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ABSTRACT 

 

Organic matter-derived soil amendments containing humic substances (HS) play 

a functional role in improving plant root growth and soil quality, but their interaction 

with water deficit levels is unknown. In this study, lignite-derived HS were mixed with 

pot soil in controlled environments (growth chamber and greenhouse) and field soil in 

two different environmental locations (clay in Uvalde and sandy in Weslaco), then 

subjected to four irrigation levels -- severe deficit (20%), mild deficit (40%), moderate 

deficit (60%) and well-watered (80%) on bell pepper (Capsicum annuum L.) plants 

based on water-holding capacity in controlled environment and evapotranspiration 

requirement in field conditions. Plant morphology and physiology were assessed in 

different growth environments. Root traits, soil chemical properties and microbial 

activities were measured and analyzed at the end of the study.  

HS application significantly increased plant height and stem diameter during 

seedling development and early vegetative growth period, and decreased plant 

transpiration rates during early growth while maintaining photosynthesis at the same 

level as the control (increased water use efficiency), especially under severe or mild 

deficit levels. HS increased plant biomass accumulation in controlled environments and 

increased early yield in field conditions. HS increased root length, surface area and dry 

weight in controlled environments. These root promotion effects were consistent in field 

conditions although not statistically significant. HS also increased soil organic carbon as 

well as soil respiration and microbial population in both soil types. Plant growth 
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performance was significantly decreased in severe and mild deficit stress, but was 

similar in moderate deficit and well-watered treatments.  

These results suggest that HS have the ability to ameliorate severe or mild stress 

in the short-term, which can reduce water loss in plants exposed transiently to water 

deficit conditions. In addition, this study provides evidence that the application of HS 

might be considered for long-term agricultural use due to their capacity to improve crop 

early yield, soil nutrient cycling, organic carbon retention, microbial enrichment and 

activity under moderate stress or well-watered conditions. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Intense human activities in agricultural practices such as excessive irrigation, 

fertilization and the use of various agrochemicals cause soil degradation (Diacono and 

Montemurro, 2010), increase the soil nutritional imbalance and the susceptibility of 

plants to abiotic stress, which will become a threat for human health due to the 

decreasing crop yield and food quality (Lal, 2009). Besides, maximizing yields to feed 

the increasing human population under decreasing soil fertility and limited water 

resources is also a major challenge. It is expected that significant improvements in soil 

properties will also improve plant growth by changing water and nutrient uptake 

efficiency, and shoot and root morphological and physiological responses, which will 

ultimately enhance crop yield and quality, as well as economic benefits.  

 

Organic soil amendments 

Using functional soil amendments is an effective method to improve soil quality. 

Organic-matter derived from plant decomposition leads to a mixture of substrate that 

contains more than 70% lignite in the surface layer (0-5 cm) of soil (Rumpel et al., 

1998), which provides a good source for organic matter derived-amendments. The 

amount of soil organic matter and N content can be significantly increased with the 

application of organic amendments along with inorganic fertilizers (Goyal et al., 1999), 

which makes organic amendments promising for the development of sustainable 
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agriculture, high-yields and profitable production systems. Therefore, organic 

amendments have been studied in depth and used in practice (Bulluck et al., 2002; 

Diacono and Montemurro, 2010). Other than lignites, animal manure, crop residues and 

organic waste are also good sources to make organic amendments, such as compost and 

humic substances. Compost refers to the biological decomposition of organic matter 

under well managed and aerobic conditions into stabilized organic product (Epstein, 

1996); Humic substances (HS) refer to a mixture of soil organic matter resulting from 

the decay of plant and animal residues. They have large impacts on soil composition and 

overall soil improvement, resulting in beneficial effects on soil biological and 

physiochemical environment changes as well as plant growth improvement.   

 

Humic substances 

HS can be applied as solid or liquid products extracted by various methods from 

a wide variety of raw materials including lignites, peat, composts and organic wastes, 

which determine the different physicochemical properties and application effects of HS 

(Rose et al., 2014). HS typically contain three fractions on the basis of their solubility in 

water under different pH conditions: fulvic acid, humic acid and humin (MacCarthy et 

al., 1990): 1) fulvic acid (FA): the fraction of HS that is soluble in water under all pH 

values; 2) humic acid (HA): the fraction of HS that is insoluble in water under acidic 

conditions (pH < 2) but soluble at higher pH values (pH > 2); 3) humin: the fraction of 

HS that is insoluble in water under any pH values. Based on the sequence of 

classification, they are increasing in color intensity: light yellow and yellow brown for 
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fulvic acid, dark brown and grey black for humic acid, and black for humin; they are 

also increasing in molecular weight (in Daltons, Da) and carbon content but decreasing 

in oxygen content, degree of solubility and exchange acidity (the amount of total CEC 

occupied by the acidic cations H+ and Al3+) (Rumpel et al., 1998). A study by Lobartini 

et al. (1997) showed that humic acid fractions with different molecular weights (Da) had 

minor differences in elemental composition of C and N, with carbon elements 

accounting for 49% to 58% of the total composition, and nitrogen elements for 2.6% to 

3.8%. By using infrared analysis, they also found humic acids had similar functional 

groups and bonds regardless of the different Da fractions. These evidences indicate that 

humic acid is composed of homogeneous fractions, which can ensure uniformity in its 

application. Based on that, humic acid became the most widely studied material for soil 

applications of HS, while only a few studies focused on fulvic acids. 

Different raw materials can provide different HS components and properties, 

including various beneficial effects on plant growth and soil properties (Chen and Aviad, 

1990). They can be summarized as follow: 

a. Improve seed germination rates 

HS application increased water absorption and enhanced overall enzyme 

activities in seeds, which led to an increase in respiration rate, and the energy released by 

respiration could be utilized in embryo development and rapid germination (Chen and 

Aviad, 1990). A study (Piccolo et al., 1993) tested the effects of coal-derived humic 

substances on lettuce and tomato seed germination, and found the fresh weight of 
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seedlings increased with HS application in both crops, which was due to cell elongation, 

increased water absorption and the uptake of HS in seedlings. 

b. Stimulate root initiation and growth 

These are the most significant impacts of HS. Canellas et al. (2002) investigated 

the effects of HS isolated from earthworm compost and found that HS enhanced maize 

(Zea mays L.) seedling root elongation and lateral root initiation. Nardi et al. (1994) 

showed the roots of Nicotiana plumbaginifolia leaf explants were promoted when treated 

with HS or IAA alone, but were inhibited when adding an auxin inhibitor (TIBA) with 

HS or IAA. These studies concluded the root growth promotion was contributed by the 

auxin-like activity of HS. It is important to note that the hormone-like fraction of HS 

mostly comes from the low molecular weight (LMW) parts (< 5000 Da), which can 

easily reach and interact with plasma membranes of plant cells (Nardi et al., 2002; 

Varanini et al., 1993). By summarizing the outcomes of previous studies about the 

uptake of radioactive labeled 14C-HS in plants, it showed that HS were absorbed by roots 

quickly in the initial timeframe, then absorption slowed down. The activity of uptake 

was promoted by increasing plant physiological metabolism and the solubility of HS 

(Nardi et al., 2002). After being absorbed in plant cells, LMW-HS was also shown to 

stimulate H+-ATPase (proton-pumping ATPase) activity in isolated oat plasma 

membrane (Varanini et al., 1993). This generated the proton electrochemical gradient 

across the plasma membrane which was essential to activate most of the ion and 

metabolite transport (Morsomme and Boutry, 2000) and ultimately, enhance nutrient 

acquisition in roots, and therefore generate positive functions for root growth. 
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c. Improve shoot growth and affect plant physiological performance 

Promotion of root growth also leads to improvements in shoot growth, Tahir et 

al. (2011) tested the effects of lignite-derived HS application on wheat (Triticum 

aestivum L.) growth and nutrient uptake under greenhouse conditions; they found an 

improvement in plant height, shoot weight and nitrogen uptake efficiency (NUE) at an 

optimal HS concentration. Another group (Rose et al., 2014) summarized previous 

research by using a random-effects meta-analysis and concluded that plant shoot and 

root dry weight increased 22.4% and 21.6%, respectively due to HS application. The 

increase of shoot dry weight appears to be due to increased mineral nutrient supply and 

uptake in HS treated soil (Sharif et al., 2002). In addition to increasing plant biomass 

accumulation, HS had been shown to affect some plant physiological performances like 

enzymes activity associated with photosynthetic (Ferretti et al., 1991) and carbohydrate 

metabolism of maize seedling leaves (Merlo et al., 1991). However, the effects of HS on 

plant gas exchange have not been widely explored (Nardi et al., 2002), which gives a 

potential aspect to emphasize in this study. 

d. Improve soil structure and soil quality 

The mechanisms by which HS change soil environment and quality are 

controversial and not clearly understood. HS have been shown to have positive effects 

on soil permeability, water-holding capacity and aeration (Chen and Aviad, 1990). The 

presence of functional groups such as cellulose and polyols in HS (Vlčková et al., 2009) 

alter the water uptake and holding capacity of soil particles (Brooks et al., 2004), 

resulting in higher water retention. These functional properties suggest that HS 
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application may be a promising strategy for mitigating water-limited conditions. HS 

have also been reported to increase cation exchange capacity (CEC), organic carbon 

content, N and P concentration, and solubility of some micronutrients like Fe in the soil 

(Sharif et al., 2002). HS can also enhance the ability of phytoremediation for some heavy 

metals in contaminated soils like Cd, Cu and Pb. This response was due to the temporary 

biological activity of metal-humic complexes, decreasing their transferable toxic effects 

in the soil environment (Halim et al., 2003). 

e. Enhance soil biological activity 

In the soil microbial environment, studies by Gryndler et al. (2005) showed that 

HS stimulated root colonization and production of extra-radical mycelium induced by 

mycorrhizal fungi. The slow decomposition ability of HS can provide carbon and 

nitrogen resources to microbes especially with limited nutrient levels; some microbes 

can even use HS as electron acceptors for their oxidation to provide energy (Lovley et 

al., 1996). Additionally, the long-term interaction between HS and microorganisms may 

generate new HS (Kulikova et al., 2005), which provide extended benefits in soil quality 

changes.  

In summary, HS have positive impacts on plant-soil interactions, and the effects 

on promoting root growth are more obvious than shoot growth (Chen and Aviad, 1990). 

Besides, conventional soil tillage management that causes organic matter degradation 

has negative effects on HS formation (Shepherd et al., 2001). So adding exogenous HS 

as a soil amendment can reverse the degradation along with soil tillage while improving 

soil properties (Rose et al., 2014). With these benefits and concerns, HS as soil 
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amendments have been widely studied on agronomic crops like wheat, maize, oat 

(Canellas et al., 2002; Varanini et al., 1993; Tahir et al., 2011; Sharif et al., 2002; 

Dunstone et al., 1988; Ferretti et al., 1991) and vegetable crops like tomato, celery and 

lettuce (David et al., 1994; Ciarkowska et al., 2017; Hartz and Bottoms, 2010). 

However, higher HS application rates can easily exacerbate the plight of micronutrient 

deficiency by depleting the available pool for plant uptake (Rose et al., 2014), and finally 

inhibit plant growth. Therefore, a suitable rate of HS application into soils is critically 

important.  

 

Water stress and deficit irrigation 

Drought stress has cost $200 billion in losses from 1980 to 2013 in the U.S., 

which accounted for about 20% of total loss due to all other weather and climate 

disasters (Smith and Matthews, 2015). Agriculture is a major activity that heavily 

depends on water demand, and therefore has suffered the greatest damage from water 

stress. Due to insufficient precipitation (available water from outside the soil) and low 

soil water-holding capacity (available water from inside the soil), water deficit stress can 

seriously affect plant morphology and physiology and therefore overall growth and 

productivity. In order to decrease water losses, plants have unique mechanisms to cope 

with deficit stress. For example, plant cell water potential is reduced and abscisic acid 

(ABA) is accumulated, which induce stomatal closure, thereby decreasing transpiration 

rate (Taiz et al., 2015). However, stomatal closure also decreases CO2 uptake, which will 

inhibit leaf photosynthesis, cause the imbalance of free electrons and NADP+ 
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dehydrogenase and leads to the generation of reactive oxygen species (ROS), which will 

impede plant growth by oxidizing and damaging the normal functional cellular 

constituents in plant cells such as proteins, DNA, RNA and lipids (Taiz et al., 2015). 

Improving plant water use efficiency (WUE) as a potential solution to alleviate 

worldwide water shortages, has become a paradigm for scientists. Deficit irrigation, the 

application of water below sufficient crop-water requirements, without causing 

significantly economic losses, is an important method to cope with limited water supply 

and improve WUE, especially in arid or semi-arid regions of the world (Fereres and 

Soriano, 2006). For example, based on a watermelon study of Leskovar et al. (2016), 

suitable water stress achieved by deficit irrigation maintained plant performance and 

improved plant water use efficiency, as well as forcing a surplus of vegetative growth to 

be transformed into economic fruit growth, while severe stress significantly decreased 

plant yield. It showed that appropriate deficit irrigation could become an essential tool in 

agricultural production. But a successful deficit irrigation procedure is not easy to 

accomplish, as it depends on accurate soil water content and proper irrigation scheduling 

methods (Jones, 2004). In this study, in order to test the effects of deficit irrigation on 

bell pepper growth, we implemented deficit irrigation in controlled environments 

(growth chamber and greenhouse) based on soil water-holding capacity, and 

uncontrolled environments (field) based on crop evapotranspiration (ET) demand. We 

hope these studies will provide additional useful information when considering deficit 

irrigation in agriculture. 
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Research questions 

A large body of research reviewed the biological effects of HS on biota growth 

(Kulikova et al., 2005), and concluded that HS were ideal modulators in adverse soil 

environments such as drought, salinity and other abiotic stress conditions due to the 

detoxifying ability of HS. However, there is a lack of understanding of short- or long-

term effects of HS on alleviating plant biological responses in water deficit scenarios, 

such as the modification of leaf gas exchange and WUE. Within this framework, this 

research is intended to address the following five questions, using bell pepper as a model 

plant system: 

a. Will HS added to soils at optimal rates promote plant morphological and 

physiological responses and increase growth compared to control? 

b. Do HS regulate the activity and solubility of major nutrients in soil? 

c. Do HS applications improve the concentration and activity of soil 

microorganisms, such as bacteria and fungi? 

d. Can HS mitigate potential crop losses under water deficit conditions? 

e. Do HS applied to different soil textures (sandy and clay) uniquely affect soil 

properties, water content, nutrient levels, and plant growth? 
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CHAPTER II  

BELL PEPPER GROWTH RESPONSES AND SOIL PROPERTY CHANGES TO 

HUMIC SUBSTANCES AND DEFICIT IRRIGATION IN CONTROLLED 

ENVIRONMENTS 

 

Introduction 

Peppers, which originated in Mexico and South America, are becoming popular 

in people’s diet due to their various colors, flavor, spice and nutritional values (Villalón, 

1981). Bell green pepper (Capsicum annuum L.), as one of the pepper types, has a high 

economic value in agriculture. In 2014, the yield of green peppers is 16.7 t/ha with the 

total production 32 million tons on a global basis, and the gross production value is more 

than $30 billion all around the world (FAO, 2014). Due to the benefit prospects, the 

potential application of HS on vegetable crops like bell pepper is becoming promising 

and important. 

