences reduces to

_ (2)a —(Z)asm (3.4)

P )
M

with all intermediate terms cancelling in pairs. This same logic justifies our neglect of

the interfaces separating constituents within a period.

7 Since both averaging and subtracting are linear operations subtracting mean values is
equivalent to averaging point-by—point differences; the former is easier to describe,
however the latter is the operation actually performed in our simulations.
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The image—to—image variance of (3.4), taken with respect to E[P] across a lateral

survey, is then computed from

varl(z), — (D) asm] _ 2var[(z)]

e == (3.5)

var[P] =

where we’ve explicitly assumed the bounding interfaces (A and A+M) are statistically
independent of one another, i.e. vertically uncorrelated®. Substituting (3.2) into (3.5) we

finally obtain

20%
var[P] = W , (3 6)

for the predicted period variance with interfaces whose point—to—point fluctuations are
statistically independent, or laterally uncorrelated.

Fits to the antimony segregation profile in our InAs/InAsSb superlattice [20,23]
provide physically reasonable estimates of the order of 1 ML for the o in (3.6). The
predicted period variance for a 40 nm x 40 nm vertical window (N=400, M=6) is then
0.0013 A2, As we establish later in this chapter, that prediction must be multiplied by a
geometric correction (~ 1.5) before comparing to actual data, which is acquired in a
rotated window. The period variance in this system (Fig. 3.9) is then ~ 50 times larger

than expected on the basis of (3.6).

¥ An additional covariance term must be included in (3.5) whenever this is not the case.
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To lowest order, lateral correlations will reduce the number of statistically
independent degrees of freedom along each interface from N to Nesr = N/A, and this
observation offers a natural explanation for the factor of 50 discrepancy between (3.6)
and the data’. A more sophisticated treatment, below, indicates this estimate of the
lateral correlation length is too large by about 40%, but the rough agreement between
our simple approach and well-established lower bounds on interface island sizes (~ 300
A) [63] is nevertheless noteworthy. Experiments linking (intrinsic) lateral [63] as well as
(deliberately introduced) vertical [64] period fluctuations to carrier localization [65] and

inhomogeneous broadening [29] in related systems underscore the potential importance

of these types of STM measurements.

Numerical Calculations: Simulated Periods

To gain a better appreciation of interface roughness we will simulate profiles
with specified correlation lengths using a Monte Carlo method. The real-space interface
profiles are generated by inverting Fourier coefficients that pair a (assumed) Gaussian
amplitude with random phases. Choosing the unnormalized Fourier amplitude, Fig. 3.11,

to be

’ The results in Fig. 3.9 assume the period measurement in each image is statistically
independent of that in any other. The lateral correlation length arrived at here is small on
the scale of image separations (50 nm), physically justifying this assumption, but explicit
calculation of the image—to—image period autocorrelation from the data in Fig. 3.6, for
example, confirms the result.
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2

k
Fel = exp|—— 37
|F| eXp[ iz (3.7

guarantees a Gaussian functional form' for both the resulting power spectral density and

autocorrelation function where the real-space correlation length is given by

A= L
X 2mA

(3.8)

if L is the total number of points that the transform is calculated over. The k = 0 value is
zeroed to remove the DC component of the spectrum and ensure each profile has a mean
of zero when it is first created, then the amplitudes are scaled so that the squared area is
equal to the real-space roughness variance 0. Each wave vector is assigned a random

phase under the constraint that F; = F_, so that the resulting profile will be real valued.

Nine profiles, which will enclose eight complete repeats, each with a length of
10.5 ym are generated for each of eight different correlation lengths ranging from 12.5A
to 100A in steps of 12.5A. There are two reasons that we choose to simulate a very long
profile instead of several short ones despite being computationally unfavorable. Any
potential endpoint problems are eliminated when the sampling window and correlation

lengths are much smaller than the total length of the profile, but just as important shorter

' We use a Gaussian functional form in our examples, however this can just as easily be
computed for Exponential power spectra. We will see later in this chapter that for all
practical purposes our results are insensitive to this choice of functional form.
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interfaces do not accurately reflect the sampling of the experimental interfaces that we
wish to represent with these simulations.

Sampling the correlated interfaces (Fig. 3.12) has some interesting consequences
for the mean and variance calculated over any finite window size, where the profile
wanders from the parent mean for larger stretches. These values normalized to parent

variance, sampled over N = 40 nm, and plotted as a function of the dimensionless
quantity A/  show that as the correlation length is increased, a given sample mean is
likely to be found further from the parent mean (Fig. 3.13, left) and as a consequence the

sampled variance is reduced (Fig. 3.13, right). The variance of sampled means, (3.2),

modified to include correlations, is given by [66]

2
var[(z)] = = , (3.9)
N

N-1 .
l
1+2 Z (1 _N) P
i=1

which when the correlation function, p;, is replaced with a delta function correctly
reproduces the uncorrelated limit of (3.2).
When applying this to the simulations we replace the autocorrelation function

with it’s assumed Gaussian form

l'Z
p; = exp|— , (3.10)
- |3
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and so long as the correlation length is not too large or too small (4 < A < N / 4) the sum

in (3.9) can be approximated by an integral to yield the expression

var[(z)] = o2 [\/ﬁ (%) —2 (%)Zl , (3.11)

which agrees well with the simulated points in Fig. 3.13 (left), however since we
assumed that the correlation length was not too large or too small (3.11) is not strictly
valid in either the large or small correlation length limit; as an example of this (3.11)
implies that the uncorrelated value should be zero when we know it should actually be
given by (3.2).

The expected value of s2 (3.3) is modified similarly to (3.9) to get [66]

N-1
2 i
Bls®] = o® 1_N—1Z(1_N)pi ' G2
=
and plugging (3.10) into (3.12) yields
A Ay
E[s?’] = 0% |1 - \/ﬁ(ﬁ) +2 (ﬁ) ) (3.13)
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again in good agreement with the simulated points in Fig. 3.13 (right) and unlike (3.11)

actually does reproduce the uncorrelated limit of o2.

Numerical Calculations: Vertical Windows

We now move on to offset the profiles so that their means are separated by a
chosen period, Fig. 3.14. Two different periods were simulated, one representative of the
InAs / InAsSb material system whose period is approximately 62.5 A; the other, 119.7 A
corresponds to the InAlAs / InGaAs material system whose interface roughness
parameters have previously been directly characterized [39] and will be described in a
later section. The newly created repeats are sampled by averaging over N points laterally
along the interfaces and across M repeats, and the entire process replicated continuously
sliding N+1 points laterally in between each sampling until reaching the end of the
10.5 ym stretch. For each combination of correlation length and period there are: 262
samplings of a 400 A window, 350 samplings of a 300 A window, and 525 samplings of
2200 A window.

Plugging (3.11) into (3.5) and rearranging terms yields the dimensionless

variance

var(P] M* =2 [\/ﬁ (A) -2 (A)Zl ) (3.14)
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which when plotted versus A/ N 1s independent of period, roughness amplitude, and
window size. This allows us to compare both period thicknesses and all three window
sizes in a single universal graph (Fig. 3.15) and despite the rule of thumb that A/ NS
0.25 [67] we see that (3.14) is a good match to the corresponding values calculated over
the simulated profiles out to A/ N =~ 0.5. While it appears that the expected curve is

turning over and will eventually return to zero, this ignores the fact that we assumed the
correlation length was not too large in going from (3.9) to (3.11). Instead, the large
correlation length limit must be obtained by inserting a constant value for the
autocorrelation function in equation (3.9) and simplifying to find the scaled variance

approaches 2 as the correlation length gets very large; this agrees well with a 1000 A
correlation length test profile where var[P] M 2/0_2 = 1.97 + 0.06 averaged over six

samplings (3 window sizes in each of 2 periods). If the period variance had in fact been
measured in a vertical window, this asymptotic behavior would set a minimum
roughness amplitude of 1.4 A (0.46 ML) in the InAs / InAsSb superlattice.

Since the correlation length is independent of sampling window size and the right
hand side of (3.14) depends only on A/ n the ratio of scaled variances for two window

sizes should in theory be solvable for A. In practice the dependence of the ratio on
correlation length is much weaker than the statistical uncertainty based on a finite
number of samplings (Fig. 3.16) ruling out the possibility of simultaneously determining
both o and A from our period measurements. Instead what is needed is a distinct

measurement relating our two unknown quantities. As we will see in a later section the
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measurement of the correlation length itself is fraught with difficulties, however it is
rather straightforward to measure the sampled variance so long as an interface can be
defined in the STM image. It makes sense then to solve (3.13) for 2 and place it into
(3.14). Rearranging terms the variance of periods is rescaled by the sample interface

variance to get

var[P] M? _ 2 [m (%) —2 (%)2] .
T m ()

N

(3.15)

Fig. 3.15 can be replotted incorporating the change from parent variance to
sampled variance via (3.13) in Fig. 3.17, along with the expected curve (3.15). If s2 is
known, such as for the simulated profiles, we can directly determine the uncertainty in A
by inferring a value from Fig. 3.17 and compare it to the value simulated (Fig. 3.18, left).
A histogram of these relative uncertainties (Fig. 3.18, right) indicates that even with

several hundred images any inferred correlation length will only be accurate to ~ £ 7.5%.

Numerical Calculations: Rotated Windows

Having established a solid understanding of the sampled periods with vertical
windows aligned to the crystal axes, we now explore the effects of sampling the
interfaces at 45° relative to the crystal axes. In the experimental data our scan axes are
aligned with the image x,y axes and the crystal axes are rotated by 45°, however for the

simulations it is much easier to rotate our windows in Fig. 3.14 by 45° over a fixed set of
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interfaces, shown in Fig. 3.19, rather than rotating the interfaces under a fixed set of
sampling windows. When analyzing the rotated windows we must be careful that the
window size is not made too large, thereby artificially excluding interfaces that should
be present inside the sampling window. Instead of using a spreadsheet program to
calculate differences like was done in the vertical window, we write our own routine that
calculates differences between every consecutive interface for all 10.5 gm, then averages
the differences if and only if both interfaces that were subtracted are within a border
defining the rotated window.

