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ABSTRACT 

 

 

We employ cross–sectional scanning tunneling microscopy (STM) to examine 

how an as–grown InAs/InAsSb superlattice differs from the intended one as regards 

translational invariance in (001) planes perpendicular to the growth direction. This 

requires atomic–resolution, lateral surveys paralleling the buffer/epilayer interface for up 

to a micron in orthogonal (–1–10) or (1–10) cross sections, together with repeated lateral 

surveys at representative vertical locations (i.e., spanned superlattice repeats) within the 

multilayer stack. 

We show that STM may be used to accurately map the period fluctuations 

throughout this superlattice. The concept, analogous to Bragg's law in high–resolution 

x–ray diffraction, relies on an analysis of the [001]–convolved reciprocal–space satellite 

peaks obtained from discrete Fourier transforms of individual STM images. Properly 

implemented, the technique enables local period measurements that reliably discriminate 

lateral fluctuations localized to within ~ 40 nm along <110> directions in the growth 

plane. While not as accurate as x–ray, the inherent, single–image measurement error 

associated with the method may be made as small as 0.1%, allowing the lateral period 

fluctuations contributing to inhomogeneous energy broadening and carrier localization in 

these structures to be pinpointed and quantified. The direct visualization of 

unexpectedly–large fluctuations on nanometer length scales is tied to a stochastic 

description of correlated interface roughness. 



 iii 

We also introduce a new technique to automatically tabulate the crystalline 

coordinates of previously–identified top–layer antimony atoms and construct the 

antimony pair–correlation functions for orthogonal cross sections. Nearest–neighbor 

correlations on opposing cleavage faces are inversely related, with the (–1–10) deficit at 

nearest–neighbor sites balanced by a compensating (1–10) surplus. The logarithm of this 

preference scales inversely with bulk antimony fraction. In more vivid physical terms, 

the preferential [110]–incorporation of nearest–neighbor antimony atoms in the bulk is 

traced to the inferred concentration of [110]–oriented antimony dimers at the growth 

surface. 
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CHAPTER I 

INTRODUCTION 

 

Technological Motivation 

Compact, efficient lasers and detectors that operate in the mid– to long–wave 

infrared regions of the electromagnetic spectrum have potential applications ranging 

from thermal imaging to molecular identification. This regime covers two transparent 

atmospheric windows [1], facilitating military and security technologies, which rely 

upon long–range detection of heat from human bodies in the darkness of night1. 

Furthermore, many environmentally [2,3] and biologically [2,4,5] important molecules 

vibrate with frequencies in the infrared, making trace–gas sensing feasible for non–

invasive medical diagnostics as well as air–quality or climate–change monitoring. 

Mercury Cadmium Telluride (MCT) has historically been the detector material of 

choice at these wavelengths [6], due in part to the high level of tunability (1–30 µm) 

with changing composition, as well as favorable electrical properties, such as high 

mobility and low dielectric constant. However work to replace this material has received 

considerable attention for two principle reasons: the bandgap (and therefore the cutoff 

wavelength) is highly sensitive to uniformity of the alloy composition and a weak Hg–

Te bond results in structural instabilities during epitaxial growth. 

A number of compound semiconductors involving group–III and group–V 

elements are viable candidates to replace MCT over different portions of the infrared 

                                                
1 The dominant wavelength in blackbody radiation from a human body is around 10 µm. 
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spectrum (Fig. 1.1, [7]); it was recognized some time back that type–II superlattices (Fig. 

1.2) in particular might hold distinct advantages over MCT [8] since the superlattice 

energy gap [9] might be made smaller than that in either constituent material2.  

Despite an early proposal for a simpler InAs / InAsSb superlattice [10], most 

research over the past 20 years has been devoted to the InAs / GaSb system. Recent 

demonstrations that the Ga–free superlattices exhibit minority carrier lifetimes up to 

two–orders of magnitude greater [11,12] than their Ga–containing counterparts [13,14] 

has renewed interest in the prospects for competitive devices based on InAs / InAsSb. In 

addition reports of detectivities in InAs / InAsSb comparable with those of MCT [15] 

have further elevated the hopes for this material system to become the cornerstone of 

next–generation infrared detectors. 

Rapid, industrial–scale production of semiconductor devices typically relies on 

Metal–Organic Chemical Vapor Deposition (MOCVD), however in research settings the 

preferred growth method tends to be Molecular Beam Epitaxy (MBE) where an ultra–

high vacuum (UHV) environment (Fig. 1.3, [16]) and slow growth rates routinely result 

in better quality epitaxial layers.  

The low background pressures (typically 1E–8 torr or better) employed in MBE 

naturally limit the concentration of residual gas atoms that can potentially contaminate 

epitaxial layers over the many hours it takes to grow a device. Just as importantly, the 

mean–free path of atoms at these pressures is enormous (~ 5 km) [17]; so elemental 

sources, once vaporized in effusion cells attached to the vacuum system (Fig. 1.3), form 
                                                
2 This allows detection of longer wavelengths than otherwise possible with a bulk alloy, 
but comes at the expense of spatially–indirect electronic transitions. 
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FIGURE 1.3. Schematic illustrating the major components in a typical ultra–high vacuum 
molecular beam epitaxy system. Reprinted from the internet [16].
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beams of anions and cations which travel from their source to the (heated and 

continuously rotated) growth surface without experiencing collisions. Independently 

controlled effusion cell temperatures determine the flux from each source. Under usual 

growth conditions, it is the cation flux that controls the growth rate. The combined flux 

of anions is typically kept several times greater to promote two–dimensional growth by 

preventing cations from otherwise coalescing in metallic pools on the surface [18]. Once 

deposited, anions and cations diffuse across the growth surface until they encounter 

other adatoms3 and nucleate in two–dimensional islands [19]. 

The elemental effusion cells in Fig. 1.3 are universally maintained at fixed 

temperatures throughout superlattice growth (to preserve flux stability and uniform 

growth rates) and a spatially–modulated structure formed by actuating shutters that 

alternately open and close, selectively illuminating the growth surface with one or more 

vapor streams. Shutter cycle timing sets the superlattice well–to–barrier ratio whereas 

source fluxes (and therefore growth rate) set the actual layer thicknesses, each of which 

bears on the resulting electron and hole energy levels in the device.  

 

Materials Issues 

Despite the abrupt change in vapor flux that follows actuation of a source shutter, 

physical processes occurring at the growth surface prevent a similarly abrupt change in 

superlattice composition (Fig. 1.4, [20]). A residual vapor background in the MBE 

                                                
3 Alternate models suggest that adatoms diffuse until they encounter a step, which then 
expands across the growth surface to form terraces, this tends to occur more often on 
substrates with a large vicinality where steps are closely spaced. 
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chamber following source closure remains available to incorporate in subsequent 

epitaxial layers (cross incorporation) [21], potentially compromising the compositional 

differences between superlattice constituents. In addition, whenever an arsenide is grown 

atop an antimonide, as is the case in an InAs/InAsSb superlattice, antimony tends to 

collect on the surface (floating layer) [22,23] before a fixed fraction (segregation 

coefficient) is subsequently incorporated in each monolayer. This segregation leads to an 

exponentially–graded antimony fraction that extends well into the InAs layer. Anion 

exchange also generally occurs at III–V heterojunctions [21], but is especially difficult 

(if not impossible) to pinpoint in common–atom superlattices such as InAs/InAsSb. 

We explore two further ways an as–grown superlattice may significantly differ 

from design intentions in this manuscript. Spontaneous atomic order, typically attributed 

to “dimer–induced subsurface stresses” when one atom in an alloy is significantly larger 

than the other [24], occurs in many alloyed III–V materials grown on (001) substrates4. 

Copper platinum (CuPt) order, with alternating {111} planes of arsenic and antimony 

atoms (Fig. 1.5) [24], has previously been observed in InAsSb [25,26]. The 

superimposed <111> translational symmetry in CuPt–ordered materials reduces the 

bandgap by an amount that depends both on the range and magnitude of the order 

present [27]. Indeed, efforts are now being made to deliberately engineer smaller 

bandgaps in bulk InAsSb alloys [28] via strain–induced long–range order; transport and 

band structure models for InAs/InAsSb superlattices would similarly benefit from a 

thorough characterization of order in these materials. 

                                                
4 A notable exception is AlGaAs, where aluminum and gallium are very similar in size. 
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Period fluctuations are a poorly understood source of larger–scale structural 

disorder since they are difficult to appropriately characterize. Islands formed during 

deposition (Fig. 1.6, left) that approach complete monolayers minimally perturb a device, 

but those of intermediate size will result in (detectably) rough heterojunctions between 

superlattice constituents (Fig. 1.6, right). If this vertical roughness is normally 

distributed with a hypothetical standard deviation of ~ 1 ML, the periods bracketed by 

any pair of like heterojunctions will be within ± 1.4 ML of their mean value 70% of the 

time (assuming the fluctuations at successive interfaces are statistically independent), but 

fluctuations exceeding 1.4 ML will nevertheless occur 30% of the time.  

On the other hand, correlations in the growth plane that suppress the statistical 

independence of fluctuations along each interface will correspondingly amplify the 

lateral period fluctuations between vertically independent interfaces. These lateral 

variations in superlattice period break translational invariance in the growth–plane for 

carriers with comparable wavelengths, resulting in inhomogeneous energy–level 

broadening. This differs from the standard picture of inhomogeneous broadening that 

accompanies a (laterally–uniform) vertical drift in superlattice period, which preserves 

lateral translation invariance. Recent work attributes the occurrence of carrier 

localization in InAs / InAsSb superlattices [29] to either (laterally invariant) layer–to–

layer thickness fluctuations or (vertically invariant) lateral thickness fluctuations similar 

to those just described, but no connection between lateral period fluctuations and 

interface roughness is made. An explicit understanding of this connection seems 

10
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important, both in its own right and in light of the long–recognized role that roughness 

plays in suppressing carrier mobility due to increased interface scattering [30]. 

 

Characterization Techniques 

 The engineering of MBE–grown devices is almost universally based on an 

assumed structural integrity and several characterization techniques are available to 

gauge the validity of these assumptions from the quality of as–grown heterostructures. 

In–situ reflection high–energy electron diffraction (RHEED) is sometimes used (as 

shown in Fig. 1.3) to calibrate growth rates, assess surface quality, and monitor surface 

reconstruction during growth. Layer stoichiometry, which is tied to source fluxes and 

shutter cycles, is almost always calibrated after the fact by the substrate mismatch 

observed by high resolution x–ray diffraction (HRXRD); in this sense in–situ source flux 

and temperature monitoring (Fig. 1.3) principally serve to establish reproducible 

conditions. More exotic in–situ probes rely on growth surface curvature, thin–film stress, 

or anion desorption [31,32] to assess alloy composition during the growth. 

 Ex–situ techniques in addition to HRXRD include transmission electron 

microscopy (TEM) and scanning tunneling microscopy (STM). HRXRD is the gold 

standard for determining superlattice periodicity and mismatch [33] over an entire 

multilayer stack, and at times can even yield information about vertical period 

fluctuations [34]. Cross–sectional TEM offers atomic–resolution information about a 

structure [35,36] that could in principle facilitate the measurement of lateral superlattice 

period fluctuations on nm length scales [37], however much like HRXRD, TEM 

12



 

averages over a significant sample depth, making it difficult (if not impossible) to 

identify order and disorder that present on short length scales; TEM has, however, been 

successfully used to identify vertical period fluctuations [38]. 

With cross–sectional STM one images and identifies individual atoms within a 

single plane representative of bulk III–V material. The natural cleavage of zincblende 

semiconductors along orthogonal (110) and (1–10) surfaces (Fig. 1.7, [39]) then enables 

the subsequent reconstruction of complimentary, monolayer–by–monolayer records of 

the growth plane’s evolution across any chosen subset of superlattice repeats. 

 

Scanning Tunneling Microscopy 

STM relies on the quantum mechanical tunneling of electrons through a thin, 

vacuum barrier separating a freshly cleaved semiconductor surface from a sharp metal 

tip (Fig. 1.8). What constitutes an “atomically–sharp” tip is a matter of conjecture, but 

theoretical considerations suggest that ~ 1 Å lateral resolution is consistent with a single, 

metal d–shell orbital [40]. Achieving this resolution in practice demands that extreme 

care be taken to reduce ambient vibrations well below this number.  

The tunneling current, which is fundamental to all STM measurements, is 

typically approximated by  

 

 

 
𝐼 ∝ 𝜌! 𝐸, 𝑒𝑉  exp(– 2𝜅𝑠) 𝑑𝐸

!"

!
  (1.1) 
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𝜅 =
2𝑚
ℏ! (Φ 𝑒𝑉 − 𝐸) 

 

where s is the thickness of the vacuum barrier, 𝜌! the energy–dependent sample density 

of states, and 𝜅 an exponential decay constant5 that reflects the average barrier height,  Φ, 

under applied sample bias eV (Fig. 1.8) [42].  

The anion (filled state) and cation (empty state) sublattices at III–V <110> 

cleavage surfaces can be imaged separately by changing the sign of the bias voltage 

(negative for anions and positive for cations) [43]. Notwithstanding this atom–selective 

imaging as well as (1.1), there is only a small range of acceptable voltages that, in 

practice, produce high–quality large–area STM images. Biases that are too small risk 

damaging the tip by forcing it towards the surface, whereas biases that are too large 

result in field emission that also damages the tip, the surface, or both. 

The principal cleavage directions in zincblende crystals lie in orthogonal (110) 

and (1–10) planes [44], each of which contains the [001] growth direction (Fig. 1.7), but 

only every second bulk growth plane terminates at the cleavage surface. This, at first, 

appears a major drawback, but is experimentally circumvented by sampling multiple 

surface repeats from which the bulk repeat may be reconstructed under the assumption 

any changes across the multilayer stack occur slowly on the scale of a superlattice period. 

                                                
5 The exponential decay constant 𝜅 is ~ 1 Å–1 for typical semiconductor work functions 
[41]. 
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Unlike other low–index faces, the <110> cleavage surfaces of zincblende 

semiconductors do not reconstruct, but undergo a rigid–bond relaxation (Jahn Teller 

effect [45]) that preserves the (in–plane) translational symmetry of the bulk. This 

relaxation is driven by a simultaneous re–hybridization of, and (partial) charge transfer 

between, cation and anion dangling bonds that spontaneously lowers the energy of the 

system. As a result, the filled–states predominantly associated with anions are projected 

outward, into the vacuum, whereas the empty–states predominantly associated with 

cations remain more nearly planar, and thus more difficult to couple to the tip. Most 

images obtained in this lab, and all images contained in this dissertation, are of the 

filled–state anion sublattice.   

The circumstances described above for a homogeneous semiconductor or lattice–

matched superlattice become more complex in strain–balanced systems where the 

respective constituents are under compensating tensile and compressive strains. 

Considering each superlattice component as an anisotropic, elastic continuum [46] 

(whose properties follow alloy composition), the strain release attending removal of a 

half–space normal to the growth direction is followed by relaxation of the tensile 

component into, and relaxation of the compressive component out of, the remaining 

half–space6. Thus in the case of the (tensile) InAlAs / (compressive) InGaAs superlattice 

(considered in Chapter III) the entire tensile constituent sinks into the surface and the 

entire compressive constituent bulges out of the surface to produce a surface topography 

that closely tracks the well–to–barrier division in the superlattice. 

                                                
6 [001] relaxation is also possible in this continuum model. 
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The continuum model described above is directly applicable to cleavage–induced 

strain relaxation in compositionally abrupt systems, but this is clearly not the case for 

InAs/InAsSb, which is compositionally graded. The contrast in these superlattice images 

are almost entirely dominated by the strain relaxation of individual InSb bonds [47].  

Since the tunneling current in (1.1) does not explicitly depend on elemental 

composition, an individual atom can only be identified when all 118 possibilities 

comprising the periodic table can be condensed down to those handful of elemental 

sources attached to the MBE chamber (Fig. 1.3). These few possibilities can then often 

be distinguished by the differences in natural bond length that become manifest 

following post–cleavage, site–specific strain relaxation. 

For example, there are only two possible anion–cation pairings in an InAsSb 

alloy: InAs, whose lattice constant is 6.05Å, and InSb, whose lattice constant is 6.47Å 

[44]. A coherently–strained InSb bond will thus stick out further from the cleavage 

surface than the corresponding InAs bond, once both are free to do so. Top–layer InSb 

pairings are then pinpointed by the consequent increase in tunnel current as the STM tip 

passes over each substitutional site (Fig. 1.9).  

No matter which strain relaxation mechanism dominates at the cleavage surface, 

the composition within this plane is representative of that in every other like plane 

throughout the bulk, and this is what gives cross–sectional STM it’s unique power. 
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Dissertation Overview 

 Chapter II details how atomically–flat cleavage across an InAs/InAsSb 

superlattice is achieved and atomic–resolution STM images acquired.  Particular care is 

given to the discussion of STM non–idealities bearing on the accuracy and interpretation 

of measurements central to the scientific objective pursued here, as well as new 

techniques that effectively circumvent these shortcomings. Chapter III considers long–-

range structural disorder, beginning with an STM measurement of the average 

InAs/InAsSb superlattice period; we then proceed to map the period fluctuations over 

nm length scales (image–by–image) throughout micron–long lateral surveys; finally, we 

connect these lateral fluctuations to a stochastic description of correlated interface 

roughness. Chapter IV refocuses on short–range atomic order. We introduce a new 

technique to automatically tabulate the crystalline coordinates of previously–identified 

top–layer antimony atoms in InAs/InAsSb and construct the antimony pair–correlation 

functions in both (–1–10) and (1–10) cross sections.  These correlation functions are 

then analyzed in terms of layer strain as well as antimony fraction, and comparisons 

drawn between corresponding superlattice and bulk alloy experiments. 
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CHAPTER II 

EXPERIMENTAL DETAILS 

 

Introduction 

Our test bed for an in–depth structural study of these III–V materials is a 33% 

antimony InAs / InAsSb strain–layer superlattice (Fig. 2.1) – fabricated via MBE at 

Sandia National Laboratories [23]. This growth nominally targeted 100 repeats of 15.4 

ML InAs / 5.4 ML InAsSb atop a p–type GaSb buffer grown on one–quarter of a 2” n–

type GaSb substrate1 for an intended superlattice period of 20.8 ML.  

The as–grown structure has been shown [23] to differ measurably from the 

intended one in three ways, only two of which are consequential. The superlattice period 

measured by HRXRD is 0.2 ML shorter than design – indicating a comparatively minor 

~ 1% growth–rate miscalibration – but the structure also displays antimony segregation 

as well as antimony cross–incorporation. The succeeding chapters describe studies 

performed with a cross–sectional scanning tunneling microscope (STM) that illustrate 

two additional ways this as–grown structure differs significantly from engineering 

design intentions. Here, we describe the scientific equipment and preparation necessary 

to obtain device–scale, atomic resolution surveys, as well as potential pitfalls related to 

the STM scanning mechanism, that must be overcome to analyze these images. 