HS can be applied as commercial solid or liquid products derived from soil and 

water (Malcolm and MacCarthy, 1986). For practical field applications, the solid form 

seems to be better than liquid due to less cost and potentially less leaching losses. In this 

study, we focus on lignite-derived solid HS, and then use bell pepper as a model 

vegetable crop and controlled environments as suitable growth conditions, to access and 

test the HS effects on bell pepper morphology and physiology responses and soil 

environmental changes at different irrigation levels. We hypothesize that through the 
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alteration in plant gas exchange, root growth and soil microbial activity, HS will mitigate 

potential crop losses under water deficit conditions. 

 

Approach 

a. Growth environments and soil materials 

Two studies were conducted in controlled environments growth chamber 

(Conviron PGR15, Manitoba, Canada) and greenhouse at the Texas A&M AgriLife 

Research Center at Uvalde, TX (29.21°N, 99.79°W). The growth chamber was set with a 

ramping temperature from 20°C to 28°C and a ramping light intensity up to 500 µmol∙m-

2∙s-1 during the daytime for 16h, followed by constant 20°C without light during the night 

for 8h. The environmental parameters inside the greenhouse were monitored by a control 

system Wadsworth (Arvada, CO) and recorded by a weather station WatchDog (Spectrum 

Technologies Inc., Aurora, IL). During the greenhouse experiment, the average daily light 

integral and temperature were 11.0 mol∙m-2∙day-1 and 29.4°C, respectively. 

In the first growth chamber experiment, the short-term impacts of HS application 

on plant seedlings were assessed in a sandy soil. A following greenhouse experiment 

was conducted to assess the mid-term effects of HS on plants as well as soil among two 

types, sandy and clay. The basic soil properties are shown in Table 1. Lignite-derived 

solid HS (Novihum Co., Dresden, Germany, Table 2) was used as a soil amendment 

mixed with soil at a rate of 0.5 kg∙m-2. 

 

 



 

12 

 

b. Plant material, soil amendment and irrigation treatments 

Bell pepper (Capsicum annuum cv. Revolution) seeds were directly sown into 2.5 

L pots (15 cm diameter, 15 cm height) filled with sandy soil previously amended with 8.8 

g∙pot-1 HS at the beginning of the growth chamber experiment. At the initial stage of the 

greenhouse experiment, 8-week old bell pepper seedlings grown in 200-cell trays (2.7 × 

2.7 × 7.2 cm3 per cell) were transplanted into 10 L pots (25 cm diameter, 20 cm height) 

filled with sandy and clay soil previously amended with 24.5 g∙pot-1 HS. Control pots 

filled with soil without HS amendment were included. 

Three deficit irrigation levels -- severe stress (20% soil water-holding capacity, 

WHC), mild stress (40% WHC) and moderate stress (60% WHC), with a well-watered 

(80% WHC as no stress) treatments were initiated 4 weeks after direct seeding in the 

growth chamber and 1 week after transplanting in the greenhouse. Pots were weighed daily 

and irrigation management was conducted at different times and frequencies based on 

daily soil moisture loss in each treatment. Plants were fertilized using macro-fertilizer 3N-

1P-2K (CNS17, Botanicare, Chandler, AZ) and micronutrients (Valagro Brexil Multi, 

Italy) during the growth period. Standard bell pepper management practices and pest 

control were applied in both environments. 

c. Plant growth response measurements 

During the growing period, plant morphological and physiological measurements 

were conducted after imposing water-deficit stress. Plant height and stem diameter were 

measured using ruler and digital caliper (VWR, Radnor, PA); rate of photosynthesis (Pn), 

stomatal conductance (gs) and transpiration (E) were measured with a portable 
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photosynthesis system (LI-6400 XT, LI-COR Biosciences, NE) and chlorophyll content 

index (SPAD) with a chlorophyll meter (SPAD-502 Plus, Minolta, Japan). These 

parameters were collected at biweekly intervals in the growth chamber for 4 weeks which 

represented the bell pepper seedling stage, and the experiment ended 10 weeks after direct 

seeding; measurements were taken at monthly intervals in the greenhouse for 3 months 

which represented the bell pepper vegetative stage, flowering stage and mid-harvest stage, 

respectively, and the experiment ended 4 months after transplanting. 

At the end of the experiment, plant leaf, shoot and fruit dry weight were determined 

as above-ground biomass after oven drying at 75°C for 48 hours. For root measurements, 

in the growth chamber, whole roots were carefully washed and collected; while in the 

greenhouse, partial root samples were taken out with a soil auger (0-15 cm depth), and 

carefully collected. Root length, surface area and average diameter were scanned using an 

EPSON V700 scanner (Epson, Japan) and measured with a WinRHIZO software (V5.0, 

Regent Instruments, Canada), while root dry weight was determined after oven drying at 

75°C. 

d. Soil chemical and biological analysis 

At the end of the growing period, in the greenhouse experiment, a soil auger with 

diameter 2.5 cm was used to collect soil cores within 0-15 cm depth in the pots. About 

50% of the fresh soil samples were split into two parts. The first part was immediately 

shipped to Earthfort Lab (Corvallis, OR) for microbial activity analysis, and the rest part 

was used for soil respiration (Soil CO2-Burst) (Haney et al., 2008) test with SOLVITA 

soil respiration box (Woods End Laboratories, Mt Vernon, ME). Total and active bacteria, 
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total and active fungi were obtained by following staining procedures (Stamatiadis et al., 

1990), direct microscope observation and other procedures provided by Babiuk and Paul 

(1970), Van Veen and Paul (1979), and Ingham and Klein (1984). 

The remaining soil samples were dried at 75°C in the oven, then ground and sieved 

to 2 mm, and shipped to the Soil, Water and Forage Testing Laboratory (Texas AgriLife 

Extension Service, College Station, TX) for chemical analysis. Soil pH and electrical 

conductivity were measured in a 1:2 soil: water ratio extract (Rhoades, 1982); nitrate-

nitrogen (NO3-N) was extracted using 1 M KCl solution (Keeney and Nelson, 1982) and 

determined by spectrophotometry. Soil P and K were extracted using an extractant 

evaluated by Mehlich (1978) and then determined by an ICP-MS. 

e. Statistical analysis 

A two-way factorial completely randomized design with two soil amendments 

(Control and HS) and four irrigation levels (20%, 40%, 60% and 80% WHC) replicated 

six times was used in growth chamber experiment. The same experimental design, with 

two soil types (sandy and clay) was used in the greenhouse experiment. Plant morphology 

and physiology performances were analyzed by repeated measures analysis of variance 

using Proc Mixed in SAS (Version 9.4, SAS Institute, Cary, NC); plant biomass 

accumulation, root and soil traits were analyzed using the ANOVA; while multiple 

comparisons of means were analyzed using the least significant difference (LSD) at α = 

0.05. A principal component analysis (PCA) was used to evaluate the relationship between 

selected variables and treatments using the prcomp function in R (Version 3.4.0). 

 



 

15 

 

Results 

a. Plant growth responses to humic substances and deficit irrigation 

Based on the results of repeated measures analysis of variance (Table 3, as the 

main purpose is to test the time effects, the P-values for factor soil amendment, 

irrigation and their interaction were not shown), different irrigation levels had 

significantly different effects on plant morphological and physiological traits within 

different growth period in both controlled environments. In terms of soil amendment, it 

had significantly different effects on plant stomatal conductance and transpiration among 

different seedling stage in the growth chamber, and the rate of photosynthesis and 

transpiration in different growth period in the greenhouse. In addition, time significantly 

affected the effects of soil amendment under different irrigation levels on stomatal 

conductance (P-value = 0.030) in greenhouse sandy soil, and transpiration (P-value = 

0.024) in clay soil.  

In the seedling or vegetative period, HS significantly increased plant height and 

stem diameter, and also promoted plant chlorophyll content (SPAD) in sandy soil, but 

the results were opposite in clay soil (Table 4). Interestingly, during the seedling stage in 

growth chamber, HS application significantly decreased plant stomatal conductance 

while maintaining photosynthesis the same level as control; but in the greenhouse, 

stomatal conductance as well as plant photosynthesis were both decreased in plant 

vegetative stage regardless of the soil types as a result of HS application, and these 

effects lasted even longer in clay soil (flowering stage). Leaf gas exchange decreased 

under severe and mild water stress, and that reaction was further accelerated with HS 
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application especially in sandy soil (data not shown), yet the HS-related reduction in 

stomatal conductance and photosynthesis appeared less evident in late plant growth. 

Reduced gas exchange resulted in higher plant morphological performances in sandy soil 

but lower performances in clay soil, indicating that HS had different behaviors in 

different soil types.  

In the growth chamber experiment, HS increased plant above-ground dry weight 

(Figure 1 a) compared to the control, especially significant in mild, moderate water 

stress and well-watered conditions. In addition, HS treated pots showed a set of small 

fruits, indicating an early promotion of the reproductive development. Despite 

differences in early plant growth between HS and control, no significant difference was 

found in the final dry matter accumulation of plants grown in greenhouse for 4 months 

(Figure 1 b, c); there was only a slight increase due to HS application occurring in sandy 

and clay soil, under moderate water stress and well-watered conditions. Under severe 

and mild water stress, HS slightly decreased plant biomass in sandy soil. Besides the 

relatively insignificant effects on bell pepper above-ground biomass, HS showed 

remarkable promotions in root parameters (Figure 2), especially in root length, surface 

area and root dry weight under moderate water stress (60%) and well-watered (80%) 

conditions in both soil types. HS also increased root average diameter under severe 

water stress (20%) in the growth chamber sandy soil and under well-watered in the 

greenhouse clay soil environments.  

Water deficit treatments had significant effects on plant morpho-physiological 

traits after irrigation treatment started. Severe and mild water stress significantly 
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decreased plant shoot and root performance, biomass accumulation regardless of soil 

types. Moderate water stress maintained and even promoted plant growth compared to 

well-watered treatment. Irrigation levels also differentially impacted plant shoot and root 

growth on different soil types in greenhouse. For example, well-watered treatment 

decreased plant above-ground biomass accumulation in sandy soil but increased it in 

clay soil compared to deficit stress (Figure 1 b, c); similar effects were observed for root 

growth, whereas well-watered treatment decreased root parameters in sandy soil but 

increased them in clay soil especially compared to severe and mild deficit water stress 

(Figure 2 b, c). 

b. Soil environmental changes humic substances and deficit irrigation 

In the greenhouse under clay soil condition, HS slightly decreased soil pH, but 

significantly increased soil electrical conductivity (EC) by 25.6% and NO3-N content by 

68.7%, and decreased K content by 10.0% (Tables 5). In sandy soil, HS significantly 

increased soil EC in severe and mild water stress (20%, 40%), and also increased K 

content regardless of irrigation levels. The K content change indicating the response of 

K to HS depends on soil type. HS significantly increased soil total bacteria by 11.8% in 

sandy soil and by 43.8% in clay soil, but decreased total fungi by 30.9% in clay soil. 

There were no significant differences between HS and control in soil respiration, active 

bacteria and fungi population. Severe and mild deficit irrigations significantly decreased 

soil pH but they increased soil electrical conductivity and N, P, K content in both soil 

types. The increase in nutrient retention might be due to the reduced irrigation frequency 

and less nutrient leaching. In addition, low irrigation (20%, 40%) decreased soil 
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respiration and soil active bacteria population especially in clay soil; furthermore, these 

two parameters were significantly positively correlated (r = 0.58 with P-value 0.003). 
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Table 1. Sandy and clay soil basic properties 

 

 

 
Table 2. Composition of humic substances (HS) soil amendment 

pH Density Carbon Nitrogen Ash Fulvic acid Humic acid Humin 

 g·cm-3 % % % % % % 

7.7 0.6 65.8a 5.78 5.2 0.7 56.7 24.1 
a All percentages are in relation to dry matter of the HS material 

 

 

 

 

 

 

 

 

 

Soil type Sand Clay Silt Density WHC a pH EC b Nitrate-N Phosphorus Potassium 

% % % g·cm-3 g·cm-3   µmhos·cm-1 mg/kg mg/kg mg/kg 

Sandy  94 4 2 1.61 0.48 5.9 81 0.3 17 62 

Clay  33 37 30 1.26 0.73 7.9 384 21 59 900 
a WHC: water holding capacity; b EC: electrical conductivity 
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Table 3. Time affected source of variations and P-values from repeated measures analysis of variance on plant height (PH), stem diameter 

(SD), chlorophyll content index (SPAD), rate of photosynthesis (Pn), stomatal conductance (gs) and transpiration (E) of bell pepper grown 

in growth chamber (GC) and greenhouse (GH) environments 

Environment Source of variation a PH SD SPAD Pn gs E   
cm mm   μmol·m-2·s-1 mol·m-2·s-1 mmol·m-2·s-1 

GC sandy soil SA × T 0.285 0.466 0.002 0.958 0.015 0.038 

IR × T < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001 

SA × IR × T 0.362 0.751 0.118 0.751 0.693 0.403 

GH sandy soil SA × T 0.015 0.379 0.347 0.023 0.170 0.036 

IR × T < 0.001 < 0.001 0.007 < 0.001 < 0.001 < 0.001 

SA × IR × T 0.677 0.229 0.156 0.121 0.030 0.559 

GH clay soil SA × T 0.021 0.134 0.152 0.001 0.101 0.044 

IR × T 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

SA × IR × T 0.884 0.180 0.882 0.123 0.071 0.024 
a SA: soil amendment; IR: Irrigation; T: time effects of biweekly interval in growth chamber and monthly in greenhouse. 
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Table 4. Time-course effects (P-values) of HS on plant height (PH), stem diameter (SD), chlorophyll content index (SPAD), rate of 

photosynthesis (Pn), stomatal conductance (gs) and transpiration (E) under different controlled environments 

Environment Time a PH SD SPAD Pn gs E  
cm Mm   μmol·m-2·s-1 mol·m-2·s-1 mmol·m-2·s-1 

