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ABSTRACT

This work presents, designs, models, and tests a two-phase permanent-magnet (PM)

external-rotor AC motor utilizing a Halbach array for the purpose of precision positioning.

The motor is made up of twelve coils and nine pitches of the Halbach array and controlled

through the use of a National Instruments data acquisition (DAQ) board paired with MAT-

LAB’s DAQ toolbox. The motor makes uses of the Halbach array and the lack of any

ferromagnetic materials in the system to ensure the internal magnetic field is sinusoidal.

The motor takes advantage of this fact to generate a torque that is independent of both the

rotor position and current distribution. Whereas most PM motors rely on the requirement

that the coil windings are sinusoidally distributed, this motor is able to compensate for not

having sinusoidally distributed coil windings by instead adjusting the current phase vector

based on rotor positioning.

After characterizing the motor and through the utilization of data collected during the

normal operation of the motor, and several procedures designed to account for discrepan-

cies in the timing of the DAQ board’s clocks, the response of the three embedded Hall-

effect sensors were mapped to the position of the rotor. Linear sections of this mapping

were then used to control the position of the rotor down to an accuracy of just a few hun-

dred thousandths of a degree. Additionally, due to the inherent nature and stability of the

system, the only controller required to achieve these results is a PID controller.
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NOMENCLATURE

AC Alternating Current

EMF Electromotive force

PM Permanent Magnet

PMAC Permanent Magnet Alternating Current

DC Direct Current
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DAQ Data Acquisition

B Magnetic Flux Density

Bp Peak Flux Density

Tem Torque Produced

Tf Friction Torque

kT Torque Constant

I Current

Ip Peak Current
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l length
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t Time
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

This thesis project’s objective is to design and demonstrate the improved characteristics

of a two-phase alternating current (AC) Halbach array motor over conventional motor

designs. The characteristics that are to be improved are

• Torque profile – due to torque independence of positioning

• Lack of cogging torque – due to the implementation of the Halbach array and

non-ferrous building materials

• Precision positioning – due to lack of cogging torque

• Torque strength — due to increased magnetic field strength from Halbach array

A motor that meets all of these objectives has potential in a variety of applications.

Precision positioning is useful in manufacturing applications or in areas where gearing

the shaft to achieve similar positioning precision may not be desirable. Improved torque

rating is desirable in any motor application where high motor torque is important. Lastly,

the lack of cogging torque means significantly smoother operation of the motor.

1.2 Novelty and Significance

A novel two-phase AC Halbach array motor has been designed and built to demon-

strate the superior positioning characteristics obtained by building the motor out of 3-D

printed plastic parts and the implementation of a Halbach array in the motor. The plastic

parts virtually eliminate the cogging torque caused by the non-uniform attraction of the

permanent magnets to the motor’s iron stator slots. This is in addition to the prevention

of eddy currents from being produced in the motor which cause power loss. These eddy

1



currents create their own non-uniform magnetic fields which would interfere with the mo-

tor’s operation by causing torques of their own. Additionally, the Halbach array provides

several desirable characteristics that aid in positioning. Though much work has been done

on the analysis of the use of Halbach arrays in motors, the first significant contribution of

this project is the construction and actual testing of the system. This is to say that while

many papers have modeled Halbach array systems, this experiment collects real data. The

second novel contribution of this paper is that though the improved torque characteristics

of motors utilizing Halbach arrays has been explored, this project seeks to take this a step

further by applying these torque benefits towards accurately positioning the motor.

1.3 Halbach Array

Figure 1.1: Linear Halbach array magnetic field (©1993 IEEE)[1].

In conventional permanent magnet (PM) motors, the permanent magnets are arranged

such that a north-south pattern is followed where each magnetization vector in the se-

2



Figure 1.2: Radial Halbach quadrupole magnetic field (©1993 IEEE)[1].

quence is rotated 180°. Through the implementation of a Halbach array, the magnetic field

can be concentrated on one side of the array of magnets. This has the effect of increasing

the strength of the magnetic field on one side of the array as compared to a conventional

magnetic array [3]. This idealized effect can be seen in Figure 1.1 where the magnetic

field is represented by the lines with arrows. The concentrated magnetic field lends itself

to a greater torque produced in a motor, a more ideally sinusoidal magnetic field, and a

3



more predictable back electromotive force (back-EMF) [4]. This type of design can also

be implemented in a radially oriented Halbach array as can be seen in Figure 1.2.

1.4 Electric Motor

The non-ideal nature of motors results in periodic changes in torque output, also known

as torque ripple. This fact implies that the torque output of a motor is dependent on the

position of the motor’s rotor. Even in synchronous motors, torque ripple remains a promi-

nent effect and is most commonly associated with the cogging torque from the interaction

of the PMs and the stator’s iron slots [5]. As this torque pulsation decreases motor perfor-

mance and increases wear on the motor, much work has been done to mitigate these effects

[6–9]. While these efforts focus on magnet shaping or skewing the teeth of the motor, the

underlying problem remains present [10]. Variations in torque caused by the nonuniform

attraction of the PMs to different parts of the motor create torque ripple. This is of particu-

lar concern in motors whose operating frequency can align with the mechanical resonance

frequency. In an ideal PMAC motor, these torque fluctuations do not exist as the magnetic

field is perfectly sinusoidal and is unaffected by the motor. In practice, however, the cog-

ging torque can be expected to be about 2% of the rated torque for a conventional Halbach

array motor (compared to about 10% of the rated torque for a conventionally magnetized

motor) [3]. It should be noted that cogging torque reductions to about 0.3% of the rated

torque have been reported in some PM systems due to skewing of the stator teeth [11].

The motor design presented in this thesis more accurately represents an idealized motor

as the Halbach array provides a more idealized sinusoidal magnetic field and the plastic

components do not interfere with the magnetic field unlike the metal components of a

conventional motor. Additionally, the motor presented here does not rely on an assumed

sinusoidal current distribution around the stator.

In order to facilitate the planning of the motor design, the method that Mohan outlines
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in his book for calculating the current space vectors of a PMAC motor will be used in

conjunction with independent analysis [12]. The full derivation can be found in Section

2.2. To this end, the torque generated by a PMAC motor can be found to be independent

of angular positioning and the torque equation can be found to be

Tem(I) = kT I (1.1)

where

kT = 2NwNslrBp (1.2)

1.5 Prior Work on Precision Halbach Array Motors

Despite the improved torque-fluctuation performance that comes with the implemen-

tation of the Halbach array, additional work has been done to further smooth the torque in

rotary Halbach array systems. This has been done by reducing the cogging torque through

magnet skewing and also by developing a slotless PM brushless DC (PMBLDC) motor

[13, 14]. Though this second case specifically points out the use in precise positioning

applications, no data or calculations regarding relative positioning accuracy are offered.

In other words, despite the wide range of applications, this area of Halbach motor devel-

opment has been neglected.

Halbach arrays have been used successfully in linear motors to achieve higher force-

density motors [15–17]. Additionally, the use of the Halbach array means the field will

cause less interference and thus require less shielding in the system [18]. This in turn

means the system has less mass and will have a better dynamic performance. These sys-

tems, which can have positioning accuracies within 0.5 nm (rms), are still limited to a

fairly small stroke range and are thus relegated to fairly niche applications [19].
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1.6 Applications of Halbach Array Motors

Motors, and PM motors in particular, are used in industrial applications, residential

applications, and everything in between [20]. Given the wide range of application of

motors in use today, the need for high-precision positioning systems is undisputed. Though

servomotors are traditionally thought of as providing the best positioning characteristics

when it comes to rotary motors, even with a rotary encoder of 4000 counts per revolution,

a positioning error of 1 count corresponds to 0.09°. Though not common, these kinds of

resolutions are possible with dual control systems [21]. Given the uniform torque potential

and the lack of cogging torque, the system designed here could be used to provide even

better angular precision. This is aided by the fact that the entire motor structure can be

3D printed to allow for reduced manufacturing costs. Combined with the decreased torque

ripple of the system design and the system developed in this work has the potential for

manufacturing applications that require high-precision.

Additionally, given the use of the Halbach array and the increased magnetic field

strength brought about by this, the system could find use in electric-vehicle engines. PM

motors are attractive in general to electric vehicle applications due to their high power den-

sity and efficiency [22]. Additionally, the fact that the torque is independent of both speed

and positioning and therefore can immediately achieve a high starting torque is very de-

sirable. The lack of torque ripple and constant torque potential would also be of particular

interest in this application.

1.7 Summary of Work

This body of work explores the design and analysis of an external-rotor two-phase PM

AC motor that makes use of a Halbach array in order to create a uniform torque potential

that is independent of both the rotor’s position and velocity. After this analysis, the con-

struction of the motor and all supporting equipment will be discussed. This discussion will
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include both the mechanical and electrical components. The motor will function through

the use of MATLAB programs operating a National Instruments data acquisition board

that controls transconductance amplifiers. After this, a series of experiments designed to

characterize the motor will be presented. During this, the embedded Hall-effect sensors

will be used to map the measured magnetic field to specific angular positions of the ro-

tor. This series of experiments will support the explanation of algorithms developed to

compensate for deficiencies in the hardware as well as develop a linearized model of this

voltage to position mapping. Finally, a control scheme for precision positioning of the

system will be developed and implemented. The results of which will be explored and

used to tune the controller further.
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2. DESIGN AND FINITE-ELEMENT ANALYSES

2.1 Initial Design

As the initial setup for this set of experiments was come up with by Dr. Nguyen, he

specified the initial size of some of the mechanical parts. Its approximate size was kept

because the dimensions proved to be of such a range that the motor would be ideal for

testing and modification. That is, it would not be too large as to be cumbersome and could

be easily moved while also being large enough that construction and working with the

internal components would not be too difficult. Additionally, the initial idea of making the

rotor an external rotor motor was kept so as to increase the radius the motor’s force acts

at, thereby increasing the torque of the motor.

The utilization of nine sets of Halbach arrays (for a grand total of thirty-six magnets)

around the rotor was selected as 180° is divided nicely by nine. Not only this, but the

magnet sizes and shapes that are easily available fit nicely into the dimensions of the

motor. That is, for a smaller number of repeating Halbach arrays, the magnets would

have had to be much larger. In the case of six Halbach arrays (the next smallest number

that divides 180° evenly), there would have been twenty-four magnets around the rotor.

This would have meant the magnets would have had to have been 50% larger in order

to create a similar magnetic field. A decreasing number of magnets means that there is

also a greater error between the circular profile from the magnets and an idealized circular

magnetic array. On the other hand, increasing the number of Halbach arrays used means

that a greater number of magnets are required. Given that the nine Halbach array magnets

already cover about 72% of the rotor’s inner circumference (0.251·36
4π

= 0.719), increasing

the number of magnets for the 4-in inner diameter would require the reduction of the size

of the magnets in order to allow space for both the magnets and the supporting plastic
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material used to separate them.

With the number of Halbach arrays determined and the approximate sizing of the rotor,

the magnets were next selected. The BX044-N52 magnets were chosen due to their large

pole surface area and their residual flux density value of 1.48 T1. The magnet’s field visual-

ization can be seen in Figure 2.1. Based on this, assuming the air gap is a sufficiently small

distance, the minimum magnetic flux density felt by the stator should be between 0.4553

and 0.5495 T (without considering the increased magnetic field from using the magnet in

a Halbach array).

Figure 2.1: BX044-N52 field visualization [2].

1K&J Magnetics, Inc.,18 Appletree Ln. Pipersville, PA U.S.A.
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Based on this approximate sizing of the stator and rotor, and the characteristics previ-

ously discussed, the motor’s supporting infrastructure was designed. All of the drawings

of the mechanical components of the motor can be found in Appendix B.

With the initial mechanical design planned out, the electrical characteristics next had to

be determined. Based on the availability of resources, the stator’s coils were hand-wound

using 20 AWG NEMA MW136-C magnet wire [23]. The wire coating allows bundles of

these wires to be easily fused together which facilitates coil wrapping. Based on the sizing

of the wire and the designed gaps in the stator, three layers of eight coils apiece will be

wrapped in each of the twelve slots of the stator. As the wire is 20 gauge, it is rated up to

approximately 6 A [24]. As the stator contains twelve coils, the motor could theoretically

have a number of phases equal to any factor of 12. For this series of tests however, the

motor will be wired as a two-phase motor but the ends of the coils will be fed through

the shaft to outside the motor where the ends of the coils could be rearranged so as to

reconfigure the number of phases of the motor at a later date.

2.2 Torque Analysis

With the given design of the rotor, the magnetic flux density can be described according

to the position around the rotor. That is

B(θm) = Bpcos(
p

2
θm) (2.1)

where p is the number of poles of the motor (18 in this case), the subscript p denotes the

peak magnetic field, and the subscript m denotes the mechanical angle. As the motor is

synchronous, the mechanical speed is directly related to the frequency of the signal by

ωe =
p

2
ωm (2.2)
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where the subscript e denotes the electrical frequency. In other words, rather than tracking

the system based on the position around the ring, any arbitrary position on the rotor can be

described as a function of time given some frequency. As

θm = ωmt (2.3)

this yields

B(t) = Bpcos(
p

2
ωmt) (2.4)

= Bpcos(ωet) (2.5)

The stator current space vector is defined as

isv(t) = i1(t) ∠ 0° + i2(t) ∠ 90° (2.6)

where the subscript sv denotes a space vector. Each current is given by

i1(t) = Ipcos(ωet) (2.7)

i2(t) = Ipcos(ωet −
π

2

p

2
) (2.8)

With these equations developed, the expected torque generation of the motor can now be

calculated, and the Lorentz force equation for a current-carrying wire will be used. That

is,

F (t) = i(t)l×B(t) (2.9)
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As only the components of the current that are axially-directed along the outside of the

stator will be considered, the current will always be perpendicular to the magnetic field.

This means the force will also always be directed tangential to the motor and the equation

simplifies to

F (t) = i(t)lB(t) (2.10)

The l in this case is the length of the wires crossing the radial face of the stator for each

phase. This means that each coil effectively counts as two wires along this face. Substitut-

ing in the equations found above yields

F1(t) = Ipcos(ωet)lBpcos(ωet) (2.11)

= Ip lBpcos2(ωet) (2.12)

Recognizing that the offset between the two phases of the motor corresponds to π
2
p
2

(just

as in (2.8)) and the temporal offset for the magnetic field is the same, the equation for the

force from the second phase is

F2(t) = IplBpcos2(ωet +
π

2

p

p
) (2.13)

Putting both forces back in terms of the mechanical speed yields

F1(t) = IplBpcos2(
p

2
ωmt) (2.14)

F2(t) = IplBpcos2(
p

2
(ωmt +

π

2
)) (2.15)
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As this shows the constant phase offset of the second phase, it can be rewritten as

F2(t) = IplBpsin2(
p

2
ωmt) (2.16)

Adding the forces from both phases results in

Ftot(t) = IplBp [cos2(
p

2
ωmt) + sin2(

p

2
ωmt)] (2.17)

= IplBp (2.18)

Given that there are six coils per phase with each coil being made of twenty-four wraps

that each have a side length of 2.54 cm (1 in), the final force equation becomes

Ftot = 7.3152IpBp (2.19)

Assuming the air gap is negligible and the outer radius of the stator and the inner radius of

the rotor are equivalent yields a torque equation of

Tem = 7.3152rIpBp (2.20)

This yields a torque independent of both position and time so long as the current vector is

rotated accordingly. It is significant to note that unlike most PMAC motors no assumption

was needed regarding the distribution of current around the stator. That is, where most

derivations require a sinusoidally distributed current around the stator, the current distri-

bution of this two-phase motor is unimportant so long as the current is regulated according

to the speed of the motor [12]. In this case, an approximately uniform distribution of cur-

rent results in an approximately uniform distribution of force on the rotor but other than

this, the distribution is unimportant. Though this Lorentz force is calculated as acting on

13



the stator, this force is equivalent to the one felt by the rotor. As the stator is fixed, this

results in the rotation of the rotor.

2.3 Magnetostatic Analyses

Through the use of the software Maxwell SV, magnetostatic simulations were per-

formed in order to verify the characteristics of the Halbach array implementation as well

as to calculate the expected strength of the internal magnetic fields within the motor. These

simulations were performed using N35 NdFeB magnets as opposed to the N52 NdFeB

magnets that are actually used in the motor. This grade differentiation is a reflection of

the maximum energy product of the magnet that is a good indicator of the strength of the

magnetic field. Though the grades are similar in that they share a similar magnetic coer-

civity value of about 877 kA/m, the distinction is important because N52 magnets have a

residual flux density that is about 20% higher than N35 magnets [25]. This means that the

simulations will represent a lower bound for the expected system performance but can still

be used as an indicator for expected conditions.

In Figure 2.2 the simulation is performed on a linear magnet array where every magnet

in sequence has their pole flipped by 180°. That is that every other magnet down the

array has their north pole upwards and the magnets in between these have their south pole

placed upwards. The magnetic field near the array can be more clearly seen in Figure 2.3.

In Figure 2.4 a linear Halbach array is modeled and Figure 2.5 shows the corresponding

near-field view. Figure 2.6 is the simulation results from a radially configured array of

magnets utilizing the same configuration as from Figure 2.2 and overlayed into the magnet

positions in the motor’s rotor. In other words, Figure 2.6 represents the configuration from

Figure 2.2 but wrapped into a circle where every magnet was placed in a proper location

for the motor being analyzed. A closer perspective of this configuration can bee seen in

Figure 2.7. Figure 2.8 is the results of a simulation in which a Halbach array was used to

14
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fill in the slots on the motor’s rotor and Figure 2.9 is the enhanced view of this setup. It is

important to keep in mind for Figures 2.6 and 2.8 that the red lines mark the edge of the

simulation and the results from outside of this area should not be considered accurate.

These simulation results confirm the expectations that a Halbach magnet array serves

to concentrate the magnetic field on a particular side of its configuration. In this way,

the strength of the magnetic field from the magnets can be amplified. This will serve to

increase the torque generated by the motor when current is passed through the coils. Based

on these results, the initial design of the motor was finalized.

2.4 Designed Torque Calculation

Referring to (1.1), the torque can be written as a function of the current and a torque

constant. Given the specifications of Ns and Nw, an approximate radius of 0.1 m, an

approximate wire length of 0.0254 m and a conservative magnetic field peak of 0.2 T on

the stator’s coils, the torque constant (from (1.2) can be found to be

kT = 2 · 24 · 6 · 0.0254 · 0.05 · 0.2 N ·m/A (2.21)

= 0.073152 N ·m/A (2.22)

2.5 Design Summary

Given the preceding design description, the motor has the added benefit of being able to

have its rotor and stator be 3D printed (other than the coils and magnets). This allows cheap

and fast production as well as ensures the magnetic fields generated internally should be

minimally interfered with. By contrast, electrical steel has a relative permeability of about

5000 [26]. With the design of the motor completed, the construction can begin.

23



3. MOTOR CONSTRUCTION

3.1 Motor Infrastructure

Figure 3.1: Double cutaway view of motor internal structure.

In an effort to accomplish the objectives set forth in this thesis, a motor has been built

that incorporates a Halbach magnet array in a PMAC motor. This motor makes use of two

phases and is an external-rotor motor. The motor contains nine sets of Halbach magnet

arrays lining the rotor (making for a total of thirty-six magnets) and twelve coils between

the two phases. The designed internals of the motor can be seen in Figure 3.1, while

the fully assembled motor can be seen in Figure 3.2. Additionally, a high-level system
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Figure 3.2: Assembled Halbach array motor.

Figure 3.3: High-level system block diagram.

architecture of the motor is given in Figure 3.3.
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Figure 3.4: Stator of motor.

3.1.1 Stator

The stator can be seen in Figure 3.4. It consists of a cog-like structure made of 3D

printed PLA with an outer diameter of 9.8044 cm (3.86 in) and an inner diameter of 9.2456

cm (3.64 in) for the twelve spokes evenly-spaced around the structure.

These spokes were then wrapped with 20 AWG NEMA MW136-c wire such that

twelve distinct coils were placed on the radial surface of the stator. Each of these coils

consisted of three layers of wire with each layer being eight layers of wire wide. This

resulted in each of the twelve coils consisting of twenty-four wraps of the wire. A repre-

sentation of the coil wrappings can be seen in Figure 3.5 where the small gap in the middle

of the sets of wires is the location where two adjacent coils abut. The final implementation

of the stator is given in Figure 3.6. The ends of the coils run through a hole in the shaft

where they are connected to a block of screw terminals in such a way that every other coil
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Figure 3.5: Design of stator of motor including the coils.

is connected together in series. This produces two sets of six coils which give the motor its

two-phase property. Each of these phases’ properties were measured using an LCR meter

and the results are recorded in Table 3.1. Based on these properties, the impedance of each

of the phases was calculated with

Z =
√

(ωeL)2 +R2 (3.1)

=

√
(
ωm
60

9L)2 +R2 (3.2)

for various speeds of the motor. The results of this procedure are displayed in Figure

3.7. The ends of each of the phases are the inputs to the motor and are connected to the

transconductance amplifiers.
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Figure 3.6: Implemented stator of motor.
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Table 3.1: Electrical properties of motor’s phases.

Phase Resistance (Ω) Inductance (µH)
One 0.6870 116.1
Two 0.6937 121.6

3.1.2 Rotor

Figure 3.8: Design of rotor frame of motor.

The rotor frame can be seen in Figure 3.8. It consists of a ring of 3D printed plastic

with 36 notches meant to house the magnets that were epoxyed in place. These magnets

measured 0.638 cm (0.251 in) by 0.638 cm by 2.54 cm (1 in). The ring has an outer
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Figure 3.9: Rotor frame with the magnets inserted.

diameter of 13.3 cm (5.24 in) and an approximate inner diameter of 10.2 cm (4.01 in)

including the magnets. That is the measurement from the center of the rotor to the middle

of the nearest face of any one of the magnets. The rotor with the magnets in place can be

seen in Figure 3.9. The magnets were attached to the rotor frame by using an epoxy to

glue a few of the magnets in place at a time. While drying, the magnets were clamped in

place to prevent any misalignments from the magnets interactions with one another. As

the magnets were inset, a Halbach array was created by alternating the direction the north

side of the magnet faced. The pattern used to create the array is visualized in Figure 3.10

and the final result can be seen in Figure 3.11.
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Figure 3.10: Rotor of motor with the magnets’ magnetization.

Figure 3.11: Assembled rotor of motor.
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3.1.3 Motor Base and Spacer

Figure 3.12: Motor spacer.

The 3D printed spacer used to connect the rotor to the shaft can be seen in Figure 3.12.

This part was affixed to both sides of the rotor via small inset screws and connected to the

shaft via bearings.

The motor base’s mechanical components can be seen in Figure 3.13. The base was

set atop an optical table and fixed into place. The bearings were affixed to the shaft and

inset inside the spacers. The shaft was used to ferry the wires from the stator’s coils to the

supporting electrical hardware.

The final design can be see in Figure 3.14 and the actual final product can be seen in
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Figure 3.13: Mechanical support components of motor.

Figure 3.2. According to the model, the final weight of all of the rotor’s components is

0.482 kg (1.063 lb) and the moment of inertia about the axis of interest is 0.00142 kg·m2

(4.853 lb·in2).
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Figure 3.14: Motor assembly final design.