                                                
1 There are two standards for semiconductor substrates. The GaSb substrate on which 
this sample was grown uses the European–Japanese (EJ) standard. The United States 
(US) standard differs in the orientation of the major and minor flats.  
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The STM used in this study is a commercial unit made by Omicron 

VakuumPhysik GmbH and housed inside an ultra–high vacuum (UHV) chamber resting 

atop a custom vibration isolation table. The isolation table was designed [48,49] to 

reduce vibrations to the pm level for all frequencies above ~ 2 Hz, through a 

combination of pneumatic damping of the table and in–situ spring suspension / magnetic 

levitation of the stage that supports the STM sample and tip. 

The vacuum chamber that houses the STM is pictured in Fig. 2.2 with key main 

chamber components highlighted. The chamber is split into three stages2, each separated 

by UHV compatible gate valves. Samples are introduced to vacuum in the first stage, 

which is pumped by a turbo pump backed by a roughing pump. To avoid vibrations 

during experiments these pumps are valved off and shut down after achieving base 

pressure with the help of a thermal bake [50]. The next stage employs a non–evaporable 

getter and small ion pump to reduce the pressure further before samples are introduced 

to the main chamber where the cleavage carousel and STM sit. Two NEGs, an ion pump, 

and a titanium sublimation pump bring the base pressure in the main chamber (following 

isolation from the first two stages) to ~ 10 picotorr for hydrogen, and more importantly, 

as seen in Fig. 2.3, below 0.1 picotorr3 for all reactive molecules (XHV regime).   

To obtain these impressive pressures, the vacuum system received an overhaul in 

2008 after it was found that aluminum–bearing samples reacted with dilute, background 

                                                
2 This three stage arrangement has proven particularly stable; while the load lock is 
routinely cycled between atmosphere and UHV conditions, the main chamber has been 
under continuous XHV conditions for seven years now. 
3 These pressures are some of the lowest on Earth, exceeded only by accelerator beam 
lines [51], and are comparable to those in interplanetary space [52]. 
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levels of oxygen–containing molecules. Everything from pumping speed to sample 

mounting and cleaving were scrutinized and optimized [20,39]. This affords us at least a 

week to examine samples containing aluminum, and several months for samples such as 

the Al–free InAs/InAsSb superlattice, studied here.  

 

Sample Preparation 

A representative history of the epitaxial growth can be reconstructed by studying 

orthogonal <110> cross sections with STM; access to these cross sections is facilitated 

by cleaving the sample along one of two principle crystal directions. In order to identify 

individual atoms, the freshly exposed surface needs to be atomically flat across the 

epitaxial layers and to navigate across the structure there shouldn’t be steps or debris that 

stick out of the surface more than a few nm. Since the quality of the cleave is sensitive to 

each step of the sample preparation, a second, ex–situ cleaving station was constructed to 

allow quick turnaround for optimization of each parameter bearing on this all–important 

goal of atomically flat cleaves. As we explain the procedure here, we will briefly review 

these parameters, but more thorough write–ups of the optimizations can be found in 

previous theses [20,39]. 

Each quarter of a standard 2” wafer is diced into individual 5mm x 5mm squares 

suitable for transfer to the STM4. This dicing is done with a ESI laser trimmer system 

using a Nd:YAG laser operating at 1064 nm. This same laser is then swept from the 

center of the die outward (Fig. 2.4 (a)) along a specified <110> direction at a rate of 
                                                
4 Sandia National Labs kept a portion of the InAs/InAsSb quarter wafer for optical 
characterization. 
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12mm/s using 0.5 W to create a notch whose depth is nearly 1/3 the wafer thickness, and 

whose length is ~ 0.07”. The sample is sandwiched between two stainless–steel anvils 

secured to a sample platen, with the notch directed upwards and held in place by 

pressure applied via a Be-Cu spring (Fig. 2.4 (b)); when struck during cleavage (Fig. 2.4 

(c)) this notch initiates fracture along the chosen crystal axis. Both the sample and the 

spring are aligned as close to the bottom of the two anvils as possible to encourage high–

quality cleaves near the bottom of the sample where the STM tip is subsequently 

positioned.  

Mounted samples are placed inside a load–lock that is initially pumped down to 

high vacuum, then heated overnight to drive off residual water and bring the pressure to 

ultra–high vacuum levels. The baked–out sample platens (Fig. 2.4 (b)) are subsequently 

transferred to the main vacuum chamber and placed in a carousel where – after closing 

all valves and letting the system equilibrate – a particular die is cleaved via impulsive 

impact driven by pneumatic actuation of a vacuum feed through (Fig. 2.4 (c)). The speed 

at impact for samples grown on GaSb substrates is targeted at ~ 300 mm/s for (–1–10) 

cleavage and ~ 150 mm/s for (1–10) cleavage.  

 

Sample Crystallography 

To minimize the number of outgas–inducing movements post cleavage the 

carousel and sample platen are oriented so that the sample is cleaved facing the same 

direction it will face when loaded into the STM (Fig. 2.5 right). This orientation breaks 

28



FI
G

U
R

E 
2.

5.
 T

ra
di

tio
na

l f
as

te
ni

ng
 o

f s
co

re
d,

 sa
m

pl
e 

di
es

 to
 th

e 
fr

on
t o

f a
n 

ST
M

 p
la

te
n 

(le
ft)

 e
nt

ai
ls

 c
ar

ou
se

l r
ot

at
io

n 
– 

w
ith

 it
s 

at
te

nd
an

t p
re

ss
ur

e 
tra

ns
ie

nt
 –

 fo
llo

w
in

g 
cl

ea
va

ge
 s

o 
th

e 
sa

m
pl

e 
su

rf
ac

e 
an

d 
ST

M
 ti

p 
fa

ce
 o

ne
 a

no
th

er
. F

as
te

ni
ng

 th
es

e 
di

es
 to

 
th

e 
ba

ck
 o

f t
he

 s
ym

m
et

ric
, S

TM
 p

la
te

n 
(r

ig
ht

) c
irc

um
ve

nt
s 

an
y 

ne
ed

 fo
r c

ar
ou

se
l r

ot
at

io
n,

 s
in

ce
 c

le
av

ag
e 

su
rf

ac
e 

an
d 

ST
M

 ti
p 

ar
e 

na
tu

ra
lly

 a
lig

ne
d.

 T
hi

s r
ot

at
io

n 
ch

an
ge

s t
he

 c
ry

st
al

lo
gr

ap
hy

 a
s s

ee
n 

by
 th

e 
ST

M
 ti

p.
 S

ha
de

d 
ha

lf 
of

 sa
m

pl
e 

di
e 

is
 e

xa
m

in
ed

 
w

ith
 S

TM
. A

da
pt

ed
 fr

om
 [3

9]
.

cl
ea

vi
ng

  r
od

ST
M

  t
ip

fro
nt

–m
ou

nt
ed

(in
he

ri
te

d)
ba

ck
–m

ou
nt

ed
(m
od
ifi
ed
)

fro
nt

–m
ou

nt
ed

ca
ro

us
el

  r
ot

at
io

n

29



 

with the historical precedent (Fig. 2.5 left) set by an earlier generation of students, so we 

pause here to explore its crystallographic ramifications as they relate to STM.  

We begin by describing the inherited sample mounting and cleavage, illustrated 

schematically in Fig. 2.5 (left). The sample is always mounted notch up with the scribed 

(001) surface facing the cleavage tool, as this is needed for reproducible cleaves. 

Originally, the platen clamped the right half of the sample (as looked at from the 

cleaving tool) and the cleaver impacted the left half, breaking this piece off. The 

carousel was next rotated 180º, so that this cleaved surface then faced the tip, and the 

sample was subsequently transferred to the STM. This reoriented the [001] growth 

direction parallel to the cleaving rod and positioned the (001) growth surface to the right 

of (i.e. behind) the STM tip.  

Cleaves are currently conducted with the sample clamped on the left half (again 

with the notch facing up and the [001] direction pointing towards the cleavage tool), and 

the right half of the die is cleaved off to expose the epitaxial layers, as shown in Fig. 2.5 

(right). The sample is then transferred into the STM without rotation since the cleavage 

surface already faces the tip. If no other change is made, the surface examined with STM 

will then be opposite that historically looked at: the (110) surface on the right half of the 

die is the (–1–10) surface on the left half of the die, and likewise the (1–10) surface is 

complemented by the (–110) surface. Since these complementary planes are physically 

indistinguishable, the only visual change results from the 180º rotation of the (001) 

growth surface with respect to the STM tip.  
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To maintain the same (110) and (1–10) cleavage surfaces used historically, the 

notch direction should be reflected and the sample rotated 180º about the [001] direction. 

As seen in Fig. 2.6 this was done with the (1–10) cleave, where the laser scriber (Fig. 2.4 

(a)) was previously swept in the [–1–10] direction but is now swept in the [110] instead. 

Unfortunately, the same change was not implemented for the (110) cleave, where the 

laser is still swept in the [–110] direction yielding a (–1–10) surface when the right half 

of the die is cleaved off; this oversight is of no scientific consequence, however, since 

both (110) and (–1–10) surfaces are physically equivalent. The currently accessible 

cleavage planes, (–1–10) and (1–10), are shown in relation to the STM tip in Fig. 2.7. 

The 180º rotation of the [001] growth direction is better appreciated by 

considering the inherited and modified sample orientations from the viewpoint of the 

piezo–tripod in which the tip illustrated in Figs. 2.5 and 2.7 is mounted. The 180º 

carousel rotation needed to reorient the inherited sample mounting in Fig. 2.5 positions 

either (110) or (1–10) cleavage faces towards the STM tip and the [001] growth 

direction to the right — a linear combination of negative x and positive y — as shown in 

Fig. 2.8 (left). The modified sample mounting, which requires no reorientation, 

correspondingly positions either (–1–10) or (1–10) cleavage faces in front of the STM 

tip, with the [001] growth direction now pointing to the left — a linear combination of 

positive x and negative y— as shown in Fig. 2.8 (right).   

Fig. 2.9 contrasts the resulting orientation of cleavage–exposed crystal axes  

accompanying inherited and modified sample mountings with respect to the x–y scan 

coordinates (image coordinates) in Fig. 2.8. As should be clear from Fig. 2.9, reversal of 
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the [001] direction manifests in the STM images (Fig. 2.10) in the following way: with 

an inherited sample mounting [001] runs from lower right to upper left, but with the 

modified sample mounting it now runs from upper left to lower right.  

The growth direction in an InAs / InAsSb superlattice is unambiguously 

identified by symmetry–breaking antimony segregation, which creates a “charging” / 

“discharging” cycle in the antimony fraction as a function of distance in the growth 

direction5. Although we will adhere to the rigorously correct identification of crystal 

directions here (Fig 2.10, black and Fig. 2.9, right) others [20,23,39] have opted for a 

simplified labeling (Fig 2.10, grey and Fig. 2.9, left) that amounts to the presumption of 

(110) versus (–1–10) cleavage.  

 

Scan–related Image Distortion 

As previously described in connection with Fig. 2.8, a sharp tip is placed at the 

vertex of a piezoelectric tripod scanner whose mutually–perpendicular fast– and slow–

scan axes are fixed at ± 45º with respect to (001) crystal planes, or, what amount to the 

same thing, ± 45º with respect to <110> directions. This scanner controls the fine 

movement of the tip (in the first x–y quadrant) as needed to form an image as follows: 

the fast–scan piezo is incrementally contracted stepping through the first line of an 

image (increasing x, forward line scan), followed by an incremental expansion re–

sampling the first line (decreasing x, reverse line scan), before the slow–scan piezo is 

incrementally contracted (increasing y) to move to the next line, each increment forming 
                                                
5 In some non–common–atom superlattices (such as InAs/GaSb) the growth direction 
can also be identified by pinpointing heterojunction–specific interface bonds [47]. 
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FIGURE 2.10  Atomic–resolution STM image of the anion (Sb, As) sublattice from a type–
II InAs / InAsSb superlattice.  Antimony–for–arsenic replacement within the cleavage–
exposed plane is identified by carets.  Growth direction is from top–left to bottom–right. 
Simplified crystal axes (grey) assume the cleavage plane is (110), while rigorous axes 
(black) correctly identify cleavage plane as (–1–10). Adapted from [20]
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the real–space pixels visualized in the simultaneously acquired forward and reverse STM 

images. Images may be similarly obtained in quadrants 2–4 by inverting the rastered 

directions of the x and / or y piezos (Fig. 2.8).  

Elongation of the piezos with each computer controlled voltage step was 

historically calibrated by counting the number of substrate atoms that fit into a given 

window size, but two extraneous circuits in the piezo–driver control board have since 

been disabled.  The first fed a small portion of the slow–scan voltage into the fast–scan 

signal, which could be used to counter image skew. The second circuit allowed for 

arbitrary rotation of the scan frame, but was later found to have a defective bit that 

prevented raster scans with a truly 0º scan angle.  It was decided that any subsequent 

recalibration would be enforced after the fact, using average lattice constants for the 

entire image as described below, instead of adjusting the step size of the voltage input to 

the piezo scanners to compensate for these modifications. 

The fine movement of the tripod may also be used in another way. Offset 

voltages may be applied to translate the tip between images – up to ~ 1 micron in either 

the lateral, <110>, or vertical, [001], directions – so that successive images may be 

strung together to form a continuous survey. Coarse movement6 (any distance greater 

than 1 micron) on the other hand, necessitates translating the entire sample with a slip–

and–stick piezo movement [53]. The drawback of this type of mechanism is that the 

sample stage has a very large mechanical inertia and tends to continue drifting in the 

same direction (Fig. 2.11) for several hours after intentional movement has ceased. 
                                                
6 This coarse movement is used to initially position the epitaxial layers directly beneath 
the tip. 
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FIGURE 2.11. Schematic diagram illustrating sample drift (left) due to piezo–inertia of 
the sample stage as the scan frame is displaced vertically in the [1–10] direction. This 
stage coarsely positions the epitaxial layers under the tip, and moves either left (in growth 
direction), or right (opposite growth direction) with respect to the tip. The induced drift 
typically requires several hours to settle. Also illustrated (right), an STM image is formed 
via contraction of the x– and y–piezos. Cleavage plane coincides with plane of paper. 
Growth direction is right to left. Reprinted with permission from [39].
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When planning an experiment this must be factored in to allow ample time for the 

sample to settle in position; once settled the sample inertia is typically no longer a 

concern. 

The tripod itself also has inertia and will consequently display creep (where the 

tip needs time to adjust to changing directions). This creep appears at the bottom of 

every image (Fig. 2.12, left) due to a rapid return of the slow–scan piezo to the scan 

origin at the conclusion of every image. It also shows up in a more subtle way, when the 

image frame is offset parallel to the scan direction, as we discuss later in this chapter. 

The piezoelectric ceramics that move the tripod scanner are also notoriously problematic 

[54]. Under ideal expansion the change in length of the piezo material would depend 

only on the change in voltage applied to the material; in a realistic piezo, however, the 

amount the material expands depends not only on the size of the voltage step, but also on 

the voltage itself, making the response nonlinear (Fig. 2.12 right). To make matters 

worse, the expansion additionally depends on the history of the voltage applied to the 

material, making the response hysteretic; this hysteresis affects forward and reverse 

images differently. We will rely on forward images as examples in the remainder of this 

chapter and comment on any differences that pertain to the reverse images. The severity 

of the resulting distortions is also dependent on the size and history of the offset voltages 

applied to the piezos, so for that reason it is important to analyze survey images, whose 

offsets that are relatively small. 

In a typical forward image the piezo nonlinearity just described results in curved, 

or bowed, <110> rows and [001] columns. Bowing along the row is subtle, but is 
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highlighted when a box is aligned to a single <110> row in the lower portion of an image 

(Fig. 2.13, left) and then projected upward to compare with a box aligned to the same 

<110> row in the upper portion of the image (Fig. 2.13, right). A deflection of between 

one–half and one monolayers or ~ 0.5º is typical. A box likewise aligned to a single 

[001] column in the lower portion of an image (Fig. 2.14, left) and projected up to 

compare with a box aligned to the same [001] column in the upper portion of the image 

(Fig. 2.14, right) shows a deflection of about five <110> lattice spacings equivalent to ~ 

2.7º.  

Hysteresis in the piezos causes the magnitude of these row and column 

deflections to interchange between forward and reverse images, where the [001] 

columns are minimally bowed, but the <110> rows are deflected significantly. Thus 

<110> interface profiles extracted from reverse images are hopelessly distorted, and only 

forward images may be relied upon for measurements of interface roughness described 

in Chapter III. Likewise the reciprocal lattice vectors inferred below from forward and 

reverse images will differ, but the periods measurements outlined in Chapter III are 

designed to be insensitive to these distinctions. 

 

Image Analysis in Reciprocal Space 

The deflections above are closer to a maximum angle, rather than an average, but 

they serve to illustrate the challenge faced by analog correction circuitry or in our case a 

naïve computer algorithm employed to translate between the digitized image and the 

physically meaningful [001] and <110> coordinates. We instead turn to reciprocal space 
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where distortion averaged over an entire image may be judged by Fourier transforming 

our real–space image, plotted as a logarithmically–scaled power spectrum in Fig. 2.15. 

Four “peaks” (encircled in white) corresponding to the unit atomic mesh in real space 

dominate this map; each of these reciprocal lattice vectors (RLV) is smeared out due to 

the real–space bowing noted above, and close inspection reveals each peak is actually 

split into two distinct maxima. As we’ll see in a moment, there is a certain amount of 

symmetric ringing in the discrete Fourier transform (DFT) due to finite window effects, 

however this ringing decreases rapidly with distance and therefore would not cause this 

peak to bifurcate. It’s helpful to remember that large frequencies (such as the extent of 

the DFT window) represent small distances (such as the real–space resolution), since all 

images in this chapter have a resolution of 1 pixel / Å, every DFT will have the same 

extent, however each DFT has been cropped to the inner ¼ (by area) of reciprocal space 

to focus attention on the region inside the RLVs. 

The frequency resolution in the power spectrum shown in Fig. 2.15 has been 

artificially increased by zero–padding along both the x–and y–scan axes. Much like the 

quantum uncertainty principle, real– and reciprocal–space resolutions cannot both be 

made arbitrarily small. The reciprocal–space pixel size,  

 

 
∆𝑘 =

1
𝑁∆𝑥 =

1
𝐿  , (2.1a) 

 

is set by the inverse of the total length (𝐿) [55] given by the number of pixels (N) times 

the real–space pixel area (∆𝑥). The power spectrum size, then, is given by  
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𝑁∆𝑘 =

1
∆𝑥  , (2.1b) 

 

where the real–space pixel area sets the high frequency limit7, which will remain 

constant so long as the real–space image resolution remains unchanged. To decrease the 

reciprocal–space pixel area we need to either obtain larger images – which are 

experimentally limited by the distortions just described – or, alternatively, pad the data 

with zeros to increase the total length (zeropadded length 𝐿! > 𝐿) over which the DFT is 

calculated.  