Plotting the variances calculated over the new rotated (x—y image—aligned)
window (Fig. 3.20) scaled the same as the vertical window, we see that the curves are no
longer universal. An immediate concern is that the window could be in some way
aligned so that longer interfaces are presented for certain window sizes, to ease this
concern we can directly count the number of differences in both the rotated and vertical
windows.

The number of differences in the vertical window is simply the length of each
interface multiplied by the number of repeats contained within the window. The number
of rotated differences is smaller, as expected since the number will be set by the shorter
of two consecutive interfaces, and dividing the number of rotated differences by the
number of vertical differences shows a trend within a family of windows for a given

period and a split between the families for two different periods (Fig. 3.21, left).

However these disparities collapse when each value is multiplied by /P / N leaving all

of the measurements clustered around 0.33 (Fig. 3.21, right). Therefore, due to the
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specific geometry of a window at 45°, there are 3 /N / p times fewer differences in the

rotated window than in the vertical window.
To see how our vertical axis in Fig. 3.20 needs adjusted we rewrite the left hand

side of (3.15) as

var[P] M?  var|[P] N*M?
[ 2] _ varl 2]N2 , (3.16a)
s s

where the multiplication by N2M? counteracts the dependence of the variance on the

total number of differences. Then since the total number of differences goes down when
we rotate the window by 45°, (3.16a) needs to be multiplied by N / p to once again

counteract the corresponding change in variance'', resulting in

var[P] N2M? (N) _ var[P] M? (N)

S2N2 P P

3.16b
5 ( )

s2

Adjusting our vertical axis to correspond to (3.16b), closes the gap between the
different sampling windows considerably (Fig. 3.22) but does not result a universal
curve as observed in the vertical window variance in Fig. 3.17. To understand why we
consider the schematic in Fig. 3.19. The interfaces in the diamond are all different

lengths suggesting that an integer number of repeats, while well motivated for the

"' We chose not to include the constant 3 in our rescaling, letting it be wrapped up in the
dependence on A/  and instead focused solely on scaling out the N / p dependence.
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vertical window, may not sufficiently describe the measured periods when the interfaces

are unequally weighted. To finish collapsing the different curves we allow the integer M,

which was obtained by taking the greatest integer of N / p» to turn back into the floating

point N / p- With this change (Fig. 3.23) we see that the various curves have once again

collapsed to a universal representation, but unsurprisingly the vertical expectation (3.15)
no longer agrees with simulated values in the rotated window (Fig. 3.24).

The expected variance (3.15) can be modified if we know the transfer function
from the universal curve in the vertical window (Fig. 3.17) to the universal curve in the
rotated window (Fig. 3.22). This transfer function, H shown in Fig. 3.25, can be obtained
by dividing each point in Fig. 3.23 by the expectation (3.15). The expression missing

from (3.15) is

H=~ 4 /A/N (3.17)

as demonstrated by the fit in Fig. 3.25. It’s not immediately obvious where this
expression comes from, however it is reminiscent of a chain rule, which crops up when

changing variables of integration. The expected scaled variance in the rotated window

(3.18)

winy 2 -2)]

T () ()

=
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agrees well with the values calculated for the simulated profiles up to A/ N ~ 0.33 (Fig.

3.26). We once again ask if s? is measured separately (in a vertical window) how well
do we know the correlation length. Inferring the correlation length from the simulated
profiles (Fig. 3.26) just as we did in the vertical window, we notice two things, one is
that the dispersion of relative uncertainties in Fig. 3.27 (left) is slightly larger reflected in
the + 11.6% width of their histogram (Fig. 3.27, right), additionally we find that our
empirical theory systematically underestimates the simulated correlation length by 3%.
We are now in a position to compare these theoretical underpinnings to an experimental

benchmark of directly measured interface roughness'”.

Direct Measurement of Interface Roughness in Quantum Cascade Materials

We saw in the last section that the period variances in multiple windows don’t
provide enough information to determine both the roughness amplitude and the
correlation length without unreasonable amounts of images to reduce uncertainties, so to
compare with experiment we need to be able to directly identify and extract the
heterojunctions that define the superlattice. From these interface profiles we may then
measure the correlation length and sampled roughness amplitude. As we will see shortly
the measurement of the sample roughness variance is straightforward provided that an

interface profile can be identified, however measuring correlation lengths is much

"> The results of which were obtained in conjunction with Dr. Federico Lopez. He
obtained the data and analyzed the interface roughness amplitude. I took over and

performed the reciprocal—space analysis after he graduated.
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trickier and prone to uncertainties. The individual InAs and InAsSb layers in the
superlattice as imaged don’t display an outright break between them because the
electronic contribution to the contrast is weak, and the exponential rise associated with
the segregation profile at the beginning of the layer produces a very diffuse border that
can only be identified once the antimony fraction is averaged laterally over 100 nm.

We instead turn to a material system that does display a large greyscale contrast
between subcomponents of the superlattice, the InGaAs / InAlAs material system, which
is used extensively in quantum cascade lasers and detectors. This large difference in
greyscale values has two sources that add constructively, the first is a valence band
offset that is comparable to the InAs / InAsSb material system and the second is the
large difference in strain which relaxes into (tensile InAlAs) and out of (compressive
InGaAs) the surface post cleavage. Once atomic corrugation is filtered from the images
the histogram of greyscale intensities is clearly bimodal with each individual lobe
associated with one and only one of the two materials (Fig. 3.28, right). Thresholding on
the value that maximally separates the two peaks creates a mask of either the InAlAs or
InGaAs layer the meeting of which defines the interface profile.

The interfaces highlighted in Fig. 3.28 (left) appear to fluctuate on the scale of a
monolayer in the growth direction and smoothly transition from one fluctuation to the
next on the order of 5-10 lattice constants in the growth plane. It is no surprise then that
a lateral mapping of period measurements in this system, similar to those tabulated in the
InAs / InAsSb system, also shows fluctuations well outside experimental uncertainties

(Fig. 3.29). Two surveys were taken over the same exact set of repeats in (—1-10) cross
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section on two consecutive days. The second half of these surveys overlap strongly in
space and as it turns out the period measurements are almost indistinguishable even
sharing the fluctuations from one image to the next. This is another testament that these
fluctuations aren’t due to measurement errors, but are sampling differences that were
“frozen” into the structure during growth. The variance for these two surveys in their full
form is summarized in Fig. 3.30 along with a slightly shorter version from (1-10) cross
section, and similar to the InAsSb material system the variance increases when sampling
the period with a smaller window. Once again the variances appear to be isotropic within
the confines of large uncertainties; as we will see shortly the interface roughness in this
material system is nearly isotropic rendering this symmetry in the period variances
unsurprising.

Before extracting the sought after interfaces, each image is filtered to remove
atomic information then interpolated to four pixels per angstrom to reduce the ambiguity
in the interface location. These images are then cropped to reduce distortion to
acceptable levels and rotated to an angle specific to each interface in said image; these
two steps were done deliberately so that all interfaces were of the same length and each
successive measurement of the interface profile was equally spaced, conditions that do
not affect a roughness amplitude measurement, but are quite necessary for the interface
power spectra to be interpretable. The profiles are identified via masking the image on a
set threshold and extracted via edge detection in each mask. The resulting profiles, are
350A in length with four pixels for every nominal angstrom in both the lateral, <110>

direction, and vertical, [001] direction.
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To characterize the stochastic process underlying the interface roughness we start
by computing the sampled roughness amplitude (3.3), which is easily visualized via a
histogram of the [001] interface fluctuations about a locally sampled mean value (Fig.
3.31). Modeled as a normal distribution there is a small asymmetry between interface
types with the aluminum template (0.83 ML) ~ 10% rougher than the gallium template
(0.75 ML).

Next we compute the one—dimensional power spectra of our interface profiles.
We choose not to zeropad the interfaces, in contrast to the image FFTs seen in Chapters
IT and III, which is especially important when characterizing low—frequency behavior. If
zeros were added to the end of the profile in real space to increase the length by a factor
of 40 such as we did with the images, then very low frequencies would be distorted in
reciprocal space; in fact the first 40 points smoothly transition from zero power at k = 0
to the real spectrum, however the nature of that transition is not clearly defined and
makes determining the functional form difficult. We instead give up the benefit of
superior reciprocal space resolution to gain a power spectrum unbiased by the effects of
zeropadding. As a further contrast to the image FFTs the total length in reciprocal space
has actually been increased due to interpolating the interface in real-space (see Eq. 2.1b)
thus mirroring the increase in real space length that is required to decrease the size of
frequency bins in reciprocal space. The extra frequency bins are all located at high
frequency where our atomic filter has removed any physical signal.

The interface power spectra, averaged over the survey ensemble and any

combination of voltage, cross section, or interface type produces a nearly universal

119



‘[6¢] woay uorssturad Yim pajuriday -doueisur yora ur pajood a1om sporrad 9AINIASU0D 321y [, *(A913) [opowr
uBISsSnen) B AQ poqLIOSIP [[om Ie SUoneniony asay) Jo uonnquusiq ‘(¢ ¢) Jo anfea uone}dadxa Y Wwoly pAJe[NIed SI (,§) dOUBLIBA
ordwreg *soorJI0)UI ‘IS ‘SY[YU[-UO—SYBOU] PUE ‘}J9] ‘SYBOU[-UO—SY[VU] Y} JO UOIIS SSOID (()[—]—) Y} WOIJ SUBIW JUIW IS
9A10AdSaI 0] PAOUSIDJAI PUR JURISUOD MR [[00] [BOO] 01 PazZI[ewiou suonemony (2) [BoNIaA Jo uonnquisi(q “[€°€ NI

(TN ) uswdde[dstp [100] (TN ) Yudwadedsip [100]
t % t [
B \\\l 7 B J/,/ i I
a \

Amqeqoxd

SVIVUI-UO—SyeDU] SYeDU[-UO-SY[VU]

120



curve. This curve appears to show three distinct length scales, a low—frequency
exponential-like and intermediate—frequency Gaussian—like component that show up as
a straight line and a parabola respectively on a log—linear plot (Fig. 3.32, left), and a
high—frequency inverse squared component that is linear on a log—log plot (Fig. 3.32,
right). As we’ll see shortly this third component is not real, it is in fact a byproduct of
finite—length sampling.