GC sandy soil Week 2 < 0.001 + b < 0.001 + < 0.001 + 0.742 0.047 - c 0.059 

Week 4 < 0.001 + < 0.001 + 0.092 0.811 0.079 0.309 

GH sandy soil Month 1 0.002 + 0.015 + 0.353 0.001 - < 0.001 - 0.006 - 

Month 2 0.696 0.193 0.284 0.767 0.755 0.522 

Month 3 0.725 0.021 + 0.738 0.710 0.283 0.704 

GH clay soil Month 1 0.071 0.027 - 0.008 - 0.011 - 0.037 - 0.077 

Month 2 0.065 0.633 0.223 0.016 - 0.036 - 0.030 - 

Month 3 0.336 0.576 0.843 0.537 0.679 0.864 
a Time was shown biweekly interval in growth chamber and monthly in greenhouse after imposing different irrigation treatments; b + 

indicated significantly increased, c - indicated significantly decreased compare HS to control at α = 0.05 according to LSD test. 
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Table 5. Sandy and clay soil final chemical and microbial properties as affected by soil amendment (SA) and irrigation (IR) treatments in 

greenhouse (GH) environment. Soil chemical properties including pH, electrical conductivity (EC), nitrate-nitrogen (NO3-N), phosphorus 

(P) and potassium (K); microbial properties including soil respiration (CO2-C), active bacteria (AB), total bacteria (TB), active fungi (AF) 

and total fungi (TF) 

Environment 
 

pH EC NO3-N P K CO2-C AB TB AF TF 

        μmhos·cm-

1 

mg/kg mg/kg mg/kg mg/kg µg·g-1 µg·g-1 µg·g-

1 

µg·g-

1 

GH 

sandy 

SA Control 8.1 271 15.0 264 41 b 4.17 27.12 1020 b * 6.71 433 

  
HS 7.9 265 10.2 259 50 a 4.86 28.68 1140 a 7.56 388  

IR 20% 7.6 c 396 a 38.1 a 314 66 a 2.72 b 26.43 1069 5.07 352   
40% 7.9 b 310 b 10.6 b 333 54 a 4.25 b 25.68 1098 8.48 352   
60% 8.3 a 191 c 1.2 b 213 31 b 4.17 b 30.22 1104 9.92 437   
80% 8.2 a 176 c 0.5 b 186 31 b 6.92 a 29.25 1048 5.08 500  

P-value SA 0.074 0.796 0.263 0.923 0.047 0.357 0.565 0.046 0.577 0.483   
IR < 0.001 < 0.001 < 0.001 0.152 < 0.001 0.007 0.580 0.881 0.082 0.299   
SA × IR 0.886 0.0188 0.062 0.268 0.517 0.104 0.197 0.202 0.869 0.649 

GH clay SA Control 8.1 941 b 57.2 b 181 881 a 82.72 35.95 828 b 13.71 243 a   
HS 8.0 1182 a 96.5 a 172 792 b 80.01 33.33 1191 a 13.22 168 b  

IR 20% 8.0 b 1235 a 128.9 a 195 ab 1109 a 60.75 bc 31.38 bc 1112 10.67 159   
40% 7.9 b 1441 a 166.7 a 213 a 1126 a 54.97 c 30.53 c 1078 11.89 209   
60% 8.2 a 781 b 6.6 b 140 c 578 b 100.90 ab 37.57 ab 945 11.44 236   
80% 8.1 a 788 b 5.2 b 158 bc 534 b 108.83 a 39.07 a 904 19.87 218  

P-value SA 0.207 0.004 0.015 0.554 0.031 0.849 0.261 0.005 0.880 0.014   
IR < 0.001 < 0.001 < 0.001 0.011 < 0.001 0.031 0.035 0.513 0.177 0.260 

    SA × IR 0.762 0.154 0.095 0.770 0.547 0.723 0.289 0.245 0.608 0.421 

* Different letters within column from the same factor indicate significant differences at α = 0.05 according to LSD test. 
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Figure 1. Bell pepper above-ground dry weight accumulation (± standard error) in the growth 

chamber sandy soil (a), greenhouse sandy soil (b) and clay soil (c) for soil amendment and 

different irrigation levels.  

* indicated significantly differences between HS and control at α = 0.05 according to LSD test. 
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Figure 2. Bell pepper root dry weight, length, surface area and average diameter (± standard 

error) in the growth chamber sandy soil (a), greenhouse sandy soil (b) and clay soil (c) for soil 

amendment and different irrigation levels.  

* indicated significantly differences between HS and control at α = 0.05 according to LSD test. 
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Discussion 

The application of soil amendments is ultimately aiming to promote plant growth 

and minimize yield loss due to unsuitable environments. As organic matter derived soil 

amendment, HS have two positive influences: improve biota growth and mitigate some 

abiotic stress due to the detoxifying nature of HS (Kulikova et al., 2005). This discussion 

will combine the results from the growth chamber and greenhouse, and analyze the 

potential impacts of HS on plant and soil response variables under different environment 

conditions.  

a. HS improved biota growth   

In the growth chamber study, the promotive responses of HS in plant height, 

stem diameter, chlorophyll content (SPAD) and plant biomass during seedling growth, 

agree with the results of Azcona et al. (2011), who used sewage sludge derived HS on 

pepper plant (Capsicum annuum L. cv. Piquillo) in greenhouse conditions. The increase 

in plant chlorophyll content suggests that HS treated plants had an increased nutrient 

absorption ability, particularly in sandy soil during early growth. Although similar 

promotive effects were measured for some variables in the greenhouse, total plant 

above-ground biomass was minimally affected by HS. Instead, plant roots were highly 

affected by HS application regardless of the growth environments and soil types -- it has 

been reported that HS have auxin-like activity, reaching and interacting with the plasma 

membrane of plant cells (Varanini et al., 1993; Nardi et al., 2002), and therefore 

conferring functional benefits for root growth. HS were also shown to stimulate H+-

ATPase (proton-pumping ATPase) activity in plasma membrane of maize (Canellas et 
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al., 2002) and isolated oat (Avena sativa L.) roots (Varanini et al., 1993), these ATPases 

generate a proton electrochemical gradient across plasma membrane that is essential to 

complete most ions and metabolite transport process for nutrient acquisition in roots 

(Morsomme and Boutry, 2000). Moreover, future understanding of the potential 

mechanism of auxin-like activity of HS and the study about how to transfer the 

beneficial outcomes from root to shoot growth is still needed.  

HS have been considered to be a nutrient carrier, with beneficial impacts on soil 

nutrient supply and retention, which are the basis for plant growth. However, these 

effects appear to differ across soil types as reported by Ciarkowska et al. (2017). That 

study found HS increased shoot and root biomass of celery and leek due to increased soil 

available nutrients, and they also observed that the mean biomass was higher in medium 

and fine textured (silt to clay) soil compared to coarse textured (sandy) soil with poor 

nutrient retention capacity. In this study, although the above-ground biomass of bell 

pepper was not significantly affected by HS application, the root biomass was indeed 

improved by HS, possibly due to an increase in soil EC and NO3-N content. The increase 

of root biomass by HS was only about 10% in sandy soil, which was much lower 

compared to 80% in clay soil. Moreover, roots grew better in the fine texture (clay) than 

coarse textured (sandy) soil, especially at moderate deficit and well-watered conditions. 

It is expected that HS might have an effective ability to enhance the existing poor fertile 

quality of sandy soil: Valdrighi et al. (1996) showed that compost derived HS 

significantly increased chicory biomass in sandy soil, especially when applied at a higher 

rate (4000 mg∙kg-1) as in aqueous solutions. However, in this study, except for a notable 
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biomass promotion in the growth chamber sandy soil experiment, the effects of HS on 

sandy soil were not significant in the mid-term greenhouse experiment. The lack of 

response may be explained by three possible scenarios: 1) the sandy soil we used could 

not provide sufficient nutrients to plant growth when compared to nutrient-rich clay soil; 

2) the application rate of HS was not high enough to bring on significant growth changes 

in sandy soil especially for a mid- to long-term growth; however, we need to be careful 

for the application rate because extra HS beyond an optimal level may deplete soil 

nutrient by “stealing” the nutrient cations and made them unavailable for root uptake, 

and ultimately decreasing plant growth (Chen and Aviad, 1990); 3) the diverse nature of 

HS caused inconsistent effects on different soil conditions, as previously reported by 

Kulikova et al. (2005).  

Soil microbial activity of bacteria and fungi is a key factor that influences plant 

productivity, changes plant-water relations, affects soil properties, and regulates 

decomposition of organic material and nutrient cycling (Neher, 1999). The total bacteria 

and fungi population represent soil nutrient cycling capacity, while active bacteria and 

fungi population represent the part that currently metabolize organic compounds to 

provide nutrients to plants. A large population of microbial community was reported to 

decompose HS as nutrient and energy resources (Lovley et al., 1996; Kulikova et al., 

2005), which revealed a potential ability of HS to improve the long-term soil microbial 

population. The alteration of microbial growth from HS was a key response to reveal soil 

health, as well as plant-microbial interactions. In this study, HS increased soil total 

bacteria in the greenhouse environment regardless of soil types. HS also decreased total 
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fungi population in clay soil, resulting in a lower fungi-to-bacteria (F/B) ratio (0.14) 

compared to control (0.29). It had been reported F/B ratio changed rapidly as a result of 

diverse soil managements, especially the soil with higher N inputs lowered F/B ratio (De 

Vries et al., 2006). In our study, a higher NO3-N retention was observed in clay soil as a 

result of HS application, and it was negatively correlated with the F/B ratio (r = −0.47 

with P-value 0.02). In addition, a survey study across forest, cultivated and livestock 

pasture soil showed bacteria population was highly associated with soil pH while fungi 

population was associated with current soil nutrient status (Lauber et al., 2008). 

Moreover, soil with higher F/B ratio was hypothesized to have more sustainability 

because the activity of fungi was positively correlated with soil C content (Bailey et al., 

2002). However, in our study, as an organic-amendment, HS didn’t show a positive 

effect on F/B ratio. Instead, an increase in total bacteria was observed with increased soil 

EC and NO3-N content in clay soil. When Hartz and Bottoms (2010) tested five 

commercial HS, they found the effects of HS were not consistent, and most HS were 

ineffective in promoting soil nutrient retention as well as microbial activity. Therefore, 

although the results were contrary to expectations, the decline in F/B ratio doesn’t imply 

a negative impact of HS on plant growth, since HS didn’t reduce the plant above-ground 

development and even significantly promoted plant root growth; moreover, the results 

only showed a mid-term effects from HS, a long-term test is still required for a better 

understanding. The specific mechanism of HS impact on bacteria and fungi community 

is also needed to be examined, with the consideration of different raw materials derived 
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HS, application rate and diverse environments, in order to achieve the best beneficial 

effects of HS application on biota growth. 

b. HS mitigated water limited stress 

Due to the special structural features, HS are able to bind toxic organic and 

inorganic compounds that exist in polar and hydrophobic environments, thereby 

reducing their bio-availability and toxicity (Kulikova et al., 2005). As a result, HS were 

commonly used for pollutants detoxification (Bollag and Myers, 1992; De Paolis and 

Kukkonen, 1997). This is one of the key functions by which HS mitigate abiotic stress 

conditions. In the current study, we were interested in the time-course effects of HS on 

mitigating water stress, because water stress tends to occur over a short period in non-

suitable environments. In order to decrease water loss, plants have unique responses to 

cope with deficit stress. For example, plant cell water potential is reduced and abscisic 

acid (ABA) is accumulated, which induce stomatal closure, thereby decreasing 

transpiration rate (Taiz et al., 2015). However, stomatal closure also decreases CO2 

uptake, which will inhibit photosynthesis and potentially cause significant crop yield 

losses. In our study, we found that HS can mitigate short-term severe or mild water 

stress by reducing plant transpiration and moisture loss (increase water use efficiency) in 

plant seedling and vegetative development stages, especially in the soil with a low 

water-holding capacity (sandy). Although these reductions were accompanied by 

reduced photosynthesis and showed inconsistent plant morphology performance in 

different soil types, the final above-ground biomass accumulation was not much 

different. HS seemed to cause plants become more sensitive to water stress, with a rapid 
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and positive response from root growth -- HS had short- to mid-term influences for 

stimulating plant root growth under moderate water stress, which was critical for plant 

water and nutrient absorption, as well as for mid-term non-severe stress tolerance. 

Similarly, an early study by Dunstone et al. (1988) found HS reduced wheat stomatal 

conductance and transpiration. In that study, the conductance of wheat leaf sprayed with 

liquid fulvic acid solution was reduced by more than 50% compared to control, but the 

effects only lasted for a short period and was mainly occurring on well-watered plants, 

not on dry conditions. A study by Azcona et al. (2011) found HS increased bell pepper 

gas exchange, which is in contrast to the findings in our study. More likely, a possible 

reason for the differential response is associated with the nature and properties of HS, 

since they used compost sludge derived HS. In addition, they used soilless medium 

under optimal irrigation conditions, and didn’t test the responses under water deficit 

stress. Therefore, these findings illustrate that HS-based soil amendment can 

differentially affected bell pepper plant performance based on specific soil moisture 

levels and soil textural types.  

Besides the reduction in leaf gas exchange, water stress will also cause the 

imbalance of free electrons and NADP+ dehydrogenase and leads to the generation of 

reactive oxygen species (ROS), which will impede plant growth by oxidizing and 

damaging the normal functional cellular constituents in plant cells such as proteins, 

DNA, RNA and lipids (Taiz et al., 2015). In addition to the toxin-binding property and 

the ability to alter leaf gas exchange, with the phenolic function group as electron donor, 

HS also have an antioxidant capacity (Aeschbacher et al., 2012) to scavenge ROS 
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generated by plants under water stress, which provides a new scope for future studies 

about the effects of HS on ameliorating abiotic stress conditions. 

c. Relationship between plant, soil responses and environmental factors 

Principal component analysis (PCA) was used to explore the differences or 

associations between main environmental factors (soil amendment, deficit irrigations) by 

soil types (Figure 3). Since the most plant and soil responses from 80% and 60% WHC 

irrigation were similar, we combined these two irrigations as a high irrigation level, 

while those of 40% and 20% WHC were combined as a low irrigation level. In sandy 

soil, the first and second components explained 89% of the variability. PC1 accounted 

for 64% variance, which was more contributed by soil chemical variables, and less by 

soil microbial and plant biomass variables. It distinguished the difference between low 

and high irrigation -- low irrigation tended to associate with soil nutrient retention (N, P, 

K, EC), while high irrigation was highly related with plant growth and soil active 

microbial population, as well as soil pH; PC2 accounted for 25% variance, which was 

shaped by plant biomass, soil respiration, active fungi and total bacteria. It only 

differentiated the impacts of HS on low irrigation (HS-L versus C-L) -- HS was 

positively associated with soil biota activity but negatively associated with plant biomass 

accumulation, while there was no clear difference on high irrigation. In clay soil, the first 

and second components explained 92% of the variability. PC1 accounted for 76% 

variance, which was most attributed by every selected variable, except a slight 

contribution from soil total bacteria and fungi. It featured the effects of irrigation levels, 

which was similar to sandy soil. Additionally, the application of HS in high irrigation 
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soil tended to negatively associate with total bacteria (TB) population; PC2 accounted 

for 16% variance, which was mainly shaped by soil total microbial population and plant 

root biomass. It differentiated the effects of HS regardless of irrigation levels -- HS was 

positively related with plant root growth and total bacteria but negatively related with 

total fungi (TF) population. A potential explanation for the negative relationship 

between HS and TB in PC1 and TF in PC2 especially under the high irrigation 

conditions is the soil with higher clay content and higher field water-holding capacity 

tends to have a lower decomposition rate of organic carbon (Xu et al., 2016), which 

provides less nutrient sources for fungi and bacteria populations to consume. 