Parseval’s theorem8,  

 

 
𝑓! !

!!!

!!!

= 𝐿 𝐹! !
!!!

!!!

  , (2.2) 

 

states that the sum of the direct–space image power is the same as the summed power in 

the reciprocal–space spectrum. To account for zeropadding we can rewrite (2.2) in terms 

of zeropadded values (labeled by primes) as 

 

                                                
7 Since reciprocal space is inversion symmetric the range of k values is actually 
−1

2𝑁∆𝑥  to 1 2𝑁∆𝑥 , and the maximum frequency is known as the Nyquist 
frequency [55]. 
8 The exact form of Parseval’s theorem depends on the DFT convention utilized. The 
form in (2.1) corresponds to the signal processing convention [55] adopted in this 
manuscript. 
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𝑓!! !

!!!!

!!!

 = 𝐿! 𝐹!!
! !

!!!!

!!!!

 . (2.3) 

 

The total power in the zeropadded direct–space image – the left–hand side of Eq. 2.3 – is 

clearly the same as the power in the original image – the left–hand side of Eq. 2.2. In 

order for the right–hand sides to be equivalent, the zeropadded powers at integer k must 

be smaller than the original powers by two factors of 𝐿
!
𝐿, 

 

 
𝐹! ! =

𝐿′
𝐿

!

𝐹!!
! !  (2.4a) 

 

where  

 

 
𝑘 = 𝑘!

𝐿
𝐿!   when 𝑘! 𝑚𝑜𝑑 

𝐿!

𝐿 = 0 (2.4a) 

 

the first due to the scaling in (2.3) versus (2.2), and the second from computing the sum 

over the densely–sampled points described by (2.1a). 

To help visualize this concept, consider the one–dimensional example of a 

rectangular box (Fig. 2.16, left), where the length has been increased 5–fold 𝐿
!
𝐿 = 5  

by adding zeros to the end of the data stream; the resulting power spectrum (shifted so 

that the reciprocal–space origin is centered) is interpolated (Fig. 2.16, right), reducing 

48



FI
G

U
R

E 
2.

16
. R

ec
ta

ng
ul

ar
 b

ox
 (l

ef
t, 

to
p)

 an
d 

ze
ro

pa
dd

ed
 b

ox
 (l

ef
t, 

bo
tto

m
) i

llu
st

ra
te

 th
e i

nc
re

as
e i

n 
re

ci
pr

oc
al

–s
pa

ce
 re

so
lu

tio
n 

(r
ig

ht
) o

bt
ai

ne
d 

by
 in

cr
ea

si
ng

 th
e l

en
gt

h 
in

 re
al

 sp
ac

e.
 W

he
n 

re
sc

al
ed

 to
 u

ni
t a

m
pl

itu
de

 th
e z

er
op

ad
de

d 
sp

ec
tru

m
 (g

re
y)

 re
pr

od
uc

es
 

th
e 

or
ig

in
al

 s
pe

ct
ru

m
 (

bl
ac

k)
 w

hi
le

 in
cr

ea
si

ng
 r

es
ol

ut
io

n 
by

 a
 f

ac
to

r 
of

 fi
ve

; t
hi

s 
re

sc
al

in
g 

m
as

ks
 th

e 
fa

ct
 th

at
 th

e 
sa

m
e 

to
ta

l 
po

w
er

 (w
hi

ch
 is

 c
on

st
an

t a
cc

or
di

ng
 to

 P
ar

se
va

l’s
 th

eo
re

m
) i

s n
ow

 sp
re

ad
 o

ve
r m

or
e 

re
ci

pr
oc

al
–s

pa
ce

 b
in

s w
he

n 
ze

ro
pa

dd
in

g.

0
5

10
–1

0
1

50
w

av
e 

 v
ec

to
r

le
ng

th
linear  power  density 0

0101
1

49



 

the uncertainty in the peak maximum by this same factor9. Rescaling both spectra to unit 

amplitude eliminates the factor of !
!!

!
= !

!"
 in Eq. (2.4).  

Zeropadding is a standard technique in image processing [56] and is used for 

calculating correlations and convolutions as well [57]. All image power spectra that are 

shown in this document have been zeropadded. In this chapter, where we are focusing 

more on qualitative behavior, the padded size was not consistently adhered to; the graphs 

of RLVs have been scaled appropriately so that they can be compared regardless of the 

zeropad utilized; in Chapter III, where the zeropad size directly determines the 

uncertainty in the peak maxima and therefore the uncertainty in the measured period the 

zeropad size is consistently 16000x16000. We will return to the relationship between 

real– and reciprocal–space resolutions in Chapter III when we discuss the direct 

measurement of interface roughness in QCL materials where zeropadding is actually a 

poor idea. 

The ability to convert from as–imaged (distorted) “nominal” Angstroms to either 

dimensionless monolayers, in the [001] direction, or <110> lattice constants, in the 

growth plane, is crucial for accurate measurements of both period fluctuations and alloy 

order. We therefore pause, here, to thoroughly examine the frequencies present in a 

given STM image in more detail. 
                                                
9 Fitting one–dimensional sections through reciprocal–space peaks along the fast–scan–
direction (we’ll see in the next section that this direction is preferred for our period 
measurements) to a standard Sinc squared form also reduces the peak uncertainty. It was 
experimentally established that zeropadding together with a simple search for local 
maxima yields the same result as fitting the sections; however there is a strong 
preference for zeropadding and peak finding, which can be easily automated, whereas 
fitting cannot. 
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Two series of measurements were made by cropping small–area windows out of 

a forward–scan image (contracting the x piezo, Fig. 2.8). The image is first cropped to 

remove all whiplash from the bottom (50 Å) and then symmetrically cropped (25 Å) to 

maintain a square aspect ratio, producing a 700 Å x 700 Å image from a nominal 750 Å 

x 750 Å scan. In the first series a 100 Å x 100 Å crop window was moved from left to 

right in steps of 50 Å, keeping the vertical location fixed midway between top and 

bottom edges of the image (Fig. 2.17, left); in the second series this crop window was 

moved in the same way from bottom to the keeping the horizontal location fixed midway 

between the left and right edges of the image (Fig. 2.18, left).  

The DFTs (Fig. 2.17 and Fig. 2.18, right) resulting from these small–area crops 

show none of the smearing found in the full image DFTs, but instead exhibit pronounced 

ringing emanating from the strong atomic spots (circled in white). This ringing is a 

natural consequence of finite data; any experimental measurement can be thought of, 

mathematically, as an infinite expanse gated by a rectangular box that zeros everything 

outside a chosen frame10. This real–space multiplication results in a reciprocal–space 

convolution between the corresponding Fourier components found in an image and a 

two–dimensional Sinc function, which is the Fourier transform of a rectangular box [55], 

the one–dimensional version of which is shown in Fig. 2.16, right. Since the Sinc lobe 

spacing is inversely proportional to the window size, this ringing falls off faster and is 

therefore less noticeable with larger windows. Because this Sinc function is oriented 

                                                
10 In many ways this gating is complementary to zeropadding. By padding our data with 
zeros we more accurately represent the infinite expanse that has been gated by our 
measurement. 
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perpendicular to the window, any change in window shape or alignment will produce in 

a corresponding change to the ringing pattern. The ringing can be abated by softening 

the edges of an image via a “windowing” function, such as a cosine function centered on 

the image crop, but at the cost of throwing away unacceptably large amounts of hard–

won experimental data. This pattern is present in Fig. 2.15, but a combination of the 

broadened peak and the Sinc suppression due to the larger image size made it difficult to 

distinguish the ringing from background noise. It is natural to suspect the larger spot 

sizes in Fig. 2.17 and Fig. 2.18 simply cover up the doubled peaks observed in Fig. 2.15, 

but sections through the RLVs in Fig. 2.17 and Fig. 2.18 monotonically increase to 

respective maxima whereas those in Fig. 2.15 likely would not. 

Mapping out the x– and y–scan coordinates for the [001] (Fig. 2.19) and <110> 

(Fig. 2.20) reciprocal lattice vectors, we observe that when the crop coordinate is held 

constant (the slow–scan coordinate in the left graphs or the fast–scan coordinate in the 

right graphs) there is no variation in the corresponding RLV component. This symmetry 

between x (fast scan) and y (slow scan) with respect to small–area, vertical and 

horizontal crops is at first surprising11, but indicates that despite all the aforementioned 

shortcomings of these piezos, they reproducibly yield the same frequencies at the same 

point in the scan over the relatively small ranges used to acquire individual images.  

The crop coordinate that is systematically varied throughout each sequence tells a 

different story however. As the crop window is swept from the left to the right across the 
                                                
11 While the two series of small–area measurements are symmetric in many ways with 
respect to x and y coordinates, they are not symmetric with respect to the immediate 
history of the fast–scan (x) piezo, since it is constantly being swept through a range of 
values for each slow–scan (y) piezo increment.  
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image (Fig. 2.17, left) the x–component (fast–scan) of both RLVs increases; likewise as 

the crop window is swept from the bottom to the top of the image (Fig. 2.18, left) the y–

component (slow–scan) of both RLVs increases. This shift to higher spatial frequencies 

means that the atoms appear closer in real space, but since the atoms in the underlying 

substrate are, in reality, equidistant, the piezos must be physically contracting more for 

each voltage step as the scan progresses. 

The slope of the RLV x–component versus distance from the left side of the 

reverse–scan image (fast–scan expanding) is opposite that in Fig. 2.19 (left) and Fig. 

2.20 (left). Said another way, due to the hysteresis illustrated in Fig. 2.12, the x–

component of the RLV increases as the crop window is moved from the right to the left 

across the reverse image, mirroring the left to right increase in the forward image. This 

increase from right to left in the reverse image is nevertheless, consistent with the piezo 

step size increasing for each additional voltage step as the scan progresses, since the 

piezo is expanding in going from the right side of the image to the left side. 

The image size can be increased from 100 Å x 100 Å to 400 Å x 400 Å with little 

consequence to the quality of the FFT all the while suppressing ringing of the Sinc (and 

therefore the width of the RLVs) due to the increase in window size. For DFT windows 

larger than 400 Å x 400 Å the <110> RLV begins to bifurcate, and not long after, the 

[001] RLV bifurcates as well as observed in Fig. 2.15. The best crop location, 

empirically determined, is illustrated in Fig. 2.21, and marked by the scale bar positions 

in Fig. 2.19 and Fig. 2.20. We instinctually chose the location of the standard crop 

window in a region that happened to coincide with nearly linear spatial “chirp” in the 
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RLVs. While not mathematically addressed here, it seems plausible that the RLVs 

obtained this way are averages over this linear chirp within our standard crop window.  

 

Survey Protocol 

To collect the ensembles needed to drive down statistical uncertainties in our 

measurements, we need to construct physically appropriate image surveys. Studying 

interface roughness in QCL materials [39] required the development and adoption of 

lateral survey protocols that follow a small subset of superlattice repeats for up to a 

micron in the [110] or [1-10] directions, thereby sampling a fixed point in time during 

the growth history. Additional time slices may then be similarly reconstructed through 

successive vertical displacement of these lateral surveys along the [001] growth direction. 

Given the need for lateral surveys, one must still choose which of two possible 

navigation routes (Fig. 2.22, left) – affected by corresponding offsets applied to the 

successive scan frames – to adopt. Simultaneous expansions of both fast– (– 𝑥!""#$%) and 

slow–scan piezos (–𝑦!""#$%) illustrated in Fig. 2.11 (right) and Fig. 2.22 (left), effects a  

[1–10] translation of the scan–frame origin within the (–1–10) cleavage plane illustrated. 

Simultaneous contraction of both piezos (+𝑥!""#$% and +𝑦!""#$%) on the other hand 

effects a [–110] translation of the scan–frame origin.  

When we discussed piezo creep, which causes whiplash at the bottom of the 

images, it was pointed out that this creep causes additional problems whenever an image 

frame is offset parallel to the positive y scan direction. The problem, while subtle in real 

space, becomes frustratingly apparent in reciprocal space (Fig. 2.22, right). There are 
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two very different RLV y components present in the DFT when the frame offsets 

contract (i.e. parallel) the slow–scan piezo. This effectively restricts the lateral survey 

direction to a small choice12, dictated by offsets that simultaneously expand x (fast–scan) 

and y (slow–scan) piezos (Fig. 2.22, left). 

Enforcing the standard 40 nm x 40 nm window size for DFTs we may map the 

RLV components throughout an “allowed” lateral survey as shown in Fig. 2.23. 

Surprisingly, the two components are not symmetric; the x (fast–scan) component is very 

stable throughout the course of the survey while the y (slow–scan) component drifts by 

as much as 4% of it’s value. This asymmetry can be reconciled by considering the time 

scales involved with each piezo; the fast–scan piezo is actuated every few seconds while 

the slow–scan piezo changes over the course of ~ 15 minutes; this longer time scale 

makes it proportionally more sensitive to 1/𝑓 noise such as thermal drift of the sample. 

For this reason we choose to rely on the fast–scan component in Chapter III. 

The [001] and <110> lattice constants averaged over the 40 nm x 40 nm standard 

crop (Fig. 2.24) can be calculated from the RLV components in Fig. 2.23; this image–

by–image conversion map in Figs. 2.23 and 2.24 is calculated for each and every survey 

and provides the ruler we ultimately adopt to normalize our STM measurements, either 

directly (correlation lengths in Chapters III and IV) or indirectly via the RLV (period 

measurements in Chapter III).  

                                                
12 The extreme doubling also restricts the vertical survey direction if minimally–distorted 
images and DFTs are sought. It is worth calling attention to the serendipitous alignment 
of the [001] direction with a minimally distorting survey route, given the modified 
sample mounting in Fig. 2.8, this was not true of the inherited mounting so that vertical 
surveys “naturally” progressing from repeat 1 through 100 were heavily distorted. 
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 Every lateral survey follows a chosen subset of superlattice repeats. These 

repeats are then systematically varied via vertical surveys that extend the entire length of 

the superlattice growth in the [001] direction. Representative examples, along with 

arrows illustrating the allowed survey directions, are shown in Fig. 2.25. We will 

develop additional methods for sidestepping the distortion present in each of these 

survey images in the next two chapters as we seek to measure the local superlattice 

period in Chapter III, and the growth–plane correlations between isovalent impurity 

atoms in Chapter IV. 
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CHAPTER III 

LONG–RANGE STRUCTURAL DISORDER 

 

Introduction 

It might seem natural to begin our discussion of the differences between as–

grown and intended structures with short–range alloy order since our data are comprised 

of atomic–resolution STM images, but long–range disorder provides a more fitting 

introduction to correlated statistics. We begin that discussion with a consideration of the 

long–range disorder manifested in superlattice period measurements. 

This chapter, like the next, relies on numerical calculations to build intuition and 

inform analyses that might then be used with experimental measurements to extract 

physically relevant insights. Before embarking on those calculations, we describe how 

the [001]–convolved reciprocal–space satellite peaks obtained from discrete Fourier 

transforms (DFTs) of individual STM images can be used to measure the period 

variations in InAs / InAsSb superlattices. These measurements can be localized to within 

~ 5 superlattice repeats in the [001] growth direction, as well as to within ~ 40 nm along 

<110> directions in the growth plane, and either subsequently pooled (over lateral and/or 

vertical survey ensembles) to compare with global measurements of the average 

superlattice period, or treated independently to analyze the image–by–image period 

fluctuations within a given set of repeats. 

We show by way of semi–quantitative arguments that these localized fluctuations 

are inconsistent with the naïve assumption of laterally–uncorrelated interfaces for the 
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system studied here. We then turn to numerical experiments that explore how correlated 

interface roughness influences the local period – even when the correlation lengths 

involved are small on the scale of our measurement window – and show how the 

magnitude of image–to–image period fluctuations depend on the parent parameters in a 

stochastic description of interface roughness. Finally, we use our numerical experiments 

to fully explore the dependence of period fluctuations on interface roughness parameters. 

Further insight is offered by a MOCVD–grown InAlAs / InGaAs superlattice, 

whose strong layer contrast makes it amenable to direct measurement of the stochastic 

parameters used to describe correlated interface roughness in our numerical experiments. 

These directly measured roughness values confirm that the local period fluctuations in 

InAlAs / InGaAs originate with interface roughness. We then use this knowledge to set 

limits on the corresponding roughness parameters for our InAs / InAsSb material system.  

The idea to use DFTs to measure superlattice periods was developed by Dr. 

Federico Lopez to contrast layer uniformity of InAlAs / InGaAs superlattices grown by 

MOCVD and by MBE. I am indebted to Dr. Lopez as well as Dr. Kara Kanedy for the 

experimental benchmarks used in this chapter.  

 

Analysis of Experimental Data 

Chapter II concluded with the introduction of device–scale surveys (Fig. 3.1) 

composed of atomic–resolution STM images (Fig. 3.2). As discussed at length in 

Chapter II, these images are inevitably distorted, and that distortion undermines 

straightforward attempts to measure a superlattice period in real space. We turn instead, 
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70  nm

SbAs(1)

s

SbAs(1)

s

6.25 nm

FIGURE 3.2. Individual atomic–resolution image with antimony–for–arsenic substitutions 
indicated by carets and approximate thickness of a single repeat annotated above. Solid 
box identifies standard DFT crop window illustrated in Fig. 2.22; dashed box indicates a 
representative counting window used to compile the antimony fraction in successive [001] 
monolayers. Adapted from [20].
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to a measurement approach similar in spirit to high–resolution x–ray diffraction 

(HRXRD), where Bragg’s Law yields a superlattice period of 20.62 ± 0.01 ML (Fig. 3.3). 

Just as the x–ray spectrum has superlattice peaks convolved with the (004) substrate 

reflection, the DFT (Fig. 3.4) calculated from the standard image crop corresponding to 

the solid box in Fig. 3.2 exhibits superlattice peaks (encircled in red) convolved with the 

[001] reciprocal lattice vector1. 

An [001] section through these data (Fig. 3.5, top) looks very similar to a 

HRXRD rocking curve (Fig. 3.3, top) and can be analyzed in like manner, save one very 

important difference. Recall from Chapter II that the DFT reciprocal–lattice vectors 

(RLVs) vary from image–to–image; since the superlattice peaks are convolved with the 

[001] RLV they must vary in exactly the same way. Normalizing the superlattice 

satellite peaks to the [001] RLV image–by–image therefore provides a measurement 

denominated in units of the atomic mesh that is potentially insensitive to image 

distortion. The x (fast–scan) component of each superlattice peak normalized to the x 

component of the RLV is a linear function of satellite order whose slope is inversely 

proportional to the superlattice period (Fig. 3.5, bottom). The slow–scan (y) axis is 

proportionally more susceptible to 1/𝑓 noise than the fast–scan (x) axis, as described in 

Chapter II, so while the slow–scan component yields perfectly serviceable period 

measurements, we rely exclusively on the fast–scan component in what follows; in so 

doing we’ve implicitly assumed our superlattice is perfectly oriented perpendicular to 
                                                
1 X–ray reflections from zinc blende structures require the Miller indices sum to 4*n and 
all three indices to be either even or odd; the (004) plane therefore is the first allowed 
reflection in these materials [58]. This does not apply to the two–dimensional STM 
image, which is a rectangular lattice. 