To measure the correlation lengths we’ll first develop and test a fitting strategy
using simulated interfaces similar to those previously employed to define superlattice
repeats, except the spacing between real-space datapoints will be decreased to 0.25 A to
mimic the extracted interfaces. When the profiles are repeatedly sampled over
nonoverlapping lengths of 350 A, then Fourier transformed and averaged together, they
too contain an inverse square “Brownian Noise” component (Fig. 3.33) even though the
simulated spectrum does not. Since the inverse square diverges at k = 0, we instead
employ a Lorentzian function, which is an inverse square for large k, to approximate the
Brownian Noise, thus the spectrum in Fig. 3.33 will be modeled as the sum of Gaussian

and Lorentzian functions

k? B

The fitting function is left with too many degrees of freedom to pin down the Lorentzian
cutoff frequency (k) or amplitude (B), so to constrain the parameter space that must be

searched by the least squares fitting routine we constrain the amplitude of the Lorentzian
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to give the observed accumulated power between 1 and 2 inverse lattice constants, and
the cutoff frequency equal to A.

This fitting function does a good job of describing the sampled power spectra of
simulated profiles, shown in Fig. 3.34 (left) for a correlation length of 25 A. The real—
space correlation length is calculated from the fit Gaussian width via (3.8), and the
variance is calculated from the sum of areas under the Gaussian and Lorentzian
components. The resulting relative uncertainties are ~ 5 % in the real-space correlation
length and ~ 0.5 % in the variance.

Generalizing the fitting function to two Gaussian components

PS=A [—_Zl+c [_kzl+ BB
= A EXP 577 €XP |5 12 P z™W  (3.19
el B G ey
k_1 k_2

again shows good agreement between the fit and the simulated data (Fig. 3.34, right).
The Brown noise is now represented by two Lorentzian components (each associated
with a single Gaussian component) whose sum is constrained to give the accumulated
power between 1 and 2 inverse lattice constants and whose weights are given by the
proportion of the respective Gaussian components. Similar to the error analysis
performed for correlation lengths extracted from period variances, we can compare the

multi-component fit parameters and simulated counterparts (Fig. 3.35, left) and
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histogram their relative errors" (Fig. 3.35, right) to determine each measurement has an
uncertainty of 6.3% with an underestimation of ~ 1%.

Modeling the ensemble averaged power spectra similarly yields a breakdown of
40% Gaussian component with a correlation length of 5.96 A and 60% Exponential
power with a corresponding Lorentzian correlation length of 27.9 A as shown in Fig.

3.36.

Comparison between Theory and Experimental Period Variance

The revelation that the interface power spectrum contains multiple components,
and that one of said components is exponential requires rethinking our expectations for
the variations of the measured periods. To consider the implications for exponential
power we use a Lorenztian correlation function (the real space complement to an

exponential in reciprocal space)

iz (3.20)

in place of (3.10) when calculating (3.18). The empirical theory, after ignoring the

difference between N and N-1, is given by

"> All parameters were considered jointly to increase the statistical pool over which the
histogram in Fig. 3.35 was calculated. This inherently assumes that all parameters have
the same relative uncertainty. To test this assumption many more trials would be
necessary.

127



"(x0q £Ka13) astou urjduwres uerumorg Aouanbaiy y3ry A10a pue (aurf £313 paysep) jusuodwod uerssner) Aouanbaij—y3ry
® ‘(aurp £a13 pr1y0s) Juduodwod [enuauodxa Aouanbaij—mo] e [89Ad1 Z¢ ¢ "SI ur umoys wnnodads 1omod ay1 01 S *9¢" € TANDIA

I0JO9A dABM PONPaI 30| J0JO9A AABM PIONPAI

0] 100 I 0

Aisuap 1omod 30

128



(3.21)

P

var[P] (N)3 B 4%ArcTan [%] —2 (%)2 In [1 + (%)2] 4 \/z
N

s* P/ 1-— Z%ArcTan [%] + (%)2 In [1 + (%)2]

for the window aligned at 45°. When the Lorentzian empirical theory is added to Fig.
3.26 we see that there is very little difference between theories obtained using Gaussian
or Lorentzian correlation functions (Fig. 3.37), and the simulations themselves could
easily be mistakenly attributed to Lorentzian correlations instead of to the Gaussian
correlations from which they came. This justifies our use of Gaussian correlated profiles
as a stand—in for Lorentzian correlated profiles. Also of note is that any linear
combination of the two necessarily lies in between the two curves, therefore the logical

A to plot on the x—axis is the probability weighted mean'*
(A) = PlAl + P2A2 . (3.22)

Before the values directly measured in the last section can be added to the graph
in Fig. 3.37, we must make some simplifications. First, even though our model assumes
that there is no interface roughness asymmetry, we average the sampled roughness
amplitude, s2, across the the Al- and Ga-templates to obtain an “effective” roughness

amplitude; additionally, we adjust the sampled roughness amplitude for the change in

'*In a multi-component correlation function with mixed functional forms this quantity
won’t show up in the sampled variance of the mean or the sampled s, however it is still
helpful to use as a representative correlation length for the combined processes.
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sampled length since it was measured over an interface segment of 350 A. We use the
theoretical relationship (3.13) to predict s? for 300 A and for 400 A sampling lengths.
The period fluctuations in the InAlAs / InGaAs superlattice (Fig. 3.38) agree extremely
well with our expected curves calculated from (3.18) and (3.21). The 400 A window lies
directly between the Gaussian and Lorentzian theories and 300 A window lies within
one standard deviation.

To justify the extra work that was expended understanding and correcting for
windows that lie at 45° to the crystal axes, we consider how well the vertical window
fluctuations in Fig. 3.17 describe the two InAlAs / InGaAs data points, which were just
placed on the graph in Fig. 3.38. Fig. 3.39 shows the 400 A and 300 A window sizes are
three standard deviations away from the Gaussian theory, reinforcing the need to
correctly account for the orientation of the sampling window in these calculations.

Finally we return to the question that motivated all of this, namely what interface
correlations might be present in the InAs / InAsSb superlattice. We’ve established that
the period fluctuations themselves aren’t sufficient to accurately determine both the
roughness amplitude and the correlation length, we instead endeavor to put limits on
both quantities. We aren’t able to define interface profiles in the InAs / InAsSb
superlattice and therefore don’t have a direct measurement of s%; we instead return to
scaling the period variances by o2 in Fig. 340 and in the discussion of limiting
roughness that follows.

Like Fig. 3.15, Fig. 3.40 appears to approach a constant value for large

correlation lengths; since we don’t have a theoretical counterpart to (3.9) we aren’t able
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to treat the rotated windows analytically this time and instead find an average of 9.2
from simulations of a 1000A correlation length over 2 periods, 3 roughness amplitudes,
and 3 window sizes. This leads to a minimum o of 0.6 ML. If we instead assume the
InAs / InAsSb superlattice has the same correlation length as the average one (19.2 A)
found in the InAlAs / InGaAs superlattice, we find that o would be 1.4 ML. Similar
constraints can be placed on the correlation function by considering the example from
earlier in the chapter, if ¢ = 1 ML then A = 36 A, or if the roughness amplitude was the

same as in the InAlAs / InGaAs superlattice, 0 = 0.85 ML, then A = 70 A

Summary

We calculated the period in 40 nm x 40 nm windows by referencing superlattice
satellite peaks to the local [001] reciprocal lattice vector. A small, but reproducible drift
in laterally—averaged periods was observed over similar vertical repeats in orthogonal
cross sections on different dies. The drift was confirmed via fits to the laterally—averaged
[001]-monolayer—indexed antimony fraction compiled from nominally the same area
when the period is included as a fit parameter to the well—established segregation model.
A careful analysis of the HRXRD spectrum also indicates the presence of the two STM—
identified periods. Image—to—image period fluctuations as the structure was surveyed in
the lateral (i.e. [1-10] or [110] directions) are larger than can be explained by
uncorrelated interfaces. Treating the period as the difference between mean interface

locations separated by M repeats (enclosed by 2M+1 interfaces) lets us construct a theory
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relating the period variance to the correlation length and window size in both vertical
(crystal-aligned) and rotated (x—y image-aligned) sampling windows. An InAlAs /
InGaAs superlattice, where interface roughness amplitudes and correlation lengths are
directly measured, provides the experimental benchmark proving that the period
fluctuations are due to interface roughness. We found that period fluctuations alone do
not provide strong enough constraints to extract roughness amplitudes and correlation
lengths, however limits in the InAs / InAsSb superlattice place the roughness amplitude
larger than 0.6 ML and the correlation length likely between 20 and 70A. More
importantly, we now have a nomograph that, should we be able to independently

measure an interface s2, directly determines the interface roughness correlation length.
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CHAPTER IV

SHORT-RANGE ALLOY ORDER

Introduction

Having established, in Chapter III, that the interfaces between InAs/InAsSb
superlattice constituents are correlated, we return on the atomic scale and ask whether
the distribution of individual antimony atoms throughout the InAsSb alloy layer, itself,
might also be correlated. Early STM experiments [26] pinpointed local arrangements of
antimony atoms consistent with CuPt order, but unable to assess their likelihood relative
to a random alloy of similar composition. Long-range CuPt order has been definitively
identified in InAsSb alloy films [68] with TEM, and companion studies have shown this
order depends, at least in part, on the amount of [001] strain in the epitaxial film [28].

To investigate whether a structure displays CuPt order we calculate a correlation
function, which is directly related to the likelihood for a specified arrangement of atoms
relative to the same arrangement occurring in a random distribution. The pair correlation
function is the second in a family of particle distribution functions (the first being the
average density) and represents two—body interactions. It is commonly used to describe
gasses [69], where it 1s a function of a continuous separation vector; for semiconductor
alloys, however, the crystalline lattice must be taken into account by restricting the
separation vector connecting any two sites in the anion sublattice to integer multiples of
[001] and <110> lattice vectors and linear combinations thereof. In order to calculate the

correlation function between pairs of antimony atoms in the InAs / InAsSb superlattice
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we need to be able to assign coordinates to each atom in the image. With a perfect tripod
scanner the x and y image coordinates could be used to calculate the desired separation
vectors. Given the image distortions documented in Fig. 2.13 and Fig. 2.14, we must
instead convert to [001] column and <110> row coordinates.