3.2 Motor Support Infrastructure

In order to test the properties of the motor, each phase is driven by a voltage-to-current

transconductance amplifier where the power is supplied from three 3-A power supplies

wired in parallel, and the control is handled by a NI PCI-6221 board integrated into a

computer. This board simultaneously handles both the output voltage to the amplifiers and

data input. The data input acquired is all analog. This board reads the voltage from the two
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electrical poles (positive and negative) for each of the motor’s phases as well as from three

Hall-effect sensors embedded in the motor. The output voltage from the NI board is con-

trolled by one of several programs coded in MATLAB that allow for different objectives

to be accomplished with regards to testing the motor. These MATLAB programs make

use of MathWork’s Data Acquisition Toolbox to allow interfacing between the MATLAB

code and NI-DAQ hardware.

3.2.1 NI PCI-6221 DAQ Board

Figure 3.15: NI PCI-6221

The National Instruments1 PCI-6221 is the connection between a computer and the

experimental setup. In terms of output, the board is able to supply the necessary sinusoidal
1National Instruments, 11500 N Mopac Expwy Austin, TX U.S.A.
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waves as input to the transconductance amplifiers as well as provide the 5-V supply voltage

to the Hall-effect sensors. In terms of input, the board acquires the voltage at both ends of

the motor’s phases so that the differential voltage across each set of coils can be calculated.

Additionally, the board reads the voltage from the Hall-effect sensors. This board was

integrated into MATLAB via Mathwork’s Data Acquisition Toolbox. The code that was

used along with the toolbox can be found in Appendix A, and the board itself can be seen

in Figure 3.15.

3.2.2 Transconductance Amplifier

Figure 3.16: Transconductance amplifier with one amplifier and heat-sink removed.

The transconductance amplifier comes on a board with a pair of them as can be seen

in Figure 3.16. This amplifier acts as a unity gain voltage-to-current buffer amplifier. That

is, no matter the load, if one volt is supplied at input, the amplifier will attempt to output

one amp. This amplifier was modified from the work of Kim [27]. Based on the Power
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Operational Amplifier PA12A manufactured by Apex Microtechnology2. The technical

specifications for the PA12A are listed in Table 3.2.

Table 3.2: Technical Specifications of PA12A.

Maximum Supply Voltage 100 V
Maximum Output Current 15 A
Maximum Power Dissipation 125 W
Input Impedance 200 MΩ
Slew Rate 4 V/µs
Settling Time to 0.1% of 2 V Step Input 2 µs

Figure 3.17 gives the circuit for one transconductance amplifier with LA and R11 rep-

resenting the load’s inductance and resistance. In this case, the LA and R11 values were

obtained by measuring the values for each phase of the motor. These properties are listed

in Table 3.1. In the transconductance amplifier, it is easy to see that all of the capacitors are

10 pF (except for two 47 µF capacitors attached to the power supply of the PA12A) and all

of the resistors are 10 kΩ except for R6 and R10 (which are 24 kΩ and 1 Ω respectively).

Given these values, the transfer function of the circuit can be calculated to be

G = 4 · 108 s2 + 14167s+ 4.1667 · 107

s4 + 74079s3 + 1.3482 · 109s2 + 8.7409 · 1012s+ 1.6665 · 1016
(3.3)

This yields the Bode plot given in Figure 3.18. As this diagram confirms, the gain of

the transconductance amplifier is approximately 1 until 1 kHz where it has dropped to a

gain of 1/
√

2. In other words, the bandwidth of this transconductance amplifier is 1 kHz.

2Apex Microtechnology, 5980 N. Shannon Road Tucson, AZ 85741, U.S.A
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Figure 3.18: Bode plot of transconductance amplifier.
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3.2.3 Hall-Effect Sensor

The Hall-effect sensors used for this set of experiments is the A1302K ratiometric

linear Hall-effect sensor from Allegero MicroSystems3. The technical specifications are

listed in Table 3.3.

Table 3.3: Technical Specifications of A1302k.

Maximum Supply Voltage 8 V
No Magnetic Field Output (B = 0 T) 0.5 · Supply Voltage
Output Sensitivity 1.3 mV/G
Output Bandwidth 20 kHz
Linearity ±2.5%

The Hall-effect sensors were labeled based on the stator cog’s they are situated on. That

is, 7, 12, and 2. Hall-effect sensor 7 was offset from Hall-effect sensor 12 by five spokes

or 150° and Hall-effect sensor 12 was offset from Hall-effect sensor 2 by two spokes or

60° in the same rotational direction. This can be seen in Figure 3.19. These sensors were

spaced around the stator such that the measurement plane was oriented radially with the

motor in an attempt to capture the magnetic field from the rotor. Specifically, as the stator

contained twelve spokes, the Hall effect sensors were placed on the sides of these spokes

near the inside of the coil windings. That is, the top of all of the Hall-effect sensors is in

the Z-direction while the front of Hall-effect sensors 7 and 12 is faced radially outwards.

Hall-effect sensor 2’s front face is situated radially inwards.

3Allegro MicroSystems, LLC, 115 Northeast Cutoff, Worcester, MA 01606, U.S.A
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Figure 3.19: Location of Hall-effect sensors.

3.2.4 Power Supply

In order to supply the power necessary to run the motor, three TDK-Lambda4 power

supplies (seen in Figure 3.20) were connected in parallel to the supply terminals of the

transconductance amplifier. Each of the power supplies was rated at 3 A and 15 V leading

to a maximum supply current of 9 A at 15 V. Given that this is a two-phase system, this

yields a maximum per-phase current of 9 A√
2

= 6.364 A. Given the measured resistance of

the coils listed in Table 3.1, the maximum per-phase power that can be delivered through

the power supply becomes

P = RI2 = R(
Imax√

2
)2 = 0.68

92

2
= 27.54 W (3.4)

4TDK-Lambda 3-9-1, Shibaura, Minato-ku, Tokyo 108-0023, JAPAN
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Figure 3.20: One of the three power supplies from TDK-Lambda used to power the motor.
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4. MOTOR EXPERIMENTAL PROPERTIES

4.1 Motor Friction Force

In order to determine the friction force inherent in the motor system, experimental

dynamics data was captured on video. The motor was initially accelerated to 10 Hz before

input to the motor was removed. Then, the angular position of the motor was recorded

over time. This angular positioning was done via visual estimation from video shot at 60

Hz. The experimental data and a curve fit to the data can be seen in Figure 4.1. The R2

value of this fit is 0.9961.
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Figure 4.1: Deceleration curve from visual estimation.

This data was then also confirmed by tracking the position of motor utilizing the Hall-

effect sensors. By recognizing that the Hall-effect sensors will cross their zero-field value

eighteen times during the course of every rotation, the position of the motor can be known
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to have advanced 20° every time a single Hall-effect sensor crosses this value. By plotting

this positional progression over time, a more complete description of the motor’s move-

ment can be developed. This data and the corresponding quadratic curve fit (with an R2

value of 0.9989) can be seen in Figure 4.2. It is worth noting that the two methods yielded

friction forces that were within 5% of each other.
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Figure 4.2: Deceleration curve from Hall-effect sensor voltage.

Given that over the time interval of deceleration the position (in degrees) is given by

θ(t) = −1214t2 + 2672t+ 29.9 (4.1)

the rotational speed and acceleration can be given respectively by

ω(t) = −2428t+ 2672 (4.2)

ω̇(t) = −2428 (4.3)
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This equation can then converted from degrees to radians and the motor dynamics can be

modeled as

Iω̇(t) = Tem − Tf (t) (4.4)

where I is the mass moment of inertia about the axis of rotation and Tf is the torque from

friction. Given the deceleration model from Figure 4.1, Tem can be set to zero for all t and

ω̇(t) is known. I was calculated from the system model to be 0.001414 kg·m2. Plugging

these values in yields an average friction torque (during the course of each motor rotation)

of

0.001414(−13.489π) = −Tf (4.5)

Tf = 0.0599 N ·m (4.6)

4.2 Torque Characteristics

As was established previously, the torque should only be dependent on current and

will be considered independent of rotor position. Given this, in the absence of an external

rotor dynamometer, the stall torque of the motor can be measured to instead determine the

motor’s torque vs current characteristics. To achieve this, a weight was first attached to

the rotor via fishing line and an initially high current was passed through the coils of one

phase. This current was then progressively lowered until the torque produced from the

motor was no longer large enough to prevent the weight from being pulled downward and

causing the rotor to spin. This experiment was repeated for a number of different weights

for each of the motor’s phases. The basic setup can be seen in Figure 4.3. It should be

noted that to prevent fluctuations in friction from differing rotor positions, the rotor was

started in the same place for every run. The results of this experiment can be seen in
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Figure 4.3: Stall torque experimentation setup.

Figure 4.4 and the properties of the linear fit line can be found in Figure 4.1. In this case,

the y-intercept represents the friction force at the stable point of each phase (the intercepts

are slightly different between the phases due to the positional offset of the phases), and

the slope represents the generated torque per ampere for each phase. Though both phases

were wound with the same number of turns, the torque disparity between the phases means

that in order to achieve a torque that is independent of rotor position, the voltage supplied

to the first phase must be regulated down so the phase currents match. That is, the voltage

supplied to phase 1 must be 0.0855
0.0897

100 = 95.3% of the voltage supplied to phase 1. This
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Figure 4.4: Torque vs current.

is most likely It is worth noting that the measured torques per current are quite close to

the 0.0732 N ·m/A calculated in (2.22). Given that the calculated torque was based on a

magnetic field that was 20% weaker than the expected magnetic field as stated in Section

2.3, it is more appropriate to compare the measured torque values to 1.2(0.0732) = 0.0878,

which yields a result even closer to the prior calculations.

Table 4.1: Properties of torque vs current fit lines.
Slope Y -Intercept R Squared

Phase 1 0.08978 0.2099 0.9997
Phase 2 0.08557 0.02692 0.9996

4.3 Motor Current/Hall-Effect Sensor Interaction

Before the data collected from the Hall-effect sensors can be used to determine the

position of the motor, the interaction between the phase currents and the Hall-effect sensors
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must be measured and accounted for. As the Hall-effect sensors are located on the stator,

the positioning of the rotor does not affect the interaction of the motor current and sensors.

In order to determine this interaction, a large current was first passed through phase 1 to

align the motor in an arbitrary orientation. This current was then dropped to zero and a

base voltage value for the Hall-effect sensors is established. This initial current spike is

done to ensure the motor does not turn further once current is applied. The base voltage

value represents the voltage response of the Hall-effect sensors in the given stable position

of the rotor. After this base voltage is established, the current being passed through phase

1 is increased from 0 to 3 A and then back down to 0. This procedure is repeated for

negative currents including the initial current spike. Though ideally the motor should not

turn with a negative current (as the motor’s rotor should be situated in a position where

the forces from every pair of phase 1 coils cancel out regardless of current direction), this

was done anyway to ensure thoroughness. As expected, the motor did in fact not change

position during the negative current spike. This was reflected in the fact that the base

voltage Hall-effect values obtained after the positive and negative current spikes differed

by less than 0.02 % for Hall-effect sensors 7 and 2 for example. This entire procedure was

then repeated for phase 2 as well. The results from both sets of procedures can be seen in

Figures 4.5 and 4.6.

Given the results of the above responses, a relationship was developed between each

of the phases and each of the Hall-effect sensors. This was done by first calculating the

base voltage as the average of the responses during the period after the initial current spike.

The change in voltage from this base voltage value during the current changing procedures

was then plotted against the current and a trend was developed. The Hall-effect sensor

response and corresponding trend lines can be seen in Figures 4.7 and 4.8. The trend line

information is given in Tables 4.2, 4.3, and 4.4. It is readily apparent in these figures that

phase 1 affects Hall-effect sensors 12 and 2 quite readily but does not affect Hall-effect
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sensor 7. Contrarily, phase 2 only affects Hall-effect sensor 7. This makes sense based on

the positioning of the Hall-effect sensors where Hall-effect sensors 12 and 2 are located

inside of phase 1 coils while Hall-effect sensor 7 is located inside of one of phase 2’s coils.

With these results, all future data will be adjusted accordingly. That is, Hall-effect voltages

from sensors 2 and 12 will be adjusted based on the current in phase 1 while sensor 7 will

be adjusted based on the current in phase 2.

Table 4.2: Hall-effect sensor 7 response to phase currents trend line information.
Hall Effect Sensor 7

Slope Y-Intercept R-Squared
Phase 1 8.6057e-4 −1.0890e-4 0.1910
Phase 2 −0.01067 −3.0381-4 0.9885

Table 4.3: Hall-effect sensor 12 response to phase currents trend line information.
Hall Effect Sensor 12

Slope Y-Intercept R-Squared
Phase 1 0.01857 0.00160 0.9676
Phase 2 6.2694e-4 −8.8320e-4 0.0270

Table 4.4: Hall-effect sensor 2 response to phase currents trend line information.
Hall Effect Sensor 2

Slope Y-Intercept R-Squared
Phase 1 0.01738 −2.0957-5 0.9889
Phase 2 2.4169e-5 −2.7880e-4 0.0494
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4.4 Motor Speed/Hall-Effect Sensor Interaction

To confirm that the speed of the motor was not impacting the Hall-effect sensors, data

was collected while the motor was accelerated. To facilitate this, the motor was run with a

purposefully long acceleration time to ensure a proper spread of data collection. This also

helps ensure that the phase between the rotor angle and current vector stay approximately

constant by allowing it to settle. Once the data was collected, the Hall-effect sensor data

was plotted against the motor speed while the motor was at the same point during each

rotation. To accomplish this, the motor position was assumed to be constant whenever

the input signal crossed 0 V. In this way, eighteen distinct positions on the rotor were

tracked for changes to the Hall-effect sensor based on motor speed. The corresponding

data can be seen in Figure 4.9. Aside from a small bump at 6 rps, near what may be a

resonant frequency of the motor, it is clear that speed does not impact the response of the

Hall-effect sensor in a meaningful way.
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4.5 Motor Back-EMF Measurements

The back-EMF induced in the motor was calculated based on the motor’s phase’s elec-

trical properties, the specified current, and measured voltage. The current is known due to

the transconductance amplifier and the voltage across each phase was measured. Figures

4.10–4.11 show the back-EMF of phase 1 whereas Figures 4.12–4.13 show the back-EMF

of phase 2. Additionally, the back-EMF generated during the motor’s deceleration after

the armature currents to the motor were removed can be seen in Figure 4.14. As is clearly

seen in these figures, the back-EMF is directly proportional to the motor speed. By find-

ing the peaks of the back-EMF and comparing it to the known speed at these times, the

relationship between the two can be mathematically developed. This can be clearly seen

in Figure 4.15 where the linear curve fit coefficients are given in Table 4.5. Though there

is a disparity in the strength of the back-EMFs from each phase, this difference reflects the

same condition encountered during the torque measurements

Table 4.5: Back-EMF vs motor speed curve fit characteristics
Slope Y-Intercept R-Squared

Phase 1 0.009115 0.2521 0.9920
Phase 2 0.008774 0.5867 0.9900
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Figure 4.10: Back-EMF of phase 1.
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Figure 4.11: Back-EMF of phase 1.
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Figure 4.12: Back-EMF of phase 2.
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Figure 4.13: Back-EMF of phase 2.
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4.6 Hall-Effect Sensor Positioning

4.6.1 Initial Assumed Velocity Procedure

The next step is to verify the high-precision positioning characteristics. As the motor

does not have an encoder, being that it is an external-rotor motor, the use of the system’s

Hall-effect sensors is critical. The idea is that by determining the voltage from the Hall-

effect sensors over the full rotation of the motor, the position of the motor can then be

calculated based on a measured voltage from the sensors. As the rotor is embedded with

thirty-six magnets, or nine pitches of Halbach arrays, the Hall-effect sensors will experi-

ence nine repetitions of magnetic field peaks per revolution of the rotor. This means that

for 360° of applied AC signal, the motor will rotate 40°. This is illustrated in Figure 4.16.

The key here is that by taking a large number of samples during the motor’s steady-

state operation, a distribution of data points can be found that correspond to rotational

angles of the motor. In Figure 4.16, the phase signal frequency was specified as 90 Hz

which means the motor should be rotating ten revolutions per second (as the motor is

synchronous, the speed is known precisely based on the frequency of the input signal),

and the sampling rate is 32000 samples/s. This means that for each rotation of the motor

3200 data points should have been collected. This was repeated over fifty-two seconds

such that a data set is obtained where the 3200 assumed distinct positions of the motor

are measured 520 times via the Hall-effect sensors. As can be shown in Figure 4.17, the

distribution of each of these position sets results in a set of data points that are clustered

together with few outliers for each set.

During the course of data analysis, it was observed that larger samples of data resulted

in a larger spread of data points. This was calculated by finding the sample standard devi-

ation of each of the assumed 3200 positions around the motor. As the standard deviation

at each position should get smaller with an increasing data sample (in this case accom-
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plished by running the motor for longer periods of time), it became apparent that there

was a problem. Further inspection of the data yielded a continuous phase shift over time.

By plotting a single Hall-effect sensor’s data with an increasing color intensity over the

course of a number of rotations, this phase shift becomes readily apparent as can be seen

in Figure 4.18 and to a much clearer extent in Figure 4.19.

4.6.2 Time Interpolation Compensation

By analyzing the input signals to the coil phases, the actual frequency of the input

signals was determined. This was done by finding the times during operation when these

signals crossed 0 V and then calculating the time difference between each of these occur-

rences. As this time represents half of the signal’s current period, the speed of the motor

can be indirectly calculated. The exact algorithms that were developed can be found in

Appendix A. This method was used to determine that the measured DAQ output signal

frequency was 89.888 Hz during the motor’s steady-state operation. That is, once the mo-

tor is up to speed and the DAQ output signal frequency should be 90 Hz, the signal is

actually slightly slow. Despite the fact that the signal timestamps used to calculate the

signal frequency were of a greater resolution, the signal frequency varied slightly around

this value. Though this represents an error of only about 0.125%, it must be corrected for

by no longer assuming the prescribed frequencies are correct. It is important to note that

though the DAQ board’s output and input clocks are slightly out of sync, the input clock

that timestamped the measured data will be used to define the motor’s speed. In this way,

it will be assumed that the output clock is slow and the input clock represents the actual

time. This is acceptable, because any deviation the input clock has from a true clock is

small and will be applied linearly across all data points. It is also important to emphasize

that even if the output and input clocks are not out of sync and the results are caused by

some other error, the error manifests itself linearly over time and also affects the input and
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output signals unevenly. This means that treating the problem as out of sync clocks should

be a valid approach. If this were a simple phase lag problem, the lag would not manifest

as it would not increase over time.

With the corrected motor speed, the actual rotational position of the motor can be

found during the course of the run. By once again overlaying the Hall-effect voltages with

the correct position information, the phase shift can be seen to be eliminated in Figures

4.20 and 4.21. This is further evidenced in Figure 4.22 where the data points are graphed

without lines connecting them. In this Figure, it is readily apparent that the clock does

not match up perfectly over the course of multiple runs as the plot appears striated. These

striations show that the compensation is working as the data points line up well and display

a consistent and expected pattern.

4.6.3 Linearization of Data

In order to determine the position of the motor from the Hall-effect sensor data, a

linearization procedure was determined to allow for simple position estimation. This was

done by setting a voltage range and removing the points outside this region. The results of

this can be seen in Figure 4.23. It is important to note that to assist in the calculations from

here on out two operations were performed on the data. First, the data was shifted to be

centered around zero which will be easily re-shifted at the end of the procedure. Second,

the first incomplete section of data was removed. That is, the first rotation of data through

the linearized region that did not extend across the full data range. This data can be seen in

Figure 4.20 as the data from 0 rad to approximately 0.1 rad during the first rotation. This

loss of a minimal fraction of the data was deemed acceptable and results in Figure 4.23

and subsequent figures having a position shift compared to previous plots.

With the linearized regions of the data identified, a linearized model was developed

for each region of the plot in Figure 4.23. This results in eighteen different linear equa-
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tions. These linear equations were developed to go from a voltage, to a corresponding

position for a given segment. In other words, even though voltage is the dependent vari-

able in establishing a positional mapping, in testing, position is the dependent variable.

The overlaying of these models on top of the linearized data set can be seen in Figure

4.24.

4.6.4 Linearization of All Data

With the method for developing the linearized correlation between sensor data and

position completed, the same method was then applied to all three Hall-effect sensors

present in the motor. In the following plots, the data has been re-centered around its

original value and is no longer centered around zero. Though only one sensor might be all

that is technically necessary, multiple Hall-effect sensors will give rise to greater positional

accuracy and redundancy. The linear regions for the entirety of the Hall-effect sensor data

are shown in Figure 4.25 and the linear models overlaid on this data is shown in Figure

4.26. Additionally, the full properties of the linearized models are given for Hall-effect

sensors 7, 12, and 2 in Tables 4.6, 4.7, and 4.8 respectively.
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Table 4.6: Linearized model properties for Hall-effect sensor 7.
Region Slope Y-Intercept R Squared RMSE
1 −0.0700 0.4114 0.9950 0.0046
2 0.0710 0.3968 0.9947 0.0049
3 −0.0708 1.1026 0.9945 0.0050
4 0.0702 1.0913 0.9950 0.0047
5 −0.0681 1.7904 0.9953 0.0043
6 0.1147 1.7243 0.9320 0.0237
7 −0.0597 2.5115 0.9866 0.0065
8 0.0682 2.4881 0.9951 0.0044
9 −0.0708 3.2026 0.9945 0.0049
10 0.0649 3.1989 0.9966 0.0035
11 −0.0640 3.8799 0.9963 0.0036
12 0.0598 3.9189 0.9959 0.0035
13 −0.0618 4.5836 0.9914 0.0053
14 0.0564 4.6216 0.9969 0.0028
15 −0.0587 5.2625 0.9970 0.0029
16 0.1085 5.2478 0.9518 0.0189
17 −0.0568 6.0004 0.9864 0.0061
18 0.0755 5.9737 0.9949 0.0021
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Table 4.7: Linearized model properties for Hall-effect sensor 12.
Region Slope Y-Intercept R Squared RMSE
1 −0.1269 0.4999 0.9973 0.0029
2 0.1292 0.2004 0.9928 0.0048
3 −0.1053 1.1494 0.9984 0.0018
4 0.1145 0.9213 0.9957 0.0033
5 −0.1211 1.8800 0.9960 0.0033
6 0.1482 1.5800 0.9735 0.0096
7 −0.1154 2.6084 0.9940 0.0040
8 0.1327 2.2732 0.9980 0.0027
9 −0.1253 3.2955 0.9975 0.0028
10 0.1325 2.9854 0.9948 0.0043
11 −0.1319 4.0024 0.9972 0.0031
12 0.1335 3.6745 0.9952 0.0041
13 −0.1320 4.7163 0.9974 0.0030
14 0.1785 4.2737 0.9835 0.0090
15 −0.1186 5.4098 0.9933 0.0043
16 0.1428 5.0436 0.9963 0.0039
17 −0.1382 6.1248 0.9978 0.0028
18 0.1235 5.7923 0.9964 0.0023
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Table 4.8: Linearized model properties for Hall-effect sensor 2.
Region Slope Y-Intercept R Squared RMSE
1 −0.1759 0.5608 0.9928 0.0046
2 0.1805 0.0198 0.9947 0.0040
3 −0.1625 1.2298 0.9958 0.0032
4 0.1564 0.7713 0.9943 0.0035
5 −0.1423 1.8855 0.9951 0.0031
6 0.1456 1.5116 0.9890 0.0047
7 −0.1306 2.5485 0.9973 0.0020
8 0.1393 2.2111 0.9965 0.0025
9 −0.2569 3.6113 0.9520 0.0149
10 0.1331 2.9856 0.9882 0.0042
11 −0.1733 4.0529 0.9960 0.0033
12 0.1662 3.5539 0.9966 0.0030
13 −0.1710 4.7582 0.9944 0.0040
14 0.1727 4.2245 0.9929 0.0045
15 −0.1711 5.4482 0.9948 0.0038
16 0.1745 4.9203 0.9930 0.0045
17 −0.2684 6.4054 0.9188 0.0213
18 0.1272 5.7898 0.9904 0.0029
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4.6.5 Linearized Model Prediction Error

Given the voltage range of the linearized model of the Hall-effect sensors (about 3

V for Hall-effect sensor 7) and the fact that each 360° of signal rotation corresponds to

40° of the motor’s rotation, the degree per voltage can be calculated. Extending this,

given that each 180° of signal input corresponds to only 20° of rotation (as each of the

eighteen linear regions in Figure 4.23 comes in a pair that has both an increasing and

decreasing voltage component), the precision of the motor positioning based on the Hall-

effect sensors can be found to be about 7°/V. Pairing this with the data for each position

set allows the distribution of error to be calculated for a given linearized model. Excluding

the two outlier root-mean-square error (RMSE) values from each of Tables 4.6−4.8, yields

average RMSE values of 0.0043, 0.0040, and 0.0036 rad respectively. These RMSE values

correspond to approximately a 0.23° spread for a given position. In other words, utilizing

only a single sensor yields a rotational uncertainty for a given position of about 0.23° or

given the diameter of the rotor, a linear uncertainty of about 200 µm. An equivalent RMSE

value of all of the sensors can be found by using the variance of each sensor. That is

σ2
tot = (σ−21 + σ−22 + σ−23 )−1 (4.7)

where the system is assumed unbiased and σ is the RMSE of each sensor. This yields and

equivalent RMSE of 0.13° or a linear uncertainty of only 150 µm. This allows for very

precise closed-loop position (and by extension velocity) control based on the feedback

obtained from the Hall-effect sensors.
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5. MOTOR POSITIONAL CONTROL

Now that the motor is fully characterized (particularly with regard to positioning), the

motor’s positioning controller can be implemented. For starters, given the calculated motor

friction force of 0.06 N·m as well as the measured torque constant of 0.086 N ·mA means

that in order for rotor to move, a current of more than 0.7 A must be applied. Therefore,

this stall-current is actually the base current required for all positioning operations. Rather

than regulating current, a current amplitude was set and the angle of the electrical signal

was controlled. That is, even though the motor should ideally respond perfectly to the

electrical input phase signals, this is not always the case. Instead, an initial set of signals

is sent to the motor that would ideally get it to the right position. The main purpose of this

is get the motor on the correct linearized segment (as defined in Subsection 4.6.4) as well

as to get the motor close to the desired position. From this position, the controller is then

implemented. An overview of the positioning process is shown in Figure 5.1, and a block

diagram of the positioning controller is given in Figure 5.2.