70



satellite  order

FIGURE 3.3. Triple–axis HRXRD measurement about the (004) reflection (top) and 
superlattice period calculated using Bragg’s law (bottom). Adapted from [20].
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FIGURE 3.5. Section through survey–averaged reciprocal–space map (top) in Fig. 3.4 
emphasizing superlattice satellites convolved with the [001] reciprocal lattice vector (tick). 
The x–coordinate of each satellite is normalized image–by–image to the x–coordinate of 
the reciprocal lattice vector and then averaged (bottom); the resulting slope versus satellite 
order is inversely proportional to superlattice period. Adapted from [20].
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the [001] growth direction. This is not always strictly true, since even high–quality 

substrates may have miscut angles on the order of 0.1º. Our particular sample was grown 

on a substrate whose miscut was specified as ≤  0.03º, potentially introducing a 

systematic error of less than 0.02%; this error is roughly eight times smaller than the 

single–image Bragg errors2. 

We see from Fig. 3.6 that as we survey along a <110> direction, the periods 

extracted from interleaved forward and reverse (contraction and expansion of the x 

piezo) images track one another. As described in Chapter II, these measurements are 

taken on opposite sides of a piezo–hysteresis curve and are, in that sense, independent; 

they may thus be averaged to reduce the experimental period uncertainty. The close 

agreement between forward– and reverse–scan data in Fig. 3.6 explicitly demonstrates 

that normalizing to the image–by–image RLVs effectively circumvents the piezo non–

idealities detailed in Chapter II. Interestingly, each set of measurements fluctuates well 

outside experimental error and we return to consider this finding more thoughtfully in a 

moment. First, however, we ask if the periods measured this way are as accurate as they 

are reproducible.  

                                                
2 It’s important here to clarify the hierarchy of DFT–related errors in this discussion. 
Each single–image satellite peak as well as its associated reciprocal–lattice vector has an 
uncertainty of ± 1 reciprocal–space pixels. The resulting single–image Bragg errors stem 
from least–squares fits to the normalized satellite peaks, given these uncertainties. 
Survey–pooled errors (as in Fig. 3.5) are the corresponding single–image uncertainties 
reduced by the square root of the number of images. 
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To answer this question, we compare the laterally–averaged periods3 from six4 

disjoint, vertical subsets of superlattice repeats occurring early on, midway through, and 

late in the growth. These periods, summarized together with their attending Bragg errors 

in Fig. 3.7, are clustered near 20.67 ML and 20.5 ML. We see a vertical drift in (–1–10) 

periods that is quantitatively mirrored in a similar set of (1–10) surveyed repeats taken 

over a different location on the wafer (~ 10 mm apart). Careful re–examination of the x–

ray data guided by these STM results reveals each superlattice satellite can be modeled 

as a sum of three overlapping Gaussian components whose minority side–bands are 

consistent with the periods 20.53 and 20.69 ± 0.01 ML respectively (Fig. 3.7). The 

comparison with these x–ray side bands is made even more convincing by the following 

observation: since there is a 1:1 correspondence between the coherently–strained lattice 

constant and the survey–averaged alloy composition [20], our STM period 

measurements can be converted from monolayers to absolute Ångstroms. So doing (Fig. 

3.8), we find that upper and lower clusters agree with their matching side band to better 

than 0.2% in absolute terms.  

It is also noteworthy that the dominant 20.62 ML component in the x–ray 

spectrum (Fig. 3.3) is nowhere to be found across six STM surveys. Dynamical x–ray 

simulations suggest this “period” could easily arise from a convolution of the two STM 

side bands, identified here, with a previously described vertical evolution in substrate 

                                                
3 Averaging over all image–by–image measurements (Fig. 3.6) to obtain a representative 
period and Bragg error for each surveyed set of repeats. 
4 A seventh survey containing reduced statistics was not included in these averages, it 
nevertheless agrees well with the trends observed in the other six surveys. 
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mismatch [23]. The beauty of such painstakingly acquired HRXRD data notwithstanding, 

they may in fact be subtly misleading in the sense just described. 

Independent support for the period drift documented in Fig. 3.7 comes from 

altogether separate reasoning. Fits to the laterally–averaged [001]–monolayer–indexed 

antimony profiles whose reconstruction via atomic counting is facilitated by the robust, 

atomic–resolution, impurity discrimination in these materials (showcased in Fig. 3.2), 

provide detailed, quantitative insights into the compositional grading associated with 

antimony segregation and its effect on the resulting HRXRD spectrum [23]. Introducing 

the superlattice period as an additional fit parameter to this well–established segregation 

model [59] offers satisfying agreement between direct–and reciprocal–space period 

measurements assembled over essentially identical spatial domains (Fig. 3.2). 

The close agreement between HRXRD, STM DFT, and real–space, counting–

based period measurements again affirms that normalizing STM–satellite–peak spacings 

to the image–by–image DFT RLVs successfully circumvents all scan–related distortions 

inherent to STM. We may thus return to Fig. 3.6 confident that the lateral fluctuations  

exhibited there are not a measurement artifact, but the accurate sampling (with small 

measurement uncertainty, namely the single–image Bragg error) of a comparatively–

larger–variance stochastic phenomenon "frozen into" the structure.  

In light of the size of the image–to–image fluctuations documented in Fig. 3.6, 

we might ask, again, what uncertainty best characterizes the pooled period 

measurements assembled in Fig. 3.7, since every lateral distribution of periods will also 
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be characterized by its own variance (Fig. 3.9). Within error5, this survey variance 

appears to be homogeneous (i.e. independent of superlattice repeat or location on the 

wafer) as well as isotropic (independent of cleavage face), so that a better estimate may 

be obtained by averaging over all surveys. We will see the utility in this later. 

It turns out the squared uncertainties in the survey–averaged periods (Fig. 3.7) 

are best estimated by the variance of each survey (Fig. 3.9) normalized to the number of 

images in that survey, a quantity known as the standard error of the mean [61]. Even 

though this standard error is approximately 4 times larger than our survey–averaged 

Bragg uncertainty (Fig. 3.10), the period differences identified in Fig. 3.7 remain 

statistically significant, with less than 1% probability they originate by chance [62]. 

 

Uncorrelated Interfaces and Comparison with Experiment 

 A superlattice is defined by the regularly spaced interfaces between two materials 

and the period likewise defined by successive interfaces of like type (e.g. InAsSb–on–

InAs or InAs–on–InAsSb). Thus, at its core, the period we measure via the DFT is 

simply the difference between two like interfaces averaged over the image pixels within 

our window. Viewed this way, it is reasonable to examine how interface fluctuations 

might translate into layer thickness fluctuations and thus period fluctuations. 

 To begin with, we consider whether a randomly fluctuating interface can cause 

period fluctuations of the magnitude actually observed. To simplify matters, we first 

address the case where the STM–scan axes, and hence the bounding edges of the image, 
                                                
5 The variance errors in Fig. 3.9 are calculated from the variance of the variance, and are 
proportional to the variance itself [60]. 
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are aligned with the crystal axes, setting aside for now the actual situation in which our 

image crop is rotated 45º relative to these axes6. We also adopt the convention that all 

explicit sums refer to a single interface in a single image and that all variances refer to 

image–by–image calculations over lateral surveys. 

Then a single interface sampled at N sequential points along a <110> direction in 

a given image will have mean location 

 

 
𝑧  =  

1
𝑁 𝑧!

!

!!!

 , (3.1) 

 

where the 𝑧! are statistically–independent, point–to–point [001] coordinates distributed 

with parent mean µ and parent variance 𝜎!. The image–to–image distribution of means 

will then have expected variance  

 

 
var 𝑧 = var

1
𝑁 𝑧!

!

!!!

=
𝜎!

𝑁  . (3.2) 

 

In dealing with single–image experimental data, µ would be estimated from (3.1) and 𝜎! 

from 

 

                                                
6 We hereafter distinguish between the simplified case and experimental reality by 
referring to the former as a vertical window and the later as a rotated window. 
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𝑠! =

1
𝑁 − 1 𝑧!  − < 𝑧 > !

!

!!!

. (3.3) 

 

In dealing with lateral surveys, as in (3.2), µ would instead be estimated from E[< 𝑧 >] 

and 𝜎! from E[𝑠!], where these expectation values are survey averages. Here we assume 

these parent parameters are already known.  

Let us ignore, for the time being, the interface located in the middle of the 

superlattice repeat and focus on the two bounding interfaces, thereby assuming that any 

asymmetry between interface templates is weak (so that (𝜎! − 𝜎!)/(𝜎! + 𝜎!) ≪ 1). The 

single–image, average period is then given by the difference in mean locations for every 

second interface7, averaged over the integer number of repeats M in the [001] direction, 

where M is calculated as the greatest integer of the ratio between our DFT window size 

and the expected period (Fig. 3.7). Since each interface (labeled A through A+M) in a 

vertical window has the same length, this sum of differences reduces to  

 

 
𝑃 =

𝑧 ! − 𝑧 !!!

𝑀  , (3.4) 

 

with all intermediate terms cancelling in pairs. This same logic justifies our neglect of 

the interfaces separating constituents within a period.  

                                                
7 Since both averaging and subtracting are linear operations subtracting mean values is 
equivalent to averaging point–by–point differences; the former is easier to describe, 
however the latter is the operation actually performed in our simulations. 
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The image–to–image variance of (3.4), taken with respect to E[P] across a lateral 

survey, is then computed from 

 

 
var 𝑃 =

var 𝑧 ! − 𝑧 !!!

𝑀! =
2var 𝑧
𝑀!  , (3.5) 

 

where we’ve explicitly assumed the bounding interfaces (A and A+M) are statistically 

independent of one another, i.e. vertically uncorrelated8. Substituting (3.2) into (3.5) we 

finally obtain  

 

 
var 𝑃 =

2𝜎!

𝑀!𝑁 , (3.6) 

 

for the predicted period variance with interfaces whose point–to–point fluctuations are 

statistically independent, or laterally uncorrelated.  

Fits to the antimony segregation profile in our InAs/InAsSb superlattice [20,23] 

provide physically reasonable estimates of the order of 1 ML for the 𝜎 in (3.6). The 

predicted period variance for a 40 nm x 40 nm vertical window (N=400, M=6) is then 

0.0013 Å2. As we establish later in this chapter, that prediction must be multiplied by a 

geometric correction (~ 1.5) before comparing to actual data, which is acquired in a 

rotated window. The period variance in this system (Fig. 3.9) is then ~ 50 times larger 

than expected on the basis of (3.6). 

                                                
8 An additional covariance term must be included in (3.5) whenever this is not the case. 
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To lowest order, lateral correlations will reduce the number of statistically 

independent degrees of freedom along each interface from N to 𝑁!"" = 𝑁 Λ, and this 

observation offers a natural explanation for the factor of 50 discrepancy between (3.6) 

and the data9. A more sophisticated treatment, below, indicates this estimate of the 

lateral correlation length is too large by about 40%, but the rough agreement between 

our simple approach and well–established lower bounds on interface island sizes (~ 300 

Å) [63] is nevertheless noteworthy. Experiments linking (intrinsic) lateral [63] as well as 

(deliberately introduced) vertical [64] period fluctuations to carrier localization [65] and 

inhomogeneous broadening [29] in related systems underscore the potential importance 

of these types of STM measurements.  

 

Numerical Calculations: Simulated Periods 

To gain a better appreciation of interface roughness we will simulate profiles 

with specified correlation lengths using a Monte Carlo method. The real–space interface 

profiles are generated by inverting Fourier coefficients that pair a (assumed) Gaussian 

amplitude with random phases. Choosing the unnormalized Fourier amplitude, Fig. 3.11, 

to be 

  

                                                
9 The results in Fig. 3.9 assume the period measurement in each image is statistically 
independent of that in any other. The lateral correlation length arrived at here is small on 
the scale of image separations (50 nm), physically justifying this assumption, but explicit 
calculation of the image–to–image period autocorrelation from the data in Fig. 3.6, for 
example, confirms the result. 
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𝐹! = exp −

𝑘!

4Λ!!
 (3.7) 

 

guarantees a Gaussian functional form10 for both the resulting power spectral density and 

autocorrelation function where the real–space correlation length is given by 

 

 Λ! =
𝐿

2𝜋Λ!
 (3.8) 

 

if L is the total number of points that the transform is calculated over. The k = 0 value is 

zeroed to remove the DC component of the spectrum and ensure each profile has a mean 

of zero when it is first created, then the amplitudes are scaled so that the squared area is 

equal to the real–space roughness variance 𝜎!. Each wave vector is assigned a random 

phase under the constraint that 𝐹!∗ = 𝐹–! so that the resulting profile will be real valued. 

Nine profiles, which will enclose eight complete repeats, each with a length of 

10.5 µm are generated for each of eight different correlation lengths ranging from 12.5Å 

to 100Å in steps of 12.5Å. There are two reasons that we choose to simulate a very long 

profile instead of several short ones despite being computationally unfavorable. Any 

potential endpoint problems are eliminated when the sampling window and correlation 

lengths are much smaller than the total length of the profile, but just as important shorter 

                                                
10 We use a Gaussian functional form in our examples, however this can just as easily be 
computed for Exponential power spectra. We will see later in this chapter that for all 
practical purposes our results are insensitive to this choice of functional form. 
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interfaces do not accurately reflect the sampling of the experimental interfaces that we 

wish to represent with these simulations. 

Sampling the correlated interfaces (Fig. 3.12) has some interesting consequences 

for the mean and variance calculated over any finite window size, where the profile 

wanders from the parent mean for larger stretches. These values normalized to parent 

variance, sampled over N = 40 nm, and plotted as a function of the dimensionless 

quantity Λ 𝑁 show that as the correlation length is increased, a given sample mean is 

likely to be found further from the parent mean (Fig. 3.13, left) and as a consequence the 

sampled variance is reduced (Fig. 3.13, right). The variance of sampled means, (3.2), 

modified to include correlations, is given by [66] 

 

 
var 𝑧 =

𝜎!

𝑁 1+ 2 1−
𝑖
𝑁 𝜌!

!!!

!!!

 , (3.9) 

 

which when the correlation function, 𝜌!, is replaced with a delta function correctly 

reproduces the uncorrelated limit of (3.2). 

When applying this to the simulations we replace the autocorrelation function 

with it’s assumed Gaussian form 

 

 
𝜌! = exp −

𝑖!

2Λ!!
 , (3.10) 
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and so long as the correlation length is not too large or too small (4 ≲ 𝛬 ≲ 𝑁
4) the sum 

in (3.9) can be approximated by an integral to yield the expression 

 

 
var 𝑧 = 𝜎! 2𝜋

Λ
𝑁 − 2

Λ
𝑁

!

 , (3.11) 

 

which agrees well with the simulated points in Fig. 3.13 (left), however since we 

assumed that the correlation length was not too large or too small (3.11) is not strictly 

valid in either the large or small correlation length limit; as an example of this (3.11) 

implies that the uncorrelated value should be zero when we know it should actually be 

given by (3.2). 

The expected value of 𝑠! (3.3) is modified similarly to (3.9) to get [66] 

 

 
E 𝑠! = 𝜎! 1−

2
𝑁 − 1 1−

𝑖
𝑁 𝜌!

!!!

!!!

 , (3.12) 

 

and plugging (3.10) into (3.12) yields 

 

 
E 𝑠! = 𝜎! 1− 2𝜋

Λ
𝑁 + 2

Λ
𝑁

!

 , (3.13) 

 

92



 

again in good agreement with the simulated points in Fig. 3.13 (right) and unlike (3.11) 

actually does reproduce the uncorrelated limit of 𝜎!.  

 

Numerical Calculations: Vertical Windows 

 We now move on to offset the profiles so that their means are separated by a 

chosen period, Fig. 3.14. Two different periods were simulated, one representative of the 

InAs / InAsSb material system whose period is approximately 62.5 Å; the other, 119.7 Å 

corresponds to the InAlAs / InGaAs material system whose interface roughness 

parameters have previously been directly characterized [39] and will be described in a 

later section. The newly created repeats are sampled by averaging over N points laterally 

along the interfaces and across M repeats, and the entire process replicated continuously 

sliding N+1 points laterally in between each sampling until reaching the end of the 

10.5 µm stretch. For each combination of correlation length and period there are: 262 

samplings of a 400 Å window, 350 samplings of a 300 Å window, and 525 samplings of 

a 200 Å window. 

Plugging (3.11) into (3.5) and rearranging terms yields the dimensionless 

variance 

 

 var 𝑃  𝑀!

𝜎! = 2 2𝜋
Λ
𝑁 − 2

Λ
𝑁

!

 , (3.14) 

 

93



FI
G

U
R

E 
3.

14
. C

or
re

la
te

d 
pr

ofi
le

s, 
su

ch
 a

s t
ho

se
 si

m
ul

at
ed

 in
 F

ig
. 3

.1
1,

 o
ffs

et
 to

 m
im

ic
 th

e 
in

te
rf

ac
es

 th
at

 b
ou

nd
 8

 su
pe

rla
tti

ce
 

re
pe

at
s, 

ov
er

la
id

 w
ith

 3
 v

er
tic

al
 (c

ry
st

al
–a

lig
ne

d)
 sa

m
pl

in
g 

w
in

do
w

s e
nc

om
pa

ss
in

g 
N

 p
oi

nt
s l

at
er

al
ly

 a
nd

 M
 re

pe
at

s v
er

tic
al

ly
.

M  repeats

N

94



 

which when plotted versus Λ 𝑁 is independent of period, roughness amplitude, and 

window size. This allows us to compare both period thicknesses and all three window 

sizes in a single universal graph (Fig. 3.15) and despite the rule of thumb that Λ 𝑁 ≲

0.25 [67] we see that (3.14) is a good match to the corresponding values calculated over 

the simulated profiles out to Λ 𝑁 ≈ 0.5. While it appears that the expected curve is 

turning over and will eventually return to zero, this ignores the fact that we assumed the 

correlation length was not too large in going from (3.9) to (3.11). Instead, the large 

correlation length limit must be obtained by inserting a constant value for the 

autocorrelation function in equation (3.9) and simplifying to find the scaled variance 

approaches 2 as the correlation length gets very large; this agrees well with a 1000 Å 

correlation length test profile where 𝑣𝑎𝑟 𝑃 𝑀!