We begin this chapter by examining the experimental evidence for antimony—
pair correlations. We then detail an algorithm which can automatically assign [001]
column and <110> row coordinates to each atom in a given image window effectively
sidestepping the effect of bowing on these rows and columns. We explain how these
coordinates are used to calculate a pair correlation function in the context of a uniform,
isotropic bulk alloy, and then adapt this formalism to tackle a spatially—graded
superlattice. To understand the origin of the antimony pair correlations so observed we
partition the antimony population into sub—ensembles based on two experimentally
accessible parameters: MBE shutter timing and [001] layer strain. We investigate the
behavior of these sub—ensemble pair correlation functions in both (—1-10) and (1-10)
cross sections, and find their logarithm exhibits a linear dependence on both strain and
antimony fraction. These quantities are inextricably linked in any coherently—strained
structure, but physically interpretable fits favor antimony fraction as the controlling
variable. Comparison with the STM data from a fully-relaxed bulk alloy film, whose
strain and antimony fraction are independent of one another, decisively supports this

interpretation.
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Experimental Evidence for Alloy Correlations

We begin this chapter by reflecting on the experimental evidence we have for
atomic ordering in the InAs / InAsSb superlattice. Consider first a portion of the lateral
survey from Fig. 2.26 and reproduced in Fig. 4.1. The superlattice is, by definition,
modulated in the [001] growth direction, however looking along the [1-10] rows the
InAsSb doesn’t appear as featureless as a random distribution would imply. There are
gaps of several lattice sites where no antimony is to be found. Elsewhere it seems there
is much more antimony than the 33% targeted.

Focusing in on representative images from orthogonal cross sections (Fig. 4.2)
we find an abundance of antimony atoms occupying next—nearest—neighbor lattice sites
(encircled with blue) in (—1-10) cross section, and comparatively few antimony atoms
occupying the nearest—neighbor sites (encircled with red). The situation is different in
(1-10) projection, where antimony is more likely to incorporate at nearest—neighbor sites
and comparatively few antimony atoms incorporate at next—nearest—neighbor sites.

The proper quantification of these insights will be presented later in the chapter,
but as a naive initial estimate we calculate the image autocorrelation function. To
emphasize the antimony atoms we first process the images in Fig. 4.2, replacing any
grey—scale value below a chosen threshold with the image mean (128 grey). The grey—
scale values of 185 and 170 for (-1-10) and (1-10) respectively were chosen empirically
with initial guesses based on a change in curvature of the image histogram, followed by
fine tuning so that the antimony atoms look similar in both projections. Each resulting

thresholded image (Fig. 4.3) consists of antimony atoms (primarily, but not exclusively
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FIGURE 4.1. Section of lateral survey in Fig. 2.26. Bright layers are InAsSb, with carets
indicating individual top-layer antimony—for—arsenic replacement. Growth direction is
from top—left to bottom-right.
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limited to, top—layer) surrounded by a featureless plane. The high—density InAsSb layers,
as well as the nearest—neighbor and next—nearest—neighbor spacing identified in Fig. 4.2
are apparent in these images. That the antimony atoms in the InAsSb layer are brighter
than the antimony atoms in the InAs layer, is due to a small, but not negligible,
electronic contribution to the contrast in the original (unthresholded) STM images.

We form a survey—averaged image autocorrelation (Fig. 4.4) by correlating
image-by—-image before averaging across the survey. Like the DFTs explored in
Chapters II and III, the origin is located at the center of the autocorrelation. The feature
that stands out the most in these 2D correlation maps are the strong bands corresponding
to the InAsSb layers. More subtle is the evident structure in the [1-10] main diagonal in
(=1-10) cross section (left) that is missing from the corresponding [110] diagonal in (1-
10) cross section (right). The small-separation differences are more readily visualized by
taking a <110> section through the origin. The subtle structure in Fig. 4.4 is now very
obvious from the <110> autocorrelation sections in Fig. 4.5. The next—nearest—neighbor
lattice spacing of antimony atoms encircled in blue in Fig. 4.2 shows up as strong
correlations at even multiples of the <110> lattice constant in (—1-10) cross section (left),
and weak correlations at odd multiples. In (1-10) cross section (right), on the other hand,
there are increased correlations for nearest-neighbor separations, but a very weak
response for all other lattice sites.

These correlations can also be viewed through the lens of DFTs calculated from
images like those in Fig. 4.2 and then averaged over an entire survey. This is especially

useful since the autocorrelation map (Fig. 4.4) is the Fourier transform of the DFT power
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spectrum (Fig. 4.6) [55]. Next—nearest—neighbor lattice spacing in (—1-10) cross section
(circled in blue in Fig. 4.2 and marked by blue tics in Fig. 4.5) reveals itself as a streak
of excess power located at half of the <110> reciprocal lattice vector (encircled in blue,
left); this streak is absent in (1-10) cross section (right). Together these results imply
that over the course of a lateral survey (~ 1 micron in length) next-nearest—neighbor
pairing is not statistically significant on the (1-10), but is on the (~1-10) surface.

It is tempting to use the autocorrelation sections in Fig. 4.5 as a stand—in for a
formal correlation function, and while they are useful for qualitative comparisons there
are several drawbacks to this approach. First is that the image correlations cannot be
directly translated into a probability of finding antimony atoms separated by given lattice
vectors. Second, there is an electronic contribution to the contrast, so a single threshold
emphasizes atoms in the InAsSb layer, at the expense of atoms in the InAs layer;
antimony atoms in the superlattice have been identified via a trained eye to circumvent
this, and we will show a representative example of this in the next section. Finally,
because the image autocorrelation is x and y pixel based, all of the distortion detailed in
Chapter 2 will at the very least cause correlations to leak into adjacent separations. This

last drawback is addressed next.

Automatic Coordinate Assignment
The image in Fig. 4.2, left, is enlarged by a factor of ~ 3 in Fig. 4.7 to better
visualize previously identified top—layer antimony atoms [20,23] that have been called

out with blue dots. The pair distribution is a function of the separation vector between
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17.5 nm

/\Q\ /00

FIGURE 4.7. Enlarged image from Fig. 4.2 (left) with individual top—layer antimony
atoms identified by blue dots. To quantify the two—body interactions between Sb atoms
the separation vectors (indicated here by the “bonds” between antimony atoms) must be
computed for any given pair. Examples of every—other—site separation vectors in the [001]
and [1-10] directions are overlaid on the image.
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pairs of antimony atoms calculated as a difference of locations in the [001] column and
<110> row coordinate system'; representative 2 lattice site separation vectors are marked
with blue bonds in Fig. 4.7. The problem, then, reduces to transforming the x (fast—scan)
and y (slow—scan) indexing of antimony atoms (i.e. blue dots) to an index based on [001]
columns and <110> rows.

As the bowed columns in Fig. 2.14 illustrate, any attempt at indexing in real—
space is ill-fated. We instead endeavor to create image—by—image real-space masks,
which can be used to separately identify rows and columns (two masks per image),
derived from the reciprocal-space map of the full image. This seems like a step
backwards after going to great lengths to crop the images and obtain cleaned—up power
spectra such as those seen in Fig. 4.6, however the very properties of the full images
which make the power spectra unusable (bowing resulting in smeared RLV spots) for the
purposes of Chapter III are the very properties that we are trying to emulate with our
real-space masks. We can use the distorted RLVs such as those seen in Fig. 4.8 together
with phase information®, which relates power to a location in the image, to emulate rows,

which are bowed in precisely the same manner as the atomic rows in the STM images.

" Each <110> row is actually a (001) plane of atoms, and likewise each [001] column is
actually a <110> plane of atoms. We choose to label the rows and columns by the
indicated surface directions within each plane instead of the conventional miller indices
since the directions are easier to keep track of when looking at 2D STM images.

* The reciprocal-space phase information is much more difficult to visualize than the
reciprocal-space power and for that reason these phases are routinely “thrown away” in
the process of computing the DFT.
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We then filter the DFT (with phase intact) so that only the two <001> spots’
remain (Fig. 4.9, left). A 2D notch filter is constructed of a Gaussian function centered
over each spot, with a width fine—tuned to be as restrictive as possible while still
capturing the bowing that we wish to include in our indexing. Multiplying both real and
imaginary parts of the DFT by the notch filter retains a small region around the + [001]
RLVs. The inverse transform of a pair (+/-) of delta functions is a sine wave, and
likewise the inverse transform of this filtered (complex) DFT (Fig. 4.9, right) is
approximately a sine wave modulation in the [001] direction and uniform in the
perpendicular <110> direction except for the bowing associated with <110> rows. The
brighter rows correspond to the atomic crests while the darker regions between the rows
correspond to the atomic troughs. Likewise, filtering the DFT in the <110> direction
(Fig. 4.10, left) yields a sine wave in the <110> that also contains the bowing from the
[001] columns (Fig. 4.10, right).

Thresholding the inverse transforms (Fig. 4.9 and Fig. 4.10, right) at the zero
crossing creates black and white masks of the rows (Fig. 4.11, left) and columns (Fig.
4.12, left), which are then sequentially labeled starting at the lower—left corner of the
image for columns or the upper—left corner of the image for rows (i.e. left edge of the
two corresponding image diagonals). The two different origins are necessitated by the

45° rotation of the [001] and <110> crystal axes relative to the x and y image axes’. Were

> As a reminder the DFT is reflection symmetric through the origin, so a single
frequency is represented by two values in reciprocal space.

* The sought after g,(r, — ry) is a function of separation vector, and therefore inversion
symmetric, however our choice of origin flips the vector aligned with the rows (relative
to our standard crystal axes) while leaving the vector aligned with the columns
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the two sets of axes aligned, both rows and columns would originate in the standard
lower—left corner. These sequentially labeled masks give us two lookup tables, where we
can take x and y values and lookup the corresponding <110> row in Fig. 4.11 (right) or

[001] column in Fig. 4.12 (right).