Figure 5.1: High-level controller block diagram.
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Figure 5.2: Positioning PID controller block diagram.

5.1 Controller Procedure

In order to properly relate the voltage of the Hall-effect sensors and the position of the

rotor, the motor must know its absolute position. That is, given the linearization described

in the previous section, the system must know what linear segment the rotor is currently on.

To achieve this, during the linearization processing, the two points corresponding to the

largest and smallest voltages of Hall-effect sensor 7 were identified. Referring to Figure

4.20 it is plain to see that two of the eighteen peaks are consistently and clearly higher and

lower (respectively) than the rest of the peaks. By identifying these two peaks and their

positional distance from one another, a standard of reference can be developed.

Before the motor can begin controlling its position, it is first rotated around once (in the

same direction as it was during the linearization procedure) and the Hall-effect voltages

are recorded. During this rotation, each consecutive data point is assigned a position from

0 to 2π. For now, this positional association is arbitrary. Results from this procedure can

be seen in Figure 5.3. The maximum and minimum voltages of Hall-effect sensor 7 are

then found from this measured data and the distance between these points is compared to

the reference distance processed previously. As long as these two distances are sufficiently
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Figure 5.3: Initial spin voltage overlayed on reference voltage.

close, the motor proceeds, otherwise the system stops the procedure. After proceeding, the

system then compares the measured voltage positions to the reference voltage positions

and uses this calculate its actual position. This procedure and the corresponding results

overlayed on top of the linearized position model are shown in Figure 5.4.

Based on a given desired initial position, the motor then moves to this approximate

position. Up until this point, it does not matter how the phase angle of the applied signal

and the mechanical angle of the rotor relate to one another. Given the system now knows

the rotor position as well as the desired position, the system can rotate to this location

by simply applying an electrical signal that rotates nine times the difference between the

actual and desired position. Once the motor is close to the desired position, the system will

establish a relationship between electrical phase angle and mechanical position. Moving

forward, any desired change in the angle of the rotor can be made approximately by a

change of the electrical phase angle of nine times this value. Following this, the system

then repeats the test rotation procedure by comparing peak voltages to confirm its position,
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Figure 5.4: Initial spin referenced location over linearized model.
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Figure 5.5: Confirmation spin verified location over linearized model.

ensure it is on the correct linear segment, and verify the established rotor angle/phase angle

relationship. Figure 5.5 reflects the same information as Figure 5.4 but shows the that the
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motor has moved to the desired starting position. It is worth noting that the cross and

circle in Figure 5.5 represent the positions determined from Hall-effect sensors 12 and 2

respectively and match up nearly perfectly with Hall-effect sensor 7.

Once this confirmation has occured, the system asks for a user determined position,

where this desired position is limited to the linear regions that were determined during the

linearization processing. Though the motor can be controlled to operate at any position

covered by the linearization procedure, this series of tests will focus only on those posi-

tions that are covered by the linearized segments of all three Hall-effect sensors. These

positional bounds are listed in Table 5.1. After receiving a desired position, the motor then

turns to the correct linear segment and approximate position specified before initiating the

positional controller.

Table 5.1: Positions covered by all three Hall-effect sensor linearizations
Lower Bound (rad) Upper Bound (rad)
0.166 0.234
0.515 0.594
0.848 0.938
1.261 1.355
1.543 1.676
1.905 1.984
2.248 2.345
2.592 2.678
2.939 3.021
3.295 3.379
3.630 3.728
4.045 4.061
4.335 4.408
4.692 4.836
5.038 5.161
5.396 5.479
5.753 5.829
6.100 6.184
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5.2 Controller Structure

The controller, as implemented through MATLAB and its events system, is broken into

three main programs or components. The first program handles all of the initial position

determination and user input. Once a desired position has been specified, this program

continues running waiting for the next desired position. The second program is an updating

event that is triggered whenever data is available from the DAQ board. Due to the nature

of the DAQ board and it’s integration with MATLAB, data is only collected whenever

the board is specified to be outputting signals. This function triggers whenever a certain

amount of data is available, stores the collected data, and determines the rotor’s position

from the Hall-effect sensor voltages. The third program is the controller of the system

which uses the position determined by the updating program to implement the controller

and adjust the phase signals as necessary.

5.3 Controller Design

In order to design a positional controller for the system, the system dynamics model

must be adjusted slightly. As in 4.4 the system model can be given as

Iθ̈(t) = kT i− Tf (5.1)

so long as the current vector is rotated around to correspond with the changing angular

position of the rotor. For a constant current vector however, the system dynamics can

more accurately be described by

Iθ̈(t) = kT isin(φ− θ)− Tf (5.2)
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Clockwise Torque

Counterclockwise Torque

Figure 5.6: Force distribution around rotor for a static current vector.

where φ is the angle of the current vector and θ is the position of the rotor. This is due

to the sinusoidal distribution of the magnetic field which is illustrated in Figure 5.6. In

this diagram, rotating the rotor manually can be thought of as traversing around the curve

where a greater radial distance from the base circle corresponds to a greater torque and the

nine points tangential to the base circle are where no torque occurs. Similarly, rotating the
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current vector would correspond to a rotation of the waveform. Based on this represen-

tation, it is plain to see that for a static current vector, there are nine stable points around

which the rotor could settle. It is around each of these stable points that the torque can be

said to be sinusoidally distributed with respect to angular position.

Based on this, the system can be linearized around each of these points. Continuing

from 5.2,

Iθ̈ = kT i(φ− θ)− Tfsgn(θ̇) (5.3)

The angle of the current vector input can then be made to be

kT iφ = Tfsgn(θ̇) + kTiθd − kdθ̇ − kp(θ − θd)− ki

∫ t

0

(θ − θd) dt (5.4)

where θd is the desired angular position and kp, ki, and kd are the associated terms for a

PID controller. This setup allows the controller to be designed as a PID controller for the

system while canceling out the friction force. Defining the error as

e = θ − θd (5.5)

ė = θ̇ (5.6)

plugging 5.4 into 5.3, and canceling the appropriate terms yields

Iθ̈ = −kT ie− kpe− kdė− ki
∫ t

0

e dt (5.7)
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Rearranging these terms and taking the Laplace transform results in

Is2Θ + kdsΘ + (kT i+ kp)Θ +
kiΘ

s
= (kT i+ kp)θd + kiθd (5.8)

Θ

θd
=

(kT i+ kp)s+ ki
Is3 + kds2 + (kT i+ kp)s+ ki

(5.9)

In order to make this system stable, kd must be greater than zero. This becomes readily

apparent by setting ki zero. The poles of the system can then be found to be

s = −kd ±
√
k2d − 4I(kT i+ kp) (5.10)

Due to the hardware limitations of the system, the update rate of the system is only 9

Hz. This should not be confused with the sampling rate of 1200 Hz. This update rate is

how often new input can be fed to the controller to achieve the desired position. Given

that this series of test is focused on precision positioning, this should not cause a problem

provided that the controller gains do not result in too large of a response too quickly

and cause unstable oscillations. However, the system model does need to be converted

to a discrete system. due to the slow sampling rate. Using MATLAB, the system was

converted to a discrete-time transfer function defined by

Θ

Θd

=
0.7203z2 − 0.614z − 0.06683

z3 − 1.192z2 + 0.2314z − 0.0003867
(5.11)

A comparison of the step response of the continuous and discretized systems can be

seen in Figure 5.7 and the properties of discrete-time transfer function are given in Table

5.2. Additionally, the root locus of the system is given in Figure 5.8 where the poles were

found to be 0.0017, 0.2420, and 0.9479.
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Figure 5.7: System step response for both continuous-time and discrete-time.

Table 5.2: Properties of discrete-time transfer function.
Proptery Value
Kp 1
Ki 0.5
Kd 0.1
Rise Time: 0.1847
Settling Time: 0.2870
Settling Min: 0.9645
Settling Max: 1.0359
Overshoot: 1.7108
Undershoot: 0
Peak: 1.0359
Peak Time: 0.5556
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5.4 Controller Implementation

This controller was implemented and the full system response is given in Figure 5.9,

the corresponding phase currents and electrical phase angle are shown in Figure 5.10, and

the convergence of the RMSE is shown in Figure 5.11. For the sake of consistency and

ease of comparison, all system responses to step inputs (unless otherwise specified) will

begin at 5.05 radians.

These system responses demonstrate an RMSE convergence value of about 0.016 de-

grees (or 2.8 · 10−4 radians). Given that the outer diameter of the rotor is 0.133 meters,

this rotational precision corresponds to a circumferential precision of about 19 microme-

ters. Despite this convergence, there remains a persistent noise in the system caused by the

flipping sign of the velocity and its alternating effect on the controller. The effect of this is

exacerbated by the slow update rate. The system convergence can therefore be improved

by removing this term. The system’s new step response results are shown in Figures 5.12–

5.14. It is readily apparent from Figure 5.13 that the noise from the oscillating friction

term is now gone. This corresponds with the improved RMSE performance which now

converges to about 0.012 degrees (or approximately 2.1 · 10−4. Given this, it doesn’t seem

there is any need to compensate for removing the friction term from the controller. Though

these results don’t take into account the error from the linearization procedure (but speak

more to the noise within the system), they show that given a mapping of the Hall-effect

sensor voltages to a corresponding position, the motor can consistently and accurately

move to the specified location.

The response of the system to consecutive step responses within the same linearized

segment is shown in Figures 5.15–5.18. The first two steps are rotations of only 5 · 10−5 °

and though the data is noisy, the steps are clearly visible. This corresponds to an error of

only 8.73 · 10−7 radians and a circumferential error of just over 58 nm.
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Figure 5.9: Applied controller step response.
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Figure 5.10: Applied controller phases and phase angle.
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Figure 5.11: Applied controller RMSE convergence over time.
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Figure 5.12: Applied controller step response.
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Figure 5.13: Applied controller phases and phase angle.
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6. SUMMARY AND CONCLUSIONS

In this thesis, a two-phase external-rotor PMAC motor making use of a Halbach mag-

net array for high-precision positioning was proposed, designed, modeled, and tested. The

system was made from non-ferromagnetic materials to ensure the motor’s internal field

from the Halbach magnet array was as close to sinusoidal as possible. This setup was

modeled and confirmed in Maxwell SV. This property was then taken advantage of to de-

sign a system that was able to generate a torque that was independent of both rotor position

and current distribution due to a lack of cogging torque from winding asymmetries. The

motor was then built and characterized. During the processing of data, corrections were

made to account for discrepancies in the DAQ system clocks. With these corrections, the

full rotation of the rotor was mapped based on data from the three embedded Hall-effect

sensors. Linearized segments from this data were then generated to allow for rotor posi-

tioning based only on this data.

A position control system was then implemented using the motor characterization and

linearization methods. The motor system was able to identify its absolute angular position

and then respond to user input to reach desired positions. The system was then able to

accurately move between step inputs of 8.73 · 10−7 radians (0.00005°). This corresponds

to a circumferential error of just over 58 nm.

6.1 Motor Characteristics Summary

Based on the experiments performed to characterize the system, Table 6.1 lists some of

the motor’s properties. The max speed was found by slowing accelerating the motor until

the rotor slipped and lost synchronicity. The max torque was calculated by multiplying

the average of the two torque constants by the maximum per-phase current. The friction

torque corresponds to the average torque from friction during one rotation of the rotor. The
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resolutions were obtained from the RMSE of the position data against the desired position.

Table 6.1: Summary of important system characteristics.
Property Value Units
Max Current 9 A
Max Speed 1140 rpm
Max Torque 0.554 N·m
Back-EMF Constant 0.0089 V/rpm
Average Friction Torque 0.0599 N·m
Angular Resolution 0.00005 °
Linear Resolution 58 nm

6.2 Further Study

During the position control of the system, the voltages from each Hall-effect sensor

was converted to a position, and these positions were averaged with equal weighting to de-

termine the actual position. Weighting based on the variance of each sensor could slightly

improve the response of the system. In order to properly do this, a baseline variance for

each Hall-effect sensor would need to be measured. The change in variance based on

both the current voltage of the sensors as well as the currents in the phases would need

to be taken into account to do a proper weighting. That is, not only does the currents in

the phases affect the sensors’ variances, but more likely than not, the variance would be

affected by the current voltage level being output by the Hall-effect sensors.

Additionally, adaptive control systems could be implemented to improve the system’s

response to external inputs. With more powerful hardware, it would also be possible to

decrease the sampling time or implement more complex or nonlinear control systems. This

could particularly be used to generate more complex curves to fit the Hall-effect sensors

output. In this way, the linearized segments demonstrated in this series of experiments
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could be made of fitting segments of a higher order designed to further reduce the error

inherent when converting the Hall-effect voltages to positions.

Finally, given a different distribution of Hall-effect sensors, the position of the rotor

throughout the entire rotation could be mapped. In this way, only the linear regions of

the Hall-effect sensors could be used provided that switching between Hall-effect sensors

was implemented. In this way, if the voltage from each Hall-effect sensor was outside of

a certain range, it would not be used to determine position. This type of positioning could

help ensure the phase current was being applied at the correct angle to ensure uniform

torque generation around the full revolution of the rotor.
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APPENDIX A

MATLAB CODE

A.1 Load Impedance

1 rpm = linspace(0,1800,18000);
2 rps = rpm/60;
3 sps = rps*9;
4
5 Ra1 = 0.6870;
6 La1 = 116.1*10^-6;
7
8 Ra2 = 0.6937;
9 La2 = 121.6*10^-6;

10
11 XLa1 = 2*pi*sps*La1;
12 XLa2 = 2*pi*sps*La2;
13
14 Xa1 = sqrt(XLa1.^2 + Ra1.^2);
15 Xa2 = sqrt(XLa2.^2 + Ra2.^2);
16
17 plot(rpm, Xa1,'r',rpm,Xa2,'b','LineWidth',4);
18 xlabel('Motor Speed (RPM)');
19 ylabel('Phase Impedance (\Omega)');
20 title('Phase Impedance vs Motor Speed');
21 legend('Phase 1','Phase 2');
22 % ylim([0 1])
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A.2 Gain Calibration

A.2.1 Gain Calibration Collection

1 d = daq.getDevices;
2 s = daq.createSession('ni');
3 Fs = 32000;
4 runTime = 5; %Actual run time is double this
5 Len = runTime*Fs;
6 T = 1/Fs;
7 t = linspace(0,runTime,Len);
8 windowSize = 100;
9 settleTime = 1;

10
11 R1 = 0.6870; % ohms
12 R2 = 0.6937; % ohms
13 L1 = 116.1*10^-6; % henries
14 L2 = 121.6*10^-6; % henries
15
16
17 s.Rate = Fs;
18
19 aOChannel0 = 'ao0'; %Pin 22
20 aOChannel1 = 'ao1'; %Pin 21
21 aI0Plus = 'ai15';
22 aI0Min = 'ai13';
23
24 aI1Plus = 'ai12';
25 aI1Min = 'ai10';
26
27 aBoardOutput0 = 'ai6';
28 aBoardOutput1 = 'ai8';
29 % aBoardOutputGND = 'ai8';
30
31 % Channels Not Working 28,30,33,57,60,65,68,
32 % Channels Working 23,25,26,31,34,58,61,63,66,
33
34
35 addAnalogOutputChannel(s,'Dev1',aOChannel0,'voltage');
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36 addAnalogOutputChannel(s,'Dev1',aOChannel1,'voltage');
37 ch15 = addAnalogInputChannel(s,'Dev1', aI0Plus, '

Voltage');
38 ch13 = addAnalogInputChannel(s,'Dev1', aI0Min, 'Voltage

');
39 ch12 = addAnalogInputChannel(s,'Dev1', aI1Plus, '

Voltage');
40 ch10 = addAnalogInputChannel(s,'Dev1', aI1Min, 'Voltage

');
41 ch6 = addAnalogInputChannel(s,'Dev1', aBoardOutput0, '

Voltage');
42 % ch8 = addAnalogInputChannel(s,'Dev1', aBoardOutputGND

, 'Voltage');
43 ch8 = addAnalogInputChannel(s,'Dev1', aBoardOutput1, '

Voltage');
44 % legend('AI0+','AI0-','AI1+','AI1-','ABoard0+','

ABoard1+');
45
46 ch15.TerminalConfig = 'SingleEnded';
47 ch13.TerminalConfig = 'SingleEnded';
48 ch12.TerminalConfig = 'SingleEnded';
49 ch10.TerminalConfig = 'SingleEnded';
50 ch6.TerminalConfig = 'SingleEnded';
51 ch8.TerminalConfig = 'SingleEnded';
52 % ch9.TerminalConfig = 'SingleEnded';
53
54 out0 = zeros(Len,2);
55 out1 = zeros(Len,2);
56 sig = [];
57
58 % out0(:,1) = transpose([linspace(-3,-0.5,L/2),

linspace(0.5,3,L/2)]);
59 % out1(:,2) = transpose([linspace(-3,-0.5,L/2),

linspace(0.5,3,L/2)]);
60
61 out0(:,1) = [linspace(-4,-4,Len/8), linspace(-3,-3,Len

/8),...
62 linspace(-2,-2,Len/8), linspace(-1,-1,Len/8) ...
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63 linspace(1,1,Len/8), linspace(2,2,Len/8),...
64 linspace(3,3,Len/8), linspace(4,4,Len/8)]';
65 out1(:,2) = [linspace(-4,-4,Len/8), linspace(-3,-3,Len

/8),...
66 linspace(-2,-2,Len/8), linspace(-1,-1,Len/8) ...
67 linspace(1,1,Len/8), linspace(2,2,Len/8),...
68 linspace(3,3,Len/8), linspace(4,4,Len/8)]';
69
70 queueOutputData(s, [-4*ones(settleTime*Fs,1) zeros(

settleTime*Fs,1)]);
71 [dontCare,dontCare] = s.startForeground;
72
73 queueOutputData(s, out0);
74 [data1,time1] = s.startForeground;
75 queueOutputData(s,[0 0]);
76 [dontCare,dontCare] = s.startForeground;
77
78 queueOutputData(s, [zeros(settleTime*Fs,1) -4*ones(

settleTime*Fs,1)]);
79 [dontCare,dontCare] = s.startForeground;
80
81 queueOutputData(s, out1);
82 [data2,time2] = s.startForeground;
83 queueOutputData(s,[0 0]);
84 [dontCare,dontCare] = s.startForeground;
85
86 preData1 = data1;
87 preData2 = data2;
88
89 aO1 = (data1(:,1)-data1(:,2))./R1;
90 aO2 = (data2(:,3)-data2(:,4))./R2;
91 aO1Board = data1(:,5);
92 aO2Board = data2(:,6);
93
94 preGain1 = aO1(:,1)./out0(:,1);
95 preGain2 = aO2(:,1)./out1(:,2);
96
97 b = (1/windowSize)*ones(1,windowSize);
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98 a = 1;
99 sig1f = filter(b,a,aO1);

100 sig2f = filter(b,a,aO2);
101
102 % m1 = (L*sum(out0(:,1).*aO1) - sum(out0(:,1))*sum(aO1)

)/...
103 % (L*sum(out0(:,1).^2) - sum(out0(:,1))^2)
104
105 m1 = mean(preGain1);
106 % b1 = sum(aO1-m1*out0(:,1))/L;
107 b1 = (sum(aO1)-m1*sum(out0(:,1)))/Len;
108 m2 = mean(preGain2);
109 b2 = (sum(aO2)-m2*sum(out1(:,1)))/Len;
110
111 % plot(time,data,time,aO1,time,aO2);
112 % legend('Volt1+','Volt1-','Volt2+','Volt2-','Volt1

+-','Volt2+-');
113 figure(1)
114 plot(time1, aO1Board, time1, aO1, time1, preGain1,time1

,sig1f);
115 legend('Voltage Input','Current Measured','Gain','

Filtered Current','Location','southeast');
116 xlabel('Time (secs)');
117 ylabel('Voltage (V) and Current (A)');
118 title('Phase 1 Pre-Calibration');
119 figure(2)
120 plot(time2, out1(:,2), time2, aO2, time2, preGain2,

time2,sig2f);
121 legend('Voltage Input','Current Measured','Gain','

Filtered Current','Location','southeast');
122 xlabel('Time (secs)');
123 ylabel('Voltage (V) and Current (A)');
124 title('Phase 2 Pre-Calibration');
125
126 % figure(3)
127 % Y = fft(data(:,4));
128 % P2 = abs(Y/L);
129 % P1 = P2(1:L/2+1);