In both soil types, plant root biomass accumulation was highly positively 

correlated with soil pH but negative correlated with soil N, P, K content, soil respiration 

was positively correlated with active bacteria and fungi, as well as soil pH. There was a 

negative correlation between total or active fungi population with N content as 

previously mentioned in the results, additional N fertilization decreased diversity of 

fungi by altering plant carbon inputs and reduced microbial biomass, which caused 

declined soil CO2 emissions (Treseder, 2008; Allison et al., 2007). This indicates that the 

balance between nitrogen input and the activity of microorganism community need to be 

carefully controlled. Interestingly, we found soil active microbial populations had 

profound influences on plant biomass accumulation especially the active bacteria (AB): 

AB had positive correlation with plant above-ground and root dry weight regardless of 

soil types, while active fungi performed differently in different soil types -- negative in 

sandy soil, positive in clay soil.  
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All the information from PCA provides three possible future directions when 

considering new HS research: 1) the decomposition rate of HS in different soil types and 

irrigation levels, and its relationship with soil total and active microbial population; 2) 

the activity of different species of soil fungi that are affected by HS and different soil 

nitrogen content, and their relationship with plant biomass or crop yield in different soil 

types; 3) the population of active bacteria that is affected by HS, and its relationship with 

plant biomass or crop yield under different abiotic stress conditions. 

 

 

 

 

Figure 3. The principal component analysis (PCA) of the relationship between selected variables 

and different environmental factors in the greenhouse sandy (a) and clay soil (b) experiment. 

Selected variables were displayed by arrows and included plant biomass parameters: above-

ground dry weight (AGDW) and root dry weight (RDW); and soil parameters: soil pH, electrical 

conductivity (EC), nitrate-nitrogen (N), available phosphorus (P), available potassium (K), soil 

respiration (SR), total bacteria (TB), active bacteria (AB), total fungi (TF), active fungi (AF). 

Environmental factors were displayed by filled grey circles and included two parts separated by 

dashes: the first part shows control (C) or humic substances (HS), the second part shows high 

irrigation level (H) or low irrigation level (L). 
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CHAPTER III  

BELL PEPPER GROWTH RESPONSES AND SOIL PROPERTY CHANGES TO 

HUMIC SUBSTANCES AND DEFICIT IRRIGATION IN FIELD CONDITIONS 

 

Introduction 

In the studies under controlled environments, we found that HS have an ability to 

improve biota growth from plant and soil, and have potential to mitigate deficit stress. 

That study also found that soil texture greatly influenced the effects of HS application. 

However, since field environmental conditions are difficult to predict, we expect that 

plant responses to field application of HS will be significantly different from those in 

growth chamber and greenhouse experiments. In order to test the long-term effects and 

potential application of HS, field experiments were conducted for two years at two 

Texas locations with different soil types. 

Unlike the controlled environment, in the field, water deficit stress was imposed 

based on weather conditions. Evapotranspiration (ET) based approach is a widely used 

technique in agricultural practices to quantify the water consumption by crops, and 

therefore this method was used in our water deficit studies. The basic parameters to 

determine a particular crop ET (ETc) are reference ET (ET0) and crop coefficient (Kc) 

(Allen et al., 1998). ET0 is obtained from a reference grass growing surface with 

adequate irrigation, and the change of ET0 is only affected by climatic factors; while Kc 

is changed and acquired according to different crop types, growth stages and other crop 

characteristics. By multiplying these two parameters we can obtain the standard ETc or 
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evapotranspiration rate for varied crops, which represents the daily water loss from soil 

as well as the water requirement by the crops (Allen, 2000). Therefore, water deficit 

treatments can be achieved by multiplying ETc with a deficit percentage, and set the 

daily cumulative results as reference to regulate the irrigation schedule in field practices 

and compensate the deficit water required. The combination of HS application and ET-

based deficit irrigation was used in two field studies, with adjustments based on 

precipitation and other field conditions such as percentage of covered soil with plastic 

mulch and the flow rate from drip tape. 

 

Approach 

a. Growth environments and soil materials 

The field experiments were conducted in 2016 and 2017 for two growth seasons 

at two Texas A&M AgriLife Research and Extension Centers: Uvalde, Texas (29.21° N, 

99.79° W) represented by a clay soil type; and Weslaco, Texas (26.16° N, 97.99° W) 

represented by a sandy soil type. The climatic conditions such as temperature, relative 

humidity, daily light integral and precipitation for both locations are shown in Figure 4. 

During the experimental period, the seasonal mean temperature, relative humidity, daily 

light integral and total precipitation were 23°C, 73%, 66 mol·m-2·day-1 and 426 mm, 

respectively in 2016 Uvalde; 26°C, 67%, 86 mol·m-2·day-1 and 210 mm, respectively in 

2017 Uvalde; 26°C, 72%, 70 mol·m-2·day-1 and 155 mm, respectively in 2016 Weslaco; 

and 30°C, 72%, 88 mol·m-2·day-1 and 126 mm, respectively in 2017 Weslaco. The basic 

surface soil properties (0-20 cm depth) from Uvalde and Weslaco are also shown in 
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Table 6. Lignite-derived HS from the Novihum company (Germany) was used as soil 

amendment, by mixing with field soil at the rate of 5 t/ha. 

 

 

 

 
 

Figure 4. Weather data from Uvalde and Weslaco, TX from Aug 2016 to Aug 2017. 

Letter “S” indicates the start time of the experiments (after transplanting), letter “E” indicates the 

end time of the experiments (after final harvest). 
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Table 6. Basic soil properties from Uvalde and Weslaco, TX 

 

 

 

b. Plant material, soil amendment and irrigation treatments 

Bell pepper seeds (Capsicum annuum cv. Revolution) were sowed into 200 cells 

trays (2.7 × 2.7 × 7.2 cm3 per cell) for 7-8 weeks growth at a commercial nursery 

(Speedling, Alamo, TX). After transplants reached the mature standard size, 120 pepper 

transplants were established in a 6 m × 6 m block previously amended with HS at the 

rate of 5 t/ha. HS were first evenly sprayed on the surface of the soil, then were evenly 

mixed with the ground soil (0-20 cm) by using a tractor. Each block contained 3 rows (1 

center row, 2 guard rows) with 2 lines per row and 4 replicates. The rows spaced 2 m 

apart, the plants grown in a row were 0.3 m apart in distance. Control in absence of HS 

was included. Drip irrigation system was installed 10-15 cm below the soil surface. Soil 

moisture sensors (EC5, Decagon devices, WA, USA) were installed at 15 and 30 cm 

depth to assess daily moisture variation. Standard bell pepper management practices 

were followed including fertilization, weeding, trellis, pest and disease control. 

In both locations, two different experiments were conducted. The first was aimed 

to test the residual long-term effects of HS application on plant-soil relationships, so a 

two-years trial was conducted without replenishing HS in the field. The second 

experiment was aimed to verify the first-year effects of HS application, so the repeat 

Soil 

properties 

Sand Clay Silt pH EC NO3-N P K Ca2+ Mg2+ 

% % %   µmhos/cm mg/kg mg/kg mg/kg mg/kg mg/kg 

Uvalde  28 47 25 8.2 338 18 73 776 12378 335 

Weslaco  63 25 12 7.9 480 42 29 320 3687 242 
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one-year trial was also conducted in the same environmental location, but in a new field 

and with a new HS application. We separately named the experiments as year-1 (2016), 

year-2 (2017, same field location as year-1) and new year-1 (2017). 

Bell peppers were transplanted to the field and subjected to four irrigation levels: 

a well-watered, 100% of evapotranspiration (ET) demands and three water deficit 

irrigation treatments, moderate stress 75% ET, mild stress 50% ET and severe stress 

25% ET demands. The irrigation rate was determined by dynamically changing the Kc of 

green bell pepper following specific phenological stages: the initial growth and 

development stages was 60 days with a Kc ini of 0.6; the middle growth stage was 40 days 

with a Kc mid of 1.15; the final growth stage was 20 days with a Kc end of 0.9 (Allen et al., 

1998). Irrigation was provided based on calculated volumes of application, using the 

respective proportion of 100% ET (base reference). Different volumes of applications 

for four irrigation levels were adjusted by time, for example 12 hours irrigation for the 

well-watered, 3 hours for the severe deficit treatment. These were reflected by dynamic 

soil moisture changes, with the percentage of volumetric soil moisture from high 

irrigation treatment (100% ET) having higher values but changing rapidly, especially in 

15 cm depth as compared to 25%ET (Figure 5). 

For year-1 experiments in both locations Uvalde and Weslaco in 2016, all four 

irrigation levels were conducted. Since we found similar responses between W1 and W2, 

W3 and W4 in year-1, for year-2 and new year-1 experiments in 2017, we decided to use 

only two irrigation levels, a well-watered (100% ET demands) and a mild deficit (50% 

ET demands) irrigation treatments. 
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Figure 5. Volumetric soil moisture data in Uvalde, TX from Aug to Dec 2016. Irrigation levels 

were imposed based on crop-evapotranspiration (ET) demand. 

 

 

 

c. Plant growth response measurements 

Regular measurements were conducted on pepper plants after imposing water-

deficit stress: plant height and stem diameter were measured using ruler and digital 

caliper (VWR, Radnor, PA); photosynthesis rate (Pn), stomatal conductance (gs) and 

transpiration (E) were measured with a portable photosynthesis system (LI-6400 XT, LI-

COR Biosciences, NE); and chlorophyll content index (SPAD) was measured using a 

chlorophyll meter (SPAD-502 Plus, Minolta, Japan). The parameters were collected on 

monthly intervals for 2 months after irrigation treatment started, which in bell pepper 
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represented the flowering and fruiting stage. From the beginning of harvesting to the end 

of the experimental period, bell pepper marketable yield, total yield and fruit quality 

were measured following the USDA standard grading system (USDA, 2005). Bell pepper 

sizes include US Fancy (diameter > 3 inches or 7.6 cm, length > 3.5 inches or 8.9 cm), 

US No.1 (both diameter and length > 2.5 inches or 6.4 cm) and unmarketable cull fruit 

(sun-burn, decay, misshapen, etc.). Measurements of bell pepper quality included soluble 

sugar content (o Brix) (ATAGO, PR-32α digital refractometer, Japan), firmness (digital 

force gauge, DFS II, Chatillon Inc., Largo, FL) and wall thickness (digital caliper). 

All the experiments ended 4 months after transplanting. At the end point, part of 

the plant root system (0-20 cm depth) was collected by a soil auger and carefully 

washed. Root length, surface area and average diameter were then scanned and 

measured using an EPSON V700 scanner (Epson, Japan) and analyzed with a 

WinRHIZO software (V5.0, Regent Instruments, Canada), while root dry weight was 

measured after oven drying at 75°C for 2 days. 

d. Soil chemical and biological analysis 

At the end of the experiment, a soil auger was also used to collect soil cores 

within 0-20 cm depth in the field close to the plant rhizosphere. Part of the fresh soil 

samples collected from field was immediately shipped to Earthfort Lab (Corvallis, OR) 

for microbial activity analysis and the rest were used for the soil respiration (Soil CO2-

Burst) (Haney et al., 2008) test by using the SOLVITA soil respiration box (Woods End 

Laboratories, Mt Vernon, ME). Total and active bacteria, total and active fungi were 

obtained by following staining procedures (Stamatiadis et al., 1990), direct microscope 
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observation and other procedures provided by Babiuk and Paul (1970), Ingham and 

Klein (1984) and Van Veen and Paul (1979). 

Another part of the soil samples was dried at 75°C in the oven, then grinded and 

sieved the soil to 2 mm, and shipped for chemical analysis to the Soil, Water and Forage 

Testing Laboratory (Texas AgriLife Extension Service, CS, TX). Soil pH and electrical 

conductivity were obtained in a 1:2 soil: water ratio extract (Rhoades, 1982); and nitrate-

nitrogen (NO3-N) was extracted by 1 M KCl solution (Keeney and Nelson, 1982) and 

determined by spectrophotometry. Soil P, K, Ca, Mg, S and Na were extracted and 

evaluated following the method of Mehlich (1978) and then determined by an ICP-MS. 

e. Statistical analysis 

A two-way randomized complete block design with soil amendment and 

irrigation levels was used in the studies. Regular measurements of plant morphology and 

physiology, crop yield and quality, root and soil traits were analyzed by the analysis of 

variance (ANOVA) in SAS (Version 9.4, SAS Institute, Cary, NC); and multiple 

comparisons of the means were analyzed by the least significant difference (LSD) at α = 

0.05.  

f. Timeline 

Table 7 shows the main experimental periods for the field experiments in 2016 

and 2017. 
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Table 7. Timeline for the field experiments in Uvalde and Weslaco in 2016 (year-1) and 2017 

(year-2, new year-1) 

Location Season 2-Aug 8-Sep 13-Oct  14-Nov  14-Dec 

Uvalde 

 

 

 

Year-1 Seedling 

transplant 

ITS a PM b  PM End 

experiment 

 1-April 2-May 5-Jun 5-Jul 30-Jul 

Year-2, 

New Year-1 

Seedling 

transplant 

ITS PM PM End 

experiment 

Location Season 2-Aug 4-Oct 1-Nov 6-Dec 13-Dec 

Weslaco Year-1 Seedling 

transplant 

ITS PM PM  End 

experiment 

  1-April 15-May 14-Jun 20-Jul 30-Jul 

 Year-2, 

New Year-1 

Seedling 

transplant 

ITS  PM PM End 

experiment 
a ITS: Irrigation treatment start; b PM: plant measurement. 