Pair Correlation Function: General Properties

Having established an algorithm for converting the coordinates of antimony
atoms (identified in Fig. 4.7) into crystallographic <110> rows (Fig. 4.11, right) and
[001] columns (Fig. 4.12, right), we turn now to computing correlations from the

distribution of these atoms. The formal pair correlation function (whose natural

logarithm is the pair potential in units of —k;T [69]), is given by

g (l‘ r ) _ 1 NSb—Sb pairs(rz - 1'1)
2U2 7 11) — 75—
x_sgb Nanion pairs(rz - rl) ’

4.1

where the number of Sb—Sb pairs for each separation vector |r, — ry| is summed over all
images in a given ensemble and normalized to the expected number for a random
distribution of given density. As we’ll see shortly, this normalization factor is given by
the squared antimony fraction (averaged over a suitably large area) multiplied by the

number of available anion pairs at said separation vector.

unchanged. This change is irrelevant to the superlattice (where separation vectors are
limited to lie along the rows), however in the bulk alloy (where separation vectors are
permitted to be linear combinations of rows and columns) care must be exercised.
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To better connect the results of this calculation with the site occupancy patterns
observed in our STM images, we consider two limiting cases: random and perfectly
ordered. If antimony atoms are truly randomly distributed, then the site occupancy is
isotropic, and pair separation vectors in all directions are equivalent. We may therefore
look at just one of the available (arbitrarily chosen) directions in our example as
representative of all others.

To create a row of randomly distributed antimony atoms we first generate a
string of uniform random numbers between O and 1 (Fig. 4.13, left), then convert this
continuous distribution to a bimodal distribution by assigning all values above a
threshold to 1 and all values below the threshold to O where 1 is associated with
antimony and O with arsenic as depicted in Fig. 4.13 (right) for two different impurity
fractions. We can adjust the “density” of antimony atoms that this random string
represents by setting the threshold to one minus the desired antimony fraction.

Enumerating the possible anion pairs (Fig. 4.14, left) separated by one lattice site
over 1000 different random distributions each containing nominally 10% antimony
spread over 100 lattice sites yields, 1000 ( 100 — 1) = 99,000, available pairs with
|r, —r;| = 15. Since |r, — ;| = |r; — 1y|, this function is mirror symmetric about the
vertical axis. Tabulating the number Sb—Sb pairs in the same ensemble is done by

marching through each antimony atom and calculating the separation between every

> We counted pairs of lattice sites to arrive at this number, however N — 1 is the general
result for |r, — r;| = 1 in any row of length N lattice sites; whereas for |r, — r;| = n the
general (combinatoric) result is N —n, i.e. the number of available anion pairs is a
linearly decreasing function of their separation in lattice constants.
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other antimony atom in the 100 total lattice sites. Adding these up across the 1000
unique distributions yields 987 nearest-neighbor pairs (Fig. 4.14, right), explicitly
demonstrating that the antimony fraction squared times the total number of lattice pairs
at a given separation vector is the infinite length stand—in for the number of Sb—Sb pairs
expected for a random distribution. The virtue of this normalization is that the
correlations are directly related to probabilities with random (or uncorrelated) equal to
one; then anything below one is less likely than random, and anything above one is more
likely than random. We will return to this normalization when we consider the
appropriate calculation for a superlattice whose antimony fraction is modulated in the
growth direction, however we turn first to a consideration of perfect alloy order as the
limiting counterpoint to the random distribution just examined.

Perfect CuPt-B ordering consists of alternating (1-11) or (-111) planes
populated with one or the other type of anion (either all antimony or all arsenic), creating
a monolayer superlattice in the [1-11] or [-111] direction. This situation is clearly
obtained only when x5, = 0.5. Since STM is surface sensitive, these (—111) planes
cannot be probed directly, but the unique patterns that these planes display as they
intersect either the (—1-10) or (1-10) cleavage surfaces are schematically illustrated in
Fig. 4.15. We consider here the (-111) variant of CuPt-B ordering, which results in
chains of antimony atoms aligned in the [1-12] direction and alternating arsenic and
antimony atoms on the (—1-10) cleavage surface in both [001] and [1-10] directions. As
a direct consequence of the surface strobing every second bulk monolayer in {110}

cleavage, the (1-11) and (-111) variants are indistinguishable from the surface. For
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example, if the planes of arsenic or antimony are (-111), then in the bulk these anions
alternate in the [-111] direction, but on the (—1-10) surface we miss the second anion
type, so both [1-12] and [-112] directions appear to lie in ordered planes even though
only one of them truly does. Although not considered here, the A—type of CuPt ordering,
which consists of (111) or (11-1) planes of anions reveals itself in the orthogonal cross
section, simply interchanging left and right schematics in Fig. 4.15. CuPt-A 1is observed
much less frequently in nature, although preliminary evidence has shown that CuPt—A
order might occur in InAsSb materials [26].

There are only two unique sections through the 2D surface projected correlation
function for a bulk structure displaying perfect order. The observed 1D correlation
function depends on which surface crystallographic direction the separation vector is
aligned with. Once this surface direction is chosen, the correlations are a function only
of the length of the separation vector. All of the plots shown in the remainder of this
chapter assume that this direction has been specified, and only show the correlations for
a single direction, furthermore since the correlations are symmetric, only positive vectors
are plotted. Considering first the [1-10] direction in (-1-10) cross section, Fig. 4.15
(left) any separation vector whose length is an odd number, |r, — r;| = (2n+ 1), of
lattice sites will not join Sb—Sb pairs; the corresponding pair correlation function is then
equal to 0, as illustrated in Fig. 4.16 (left). On the other hand, half the even length
vectors, |r, — ;| = (2n), connect Sb—Sb pairs while the other half connect As—As
pairs. Normalizing to the 50 / 50 random alloy, which has equal number of As—Sb, Sb—

As, As—As, and Sb—Sb pairings (and therefore an Sb—Sb pair probability of one quarter),
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yields a correlation of 2. So the correlation function in the [1-10] direction alternates
between 0 and 2 for perfect anion ordering, and this alternation persists for the largest
separation vectors allowed by the image size®. Due to symmetries in the surface
projections of the ordered planes considered in Fig. 4.15, this same correlation function
is obtained in the [001] (observed in both left and right panels) and [112] (observed in
the right panel) directions.

Considering separation vectors that lie in the [110] direction, in (1-10) cross
section (Fig. 4.16, right) Sb—Sb pairs occur for either any combination of lattice sites, or
no combination of lattice sites, therefore averaged across the entire image (with mean
impurity fraction squared of 0.25) the correlation function remains fixed at 2 (Fig. 4.16,
right). Again due to symmetries in Fig. 4.15 we expect this same constant result in the
[1-12] (observed in the left panel) direction in addition to the [110] (observed in the
right panel) direction.

Even though the potential associated with a given correlation function is
meaningful in gasses [69], it isn’t clear whether the correlations in a crystalline lattice
are governed by a corresponding potential. For example, correlations of O, found in
perfect CuPt-B order, imply an infinitely repulsive potential ( In(0) = —oo ), which isn’t
physical. We will nevertheless use the potential framework in the last section of this

chapter to compare results across sub—ensembles of the data.

% Although Fig. 4.16, left, is described in terms of probabilities, the same result is
obtained by considering the ratio of the total number of antimony pairs to available pairs
and normalizing to the antimony fraction squared.
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Pair Correlation Function: Bulk Alloy Data

Before particularizing to the InAs / InAsSb superlattice, where modulation in the
growth direction poses an addition complexity, we introduce the correlation function
calculated from experimental data by considering a bulk InAsSb alloy which is
nominally uniform in the [001] growth direction. We will return to the specifics of this
bulk alloy growth later, when needed to place the corresponding results in proper context,
but for now focus only on the structure imaged in (~1-10) cross section (Fig. 4.15, left).
The structure was surveyed laterally following a single point in time during the growth
as was done with the InAs / InAsSb superlattice (Fig. 4.1), and a portion of that survey is
reproduced in Fig. 4.17. Local alloy order, similar to that in the superlattice, is observed
along the [1-10] direction together with relatively large voids free of antimony atoms.
Enlarging a single image (Fig. 4.18, left) shows the same every—other—atom antimony
site occupancy preferred along [1-10] rows seen in the superlattice (Fig. 4.2, left), and
the survey averaged DFT shares the same [1-10] half order streak seen in the
superlattice as well (Fig. 4.6, left). Because of these similarities in both real- and
reciprocal-space, we expect the correlations between substitutional antimony atoms in
both the bulk alloy and the strain—balanced superlattice to be comparable, a point we will
return to later.

Individual antimony atoms are identified in the bulk by adjusting a threshold so
that the called out atoms originate almost entirely from the surface layer, this is in
contrast to the superlattice where each top—layer antimony atom must be hand identified

(see Fig. 4.7). These atoms are then assigned [001] (column) and [1-10] (row)
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bulk InAsSb alloy

100 nm

FIGURE 4.17. Lateral survey in (-1-10) cross section over bulk InAsSb ,, keeping a
single point in time during the growth fixed. Top—layer antimony—for—arsenic replacement
is indicated with carets. Growth direction is from top—left to bottom-right.
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coordinates as previously described, a separation vector is calculated from these
coordinates for all combinations of two antimony atoms, and the number of times each
separation vector appears is tallied. The result is a discrete, 2D histogram, with bins
located at integer numbers of lattice sites in the [001] and <110> directions, which when
normalized to random via (4.1) is the 2D pair correlation function. Since each atom
could be either r; or r, the correlation function will be mirror symmetric through the
origin. Appropriate sections can then be taken in physically relevant directions.

Fig. 4.19 illustrates the results for [1-10] and [1-12], directions representative of
the left and right panels in Fig. 4.16 respectively. The [1-10] correlation function’
displays a damped version of every—other—lattice—site pattern in Fig. 4.19 (left)
approaching unity — the value expected of a random distribution —after approximately 15
lattice sites; the amplitude of the correlations is also weaker than expected for a perfectly
ordered 50 / 50 bulk alloy. The observed next-nearest-neighbor value of 1.5
corresponds to a 50% higher likelihood than random for antimony atoms separated by 2
lattice sites, similarly the nearest-neighbor value of 0.7 = 1/1.4 corresponds to a 40%
lower likelihood (compared to random) for these atoms to be situated next to one another.
A bit surprisingly the high and low probability branch amplitudes are not symmetric as
they are in Fig. 4.16 (left) and at this time we don’t know why this might be the case.