110



130 % P1(2:end-1) = 2*P1(2:end-1);
131 % f = Fs*(0:(L/2))/L;
132 % figure(3)
133 % plot(f,P1);
134
135 %% Validation
136
137 y0 = (out0-b1)./m1;
138 y1 = (out1-b2)./m2;
139
140 queueOutputData(s, [-4*ones(settleTime*Fs,1) zeros(

settleTime*Fs,1)]);
141 [dontCare,dontCare] = s.startForeground;
142
143 queueOutputData(s, y0);
144 [data1,time1] = s.startForeground;
145 queueOutputData(s,[0 0]);
146 [dontCare,dontCare] = s.startForeground;
147
148 queueOutputData(s, [zeros(settleTime*Fs,1) -4*ones(

settleTime*Fs,1)]);
149 [dontCare,dontCare] = s.startForeground;
150
151 queueOutputData(s, y1);
152 [data2,time2] = s.startForeground;
153 queueOutputData(s,[0 0]);
154 [dontCare,dontCare] = s.startForeground;
155
156 postData1 = data1;
157 postData2 = data2;
158
159 aO1 = (data1(:,1)-data1(:,2))./R1;
160 aO2 = (data2(:,3)-data2(:,4))./R2;
161 aO1Board = data1(:,5);
162 aO2Board = data2(:,6);
163
164 postGain1 = aO1(:,1)./out0(:,1);
165 postGain2 = aO2(:,1)./out1(:,2);
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166
167 b = (1/windowSize)*ones(1,windowSize);
168 a = 1;
169 sig1f = filter(b,a,aO1);
170 sig2f = filter(b,a,aO2);
171
172 figure(3)
173 plot(time1, out0(:,1), time1, aO1, time1, postGain1,

time1,sig1f);
174 legend('Voltage Input','Current Measured','Gain','

Filtered Current','Location','southeast');
175 xlabel('Time (secs)');
176 ylabel('Voltage (V) and Current (A)');
177 title('Phase 1 Post-Calibration');
178 figure(4)
179 plot(time2, out1(:,2), time2, aO2, time2, postGain2,

time2,sig2f);
180 legend('Voltage Input','Current Measured','Gain','

Filtered Current','Location','southeast');
181 xlabel('Time (secs)');
182 ylabel('Voltage (V) and Current (A)');
183 title('Phase 2 Post-Calibration');
184
185 % save('steppedCalibration.mat');

A.2.2 Gain Calibration Data Plotting

1 load('linearCalibration.mat');
2 % load('steppedCalibration.mat');
3
4 aO1 = preData1(:,1)-preData1(:,2);
5 aO2 = preData2(:,3)-preData2(:,4);
6 aO1Board = preData1(:,5);
7 aO2Board = preData2(:,6);
8
9 gain1 = aO1(:,1)./out0(:,1);

10 gain2 = aO2(:,1)./out1(:,2);
11
12 b = (1/windowSize)*ones(1,windowSize);
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13 a = 1;
14 sig1f = filter(b,a,aO1);
15 sig2f = filter(b,a,aO2);
16 gain1f = filter(b,a,gain1);
17 gain2f = filter(b,a,gain2);
18
19 % m1 = (L*sum(out0(:,1).*aO1) - sum(out0(:,1))*sum(aO1)

)/...
20 % (L*sum(out0(:,1).^2) - sum(out0(:,1))^2)
21
22 m1 = mean(gain1);
23 % b1 = sum(aO1-m1*out0(:,1))/L;
24 b1 = (sum(aO1)-m1*sum(out0(:,1)))/L;
25 m2 = mean(gain2);
26 b2 = (sum(aO2)-m2*sum(out1(:,1)))/L;
27
28 figure(1)
29 plot(time1, out0(:,1), time1, aO1Board, time1, aO1,

time1,sig1f, time1, gain1f);
30 legend('Desired 1','Board Output 1','Amp Output 1','Amp

Output Filtered 1','Gain 1 Filtered','Location','
southeast');

31 xlabel('Time (secs)');
32 ylabel('Voltage');
33 title('Phase 1 Pre-Calibration');
34 figure(2)
35 plot(time2, out1(:,2), time2, aO2Board, time2, aO2,

time2,sig2f, time2, gain2f);
36 legend('Desired 2','Board Output 2','Amp Output 2','Amp

Output Filtered 2','Gain 2 Filtered','Location','
southeast');

37 xlabel('Time (secs)');
38 ylabel('Voltage');
39 title('Phase 2 Pre-Calibration');
40
41 aO1 = postData1(:,1)-postData1(:,2);
42 aO2 = postData2(:,3)-postData2(:,4);
43 aO1Board = postData1(:,5);
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44 aO2Board = postData1(:,6);
45
46 gain1 = aO1(:,1)./out0(:,1);
47 gain2 = aO2(:,1)./out1(:,2);
48
49 b = (1/windowSize)*ones(1,windowSize);
50 a = 1;
51 sig1f = filter(b,a,aO1);
52 sig2f = filter(b,a,aO2);
53 gain1f = filter(b,a,gain1);
54 gain2f = filter(b,a,gain2);
55
56 figure(3)
57 plot(time1, out0(:,1), time1, aO1Board, time1, aO1,

time1, sig1f, time1, gain1f);
58 legend('Desired 1','Board Output 1','Amp Output 1','Amp

Output Filtered 1','Gain 1 Filtered','Location','
southeast');

59 xlabel('Time (secs)');
60 ylabel('Voltage');
61 title('Phase 1 Post-Calibration');
62 figure(4)
63 plot(time2, out1(:,2), time2, aO2Board, time2, aO2,

time2, sig2f, time2, gain2f);
64 legend('Desired 2','Board Output 2','Amp Output 2','Amp

Output Filtered 2','Gain 2 Filtered','Location','
southeast');

65 xlabel('Time (secs)');
66 ylabel('Voltage');
67 title('Phase 2 Post-Calibration');
68
69 figure(5);
70 plot(time1,preData1);
71 xlabel('Time (secs)');
72 ylabel('Voltage');
73 legend('AI0+','AI0-','AI1+','AI1-','ABoard0+','ABoard1+

');
74 title('Phase 1 Pre-Calibration Raw Voltages');
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75 figure(6);
76 plot(time2,preData2);
77 xlabel('Time (secs)');
78 ylabel('Voltage');
79 legend('AI0+','AI0-','AI1+','AI1-','ABoard0+','ABoard1+

');
80 title('Phase 2 Pre-Calibration Raw Voltages');
81 figure(7);
82 plot(time1,postData1);
83 xlabel('Time (secs)');
84 ylabel('Voltage');
85 legend('AI0+','AI0-','AI1+','AI1-','ABoard0+','ABoard1+

');
86 title('Phase 1 Post-Calibration Raw Voltages');
87 figure(8);
88 plot(time2,postData2);
89 xlabel('Time (secs)');
90 ylabel('Voltage');
91 legend('AI0+','AI0-','AI1+','AI1-','ABoard0+','ABoard1+

');
92 title('Phase 2 Post-Calibration Raw Voltages');

115



A.3 Motor Friction Force

A.3.1 Motor Deceleration Processing from Video

1 close all;
2 load('videoPoints.mat');
3 time = videoPoints(:,1);
4 pos = videoPoints(:,2);
5
6 for i = 2:length(pos)
7 if (pos(i) < pos(i-1))
8 pos(i:end) = pos(i:end) + 360;
9 end

10 end
11
12 posCorrected = pos - pos(1);
13 [fitOb gof] = fit(time,posCorrected,'poly2');
14 coeffs = coeffvalues(fitOb);
15 a = coeffs(1);
16 b = coeffs(2);
17 c = coeffs(3);
18
19 xs = linspace(0,time(end),1000);
20 ys = a*xs.^2 + b*xs + c;
21
22 figure(1);
23 hold on;
24 plot(xs,ys,':','LineWidth',5);
25 plot(time,posCorrected,'.','MarkerSize',24);
26 title('Motor Position During Deceleration');
27 xlabel('Time (sec)');
28 ylabel('Position (degree)');
29 legend('Best Fit Line','Raw Data','Location','SouthEast

');
30 % grid minor
31 hold off;

A.3.2 Motor Deceleration Processing from Sensor
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1 load('friction_Meas.mat');
2 close all
3
4 segs = 18;
5 I = 0.001414;
6
7 testResult{2,end}{end} = testResult{2,end}{end}(end);
8 propsLeg = testResult{1,:};
9 props = cell2mat(testResult{2,:});

10
11 %Assign properties and basic vectors
12 sr = props(1); % samping rate
13 timeVector = slowDownTime;
14 inputSig0 = slowDown(:,5) - (max(slowDown(:,5)) + min(

slowDown(:,5)))/2;
15 inputSign0 = sign(inputSig0);
16 inputSign0Diff = [0; diff(inputSign0)];
17 crossoverIndices0 = find(inputSign0Diff);
18 numCrosses = length(crossoverIndices0);
19 crossoverIndicesDiff0 = diff([1; crossoverIndices0]);
20 crossoverTimes0 = timeVector(crossoverIndices0);
21 crossoverTimeDiff0 = diff([0 ;crossoverTimes0]); % sec

(difference)
22 crossoverVel0 = (1./crossoverTimeDiff0)./2; % Hz
23 motorVelAtCross0 = crossoverVel0./9; % Hz
24 slowingPos = [360/segs*linspace(0,numCrosses,numCrosses

+1)]';
25
26 weightVec = linspace(1,numCrosses+1,numCrosses+1);
27 [fitOb gof] = fit([0; crossoverTimes0],slowingPos,'

poly2');%,'Weights',weightVec);
28 coeffs = coeffvalues(fitOb);
29 a = coeffs(1);
30 b = coeffs(2);
31 c = coeffs(3);
32 xs = linspace(0,crossoverTimes0(end),1000);
33 ys = a*xs.^2 + b*xs + c;
34
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35 [fitOb2 gof2] = fit(crossoverTimes0,360*
motorVelAtCross0,'poly2');%,'Weights',weightVec);

36 coeffs2 = coeffvalues(fitOb2);
37 a2 = coeffs2(1);
38 b2 = coeffs2(2);
39 c2 = coeffs2(3);
40 xs2 = linspace(0,crossoverTimes0(end),1000);
41 ys2 = a2*xs2.^2 + b2*xs2 + c2;
42
43 b3 = 0.002;
44 c3 = -log(c2)*I;
45 xs3 = xs2;
46 ys3 = exp(-(b3*xs3 + c3)./I);
47
48 posFromVel = cumsum(motorVelAtCross0.*

crossoverTimeDiff0)*360;
49
50 figure(1);
51 plot(xs2,ys2,'-.','LineWidth',4);
52 hold on;
53 plot(crossoverTimes0,360*motorVelAtCross0,'.','

MarkerSize',14);
54 plot(xs3,ys3,':','LineWidth',4);
55 hold off;
56 ylabel('Motor Velocity (Degrees)');
57 xlabel('Time (sec)');
58 title('Motor Slow Down Over Time');
59 legend('Best Fit Line','Raw Data','Damping','Location',

'NorthEast');
60
61
62 figure(2);
63 plot(xs,ys,'-.','LineWidth',4);
64 hold on;
65 plot([0; crossoverTimes0],slowingPos,'.','MarkerSize'

,14);
66 % plot(crossoverTimes0,posFromVel);
67 hold off;

118



68 ylabel('Motor Position (Degrees)');
69 xlabel('Time (sec)');
70 title('Motor Slow Down Over Time');
71 legend('Best Fit Line','Raw Data','Location','SouthEast

');
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A.4 Torque Characteristics

A.4.1 Torque Measurement

1 d = daq.getDevices;
2 s = daq.createSession('ni');
3 Fs = 8000;
4 numberOfScans = Fs*2;
5 maxI = 3;
6
7 s.Rate = Fs;
8
9 aOChannel0 = 'ao0'; %Pin 22

10 aOChannel1 = 'ao1'; %Pin 21
11 aI0Plus = 'ai15';
12 aI0Min = 'ai13';
13
14 aI1Plus = 'ai12';
15 aI1Min = 'ai10';
16
17 aBoardOutput0 = 'ai6';
18 aBoardOutput1 = 'ai8';
19 % aBoardOutputGND = 'ai8';
20
21 % Channels Not Working 28,30,33,57,60,65,68,
22 % Channels Working 23,25,26,31,34,58,61,63,66,
23
24
25 addAnalogOutputChannel(s,'Dev1',aOChannel0,'voltage');
26 addAnalogOutputChannel(s,'Dev1',aOChannel1,'voltage');
27 ch15 = addAnalogInputChannel(s,'Dev1', aI0Plus, '

Voltage');
28 ch13 = addAnalogInputChannel(s,'Dev1', aI0Min, 'Voltage

');
29 ch12 = addAnalogInputChannel(s,'Dev1', aI1Plus, '

Voltage');
30 ch10 = addAnalogInputChannel(s,'Dev1', aI1Min, 'Voltage

');
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31 ch6 = addAnalogInputChannel(s,'Dev1', aBoardOutput0, '
Voltage');

32 % ch8 = addAnalogInputChannel(s,'Dev1', aBoardOutputGND
, 'Voltage');

33 ch8 = addAnalogInputChannel(s,'Dev1', aBoardOutput1, '
Voltage');

34 % legend('AI0+','AI0-','AI1+','AI1-','ABoard0+','
ABoard1+');

35
36 ch15.TerminalConfig = 'SingleEnded';
37 ch13.TerminalConfig = 'SingleEnded';
38 ch12.TerminalConfig = 'SingleEnded';
39 ch10.TerminalConfig = 'SingleEnded';
40 ch6.TerminalConfig = 'SingleEnded';
41 ch8.TerminalConfig = 'SingleEnded';
42 % ch9.TerminalConfig = 'SingleEnded';
43
44 prompt = ['Please input desired current in amps: '];
45 allData = [];
46 totTime = 0;
47 totTimeVec = [];
48 allDataTotTime = [];
49
50 while (true)
51 desCurrent = input(prompt);
52
53 if (desCurrent == 0)
54 break;
55 end
56
57 if (desCurrent > maxI)
58 desCurrent = maxI;
59 disp(['Max current is ' num2str(maxI) ' amps.'])

;
60 end
61
62 if (desCurrent < -maxI)
63 desCurrent = -maxI;
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64 disp(['Max negative current is -' num2str(maxI)
' amps.']);

65 end
66
67 phase1Out = desCurrent*ones(numberOfScans,1);
68 phase2Out = 0*ones(numberOfScans,1);
69
70 queueOutputData(s,[phase1Out phase2Out]);
71 [captured_data,time] = s.startForeground();
72 beep();
73 totTimeVec = [totTimeVec; time+totTime];
74
75 allData = [allData; time,captured_data];
76 allDataTotTime = [allDataTotTime; time+totTime,

captured_data];
77
78 phase1Volt = allDataTotTime(:,2) - allDataTotTime

(:,3);
79 plot(totTimeVec,phase1Volt,totTimeVec,

allDataTotTime(:,6));
80
81 totTime = totTime + time(end);
82
83 end
84
85 queueOutputData(s,[0 0]);
86 s.startForeground();

A.4.2 Torque Data Plotting

1 load('torque_measurements.mat');
2
3 d = 13.3096; % cm
4 r = d/2/100; % m
5 massKg = massMeasured/1000; % kg
6 g = 9.81; % m/s^2
7 weightTorque = massKg*g*r;
8
9 [fitOb1,gof1] = fit(currentReq1,weightTorque,'poly1');
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10 [fitOb2,gof2] = fit(currentReq2,weightTorque,'poly1');
11 coeffs1 = coeffvalues(fitOb1);
12 coeffs2 = coeffvalues(fitOb2);
13 coeffBoth(1) = (coeffs1(1) + coeffs2(1))/2*sqrt(2);
14 coeffBoth(2) = (coeffs1(2) + coeffs2(2))/2;
15
16 X1(1) = min(currentReq1);
17 X1(2) = max(currentReq1);
18 X2(1) = min(currentReq2);
19 X2(2) = max(currentReq2);
20
21 Y1 = coeffs1(1).*X1 + coeffs1(2);
22 Y2 = coeffs2(1).*X2 + coeffs2(2);
23
24 figure(1);
25 plot(currentReq1,weightTorque,'.','MarkerSize',24);
26 hold on;
27 plot(currentReq2,weightTorque,'.','MarkerSize',24);
28 plot(X1,Y1,':','LineWidth',3.5);
29 plot(X2,Y2,':','LineWidth',3.5);
30 hold off;
31
32 xlabel('Current (A)');
33 ylabel('Torque (N*m)');
34 title('Torque vs Current');
35 legend('Phase 1 Data','Phase 2 Data','Phase 1 Fit Line'

,'Phase 2 Fit Line','Location','NorthWest');
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A.5 Motor Current/Hall-Effect Sensor Interaction

A.5.1 Sensor Current Relation Data Collection

1 settleTime = 1;
2 runTime = 2;
3 sampleRate = 8000;
4 maxCurrent = 3;
5
6 aOChannel0 = 'ao0'; %Pin 22
7 aOChannel1 = 'ao1'; %Pin 21
8
9 aI0Plus = 'ai15';

10 aI0Min = 'ai13';
11 aI1Plus = 'ai12';
12 aI1Min = 'ai10';
13
14 aIH07 = 'ai9'; %Pin
15 aIH12 = 'ai11'; %Pin
16 aIH02 = 'ai14'; %Pin
17
18 d = daq.getDevices;
19 s = daq.createSession('ni');
20 s.Rate = sampleRate;
21 s.DurationInSeconds = runTime;
22
23 addAnalogOutputChannel(s,'Dev1',aOChannel0,'voltage');
24 addAnalogOutputChannel(s,'Dev1',aOChannel1,'voltage');
25 addAnalogInputChannel(s,'Dev1', aI0Plus, 'Voltage');
26 addAnalogInputChannel(s,'Dev1', aI0Min, 'Voltage');
27 addAnalogInputChannel(s,'Dev1', aI1Plus, 'Voltage');
28 addAnalogInputChannel(s,'Dev1', aI1Min, 'Voltage');
29 addAnalogInputChannel(s,'Dev1', aIH07, 'Voltage'); %Pin

26
30 addAnalogInputChannel(s,'Dev1', aIH12, 'Voltage'); %Pin

58
31 addAnalogInputChannel(s,'Dev1', aIH02, 'Voltage'); %Pin

23
32
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33 ch15.TerminalConfig = 'SingleEnded';
34 ch13.TerminalConfig = 'SingleEnded';
35 ch12.TerminalConfig = 'SingleEnded';
36 ch10.TerminalConfig = 'SingleEnded';
37 ch9.TerminalConfig = 'SingleEnded';
38 ch11.TerminalConfig = 'SingleEnded';
39 ch14.TerminalConfig = 'SingleEnded';
40
41 tVecSettle = sampleRate*settleTime;
42 tVec = sampleRate*runTime;
43 totPhaseTime = settleTime*2 + runTime*2;
44
45 outSettle = [maxCurrent*ones(tVecSettle/2,1); zeros(

tVecSettle/2,1)];
46 outLine = [linspace(0,maxCurrent,tVec/2), linspace(

maxCurrent,0,tVec/2)]';;
47 outZeroSettle = zeros(tVecSettle,1);
48 outZero = zeros(tVec,1);
49
50 % Phase 1
51 queueOutputData(s,[outSettle outZeroSettle]);
52 [settlePhase1Pos,settleTimePhase1Pos] = s.

startForeground;
53
54 queueOutputData(s,[outLine outZero]);
55 [phase1Pos,timePhase1Pos] = s.startForeground;
56
57 queueOutputData(s,[-outSettle outZeroSettle]);
58 [settlePhase1Neg,settleTimePhase1Neg] = s.

startForeground;
59
60 queueOutputData(s,[-outLine outZero]);
61 [phase1Neg,timePhase1Neg] = s.startForeground;
62
63 % Phase 2
64 queueOutputData(s,[outZeroSettle outSettle]);
65 [settlePhase2Pos,settleTimePhase2Pos] = s.

startForeground;
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66
67 queueOutputData(s,[outZero outLine]);
68 [phase2Pos,timePhase2Pos] = s.startForeground;
69
70 queueOutputData(s,[outZeroSettle -outSettle]);
71 [settlePhase2Neg,settleTimePhase2Neg] = s.

startForeground;
72
73 queueOutputData(s,[outZero -outLine]);
74 [phase2Neg,timePhase2Neg] = s.startForeground;
75
76 % save('sensor_current_relation.mat');

A.5.2 Sensor Current Relation Data Plotting

1 load('sensor_current_relation.mat');
2 close all;
3
4 timeVec = [linspace(0,totPhaseTime,totPhaseTime*

sampleRate)]';
5 phaseCurrents = [outSettle; outLine; -outSettle; -

outLine];
6 halbachData1 = [settlePhase1Pos; phase1Pos;

settlePhase1Neg; phase1Neg];
7 halbachData2 = [settlePhase2Pos; phase2Pos;

settlePhase2Neg; phase2Neg];
8
9 tSettled = settleTime*sampleRate/2;

10 phase1PosRefValue = mean(settlePhase1Pos(tSettled:end
,:));

11 phase1NegRefValue = mean(settlePhase1Neg(tSettled:end
,:));

12 phase2PosRefValue = mean(settlePhase2Pos(tSettled:end
,:));

13 phase2NegRefValue = mean(settlePhase2Neg(tSettled:end
,:));

14
15 phase1PosMeanVec = ones(runTime*sampleRate,1)*

phase1PosRefValue(5:7);
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16 phase1NegMeanVec = ones(runTime*sampleRate,1)*
phase1NegRefValue(5:7);

17 phase2PosMeanVec = ones(runTime*sampleRate,1)*
phase2PosRefValue(5:7);

18 phase2NegMeanVec = ones(runTime*sampleRate,1)*
phase2NegRefValue(5:7);

19
20 currentAfterSettle = [outLine; -outLine];
21 phase1HalbachAdj = [phase1Pos(:,5:7); phase1Neg(:,5:7)]

- [phase1PosMeanVec; phase1NegMeanVec];
22 phase2HalbachAdj = [phase2Pos(:,5:7); phase2Neg(:,5:7)]

- [phase2PosMeanVec; phase2NegMeanVec];
23
24 [fitPhase1H07 gofP1H07] = fit(currentAfterSettle,

phase1HalbachAdj(:,1),'poly1');
25 coeffsP1H07(1,1:2) = coeffvalues(fitPhase1H07);
26 [fitPhase1H12 gofP1H12] = fit(currentAfterSettle,

phase1HalbachAdj(:,2),'poly1');
27 coeffsP1H12(1,1:2) = coeffvalues(fitPhase1H12);
28 [fitPhase1H02 gofP1H02] = fit(currentAfterSettle,

phase1HalbachAdj(:,3),'poly1');
29 coeffsP1H02(1,1:2) = coeffvalues(fitPhase1H02);
30
31 [fitPhase2H07 gofP2H07] = fit(currentAfterSettle,

phase2HalbachAdj(:,1),'poly1');
32 coeffsP2H07(1,1:2) = coeffvalues(fitPhase2H07);
33 [fitPhase2H12 gofP2H12] = fit(currentAfterSettle,

phase2HalbachAdj(:,2),'poly1');
34 coeffsP2H12(1,1:2) = coeffvalues(fitPhase2H12);
35 [fitPhase2H02 gofP2H02] = fit(currentAfterSettle,

phase2HalbachAdj(:,3),'poly1');
36 coeffsP2H02(1,1:2) = coeffvalues(fitPhase2H02);
37
38 fitVec = linspace(-maxCurrent,maxCurrent,20);
39 P1H07fitLine = fitVec*coeffsP1H07(1) + coeffsP1H07(2);
40 P1H12fitLine = fitVec*coeffsP1H12(1) + coeffsP1H12(2);
41 P1H02fitLine = fitVec*coeffsP1H02(1) + coeffsP1H02(2);
42 P2H07fitLine = fitVec*coeffsP2H07(1) + coeffsP2H07(2);
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43 P2H12fitLine = fitVec*coeffsP2H12(1) + coeffsP2H12(2);
44 P2H02fitLine = fitVec*coeffsP2H02(1) + coeffsP2H02(2);
45
46 figure(1);
47 yyaxis left
48 plot(timeVec,phaseCurrents,'--');
49 ylabel('Current (A)');
50 hold on;
51 yyaxis right
52 plot(timeVec(1:4000:end),halbachData1(1:4000:end,5),'x'