𝜎! = 1.97± 0.06 averaged over six 

samplings (3 window sizes in each of 2 periods). If the period variance had in fact been 

measured in a vertical window, this asymptotic behavior would set a minimum 

roughness amplitude of 1.4 Å (0.46 ML) in the InAs / InAsSb superlattice. 

Since the correlation length is independent of sampling window size and the right 

hand side of (3.14) depends only on Λ 𝑁 the ratio of scaled variances for two window 

sizes should in theory be solvable for Λ. In practice the dependence of the ratio on 

correlation length is much weaker than the statistical uncertainty based on a finite 

number of samplings (Fig. 3.16) ruling out the possibility of simultaneously determining 

both 𝜎  and Λ  from our period measurements. Instead what is needed is a distinct 

measurement relating our two unknown quantities. As we will see in a later section the 
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measurement of the correlation length itself is fraught with difficulties, however it is 

rather straightforward to measure the sampled variance so long as an interface can be 

defined in the STM image. It makes sense then to solve (3.13) for 𝜎! and place it into 

(3.14). Rearranging terms the variance of periods is rescaled by the sample interface 

variance to get 

 

 
var 𝑃  𝑀!

𝑠! =
2 2𝜋 !

!
− 2 !

!

!

1− 2𝜋 !
!
+ 2 !

!

! . (3.15) 

 

Fig. 3.15 can be replotted incorporating the change from parent variance to 

sampled variance via (3.13) in Fig. 3.17, along with the expected curve (3.15). If 𝑠! is 

known, such as for the simulated profiles, we can directly determine the uncertainty in Λ 

by inferring a value from Fig. 3.17 and compare it to the value simulated (Fig. 3.18, left). 

A histogram of these relative uncertainties (Fig. 3.18, right) indicates that even with 

several hundred images any inferred correlation length will only be accurate to ~ ± 7.5%.  

 

Numerical Calculations: Rotated Windows 

Having established a solid understanding of the sampled periods with vertical 

windows aligned to the crystal axes, we now explore the effects of sampling the 

interfaces at 45º relative to the crystal axes. In the experimental data our scan axes are 

aligned with the image x,y axes and the crystal axes are rotated by 45º, however for the 

simulations it is much easier to rotate our windows in Fig. 3.14 by 45º over a fixed set of 
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interfaces, shown in Fig. 3.19, rather than rotating the interfaces under a fixed set of 

sampling windows. When analyzing the rotated windows we must be careful that the 

window size is not made too large, thereby artificially excluding interfaces that should 

be present inside the sampling window. Instead of using a spreadsheet program to 

calculate differences like was done in the vertical window, we write our own routine that 

calculates differences between every consecutive interface for all 10.5 µm, then averages 

the differences if and only if both interfaces that were subtracted are within a border 

defining the rotated window. 

Plotting the variances calculated over the new rotated (x–y image–aligned) 

window (Fig. 3.20) scaled the same as the vertical window, we see that the curves are no 

longer universal. An immediate concern is that the window could be in some way 

aligned so that longer interfaces are presented for certain window sizes, to ease this 

concern we can directly count the number of differences in both the rotated and vertical 

windows.  

The number of differences in the vertical window is simply the length of each 

interface multiplied by the number of repeats contained within the window. The number 

of rotated differences is smaller, as expected since the number will be set by the shorter 

of two consecutive interfaces, and dividing the number of rotated differences by the 

number of vertical differences shows a trend within a family of windows for a given 

period and a split between the families for two different periods (Fig. 3.21, left). 

However these disparities collapse when each value is multiplied by 𝑃
𝑁, leaving all 

of the measurements clustered around 0.33 (Fig. 3.21, right). Therefore, due to the 
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specific geometry of a window at 45º, there are 3 𝑁
𝑃 times fewer differences in the 

rotated window than in the vertical window.  

To see how our vertical axis in Fig. 3.20 needs adjusted we rewrite the left hand 

side of (3.15) as 

 

 var 𝑃  𝑀!

𝑠! =  
var 𝑃  𝑁!𝑀!

𝑠!𝑁! , (3.16a) 

 

where the multiplication by 𝑁!𝑀! counteracts the dependence of the variance on the 

total number of differences. Then since the total number of differences goes down when 

we rotate the window by 45º, (3.16a) needs to be multiplied by 𝑁 𝑃 to once again 

counteract the corresponding change in variance11, resulting in 

 

 var 𝑃  𝑁!𝑀!

𝑠!𝑁!
𝑁
𝑃 =

var 𝑃  𝑀!

𝑠!
𝑁
𝑃  . (3.16b) 

 

Adjusting our vertical axis to correspond to (3.16b), closes the gap between the 

different sampling windows considerably (Fig. 3.22) but does not result a universal 

curve as observed in the vertical window variance in Fig. 3.17. To understand why we 

consider the schematic in Fig. 3.19. The interfaces in the diamond are all different 

lengths suggesting that an integer number of repeats, while well motivated for the 
                                                
11 We chose not to include the constant 3 in our rescaling, letting it be wrapped up in the 
dependence on Λ 𝑁 and instead focused solely on scaling out the 𝑁 𝑃 dependence. 
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vertical window, may not sufficiently describe the measured periods when the interfaces 

are unequally weighted. To finish collapsing the different curves we allow the integer M, 

which was obtained by taking the greatest integer of 𝑁 𝑃, to turn back into the floating 

point 𝑁 𝑃. With this change (Fig. 3.23) we see that the various curves have once again 

collapsed to a universal representation, but unsurprisingly the vertical expectation (3.15) 

no longer agrees with simulated values in the rotated window (Fig. 3.24). 

The expected variance (3.15) can be modified if we know the transfer function 

from the universal curve in the vertical window (Fig. 3.17) to the universal curve in the 

rotated window (Fig. 3.22). This transfer function, H shown in Fig. 3.25, can be obtained 

by dividing each point in Fig. 3.23 by the expectation (3.15). The expression missing 

from (3.15) is 

 
𝐻 ≈ 4 Λ

𝑁 (3.17) 

 

as demonstrated by the fit in Fig. 3.25. It’s not immediately obvious where this 

expression comes from, however it is reminiscent of a chain rule, which crops up when 

changing variables of integration. The expected scaled variance in the rotated window  

 

 
var 𝑃  
𝑠!

𝑁
𝑃

!

=
2 2𝜋 !

!
− 2 !

!

!

1− 2𝜋 !
!
+ 2 !

!

!  4
Λ
𝑁 . (3.18) 
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agrees well with the values calculated for the simulated profiles up to Λ 𝑁  ~ 0.33 (Fig. 

3.26). We once again ask if 𝑠! is measured separately (in a vertical window) how well 

do we know the correlation length. Inferring the correlation length from the simulated 

profiles (Fig. 3.26) just as we did in the vertical window, we notice two things, one is 

that the dispersion of relative uncertainties in Fig. 3.27 (left) is slightly larger reflected in 

the ± 11.6% width of their histogram (Fig. 3.27, right), additionally we find that our 

empirical theory systematically underestimates the simulated correlation length by 3%. 

We are now in a position to compare these theoretical underpinnings to an experimental 

benchmark of directly measured interface roughness12.  

 

Direct Measurement of Interface Roughness in Quantum Cascade Materials 

We saw in the last section that the period variances in multiple windows don’t 

provide enough information to determine both the roughness amplitude and the 

correlation length without unreasonable amounts of images to reduce uncertainties, so to 

compare with experiment we need to be able to directly identify and extract the 

heterojunctions that define the superlattice. From these interface profiles we may then 

measure the correlation length and sampled roughness amplitude. As we will see shortly 

the measurement of the sample roughness variance is straightforward provided that an 

interface profile can be identified, however measuring correlation lengths is much 

                                                
12 The results of which were obtained in conjunction with Dr. Federico Lopez. He 

obtained the data and analyzed the interface roughness amplitude. I took over and 

performed the reciprocal–space analysis after he graduated. 
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trickier and prone to uncertainties. The individual InAs and InAsSb layers in the 

superlattice as imaged don’t display an outright break between them because the 

electronic contribution to the contrast is weak, and the exponential rise associated with 

the segregation profile at the beginning of the layer produces a very diffuse border that 

can only be identified once the antimony fraction is averaged laterally over 100 nm. 

We instead turn to a material system that does display a large greyscale contrast 

between subcomponents of the superlattice, the InGaAs / InAlAs material system, which 

is used extensively in quantum cascade lasers and detectors. This large difference in 

greyscale values has two sources that add constructively, the first is a valence band 

offset that is comparable to the InAs / InAsSb material system and the second is the 

large difference in strain which relaxes into (tensile InAlAs) and out of (compressive 

InGaAs) the surface post cleavage. Once atomic corrugation is filtered from the images 

the histogram of greyscale intensities is clearly bimodal with each individual lobe 

associated with one and only one of the two materials (Fig. 3.28, right). Thresholding on 

the value that maximally separates the two peaks creates a mask of either the InAlAs or 

InGaAs layer the meeting of which defines the interface profile. 

The interfaces highlighted in Fig. 3.28 (left) appear to fluctuate on the scale of a 

monolayer in the growth direction and smoothly transition from one fluctuation to the 

next on the order of 5–10 lattice constants in the growth plane. It is no surprise then that 

a lateral mapping of period measurements in this system, similar to those tabulated in the 

InAs / InAsSb system, also shows fluctuations well outside experimental uncertainties 

(Fig. 3.29). Two surveys were taken over the same exact set of repeats in (–1–10) cross 
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section on two consecutive days. The second half of these surveys overlap strongly in 

space and as it turns out the period measurements are almost indistinguishable even 

sharing the fluctuations from one image to the next. This is another testament that these 

fluctuations aren’t due to measurement errors, but are sampling differences that were 

“frozen” into the structure during growth. The variance for these two surveys in their full 

form is summarized in Fig. 3.30 along with a slightly shorter version from (1–10) cross 

section, and similar to the InAsSb material system the variance increases when sampling 

the period with a smaller window. Once again the variances appear to be isotropic within 

the confines of large uncertainties; as we will see shortly the interface roughness in this 

material system is nearly isotropic rendering this symmetry in the period variances 

unsurprising.  

Before extracting the sought after interfaces, each image is filtered to remove 

atomic information then interpolated to four pixels per angstrom to reduce the ambiguity 

in the interface location. These images are then cropped to reduce distortion to 

acceptable levels and rotated to an angle specific to each interface in said image; these 

two steps were done deliberately so that all interfaces were of the same length and each 

successive measurement of the interface profile was equally spaced, conditions that do 

not affect a roughness amplitude measurement, but are quite necessary for the interface 

power spectra to be interpretable. The profiles are identified via masking the image on a 

set threshold and extracted via edge detection in each mask. The resulting profiles, are 

350Å in length with four pixels for every nominal angstrom in both the lateral, <110> 

direction, and vertical, [001] direction. 
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To characterize the stochastic process underlying the interface roughness we start 

by computing the sampled roughness amplitude (3.3), which is easily visualized via a 

histogram of the [001] interface fluctuations about a locally sampled mean value (Fig. 

3.31). Modeled as a normal distribution there is a small asymmetry between interface 

types with the aluminum template (0.83 ML) ~ 10% rougher than the gallium template 

(0.75 ML). 

Next we compute the one–dimensional power spectra of our interface profiles. 

We choose not to zeropad the interfaces, in contrast to the image FFTs seen in Chapters 

II and III, which is especially important when characterizing low–frequency behavior. If 

zeros were added to the end of the profile in real space to increase the length by a factor 

of 40 such as we did with the images, then very low frequencies would be distorted in 

reciprocal space; in fact the first 40 points smoothly transition from zero power at k = 0 

to the real spectrum, however the nature of that transition is not clearly defined and 

makes determining the functional form difficult. We instead give up the benefit of 

superior reciprocal space resolution to gain a power spectrum unbiased by the effects of 

zeropadding. As a further contrast to the image FFTs the total length in reciprocal space 

has actually been increased due to interpolating the interface in real–space (see Eq. 2.1b) 

thus mirroring the increase in real space length that is required to decrease the size of 

frequency bins in reciprocal space. The extra frequency bins are all located at high 

frequency where our atomic filter has removed any physical signal. 

The interface power spectra, averaged over the survey ensemble and any 

combination of voltage, cross section, or interface type produces a nearly universal 
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curve. This curve appears to show three distinct length scales, a low–frequency 

exponential–like and intermediate–frequency Gaussian–like component that show up as 

a straight line and a parabola respectively on a log–linear plot (Fig. 3.32, left), and a 

high–frequency inverse squared component that is linear on a log–log plot (Fig. 3.32, 

right). As we’ll see shortly this third component is not real, it is in fact a byproduct of 

finite–length sampling.  

To measure the correlation lengths we’ll first develop and test a fitting strategy 

using simulated interfaces similar to those previously employed to define superlattice 

repeats, except the spacing between real–space datapoints will be decreased to 0.25 Å to 

mimic the extracted interfaces. When the profiles are repeatedly sampled over 

nonoverlapping lengths of 350 Å, then Fourier transformed and averaged together, they 

too contain an inverse square “Brownian Noise” component (Fig. 3.33) even though the 

simulated spectrum does not. Since the inverse square diverges at k = 0, we instead 

employ a Lorentzian function, which is an inverse square for large k, to approximate the 

Brownian Noise, thus the spectrum in Fig. 3.33 will be modeled as the sum of Gaussian 

and Lorentzian functions 

 

 
𝑃𝑆 = 𝐴 exp −

𝑘!

2𝛬!!
+

𝐵

1+ !
!!

! . (3.19a) 

 

The fitting function is left with too many degrees of freedom to pin down the Lorentzian 

cutoff frequency (𝑘!) or amplitude (𝐵), so to constrain the parameter space that must be 

searched by the least squares fitting routine we constrain the amplitude of the Lorentzian 
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to give the observed accumulated power between 1 and 2 inverse lattice constants, and 

the cutoff frequency equal to 𝛬!.  

 This fitting function does a good job of describing the sampled power spectra of 

simulated profiles, shown in Fig. 3.34 (left) for a correlation length of 25 Å. The real–

space correlation length is calculated from the fit Gaussian width via (3.8), and the 

variance is calculated from the sum of areas under the Gaussian and Lorentzian 

components. The resulting relative uncertainties are ~ 5 % in the real–space correlation 

length and ~ 0.5 % in the variance.  

 Generalizing the fitting function to two Gaussian components 

 

 

 
𝑃𝑆 = 𝐴 exp

−𝑘!

2𝛬!_!! + 𝐶 exp
−𝑘!

2𝛬!_!! +
𝐵!

1+ !
!!_!

! +
𝐵!

1+ !
!!_!

! + 𝑤 (3.19b) 

 

again shows good agreement between the fit and the simulated data (Fig. 3.34, right). 

The Brown noise is now represented by two Lorentzian components (each associated 

with a single Gaussian component) whose sum is constrained to give the accumulated 

power between 1 and 2 inverse lattice constants and whose weights are given by the 

proportion of the respective Gaussian components. Similar to the error analysis 

performed for correlation lengths extracted from period variances, we can compare the 

multi–component fit parameters and simulated counterparts (Fig. 3.35, left) and 
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histogram their relative errors13 (Fig. 3.35, right) to determine each measurement has an 

uncertainty of  6.3% with an underestimation of ~ 1%. 

Modeling the ensemble averaged power spectra similarly yields a breakdown of 

40% Gaussian component with a correlation length of 5.96 Å and 60% Exponential 

power with a corresponding Lorentzian correlation length of 27.9 Å as shown in Fig. 

3.36.  

 

Comparison between Theory and Experimental Period Variance 

 The revelation that the interface power spectrum contains multiple components, 

and that one of said components is exponential requires rethinking our expectations for 

the variations of the measured periods. To consider the implications for exponential 

power we use a Lorenztian correlation function (the real space complement to an 

exponential in reciprocal space) 

 

 
𝜌! =

1

1+ !!

!!!

 (3.20) 

 

in place of (3.10) when calculating (3.18). The empirical theory, after ignoring the 

difference between N and N–1, is given by  

 
                                                
13 All parameters were considered jointly to increase the statistical pool over which the 
histogram in Fig. 3.35 was calculated. This inherently assumes that all parameters have 
the same relative uncertainty. To test this assumption many more trials would be 
necessary. 
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var 𝑃  
𝑠!

𝑁
𝑃

!

=
4 !
!
ArcTan !

!
− 2 !

!

!
ln 1+ !

!

!

1− 2 !
!
ArcTan !

!
+ !

!

!
ln 1+ !

!

! 4
Λ
𝑁  (3.21) 

 

for the window aligned at 45º. When the Lorentzian empirical theory is added to Fig. 

3.26 we see that there is very little difference between theories obtained using Gaussian 

or Lorentzian correlation functions (Fig. 3.37), and the simulations themselves could 

easily be mistakenly attributed to Lorentzian correlations instead of to the Gaussian 

correlations from which they came. This justifies our use of Gaussian correlated profiles 

as a stand–in for Lorentzian correlated profiles. Also of note is that any linear 

combination of the two necessarily lies in between the two curves, therefore the logical 

Λ to plot on the x–axis is the probability weighted mean14  

 

 Λ = 𝑃!Λ! + 𝑃!Λ! . (3.22) 

 

Before the values directly measured in the last section can be added to the graph 

in Fig. 3.37, we must make some simplifications. First, even though our model assumes 

that there is no interface roughness asymmetry, we average the sampled roughness 

amplitude, 𝑠!, across the the Al– and Ga–templates to obtain an “effective” roughness 

amplitude; additionally, we adjust the sampled roughness amplitude for the change in 

                                                
14 In a multi–component correlation function with mixed functional forms this quantity 
won’t show up in the sampled variance of the mean or the sampled s!, however it is still 
helpful to use as a representative correlation length for the combined processes. 
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sampled length since it was measured over an interface segment of 350 Å. We use the 

theoretical relationship (3.13) to predict 𝑠! for 300 Å and for 400 Å sampling lengths. 

The period fluctuations in the InAlAs / InGaAs superlattice (Fig. 3.38) agree extremely 

well with our expected curves calculated from (3.18) and (3.21). The 400 Å window lies 

directly between the Gaussian and Lorentzian theories and 300 Å window lies within 

one standard deviation.  

To justify the extra work that was expended understanding and correcting for 

windows that lie at 45º to the crystal axes, we consider how well the vertical window 

fluctuations in Fig. 3.17 describe the two InAlAs / InGaAs data points, which were just 

placed on the graph in Fig. 3.38. Fig. 3.39 shows the 400 Å and 300 Å window sizes are 

three standard deviations away from the Gaussian theory, reinforcing the need to 

correctly account for the orientation of the sampling window in these calculations. 