The [1-12] correlation function (Fig. 4.19, right) starts out greater than one

(nearest neighbor pairs are 20% more likely than random), but quickly returns to random

" The illustrated uncertainties in both directions are smaller than they should be due to
for double counting where images overlap in Fig. 4.17. Corrected errors could increase

by as much as a factor of V2 over those shown in Fig. 4.19.
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after approximately 4 lattice sites, and again displays weaker correlations than those

expected for perfect ordering (Fig. 4.16).

Pair Correlation Function: Superlattice Data

To apply this formalism to the superlattice we need to first make several changes
to the algorithm discussed above on account of the [001]-modulated nature of the
structure. We restrict the separation vectors to lie in the growth plane since the antimony
fraction clearly varies in the growth direction, this leaves the pair correlations as
functions only of the distance between any two antimony atoms (in <110> lattice
constants). We also use a predefined counting window [20] such as the one illustrated in
Fig. 4.20 (left) to ensure that each <110> row is equally sampled in the [001] growth
direction, and care must also taken to eliminate overlap between superlattice images
ensuring each window represents an independent measurement. A similar mask, applied
to the bulk, is likewise shown in Fig. 4.20, and is used in what follows to test for any
difference between bulk and superlattice computational algorithms.

The bulk correlation functions presented in the last section were normalized to a
random distribution with corresponding antimony fraction via (4.1); as we’ll see this
normalization does not work when the structure in question is modulated in the growth
direction. We then have two options for calculating a [1-10] or [110] correlation
function. We can calculate the correlation function within a given <110> row of
presumably constant antimony fraction using Eq. (4.1), and then average over the <110>

rows of [001] modulated antimony fraction; alternatively we can pool the number of
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antimony pairs for any <110> separation vector and normalize to an appropriately
redefined random distribution. Provided such a new normalization can be found a more
accurate calculation is always achieved with finite data by averaging before normalizing
instead of normalizing before averaging on account of error propagation [61].

We take inspiration from (4.1), which normalized the number of pairs at a given
separation vector to the number expected for a random distribution at a given antimony
fraction and now normalize the number of pairs summed over all (modulated)
monolayers to the total expected pairs corresponding to random distributions with the

same antimony fractions. Thus our pair correlation function is redefined as

1 [ZiNéposp pairs (T2 — 11])
g2(r, —ry|) = T X2

, (4.2a)
i X Nanion pairs(lrz -n D

with 7 indexing the monolayer which has the (presumably constant) antimony fraction x;.

Numerical experiments confirm the desired normalization in the presence of a
modulated antimony fraction is indeed the mean squared antimony fraction multiplied by
the number of anion pairs at the given separation vector. As a concrete example,
consider the exponentially decaying fraction illustrated in Fig. 4.21 (left), the observed
pairs normalized to the squared mean antimony fraction, xZ,(Fig. 4.21, right, red),
exceed the lattice vectors, however, the observed pairs normalized to the mean squared
fraction,zixl—2 (Fig. 4.21, right, blue), coincide with the lattice vectors. The observed

ratio of 2 between x&, and Y; x7 in this case is dictated by the explicit functional form of

172



or

0¢

omeradns ano Jo o[yoid Auownue Y[ng 9y} STWIW O} UISOYD SeM ISTUI[ ABOp [enuduodxd
QU J, "uonnquusIp wopuel e 10} pajoadxa se ‘Ajrun 0) [enba $10309A 20138 0) sired Auowmue Jo O1eI AY) SAYBW ‘pury IAYI0 AY)
uo ‘uonoeyy Auownue parenbs ay) Jo ueow Yy 01 uonRZI[EWIOU Y} FUISULY)) "(JYSLI) SI0JOA JJIIE[ JO JOqUINU AY) SPAAIX
uonoerly Auownue uedw parenbs oy 03 sired Auownue oY) SUIZI[BUWLION "MOI yoed ur uonerodiodur Ayundwr wopuel Jurunsse
(1391 orgoid Auowmnue Jurkedap A[enuauodxe ue Junewrxoidde suonoesy Ayundwr oy Sunensn[l SNeWAYDS 17 TANDIA

1=
0¢ 01

e
ooooooo
LC)
090
Sey

e
e
uo.oooo

oo
o
e e

(0T X)) 8401024 201D] ‘suind

qS

% .

C00=( "xy
000000000 000000
S00=¢ Oxy
00000000 0000000
0T0=¢ "y
00000 000000 O
05'0=¢ "xy

173



the antimony profile chosen to mimic the segregation profile reconstructed from
experimental data, but other function forms (e.g. linear ramp, saw tooth) further
substantiate that }; x? provides the desired normalization.

It’s interesting to consider the mathematical basis behind (4.2a), by rewriting the

term inside the brackets we get

Ngp_sp pairs(er — 1)

: Nanion pairs(lrz - rll)

1
g2(lrp —1y|) = T X2

[ Bdd?

1 z NSib—Sb pairs(lrz — 1) 2 (4.2b)

= X
Zixiz ; xi2 Nanionpairs(lrz_rll) '

1 )
= Txfz gh(Ir, — D x?
l

with the identification that (4.1) calculated for a single monolayer can be written as

pairs

X Nanion pairs(lrz - rlD ' (4.2¢)

So, our correlation function, (4.2a), in a modulated structure is the expectation
value of a single monolayer correlation function calculated over the population of
squared antimony fractions. As expected, (4.2a) reduces to (4.1) in the isotropic case

(bulk alloy) where x is independent of monolayer, since x# can be brought in front of the
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sums. And as we will see shortly either computational approach produces the same
correlation function for bulk experimental data.

It is also useful to briefly look back at Fig. 4.15 and consider the correlation
functions as calculated from (4.2a) for the case of perfect order. The [1-10] correlation
function (Fig. 4.16, left) remains the same alternating between O and 2 for odd and even
separation vectors respectively. The [110] correlation function (Fig. 4.16, right), on the

other hand will be a constant 1 (or random) instead of 2 (or correlated) which is clearly

incorrect. This anomaly stems from the change in normalization from < xg, >%= 1/ 4to

< x%, >= 1/ o, because the antimony fraction for entire rows alternate between 0 and 1.

Since a random distribution is undefined whenever all anions in the row are of the same
type (either antimony or arsenic). This example is pathological, and illustrates that
suitable care must be exercised in applying (4.2a). This is of no practical concern for the
superlattice data considered here, however, since cross—incorporation sets a
nonvanishing minimum antimony fraction, and the target concentration of 33%
antimony sets a corresponding maximum antimony fraction.

To test the sensitivity of the correlation function to these changes we compare
full (Fig. 4.18, left) and masked (Fig. 4.20, right) bulk survey images analyzed using
both (4.1) and (4.2a) in Fig. 4.22. The only difference between black points in the left
and right panels is the introduction of an image mask on the right, with the
corresponding reduction in statistics due to fewer counted atoms; aside from statistics

the two are very similar. Fig. 4.22 (right) also shows a change from (4.1), which is
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plotted with black points, to (4.2a), plotted with red points, does not effect the resulting
correlation function.

There is one final detail, which must be addressed before proceeding with the
analysis of experimental data from the superlattice. Interface roughness was shown in
Chapter III to be a source of disorder contributing to lateral period fluctuations. This
roughness can also introduce the uncontrolled mixing of cleavage—exposed <110> rows
with different antimony fractions. To make the point, consider the hypothetical InAs—
like / InSb-like structure (illustrated in Fig. 4.23, left) with an abrupt discontinuity in an
otherwise uniform and random antimony distribution within both InAs-like (x,,; < x,;,)

and InSb-like (x,,, > x,,) regions. We next focus on the row of randomly distributed

right
antimony atoms that mixes antimony fractions and furthermore assume for simplicity
that the two fractions are localized to opposite ends of the row in question. We now label
the number of antimony pairs as a function of separation vector by whether it refers to

the left half of the row, N (|1, — 1y|), or the right half of the row Nygp. (|1 — 11]);

and using Equation 4 .2a find

Niege (1, — 1))

Nanion pairs(lrz -n D

left
ng (=1 = >
Xleft

~1, 4.3)

N |-

and
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; 1 N r,—r
g;lght(lrz _ rll) = — nght(l 2 1|) ~1. (4.4)

1
right | 5 Nanion pairs(lrz - 1)

The corresponding correlation function for the full row given by (4.2a) (ignoring pairs

that straddle the dividing line between the two halves) is

g2(lr; —1y|) =

1 [Nleft(lrz —r) + Nyigne (|12 — 11 ])
(xleff"'x?”ight)z Nanion pairs(lrz — 1) (4.5)
2
We can rewrite (4.3), to isolate Nigre (|1, — 1y]),
Nani rs(|ry — 1
Nleft(lrz —-n) = xlzeft - palr;(l 2 1) ) (4.6)
and (4.4) to isolate Ny.;jgp. (|1 — 11]),
Ngni s (12 — 1)
Nright(lrz —r|) = xrzight e palr; . (4.7)

Plugging (4.6) and (4.7) into (4.5) and simplifying, we obtain,
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1 Xiofe + Xfigne
g2(jr; — 1y = ) [

(xzeft+xright 2 2
2

2 2
Xieft T Xright

~

2 2
Xiest T 2X1ertXright + Xfignt

2 2
~2 Xieft T 2XiefeXrigne + Xright — 2XieftXright

Xiorr + 2XieptXrighe + Xfigne
4.8)

2 [1 2XieftXright l
~ ) 2
Xi + 2XieptXrignt + Xrigne

4X10 1 Xri
~1+ [1 _ leftrright I ’

2 2
Xiert T 2X1eftXrignt + Xrigne

where the term enclosed by brackets in the final result is an expected offset above the
<110> uniform result of 1. This term in brackets goes to 0 as expected in the specialized
case of Xierr = Xpighe-

The idea behind (4.8) may be generalized for roughness that mixes more than
two fractions, and / or multiple rows, but this is best facilitated by numerical simulation.
As an experimentally relevant example we simulate antimony atoms, which are
distributed randomly in the growth plane with a modulated fraction approximating a
segregating antimony profile in the growth direction. A 1 ML shift in the [001] direction
is introduced half way through the <110> rows. The correlation functions calculated for
two antimony—fraction ranges are shown in Fig. 4.23 (right). The average value between

separation vectors of 10 and 30 lattice sites is 1.15 = 0.02 and 1.011 + 0.002 for the
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small and large fraction regimes respectively, much higher than the expected value of 1
(<110> uniform). A larger offset for small antimony fractions was also commonly
observed in initial analysis of superlattice correlations; correlations for small x more or
less set an upper bound on observable offsets, but most superlattice offsets were below
5%. In light of this offset, we will subtract out all offsets that remain in survey—averaged
superlattice correlation functions. Interestingly this was not a problem in the bulk,

because it contained no antimony—fraction—mixing interfaces to cause an offset.