 

 

 

Results - Uvalde 

a. Year-1 plant (2016) 

Growth and physiology - Based on the results from table 8, after irrigation 

treatment started, HS significantly decreased plant height regardless of irrigation levels. 

HS did not exhibit significant effects on plant physiology. Deficit irrigation increased 

leaf chlorophyll content (SPAD) but decreased leaf gas exchange during the flowering 

period compared to the well-watered treatment.  

Yield and quality - Table 9 shows the lack of significant interaction between soil 

amendment and irrigation levels. Therefore, data was combined to investigate the effects 

of soil amendment and irrigation separately. HS significantly increased pepper early 

marketable yield by 28.9% and total yield by 32.8% as compared to control. However, 

total harvest yield was similar to the control (Figure 6). In terms of irrigation, severe 

(25% ET) and mild (50% ET) deficit significantly decreased yield from early and total 
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harvest, especially Fancy size fruit yield as compared to moderate deficit (75% ET) and 

well-watered (100% ET). The marketable and total yields were not different between 

severe and mild deficit irrigations; moderate deficit (75% ET) and well-watered 

irrigations also had similar yields regardless of early or total harvest (Figure 7). Table 10 

shows the bell pepper quality from the Uvalde year-1 experiment. Overall, HS did not 

affect fruit quality, while severe and mild deficit irrigation had an increase in sugar 

content (o Brix) with a P-value = 0.05, and a numerical, but not statistical increase in 

ascorbic acid concentration. 

Root development - Root parameters are shown in Table 11. In general, root 

parameters were not affected by HS or irrigation, except for a slight increase in root 

length by HS and a decrease in root average diameter by the combination of HS and 

severe deficit irrigation.  

b. Year-1 soil (2016) 

At the end of the experiment, soil amendment and deficit irrigation treatments 

did not affect soil environmental changes, since soil chemical properties and soil 

microbial activity were similar (Tables 12, 13). 
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Table 8. Summary of morphological and physiological traits of bell pepper grown in year-1 experiment at Uvalde  

Time a Source  PH SD SPAD Pn gs E 
  cm mm  μmol m-2 s-1 mol m-2 s-1 mmol m-2 s-1 

1 SA Control 52.73 a * 14.64 61.76 21.66 0.40 3.50   
HS 50.20 b 14.72 60.22 19.64 0.41 3.28 

          
IR 25% 51.78 14.52 63.28 a 16.37 0.24 b 2.39 b   

50% 50.66 14.90 59.47 b 19.09 0.34 b 3.15 b   
75% 51.44 14.51 61.76 ab 24.89 0.54 a 4.09 a   
100% 52.00 14.79 59.45 b 22.23 0.50 a 3.92 a 

          
P-value SA 0.049 0.869 0.159 0.570 0.843 0.381   

IR 0.871 0.903 0.045 0.362 < 0.001 < 0.001   
SA × IR 0.951 0.896 0.716 0.899 0.887 0.817 

2 SA Control 52.30 a 15.14 66.53 12.47 0.17 2.91   
HS 48.55 b 15.06 65.03 12.00 0.16 2.53 

          
IR 25% 48.78 14.77 67.10 12.82 0.18 2.92   

50% 51.13 15.06 66.18 12.15 0.14 2.50   
75% 50.97 15.23 65.19 11.70 0.16 2.63   
100% 50.81 15.35 64.65 12.27 0.18 2.83 

          
P-value SA 0.014 0.839 0.380 0.610 0.592 0.120   

IR 0.611 0.755 0.740 0.850 0.634 0.577   
SA × IR 0.722 0.650 0.167 0.971 0.714 0.596 

a Time is shown as monthly interval after irrigation treatment started for 2 months. PH: Plant height, SD: stem diameter, SPAD: 

chlorophyll content index, Pn: photosynthesis, gs: stomatal conductance, E: transpiration. * Different letters within column from the 

same factor indicate significant differences at α = 0.05 according to LSD test. 
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Table 9. Source of variations and P-values from ANOVA on bell pepper year-1 yield in Uvalde 

Source of variation Early harvest       Total harvest       

Fancy No.1 MY Cull TY Fancy No.1 MY Cull TY 

SA 0.082 0.147 0.033 0.022 0.019 0.601 0.525 0.932 0.524 0.943 

IR 0.014 0.783 0.021 0.883 0.048 < 0.001 0.089 < 0.001 0.537 < 0.001 

SA × IR 0.856 0.808 0.834 0.824 0.795 0.453 0.728 0.436 0.930 0.476 

SA: soil amendment; IR: deficit irrigation; Early harvest: first 3 harvests; Total harvest: 6 harvests; MY: marketable yield, sum of US 

Fancy and No.1; TY: total yield, sum of marketable and cull yield.  

 

 

 

 
 

Figure 6. Bell pepper year-1 early and total harvest yield in response to soil amendment treatment in Uvalde. 

MY: marketable yield, sum of US Fancy and No.1; TY: total yield, sum of marketable and cull yield. * indicated significant difference 

between HS and control at α = 0.05 based on LSD test. 
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Figure 7. Bell pepper year-1 early and total harvest yield in response to different irrigation levels in Uvalde. 

The percentage of irrigation levels is based on bell pepper evapotranspiration (ET) demands. MY: marketable yield, sum of US Fancy and 

No.1; TY: total yield, sum of marketable and cull yield. Different letters among irrigation levels indicate significantly different at α = 0.05 

based on LSD test. 
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Table 10. Bell pepper year-1 quality in Uvalde 

 

 

 

Table 11. Summary of plant root traits under soil amendment (SA) and irrigation (IR) treatments 

in year-1 field at Uvalde 

Source   RL RSA RAD RDW 

  m cm2 mm g 

SA Control 9.75 116.59 0.38 a * 0.26  
HS 10.16 116.37 0.36 b 0.26 

      
IR 25% 10.12 113.22 0.35 b 0.21  

50% 9.30 116.01 0.39 a 0.30  
75% 9.59 109.39 0.36 b 0.24  
100% 10.82 127.29 0.38 ab 0.28 

      
P-value SA 0.781 0.990 0.049 0.923  

IR 0.888 0.903 0.044 0.639 

  SA × IR 0.751 0.823 0.294 0.947 

RL: root length; RSA: root surface area; RAD: root average diameter; RDW: root dry weight. 

* Different letters within column from the same factor indicate significant differences at α = 

0.05 according to LSD test. 

 

 

Source   o Brix Firmness 

KgF 

Wall thickness 

mm 

Ascorbic acid 

µg/g FW 

SA Control 3.64 1.51 6.44 828.3  
HS 3.64 1.52 6.19 837.3 

      
IR 25% 3.92 a * 1.57 6.51 949.2  

50% 3.71 a 1.48 6.07 832.6  
75% 3.64 ab 1.45 6.00 749.8  
100% 3.29 b 1.54 6.68 800.8 

      
P-value SA 0.979 0.834 0.248 0.918  

IR 0.050 0.590 0.082 0.353 

  SA × IR 0.759 0.949 0.899 0.870 

FW: fresh weight. * Different letters within column from the same factor indicate significant 

differences at α = 0.05 according to LSD test. 
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Table 12. Summary of soil pH, electrical conductivity (EC), chemical component analysis under soil amendment (SA) and irrigation (IR) 

treatments in year-1 field at Uvalde 

Source   pH EC NO3-N P K Ca Mg S Na 

   umhos/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 

SA Control 8.1 576 10.5 69 891 16750 415 14 29  
HS 8.0 592 9.4 68 879 14989 393 12 30 

           
IR 25% 8.0 570 b * 9.3 64 857 15867 394 12 26  

50% 8.1 597 ab 11.0 71 927 15881 411 14 28  
75% 8.0 610 a 10.8 70 880 16191 409 13 31  
100% 8.1 560 b 8.7 68 876 15539 402 13 33 

           
P-value SA 0.076 0.219 0.364 0.755 0.663 0.151 0.273 0.316 0.802  

IR 0.599 0.044 0.445 0.290 0.314 0.985 0.925 0.602 0.164 

  SA × IR 0.647 0.076 0.513 0.935 0.677 0.978 0.942 0.838 0.975 

* Different letters within column from the same factor indicate significant differences at α = 0.05 according to LSD test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 

 

Table 13. Summary of soil respiration (SR), active bacteria (AB), total bacteria (TB), active fungi (AF) and total fungi (TF) under soil 

amendment (SA) and irrigation (IR) treatments in year-1 field at Uvalde 

Source   SR AB TB AF TF 

  mg/kg CO2-C µg/g µg/g µg/g µg/g 

SA Control 34.93 26.47 782.38 10.89 140.50  
HS 36.41 25.87 802.19 8.30 136.11 

       
IR 25% 27.51 27.53 715.75 6.64 114.91  

50% 40.08 25.86 851.88 11.79 138.65  
75% 27.98 25.30 793.88 11.26 165.41  
100% 47.10 25.99 807.63 8.69 134.25 

       
P-value SA 0.890 0.665 0.652 0.319 0.784  

IR 0.499 0.697 0.193 0.467 0.189 

  SA × IR 0.677 0.307 0.143 0.969 0.635 
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c. Year-2 plant (2017) 

The year 2 field experiment was aimed to test the long-term effects of HS on bell 

pepper growth and physiology performances. Due to similar results between severe and 

mild deficit (25% and 50% ET) irrigation from year-1 experiment, for year-2, we 

removed the 25% and kept the 50% irrigation as a low irrigation level. Similarity, since 

in year-1, there were no differences between moderate deficit and well-watered (75% 

and 100% ET) irrigation, we removed the 75% and kept the 100% irrigation as well-

watered irrigation level. 

Growth and physiology - The results (Table 14) showed that HS significantly 

increased plant height at the fruiting stage 2 months after irrigation treatment started 

(ITS), but decreased plant chlorophyll content (SPAD) and photosynthesis of the 

flowering period 1 month after ITS. The early decrease in transpiration observed in year-

1 was not detected in year-2, which might indicate that the reduction in leaf gas 

exchange due to HS application are diminished in year-2. Deficit irrigation did not have 

effects on bell pepper growth and physiology performances. 

Yield and quality - Since there were no significant interactions for yield between 

soil amendment and irrigation levels (Table 15), the effects of soil amendment and 

irrigation were analyzed separately. The results indicated that HS significantly increased 

bell pepper early yield of No.1 size fruits by 81.4 % compared to control, while early 

marketable and total yield increased numerically but not statistically by 5.5% and 6.4%, 

respectively. For total harvest, HS numerically increased marketable and total yield by 

9.1% and 8.0%, respectively (Figure 8). In terms of irrigation, deficit (50% ET) 
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treatment did not affect early harvest yield, but it decreased marketable and total yield 

from total harvest by 11.9% and 11.4% compared to well-watered (100% ET) treatment 

(Figure 9). Table 16 showed bell pepper quality from the Uvalde year-2 experiment. 

Overall, HS did not affect fruit quality, while low irrigation increased fruit sugar content 

(o Brix) (P-value = 0.05) and decreased wall thickness (P-value = 0.08). 

Root development - Root length, surface area and dry weight were numerically 

decreased by HS application in year-2, while HS also decreased root average diameter 

which was consistent with year-1. In terms of irrigation, all root parameters were 

decreased by deficit (50% ET) treatment, especially root dry biomass decreased by 

32.6% compared to well-watered treatment (Table 17). 

d. Year-2 soil (2017) 

HS significantly increased soil electrical conductivity, nitrogen and organic 

carbon content by 28.8%, 40.7% and 20.4%, respectively (Table 18). Regarding soil 

microbial activity, HS significantly increased active bacteria population, and although 

not statistically significant, HS also increased soil respiration by two-fold, which might 

due to the promotion of total fungi population (115.9%). Low irrigation decreased soil 

total bacteria and fungi population, although not statistically significant (Table 19). 
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Table 14. Summary of morphological and physiological traits of bell pepper grown in year-2 experiment at Uvalde 

Time Source   PH SD SPAD Pn gs E 

   cm mm  μmol m-2 s-1 mol m-2 s-1 mmol m-2 s-1 

1 SA Control 40.13 11.43 62.63 a * 18.29 a 0.70 13.20   
HS 42.04 11.84 58.34 b 16.81 b 0.60 12.32 

          
IR 50% 41.29 11.75 60.83 18.05 0.66 13.06   

100% 40.88 11.51 60.14 17.05 0.64 12.46 

          
P-value SA 0.077 0.403 0.006 0.020 0.153 0.138   

IR 0.696 0.612 0.643 0.108 0.749 0.315 

    SA × IR 0.639 0.885 0.144 0.164 0.143 0.438 

2 SA Control 52.96 b 13.76 49.99 17.67 0.68 8.88   
HS 56.13 a 14.47 49.61 17.17 0.75 9.02 

         
 

IR 50% 53.04 14.38 50.83 18.07 0.69 8.83   
100% 56.04 13.85 48.78 16.77 0.74 9.07 

          
P-value SA 0.047 0.125 0.888 0.618 0.208 0.711   

IR 0.059 0.254 0.441 0.203 0.380 0.522 

    SA × IR 0.312 0.165 0.325 0.896 0.915 0.938 

Time is shown as monthly interval after deficit irrigation started for 2 months. PH: Plant height, SD: stem diameter, SPAD: chlorophyll 

content index, Pn: photosynthesis, gs: stomatal conductance, E: transpiration. * Different letters within column from the same factor indicate 

significant differences at α = 0.05 according to LSD test. 
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Table 15. Source of variations and P-values from ANOVA on bell pepper year-2 yield in Uvalde 

Source of variation Early harvest       Total harvest       

Fancy No.1 MY Cull TY Fancy No.1 MY Cull TY 

SA 0.427 0.003 0.374 0.670 0.448 0.469 0.161 0.527 0.457 0.480 

IR 0.401 0.186 0.677 0.763 0.947 0.422 0.390 0.366 0.157 0.275 

SA × IR 0.229 0.700 0.171 0.765 0.515 0.304 0.444 0.345 0.601 0.359 

SA: soil amendment; IR: deficit irrigation; Early harvest: first 2 harvests; total harvest: 5 harvests; MY: marketable yield, sum of Fancy and 

No.1 yield; TY: total yield, sum of marketable and cull yield.  
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Figure 8. Bell pepper year-2 early and total harvest yield in response to soil amendment 

treatment in Uvalde. 

MY: marketable yield, sum of Fancy and No.1 yield; TY: total yield, sum of marketable and cull 

yield. * indicated significantly different between HS and control at α = 0.05 based on LSD test. 