);
53 plot(timeVec(1:4000:end),halbachData1(1:4000:end,6),'-'

);
54 plot(timeVec(1:4000:end),halbachData1(1:4000:end,7),'o'

);
55 plot(timeVec,halbachData1(:,5));
56 plot(timeVec,halbachData1(:,6));
57 plot(timeVec,halbachData1(:,7));
58 hold off;
59 xlabel('Time (s)');
60 ylabel('Voltage (V)');
61 legend('Current','H07','H12','H02');
62 title('Phase 1 Hall-Effect Calibration');
63
64 figure(2);
65 yyaxis left
66 plot(timeVec,phaseCurrents,'--');
67 ylabel('Current (A)');
68 hold on;
69 yyaxis right
70 plot(timeVec(1:4000:end),halbachData2(1:4000:end,5),'x'

);
71 plot(timeVec(1:4000:end),halbachData2(1:4000:end,6),'-'

);
72 plot(timeVec(1:4000:end),halbachData2(1:4000:end,7),'o'

);
73 plot(timeVec,halbachData2(:,5));
74 plot(timeVec,halbachData2(:,6),'-');
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75 plot(timeVec,halbachData2(:,7),'-');
76 hold off;
77 xlabel('Time (s)');
78 ylabel('Voltage (V)');
79 legend('Current','H07','H12','H02');
80 title('Phase 2 Hall-Effect Calibration');
81
82 figure(3);
83 plot(currentAfterSettle,phase1HalbachAdj);
84 hold on;
85 h1 = plot(fitVec,P1H07fitLine,'^-');
86 h2 = plot(fitVec,P1H12fitLine,'o-');
87 h3 = plot(fitVec,P1H02fitLine,'*-');
88 hold off;
89 xlabel('Current (s)');
90 ylabel('Voltage (V)');
91 legend([h1,h2,h3],'H07','H12','H02');
92 title('Phase 1 Hall-Effect Calibration');
93
94 figure(4);
95 plot(currentAfterSettle,phase2HalbachAdj);
96 hold on;
97 h1 = plot(fitVec,P2H07fitLine,'^-');
98 h2 = plot(fitVec,P2H12fitLine,'o-');
99 h3 = plot(fitVec,P2H02fitLine,'*-');

100 hold off;
101 xlabel('Current (s)');
102 ylabel('Voltage (V)');
103 legend([h1,h2,h3],'H07','H12','H02');
104 title('Phase 2 Hall-Effect Calibration');
105
106 save('sensorCurrentFit.mat','coeffsP1H12','coeffsP1H02'

,'coeffsP2H07');
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A.6 Motor Back-EMF Measurements

A.6.1 Back-EMF Measurement

1 runTime = 10;
2 sampleRate = 16000;
3 rpm = 900;
4 desiredMaxCurrent = 3.5;
5 windowSize = 1;
6 emfCollectTime = 2;
7 movMeanWin = 100;
8
9 Ra1 = 0.6870;

10 La1 = 116.1*10^-6;
11
12 Ra2 = 0.6937;
13 La2 = 121.6*10^-6;
14
15 m1 = 0.9216;
16 m2 = 1.0001;
17 b1 = 0;
18 b2 = 0;
19
20 aOChannel0 = 'ao0'; %Pin 22
21 aOChannel1 = 'ao1'; %Pin 21
22 aI0Plus = 'ai15';
23 aI0Min = 'ai13';
24
25 aI1Plus = 'ai12';
26 aI1Min = 'ai10';
27
28 aIH07 = 'ai9'; %Pin
29 aIH12 = 'ai11'; %Pin
30 aIH02 = 'ai14'; %Pin
31
32 aBoardOutput0 = 'ai6';
33 aBoardOutput1 = 'ai8';
34
35 finalSigFreq = rpm*9/60;
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36 finalSpdTime = round(2*(1.2*log(finalSigFreq/9) +
.8158),0);

37 steadyStateTime = runTime - finalSpdTime;
38 sigSpeedAccVector = linspace(0,finalSigFreq,

finalSpdTime*sampleRate)';
39 sigSpeedVector = [sigSpeedAccVector; finalSigFreq*ones(

steadyStateTime*sampleRate,1)];
40 finalSpdPoint = finalSpdTime*sampleRate;
41
42 phase1Impedance = sqrt(Ra1.^2 + (2*pi*sigSpeedVector*

La1).^2);
43 phase2Impedance = sqrt(Ra2.^2 + (2*pi*sigSpeedVector*

La2).^2);
44
45 filename = [num2str(rpm) 'rpm' num2str(finalSpdTime)

...
46 'secAccel' num2str(runTime) 'secRun.xlsx'];
47 y0 = [];
48 y1 = [];
49
50 taccel = linspace(0,finalSpdTime,sampleRate*

finalSpdTime)';
51 tconst = linspace(finalSpdTime,runTime,sampleRate*(

runTime-finalSpdTime))';
52 y0accel = chirp(taccel,0,finalSpdTime,finalSigFreq);
53 y1accel = chirp(taccel,0,finalSpdTime,finalSigFreq,'

linear',90);
54
55 yFreq = [(finalSigFreq-0)/finalSpdTime*taccel;

finalSigFreq*ones(length(tconst),1)];
56
57 y0ChirpEnd = y0accel(end);
58 y1ChirpEnd = y1accel(end);
59
60 if (y0ChirpEnd == 1)
61 y0const = cos(2*pi*finalSigFreq*(tconst-

finalSpdTime));
62 elseif (y0ChirpEnd == -1)
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63 y0const = -cos(2*pi*finalSigFreq*(tconst-
finalSpdTime));

64 elseif (abs(y0ChirpEnd) < 0.01)
65 if (y0accel(end-1) > y0ChirpEnd)
66 y0const = -sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
67 else
68 y0const = sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
69 end
70 end
71
72 if (y1ChirpEnd == 1)
73 y1const = cos(2*pi*finalSigFreq*(tconst-

finalSpdTime));
74 elseif (y1ChirpEnd == -1)
75 y1const = -cos(2*pi*finalSigFreq*(tconst-

finalSpdTime));
76 elseif (abs(y1ChirpEnd) < 0.01)
77 if (y1accel(end-1) > y1ChirpEnd)
78 y1const = -sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
79 else
80 y1const = sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
81 end
82 end
83
84 y0 = [y0accel; y0const]';
85 y1 = [y1accel; y1const]';
86 t = [taccel; tconst]';
87 % plot(t,y0,t,y1);
88
89 y0Desired = desiredMaxCurrent*y0;
90 y1Desired = desiredMaxCurrent*y1;
91
92 y0 = (desiredMaxCurrent*y0-b1)/m1;
93 y1 = (desiredMaxCurrent*y1-b2)/m2;
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94
95 % plot([t t],[y0 y1]);
96
97 d = daq.getDevices;
98 s = daq.createSession('ni');
99 s.Rate = sampleRate;

100
101 addAnalogOutputChannel(s,'Dev1',aOChannel0,'voltage');
102 addAnalogOutputChannel(s,'Dev1',aOChannel1,'voltage');
103
104 ch15 = addAnalogInputChannel(s,'Dev1', aI0Plus, '

Voltage');
105 ch13 = addAnalogInputChannel(s,'Dev1', aI0Min, 'Voltage

');
106 ch12 = addAnalogInputChannel(s,'Dev1', aI1Plus, '

Voltage');
107 ch10 = addAnalogInputChannel(s,'Dev1', aI1Min, 'Voltage

');
108 ch6 = addAnalogInputChannel(s,'Dev1', aBoardOutput0, '

Voltage');
109 ch8 = addAnalogInputChannel(s,'Dev1', aBoardOutput1, '

Voltage');
110 % legend('AI0+','AI0-','AI1+','AI1-','ABoard0+','

ABoard1+');
111
112 ch15.TerminalConfig = 'SingleEnded';
113 ch13.TerminalConfig = 'SingleEnded';
114 ch12.TerminalConfig = 'SingleEnded';
115 ch10.TerminalConfig = 'SingleEnded';
116 ch6.TerminalConfig = 'SingleEnded';
117 ch8.TerminalConfig = 'SingleEnded';
118
119 output_data0 = [y0'];
120 output_data1 = [y1'];
121
122 queueOutputData(s,[output_data0 output_data1]);
123 % plot([output_data0 output_data1]);
124 % title('Output Data Queued');
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125
126 [captured_data,time] = s.startForeground();
127 beep();
128 emfCollect = emfCollectTime*sampleRate;
129 queueOutputData(s,[zeros(emfCollect,1) zeros(emfCollect

,1)]);
130 [emfAfterData,timeAfter] = s.startForeground();
131
132 sig = [];
133 sig(:,1) = captured_data(:,1)-captured_data(:,2);
134 sig(:,2) = captured_data(:,3)-captured_data(:,4);
135
136 current1 = sig(:,1)./phase1Impedance;
137 current2 = sig(:,2)./phase2Impedance;
138
139 b = (1/windowSize)*ones(1,windowSize);
140 a = 1;
141 sig1f = filter(b,a,sig(:,1));
142 sig1f = [sig1f((windowSize+1)/2:end); zeros((windowSize

-1)/2,1)];
143 sig2f = filter(b,a,sig(:,2));
144 sig2f = [sig2f((windowSize+1)/2:end); zeros((windowSize

-1)/2,1)];
145
146 emfAfter1 = emfAfterData(:,1) - emfAfterData(:,2);
147 emfAfter2 = emfAfterData(:,3) - emfAfterData(:,4);
148
149 SSData = captured_data(finalSpdPoint-1:end,:);
150 SSTime = time(finalSpdPoint-1:end);
151
152 save('backEMF.mat');

A.6.2 Back-EMF Data Plotting

1 close all;
2 load('backEMF.mat');
3
4 n = length(time);
5 tVec = time;
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6
7 Vs1 = sig(:,1);
8 Vs2 = sig(:,2);
9

10 Ra1 = 0.6870;
11 La1 = 116.1*10^-6;
12
13 Ra2 = 0.6937;
14 La2 = 121.6*10^-6;
15
16 current1 = y0Desired';
17 diffC1 = [0; diff(current1)./diff(time)];
18 current2 = y1Desired';
19 diffC2 = [0; diff(current2)./diff(time)];
20
21 eps1 = Vs1 - current1*Ra1 - La1*diffC1;
22 eps2 = Vs2 - current2*Ra2 - La2*diffC2;
23
24 %%%% Phase 1 Back EMF Sectional Voltages
25 sig1Sign = sign(y0Desired)';
26 sig1SignDiff = [0; diff(sig1Sign)];
27 crossoverIndices1 = find(sig1SignDiff);
28 crossoverHalf1 = crossoverIndices1(2:2:length(

crossoverIndices1));
29 maxV1 = [];
30 maxV1Ind = [];
31 maxEps1 = [];
32 maxEps1Ind = [];
33
34 firstInd = 1;
35 for i = 1:length(crossoverHalf1)
36 secondInd = crossoverHalf1(i);
37 [maxV1(i,1) maxV1Ind(i,1)] = max(Vs1(firstInd:

secondInd));
38 [maxEps1(i,1) maxEps1Ind(i,1)] = max(eps1(firstInd:

secondInd));
39 maxV1Ind(i,1) = maxV1Ind(i,1) + firstInd - 1;
40 maxEps1Ind(i,1) = maxEps1Ind(i,1) + firstInd - 1;
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41 firstInd = secondInd+1;
42 end
43
44 maxEps1 = maxEps1(2:end);
45 maxEps1Ind = maxEps1Ind(2:end);
46
47 eps1Speeds = sigSpeedVector(maxEps1Ind)*60./9;
48 [fitOb1 gof1] = fit(eps1Speeds,maxEps1,'poly1');
49 coeffs1 = coeffvalues(fitOb1);
50 a1 = coeffs1(1);
51 b1 = coeffs1(2);
52 xs1 = [eps1Speeds(1);eps1Speeds(end)];
53 ys1 = a1*xs1+b1;
54
55 %%%% Phase 2 Back EMF Sectional Voltages
56 sig2Sign = sign(y1Desired)';
57 sig2SignDiff = [0; diff(sig2Sign)];
58 crossoverIndices2 = find(sig2SignDiff);
59 crossoverHalf2 = crossoverIndices2(2:2:length(

crossoverIndices2));
60 maxV2 = [];
61 maxV2Ind = [];
62 maxEps2 = [];
63 maxEps2Ind = [];
64
65 firstInd = 1;
66 for i = 1:length(crossoverHalf2)
67 secondInd = crossoverHalf2(i);
68 [maxV2(i,1) maxV2Ind(i,1)] = max(Vs2(firstInd:

secondInd));
69 [maxEps2(i,1) maxEps2Ind(i,1)] = max(eps2(firstInd:

secondInd));
70 maxV2Ind(i,1) = maxV2Ind(i,1) + firstInd - 1;
71 maxEps2Ind(i,1) = maxEps2Ind(i,1) + firstInd - 1;
72 firstInd = secondInd+1;
73 end
74
75 maxEps2 = maxEps2(2:end);
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76 maxEps2Ind = maxEps2Ind(2:end);
77
78 eps2Speeds = sigSpeedVector(maxEps2Ind)*60./9;
79 [fitOb2 gof2] = fit(eps2Speeds,maxEps2,'poly1');
80 coeffs2 = coeffvalues(fitOb2);
81 a2 = coeffs2(1);
82 b2 = coeffs2(2);
83 xs2 = [eps2Speeds(1);eps2Speeds(end)];
84 ys2 = a2*xs2+b2;
85
86 figure(1);
87 plot(tVec,Vs1,tVec,eps1,'*');
88 xlabel('Time (sec)');
89 ylabel('Voltage (Volts)');
90 title('Phase 1 Back-EMF Voltage');
91 legend('Phase Voltage','Phase Back-EMF','Location','

Southwest');
92
93 figure(2);
94 plot(tVec,Vs2,tVec,eps2);
95 xlabel('Time (sec)');
96 ylabel('Voltage (Volts)');
97 title('Phase 2 Back-EMF Voltage');
98 legend('Phase Voltage','Phase Back-EMF','Location','

Southwest');
99

100 figure(3);
101 plot(timeAfter,emfAfter1,'--',timeAfter,emfAfter2,'-.')

;
102 xlabel('Time After No Input (sec)');
103 ylabel('Voltage (Volts)');
104 title(['Back-EMF After ' num2str(rpm) ' RPM']);
105 legend('Phase 1 Back-EMF','Phase 2 Back-EMF');
106
107 figure(4);
108 hold on;
109 plot(eps1Speeds,maxEps1,'.',eps2Speeds,maxEps2,'^','

MarkerSize',4);
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110 plot(xs1,ys1,':',xs2,ys2,'-.','LineWidth',3)
111 hold off;
112 xlabel('Motor Speed (RPM)');
113 ylabel('Voltage (Volts)');
114 title(['Back-EMF vs RPM']);
115 legend('Phase 1 Back-EMF Peaks','Phase 2 Back-EMF Peaks

','Phase 1 Curve Fit','Phase 2 Curve Fit','Location'
,'NorthWest');
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A.7 Motor Speed Control

1 runTime = 2;
2 sampleRate = 32000;
3 rpm = 60;
4 desiredMaxVolt = 3;
5 windowSize = 1;
6
7 aOChannel0 = 'ao0'; %Pin 22
8 aOChannel1 = 'ao1'; %Pin 21
9 aI0Plus = 'ai15';

10 aI0Min = 'ai13';
11
12 aI1Plus = 'ai12';
13 aI1Min = 'ai10';
14
15 aIH07 = 'ai9'; %Pin
16 aIH12 = 'ai11'; %Pin
17 aIH02 = 'ai14'; %Pin
18
19 finalSigFreq = round(rpm*9/60);
20 finalSpdTime = round((1.2*log(finalSigFreq/6) + .8158)

,0);
21 filename = [num2str(rpm) 'rpm' num2str(finalSpdTime)

...
22 'secAccel' num2str(runTime) 'secRun.xlsx'];
23 y0 = [];
24 y1 = [];
25
26 taccel = linspace(0,finalSpdTime,sampleRate*

finalSpdTime)';
27 tconst = linspace(finalSpdTime,runTime,sampleRate*(

runTime-finalSpdTime))';
28 y0accel = chirp(taccel,0,finalSpdTime,finalSigFreq);
29 y1accel = chirp(taccel,0,finalSpdTime,finalSigFreq,'

linear',90);
30
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31 yFreq = [(finalSigFreq-0)/finalSpdTime*taccel;
finalSigFreq*ones(length(tconst),1)];

32
33 y0ChirpEnd = y0accel(end);
34 y1ChirpEnd = y1accel(end);
35
36 if (y0ChirpEnd == 1)
37 y0const = cos(2*pi*finalSigFreq*(tconst-

finalSpdTime));
38 elseif (y0ChirpEnd == -1)
39 y0const = -cos(2*pi*finalSigFreq*(tconst-

finalSpdTime));
40 elseif (abs(y0ChirpEnd) < 0.01)
41 if (y0accel(end-1) > y0ChirpEnd)
42 y0const = -sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
43 else
44 y0const = sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
45 end
46 end
47
48 if (y1ChirpEnd == 1)
49 y1const = cos(2*pi*finalSigFreq*(tconst-

finalSpdTime));
50 elseif (y1ChirpEnd == -1)
51 y1const = -cos(2*pi*finalSigFreq*(tconst-

finalSpdTime));
52 elseif (abs(y1ChirpEnd) < 0.01)
53 if (y1accel(end-1) > y1ChirpEnd)
54 y1const = -sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
55 else
56 y1const = sin(2*pi*finalSigFreq*(tconst-

finalSpdTime));
57 end
58 end
59
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60 y0 = [y0accel; y0const]';
61 y1 = [y1accel; y1const]';
62 t = [taccel; tconst]';
63
64 plot(t,y0,t,y1);
65
66 y0Desired = desiredMaxVolt*y0;
67 y1Desired = desiredMaxVolt*y1;
68
69 y0 = (desiredMaxVolt*y0-b1)/m1;
70 y1 = (desiredMaxVolt*y1-b2)/m2;
71
72 % plot([t t],[y0 y1]);
73
74 d = daq.getDevices;
75 s = daq.createSession('ni');
76 s.Rate = sampleRate;
77
78 addAnalogOutputChannel(s,'Dev1',aOChannel0,'voltage');
79 addAnalogOutputChannel(s,'Dev1',aOChannel1,'voltage');
80 addAnalogInputChannel(s,'Dev1', aI0Plus, 'Voltage');
81 addAnalogInputChannel(s,'Dev1', aI0Min, 'Voltage');
82 addAnalogInputChannel(s,'Dev1', aI1Plus, 'Voltage');
83 addAnalogInputChannel(s,'Dev1', aI1Min, 'Voltage');
84 addAnalogInputChannel(s,'Dev1', aIH07, 'Voltage'); %Pin

26
85 addAnalogInputChannel(s,'Dev1', aIH12, 'Voltage'); %Pin

58
86 addAnalogInputChannel(s,'Dev1', aIH02, 'Voltage'); %Pin

23
87
88 % output_data0 = 3*sin(linspace(0,2*pi*runTime*

finalSigFreq,sampleRate*runTime)');
89 % output_data1 = 3*cos(linspace(0,2*pi*runTime*

finalSigFreq,sampleRate*runTime)');
90 % output_data = linspace(3,3,sampleRate*time)';
91 output_data0 = [y0'];
92 output_data1 = [y1'];
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93 % Last zero value is so channels are turned off
94
95 queueOutputData(s,[output_data0 output_data1]);
96 % plot([output_data0 output_data1]);
97 % title('Output Data Queued');
98
99 [captured_data,time] = s.startForeground();

100 queueOutputData(s,[0 0]);
101 [dontCare,dontcare] = s.startForeground();
102
103 sig = [];
104 sig(:,1) = captured_data(:,1)-captured_data(:,2);
105 sig(:,2) = captured_data(:,3)-captured_data(:,4);
106
107 b = (1/windowSize)*ones(1,windowSize);
108 a = 1;
109 sig1f = filter(b,a,sig(:,1));
110 sig1f = [sig1f((windowSize+1)/2:end); zeros((windowSize

-1)/2,1)];
111 sig2f = filter(b,a,sig(:,2));
112 sig2f = [sig2f((windowSize+1)/2:end); zeros((windowSize

-1)/2,1)];
113
114 % export_data = [y0Desired' y1Desired' sig(:,1) sig

(:,2) sig1f sig2f];
115
116 % plot(export_data);
117 leg = {'Desired 0','Desired 1','Sig 0','Sig 1','

Filtered 0','Filtered 1'};
118 % legend(leg);
119 % title(['Accel to ' num2str(rpm) ' RPM in ' num2str(

finalSpdTime) ' sec']);
120 infoLeg = {'Sample Rate','Desired Volt','Run Time','RPM

','FinalSigFreq','Accel Time'};
121 runInfo = {sampleRate,desiredMaxVolt,runTime,rpm,

finalSigFreq,taccel};
122 exportLeg = {'Time','AI0+','AI0-','AI1+','AI1-','H07','

H12','H2','Output 0','Output 1'};
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123 export_data = [time,captured_data(:,1),captured_data
(:,2),captured_data(:,3),captured_data(:,4)...

124 captured_data(:,5),captured_data(:,6),captured_data
(:,7),output_data0,output_data1];

125
126 testResult = {infoLeg;runInfo;exportLeg;export_data};
127 save('testResults4.mat','testResult');
128 % xlswrite(filename,infoLeg,1,'A1');
129 % xlswrite(filename,runInfo,1,'A2');
130 % xlswrite(filename,leg,1,'A3');
131 % xlswrite(filename,export_data,1,'A4');
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A.8 Data Processing

A.8.1 Initial Data Processing

1 close all
2 clear;
3 c = 0;
4
5 % Load data and pull out saved properties and data
6 load('six_hundred_RPM.mat');
7 load('sensorCurrentFit.mat');
8 testResult{2,end}{end} = testResult{2,end}{end}(end);
9 propsLeg = testResult{1,:};

10 props = cell2mat(testResult{2,:});
11 dataLeg = testResult{3,:};
12 data = testResult{4,:};
13
14 %Compensate Hall-effects for phase currents
15 data(:,6) = data(:,6) - coeffsP2H07(1).*data(:,10);
16 data(:,7) = data(:,7) - coeffsP1H12(1).*data(:,9);
17 data(:,8) = data(:,8) - coeffsP1H02(1).*data(:,9);
18
19 %Assign properties and basic vectors
20 sr = props(1); % samping rate
21 accelTime = props(6); %time it takes motor to

accelerate
22 wSS = props(4)/60; % motor steady-state speed % Hz
23 timeWs = 1/wSS; % samping time % sec
24 totalPoints = length(data);
25 accelPoints = accelTime*sr; % number of data points

before SS
26 ssPoints = totalPoints - accelPoints;
27 % sigFreq = [ws*9*ones(1,ssPoints+1)]'; % Hz
28 sigFreq = [linspace(0,wSS*9,accelPoints) wSS*9*ones(1,

ssPoints)]'; % signal speed (assumed linear
acceleration) % Hz

29 sigFreqRot = sigFreq/sr; % Rotations per sample
30 sigFreqPos = 2*pi*mod(cumsum(sigFreqRot),9); % signal

position % radians
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31 rotorPos = sigFreqPos/9; % radians
32
33 SSDataTime = 2*accelTime*sr; % when to start analyzing

data
34 lagFactor = 0; % Lag factor for time variability

compensation
35 rotorPosAccel = rotorPos(1:SSDataTime) - sigFreqRot(1:

SSDataTime)*lagFactor;
36 rotorPosAccel = rotorPosAccel - min(rotorPosAccel);
37 dataAccel = data(1:SSDataTime,:);
38 % dataSS = data(SSDataTime+1:SSDataTime+pointsPerRot

*50,:);
39 dataSS = data(SSDataTime+1:end,:);
40
41 % Start at steady-state time
42 t = dataSS(:,1);
43 startUsefulTime = t(1);
44 pos = 2*pi/timeWs*mod(t,timeWs);
45 rots = (t(end)-t(1))*wSS;
46 pointsPerRot = sr/wSS;
47
48 % Differential output voltage calculation
49 output0 = dataSS(:,2) - dataSS(:,3);
50 output1 = dataSS(:,4) - dataSS(:,5);
51
52 plot(t,output0,t,output1,t,dataSS(:,6));
53 figure(1);
54 plot(pos,dataSS(:,6),'.',pos,dataSS(:,7),'.',pos,dataSS

(:,8),'.','MarkerSize',3);
55 hold on;
56 h1 = plot(pos(1:100:end/round(rots)),dataSS(1:100:end/

round(rots),6),'^');
57 h2 = plot(pos(1:100:end/round(rots)),dataSS(1:100:end/

round(rots),7),'x');
58 h3 = plot(pos(1:100:end/round(rots)),dataSS(1:100:end/

round(rots),8),'o');
59 hold off;
60 legend([h1,h2,h3],dataLeg(6:8))
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61 title('Hall Effect Sensors During Steady State
Operation');

62 xlabel('Position (rad)');
63 ylabel('Voltage (V)');
64
65 figure(2);
66 plot(pos,output0,'.',pos,output1,'.',pos,dataSS(:,9),'.