Pair Correlation Function: Superlattice Alloy Order

We now have the needed toolkit in place with which to analyze antimony—
antimony correlations in the superlattice. Taking into account mean fraction squared
normalization, offset corrections, and counting window, we find the correlation
functions shown in Fig. 4.24, each of which is the average of three surveys over the
respective cleavage cross section. This cleavage cross section uniquely determines the
direction along which the correlation function is calculated, with (-1-10) implying [1-
10] and (1-10) implying [110], so we may adopt the more readily recognized cleavage
surface as the distinguishing label for our graphs from here on out.

A key feature of these pair correlation functions is the strong anisotropy. The
every—other—lattice—site incorporation observed in the STM image in Fig. 4.2 (left) is
directly mirrored in the (—1-10) pair correlation function (Fig. 4.24, left), where the
next—nearest—neighbor (encircled in blue) antimony pairs occur more frequently than in

a random distribution, whereas nearest—neighbor (encircled in red) antimony pairs occur
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less often than a random distribution predicts. Likewise, the chains of antimony atoms
observed in the STM image in Fig. 4.2 (right) are echoed by the (1-10) correlation
function (Fig. 4.24, right), where nearest—neighbor (encircled in red) antimony pairs are
more likely than random, but any two antimony atoms separated by more than one lattice
site are essentially randomly distributed. The anisotropic DFT highlighting a streak of
excess power in (—1-10) cross section (Fig. 4.6, left) that was absent in (1-10) cross
section (Fig. 4.6, right) is similarly represented in the pair correlation functions. The pair
correlation functions provide much more detail about the arrangement of atoms than the
DFT though, the significance of correlations at any given separation vector can be
judged by the extent above or below 1 (random) relative to their statistical error.

Contrasting the nearest—neighbor correlations on the two cleavage surfaces, we
note that in (—1-10) cross section nearest—neighbor site occupancy is 0.77 times as likely
as random, whereas in the orthogonal (1-10) cross section it is 1.34 times more likely
than random; the product of the two (1.03) however is nearly random. These
compensating nearest—neighbor probabilities in deficit or excess of random suggest the
nearest—neighbor correlations in orthogonal cross sections are complementary, and we
explore this possibility in more detail later in the chapter.

Returning to the bulk for a moment, the resemblance between superlattice (Fig.
4.24) and bulk (Fig. 4.19) correlation functions (in the [1-10] direction), is such that fits
to the first 15 points of superlattice and bulk agree remarkably well, as demonstrated in
Fig. 4.25. The upper and lower branches in both the superlattice and the bulk alloy share

a common exponential fall-off of approximately 4 lattice sites, suggesting that the
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correlations in the two systems might have a common source; the absence of (1-10)
companion data from the bulk, due to the limited availability of material, is unfortunate.

It is tempting to equate these exponential fall-offs with the interface roughness
correlation lengths inferred in Chapter III (ranging from 2 nm to 7 nm), however it is
unlikely that the alloy order length scale and the roughness disorder length scale are
attributable to the same mechanism given the isotropic nature of the interface roughness
observed in Chapter III and the extreme anisotropy of the alloy order (Fig. 4.24).

We will circle back to the thought that short-range order in the bulk alloy and the
superlattice share a common origin again at the end of the chapter, where correlations in
the bulk alloy will help isolate the source for these correlations, but first we explore two
experimentally—accessible partitioning schemes of the superlattice data, which will help

us pinpoint the sources of this order.

Origins of Superlattice Alloy Order

The monolayer—by—monolayer superlattice composition profile illustrated in Fig.
4.26 displays a strong grading due to segregation of antimony across nominally abrupt
InAs / InAsSb interfaces. This antimony accumulates in a surface reservoir of excess,
unincorporated antimony while the source is on, with only a fraction of the available
antimony incorporating in each bulk monolayer. The prevailing antimony-rich surface
reconstructions for common growth conditions, illustrated in Fig. 4.27, both contain 2/3

ML of antimony as an overlayer consisting of dimers aligned with the [110] direction.

185



‘[0z] woay uorssturad Yim payurIday *(paso[d 1aynys Auownue) jJo 921n0s wolj (uado 191Inys Auownue) uo I2INOS SAYSINIUNSIP
[opOW UONB3AIFIS 20INO0S—[3UIS 0] I "JALLS IM paionaisuodal a[goid uonisodwod 10Ae[ouow—Aq—IdAR[OUOIAN ‘97 ¥ AINDIA

1okejouowr Ynq [100]

0c ¢l 01 S 0
| | | | |
- - — - 00
@@M@MM% | ‘JWH
oty 3
ey }
- ) L1 - T0
+
kY ¥
w ¥ ¢
- (] 1 7o §
e F :
¥ =i
— - €0
j2pows UoyD3 21328
a1foad UMOLS—SD
~ - ¥0

186



‘swoje Auownue pajerodioourun Jo  19Ae[ 3uneoy,, TN €/¢ & WIOJ SMOI [(] [] uaamiaq
SumIs sIowI( "SuOnONNSUOIAI YJoq Ul uondaIp [O11] ayp ur udie 03 1oja1d siowirp Auownue 19Ae[—do], UONONISUOIAI (£X7)
10} pAjuasald a1e S[[90 UONOININSUOII (UOIIIAIP [(]—]] Y} UI) SANINIASUOD OM) PUB (X{) J0J pAjuasaid ST [[90 UONONISUOIAI [[N]
ouQ ‘uondaIp [Q11] oy ur Ayorporrad Yy JoquINU PuOIAS pue ‘uondAIp [O]—1] oy ur KAyorporrad oy syussardar roquunu IS
*a3ed oy Jo no Sunurod doeyns YImoa3 (100) YA JIMoI3 Ipruownue uLnp suonINIISU0IAI IBLINS UOWWO)) */ 7+ TANDIA

[OT1]

0 [011] .

(€X7) (€Xt)

187



Once the source is turned off the surface reservoir or “floating layer” is slowly depleted
as antimony continues to incorporate.

This physical understanding in turn facilitates a detailed mathematical
parameterization [23] of the monolayer—by—monolayer incorporation of antimony and
the resulting bulk composition profile in terms of an antimony source term originating in
the MBE effusion cell illustrated in Fig. 1.3. This source term drives a linear response
(segregation) — entirely analogous to the charging and discharging of a RC circuit in
response to a voltage pulse — allowing source—on and source—off regimes to be
determined from fits to the compositional grading reconstructed with STM [23].

We can thus partition the <110> rows into source—on / source—off ensembles, as
illustrated in Fig. 4.28. The source—on and source—off sub—ensembles taken together
make up the all-inclusive ensemble, whose correlations on each face were illustrated in
Fig. 4.24. The antimony—antimony correlations within these sub—ensembles are
qualitatively similar (Fig. 4.29, Fig. 4.30), and bracket the all-inclusive correlations in
Fig. 4.24. That the correlations between incorporated antimony atoms are so similar for
two very different physical situations indicates the presence of an incoming antimony
vapor stream has no bearing. That these correlations persist when the source is off,
suggest the observed short-range order likely originates with the floating layer of

antimony dimers atop the surface reconstructions illustrated in Fig. 4.27.
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The one—to—one connection between alloy composition and [001] strain in this
coherently—strained system®, illustrated in Fig. 4.31, permits another physically
meaningful and potentially relevant layer—by—layer partitioning of the antimony pair
correlations. A natural division for any strain—balanced sample occurs at 0% strain,
thereby dividing the profile into tensile and compressive regimes; pair statistics in the
compressive regime (larger antimony fraction equates to more pairs and better statistics)
support a further division into weakly and strongly compressive (separated at 1.5%
strain).

The correlation functions for these strain—resolved ensembles are all qualitatively
similar to one another as well as the all-inclusive ensemble (Fig. 4.24), from which they
were drawn. A closer look, however, shows a clear progression in the strength of the
correlations. Comparing the strongly—compressive partition shown in Fig. 4.32 to the
weakly—compressive partition shown in Fig. 4.33, we observe that the antimony—
antimony correlations strengthen as the strain decreases. Likewise, comparing the
weakly—compressive partition (Fig. 4.33) with the weakly—tensile one (Fig. 4.34), we
again see that antimony—antimony correlations strengthen as the strain decreases. These
observations hold true on both (—1-10) and (1-10) surfaces. This same bulk—strain
dependence also accounts for the (small) difference between source—on and source—off

ensembles in Fig. 429 and Fig. 4.30. The source—off ensemble, which shows

® The InAs / InAsSb strain profile directly mirrors the antimony fraction on account of a
near degeneracy [44]in InAs and InSb Poisson ratios that, in turn, causes the [001] lattice
constant of coherently—strained InAsSb on GaSb to depend (nearly) linearly on
composition. This linear relationship simplifies the conversion from composition to
strain, however it is not essential to the arguments that follow.
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(somewhat) stronger correlations, includes more tensile rows, thereby reducing the
average strain in that ensemble.

The fall-off exhibited by these sub—ensembles is similar to the fall-off in the all—
inclusive. In fact individual fits to (—1-10) correlation functions for separation vectors 2—

15 in each sub—ensemble are consistent with an exponential decay of 4.1 lattice sites.

Antimony Pair Interactions: Superlattice

We now explore the compensating behavior of nearest—neighbor correlations in
orthogonal cross sections, noted in connection with Fig. 4.24, across each of the
experimental ensembles described above. To better visualize this compensating behavior,
we turn to the natural logarithm of (-1-10) and (1-10) nearest—neighbor correlations in
Fig. 4.35, where compensating terms will be reflection symmetric about zero. When
strain—resolved, source-resolved, and all-inclusive ensembles are plotted against their
respective [001] strains, calculated from the nearest—neighbor, population—-weighted

expectation value

‘S‘Ni _ . ' — r = 1
<eg>S= Zl l iSb Sb palrs(l 2 1| )' (4.9)
2i Ngp_sp pairs(lrz -1 =1)

we see a nearly—linear dependence with unmistakable mirror symmetry (dashed line).