 

 

 

 

 

Figure 9. Bell pepper year-2 early and total harvest yield in response to different irrigation levels 

in Uvalde. 

The percentage of irrigation levels is based on bell pepper evapotranspiration (ET) demands. 

MY: marketable yield, sum of US Fancy and No.1; TY: total yield, sum of marketable and cull 

yield. 
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Table 16. Bell pepper year-2 quality in Uvalde 

 

 

 

 
Table 17. Summary of plant root traits under soil amendment (SA) and irrigation (IR) treatments 

in year-2 field at Uvalde 

Source   RL RSA RAD RDW 

  m cm2 mm g 

SA Control 14.07 173.55 0.39 0.42  
HS 11.63 138.69 0.37 0.35 

      

IR 50% 11.73 136.57 0.37 0.31  
100% 13.97 175.67 0.40 0.46 

      

P-value SA 0.078 0.107 0.434 0.467  
IR 0.100 0.075 0.258 0.161 

  SA × IR 0.111 0.416 0.303 0.712 

RL: root length; RSA: root surface area; RAD: root average diameter; RDW: root dry weight. 

 

Source   o Brix Firmness 

KgF 

Wall thickness 

mm 

SA Control 3.64 1.51 6.44  
HS 3.64 1.52 6.19 

     
IR 50% 3.71 a * 1.48 6.07  

100% 3.29 b 1.54 6.68 

     
P-value SA 0.979 0.834 0.248  

IR 0.050 0.590 0.082 

  SA × IR 0.759 0.949 0.899 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 
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Table 18. Summary of soil pH, electrical conductivity (EC), chemical component analysis and organic carbon (OC) under soil amendment 

(SA) and irrigation (IR) treatments in year-2 field at Uvalde 

Source   pH EC NO3-N P K Ca Mg S Na OC 

      umhos/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % 

SA Control 8.2 a * 403 b 5.9 b 64 868 12723 309 29 58 1.37 b  
HS 8.1 b 519 a 8.3 a 68 938 12299 313 31 54 1.65 a 

            
IR 50% 8.2 409 b 7.4 67 900 12235 306 24 b 40 b 1.49  

100% 8.1 513 a 6.8 64 906 12787 317 35 a 72 a 1.53 

            
P-value SA 0.034 0.018 0.020 0.225 0.479 0.380 0.682 0.569 0.471 0.039  

IR 0.346 0.031 0.488 0.442 0.951 0.260 0.222 0.007 0.000 0.753 

  SA × IR 0.748 0.957 0.900 0.381 0.619 0.997 0.950 0.798 0.818 0.790 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 
 

 

 

 

Table 19. Summary of soil respiration (SR), active bacteria (AB), total bacteria (TB), active fungi (AF) and total fungi (TF) under soil 

amendment (SA) and irrigation (IR) treatments in year-2 field at Uvalde. 

Source   SR AB TB AF TF 

    mg/kg CO2-C µg/g µg/g µg/g µg/g 

SA Control 26.19 11.56 b * 1259.06 1.55 74.84  
HS 54.80 17.94 a 1115.71 1.64 159.79 

       
IR 50% 48.09 14.51 1120.13 1.49 84.37  

100% 32.90 14.99 1254.63 1.70 150.26 

       
P-value SA 0.116 0.032 0.404 0.932 0.304  

IR 0.380 0.853 0.432 0.831 0.419 

  SA × IR 0.242 0.729 0.453 0.110 0.357 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 
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e. New year-1 plant (2017) 

Growth and physiology - The new year-1 (2017) field experiment was aimed to 

repeat and validate the results from year-1 (2016). At the fruiting period 2 months after 

irrigation treatment started (ITS), HS significantly increased plant stem diameter with 

the well-watered treatment. At the flowering period 1 month after ITS, HS significantly 

decreased leaf transpiration while maintaining photosynthesis to the same level as 

control. In terms of irrigation, deficit stress significantly decreased plant photosynthesis 

rate by 15.6% and gas exchange performances (stomatal conductance) by 44.6% in late 

growth (fruiting stage) compared to well-watered treatment (Table 20). 

Yield and quality - Table 21 shows the lack of significant interaction between soil 

amendment and irrigation levels for yield and fruit quality. Therefore, data was 

combined to investigate the effects of soil amendment and irrigation separately. 

Compared to control, plants grown in HS treated soil had significant decreases in 

marketable and total yield from early harvest: 22.2% and 19.5%, respectively, which 

was opposite to what we found in year-1 (2016). However, these significant reductions 

in yield were not observed from total harvest (Figure 10). Deficit irrigation significantly 

decreased early yield with a decrease in Fancy fruit size yield by 35.2% compared to 

well-watered irrigation. When combining all harvest, deficit stress decreased both Fancy 

and No.1 fruit yield by 43.0% and 21.4%, respectively (Figure 11). HS and irrigation did 

not affect bell pepper quality (Table 22), except that HS decreased the sugar content 

(3.98 o Brix) of bell pepper especially in well-watered irrigation compared to the control 

(4.45 o Brix).  
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Table 20. Summary of morphological and physiological traits of bell pepper grown in new year-1 experiment at Uvalde 

Time Source   PH SD SPAD Pn gs E 

      cm mm   μmol m-2 s-1 mol m-2 s-1 mmol m-2 s-1 

1 SA Control 41.13 11.67 62.24 19.66 0.59 10.43 a *   
HS 40.21 11.84 59.98 19.55 0.60 9.31 b 

          
IR 50% 41.21 11.94 61.03 19.24 0.57 9.65   

100% 40.13 11.57 61.20 19.97 0.62 10.09 

          
P-value SA 0.385 0.704 0.145 0.816 0.753 0.005   

IR 0.305 0.415 0.911 0.135 0.360 0.241 

    SA × IR 0.634 0.416 0.911 0.026 0.123 0.105 

2 SA Control 56.42 13.71 b 62.89 18.99 0.59 9.38   
HS 54.75 15.10 a 61.42 18.46 0.55 9.87 

          
IR 50% 55.00 13.99 63.40 17.14 b 0.41 b 8.07 b   

100% 56.17 14.81 60.91 20.31 a 0.74 a 11.18 a 

          
P-value SA 0.297 0.004 0.429 0.413 0.596 0.363   

IR 0.464 0.080 0.184 < 0.001 < 0.001 < 0.001 

    SA × IR 0.297 0.022 0.365 0.273 0.510 0.324 

Time is shown as monthly interval after deficit irrigation started for 2 months. PH: Plant height, SD: stem diameter, SPAD: chlorophyll 

content index, Pn: photosynthesis, gs: stomatal conductance, E: transpiration. * Levels not connected by same letter are significantly 

different at α = 0.05 based on LSD test. 
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Table 21. Source of variations and P-values from ANOVA on bell pepper new year-1 yield in Uvalde 

Source of 

variation 

Early harvest       Total harvest       

Fancy No.1 MY Cull TY Fancy No.1 MY Cull TY 

SA 0.092 0.173 0.012 0.805 0.021 0.298 0.506 0.078 0.918 0.144 

IR 0.011 0.816 0.026 0.943 0.040 0.032 0.003 < 0.001 0.079 < 0.001 

SA × IR 0.958 0.523 0.432 0.274 0.333 0.968 0.679 0.735 0.704 0.873 

SA: soil amendment; IR: deficit irrigation; Early harvest: first 2 harvests; total harvest: 5 harvests; MY: marketable 

yield, sum of Fancy and No.1 yield; TY: total yield, sum of marketable and cull yield. 
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Figure 10. Bell pepper new year-1 early and total harvest yield in response to soil amendment 

treatment in Uvalde. 

MY: marketable yield, sum of Fancy and No.1 yield; TY: total yield, sum of marketable and cull 

yield. * indicated significantly different between HS and control at α = 0.05 based on LSD test. 

 

 

 

  
Figure 11. Bell pepper new year-1 early and total harvest yield in response to different irrigation 

levels in Uvalde. 

The percentage of irrigation levels is based on bell pepper evapotranspiration (ET) demands. 

MY: marketable yield, sum of Fancy and No.1 yield; TY: total yield, sum of marketable and cull 

yield. * indicated significantly different between 50% and 100% irrigation at α = 0.05 based on 

LSD test. 
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Table 22. Bell pepper new year-1 quality in Uvalde 

 

 

 

 

Table 23. Summary of plant root traits under soil amendment (SA) and irrigation (IR) treatments 

in new year-1 field at Uvalde 

Source   RL RSA RAD RDW 

  m cm2 mm g 

SA Control 11.07 115.98 b * 0.33 0.24  
HS 14.06 158.33 a 0.36 0.45 

      
IR 50% 12.29 142.00 0.37 a 0.39  

100% 12.84 132.30 0.32 b 0.30 

      
P-value SA 0.064 0.047 0.150 0.089  

IR 0.709 0.612 0.025 0.422 

  SA × IR 0.372 0.281 0.280 0.403 

RL: root length; RSA: root surface area; RAD: root average diameter; RDW: root dry weight. 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 

 

 

 

Root development - Roots from plants treated with HS had significantly higher 

surface area than control; in addition, HS also increased root length and dry weight 

although not statistically significant. Deficit irrigation increased root average diameter, 

but did not affect other root traits such as root length and root surface area (Table 23).  

 

 

Source   o Brix Firmness 

KgF 

Wall thickness 

mm 

SA Control 4.31 2.07 5.63  
HS 4.14 2.03 5.28 

     
IR 50% 4.24 1.90 5.35  

100% 4.21 2.20 5.56 

     
P-value SA 0.187 0.864 0.416  

IR 0.843 0.166 0.624 

  SA × IR 0.037 0.162 0.629 
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f. New year-1 soil (2017) 

HS and deficit irrigation did not affect soil chemical changes except that HS 

increased organic carbon content by 27.4% although not significant. Interestingly, well-

watered soil had slightly higher organic carbon (19.2%) than deficit irrigation (Table 

24). 
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Table 24. Summary of soil pH, electrical conductivity (EC), chemical component analysis and organic carbon (OC) under soil amendment 

(SA) and irrigation (IR) treatments in new year-1 field at Uvalde 

Source   pH EC NO3-N P K Ca Mg S Na OC 

      umhos/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % 

SA Control 8.0 661 87 57 690 11957 210 28 31 1.82  
HS 8.0 664 62 42 666 11580 211 25 44 2.32 

            
IR 50% 8.1 542 55 47 681 11804 211 26 36 1.85  

100% 8.0 783 94 52 675 11734 210 27 40 2.29 

            
P-value SA 0.707 0.993 0.691 0.230 0.633 0.409 0.911 0.217 0.105 0.079  

IR 0.265 0.381 0.546 0.678 0.891 0.875 0.914 0.611 0.560 0.113 

  SA × IR 0.793 0.326 0.419 0.458 0.467 0.383 0.644 0.998 0.973 0.247 
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Results - Weslaco 

a. Year-1 plant (2016) 

Growth and physiology - Based on the results from Table 25, after irrigation 

treatment started (ITS), HS significantly decreased bell pepper leaf stomatal conductance 

and transpiration especially in severe and mild deficit treatments (25% and 50% ET) at 

the fruiting stage, while maintaining photosynthesis to the same level as control. 

Different irrigation levels did not affect plant growth and physiology performances. 

Yield and quality - Table 26 shows the lack of significant interaction between soil 

amendment and irrigation levels for yield and quality. HS did not affect early yield, and 

only numerically increased total harvest yield by 7.4%. In terms of irrigation, there were 

no significant reduction in yield from deficit irrigation regardless of early or total harvest 

(Figure 12). Overall, HS and irrigation did not affect bell pepper quality, except that the 

severe deficit irrigation had a numerical but not significant increase in bell pepper 

ascorbic acid concentration (Table 27).  

Root development - HS significantly increased root dry weight by 29.6% 

compared to control, while they numerically increased root length and root surface area; 

irrigation rates did not have a clear effect on root performance (Table 28). 
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Table 25. Summary of morphological and physiological traits of bell pepper grown in year-1 experiment at Weslaco 

Time Source   PH SD SPAD Pn gs E 

      cm mm   μmol m-2 s-1 mol m-2 s-1 mmol m-2 s-1 

1 SA Control 52.94 16.28 68.19 20.71 0.30 a * 5.47 a   
HS 53.44 15.72 72.17 20.07 0.24 b 4.69 b 

          
IR 25% 54.56 16.56 ab 67.71 20.87 0.28 5.21   

50% 53.81 14.81 c 70.96 19.73 0.27 4.93   
75% 52.38 17.09 a 70.19 20.68 0.27 5.27   
100% 52.00 15.54 bc 71.85 20.27 0.26 4.90 

          
P-value SA 0.813 0.199 0.065 0.317 0.007 0.048   

IR 0.803 0.004 0.533 0.596 0.838 0.855   
SA × IR 0.994 0.887 0.301 0.010 0.003 0.148 

2 SA Control 62.56 18.76 57.37 11.86 0.21 3.55   
HS 58.59 18.46 58.48 11.33 0.19 3.45 

          
IR 25% 63.94 19.44 57.99 11.08 0.17 3.13   

50% 54.75 18.35 57.54 11.86 0.21 3.68   
75% 63.25 18.17 57.04 11.58 0.20 3.51   
100% 60.38 18.48 59.13 11.87 0.22 3.66 

          
P-value SA 0.204 0.703 0.604 0.604 0.706 0.840   

IR 0.158 0.675 0.910 0.939 0.745 0.835 

    SA × IR 0.375 0.978 0.965 0.975 0.885 0.827 

Time is shown as monthly interval after deficit irrigation started for 2 months. PH: Plant height, SD: stem diameter, SPAD: chlorophyll 

content index, Pn: photosynthesis, gs: stomatal conductance, E: transpiration. * Levels not connected by same letter are significantly 

different at α = 0.05 based on LSD test. 
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Table 26. Source of variations and P-values from ANOVA on bell pepper year-1 yield in 

Weslaco 

Source of variation Early harvest Total harvest 

 TY TY 

SA 0.454 0.076 

IR 0.994 0.454 

SA × IR 0.996 0.787 

SA: soil amendment; IR: deficit irrigation; Early harvest: first 2 harvests; Total harvest: 4 

harvests; TY: total yield, sum of marketable and cull yield.  

 

 

 

   
 

Figure 12. Bell pepper year-1 yield in response to different soil amendment and different 

irrigation levels in Weslaco. 

The percentage of irrigation levels is based on bell pepper evapotranspiration (ET) demands; 

TY: total yield.  