',pos,dataSS(:,10),'.');
67 legend(['AI0','AI1',dataLeg(9:10)])
68 title('Voltage During SS');
69 xlabel('Position');
70 ylabel('Voltage');
71
72 figure(3);
73 plot(rotorPos,data(:,6),'.',rotorPos,data(:,7),'.',

rotorPos,data(:,8),'.');
74 legend(dataLeg(6:8))
75 title('Entire Run Hall Effect Sensor Data');
76 xlabel('Position');
77 ylabel('Voltage');
78
79 figure(4);
80 % plot(rotorPos(1:SSDataTime-1),dataAccel(:,6),'.');
81 plot(rotorPosAccel,dataAccel(:,6),'.',rotorPosAccel,

dataAccel(:,7),'.',rotorPosAccel,dataAccel(:,8),'.')
;

82 title(['Accelerating Portion Hall Effect Data with Lag
Offset c = ' num2str(lagFactor)]);

83 xlabel('Position');
84 ylabel('Voltage');
85
86 % Data correlation properties
87 % h7range = max(dataSS(:,6)) - min(dataSS(:,6));
88 % h7slope = h7range/(360/9); % volts/deg
89 h7mat = reshape(dataSS(:,7),pointsPerRot,[]); % volts
90 % h7max = max(h7mat,[],2);
91 % h7min = min(h7mat,[],2);
92 % h7diff = h7max-h7min;
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93 % h7LeastPrecision = max(h7diff)/h7slope; % deg
94 % h7sdPrecision = max(h7sd)/h7slope % deg
95 % h7normPrecision = norm(h7diff)/length(h7diff) % deg

A.8.2 Data Time Compensation

1 close all
2 %% Show Phase Shift
3
4 h7sd = std(h7mat,0,2);
5 h7sdAverage = mean(h7sd); % deg
6 numPlots = size(h7mat,2); % number of rotations of

motor over data
7
8 figure(1);
9 posInRot = (1:pointsPerRot)/pointsPerRot*2*pi;

10 plot(posInRot,h7mat);
11 xlabel('Position (rad)');
12 ylabel('Hall-Effect Sensor (Volt)');
13 title(['Hall Effect Voltage Over ' num2str(numPlots) '

Rotations']);
14
15 figure(2);
16 plot(posInRot,h7mat);
17 title(['Matlab Chosen Colors Over ' num2str(numPlots) '

Rotations']);
18 xlabel('Position (rad)');
19 ylabel('Hall-Effect Sensor (Volt)');
20 xlim([0.1 0.26]);
21 ylim([3.5 3.9]);
22
23 figure(3);
24 hold on
25 for i = 1:numPlots
26 rat = (i-1)/numPlots;
27 plot(posInRot,h7mat(:,i),'Color',[rat/2 rat rat]);
28 end
29 hold off
30 xlabel('Position (rad)');
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31 ylabel('Hall-Effect Sensor (Volt)');
32 title(['Hall Effect Voltage Over ' num2str(numPlots) '

Rotations']);
33
34 figure(4);
35 hold on
36 numPlots = size(h7mat,2);
37 for i = 1:numPlots
38 rat = (i-1)/numPlots;
39 plot(posInRot,h7mat(:,i),'Color',[rat/2 rat rat]);
40 end
41 hold off
42 xlabel('Position (rad)');
43 ylabel('Hall-Effect Sensor (Volt)');
44 title(['Black to Blue Transition Over ' num2str(

numPlots) ' Rotations']);
45 xlim([0.1 0.26]);
46 ylim([3.5 3.9]);
47 %
48 % figure(5);
49 % hold on
50 % numPlots = size(h7mat,2);
51 % for i = 1:numPlots
52 % plot3(posInRot,h7mat(:,i),i*ones(3200,1),'Color

',[0 0 (i-1)/numPlots]);
53 % end
54 % hold off
55 % xlabel('Position (rad)');
56 % ylabel('Hall-Effect Sensor (Volt');
57 % zlabel('Rotation Iteration');
58 % title(['Black to Blue Transition Over ' num2str(

numPlots) ' Rotations']);
59
60 %% Phase Shift Compensator
61 % Time Based Interpolation Compensator
62
63 timeVector = data(:,1);
64 inputSig0 = data(:,9);
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65 inputSign0 = sign(inputSig0);
66 inputSign0Diff = [0; diff(inputSign0)];
67 crossoverIndices0 = find(inputSign0Diff);
68 crossoverIndicesDiff0 = diff([1; crossoverIndices0]);
69 crossoverTimes0 = timeVector(crossoverIndices0);
70 crossoverTimeDiff0 = diff(crossoverTimes0); % sec (

difference)
71 crossoverVel0 = [0; 1./crossoverTimeDiff0]./2; % Hz
72 motorVelAtCross0 = crossoverVel0./9; % Hz
73
74 motorVel0 = zeros(length(data),1);
75 motorPos0 = zeros(length(data),1);
76 crossoverIndicesPlus1Ind = [1; crossoverIndices0];
77 indx = 0;
78
79 for i=1:length(motorVelAtCross0)-1;
80 els = crossoverIndicesDiff0(i)+1;
81 elsVec = linspace(0,1,els);
82 velSlope = (motorVelAtCross0(i+1) -

motorVelAtCross0(i));
83 vels = velSlope*elsVec + motorVelAtCross0(i);
84 ind1 = crossoverIndicesPlus1Ind(i);
85 ind2 = crossoverIndicesPlus1Ind(i+1);
86
87 motorVel0(ind1:ind2,1) = vels;
88 motorPos0(ind1:ind2,1) = linspace(0,pi,els) + pi*

indx;
89 indx = indx + 1;
90 if (indx == 18)
91 indx = 0;
92 end
93
94 end
95 motorVel0(ind2:end,1) = motorVelAtCross0(end);
96 motorPos0(ind2:crossoverIndices0(end),1) = linspace(0,

pi,crossoverIndicesDiff0(end)+1) + pi*indx;
97 remPoints = length(data) - crossoverIndices0(end);
98
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99 indx = indx + 1;
100 if (indx == 18)
101 indx = 0;
102 end
103
104 motorPos0(crossoverIndices0(end):end) = linspace(0,pi*

remPoints/crossoverIndicesDiff0(end),remPoints+1) +
pi*indx;

105 posSS = motorPos0(SSDataTime+1:end,:);
106
107 figure(6);
108 keepRunning = 1;
109 hold on;
110 tempPosSS = posSS./(9);
111 tempDataSS = dataSS(:,7);
112 numPlotsCount = 0;
113
114 while (keepRunning)
115 ind1 = find(tempPosSS == 0,2,'first');
116 if (length(ind1)<2)
117 break;
118 end
119 if (numPlotsCount == 0)
120 if (ind1(1) ~= 0)
121 ind1 = ind1(1)-1;
122 else
123 ind1 = ind1(2)-1;
124 end
125 else
126 ind1 = ind1(2)-1;
127 end
128 rat = (numPlotsCount)/numPlots;
129 plot(tempPosSS(1:ind1),tempDataSS(1:ind1),'Color'

,[0 0 rat]);
130 numPlotsCount = numPlotsCount + 1;
131 tempPosSS = tempPosSS(ind1+1:end);
132 tempDataSS = tempDataSS(ind1+1:end);
133 end
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134 % xlim([1.57 1.75]);
135 % ylim([4.5 4.9]);
136
137 plot(posSS./9,dataSS(:,7),'.','Color',[0.929 0.694

0.125]); % Same data from while loop but without
color gradient

138 xlabel('Position (rad)');
139 ylabel('Hall-Effect Sensor (Volt');
140 title(['Hall Effect Voltage Over ' num2str(numPlots) '

Rotations - Time Interpolation Compensation']);
141 hold off
142
143 %%% Verification of Time Interpolation Compensation
144 posDiff = 2*pi*[0; diff(timeVector)].*motorVel0;
145 posCumSum = cumsum(posDiff);
146 posModSS = posCumSum(SSDataTime+1:end);
147 posModSSAdj = posModSS - posModSS(1);
148 ind1 = 1;
149 numPlotsCount = 0;
150 posModInd = [];
151
152 figure(7);
153 hold on
154 for i = 1:numPlots
155 ind2 = find(posModSSAdj > 2*pi*i,1) - 1;
156 if (isempty(ind2))
157 ind2 = length(posModSSAdj);
158 end
159 rat = (numPlotsCount)/numPlots;
160 numPlotsCount = numPlotsCount + 1;
161 posModInd(i,:) = [ind1, ind2];
162 plot(mod(posModSSAdj(ind1:ind2),2*pi),dataSS(ind1:

ind2,7),'Color',[rat/2 rat rat]);
163 ind1 = ind2 + 1;
164
165 end
166 posCtrlTestData = posModSSAdj(posModInd(end,1):

posModInd(end,2));
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167 datCtrlTestData = dataSS(posModInd(end,1):posModInd(end
,2),[6 7 8]);

168 save('ctrlTestData.mat','posCtrlTestData','
datCtrlTestData');

169
170 xlabel('Position (rad)');
171 ylabel('Hall-Effect Sensor (Volt)');
172 title(['Hall Effect Voltage Over ' num2str(numPlots) '

Rotations - Time Interpolation Compensation']);
173 % plot(mod(posModSSAdj,2*pi),dataSS(:,7),'.');
174 xlim([0.1 0.26]);
175 ylim([3.5 3.9]);
176 hold off
177
178 adjustedPosition = mod(posModSSAdj,2*pi);
179
180 %%%%% Linear Phase Shift Compensator
181
182 figure(8);
183 phaseShiftA = (1.325-1.335)/numPlots; % Based on phase

shift width
184 hold on
185 for i = 1:numPlots
186 plot(posInRot-(i-1)*phaseShiftA,h7mat(:,i),'Color'

,[0 0 (i-1)/numPlots]);
187 end
188 hold off
189 xlabel('Position (rad)');
190 ylabel('Hall-Effect Sensor (Volt');
191 title(['Hall Effect Voltage Over ' num2str(numPlots) '

Rotations - Time Shift Compensation']);
192 % xlim([1.4 1.58]);
193 % ylim([4.5 4.9]);

A.8.3 Data Segment Linearization

1 close all
2 maxV = 0.75;
3 maxX = 0.05;
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4
5 %% Linear Regions
6
7 dataSS = data(SSDataTime+1:end,:);
8 posInRotRep = adjustedPosition;
9

10 meanDataSS = mean(dataSS(:,7));
11 dataSSAdj = dataSS(:,7) - meanDataSS;
12
13 %Remove first (incomplete) linear region
14 indDel = find(abs(dataSSAdj) - maxV > 0,1)+1;
15 dataSSAdj = dataSSAdj(indDel(1):end);
16 posInRotRep = posInRotRep(1:end-indDel(1)+1);
17
18 %Remove data outside linear sections based on maxV
19 indDel = find(abs(dataSSAdj) - maxV > 0);
20 dataSSAdj(indDel) = [];
21 posInRotRep(indDel) = [];
22
23 figure(1);
24 plot(posInRotRep,dataSSAdj,'.');
25 xlabel('Position (rad)');
26 ylabel('Centered Hall-Effect Sensor (Volt)');
27 title(['Linear Regions of Data']);
28 gapIndices = find(diff(posInRotRep) - maxX > 0);
29 endIndices = find(diff(posInRotRep) < 0);
30
31 dataSSAdj = dataSSAdj + meanDataSS;
32 dataSSMat = {};
33 posRotMat = {};
34 lineSegs = 18;
35 lastInd = 1;
36 segCount = 1;
37
38 % Create dataSSMat & posRotMat with size(i,j,k) where

length(i) is number
39 % of data points per jth linear region of kth rotation
40 for i = 1:endIndices+1
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41 for j = 1:lineSegs-1
42
43 if (segCount <= length(gapIndices))
44 thisInd = gapIndices(segCount);
45 else
46 thisInd = length(dataSSAdj);
47 end
48 segCount = segCount + 1;
49 dat = dataSSAdj(lastInd:thisInd);
50 lenDat = length(dat);
51 dataSSMat(1:lenDat,j,i) = num2cell(dat);
52 posRotMat(1:lenDat,j,i) = num2cell(posInRotRep(

lastInd:thisInd));
53 lastInd = thisInd + 1;
54 if (segCount > length(gapIndices))
55 break;
56 end
57 end
58
59 if (segCount > length(gapIndices))
60 dat = dataSSAdj(gapIndices(end)+1:end);
61 lenDat = length(dat);
62 dataSSMat(1:lenDat,j+1,i) = num2cell(dat);
63 posRotMat(1:lenDat,j+1,i) = num2cell(

posInRotRep(gapIndices(end)+1:end));
64 break;
65 end
66
67 if (i <= length(endIndices))
68 thisInd = endIndices(i);
69 else
70 thisInd = length(dataSSAdj);
71 end
72 dat = dataSSAdj(lastInd:thisInd);
73 lenDat = length(dat);
74 dataSSMat(1:lenDat,lineSegs,i) = num2cell(dat);
75 posRotMat(1:lenDat,lineSegs,i) = num2cell(

posInRotRep(lastInd:thisInd));

154



76 lastInd = thisInd + 1;
77
78 end
79
80 avgDif = [];
81 for i = 1:lineSegs
82 firstXs = cell2mat(squeeze(posRotMat(:,i,1)));
83 lastXs = cell2mat(squeeze(posRotMat(:,i,numPlots)))

;
84 avgDif(i) = mean(firstXs) - mean(lastXs);
85 end
86 linShiftAlpha = 0;%mean(avgDif);
87
88 minVecVec = [];
89 sds = [];
90 ps = [];
91 posMin = {};
92 datMin = {};
93 rsquare = [];
94 % gof = {};
95
96 for i = 1:lineSegs
97
98 dat = squeeze(dataSSMat(:,i,:));
99 pos = squeeze(posRotMat(:,i,:));

100 inter = cellfun('size', dat, 1);
101 vectorSizes = sum(inter);
102 minVec = min(vectorSizes);
103 minVecVec(i) = minVec;
104
105 dat = cell2mat(dat(1:minVec,:));
106 pos = cell2mat(pos(1:minVec,:));
107 addMat = repmat(linspace(0,linShiftAlpha,numPlots),

minVec,1);
108 posShift = pos + addMat;
109 posMin(1:minVec,i,:) = num2cell(posShift);
110 datMin(1:minVec,i,:) = num2cell(dat);
111
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112 % [p,S] = polyfit(posShift,dat,1);
113 % rval = corr2(posShift,dat);
114 % rsquare(i,1) = rval.^2;
115 tempPos = reshape(posShift,[],1);
116 tempDat = reshape(dat,[],1);
117 [fitobject gof(i)] = fit(tempPos,tempDat,'poly1');
118 ps(i,1:2) = coeffvalues(fitobject);
119 % ps(i,1:2) = p;
120 % [y, sDelta] = polyval(p,posShift,S);
121 % sds(i,:) = mean(sDelta);
122 end
123
124 figure(2);
125 hold on;
126 for i = 1:lineSegs
127 for j = 1:numPlots
128 xs = cell2mat(posMin(:,i,j));
129 ys = cell2mat(datMin(:,i,j));
130 if (i == lineSegs && j == numPlots)
131 plotted1 = plot(xs,ys,'Color',[0 0 (j-1)/

numPlots]);
132 else
133 plot(xs,ys,'Color',[0 0 (j-1)/numPlots]);
134 end
135 end
136 end
137
138 for i = 1:lineSegs
139 x1 = (-maxV + meanDataSS - ps(i,2))/ps(i,1);
140 x2 = (maxV + meanDataSS - ps(i,2))/ps(i,1);
141 plotted2 = plot([x1,x2],[-maxV,maxV]+meanDataSS,':r

','LineWidth',1.5);
142 end
143 hold off;
144 xlabel('Position (rad)');
145 ylabel('Hall-Effect Sensor (Volt');
146 title(['Hall Effect Voltage Over ' num2str(numPlots) '

Rotations - Linearized Region Time Shift
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Compensation']);
147 legend([plotted1 plotted2],'Time Adjusted Plot','

Linearized Model')

A.8.4 All Data Channels Compensation and Linearization

1 close all
2 %% Show Phase Shift
3 maxV6 = 1.5;
4 maxV7 = 0.75;
5 maxV8 = 0.50;
6
7 maxX = 0.05;
8 h7sd = std(h7mat,0,2);
9 h7sdAverage = mean(h7sd); % deg

10 numPlots = size(h7mat,2); % number of rotations of
motor over data

11 hallEffectVectors = [6 7 8]; % Hall Effect 7, 12, 2
12
13 %% Phase Shift Compensator
14 % Time Based Interpolation Compensator
15
16 timeVector = data(:,1);
17 inputSig0 = data(:,9);
18 inputSign0 = sign(inputSig0);
19 inputSign0Diff = [0; diff(inputSign0)];
20 crossoverIndices0 = find(inputSign0Diff);
21 crossoverIndicesDiff0 = diff([1; crossoverIndices0]);
22 crossoverTimes0 = timeVector(crossoverIndices0);
23 crossoverTimeDiff0 = diff(crossoverTimes0); % sec (

difference)
24 crossoverVel0 = [0; 1./crossoverTimeDiff0]./2; % Hz
25 motorVelAtCross0 = crossoverVel0./9; % Hz
26
27 motorVel0 = zeros(length(data),1);
28 motorPos0 = zeros(length(data),1);
29 crossoverIndicesPlus1Ind = [1; crossoverIndices0];
30 indx = 0;
31
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32 for i=1:length(motorVelAtCross0)-1;
33 els = crossoverIndicesDiff0(i)+1;
34 elsVec = linspace(0,1,els);
35 velSlope = (motorVelAtCross0(i+1) -

motorVelAtCross0(i));
36 vels = velSlope*elsVec + motorVelAtCross0(i);
37 ind1 = crossoverIndicesPlus1Ind(i);
38 ind2 = crossoverIndicesPlus1Ind(i+1);
39
40 motorVel0(ind1:ind2,1) = vels;
41 motorPos0(ind1:ind2,1) = linspace(0,pi,els) + pi*

indx;
42 indx = indx + 1;
43 if (indx == 18)
44 indx = 0;
45 end
46
47 end
48 motorVel0(ind2:end,1) = motorVelAtCross0(end);
49 motorPos0(ind2:crossoverIndices0(end),1) = linspace(0,

pi,crossoverIndicesDiff0(end)+1) + pi*indx;
50 remPoints = length(data) - crossoverIndices0(end);
51
52 indx = indx + 1;
53 if (indx == 18)
54 indx = 0;
55 end
56
57 %%% Motor Speed Influence on Hall Sensors
58 % figure(8);
59 % hold on;
60 % for i = 1:18
61 % vecPlot = i:18:length(crossoverIndices0);
62 % crossImp = motorVelAtCross0(vecPlot);
63 % dataImp = hallCrossover(vecPlot);
64 % plot(crossImp,dataImp);
65 % end
66 % hold off;
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67 % title('Motor Speed vs Hall-Effect Sensor');
68 % xlabel('Motor Speed (RPS)');
69 % ylabel('Hall-Effect Voltage (V)');
70
71 %%% Verification of Time Interpolation Compensation
72 posDiff = 2*pi*[0; diff(timeVector)].*motorVel0;
73 posCumSum = cumsum(posDiff);
74 posModSS = posCumSum(SSDataTime+1:end);
75 posModSSAdj = posModSS - posModSS(1);
76 ind1 = 1;
77 posModInd = [];
78 adjustedPosition = mod(posModSSAdj,2*pi);
79
80 %% Linear Regions
81
82 posInRotRep = adjustedPosition;
83
84 meanDataSS = mean(dataSS(:,hallEffectVectors));
85 dataSSAdj = dataSS(:,hallEffectVectors) - meanDataSS;
86
87 %Remove first (incomplete) linear region from all three

datasets
88 indDel6 = find(abs(dataSSAdj(:,1)) - maxV6 > 0,1);
89 indDel7 = find(abs(dataSSAdj(:,2)) - maxV7 > 0,1);
90 indDel8 = find(abs(dataSSAdj(:,3)) - maxV8 > 0,1);
91 indDel = max([indDel6 indDel7 indDel8])+1;
92
93 dataSSAdj = dataSSAdj(indDel:end,:);
94 posInRotRep = posInRotRep(1:end-indDel+1);
95
96 [maxH07Voltage, maxH07VoltageInd] = max(dataSSAdj(:,1))

;
97 maxH07Voltage = maxH07Voltage + meanDataSS(1);
98 maxH07VoltagePos = posInRotRep(maxH07VoltageInd);
99 [minH07Voltage, minH07VoltageInd] = min(dataSSAdj(:,1))

;
100 minH07Voltage = minH07Voltage + meanDataSS(1);
101 minH07VoltagePos = posInRotRep(minH07VoltageInd);
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102
103 %Remove data outside linear sections based on maxV
104 dataSSAdj6 = dataSSAdj(:,1);
105 dataSSAdj7 = dataSSAdj(:,2);
106 dataSSAdj8 = dataSSAdj(:,3);
107 indDel6 = find(abs(dataSSAdj6) - maxV6 > 0);
108 indDel7 = find(abs(dataSSAdj7) - maxV7 > 0);
109 indDel8 = find(abs(dataSSAdj8) - maxV8 > 0);
110
111 posInRotRep6 = posInRotRep;
112 posInRotRep7 = posInRotRep;
113 posInRotRep8 = posInRotRep;
114
115 dataSSAdj6(indDel6) = [];
116 dataSSAdj6 = dataSSAdj6 + meanDataSS(1);
117 posInRotRep6(indDel6) = [];
118 dataSSAdj7(indDel7) = [];
119 dataSSAdj7 = dataSSAdj7 + meanDataSS(2);
120 posInRotRep7(indDel7) = [];
121 dataSSAdj8(indDel8) = [];
122 dataSSAdj8 = dataSSAdj8 + meanDataSS(3);
123 posInRotRep8(indDel8) = [];
124
125 figure(1);
126 plot(posInRotRep6,dataSSAdj6,'.',posInRotRep7,

dataSSAdj7,'.',posInRotRep8,dataSSAdj8,'.');
127 hold on;
128 h1 = plot(posInRotRep6(1:20:round(end/rots)),dataSSAdj6