Finally we return to the question that motivated all of this, namely what interface 

correlations might be present in the InAs / InAsSb superlattice. We’ve established that 

the period fluctuations themselves aren’t sufficient to accurately determine both the 

roughness amplitude and the correlation length, we instead endeavor to put limits on 

both quantities. We aren’t able to define interface profiles in the InAs / InAsSb 

superlattice and therefore don’t have a direct measurement of 𝑠!; we instead return to 

scaling the period variances by 𝜎!  in Fig. 3.40 and in the discussion of limiting 

roughness that follows.  

 Like Fig. 3.15, Fig. 3.40 appears to approach a constant value for large 

correlation lengths; since we don’t have a theoretical counterpart to (3.9) we aren’t able 
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to treat the rotated windows analytically this time and instead find an average of 9.2 

from simulations of a 1000Å correlation length over 2 periods, 3 roughness amplitudes, 

and 3 window sizes. This leads to a minimum 𝜎 of 0.6 ML. If we instead assume the 

InAs / InAsSb superlattice has the same correlation length as the average one (19.2 Å) 

found in the InAlAs / InGaAs superlattice, we find that 𝜎 would be 1.4 ML. Similar 

constraints can be placed on the correlation function by considering the example from 

earlier in the chapter, if 𝜎 = 1 ML then Λ = 36 Å, or if the roughness amplitude was the 

same as in the InAlAs / InGaAs superlattice, 𝜎 = 0.85 ML, then Λ = 70 Å 

 

 

Summary 

 We calculated the period in 40 nm x 40 nm windows by referencing superlattice 

satellite peaks to the local [001] reciprocal lattice vector. A small, but reproducible drift 

in laterally–averaged periods was observed over similar vertical repeats in orthogonal 

cross sections on different dies. The drift was confirmed via fits to the laterally–averaged 

[001]–monolayer–indexed antimony fraction compiled from nominally the same area 

when the period is included as a fit parameter to the well–established segregation model. 

A careful analysis of the HRXRD spectrum also indicates the presence of the two STM–

identified periods. Image–to–image period fluctuations as the structure was surveyed in 

the lateral (i.e. [1–10] or [110] directions) are larger than can be explained by 

uncorrelated interfaces. Treating the period as the difference between mean interface 

locations separated by M repeats (enclosed by 2M+1 interfaces) lets us construct a theory 
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relating the period variance to the correlation length and window size in both vertical 

(crystal–aligned) and rotated (x–y image–aligned) sampling windows. An InAlAs / 

InGaAs superlattice, where interface roughness amplitudes and correlation lengths are 

directly measured, provides the experimental benchmark proving that the period 

fluctuations are due to interface roughness. We found that period fluctuations alone do 

not provide strong enough constraints to extract roughness amplitudes and correlation 

lengths, however limits in the InAs / InAsSb superlattice place the roughness amplitude 

larger than 0.6 ML and the correlation length likely between 20 and 70Å. More 

importantly, we now have a nomograph that, should we be able to independently 

measure an interface 𝑠!, directly determines the interface roughness correlation length. 
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CHAPTER IV 

  SHORT–RANGE ALLOY ORDER 

 

Introduction 

Having established, in Chapter III, that the interfaces between InAs/InAsSb 

superlattice constituents are correlated, we return on the atomic scale and ask whether 

the distribution of individual antimony atoms throughout the InAsSb alloy layer, itself, 

might also be correlated. Early STM experiments [26] pinpointed local arrangements of 

antimony atoms consistent with CuPt order, but unable to assess their likelihood relative 

to a random alloy of similar composition. Long–range CuPt order has been definitively 

identified in InAsSb alloy films [68] with TEM, and companion studies have shown this 

order depends, at least in part, on the amount of [001] strain in the epitaxial film [28]. 

To investigate whether a structure displays CuPt order we calculate a correlation 

function, which is directly related to the likelihood for a specified arrangement of atoms 

relative to the same arrangement occurring in a random distribution. The pair correlation 

function is the second in a family of particle distribution functions (the first being the 

average density) and represents two–body interactions. It is commonly used to describe 

gasses [69], where it is a function of a continuous separation vector; for semiconductor 

alloys, however, the crystalline lattice must be taken into account by restricting the 

separation vector connecting any two sites in the anion sublattice to integer multiples of 

[001] and <110> lattice vectors and linear combinations thereof. In order to calculate the 

correlation function between pairs of antimony atoms in the InAs / InAsSb superlattice 
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we need to be able to assign coordinates to each atom in the image. With a perfect tripod 

scanner the x and y image coordinates could be used to calculate the desired separation 

vectors. Given the image distortions documented in Fig. 2.13 and Fig. 2.14, we must 

instead convert to [001] column and <110> row coordinates.  

We begin this chapter by examining the experimental evidence for antimony–

pair correlations. We then detail an algorithm which can automatically assign [001] 

column and <110> row coordinates to each atom in a given image window effectively 

sidestepping the effect of bowing on these rows and columns. We explain how these 

coordinates are used to calculate a pair correlation function in the context of a uniform, 

isotropic bulk alloy, and then adapt this formalism to tackle a spatially–graded 

superlattice. To understand the origin of the antimony pair correlations so observed we 

partition the antimony population into sub–ensembles based on two experimentally 

accessible parameters: MBE shutter timing and [001] layer strain. We investigate the 

behavior of these sub–ensemble pair correlation functions in both (–1–10) and (1–10) 

cross sections, and find their logarithm exhibits a linear dependence on both strain and 

antimony fraction. These quantities are inextricably linked in any coherently–strained 

structure, but physically interpretable fits favor antimony fraction as the controlling 

variable. Comparison with the STM data from a fully–relaxed bulk alloy film, whose 

strain and antimony fraction are independent of one another, decisively supports this 

interpretation. 
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Experimental Evidence for Alloy Correlations 

We begin this chapter by reflecting on the experimental evidence we have for 

atomic ordering in the InAs / InAsSb superlattice. Consider first a portion of the lateral 

survey from Fig. 2.26 and reproduced in Fig. 4.1. The superlattice is, by definition, 

modulated in the [001] growth direction, however looking along the [1–10] rows the 

InAsSb doesn’t appear as featureless as a random distribution would imply. There are 

gaps of several lattice sites where no antimony is to be found. Elsewhere it seems there 

is much more antimony than the 33% targeted. 

Focusing in on representative images from orthogonal cross sections (Fig. 4.2) 

we find an abundance of antimony atoms occupying next–nearest–neighbor lattice sites 

(encircled with blue) in (–1–10) cross section, and comparatively few antimony atoms 

occupying the nearest–neighbor sites (encircled with red). The situation is different in 

(1–10) projection, where antimony is more likely to incorporate at nearest–neighbor sites 

and comparatively few antimony atoms incorporate at next–nearest–neighbor sites. 

The proper quantification of these insights will be presented later in the chapter, 

but as a naïve initial estimate we calculate the image autocorrelation function. To 

emphasize the antimony atoms we first process the images in Fig. 4.2, replacing any 

grey–scale value below a chosen threshold with the image mean (128 grey). The grey–

scale values of 185 and 170 for (–1–10) and (1–10) respectively were chosen empirically 

with initial guesses based on a change in curvature of the image histogram, followed by 

fine tuning so that the antimony atoms look similar in both projections. Each resulting 

thresholded image (Fig. 4.3) consists of antimony atoms (primarily, but not exclusively 
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FIGURE 4.1. Section of lateral survey in Fig. 2.26. Bright layers are InAsSb, with carets 
indicating individual top–layer antimony–for–arsenic replacement. Growth direction is 
from top–left to bottom–right. 
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limited to, top–layer) surrounded by a featureless plane. The high–density InAsSb layers, 

as well as the nearest–neighbor and next–nearest–neighbor spacing identified in Fig. 4.2 

are apparent in these images. That the antimony atoms in the InAsSb layer are brighter 

than the antimony atoms in the InAs layer, is due to a small, but not negligible, 

electronic contribution to the contrast in the original (unthresholded) STM images. 

We form a survey–averaged image autocorrelation (Fig. 4.4) by correlating 

image–by–image before averaging across the survey. Like the DFTs explored in 

Chapters II and III, the origin is located at the center of the autocorrelation. The feature 

that stands out the most in these 2D correlation maps are the strong bands corresponding 

to the InAsSb layers. More subtle is the evident structure in the [1–10] main diagonal in 

(–1–10) cross section (left) that is missing from the corresponding [110] diagonal in (1–

10) cross section (right). The small–separation differences are more readily visualized by 

taking a <110> section through the origin.  The subtle structure in Fig. 4.4 is now very 

obvious from the <110> autocorrelation sections in Fig. 4.5. The next–nearest–neighbor 

lattice spacing of antimony atoms encircled in blue in Fig. 4.2 shows up as strong 

correlations at even multiples of the <110> lattice constant in (–1–10) cross section (left), 

and weak correlations at odd multiples. In (1–10) cross section (right), on the other hand, 

there are increased correlations for nearest–neighbor separations, but a very weak 

response for all other lattice sites.  

These correlations can also be viewed through the lens of DFTs calculated from 

images like those in Fig. 4.2 and then averaged over an entire survey. This is especially 

useful since the autocorrelation map (Fig. 4.4) is the Fourier transform of the DFT power 
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spectrum (Fig. 4.6) [55]. Next–nearest–neighbor lattice spacing in (–1–10) cross section 

(circled in blue in Fig. 4.2 and marked by blue tics in Fig. 4.5) reveals itself as a streak 

of excess power located at half of the <110> reciprocal lattice vector (encircled in blue, 

left); this streak is absent in (1–10) cross section (right). Together these results imply 

that over the course of a lateral survey (~ 1 micron in length) next–nearest–neighbor 

pairing is not statistically significant on the (1–10), but is on the (–1–10) surface. 

It is tempting to use the autocorrelation sections in Fig. 4.5 as a stand–in for a 

formal correlation function, and while they are useful for qualitative comparisons there 

are several drawbacks to this approach. First is that the image correlations cannot be 

directly translated into a probability of finding antimony atoms separated by given lattice 

vectors. Second, there is an electronic contribution to the contrast, so a single threshold 

emphasizes atoms in the InAsSb layer, at the expense of atoms in the InAs layer; 

antimony atoms in the superlattice have been identified via a trained eye to circumvent 

this, and we will show a representative example of this in the next section. Finally, 

because the image autocorrelation is x and y pixel based, all of the distortion detailed in 

Chapter 2 will at the very least cause correlations to leak into adjacent separations. This 

last drawback is addressed next. 

 

Automatic Coordinate Assignment 

The image in Fig. 4.2, left, is enlarged by a factor of ~ 3 in Fig. 4.7 to better 

visualize previously identified top–layer antimony atoms [20,23] that have been called 

out with blue dots. The pair distribution is a function of the separation vector between 
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17.5  nm

FIGURE 4.7. Enlarged image from Fig. 4.2 (left) with individual top–layer antimony 
atoms identified by blue dots. To quantify the two–body interactions between Sb atoms 
the separation vectors (indicated here by the “bonds” between antimony atoms) must be 
computed for any given pair. Examples of every–other–site separation vectors in the [001] 
and [1–10] directions are overlaid on the image. 

[001][11
0]
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pairs of antimony atoms calculated as a difference of locations in the [001] column and 

<110> row coordinate system1; representative 2 lattice site separation vectors are marked 

with blue bonds in Fig. 4.7. The problem, then, reduces to transforming the x (fast–scan) 

and y (slow–scan) indexing of antimony atoms (i.e. blue dots) to an index based on [001] 

columns and <110> rows. 

As the bowed columns in Fig. 2.14 illustrate, any attempt at indexing in real–

space is ill–fated. We instead endeavor to create image–by–image real–space masks, 

which can be used to separately identify rows and columns (two masks per image), 

derived from the reciprocal–space map of the full image. This seems like a step 

backwards after going to great lengths to crop the images and obtain cleaned–up power 

spectra such as those seen in Fig. 4.6, however the very properties of the full images 

which make the power spectra unusable (bowing resulting in smeared RLV spots) for the 

purposes of Chapter III are the very properties that we are trying to emulate with our 

real–space masks. We can use the distorted RLVs such as those seen in Fig. 4.8 together 

with phase information2, which relates power to a location in the image, to emulate rows, 

which are bowed in precisely the same manner as the atomic rows in the STM images. 

                                                
1 Each <110> row is actually a (001) plane of atoms, and likewise each [001] column is 
actually a <110> plane of atoms. We choose to label the rows and columns by the 
indicated surface directions within each plane instead of the conventional miller indices 
since the directions are easier to keep track of when looking at 2D STM images. 
2 The reciprocal–space phase information is much more difficult to visualize than the 
reciprocal–space power and for that reason these phases are routinely “thrown away” in 
the process of computing the DFT. 
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We then filter the DFT (with phase intact) so that only the two <001> spots3 

remain (Fig. 4.9, left). A 2D notch filter is constructed of a Gaussian function centered 

over each spot, with a width fine–tuned to be as restrictive as possible while still 

capturing the bowing that we wish to include in our indexing. Multiplying both real and 

imaginary parts of the DFT by the notch filter retains a small region around the ± [001] 

RLVs. The inverse transform of a pair (+/-) of delta functions is a sine wave, and 

likewise the inverse transform of this filtered (complex) DFT (Fig. 4.9, right) is 

approximately a sine wave modulation in the [001] direction and uniform in the 

perpendicular <110> direction except for the bowing associated with <110> rows. The 

brighter rows correspond to the atomic crests while the darker regions between the rows 

correspond to the atomic troughs. Likewise, filtering the DFT in the <110> direction 

(Fig. 4.10, left) yields a sine wave in the <110> that also contains the bowing from the 

[001] columns (Fig. 4.10, right).  

Thresholding the inverse transforms (Fig. 4.9 and Fig. 4.10, right) at the zero 

crossing creates black and white masks of the rows (Fig. 4.11, left) and columns (Fig. 

4.12, left), which are then sequentially labeled starting at the lower–left corner of the 

image for columns or the upper–left corner of the image for rows (i.e. left edge of the 

two corresponding image diagonals). The two different origins are necessitated by the 

45º rotation of the [001] and <110> crystal axes relative to the x and y image axes4. Were 

                                                
3 As a reminder the DFT is reflection symmetric through the origin, so a single 
frequency is represented by two values in reciprocal space. 
4 The sought after g! 𝐫! − 𝐫!  is a function of separation vector, and therefore inversion 
symmetric, however our choice of origin flips the vector aligned with the rows (relative 
to our standard crystal axes) while leaving the vector aligned with the columns 
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the two sets of axes aligned, both rows and columns would originate in the standard 

lower–left corner. These sequentially labeled masks give us two lookup tables, where we 

can take x and y values and lookup the corresponding <110> row in Fig. 4.11 (right) or 

[001] column in Fig. 4.12 (right).  

 

Pair Correlation Function: General Properties 

Having established an algorithm for converting the coordinates of antimony 

atoms (identified in Fig. 4.7) into crystallographic <110> rows (Fig. 4.11, right) and 

[001] columns (Fig. 4.12, right), we turn now to computing correlations from the 

distribution of these atoms. The formal pair correlation function (whose natural 

logarithm is the pair potential in units of –kBT [69]), is given by 

 

 
g! 𝐫! − 𝐫! =

1
𝑥!"!

𝑁!"–!" !"#$%(𝐫! − 𝐫!)
𝑁!"#$" !"#$%(𝐫! − 𝐫!)

 , (4.1) 

 

where the number of Sb–Sb pairs for each separation vector |𝐫! − 𝐫!| is summed over all 

images in a given ensemble and normalized to the expected number for a random 

distribution of given density. As we’ll see shortly, this normalization factor is given by 

the squared antimony fraction (averaged over a suitably large area) multiplied by the 

number of available anion pairs at said separation vector. 

                                                                                                                                           
unchanged. This change is irrelevant to the superlattice (where separation vectors are 
limited to lie along the rows), however in the bulk alloy (where separation vectors are 
permitted to be linear combinations of rows and columns) care must be exercised. 
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 To better connect the results of this calculation with the site occupancy patterns 

observed in our STM images, we consider two limiting cases: random and perfectly 

ordered. If antimony atoms are truly randomly distributed, then the site occupancy is 

isotropic, and pair separation vectors in all directions are equivalent. We may therefore 

look at just one of the available (arbitrarily chosen) directions in our example as 

representative of all others.  

To create a row of randomly distributed antimony atoms we first generate a 

string of uniform random numbers between 0 and 1 (Fig. 4.13, left), then convert this 

continuous distribution to a bimodal distribution by assigning all values above a 

threshold to 1 and all values below the threshold to 0 where 1 is associated with 

antimony and 0 with arsenic as depicted in Fig. 4.13 (right) for two different impurity 

fractions. We can adjust the “density” of antimony atoms that this random string 

represents by setting the threshold to one minus the desired antimony fraction.  

Enumerating the possible anion pairs (Fig. 4.14, left) separated by one lattice site 

over 1000 different random distributions each containing nominally 10% antimony 

spread over 100 lattice sites yields, 1000  100− 1 =  99,000, available pairs with 

|𝐫! − 𝐫!| = 15. Since |𝐫! − 𝐫!| = |𝐫! − 𝐫!|, this function is mirror symmetric about the 

vertical axis. Tabulating the number Sb–Sb pairs in the same ensemble is done by 

marching through each antimony atom and calculating the separation between every 

                                                
5 We counted pairs of lattice sites to arrive at this number, however 𝑁 − 1 is the general 
result for |𝐫! − 𝐫!| = 1 in any row of length N lattice sites; whereas for |𝐫! − 𝐫!| = 𝑛 the 
general (combinatoric) result is 𝑁 − 𝑛, i.e. the number of available anion pairs is a 
linearly decreasing function of their separation in lattice constants.  
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other antimony atom in the 100 total lattice sites. Adding these up across the 1000 

unique distributions yields 987 nearest–neighbor pairs (Fig. 4.14, right), explicitly 

demonstrating that the antimony fraction squared times the total number of lattice pairs 

at a given separation vector is the infinite length stand–in for the number of Sb–Sb pairs 

expected for a random distribution. The virtue of this normalization is that the 

correlations are directly related to probabilities with random (or uncorrelated) equal to 

one; then anything below one is less likely than random, and anything above one is more 

likely than random. We will return to this normalization when we consider the 

appropriate calculation for a superlattice whose antimony fraction is modulated in the 

growth direction, however we turn first to a consideration of perfect alloy order as the 

limiting counterpoint to the random distribution just examined. 