This symmetry is quantitatively confirmed once the respective logarithms in (-1-10) and
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(1-10) cross section are summed in Fig. 4.36, with the results distributed about zero
independent of strain’.

The three, independent strain-resolved partitions in Fig. 4.35 are simultaneously
fit to straight lines with opposite slopes and common strain—intercept to explicitly
incorporate the (—1-10) + (1-10) compensation demonstrated in Fig. 4.36. As shown in
Fig. 4.37, each of our experimental ensembles lies close to this fit. In the one instance
that falls furthest from this line (tensile ensemble), the deviations pair in opposite
directions, as they must if they compensate.

The corresponding data for next—nearest—neighbor correlations (|r, — r;| = 2) is
assembled in Fig. 4.38, where (—1-10) and (1-10) correlations are both more likely than
random. Independent fits to the strain-resolved ensembles, here, do a strikingly
persuasive job of describing source-resolved and all-inclusive ensembles in both cross
sections. These linear behaviors hold for pairs separated by 3 (|r, —ry| = 3, in Fig.
4.39) and 4 (|r, — r;| = 4, in Fig. 4.40) lattice sites as well. This comparison between
cleavage faces fails to be useful at larger separations where the (1-10) correlation
function (Fig. 4.24) approaches one.

Let us return, now, to the combined linear fit illustrated in Fig. 4.37 and consider
the common horizontal intercept — corresponding to no antimony—antimony correlation
whatsoever — at 3.4 +£ 0.2 % strain. Why this number? Naive expectations would place

this zero crossing for random incorporation at zero strain, whereas the data in Fig. 4.37

’ The asymmetric (—1-10) and (1-10) errors in Fig. 4.35 are striking in view of the equal
number of STM images (53, 52) acquired over each cleavage face, but reflect the
disparate numbers of antimony pairs in each cross section due to compensation.
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show vanishing strain is characterized by comparatively strong pair correlations,
bringing the assumption of this parameter as the governing physical variable into
question.

It now becomes important to recall the one—to—one correspondence between
strain and composition in coherently—strained systems that imposes a physical
degeneracy in our choice of independent variable. We previously used the linear
correspondence between superlattice composition and strain to define strain—resolved
ensembles, but we could have equally well chosen to define composition-resolved
ensembles instead. Although the former may, at first, appear more intuitive, our
experimental data suggests one must be open to the other.

Converting from ensemble strain to ensemble antimony fraction by replacing &;
with x; in (4.9) transforms Fig. 4.37 into Fig. 4.41'°. The common zero crossing for our
combined (-1-10) and (1-10) fit now occurs at x5, = 0.325 + 0.011, an instantly
recognizable number: the targeted, steady—state antimony fraction for our superlattice.
This fraction is directly proportional to the incident antimony flux, but, as we’ve
previously emphasized in connection with Figs. 28, 29, and 30, the pair correlation
functions for source on and source off ensembles are nearly indistinguishable, pointing
to the surface floating layer, rather than the incoming vapor stream, as the key factor in
these nearest—neighbor correlations. In any system evidencing segregation, surface and
bulk impurity fractions will be connected through the segregation coefficient R, which

may be determined from the compositional grading mapped out with STM [22]; that

' Horizontal errors seem to be larger when plotting against antimony fraction but the
relative errors in Fig. 4.37 and Fig. 4.41 are actually equivalent.
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number in InAs / InAsSb [20] is very close to 2/3, implying a fixed, monolayer-by—
monolayer ratio between surface and bulk—incorporated antimony of 2:1.

The common zero crossing in Fig. 4.37 may therefore be equivalently expressed
in terms of its corresponding surface coverage as ~ 2/3 ML, a value whose physical
significance is both immediate and independent of source shuttering: it is the maximum
amount of antimony that can be accommodated by the antimony—dimer surface
reconstructions in Fig. 4.27. The number of [110]-oriented dimers at the growth surface

thus appears to be our controlling variable.

Antimony Pair Interactions: Bulk Alloy

Bulk alloy films coherently strained to a virtual substrate offer an independent
perspective on the connection between short-range alloy order, bulk strain, and surface
antimony fraction, since they enforce a altogether different relationship between strain
and antimony fraction than that dictated in the superlattice by the requirement of strain
balancing to GaSb. The bulk alloy film made available to us was actually relaxed as
opposed to coherently strained'', and the STM data (taken some 300 nm into the growth)
previously summarized in Figs. 4.17 and 4.19.

A relaxed film, by definition, exhibits vanishing (0%) residual strain. As shown

in Fig. 442, adding this point to Fig. 4.37 makes clear that bulk and superlattice

" Source temperatures drifted more than usual during growth of the virtual substrate,
leading to a template too large for targeted InAsSb alloy composition. Although
dislocations necessarily took up that excess strain, substrate and bulk alloy x—ray peaks
were of comparable width, suggesting these dislocations were confined to the early
stages of bulk alloy growth.
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correlations diverge when expressed in terms of strain. Conversely, as shown in Fig.
4.43, including this data in Fig. 4.41 leaves no doubt bulk and superlattice correlations
convincingly agree, provided they are described by their respective bulk antimony
fractions'>. We call attention, however, to the unfortunate absence of (1-10) data for the
bulk alloy film from Figs. 4.42 and 4 .43, but the previously—drawn parallel between bulk
and superlattice (—1-10) correlation functions (Fig. 4.25) suggests the controlling
variable here is, again, the number of [110]-oriented dimers at the growth surface"’.

The similarities between our bulk alloy film and superlattice do not end with Fig.
4.25. Exponential fits like those in Fig. 4.25 for the all-inclusive ensembles were
repeated for the remaining five superlattice ensembles in Fig 4.43, and the results
summarized in Figs. 444 and 4.45. The (-1-10) decay length corresponding to the
upper branch of each correlation function is found to be independent of antimony
fraction, mirroring the composition—independent compensation established in Fig. 4.36'%,
whereas the resulting decay—envelope amplitudes are linear in composition. Finally, Fig.
4.46 makes the case that correlation functions for the (continuously antimony exposed)
bulk alloy film and (shuttered) source—off superlattice ensemble agree with one another
point—by—point, underscoring the irrelevance of an incoming vapor stream, as well as the

importance of mean bulk and surface antimony fractions, in scaling these correlations.

"> The antimony fraction was established as 19.5 = 0.5 % by STM, close to the
nominally—targeted alloy composition of 20%.

"It’s important to point out that the superlattice and alloy film were grown at nearly
identical temperatures [23,70], making the presumption of similar prevailing surface
reconstructions reasonable.

'* Recall that strain and composition are interchangeable in any coherently—strained
system.
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Summary

We first showed qualitative evidence in images, thresholded—image
autocorrelations, and power spectral densities for atomic order in the InAs / InAsSb
superlattice, which is statistically significant on the scale of a micron—long survey. We
then described an algorithm that could convert from distorted x— and y—coordinates into
distortion—free [001] columns and <110> rows via lookup images created from filtered
DFTs. These columns and rows are central to being able to calculate the separation
vector between pairs of antimony atoms in the surface. The pair correlation function was
then introduced to calculate the probability above or below random for an arrangement
of atoms. We first applied the correlation function to the bulk alloy before
particularizing to the superlattice. In the superlattice and the bulk alloy both “attractive”
and “repulsive” correlations on the (—1-10) surface were described well by an
exponential with fall-off of 4 lattice sites, and the (1-10) surface in the superlattice was
nearly random after 1 lattice site implying that antimony is incorporating as dimers
aligned with the [110] direction (visible on the (1-10) surface). By splitting the all-
inclusive superlattice ensemble into time-resolved sub—ensembles, we observed that the
order must have formed on the surface, not in the incoming vapor stream. Comparing
strain—resolved ensembles to the bulk ensemble we found the number of [110]-oriented
dimers at the growth surface appears to be the controlling variable for short-range alloy
order. Finally we found almost perfect agreement between (—1-10) correlations in the

bulk alloy and in the source—off ensemble, underscoring the irrelevance of an incoming
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vapor stream, as well as the importance of mean bulk and surface antimony fractions, in

scaling these correlations.
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CHAPTER V

CONCLUSIONS

We have used cross—sectional scanning tunneling microscopy (STM) to examine
how an as—grown InAs/InAsSb superlattice differs from the intended one as regards
translational invariance in (001) planes perpendicular to the growth direction. This
required atomic-resolution, lateral surveys paralleling the buffer/epilayer interface for
up to a micron in orthogonal (—1-10) and (1-10) cross sections, together with repeated
lateral surveys at representative vertical locations (i.e., spanned superlattice repeats)
within the multilayer stack.

We have shown STM can be used to accurately map the period fluctuations
throughout this superlattice. The concept, analogous to Bragg's law in high-resolution
x-ray diffraction, relied on an analysis of the [001]-convolved reciprocal-space satellite
peaks obtained from discrete Fourier transforms of individual STM images. Properly
implemented, the technique enabled local period measurements that reliably
discriminated lateral fluctuations localized to within ~ 40 nm along <110> directions in
the growth plane. While not as accurate as x-ray, the inherent, single—-image
measurement error associated with the method may be made as small as 0.1%, which
allowed lateral period fluctuations potentially contributing to inhomogeneous energy
broadening and carrier localization in these structures to be pinpointed and quantified.
The direct visualization of such unexpectedly—large fluctuations on nanometer length

scales was tied to a stochastic description of correlated interface roughness.
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We also introduced a new technique to automatically tabulate the crystalline
coordinates of previously—identified top-layer antimony atoms and construct the
antimony pair—correlation functions in orthogonal cross sections. These correlation
functions were then analyzed in terms of layer strain as well as antimony fraction, and
comparisons drawn between corresponding superlattice and bulk alloy experiments.
Nearest—neighbor correlations on opposing cleavage faces were inversely related, with
the (—1-10) deficit at nearest—neighbor sites balanced by a compensating (1-10) surplus.
The logarithm of this preference scaled inversely with bulk antimony fraction. In more
vivid physical terms, this preferential [110]—-incorporation of nearest—neighbor antimony
atoms in the bulk was traced to the inferred concentration of [110]-oriented antimony

dimers at the growth surface.
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