(1:20:round(end/rots)),'^');
129 h2 = plot(posInRotRep7(1:20:round(end/rots)),dataSSAdj7

(1:20:round(end/rots)),'x');
130 h3 = plot(posInRotRep8(1:20:round(end/rots)),dataSSAdj8

(1:20:round(end/rots)),'o');
131 % plot(maxH07VoltagePos,maxH07Voltage,'.',

minH07VoltagePos,minH07Voltage,'.');
132 hold off;
133 xlabel('Position (rad)');
134 ylabel('Centered Hall-Effect Sensor (Volt)');
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135 title(['Linear Regions of Data']);
136 legend([h1 h2 h3],'Hall Effect 7','Hall Effect 12','

Hall Effect 2');
137
138 gapIndices6 = find(diff(posInRotRep6) - maxX > 0);
139 endIndices6 = find(diff(posInRotRep6) < 0);
140 gapIndices7 = find(diff(posInRotRep7) - maxX > 0);
141 endIndices7 = find(diff(posInRotRep7) < 0);
142 gapIndices8 = find(diff(posInRotRep8) - maxX > 0);
143 endIndices8 = find(diff(posInRotRep8) < 0);
144
145 if (length(gapIndices6) ~= length(gapIndices6) ||

length(gapIndices7) ~= length(gapIndices8))
146 error('gapIndices are not the same length');
147 end
148
149 dataSSMat6 = {};
150 posRotMat6 = {};
151 dataSSMat7 = {};
152 posRotMat7 = {};
153 dataSSMat8 = {};
154 posRotMat8 = {};
155 lineSegs = 18;
156 lastInd6 = 1;
157 lastInd7 = 1;
158 lastInd8 = 1;
159 segCount = 1;
160
161 % Create dataSSMat & posRotMat with size(i,j,k) where

length(i) is number
162 % of data points per jth linear region of kth rotation
163 for i = 1:endIndices6+1
164 for j = 1:lineSegs-1
165
166 if (segCount <= length(gapIndices6))
167 thisInd6 = gapIndices6(segCount);
168 thisInd7 = gapIndices7(segCount);
169 thisInd8 = gapIndices8(segCount);
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170 else
171 thisInd6 = length(dataSSAdj6);
172 thisInd7 = length(dataSSAdj7);
173 thisInd8 = length(dataSSAdj8);
174 end
175 segCount = segCount + 1;
176
177 dat6 = dataSSAdj6(lastInd6:thisInd6);
178 dat7 = dataSSAdj7(lastInd7:thisInd7);
179 dat8 = dataSSAdj8(lastInd8:thisInd8);
180 lenDat6 = length(dat6);
181 lenDat7 = length(dat7);
182 lenDat8 = length(dat8);
183
184 dataSSMat6(1:lenDat6,j,i) = num2cell(dat6);
185 posRotMat6(1:lenDat6,j,i) = num2cell(

posInRotRep6(lastInd6:thisInd6));
186 dataSSMat7(1:lenDat7,j,i) = num2cell(dat7);
187 posRotMat7(1:lenDat7,j,i) = num2cell(

posInRotRep7(lastInd7:thisInd7));
188 dataSSMat8(1:lenDat8,j,i) = num2cell(dat8);
189 posRotMat8(1:lenDat8,j,i) = num2cell(

posInRotRep8(lastInd8:thisInd8));
190
191 lastInd6 = thisInd6 + 1;
192 lastInd7 = thisInd7 + 1;
193 lastInd8 = thisInd8 + 1;
194 if (segCount > length(gapIndices6))
195 break;
196 end
197 end
198
199 if (segCount > length(gapIndices6))
200 dat6 = dataSSAdj6(gapIndices6(end)+1:end);
201 dat7 = dataSSAdj7(gapIndices7(end)+1:end);
202 dat8 = dataSSAdj8(gapIndices8(end)+1:end);
203 lenDat6 = length(dat6);
204 lenDat7 = length(dat7);
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205 lenDat8 = length(dat8);
206 dataSSMat6(1:lenDat6,j+1,i) = num2cell(dat6);
207 posRotMat6(1:lenDat6,j+1,i) = num2cell(

posInRotRep6(gapIndices6(end)+1:end));
208 dataSSMat7(1:lenDat7,j+1,i) = num2cell(dat7);
209 posRotMat7(1:lenDat7,j+1,i) = num2cell(

posInRotRep7(gapIndices7(end)+1:end));
210 dataSSMat8(1:lenDat8,j+1,i) = num2cell(dat8);
211 posRotMat8(1:lenDat8,j+1,i) = num2cell(

posInRotRep8(gapIndices8(end)+1:end));
212 break;
213 end
214
215 if (i <= length(endIndices6))
216 thisInd6 = endIndices6(i);
217 thisInd7 = endIndices7(i);
218 thisInd8 = endIndices8(i);
219 else
220 thisInd6 = length(dataSSAdj6);
221 thisInd7 = length(dataSSAdj7);
222 thisInd8 = length(dataSSAdj8);
223 end
224 dat6 = dataSSAdj6(lastInd6:thisInd6);
225 dat7 = dataSSAdj7(lastInd7:thisInd7);
226 dat8 = dataSSAdj8(lastInd8:thisInd8);
227 lenDat6 = length(dat6);
228 lenDat7 = length(dat7);
229 lenDat8 = length(dat8);
230
231 dataSSMat6(1:lenDat6,lineSegs,i) = num2cell(dat6);
232 posRotMat6(1:lenDat6,lineSegs,i) = num2cell(

posInRotRep6(lastInd6:thisInd6));
233 lastInd6 = thisInd6 + 1;
234 dataSSMat7(1:lenDat7,lineSegs,i) = num2cell(dat7);
235 posRotMat7(1:lenDat7,lineSegs,i) = num2cell(

posInRotRep7(lastInd7:thisInd7));
236 lastInd7 = thisInd7 + 1;
237 dataSSMat8(1:lenDat8,lineSegs,i) = num2cell(dat8);
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238 posRotMat8(1:lenDat8,lineSegs,i) = num2cell(
posInRotRep8(lastInd8:thisInd8));

239 lastInd8 = thisInd8 + 1;
240
241 end
242
243 % avgDif = [];
244 % for i = 1:lineSegs
245 % firstXs = cell2mat(squeeze(posRotMat(:,i,1)));
246 % lastXs = cell2mat(squeeze(posRotMat(:,i,numPlots)

));
247 % avgDif(i) = mean(firstXs) - mean(lastXs);
248 % end
249 % linShiftAlpha = 0;%mean(avgDif);
250
251 minVecVec = [];
252 sds = [];
253 ps = [];
254 posMin = {};
255 datMin = {};
256
257 figure(3);
258 hold on;
259 for i = 1:lineSegs
260
261 dat6 = squeeze(dataSSMat6(:,i,:));
262 % dat6 = num2cell(cell2mat(dat6) + meanDataSS(1));
263 pos6 = squeeze(posRotMat6(:,i,:));
264 inter6 = cellfun('size', dat6, 1);
265 dat7 = squeeze(dataSSMat7(:,i,:));
266 % dat7 = num2cell(cell2mat(dat7) + meanDataSS(2));
267 pos7 = squeeze(posRotMat7(:,i,:));
268 inter7 = cellfun('size', dat7, 1);
269 dat8 = squeeze(dataSSMat8(:,i,:));
270 % dat8 = num2cell(cell2mat(dat8) + meanDataSS(3));
271 pos8 = squeeze(posRotMat8(:,i,:));
272 inter8 = cellfun('size', dat8, 1);
273
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274 vectorSizes6 = sum(inter6);
275 minVec6 = min(vectorSizes6);
276 minVecVec6(i) = minVec6;
277 vectorSizes7 = sum(inter7);
278 minVec7 = min(vectorSizes7);
279 minVecVec7(i) = minVec7;
280 vectorSizes8 = sum(inter8);
281 minVec8 = min(vectorSizes8);
282 minVecVec8(i) = minVec8;
283
284 dat6 = cell2mat(dat6(1:minVec6,:));
285 pos6 = cell2mat(pos6(1:minVec6,:));
286 dat7 = cell2mat(dat7(1:minVec7,:));
287 pos7 = cell2mat(pos7(1:minVec7,:));
288 dat8 = cell2mat(dat8(1:minVec8,:));
289 pos8 = cell2mat(pos8(1:minVec8,:));
290
291 addMat = 0;%repmat(linspace(0,linShiftAlpha,

numPlots),minVec,1);
292 posShift6 = pos6 + addMat;
293 posMin6(1:minVec6,i,:) = num2cell(posShift6);
294 datMin6(1:minVec6,i,:) = num2cell(dat6);
295 posShift7 = pos7 + addMat;
296 posMin7(1:minVec7,i,:) = num2cell(posShift7);
297 datMin7(1:minVec7,i,:) = num2cell(dat7);
298 posShift8 = pos8 + addMat;
299 posMin8(1:minVec8,i,:) = num2cell(posShift8);
300 datMin8(1:minVec8,i,:) = num2cell(dat8);
301
302 % [p6,S6] = polyfit(posShift6,dat6,1);
303 % ps6(i,1:2) = p6;
304 % [y6, sDelta6] = polyval(p6,posShift6,S6);
305 % sds6(i,:) = mean(sDelta6);
306
307 tempPos6 = reshape(posShift6,[],1);
308 tempDat6 = reshape(dat6,[],1);
309 % [fitobject6 gof6(i)] = fit(tempPos6,tempDat6,'

poly1');
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310 [fitobject6 gof6(i)] = fit(tempDat6,tempPos6,'poly1
');

311 ps6(i,1:2) = coeffvalues(fitobject6);
312 plot(tempDat6,tempDat6*ps6(i,1) + ps6(i,2),'.');
313
314 tempPos7 = reshape(posShift7,[],1);
315 tempDat7 = reshape(dat7,[],1);
316 % [fitobject7 gof7(i)] = fit(tempPos7,tempDat7,'

poly1');
317 [fitobject7 gof7(i)] = fit(tempDat7,tempPos7,'poly1

');
318 ps7(i,1:2) = coeffvalues(fitobject7);
319
320 tempPos8 = reshape(posShift8,[],1);
321 tempDat8 = reshape(dat8,[],1);
322 % [fitobject8 gof8(i)] = fit(tempPos8,tempDat8,'

poly1');
323 [fitobject8 gof8(i)] = fit(tempDat8,tempPos8,'poly1

');
324 ps8(i,1:2) = coeffvalues(fitobject8);
325 end
326
327 figure(2);
328 hold on;
329 for i = 1:lineSegs
330 % for j = 1:numPlots
331 xs6 = cell2mat(squeeze(posMin6(:,i,:)));
332 ys6 = cell2mat(squeeze(datMin6(:,i,:)));
333 xs7 = cell2mat(squeeze(posMin7(:,i,:)));
334 ys7 = cell2mat(squeeze(datMin7(:,i,:)));
335 xs8 = cell2mat(squeeze(posMin8(:,i,:)));
336 ys8 = cell2mat(squeeze(datMin8(:,i,:)));
337
338 % bounds6(i,1) = min(min(xs6));
339 % bounds6(i,2) = max(max(xs6));
340 % bounds7(i,1) = min(min(xs7));
341 % bounds7(i,2) = max(max(xs7));
342 % bounds8(i,1) = min(min(xs8));

166



343 % bounds8(i,2) = max(max(xs8));
344
345 v6Bounds(i,1) = sign(mean(ys6(1,:)) -

meanDataSS(1))*maxV6 + meanDataSS(1);
346 v6Bounds(i,2) = sign(mean(ys6(end,:)) -

meanDataSS(1))*maxV6 + meanDataSS(1);
347 v7Bounds(i,1) = sign(mean(ys7(1,:)) -

meanDataSS(2))*maxV7 + meanDataSS(2);
348 v7Bounds(i,2) = sign(mean(ys7(end,:)) -

meanDataSS(2))*maxV7 + meanDataSS(2);
349 v8Bounds(i,1) = sign(mean(ys8(1,:)) -

meanDataSS(3))*maxV8 + meanDataSS(3);
350 v8Bounds(i,2) = sign(mean(ys8(end,:)) -

meanDataSS(3))*maxV8 + meanDataSS(3);
351
352 p6Bounds(i,1) = v6Bounds(i,1)*ps6(i,1) + ps6(i

,2);
353 p6Bounds(i,2) = v6Bounds(i,2)*ps6(i,1) + ps6(i

,2);
354 p7Bounds(i,1) = v7Bounds(i,1)*ps7(i,1) + ps7(i

,2);
355 p7Bounds(i,2) = v7Bounds(i,2)*ps7(i,1) + ps7(i

,2);
356 p8Bounds(i,1) = v8Bounds(i,1)*ps8(i,1) + ps8(i

,2);
357 p8Bounds(i,2) = v8Bounds(i,2)*ps8(i,1) + ps8(i

,2);
358
359 bounds6(i,1) = min(min(xs6));
360 bounds6(i,2) = max(max(xs6));
361 bounds7(i,1) = min(min(xs7));
362 bounds7(i,2) = max(max(xs7));
363 bounds8(i,1) = min(min(xs8));
364 bounds8(i,2) = max(max(xs8));
365
366 % rat = (j-1)/numPlots;
367 rat = 1;
368 if (i == lineSegs)% && j == numPlots)
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369 plotted16 = plot(xs6,ys6,'.','Color',[0 0
rat],'MarkerSize',3);

370 plotted17 = plot(xs7,ys7,'.','Color',[0 rat
0],'MarkerSize',3);

371 plotted18 = plot(xs8,ys8,'.','Color',[rat 0
0],'MarkerSize',3);

372 plotted16 = plotted16(end);
373 plotted17 = plotted17(end);
374 plotted18 = plotted18(end);
375 else
376 plot(xs6,ys6,'.','Color',[0 0 rat],'

MarkerSize',3);
377 plot(xs7,ys7,'.','Color',[0 rat 0],'

MarkerSize',3);
378 plot(xs8,ys8,'.','Color',[rat 0 0],'

MarkerSize',3);
379 end
380 % end
381 end
382
383 for i = 1:lineSegs
384 x16 = (-maxV6 + meanDataSS(1) - ps6(i,2))/ps6(i,1);
385 x26 = (maxV6 + meanDataSS(1) - ps6(i,2))/ps6(i,1);
386 x17 = (-maxV7 + meanDataSS(2) - ps7(i,2))/ps7(i,1);
387 x27 = (maxV7 + meanDataSS(2) - ps7(i,2))/ps7(i,1);
388 x18 = (-maxV8 + meanDataSS(3) - ps8(i,2))/ps8(i,1);
389 x28 = (maxV8 + meanDataSS(3) - ps8(i,2))/ps8(i,1);
390
391 % plotted26 = plot([x16,x26],[-maxV6,maxV6] +

meanDataSS(1),':y','MarkerSize',4,'LineWidth',1.5);
392 % plotted27 = plot([x17,x27],[-maxV7,maxV7] +

meanDataSS(2),':m','MarkerSize',4,'LineWidth',1.5);
393 % plotted28 = plot([x18,x28],[-maxV8,maxV8] +

meanDataSS(3),':c','MarkerSize',4,'LineWidth',1.5);
394
395 plotted26 = plot(p6Bounds(i,:),v6Bounds(i,:),'-.^k'

,'MarkerSize',4,'LineWidth',1.5);
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396 plotted27 = plot(p7Bounds(i,:),v7Bounds(i,:),'-.xm'
,'MarkerSize',4,'LineWidth',1.5);

397 plotted28 = plot(p8Bounds(i,:),v8Bounds(i,:),'-.oc'
,'MarkerSize',4,'LineWidth',1.5);

398 end
399 hold off;
400 xlabel('Position (rad)');
401 ylabel('Hall-Effect Sensor (Volt');
402 title(['Hall Effect Voltage Over ' num2str(numPlots) '

Rotations - Linearized Region Time Shift
Compensation']);

403 plotVec = [plotted16 plotted17 plotted18 plotted26
plotted27 plotted28];

404 legend(plotVec,'Hall Effect 7','Hall Effect 12','Hall
Effect 2','Linearized Model 7','Linearized Model 12'
,'Linearized Model 2')

405
406 save('posFromVCTRLEssentials.mat','bounds6','bounds7','

bounds8','dataSSAdj6','dataSSAdj7',...
407 'dataSSAdj8','lineSegs','maxV6','maxV7','maxV8','

meanDataSS','posInRotRep6',...
408 'posInRotRep7','posInRotRep8','ps6','ps7','ps8','

v6Bounds','v7Bounds'...
409 ,'v8Bounds','p6Bounds','p7Bounds','p8Bounds','

maxH07Voltage','maxH07VoltagePos'...
410 ,'minH07Voltage','minH07VoltagePos');
411
412 % boundSep6 = (bounds6(2:end,1) + bounds6(1:end-1,2))

/2;
413 % boundSep7 = (bounds7(2:end,1) + bounds7(1:end-1,2))

/2;
414 % boundSep8 = (bounds8(2:end,1) + bounds8(1:end-1,2))

/2;
415 % x = (1:lineSegs-1)';
416 % boundLines6 = fit(x,boundSep6,'poly1');
417 % boundLineCoeffs6(1:2) = coeffvalues(boundLines6);
418 % boundLines7 = fit(x,boundSep7,'poly1');
419 % boundLineCoeffs7(1:2) = coeffvalues(boundLines7);
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420 % boundLines8 = fit(x,boundSep8,'poly1');
421 % boundLineCoeffs8(1:2) = coeffvalues(boundLines8);
422 %
423 % figure(3);
424 % hold on;
425 % plot(posInRotRep6,dataSSAdj6,'.',posInRotRep7,

dataSSAdj7,'.',posInRotRep8,dataSSAdj8,'.');
426 % for i = 1:lineSegs-1
427 % x6 = i*boundLineCoeffs6(1) + boundLineCoeffs6(2);
428 % x7 = i*boundLineCoeffs7(1) + boundLineCoeffs8(2);
429 % x8 = i*boundLineCoeffs7(1) + boundLineCoeffs8(2);
430 % plot([x6 x6],[-maxV6,maxV6],':','LineWidth',1.5);
431 % plot([x7 x7],[-maxV7,maxV7],':','LineWidth',1.5);
432 % plot([x8 x8],[-maxV8,maxV8],':','LineWidth',1.5);
433 % end
434 %
435 % hold off;
436 % xlabel('Position (rad)');
437 % ylabel('Centered Hall-Effect Sensor (Volt)');
438 % title(['Linear Regions of Data']);
439 % legend('Hall Effect 7','Hall Effect 12','Hall Effect

2','Hall Effect 7 Boundaries');
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A.9 Position Control

A.9.1 Position Controller

1 close all;
2
3 desiredMaxCurrent = 3;
4 startCurrent = 1.5;
5 settlePoints = 100;
6 vCutOff = 2;
7 vCutOffMinor = 1.25;
8 sampleRate = 1200;
9 global spinPoints;

10 spinPoints = sampleRate*4;
11 global scanQueueLimit;
12 scanQueueLimit = sampleRate/16;
13 desiredStartPos = 5.05; % rad
14 zeroEntries = sampleRate*60;
15 posCorrectTime = 0.5;
16
17 global Kp;
18 global Ki;
19 global Kd;
20 global Ksat;
21 global KiCounter;
22 global KiSat;
23 global lastError;
24 global lastTime;
25
26 Ku = 50;
27 Tu = 2.3;
28
29 Kp = 0.2*Ku;
30 Ki = Tu/2;
31 Kd = Tu/3;
32 % Ksat = 1000;
33 % KiSat = pi/2/9/10;
34 KiCounter = 0;
35 lastError = 0;
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36 lastTime = 0;
37
38 global data;
39 global time;
40 global position;
41 global currentPos;
42 global desiredPos;
43 global posSegment;
44 global coeffsPs6;
45 global coeffsPs7;
46 global coeffsPs8;
47 global meanValues;
48 global maxCurrent;
49 global dataSize;
50 global P1H02cToV;
51 global P1H12cToV;
52 global P2H07cToV;
53 global phase1Current;
54 global phase2Current;
55 global timeCounter;
56 global counterAmount;
57 global outSaver;
58 global currentElectricalPos;
59 global desiredElectricalPos;
60
61 windowSize = 7;
62 smoothPkFinder = 150;
63 load('posFromVCTRLEssentials.mat');
64 load('sensorCurrentFit.mat');
65 % load('ctrlTestDataSlow.mat');
66
67 P1H02cToV = coeffsP1H02(1);
68 P1H12cToV = coeffsP1H12(1);
69 P2H07cToV = coeffsP2H07(1);
70 phase1Current = 0;
71 phase2Current = 0;
72 coeffsPs6 = ps6;
73 coeffsPs7 = ps7;
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74 coeffsPs8 = ps8;
75 meanValues = meanDataSS;
76 maxCurrent = desiredMaxCurrent;
77 allBounds(:,1) = max([p6Bounds(:,1),p7Bounds(:,1),

p8Bounds(:,1)],[],2);
78 allBounds(:,2) = min([p6Bounds(:,2),p7Bounds(:,2),

p8Bounds(:,2)],[],2);
79 posDestinations = flipud((p6Bounds(:,1) + p6Bounds(:,2)

)/2);
80
81 lowerLimit6 = desiredStartPos > p6Bounds(:,1);
82 upperLimit6 = desiredStartPos < p6Bounds(:,2);
83 posStartSegment = find(and(lowerLimit6,upperLimit6));
84
85 % ps6(:,2) = ps6(:,2) + meanDataSS(1);
86 % ps7(:,2) = ps7(:,2) + meanDataSS(2);
87 % ps8(:,2) = ps8(:,2) + meanDataSS(3);
88
89 d = daq.getDevices;
90 s = daq.createSession('ni');
91 s.Rate = sampleRate;
92
93 aOChannel0 = 'ao0'; %Pin 22
94 aOChannel1 = 'ao1'; %Pin 21
95 aI0Plus = 'ai15';
96 aI0Min = 'ai13';
97
98 aI1Plus = 'ai12';
99 aI1Min = 'ai10';

100
101 aIH07 = 'ai9'; %Pin
102 aIH12 = 'ai11'; %Pin
103 aIH02 = 'ai14';
104
105 addAnalogOutputChannel(s,'Dev1',aOChannel0,'voltage');
106 addAnalogOutputChannel(s,'Dev1',aOChannel1,'voltage');
107 addAnalogInputChannel(s,'Dev1', aI0Plus, 'Voltage');
108 addAnalogInputChannel(s,'Dev1', aI0Min, 'Voltage');

173



109 addAnalogInputChannel(s,'Dev1', aI1Plus, 'Voltage');
110 addAnalogInputChannel(s,'Dev1', aI1Min, 'Voltage');
111 addAnalogInputChannel(s,'Dev1', aIH07, 'Voltage'); %Pin