Perfect CuPt–B ordering consists of alternating (1–11) or (–111) planes 

populated with one or the other type of anion (either all antimony or all arsenic), creating 

a monolayer superlattice in the [1–11] or [–111] direction. This situation is clearly 

obtained only when 𝑥!" = 0.5. Since STM is surface sensitive, these (–111) planes 

cannot be probed directly, but the unique patterns that these planes display as they 

intersect either the (–1–10) or (1–10) cleavage surfaces are schematically illustrated in 

Fig. 4.15. We consider here the (–111) variant of CuPt–B ordering, which results in 

chains of antimony atoms aligned in the [1–12] direction and alternating arsenic and 

antimony atoms on the (–1–10) cleavage surface in both [001] and [1–10] directions. As 

a direct consequence of the surface strobing every second bulk monolayer in {110} 

cleavage, the (1–11) and (–111) variants are indistinguishable from the surface. For 
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example, if the planes of arsenic or antimony are (–111), then in the bulk these anions 

alternate in the [–111] direction, but on the (–1–10) surface we miss the second anion 

type, so both [1–12] and [–112] directions appear to lie in ordered planes even though 

only one of them truly does. Although not considered here, the A–type of CuPt ordering, 

which consists of (111) or (11–1) planes of anions reveals itself in the orthogonal cross 

section, simply interchanging left and right schematics in Fig. 4.15. CuPt–A is observed 

much less frequently in nature, although preliminary evidence has shown that CuPt–A 

order might occur in InAsSb materials [26]. 

There are only two unique sections through the 2D surface projected correlation 

function for a bulk structure displaying perfect order. The observed 1D correlation 

function depends on which surface crystallographic direction the separation vector is 

aligned with. Once this surface direction is chosen, the correlations are a function only 

of the length of the separation vector. All of the plots shown in the remainder of this 

chapter assume that this direction has been specified, and only show the correlations for 

a single direction, furthermore since the correlations are symmetric, only positive vectors 

are plotted. Considering first the [1–10] direction in (–1–10) cross section, Fig. 4.15 

(left) any separation vector whose length is an odd number, |𝐫! − 𝐫!| =  2𝑛 + 1 , of 

lattice sites will not join Sb–Sb pairs; the corresponding pair correlation function is then 

equal to 0, as illustrated in Fig. 4.16 (left). On the other hand, half the even length 

vectors, |𝐫! − 𝐫!| = ( 2𝑛 ), connect Sb–Sb pairs while the other half connect As–As 

pairs. Normalizing to the 50 / 50 random alloy, which has equal number of As–Sb, Sb–

As, As–As, and Sb–Sb pairings (and therefore an Sb–Sb pair probability of one quarter), 

162



[1
10

]  
or

  [
11

2]

4
2

0
6

8
10

g2 ( |r2 – r1| )

|r 2 –
 r

1|
|r 2 –

 r
1|

0123

4
2

0
6

8
10

FI
G

U
R

E 
4.

16
. P

ai
r c

or
re

la
tio

n 
fu

nc
tio

ns
 ca

lc
ul

at
ed

 fr
om

 o
rth

og
on

al
 su

rf
ac

e p
ro

je
ct

io
ns

 o
f p

er
fe

ct
 (–

11
1)

 C
uP

t–
B

 o
rd

er
 il

lu
st

ra
te

d 
sc

he
m

at
ic

al
ly

 in
 F

ig
. 4

.1
5.

 C
or

re
la

tio
ns

 in
 th

e 
gr

ow
th

 p
la

ne
 m

an
ife

st
 v

er
y 

di
ffe

re
nt

ly
 o

n 
th

e 
tw

o 
cl

ea
va

ge
 su

rf
ac

es
. D

as
he

d 
lin

e 
in

di
ca

te
s a

 ra
nd

om
 d

is
tri

bu
tio

n.

[1
10

]  
or

  [
00

1]
  o

r  
[1

12
]

163



 

yields a correlation of 2. So the correlation function in the [1–10] direction alternates 

between 0 and 2 for perfect anion ordering, and this alternation persists for the largest 

separation vectors allowed by the image size6. Due to symmetries in the surface 

projections of the ordered planes considered in Fig. 4.15, this same correlation function 

is obtained in the [001] (observed in both left and right panels) and [112] (observed in 

the right panel) directions.  

Considering separation vectors that lie in the [110] direction, in (1–10) cross 

section (Fig. 4.16, right) Sb–Sb pairs occur for either any combination of lattice sites, or 

no combination of lattice sites, therefore averaged across the entire image (with mean 

impurity fraction squared of 0.25) the correlation function remains fixed at 2 (Fig. 4.16, 

right). Again due to symmetries in Fig. 4.15 we expect this same constant result in the 

[1–12] (observed in the left panel) direction in addition to the [110] (observed in the 

right panel) direction. 

Even though the potential associated with a given correlation function is 

meaningful in gasses [69], it isn’t clear whether the correlations in a crystalline lattice 

are governed by a corresponding potential. For example, correlations of 0, found in 

perfect CuPt–B order, imply an infinitely repulsive potential ( ln 0 = −∞ ), which isn’t 

physical. We will nevertheless use the potential framework in the last section of this 

chapter to compare results across sub–ensembles of the data. 

 

                                                
6 Although Fig. 4.16, left, is described in terms of probabilities, the same result is 
obtained by considering the ratio of the total number of antimony pairs to available pairs 
and normalizing to the antimony fraction squared. 
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Pair Correlation Function: Bulk Alloy Data 

Before particularizing to the InAs / InAsSb superlattice, where modulation in the 

growth direction poses an addition complexity, we introduce the correlation function 

calculated from experimental data by considering a bulk InAsSb alloy which is 

nominally uniform in the [001] growth direction. We will return to the specifics of this 

bulk alloy growth later, when needed to place the corresponding results in proper context, 

but for now focus only on the structure imaged in (–1–10) cross section (Fig. 4.15, left). 

The structure was surveyed laterally following a single point in time during the growth 

as was done with the InAs / InAsSb superlattice (Fig. 4.1), and a portion of that survey is 

reproduced in Fig. 4.17. Local alloy order, similar to that in the superlattice, is observed 

along the [1–10] direction together with relatively large voids free of antimony atoms. 

Enlarging a single image (Fig. 4.18, left) shows the same every–other–atom antimony 

site occupancy preferred along [1–10] rows seen in the superlattice (Fig. 4.2, left), and 

the survey averaged DFT shares the same [1–10] half order streak seen in the 

superlattice as well (Fig. 4.6, left). Because of these similarities in both real– and 

reciprocal–space, we expect the correlations between substitutional antimony atoms in 

both the bulk alloy and the strain–balanced superlattice to be comparable, a point we will 

return to later. 

Individual antimony atoms are identified in the bulk by adjusting a threshold so 

that the called out atoms originate almost entirely from the surface layer, this is in 

contrast to the superlattice where each top–layer antimony atom must be hand identified 

(see Fig. 4.7). These atoms are then assigned [001] (column) and [1–10] (row) 
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coordinates as previously described, a separation vector is calculated from these 

coordinates for all combinations of two antimony atoms, and the number of times each 

separation vector appears is tallied. The result is a discrete, 2D histogram, with bins 

located at integer numbers of lattice sites in the [001] and <110> directions, which when 

normalized to random via (4.1) is the 2D pair correlation function. Since each atom 

could be either 𝐫! or 𝐫! the correlation function will be mirror symmetric through the 

origin. Appropriate sections can then be taken in physically relevant directions.  

Fig. 4.19 illustrates the results for [1–10] and [1–12], directions representative of 

the left and right panels in Fig. 4.16 respectively. The [1–10] correlation function7 

displays a damped version of every–other–lattice–site pattern in Fig. 4.19 (left) 

approaching unity – the value expected of a random distribution –after approximately 15 

lattice sites; the amplitude of the correlations is also weaker than expected for a perfectly 

ordered 50 / 50 bulk alloy. The observed next–nearest–neighbor value of 1.5 

corresponds to a 50% higher likelihood than random for antimony atoms separated by 2 

lattice sites, similarly the nearest–neighbor value of 0.7 = 1 1.4 corresponds to a 40% 

lower likelihood (compared to random) for these atoms to be situated next to one another. 

A bit surprisingly the high and low probability branch amplitudes are not symmetric as 

they are in Fig. 4.16 (left) and at this time we don’t know why this might be the case. 

The [1–12] correlation function (Fig. 4.19, right) starts out greater than one 

(nearest neighbor pairs are 20% more likely than random), but quickly returns to random 

                                                
7 The illustrated uncertainties in both directions are smaller than they should be due to 
for double counting where images overlap in Fig. 4.17. Corrected errors could increase 
by as much as a factor of 2 over those shown in Fig. 4.19. 
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after approximately 4 lattice sites, and again displays weaker correlations than those 

expected for perfect ordering (Fig. 4.16).  

 

Pair Correlation Function: Superlattice Data 

To apply this formalism to the superlattice we need to first make several changes 

to the algorithm discussed above on account of the [001]–modulated nature of the 

structure. We restrict the separation vectors to lie in the growth plane since the antimony 

fraction clearly varies in the growth direction, this leaves the pair correlations as 

functions only of the distance between any two antimony atoms (in <110> lattice 

constants). We also use a predefined counting window [20] such as the one illustrated in 

Fig. 4.20 (left) to ensure that each <110> row is equally sampled in the [001] growth 

direction, and care must also taken to eliminate overlap between superlattice images 

ensuring each window represents an independent measurement. A similar mask, applied 

to the bulk, is likewise shown in Fig. 4.20, and is used in what follows to test for any 

difference between bulk and superlattice computational algorithms. 

The bulk correlation functions presented in the last section were normalized to a 

random distribution with corresponding antimony fraction via (4.1); as we’ll see this 

normalization does not work when the structure in question is modulated in the growth 

direction. We then have two options for calculating a [1–10] or [110] correlation 

function. We can calculate the correlation function within a given <110> row of 

presumably constant antimony fraction using Eq. (4.1), and then average over the <110> 

rows of [001] modulated antimony fraction; alternatively we can pool the number of 
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antimony pairs for any <110> separation vector and normalize to an appropriately 

redefined random distribution. Provided such a new normalization can be found a more 

accurate calculation is always achieved with finite data by averaging before normalizing 

instead of normalizing before averaging on account of error propagation [61]. 

We take inspiration from (4.1), which normalized the number of pairs at a given 

separation vector to the number expected for a random distribution at a given antimony 

fraction and now normalize the number of pairs summed over all (modulated) 

monolayers to the total expected pairs corresponding to random distributions with the 

same antimony fractions. Thus our pair correlation function is redefined as  

 

 
g! |𝐫! − 𝐫!| =

1
𝑥!!!

𝑁!"–!" !"#$%
!

! (|𝐫! − 𝐫!|)
𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)

 , (4.2a) 

 

with i indexing the monolayer which has the (presumably constant) antimony fraction 𝑥!.  

Numerical experiments confirm the desired normalization in the presence of a 

modulated antimony fraction is indeed the mean squared antimony fraction multiplied by 

the number of anion pairs at the given separation vector. As a concrete example, 

consider the exponentially decaying fraction illustrated in Fig. 4.21 (left), the observed 

pairs normalized to the squared mean antimony fraction, 𝑥!"! (Fig. 4.21, right, red), 

exceed the lattice vectors, however, the observed pairs normalized to the mean squared 

fraction, 𝑥!!!  (Fig. 4.21, right, blue), coincide with the lattice vectors. The observed 

ratio of 2 between 𝑥!"!  and 𝑥!!!  in this case is dictated by the explicit functional form of 
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the antimony profile chosen to mimic the segregation profile reconstructed from 

experimental data, but other function forms (e.g. linear ramp, saw tooth) further 

substantiate that 𝑥!!!  provides the desired normalization.  

It’s interesting to consider the mathematical basis behind (4.2a), by rewriting the 

term inside the brackets we get 

 

 
g! |𝐫! − 𝐫!| =

1
𝑥!!!

𝑁!"–!" !"#$%
! (|𝐫! − 𝐫!|)

𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)!

=  
1
𝑥!!!

𝑁!"–!" !"#$%
! (|𝐫! − 𝐫!|)

𝑥!! 𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)!

𝑥!!

=
1
𝑥!!!

g!! |𝐫! − 𝐫!|
!

𝑥!!     , 

(4.2b) 

 

with the identification that (4.1) calculated for a single monolayer can be written as 

 

 

 
g!! |𝐫! − 𝐫!| =

1
𝑥!!

𝑁!"–!" !"#$%
! (|𝐫! − 𝐫!|)

𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)
   . (4.2c) 

 

So, our correlation function, (4.2a), in a modulated structure is the expectation 

value of a single monolayer correlation function calculated over the population of 

squared antimony fractions. As expected, (4.2a) reduces to (4.1) in the isotropic case 

(bulk alloy) where x is independent of monolayer, since 𝑥! can be brought in front of the 
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sums. And as we will see shortly either computational approach produces the same 

correlation function for bulk experimental data.  

 It is also useful to briefly look back at Fig. 4.15 and consider the correlation 

functions as calculated from (4.2a) for the case of perfect order. The [1–10] correlation 

function (Fig. 4.16, left) remains the same alternating between 0 and 2 for odd and even 

separation vectors respectively. The [110] correlation function (Fig. 4.16, right), on the 

other hand will be a constant 1 (or random) instead of 2 (or correlated) which is clearly 

incorrect. This anomaly stems from the change in normalization from < 𝑥!" >!= 1
4 to 

< 𝑥!"! >= 1
2, because the antimony fraction for entire rows alternate between 0 and 1. 

Since a random distribution is undefined whenever all anions in the row are of the same 

type (either antimony or arsenic). This example is pathological, and illustrates that 

suitable care must be exercised in applying (4.2a). This is of no practical concern for the 

superlattice data considered here, however, since cross–incorporation sets a 

nonvanishing minimum antimony fraction, and the target concentration of 33% 

antimony sets a corresponding maximum antimony fraction. 

To test the sensitivity of the correlation function to these changes we compare 

full (Fig. 4.18, left) and masked (Fig. 4.20, right) bulk survey images analyzed using 

both (4.1) and (4.2a) in Fig. 4.22. The only difference between black points in the left 

and right panels is the introduction of an image mask on the right, with the 

corresponding reduction in statistics due to fewer counted atoms; aside from statistics 

the two are very similar. Fig. 4.22 (right) also shows a change from (4.1), which is 
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plotted with black points, to (4.2a), plotted with red points, does not effect the resulting 

correlation function.  

There is one final detail, which must be addressed before proceeding with the 

analysis of experimental data from the superlattice. Interface roughness was shown in 

Chapter III to be a source of disorder contributing to lateral period fluctuations. This 

roughness can also introduce the uncontrolled mixing of cleavage–exposed <110> rows 

with different antimony fractions. To make the point, consider the hypothetical InAs–

like / InSb–like structure (illustrated in Fig. 4.23, left) with an abrupt discontinuity in an 

otherwise uniform and random antimony distribution within both InAs–like (xleft < xright) 

and InSb–like (xright > xleft) regions. We next focus on the row of randomly distributed 

antimony atoms that mixes antimony fractions and furthermore assume for simplicity 

that the two fractions are localized to opposite ends of the row in question. We now label 

the number of antimony pairs as a function of separation vector by whether it refers to 

the left half of the row, 𝑁!"#$(|𝐫! − 𝐫!|), or the right half of the row 𝑁!"#!!(|𝐫! − 𝐫!|); 

and using Equation 4.2a find 

 

 
g!
!"#$ |𝐫! − 𝐫!| =

1
𝑥!"#$!   

𝑁!"#$(|𝐫! − 𝐫!|)
!
!

 𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)
 ≈ 1 , (4.3) 

 

and  
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g!
!"#!! |𝐫! − 𝐫!| =

1
𝑥!"#!!!   

𝑁!"#!!(|𝐫! − 𝐫!|)
!
!

 𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)
 ≈ 1 . (4.4) 

 

The corresponding correlation function for the full row given by (4.2a) (ignoring pairs 

that straddle the dividing line between the two halves) is 

 

 
g! |𝐫! − 𝐫!| ≈

1
!!"#$!!!"#!!

!

!
𝑁!"#$ 𝐫! − 𝐫! + 𝑁!"#!!(|𝐫! − 𝐫!|)

𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)
 . (4.5) 

 

We can rewrite (4.3), to isolate 𝑁!"#$(|𝐫! − 𝐫!|), 

 

 
𝑁!"#$(|𝐫! − 𝐫!|) ≈ 𝑥!"#$! 𝑁!"#$" !"#$%(|𝐫! − 𝐫!|)

2  , (4.6) 

 

and (4.4) to isolate 𝑁!"#!!(|𝐫! − 𝐫!|), 

 

 
𝑁!"#!! 𝐫! − 𝐫! ≈ 𝑥!"#!!! 𝑁!"#$" !"#$% 𝐫! − 𝐫!

2 . (4.7) 

 

Plugging (4.6) and (4.7) into (4.5) and simplifying, we obtain, 
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g! |𝐫! − 𝐫!| ≈

1
!!"#$!!!"#!!

!

!
𝑥!"#$! + 𝑥!"#!!!

2

≈ 2
𝑥!"#$! + 𝑥!"#!!!

𝑥!"#$! + 2𝑥!"#$𝑥!"#!! + 𝑥!"#!!!

≈ 2 
𝑥!"#$! + 2𝑥!"#$𝑥!"#!! + 𝑥!"#!!! − 2𝑥!"#$𝑥!"#!!

𝑥!"#$! + 2𝑥!"#$𝑥!"#!! + 𝑥!"#!!!

≈ 2 1−
2𝑥!"#$𝑥!"#!!

𝑥!! + 2𝑥!"#$𝑥!"#!! + 𝑥!"#!!!

≈ 1+ 1−
4𝑥!"#$𝑥!"#!!

𝑥!"#$! + 2𝑥!"#$𝑥!"#!! + 𝑥!"#!!!   , 

 

 

(4.8) 

where the term enclosed by brackets in the final result is an expected offset above the 

<110> uniform result of 1. This term in brackets goes to 0 as expected in the specialized 

case of 𝑥!"#$ = 𝑥!"#!!. 

The idea behind (4.8) may be generalized for roughness that mixes more than 

two fractions, and / or multiple rows, but this is best facilitated by numerical simulation. 

As an experimentally relevant example we simulate antimony atoms, which are 

distributed randomly in the growth plane with a modulated fraction approximating a 

segregating antimony profile in the growth direction. A 1 ML shift in the [001] direction 

is introduced half way through the <110> rows. The correlation functions calculated for 

two antimony–fraction ranges are shown in Fig. 4.23 (right). The average value between 

separation vectors of 10 and 30 lattice sites is 1.15 ± 0.02 and 1.011 ± 0.002 for the 
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small and large fraction regimes respectively, much higher than the expected value of 1 

(<110> uniform). A larger offset for small antimony fractions was also commonly 

observed in initial analysis of superlattice correlations; correlations for small x more or 

less set an upper bound on observable offsets, but most superlattice offsets were below 

5%. In light of this offset, we will subtract out all offsets that remain in survey–averaged 

superlattice correlation functions. Interestingly this was not a problem in the bulk, 

because it contained no antimony–fraction–mixing interfaces to cause an offset. 