 

 

 
Table 27. Bell pepper year-1 quality in Weslaco 

Source   o Brix Firmness Wall thickness Ascorbic acid 

      KgF mm µg/g FW 

SA Control 3.64 1.82 4.81 779.72  
HS 3.75 1.98 4.99 869.19 

      
IR 25% 3.59 1.80 4.89 1092.75  

50% 3.68 2.23 5.30 786.27  
75% 3.54 1.77 4.62 526.43  
100% 3.99 1.81 4.79 892.38 

      
P-value SA 0.713 0.380 0.422 0.651  

IR 0.686 0.219 0.214 0.251 

  SA × IR 0.908 0.924 0.674 0.833 

. 
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Table 28. Summary of plant root traits under soil amendment (SA) and irrigation (IR) treatments 

in year-1 field at Weslaco 

Source   RL RSA RAD RDW 

    m cm2 mm g 

SA Control 9.67 103.90 0.34 0.19 b *  
HS 11.39 126.47 0.35 0.27 a 

      
IR 25% 11.28 121.78 0.34 0.21  

50% 9.37 98.88 0.34 0.18  
75% 11.08 121.33 0.35 0.26  
100% 10.38 118.74 0.37 0.26 

      
P-value SA 0.108 0.052 0.312 0.023  

IR 0.562 0.416 0.308 0.207 

  SA × IR 0.327 0.178 0.641 0.414 

RL: root length; RSA: root surface area; RAD: root average diameter; RDW: root dry weight. 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 

 

 

 

b. Year-1 soil (2016) 

At the end of the experiment, HS increased soil nitrate-nitrogen content by 166% 

compared to control (P-value = 0.067). HS also significantly decreased active fungi 

population by 37.8%, which might cause the reduction in soil respiration. Irrigation did 

not significantly affect soil chemical and microbial properties. However, an interesting 

pattern of soil respiration was found under different irrigation levels: from severe to 

well-watered treatments, soil respiration was increased until moderate deficit (75% ET), 

then decreased in well-watered (100% ET) treatment (Tables 29, 30). 
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Table 29. Summary of soil pH, electrical conductivity (EC), chemical component analysis under soil amendment (SA) and irrigation (IR) 

treatments in year-1 field at Weslaco 

Source   pH EC NO3-N P K Ca Mg S Na 

      umhos/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 

SA Control 7.9 707 5.9 40 416 4481 324 85 139  
HS 7.9 710 15.7 38 385 4255 316 85 143 

           
IR 25% 7.9 714 6.8 42 399 4359 323 80 141  

50% 7.9 709 9.8 38 404 4473 324 92 147  
75% 8.0 680 17.2 39 406 4313 318 80 124  
100% 7.9 731 9.5 38 392 4326 316 88 151 

           
P-value SA 0.180 0.950 0.067 0.751 0.095 0.124 0.476 0.996 0.711  

IR 0.269 0.941 0.524 0.853 0.938 0.851 0.923 0.826 0.265 

  SA × IR 0.811 0.905 0.911 0.746 0.879 0.976 0.939 0.775 0.507  
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Table 30. Summary of soil respiration (SR), active bacteria (AB), total bacteria (TB), active fungi (AF) and total fungi (TF) under soil 

amendment (SA) and irrigation (IR) treatments in year-1 field at Weslaco 

Source   SR AB TB AF TF 

    mg/kg CO2-C µg/g µg/g µg/g µg/g 

SA Control 7.95 28.90 551.69 8.18 a * 132.57  
HS 5.31 29.38 560.75 5.09 b 142.41 

       
IR 25% 4.69 30.16 592.75 7.56 167.38  

50% 6.94 27.68 525.75 5.98 139.25  
75% 8.94 28.76 545.38 6.65 129.33  
100% 5.95 29.95 561.00 6.36 114.00 

       
P-value SA 0.102 0.778 0.786 0.018 0.454  

IR 0.287 0.699 0.539 0.816 0.050 

  SA × IR 0.369 0.585 0.755 0.862 0.779 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 
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c. Year-2 plant (2017) 

Growth and physiology - Based on the results from Table 31, HS significantly 

decreased bell pepper leaf gas exchange as well as the rate of photosynthesis at the 

fruiting stage 2 months after irrigation treatment started (ITS). HS also decreased plant 

height at the same period (P-value = 0.061). In terms of irrigation, deficit irrigation 

decreased plant chlorophyll content (SPAD) at the flowering stage 1 month after ITS, 

while it did not affect leaf gas exchange regardless of plant growth periods. 

Yield and quality - There were no significant interactions between soil 

amendment and irrigation levels for total harvest yield (Table 32). HS treated field had a 

13.7% lower marketable yield than control, which mainly because of the significantly 

reduction (43.8%) in No.1 size fruit yield. However, HS increased Fancy size fruit yield 

by 34.1% compared to control. Deficit irrigation (50% ET) reduced marketable yield by 

12.5% compare to well-watered (100% ET) treatment, but the negative effect was not 

significant (Figure 13). In terms of quality, HS significantly increased the wall thickness 

of bell pepper in deficit irrigation (4.89 mm) compared to control (4.25 mm), while had 

no effects in well-watered treatment (Table 33).  

Root development - HS significantly increased root dry weight by 54.2%, which 

was consistent with the results from year-1, and the increase in root biomass especially 

happened in well-watered treatment (0.45 g) compared to control (0.13 g). HS also 

increased root length and surface area although the promotion was not statistically 

significant. Deficit irrigation did not affect root performance (Table 34). 
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Table 31. Summary of morphological and physiological traits of bell pepper grown in year-2 experiment at Weslaco 

Time Source   PH SD SPAD Pn gs E 

      cm mm   μmol m-2 s-1 mol m-2 s-1 mmol m-2 s-1 

1 SA Control 43.44 13.92 63.06 11.56 0.23 6.78   
HS 44.31 14.08 63.39 12.11 0.22 6.64 

          
IR 50% 43.94 13.30 60.44 b * 12.05 0.23 6.79   

100% 43.81 14.71 66.19 a 11.62 0.22 6.64 

          
P-value SA 0.698 0.855 0.891 0.572 0.871 0.787   

IR 0.956 0.124 0.028 0.660 0.769 0.764 

    SA × IR 0.657 0.769 0.372 0.743 0.390 0.410 

2 SA Control 62.38 18.43 48.31 8.94 a 0.22 a 6.50 a   
HS 56.38 16.76 51.64 6.05 b 0.11 b 3.83 b 

          
IR 50% 62.13 17.95 48.09 7.83 0.16 4.94   

100% 56.63 17.24 51.85 7.16 0.17 5.40 

          
P-value SA 0.061 0.134 0.208 0.003 0.011 0.003   

IR 0.084 0.517 0.157 0.449 0.643 0.572 

    SA × IR 0.808 0.913 0.987 0.916 0.971 0.976 

Time is shown as monthly interval after deficit irrigation started for 2 months. PH: Plant height, SD: stem diameter, SPAD: chlorophyll 

content index, Pn: photosynthesis, gs: stomatal conductance, E: transpiration. * Levels not connected by same letter are significantly 

different at α = 0.05 based on LSD test. 
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Table 32. Source of variations and P-values from ANOVA on bell pepper year-2 yield in 

Weslaco 

Source of variation Total harvest   

 Fancy No.1 MY 

SA 0.202 0.004 0.072 

IR 0.330 0.718 0.098 

SA × IR 0.540 0.529 0.816 

SA: soil amendment; IR: deficit irrigation; Total harvest: a 1-time harvest. MY: marketable 

yield, sum of Fancy and No.1 yield. 

 

 

 
 

 

 
 

 
 

 
 

Figure 13. Bell pepper year-2 yield in response to different soil amendment and irrigation levels 

in Weslaco. 

The percentage of irrigation levels is based on bell pepper evapotranspiration (ET) demands; 

MY: marketable yield, sum of Fancy and No.1 yield. * Levels not connected by same letter are 

significantly different at α = 0.05 based on LSD test. 
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Table 33. Bell pepper year-2 quality in Weslaco 

Source   o Brix Firmness Wall thickness 

      KgF mm 

SA Control 5.66 1.40 4.71  
HS 5.53 1.34 4.96 

     
IR 50% 5.60 1.38 4.57 b *  

100% 5.59 1.36 5.10 a 

     
P-value SA 0.607 0.629 0.129  

IR 0.962 0.868 0.006 

  SA × IR 0.124 0.473 0.029 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 
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Table 34. Summary of plant root traits in year-2 field at Weslaco 

Source   RL RSA RAD RDW 

    m cm2 mm g 

SA Control 8.24 92.91 0.35 0.24 b *  
HS 8.97 106.14 0.38 0.37 a 

      
IR 50% 9.40 108.99 0.37 0.32  

100% 7.81 90.06 0.36 0.29 

      
P-value SA 0.611 0.404 0.167 0.035  

IR 0.281 0.242 0.781 0.613 

  SA × IR 0.251 0.084 0.175 0.006 

RL: root length; RSA: root surface area; RAD: root average diameter; RDW: root dry weight. * Levels not connected by same letter are 

significantly different at α = 0.05 based on LSD test. 

 

 

 

Table 35. Summary of soil pH, electrical conductivity (EC), chemical component analysis and organic carbon (OC) under soil amendment 

(SA) and irrigation (IR) treatments in year-2 field at Weslaco 

Source   pH EC NO3-N P K Ca Mg S Na OC 

      umhos/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % 

SA Control 8.1 267 6.0 56 534 a * 5640 381 61 87 0.43 b  
HS 8.2 261 7.1 48 474 b 5394 365 49 94 0.64 a 

            
IR 50% 8.2 268 6.7 51 497 5553 371 49 88 0.58  

100% 8.2 260 6.4 52 510 5481 375 61 94 0.49 

            
P-value SA 0.220 0.827 0.242 0.103 0.019 0.074 0.108 0.509 0.597 0.030  

IR 0.740 0.779 0.787 0.819 0.548 0.568 0.609 0.514 0.650 0.294 

  SA × IR 0.604 0.150 0.971 0.887 0.027 0.467 0.903 0.479 0.197 0.265 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 
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Table 36. Summary of soil respiration (SR), active bacteria (AB), total bacteria (TB), active 

fungi (AF) and total fungi (TF) under soil amendment (SA) and irrigation (IR) treatments in 

year-2 field at Weslaco 

Source   SR AB TB AF TF 

    mg/kg CO2-C µg/g µg/g µg/g µg/g 

SA Control 19.94 16.08 513.18 2.64 16.01  
HS 40.19 16.79 624.97 3.27 21.37 

       
IR 50% 24.80 15.98 567.57 4.22 16.84  

100% 35.33 16.89 570.59 1.69 20.54 

       
P-value SA 0.120 0.763 0.107 0.723 0.181  

IR 0.396 0.699 0.963 0.179 0.343 

  SA × IR 0.593 0.057 0.067 0.350 0.565 

 

 

 

d. Year-2 soil (2017) 

HS significantly increased soil organic carbon by 48.8%, but decreased 

potassium content especially in well-watered condition (453 mg/kg) compared to control 

(568 mg/kg). Although not statistically significant, HS also increased soil respiration by 

2-fold, total bacteria population by 21.8% and total fungi population by 33.6%. Deficit 

irrigation did not affect soil chemical properties, but it decreased soil respiration by 

29.8% although not statistically significant (Tables 35, 36). 

e. New year-1 plant (2017) 

Growth and physiology - Based on the results from Table 37, HS slightly 

decreased leaf gas exchange at the fruiting stage 2 months after ITS. Although not 

statistically significant compared to control, HS also increased plant height at the same 

period (P-value = 0.057). Deficit irrigation did not affect plant morphological and 

physiological traits, except that deficit stress decreased plant height at the fruiting stage 

(P-value = 0.07).  
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Yield and quality - There was a significant interaction between soil amendment 

and irrigation levels on Fancy size fruit yield from total harvest (Table 38). HS 

significantly increased Fancy size fruit yield by 71.9% compared to control especially 

under well-watered (100% ET) treatment. Deficit irrigation did not affect marketable 

yield. In addition, HS and deficit irrigation did not have significant impacts on bell 

pepper quality (Tables 39). 

Root development - Although not statistically significant, roots from HS treated 

plants had lower root length and surface area, but higher root dry weight compared to 

control. Deficit irrigation had numerically lower root length, surface area and dry weight 

compared to well-watered treatment (Table 40). 

f. New year-1 soil (2017) 

HS slightly increased soil organic carbon (33.3%) compared to control, while had 

no effects on other soil chemical properties. In terms of deficit irrigation, it significantly 

increased soil pH but decreased magnesium content in soil (Table 41). 
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Table 37. Summary of morphological and physiological traits of bell pepper grown in new year-1 experiment at Weslaco 

Time Source   PH SD SPAD Pn gs E 

      cm mm   μmol m-2 s-1 mol m-2 s-1 mmol m-2 s-1 

1 SA Control 47.13 14.37 70.13 12.29 0.23 7.40   
HS 45.44 13.88 70.24 11.30 0.21 6.90 

          
IR 50% 47.06 14.27 70.09 12.40 0.24 7.51   

100% 45.50 13.97 70.28 11.19 0.21 6.78 

          
P-value SA 0.410 0.433 0.945 0.275 0.320 0.285   

IR 0.445 0.638 0.916 0.187 0.087 0.125   
SA × IR 0.194 0.908 0.390 0.164 0.093 0.067 

2 SA Control 57.31 17.36 61.95 7.22 0.14 5.57   
HS 62.25 18.09 62.52 5.85 0.11 4.60 

          
IR 50% 57.44 17.85 63.56 6.68 0.13 5.23   

100% 62.13 17.61 60.91 6.40 0.12 4.95 

          
P-value SA 0.057 0.371 0.762 0.148 0.135 0.125   

IR 0.070 0.770 0.165 0.762 0.640 0.657 

    SA × IR 0.940 0.977 0.923 0.588 0.224 0.262 

Time is shown as monthly interval after deficit irrigation started for 2 months. PH: Plant height, SD: stem diameter, SPAD: chlorophyll 

content index, Pn: photosynthesis, gs: stomatal conductance, E: transpiration. 
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Table 38. Source of variations and P-values from ANOVA on bell pepper new year-1 yield in 

Weslaco 

Source of variation Total harvest   

 Fancy No.1 MY 

SA 0.050 0.842 0.415 

IR 0.497 0.392 0.639 

SA × IR 0.042 0.966 0.507 

SA: soil amendment; IR: deficit irrigation; Total harvest: a 1-time harvest. MY: marketable 

yield, sum of Fancy and No.1 yield. 

 

 

 

 
 

Figure 14. Bell pepper new year-1 yield in response to the interaction of soil amendment and 

irrigation treatments in Weslaco. 