26
112 addAnalogInputChannel(s,'Dev1', aIH12, 'Voltage'); %Pin

58
113 addAnalogInputChannel(s,'Dev1', aIH02, 'Voltage'); %Pin

23
114 ch15.TerminalConfig = 'SingleEnded';
115 ch13.TerminalConfig = 'SingleEnded';
116 ch12.TerminalConfig = 'SingleEnded';
117 ch10.TerminalConfig = 'SingleEnded';
118 ch9.TerminalConfig = 'SingleEnded';
119 ch11.TerminalConfig = 'SingleEnded';
120 ch14.TerminalConfig = 'SingleEnded';
121 % set(s,'ExternalTriggerTimeout',200);
122
123 [posInRotRep6SmoothOrder, posSmoothInd] = sort(

posInRotRep6);
124 dataSSAdj6SmoothOrder = dataSSAdj6(posSmoothInd);
125 dataSSAdj6Smooth = smooth(dataSSAdj6SmoothOrder,

smoothPkFinder);
126 dataSSAdj6Smooth = smooth(dataSSAdj6Smooth,

smoothPkFinder);
127 % dataSSAdj6Smooth = smooth(dataSSAdj6Smooth,

smoothPkFinder);
128
129 tVec_Spin1 = (linspace(0,spinPoints-1,spinPoints)*2*pi

*9/spinPoints)';
130 out0_Spin1 = startCurrent*sin(tVec_Spin1);
131 out1_Spin1 = startCurrent*cos(tVec_Spin1);
132
133 queueOutputData(s,[out0_Spin1(1)*ones(posCorrectTime*

sampleRate,1), out1_Spin1(1)*ones(posCorrectTime*
sampleRate,1)]);

134 [align_for_spin, ~] = s.startForeground();
135
136 queueOutputData(s,[out0_Spin1 out1_Spin1]);

174



137 [captured_data_Spin1, ~] = s.startForeground();
138 posData1 = linspace(0,2*pi,spinPoints);
139 datData1 = captured_data_Spin1(:,5);
140 smoothDat1 = smooth(datData1,windowSize);
141 smoothDat1 = smooth(smoothDat1,windowSize);
142
143 [maxMeasH07Voltage, maxMeasH07VoltageInd] = max(

smoothDat1);
144 maxMeasH07VoltagePos = posData1(maxMeasH07VoltageInd);
145 [minMeasH07Voltage, minMeasH07VoltageInd] = min(

smoothDat1);
146 minMeasH07VoltagePos = posData1(minMeasH07VoltageInd);
147 currentRef = maxMeasH07VoltagePos;
148
149 figure(1);
150 plot(posData1,datData1);
151 hold on;
152 plot(posInRotRep6SmoothOrder,dataSSAdj6Smooth,'--');
153 plot(maxH07VoltagePos,maxH07Voltage,'*',

minH07VoltagePos,minH07Voltage,'*');
154 plot(maxMeasH07VoltagePos,maxMeasH07Voltage,'^',

minMeasH07VoltagePos,minMeasH07Voltage,'^');
155 % plot(posData1CO(dipLocs),dipPks,'.');
156 % plot(posInRotRep6SmoothOrder(smoothDipLocs),

smoothDipPks,'.');
157 xlabel('Motor Position (rad)');
158 ylabel('Hall-Effect Response (Volt)');
159 title(['Initial Spin To Determine Position']);
160 legend('Measured','Reference');
161 % legend('Smoothed Measured Data','Absolute Position

Reference Frame','Smoothed Absolute Reference Frame
');

162 hold off;
163
164 maxMaxDist = mod(maxH07VoltagePos -

maxMeasH07VoltagePos,2*pi);
165 minMinDist = mod(minH07VoltagePos -

minMeasH07VoltagePos,2*pi);
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166 if ((maxMaxDist-minMinDist)/maxMaxDist > 0.05)
167 queueOutputData(s,[0 0]);
168 [dontCare,dontcare] = s.startForeground();
169 error('Peak locations do not match');
170 end
171
172 figure(2);
173 hold on;
174 for i = 1:lineSegs
175 plotted26 = plot(p6Bounds(i,:),v6Bounds(i,:),':y','

MarkerSize',4,'LineWidth',1.5);
176 plotted27 = plot(p7Bounds(i,:),v7Bounds(i,:),':m','

MarkerSize',4,'LineWidth',1.5);
177 plotted28 = plot(p8Bounds(i,:),v8Bounds(i,:),':c','

MarkerSize',4,'LineWidth',1.5);
178 end
179 ylabel('Hall-Effect Response (Volt)');
180 xlabel('Motor Position (rad)');
181 savefig('LinearPlots.fig');
182 h1 = plot(maxH07VoltagePos,maxH07Voltage,'*');
183 h2 = plot(minH07VoltagePos,minH07Voltage,'*');
184 h3 = plot(maxMeasH07VoltagePos,maxMeasH07Voltage,'^');
185 h4 = plot(minMeasH07VoltagePos,minMeasH07Voltage,'^');
186 h5 = plot([maxMaxDist,maxMaxDist],[0.5,4.5]);
187 legend([h1,h3,h2,h4,h5],'Reference Max','Measured Max',

'Reference Min','Measured Min','Current Pos');
188 currentPos = maxMaxDist;
189
190 posRefFrameCorrection = mod(desiredStartPos-currentPos

,2*pi);
191 % posCorrectedRefFrame = mod(posData1 +

posRefFrameCorrection,2*pi);
192 tPoints = round(posRefFrameCorrection/(2*pi)*spinPoints

);
193 tVec_frameCorrect = linspace(0,posRefFrameCorrection*9,

abs(tPoints))';
194 out0_frameCorrect = startCurrent*sin(tVec_frameCorrect)

;
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195 out1_frameCorrect = startCurrent*cos(tVec_frameCorrect)
;

196
197 queueOutputData(s,[out0_frameCorrect out1_frameCorrect

]);
198 [captured_data_frameCorrect, time_dat_frameCorrect] = s

.startForeground();
199
200 posCorrectVec = [out0_frameCorrect(end)*ones(sampleRate

*posCorrectTime,1), out1_frameCorrect(end)*ones(
sampleRate*posCorrectTime,1)];

201 queueOutputData(s,posCorrectVec);
202 [captured_data_posCorrect, time_dat_posCorrect] = s.

startForeground();
203 v07 = captured_data_posCorrect(:,5) - posCorrectVec(end

,2)*P2H07cToV;
204 p07 = v07*coeffsPs6(posStartSegment,1) + coeffsPs6(

posStartSegment,2);
205 p07Error = desiredStartPos - mean(p07);
206 currentElectricalPos = atan2(out0_frameCorrect(end),

out1_frameCorrect(end)) + p07Error;
207
208 tVec_Spin2 = (currentElectricalPos + linspace(0,9*2*pi,

spinPoints))';
209 out0_Spin2 = startCurrent*sin(tVec_Spin2);
210 out1_Spin2 = startCurrent*cos(tVec_Spin2);
211
212 queueOutputData(s,[out0_Spin2 out1_Spin2]);
213 [captured_data_Spin2, time_dat_Spin2] = s.

startForeground();
214 posData1 = [mod(linspace(mean(p07),mean(p07)+2*pi,

spinPoints),2*pi)]';
215 datData1 = captured_data_Spin2(:,5);
216
217 [maxMeasH07Voltage, maxMeasH07VoltageInd] = max(

smoothDat1);
218 maxMeasH07VoltagePos = posData1(maxMeasH07VoltageInd);
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219 [minMeasH07Voltage, minMeasH07VoltageInd] = min(
smoothDat1);

220 minMeasH07VoltagePos = posData1(minMeasH07VoltageInd);
221 maxMaxDist = mod(maxH07VoltagePos -

maxMeasH07VoltagePos,2*pi);
222 currentRef = maxMeasH07VoltagePos;
223 currentPos = captured_data_Spin2(end,5)*coeffsPs6(

posStartSegment,1) + coeffsPs6(posStartSegment,2);
224 currentPos12 = captured_data_Spin2(end,6)*coeffsPs7(

posStartSegment,1) + coeffsPs7(posStartSegment,2);
225 currentPos02 = captured_data_Spin2(end,7)*coeffsPs8(

posStartSegment,1) + coeffsPs8(posStartSegment,2);
226
227 figure(3);
228 hold on;
229 for i = 1:lineSegs
230 plotted26 = plot(p6Bounds(i,:),v6Bounds(i,:),':y','

MarkerSize',4,'LineWidth',1.5);
231 plotted27 = plot(p7Bounds(i,:),v7Bounds(i,:),':m','

MarkerSize',4,'LineWidth',1.5);
232 plotted28 = plot(p8Bounds(i,:),v8Bounds(i,:),':c','

MarkerSize',4,'LineWidth',1.5);
233 end
234 h1 = plot(maxH07VoltagePos,maxH07Voltage,'*');
235 h2 = plot(minH07VoltagePos,minH07Voltage,'*');
236 h3 = plot(maxMeasH07VoltagePos,maxMeasH07Voltage,'^');
237 h4 = plot(minMeasH07VoltagePos,minMeasH07Voltage,'^');
238 h5 = plot([currentPos,currentPos],[0.5,4.5]);
239 % plot(posData1,datData1,'.');
240 plot(currentPos12,captured_data_Spin2(end,6),'x','

MarkerSize',10);
241 plot(currentPos02,captured_data_Spin2(end,7),'o','

MarkerSize',10);
242 legend([h1,h3,h2,h4,h5],'Reference Max','Measured Max',

'Reference Min','Measured Min','Current Pos');
243
244 desiredPos = desiredStartPos;
245 % currentPos = desiredStartPos;
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246 s.IsContinuous = true;
247
248 allData = [];
249 allTime = [];
250 data = [];
251 time = [];
252 timeCounter = 0;
253 position = [];
254 outSaver = [];
255 posSegment = posStartSegment;
256 firstRun = 1;
257 lastTimeCounter = 0;
258 nowTimeCounter = 0;
259 desiredPosVec = [desiredStartPos];
260 desiredPosTimes = [0];
261
262 while (true)
263
264 prompt = ['Input desired motor position in radians.

Current position is ' num2str(currentPos) '
radians. '];

265 desiredPos = input(prompt);
266 desiredPosVec = [desiredPosVec; desiredPos];
267 desiredPosTimes = [desiredPosTimes; timeCounter];
268 lastTimeCounter = nowTimeCounter;
269 nowTimeCounter = timeCounter;
270 KiCounter = 0;
271
272 if (desiredPos <= 2*pi)
273 delPos = desiredPos - currentPos;
274 desiredElectricalPos = currentElectricalPos +

delPos*9;
275 if (delPos < 0)
276 delPos = delPos + 2*pi;
277 end
278 delPoints = round(delPos/(2*pi)*spinPoints);
279 delVec = linspace(currentElectricalPos,

desiredElectricalPos,delPoints)';
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280 currentElectricalPos = desiredElectricalPos;
281 delVec = mod(delVec,2*pi);
282 needPoints = scanQueueLimit - delPoints;
283 if (needPoints > 0)
284 delVec = [delVec; delVec(end)*ones(

needPoints,1)];
285 end
286 out0 = startCurrent*sin(delVec);
287 out1 = startCurrent*cos(delVec);
288 % figure(4);
289 % hold on;
290 % plot(delVec/9,out0);
291 phase1Current = out0(end);
292 phase2Current = out1(end);
293 queueOutputData(s,[out0 out1]);
294 lowerLimit6 = desiredPos > p6Bounds(:,1);
295 upperLimit6 = desiredPos < p6Bounds(:,2);
296 posSegment = find(and(lowerLimit6,upperLimit6))

;
297 end
298
299 if (firstRun)
300 firstRun = 0;
301 s.NotifyWhenDataAvailableExceeds =

scanQueueLimit;
302 counterAmount = s.

NotifyWhenDataAvailableExceeds;
303 s.NotifyWhenScansQueuedBelow = 2*scanQueueLimit

;
304 lh1 = addlistener(s,'DataAvailable', @(src,

event) updateEvent(src,event,s));
305 lh2 = addlistener(s,'DataRequired', @(src,event

) queueEvent(src,event,s));
306 if (posSegment == posStartSegment)
307 queueOutputData(s,[out0(end)*ones(2*

scanQueueLimit,1) out1(end)*ones(2*
scanQueueLimit,1)]);

308 end
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309
310 if (desiredPos > 2*pi)
311 delete(lh1);
312 delete(lh2);
313 break;
314 end
315 s.startBackground();
316
317 else
318 % openfig('LinearPlots.fig','reuse');
319 % hold on;
320 % plot(position(lastTimeCounter+1:

nowTimeCounter,:), data(lastTimeCounter+1:
nowTimeCounter,:));

321 % hold off;
322 end
323
324 if (desiredPos > 2*pi)
325 delete(lh1);
326 delete(lh2);
327 stop(s);
328 break;
329 end
330
331 if (isempty(posSegment))
332 delete(lh1);
333 delete(lh2);
334 stop(s);
335 queueOutputData(s,zeros(scanQueueLimit,2));
336 s.startBackground();
337 error('Not inside linearized regions');
338 end
339 end
340
341 queueOutputData(s,zeros(sampleRate,2));
342 s.startBackground();
343
344 % outSaverDelIndices = find(outSaver(:,1) == 0);
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345 % outSaver(outSaverDelIndices,:) = [];
346 figure(5);
347 plot(outSaver);
348 figure(6);
349 plot(time,mean(position,2));
350 hold on;
351 plot([time(1), time(end)],[desiredPosVec(2),

desiredPosVec(2)]);
352 hold off;
353
354 % save('posCTRLResults.mat');
355 % save('globeVars.mat','data');
356 % for i = 1:length(globalVars)
357 % tempName = globalVars{i};
358 % save('globeVars.mat',char(tempName),'-append');
359 % end
360
361
362 % figure(3);
363 % hold on;
364 % plot(posData1,datData1);
365 % plot(posData1,smoothDat1);
366 % % plot(posData1(locs),pks,'.','MarkerSize',30);
367 % plot(posData1(dipLocs),dipPks,'.','MarkerSize',24);
368 %
369 % plot(posInRotRep6SmoothOrder,dataSSAdj6SmoothOrder);
370 % plot(posInRotRep6SmoothOrder,dataSSAdj6Smooth);
371 % % plot(posInRotRep6SmoothOrder(smoothLocs),smoothPks

,'.','MarkerSize',30);
372 % plot(posInRotRep6SmoothOrder(smoothDipLocs),

smoothDipPks,'.','MarkerSize',24);
373 %
374 % xlabel('Motor Position (rad)');
375 % ylabel('Hall-Effect Response (Volt)');
376 % title(['Critical Points of Current Position vs

Absolute Position']);
377 % legend('Measured Reference Frame','Smoothed Measured

Data','Measured Frame Peaks',...
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378 % 'Absolute Reference Frame','Smoothed Reference
Data','Absolute Frame Peaks');

379
380 % for i = 1:lineSegs
381 %
382 % x16 = (-maxV6 - ps6(i,2))/ps6(i,1);
383 % x26 = (maxV6 - ps6(i,2))/ps6(i,1);
384 % x17 = (-maxV7 - ps7(i,2))/ps7(i,1);
385 % x27 = (maxV7 - ps7(i,2))/ps7(i,1);
386 % x18 = (-maxV8 - ps8(i,2))/ps8(i,1);
387 % x28 = (maxV8 - ps8(i,2))/ps8(i,1);
388 %
389 % plotted26 = plot([x16,x26],[-maxV6,maxV6] +

meanDataSS(1),':y','MarkerSize',4,'LineWidth',1.5);
390 % plotted27 = plot([x17,x27],[-maxV7,maxV7] +

meanDataSS(2),':m','MarkerSize',4,'LineWidth',1.5);
391 % plotted28 = plot([x18,x28],[-maxV8,maxV8] +

meanDataSS(3),':c','MarkerSize',4,'LineWidth',1.5);
392 % end
393
394 hold off;

A.9.2 Data Collector

1 function updateEvent(src, event, s)
2
3 % persistent tempData;
4 % persistent tempTime;
5 global data;
6 global time;
7 global position;
8 global currentPos;
9 global posSegment;

10 global scanQueueLimit;
11 global coeffsPs6;
12 global coeffsPs7;
13 global coeffsPs8;
14 global meanValues;
15 global phase1Current;

183



16 global phase2Current;
17 global dataSize;
18 global P1H02cToV;
19 global P1H12cToV;
20 global P2H07cToV;
21 global timeCounter;
22 global counterAmount;
23
24 % data: aI0+,aI0-,aI1+,aI1-,aIH07,aIH12,aIH02
25 tempData = event.Data;
26 tempTime = event.TimeStamps;
27 timeCounter = timeCounter + counterAmount;
28 v07 = tempData(:,5) - phase2Current*P2H07cToV;
29 v12 = tempData(:,6) - phase1Current*P1H12cToV;
30 v02 = tempData(:,7) - phase1Current*P1H02cToV;
31 tempData(:,5:7) = [v07,v12,v02];
32
33 data(timeCounter-counterAmount+1:timeCounter,:) =

tempData(:,5:7);
34 time(timeCounter-counterAmount+1:timeCounter) =

tempTime;
35 % data = tempData;
36 % time = tempTime;
37
38 % p07 = (v07-coeffsPs6(posSegment,2) + meanValues

(1))./coeffsPs6(posSegment,1);
39 % p12 = (v12-coeffsPs7(posSegment,2) + meanValues

(2))./coeffsPs7(posSegment,1);
40 % p02 = (v02-coeffsPs8(posSegment,2) + meanValues

(3))./coeffsPs8(posSegment,1);
41
42 p07 = v07*coeffsPs6(posSegment,1) + coeffsPs6(

posSegment,2);
43 p12 = v12*coeffsPs7(posSegment,1) + coeffsPs7(

posSegment,2);
44 p02 = v02*coeffsPs8(posSegment,1) + coeffsPs8(

posSegment,2);
45 tempPosition = [p07, p12, p02];
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46 position(timeCounter-counterAmount+1:timeCounter,:)
= tempPosition;

47
48 % currentPos = mean(p07(scanQueueLimit-10:end));
49 % currentPos = (p07 + p12 + p02)./3;
50 % disp([mean(p07), mean(p12), mean(p02)]);
51 % queueOutputData(s,[zeros(scanQueueLimit,2) ]);
52
53 end

A.9.3 Output Queuer

1 function queueEvent(src, event, s)
2
3 global scanQueueLimit;
4 global currentPos;
5 global desiredPos;
6 global phase1Current;
7 global phase2Current;
8 global maxCurrent;
9 global position;

10 global timeCounter;
11 global counterAmount;
12 global spinPoints;
13 global outSaver;
14 global currentElectricalPos;
15 global desiredElectricalPos;
16 global time;
17
18 global Kp;
19 global Ki;
20 global Kd;
21 global Ksat;
22 global KiSat;
23 global KiCounter;
24 global lastError;
25 global lastTime;
26
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27 currentPos = mean(mean(position(timeCounter-
counterAmount+1:timeCounter,:)));

28 delPos = desiredPos - currentPos;
29 % desiredElectricalPos = currentElectricalPos + 9*

delPos;
30 % KiCounter = 0;
31 KiCounter = KiCounter + delPos;
32 % if (abs(KiCounter)*Ki > KiSat)
33 % KiCounter = sign(KiCounter)*KiSat./Ki;
34 % end
35
36 % if (abs(Kp*delPos) < abs(1*Ki*KiCounter))
37 % KiCounter = sign(KiCounter)*Kp*abs(delPos)

./(1*Ki);
38 % end
39
40 Ktot = Kp*delPos + Ki*KiCounter + Kd*(delPos -

lastError)./(time(end) - lastTime);
41 lastTime = time(end);
42 lastError = delPos;
43
44 % if (abs(Ktot) > Ksat)
45 % Ktot = sign(Ktot)*Ksat;
46 % end
47 desiredElectricalPos = currentElectricalPos + Ktot

/9;
48 disp([position(timeCounter,:),currentPos,currentPos

+ Ktot, time(end)]);
49
50 tVec = [linspace(currentElectricalPos,

desiredElectricalPos,2*scanQueueLimit)]';
51 % tVec = [linspace((currentPos + Ktot)*9,(

currentPos + Ktot)*9,2*scanQueueLimit)]';
52 currentElectricalPos = desiredElectricalPos;
53 % needPoints = scanQueueLimit - delPoints;
54 % if (needPoints > 0)
55 % if (length(tVec) > 0)
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56 % tVec = [tVec; tVec(end)*ones(needPoints
,1)];

57 % else
58 % tVec = [tVec(end)*ones(needPoints,1)];
59 % end
60 % end
61
62 out0 = maxCurrent*sin(tVec);
63 out1 = maxCurrent*cos(tVec);
64 outSaver(timeCounter-2*scanQueueLimit+1:timeCounter

,:) = [out0 out1];
65 phase1Current = out0(end);
66 phase2Current = out1(end);
67 queueOutputData(s,[out0 out1]);
68 % queueOutputData(s,[zeros(scanQueueLimit,2) ]);
69
70 end

A.9.4 Position Data Plotting

1 load('singlestep.mat');
2 close all;
3
4 timeVec = linspace(0,time(end),double(timeCounter));
5 outDiam = 0.133;
6
7 dPos = desiredPosVec(2);
8 lowerDPosBounds = dPos > allBounds(:,1);
9 upperDPosBounds = dPos < allBounds(:,2);

10 regionBounds = find(and(lowerDPosBounds,upperDPosBounds
));

11 avgPos = mean(position,2);
12
13 startEvalTime = 35;
14 startEvalIndex = startEvalTime*sampleRate;
15 evalPosVector = avgPos(startEvalIndex:end);
16
17 evalDelInd = find(evalPosVector > mean(evalPosVector) +

5*std(evalPosVector));
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18 timeVecEval = timeVec(startEvalIndex:end);
19 timeVecEval(evalDelInd) = [];
20 evalPosVector(evalDelInd) = [];
21
22 rmseEvalVec = ((dPos - evalPosVector).^2);
23 rmseEval = sqrt(sum(rmseEvalVec)./length(evalPosVector)

);
24 cumSumLenVec = (1:length(evalPosVector))';
25 rmseCumSum = sqrt(cumsum(rmseEvalVec)./cumSumLenVec);
26 degreeError = rmseCumSum*180/pi;
27 circumError = outDiam*pi*degreeError/360;
28
29 outTimeVec = (linspace(0,length(outSaver)./sampleRate,

length(outSaver)))';
30 phaseAngle = atan2(outSaver(:,1),outSaver(:,2));
31
32 figure(1);
33 h0 = plot(timeVec,avgPos);
34 hold on;
35 timeLimits = [timeVec(1) timeVec(end)];
36 h1 = plot(timeLimits,[dPos, dPos],'LineWidth',1);
37 h2 = plot(timeLimits,allBounds(regionBounds,1)*ones

(1,2),'--');
38 h3 = plot(timeLimits,allBounds(regionBounds,2)*ones

(1,2),'--');
39 h4 = plot(timeVecEval,evalPosVector);
40 legend([h0, h1, h2, h3, h4],'Recorded Position','

Desired Position',...
41 'Segment Upper Boundary','Segment Lower Boundary','

Evaluated Segment');
42 ylabel('Position (rad)');
43 xlabel('Time (sec)');
44 title('Position over Time');
45 hold off;
46
47 figure(2);
48 yyaxis left
49 plot(outTimeVec,outSaver(:,1),'-');
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50 hold on;
51 plot(outTimeVec,outSaver(:,2),'--');
52 ylabel('Current (A)');
53 yyaxis right
54 plot(outTimeVec,phaseAngle,':');
55 ylabel('Phase Angle (rad)');
56 hold off;
57 legend('Phase One Current','Phase Two Current','Phase

Angle');
58 xlabel('Time (sec)');
59 title('Currents and Associated Phase Angle');
60
61 figure(3);
62 plot(timeVecEval,degreeError);
63 xlabel('Time (sec)');
64 ylabel('RMSE (deg)');
65 title(['RMSE Between ',num2str(startEvalTime),' and X

Seconds']);
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APPENDIX B

SOLIDWORKS DRAWINGS AND COMPONENT LABELS
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Figure B.1: Inner motor components.

Figure B.2: Motor infrastructure components.
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