 

Pair Correlation Function: Superlattice Alloy Order 

 We now have the needed toolkit in place with which to analyze antimony–

antimony correlations in the superlattice. Taking into account mean fraction squared 

normalization, offset corrections, and counting window, we find the correlation 

functions shown in Fig. 4.24, each of which is the average of three surveys over the 

respective cleavage cross section. This cleavage cross section uniquely determines the 

direction along which the correlation function is calculated, with (–1–10) implying [1–

10] and (1–10) implying [110], so we may adopt the more readily recognized cleavage 

surface as the distinguishing label for our graphs from here on out. 

 A key feature of these pair correlation functions is the strong anisotropy. The 

every–other–lattice–site incorporation observed in the STM image in Fig. 4.2 (left) is 

directly mirrored in the (–1–10) pair correlation function (Fig. 4.24, left), where the 

next–nearest–neighbor (encircled in blue) antimony pairs occur more frequently than in 

a random distribution, whereas nearest–neighbor (encircled in red) antimony pairs occur 
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less often than a random distribution predicts. Likewise, the chains of antimony atoms 

observed in the STM image in Fig. 4.2 (right) are echoed by the (1–10) correlation 

function (Fig. 4.24, right), where nearest–neighbor (encircled in red) antimony pairs are 

more likely than random, but any two antimony atoms separated by more than one lattice 

site are essentially randomly distributed. The anisotropic DFT highlighting a streak of 

excess power in (–1–10) cross section (Fig. 4.6, left) that was absent in (1–10) cross 

section (Fig. 4.6, right) is similarly represented in the pair correlation functions. The pair 

correlation functions provide much more detail about the arrangement of atoms than the 

DFT though, the significance of correlations at any given separation vector can be 

judged by the extent above or below 1 (random) relative to their statistical error. 

Contrasting the nearest–neighbor correlations on the two cleavage surfaces, we 

note that in (–1–10) cross section nearest–neighbor site occupancy is 0.77 times as likely 

as random, whereas in the orthogonal (1–10) cross section it is 1.34 times more likely 

than random; the product of the two (1.03) however is nearly random. These 

compensating nearest–neighbor probabilities in deficit or excess of random suggest the 

nearest–neighbor correlations in orthogonal cross sections are complementary, and we 

explore this possibility in more detail later in the chapter. 

 Returning to the bulk for a moment, the resemblance between superlattice (Fig. 

4.24) and bulk (Fig. 4.19) correlation functions (in the [1–10] direction), is such that fits 

to the first 15 points of superlattice and bulk agree remarkably well, as demonstrated in 

Fig. 4.25. The upper and lower branches in both the superlattice and the bulk alloy share 

a common exponential fall–off of approximately 4 lattice sites, suggesting that the 
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correlations in the two systems might have a common source; the absence of (1–10) 

companion data from the bulk, due to the limited availability of material, is unfortunate.  

It is tempting to equate these exponential fall–offs with the interface roughness 

correlation lengths inferred in Chapter III (ranging from 2 nm to 7 nm), however it is 

unlikely that the alloy order length scale and the roughness disorder length scale are 

attributable to the same mechanism given the isotropic nature of the interface roughness 

observed in Chapter III and the extreme anisotropy of the alloy order (Fig. 4.24).  

We will circle back to the thought that short–range order in the bulk alloy and the 

superlattice share a common origin again at the end of the chapter, where correlations in 

the bulk alloy will help isolate the source for these correlations, but first we explore two 

experimentally–accessible partitioning schemes of the superlattice data, which will help 

us pinpoint the sources of this order. 

 

Origins of Superlattice Alloy Order 

The monolayer–by–monolayer superlattice composition profile illustrated in Fig. 

4.26 displays a strong grading due to segregation of antimony across nominally abrupt 

InAs / InAsSb interfaces. This antimony accumulates in a surface reservoir of excess, 

unincorporated antimony while the source is on, with only a fraction of the available 

antimony incorporating in each bulk monolayer. The prevailing antimony–rich surface 

reconstructions for common growth conditions, illustrated in Fig. 4.27, both contain 2/3 

ML of antimony as an overlayer consisting of dimers aligned with the [110] direction. 
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Once the source is turned off the surface reservoir or “floating layer” is slowly depleted 

as antimony continues to incorporate.  

This physical understanding in turn facilitates a detailed mathematical 

parameterization [23] of the monolayer–by–monolayer incorporation of antimony and 

the resulting bulk composition profile in terms of an antimony source term originating in 

the MBE effusion cell illustrated in Fig. 1.3. This source term drives a linear response 

(segregation) – entirely analogous to the charging and discharging of a RC circuit in 

response to a voltage pulse – allowing source–on and source–off regimes to be 

determined from fits to the compositional grading reconstructed with STM [23]. 

We can thus partition the <110> rows into source–on / source–off ensembles, as 

illustrated in Fig. 4.28. The source–on and source–off sub–ensembles taken together 

make up the all–inclusive ensemble, whose correlations on each face were illustrated in 

Fig. 4.24. The antimony–antimony correlations within these sub–ensembles are 

qualitatively similar (Fig. 4.29, Fig. 4.30), and bracket the all–inclusive correlations in 

Fig. 4.24. That the correlations between incorporated antimony atoms are so similar for 

two very different physical situations indicates the presence of an incoming antimony 

vapor stream has no bearing. That these correlations persist when the source is off, 

suggest the observed short–range order likely originates with the floating layer of 

antimony dimers atop the surface reconstructions illustrated in Fig. 4.27. 
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The one–to–one connection between alloy composition and [001] strain in this 

coherently–strained system 8 , illustrated in Fig. 4.31, permits another physically 

meaningful and potentially relevant layer–by–layer partitioning of the antimony pair 

correlations. A natural division for any strain–balanced sample occurs at 0% strain, 

thereby dividing the profile into tensile and compressive regimes; pair statistics in the 

compressive regime (larger antimony fraction equates to more pairs and better statistics) 

support a further division into weakly and strongly compressive (separated at 1.5% 

strain).  

The correlation functions for these strain–resolved ensembles are all qualitatively 

similar to one another as well as the all–inclusive ensemble (Fig. 4.24), from which they 

were drawn. A closer look, however, shows a clear progression in the strength of the 

correlations. Comparing the strongly–compressive partition shown in Fig. 4.32 to the 

weakly–compressive partition shown in Fig. 4.33, we observe that the antimony–

antimony correlations strengthen as the strain decreases. Likewise, comparing the 

weakly–compressive partition (Fig. 4.33) with the weakly–tensile one (Fig. 4.34), we 

again see that antimony–antimony correlations strengthen as the strain decreases. These 

observations hold true on both (–1–10) and (1–10) surfaces. This same bulk–strain 

dependence also accounts for the (small) difference between source–on and source–off 

ensembles in Fig. 4.29 and Fig. 4.30. The source–off ensemble, which shows 

                                                
8 The InAs / InAsSb strain profile directly mirrors the antimony fraction on account of a 
near degeneracy [44]in InAs and InSb Poisson ratios that, in turn, causes the [001] lattice 
constant of coherently–strained InAsSb on GaSb to depend (nearly) linearly on 
composition. This linear relationship simplifies the conversion from composition to 
strain, however it is not essential to the arguments that follow. 
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(somewhat) stronger correlations, includes more tensile rows, thereby reducing the 

average strain in that ensemble. 

The fall–off exhibited by these sub–ensembles is similar to the fall–off in the all–

inclusive. In fact individual fits to (–1–10) correlation functions for separation vectors 2–

15 in each sub–ensemble are consistent with an exponential decay of 4.1 lattice sites. 

 

Antimony Pair Interactions: Superlattice 

We now explore the compensating behavior of nearest–neighbor correlations in 

orthogonal cross sections, noted in connection with Fig. 4.24, across each of the 

experimental ensembles described above. To better visualize this compensating behavior, 

we turn to the natural logarithm of (–1–10) and (1–10) nearest–neighbor correlations in 

Fig. 4.35, where compensating terms will be reflection symmetric about zero. When 

strain–resolved, source–resolved, and all–inclusive ensembles are plotted against their 

respective [001] strains, calculated from the nearest–neighbor, population–weighted 

expectation value  

 

 
< 𝜀 >=

𝜀!! 𝑁!"!!" !"#$%
! ( 𝐫! − 𝐫! = 1)

𝑁!"!!" !"#$%
! ( 𝐫! − 𝐫! = 1)!

 , (4.9) 

 

we see a nearly–linear dependence with unmistakable mirror symmetry (dashed line). 

This symmetry is quantitatively confirmed once the respective logarithms in (–1–10) and 
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(1–10) cross section are summed in Fig. 4.36, with the results distributed about zero 

independent of strain9.  

The three, independent strain–resolved partitions in Fig. 4.35 are simultaneously 

fit to straight lines with opposite slopes and common strain–intercept to explicitly 

incorporate the (–1–10) + (1–10) compensation demonstrated in Fig. 4.36. As shown in 

Fig. 4.37, each of our experimental ensembles lies close to this fit.  In the one instance 

that falls furthest from this line (tensile ensemble), the deviations pair in opposite 

directions, as they must if they compensate. 

The corresponding data for next–nearest–neighbor correlations (|𝐫! − 𝐫!| = 2) is 

assembled in Fig. 4.38, where (–1–10) and (1–10) correlations are both more likely than 

random. Independent fits to the strain–resolved ensembles, here, do a strikingly 

persuasive job of describing source–resolved and all–inclusive ensembles in both cross 

sections. These linear behaviors hold for pairs separated by 3 (|𝐫! − 𝐫!| = 3, in Fig. 

4.39) and 4 (|𝐫! − 𝐫!| = 4, in Fig. 4.40) lattice sites as well. This comparison between 

cleavage faces fails to be useful at larger separations where the (1–10) correlation 

function (Fig. 4.24) approaches one. 

Let us return, now, to the combined linear fit illustrated in Fig. 4.37 and consider 

the common horizontal intercept — corresponding to no antimony–antimony correlation 

whatsoever — at 3.4 ± 0.2 % strain.  Why this number? Naïve expectations would place 

this zero crossing for random incorporation at zero strain, whereas the data in Fig. 4.37 
                                                
9 The asymmetric (–1–10) and (1–10) errors in Fig. 4.35 are striking in view of the equal 
number of STM images (53, 52) acquired over each cleavage face, but reflect the 
disparate numbers of antimony pairs in each cross section due to compensation.  
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show vanishing strain is characterized by comparatively strong pair correlations, 

bringing the assumption of this parameter as the governing physical variable into 

question. 

It now becomes important to recall the one–to–one correspondence between 

strain and composition in coherently–strained systems that imposes a physical 

degeneracy in our choice of independent variable. We previously used the linear 

correspondence between superlattice composition and strain to define strain–resolved 

ensembles, but we could have equally well chosen to define composition–resolved 

ensembles instead. Although the former may, at first, appear more intuitive, our 

experimental data suggests one must be open to the other. 

Converting from ensemble strain to ensemble antimony fraction by replacing 𝜀! 

with 𝑥! in (4.9) transforms Fig. 4.37 into Fig. 4.4110.  The common zero crossing for our 

combined (–1–10) and (1–10) fit now occurs at 𝑥!" = 0.325± 0.011, an instantly 

recognizable number: the targeted, steady–state antimony fraction for our superlattice.  

This fraction is directly proportional to the incident antimony flux, but, as we’ve 

previously emphasized in connection with Figs. 28, 29, and 30, the pair correlation 

functions for source on and source off ensembles are nearly indistinguishable, pointing 

to the surface floating layer, rather than the incoming vapor stream, as the key factor in 

these nearest–neighbor correlations.  In any system evidencing segregation, surface and 

bulk impurity fractions will be connected through the segregation coefficient R, which 

may be determined from the compositional grading mapped out with STM [22]; that 
                                                
10 Horizontal errors seem to be larger when plotting against antimony fraction but the 
relative errors in Fig. 4.37 and Fig. 4.41 are actually equivalent.  
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number in InAs / InAsSb [20] is very close to 2/3, implying a fixed, monolayer–by–

monolayer ratio between surface and bulk–incorporated antimony of 2:1.   

The common zero crossing in Fig. 4.37 may therefore be equivalently expressed 

in terms of its corresponding surface coverage as  ~ 2/3 ML, a value whose physical 

significance is both immediate and independent of source shuttering: it is the maximum 

amount of antimony that can be accommodated by the antimony–dimer surface 

reconstructions in Fig. 4.27.  The number of [110]–oriented dimers at the growth surface 

thus appears to be our controlling variable. 

 

Antimony Pair Interactions: Bulk Alloy 

Bulk alloy films coherently strained to a virtual substrate offer an independent 

perspective on the connection between short–range alloy order, bulk strain, and surface 

antimony fraction, since they enforce a altogether different relationship between strain 

and antimony fraction than that dictated in the superlattice by the requirement of strain 

balancing to GaSb.  The bulk alloy film made available to us was actually relaxed as 

opposed to coherently strained11, and the STM data (taken some 300 nm into the growth) 

previously summarized in Figs. 4.17 and 4.19.  

A relaxed film, by definition, exhibits vanishing (0%) residual strain. As shown 

in Fig. 4.42, adding this point to Fig. 4.37 makes clear that bulk and superlattice 

                                                
11 Source temperatures drifted more than usual during growth of the virtual substrate, 
leading to a template too large for targeted InAsSb alloy composition. Although 
dislocations necessarily took up that excess strain, substrate and bulk alloy x–ray peaks 
were of comparable width, suggesting these dislocations were confined to the early 
stages of bulk alloy growth.  
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correlations diverge when expressed in terms of strain.  Conversely, as shown in Fig. 

4.43, including this data in Fig. 4.41 leaves no doubt bulk and superlattice correlations 

convincingly agree, provided they are described by their respective bulk antimony 

fractions12. We call attention, however, to the unfortunate absence of (1–10) data for the 

bulk alloy film from Figs. 4.42 and 4.43, but the previously–drawn parallel between bulk 

and superlattice (–1–10) correlation functions (Fig. 4.25) suggests the controlling 

variable here is, again, the number of [110]–oriented dimers at the growth surface13. 

The similarities between our bulk alloy film and superlattice do not end with Fig. 

4.25.  Exponential fits like those in Fig. 4.25 for the all–inclusive ensembles were 

repeated for the remaining five superlattice ensembles in Fig 4.43, and the results 

summarized in Figs. 4.44 and 4.45.  The (–1–10) decay length corresponding to the 

upper branch of each correlation function is found to be independent of antimony 

fraction, mirroring the composition–independent compensation established in Fig. 4.3614, 

whereas the resulting decay–envelope amplitudes are linear in composition.  Finally, Fig. 

4.46 makes the case that correlation functions for the (continuously antimony exposed) 

bulk alloy film and (shuttered) source–off superlattice ensemble agree with one another 

point–by–point, underscoring the irrelevance of an incoming vapor stream, as well as the 

importance of mean bulk and surface antimony fractions, in scaling these correlations.   

                                                
12 The antimony fraction was established as 19.5 ± 0.5 % by STM, close to the 
nominally–targeted alloy composition of 20%.  
13 It’s important to point out that the superlattice and alloy film were grown at nearly 
identical temperatures [23,70], making the presumption of similar prevailing surface 
reconstructions reasonable. 
14 Recall that strain and composition are interchangeable in any coherently–strained 
system. 
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Summary 

We first showed qualitative evidence in images, thresholded–image 

autocorrelations, and power spectral densities for atomic order in the InAs / InAsSb 

superlattice, which is statistically significant on the scale of a micron–long survey. We 

then described an algorithm that could convert from distorted x– and y–coordinates into 

distortion–free [001] columns and <110> rows via lookup images created from filtered 

DFTs. These columns and rows are central to being able to calculate the separation 

vector between pairs of antimony atoms in the surface. The pair correlation function was 

then introduced to calculate the probability above or below random for an arrangement 

of atoms. We first applied the correlation function to the bulk alloy before 

particularizing to the superlattice. In the superlattice and the bulk alloy both “attractive” 

and “repulsive” correlations on the (–1–10) surface were described well by an 

exponential with fall–off of 4 lattice sites, and the (1–10) surface in the superlattice was 

nearly random after 1 lattice site implying that antimony is incorporating as dimers 

aligned with the [110] direction (visible on the (1–10) surface). By splitting the all–

inclusive superlattice ensemble into time–resolved sub–ensembles, we observed that the 

order must have formed on the surface, not in the incoming vapor stream. Comparing 

strain–resolved ensembles to the bulk ensemble we found the number of [110]–oriented 

dimers at the growth surface appears to be the controlling variable for short–range alloy 

order. Finally we found almost perfect agreement between (–1–10) correlations in the 

bulk alloy and in the source–off ensemble, underscoring the irrelevance of an incoming 
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vapor stream, as well as the importance of mean bulk and surface antimony fractions, in 

scaling these correlations. 
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CHAPTER V 

CONCLUSIONS  

 

We have used cross–sectional scanning tunneling microscopy (STM) to examine 

how an as–grown InAs/InAsSb superlattice differs from the intended one as regards 

translational invariance in (001) planes perpendicular to the growth direction. This 

required atomic–resolution, lateral surveys paralleling the buffer/epilayer interface for 

up to a micron in orthogonal (–1–10) and (1–10) cross sections, together with repeated 

lateral surveys at representative vertical locations (i.e., spanned superlattice repeats) 

within the multilayer stack.  

We have shown STM can be used to accurately map the period fluctuations 

throughout this superlattice. The concept, analogous to Bragg's law in high–resolution 

x–ray diffraction, relied on an analysis of the [001]–convolved reciprocal–space satellite 

peaks obtained from discrete Fourier transforms of individual STM images. Properly 

implemented, the technique enabled local period measurements that reliably 

discriminated lateral fluctuations localized to within ~ 40 nm along <110> directions in 

the growth plane. While not as accurate as x–ray, the inherent, single–image 

measurement error associated with the method may be made as small as 0.1%, which 

allowed lateral period fluctuations potentially contributing to inhomogeneous energy 

broadening and carrier localization in these structures to be pinpointed and quantified. 

The direct visualization of such unexpectedly–large fluctuations on nanometer length 

scales was tied to a stochastic description of correlated interface roughness. 
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We also introduced a new technique to automatically tabulate the crystalline 

coordinates of previously–identified top–layer antimony atoms and construct the 

antimony pair–correlation functions in orthogonal cross sections.  These correlation 

functions were then analyzed in terms of layer strain as well as antimony fraction, and 

comparisons drawn between corresponding superlattice and bulk alloy experiments. 

Nearest–neighbor correlations on opposing cleavage faces were inversely related, with 

the (–1–10) deficit at nearest–neighbor sites balanced by a compensating (1–10) surplus. 

The logarithm of this preference scaled inversely with bulk antimony fraction. In more 

vivid physical terms, this preferential [110]–incorporation of nearest–neighbor antimony 

atoms in the bulk was traced to the inferred concentration of [110]–oriented antimony 

dimers at the growth surface.   
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