The percentage of irrigation levels is based on bell pepper evapotranspiration (ET) demands; 

MY: marketable yield, sum of Fancy and No.1 yield. Different letters among treatments indicate 

significantly different at α = 0.05 based on LSD test. 
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Table 39. Bell pepper new year-1 quality in Weslaco 

Source   o Brix Firmness Wall thickness 

      KgF mm 

SA Control 5.26 1.55 4.85  
HS 5.51 1.75 4.78 

     
IR 50% 5.23 1.78 4.82  

100% 5.55 1.53 4.81 

     
P-value SA 0.220 0.167 0.787  

IR 0.120 0.082 0.964 

  SA × IR 0.220 0.527 0.534 
 

 

 

Table 40. Summary of plant root traits in new year-1 field at Weslaco 

Source   RL RSA RAD RDW 

    m cm2 mm g 

SA Control 8.19 84.34 0.32 0.30  
HS 6.93 76.25 0.34 0.32 

      
IR 50% 7.12 73.51 0.32 0.27  

100% 7.99 87.08 0.34 0.34 

      
P-value SA 0.239 0.551 0.481 0.908  

IR 0.408 0.326 0.506 0.573 

  SA × IR 0.320 0.271 0.391 0.285 

RL: root length; RSA: root surface area; RAD: root average diameter; RDW: root dry weight. 
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Table 41. Summary of soil pH, conductivity, chemical component analysis and organic carbon (OC) under soil amendment (SA) and 

irrigation (IR) treatments in new year-1 field at Weslaco 

Source   pH Cond NO3-N P K Ca Mg S Na OC 

      umhos/cm mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % 

SA Control 8.1 215 11.9 48 543 5788 381 28 54 0.30  
HS 8.2 231 10.8 48 582 5777 385 35 68 0.40 

            
IR 50% 8.2 a * 222 11.0 47 533 5759 378 b 28 59 0.35  

100% 8.1 b 224 11.6 49 592 5806 388 a 35 62 0.35 

            
P-value SA 0.170 0.314 0.555 0.794 0.330 0.891 0.241 0.277 0.137 0.126  

IR 0.026 0.856 0.740 0.165 0.158 0.559 0.025 0.240 0.754 0.921 

  SA × IR 0.917 0.987 0.460 0.072 0.584 0.527 0.202 0.522 0.865 0.448 

* Levels not connected by same letter are significantly different at α = 0.05 based on LSD test. 
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Discussion 

The results from HS application on bell pepper growth and soil environmental 

changes showed both similarities but also differences between field and controlled 

conditions. In general, field weather conditions are more variable, which led to 

inconsistent impacts of HS application. The positive plant responses caused by HS in the 

controlled environments needed to be explored in the field for the potential future 

applications. The following discussion will mainly focus on the effects of HS on biota 

growth, crop yield, and the mitigation of water stress. 

a. Biota growth and yield 

Currently, information about the impacts of HS on vegetable crop yield is 

limited. Most of the studies were conducted under greenhouse or other controlled 

environments, and very few in field conditions. Ciarkowska et al. (2017) found that the 

high application rate (around 0.33 kg/m2 in 11 L pot with diameter 22 cm and height 30 

cm) of lignite-derived liquid HS (6% humic acids) increased celery and leek yield grown 

in greenhouse by more than 2-fold, compared to the low application rate (around 0.16 

kg/m2). Hartz and Bottoms (2010) tested 4 liquid commercial HS (6% to 11% humic 

acids), and found that HS did not appear to efficiently increase dry biomass of romaine 

lettuce (Lactuca sativae L.) grown in greenhouse (within 1 L pot), and yield of tomato 

(Lycopersicon esculentum Mill.) grown in field conditions at the application rate of 0.02 

to 0.04 kg/m2. In addition, Azcona et al. (2011) tested and compared the liquid HS 

derived from composted sewage sludge (HSS) and leonardite (HSL, an oxidation 

product of lignite) in a greenhouse environment, and they found that a higher application 
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rate of HSS (around 0.07 kg/m2 within 2 L pot) significantly increased pepper 

(Capsicum annuum L. cv. Piquillo) growth such as plant height, leaf area and net 

photosynthesis at the vegetative stage, but the final yield was similar to the control. 

Two-year experiments in Uvalde - In our bell pepper study, a similar early 

vegetative growth promotion was detected from the results in Uvalde with clay soil, 

which led to the promotion of bigger fruit yield from early harvest (Fancy size increased 

by 33.8%), as well as increasing the marketable and total yield from early harvest by 

28.9% and 32.8%, respectively. The early yield improvement is important for farmers to 

compete in high value markets. However, the early boost effect was not translated into 

improvement in the final marketable and total yield. Interestingly, the effects of HS on 

plant early growth and production promotion continued in the second year, although the 

effects diminished and only improved the No.1 size fruit yield. At the end of the 

experiment, HS treated field did not differentiate nutrient retention based on the soil 

chemical analysis as compared to control field. Within the same fertilization input, the 

total nutrient uptake in plants should be similar between control and HS treatment. 

Therefore, the early yield promotion effects of HS seemed to be caused by different 

nutrient uptake rate across the different plant growth stages – a faster uptake rate during 

early growth, following by a slower uptake in late growth. However, Azcona et al. 

(2011) concluded that the positive effect of HS on pepper growth was not related to the 

improved nutrient concentrations in plant tissues; instead, it might be associated with 

other growth-promoting factors such as auxin-like activity from HS or hormone 

generated by microbes that are entrapped in HS. But they only conducted the analysis of 
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nutrient concentration at the end of plant growth, and they used soilless growth medium. 

Therefore, we suggest future work to address the mechanisms by which HS promote 

early plant growth especially in different soil types. This will require testing nutrient 

concentration from plant tissues and soil during different growth periods.  

HS did not affect bell pepper quality in the consecutive two-year field 

experiments, which might indicate the subtle effects of HS on fruit quality composition. 

Unlike the results from year-1 in 2016, the soil microbial activity from the 

second year in 2017 was accelerated due to HS application, showing a long-term soil 

microbial improvement from HS. This might suggest positive reactions between HS and 

heterotrophic or autotrophic bacteria, which can benefit from the consumption of certain 

compounds in HS such as organic acids or amino acids (Valdrighi et al., 1996). The 

additional organic compounds can be reflected by an increase in organic carbon content 

due to HS application. At the same time, microbes can also take the advantage of HS as 

electron acceptors for their respiration to provide energy (Lovley et al., 1996). However, 

research on specific type of microbes and their influences to soil environment is still 

lacking and needs further investigation. 

Considering plant roots, HS significantly decreased average root diameter while 

maintaining root length and surface area to the same level as the control in year-1. This 

revealed that the application of HS could induce finer roots for water and nutrient 

absorption, but this effect was diminished in the second year. Based on a germination 

study of HS application (2 mM C L−1 based on humic acid content) in maize (Jindo et 

al., 2012), due to the auxin (IAA) compound contained in HS, the proton pump activity 
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in root plasma membrane was promoted, as well as the principal and lateral root growth, 

and these effects were more obvious when the source materials of HS contained more 

carboxylic and hydrophobic groups. In our study, the solid product we used was derived 

from lignite using ammonoxidation procedure (the reaction of a given substrate with 

oxygen in aqueous ammonia), in which method the carboxylic and hydrophobic contents 

will be decreased as mentioned by (Karapanagioti et al., 2010). Therefore, the 

significant effects of HS on plant root development in the field might diminish due to the 

specific type of HS we used. 

Two-year experiments in Weslaco - In the Weslaco location with sandy soil, a 

similar plant early growth promotion effect from HS was observed in the year-1 

experiment (2016). Plant root biomass accumulation also increased due to HS 

application in both years, but there was not an increase in finer roots as observed in 

Uvalde with clay soil. In terms of yield, HS slightly increased bell pepper total harvest 

yield in year-1. In the second year (2017) from one time over harvest, HS increased the 

bigger size (Fancy) yield but decreased the smaller size (No.1) yield, leading to a 

decrease in marketable yield. This indicated a similar promotion of fruit size when 

compared to Uvalde, although this yield promotion in bigger fruit could not offset the 

decrease in smaller fruit yield. It is expected that HS might be more effective to enhance 

the existing poor fertility of sandy soil; however, similar to Uvalde, the impacts of HS on 

bell pepper yield seemed not to be related to the soil nutrient changes. In another sandy 

soil study with potato, Selim et al. (2009) found an increase in crop yield in response to 

liquid HS application at a rate 120kg/ha (or 0.12 kg/m2), and the change in yield was 
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indeed related to soil nutrient concentrations change. Different observations once again 

explained that HS had inconsistent effects on soil environmental changes. 

In year-1, HS decreased soil active fungi with a slight increase in nitrogen 

content, which was in agreement with Allison et al. (2007). In year-2, HS slightly 

increased soil microbial population and activity, especially soil respiration. It has been 

reported that soil respiration reflects the soil CO2 efflux generated by soil biota activity, 

which is mainly influenced by temperature and water content of soil (Davidson et al., 

1998). In this study, the soil samples collected to perform the soil respiration test was 

from the plant rhizosphere, a zone where respiration is mainly generated by the 

decomposition of the rhizosphere carbon (Epstein, 1996). Our study showed that HS 

application increased soil organic carbon, providing more carbon resources for soil 

microbes to consume. Moreover, the decomposition rate is sensitive to soil temperature 

changes. Therefore, in further investigation, a soil temperature sensor is also highly 

recommended to install in order to observe the dynamic changes of soil temperature. 

New year-1 experiments in both locations (Uvalde and Weslaco) - Overall in 

both locations, similar plant growth promotions by HS were observed in new year-1 

(2017) experiments. In Uvalde, HS significantly increased plant stem diameter and root 

surface area, but early yield was significantly decreased by HS application, which was a 

conflicting result as compared to year-1 experiment (2016). Since the increase in early 

yield occurred only in year-1, HS did not seem to have a consistent promotive effects on 

crop yield in the clay soil conditions, which might limit the scope of HS application as 

mentioned by Hartz and Bottoms (2010). However, root growth was greatly promoted as 
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a result of HS application, which might indicate that the beneficial effects from HS were 

more translated into root development instead of shoot growth (as well as yield). In 

Weslaco, compared to the results from year-1 (2016), HS did not have obvious effects 

on plant morphology and physiology changes, but significantly increased bell pepper 

fancy size yield under well-watered condition. This was similar to the results from year-

2 (2017), except that the beneficial effects of HS on fruit development occurred under 

more appropriate environments. 

b. Mitigation of water stress  

Changing in plant physiology - In the previous study conducted under controlled 

environments, we found HS had the potential to mitigate short-term severe or mild water 

stress by reducing plant transpiration and moisture loss while keeping the photosynthesis 

rate. In the field experiment, the reductions in leaf stomatal conductance and 

transpiration caused by HS application were observed in both locations regardless of the 

growing season (year-1, year-2, new year-1), and these effects tended to occur rapidly 

after irrigation treatment started (1 month after ITS). But sometimes, such effects 

occurred along with a reduced photosynthetic rate. With limited information, we can 

only speculate that HS might have functions to catalyze some physiological reactions 

such as the change of ROS, ATP synthase, ATP and RuBP contents, or ABA 

concentration that can control leaf photosynthesis rate and stomatal conductance, which 

will ultimately affect plant photosynthesis and gas exchange performance.  

Root - Plant shoot growth is highly associated with root development. In the 

initiate hypothesis, we speculated that HS could ameliorate plant shoot performance in 
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deficit stress by significantly increasing root growth. The results of this study confirmed 

that hypothesis - HS had profound effects on plant root development regardless of 

irrigation levels. However, root samples were only obtained from the plant final growth 

stage. There are still lack of observations about the plant early root development 

responses, especially under low irrigations (sever or mild deficit stress), when leaf gas 

exchange rapidly decreased due to the HS application. Therefore, the dynamic change of 

root development across growing stages might also be worthwhile to investigate. 

Regarding to lignite-derived HS, this study provided new information on 

phenotypic changes of bell pepper grown in deficit stress. As mentioned earlier, there are 

only few studies addressing the relationship between HS and plant gas exchange 

(Azcona et al., 2011; Dunstone et al., 1988). A detailed study relating enzyme activity, 

ABA and gene expression levels for root traits would be valuable to further explore and 

elucidate specific HS effects and mechanisms on plant root and shoot physiological 

responses. 
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CHAPTER IV  

SUMMARY AND CONCLUSIONS 

 

Summary 

By testing and evaluating the effects of HS application on bell pepper growth and 

soil quality changes under controlled environment, we found HS-based soil amendment 

differentially affected bell pepper plant performance depending on soil moisture and soil 

types. HS improved plant growth under water limiting conditions due to reduced 

moisture loss and root growth stimulation. These two aspects were critical for plant 

water and nutrient absorption, and provided increased plant tolerance under water 

limited conditions. HS had short-term potential to mitigate severe water stress and 

promote plant growth under moderate stress conditions. The beneficial response of HS 

was greater in poor soil conditions (sand) than in rich soil (clay). The enhancement of 

microbial growth from HS was a key potential effect improving soil health, as well as an 

essential factor to improve plant-microbial interaction. Overall, HS application led to 

some short-term positive soil environmental changes under both controlled 

environments. 

The field experiments in two diverse locations (Uvalde, Weslaco) and two 

seasons revealed the mid- to long-term effects of HS on bell pepper growth, yield and 

quality, as well as soil chemical and microbial properties under different irrigation levels 

and soil types. HS increased bell pepper early growth and early yield in clay soil 

(Uvalde), especially due to an early yield promotion of the more valuable Fancy size 
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fruit. But in sandy soil (Weslaco), the effects on plant early growth and yield promotion 

was inconsistent among different seasons. HS had little or no effects on bell pepper 

quality regardless of soil types. HS decreased plant gas exchange performance during the 

vegetative growth period after irrigation treatment started; meanwhile, HS increased 

plant root development in both locations. In the field study, HS did not greatly change 

the soil chemical environment over two years, but increased soil organic carbon content, 

soil respiration and microbial activity, while they decreased the activity of fungi due to 

the increase in nitrogen content. 

As mentioned by Brown et al. (2014), information about chemical structure, 

molecular nature and mineral concentration of HS is still in need for further investigation 

in order to be considered for specific agricultural uses. Moreover, a detailed study 

relating enzyme activity, ABA concentration changes and root dynamics is required for a 

better understanding of the specific mechanisms of mitigation and promotion effects of 

HS. 

 

Conclusions 

In conclusion, the future potential use of lignite-derived HS as soil amendment 

could be focused on three functions: a) improve seedling vigor, especially root 

development; b) promote biota growth, improve crop yield and soil nutrient retention; 

and c) relief and mitigate plants grown under abiotic stress conditions. 
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