DESIGN AND CONTROL OF A HIGH-PRECISION PERMANENT-MAGNET AC
MOTOR USING A HALBACH MAGNET ARRAY

A Thesis
by
BRADFORD WILLIAM STRICKLIN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, = Won-jong Kim

Committee Members, Sivakumar Rathinam
Hamid Toliyat

Head of Department, = Andreas Polycarpou

December 2017

Major Subject: Mechanical Engineering

Copyright 2017 Bradford William Stricklin

ABSTRACT

This work presents, designs, models, and tests a two-phase permanent-magnet (PM)
external-rotor AC motor utilizing a Halbach array for the purpose of precision positioning.
The motor is made up of twelve coils and nine pitches of the Halbach array and controlled
through the use of a National Instruments data acquisition (DAQ) board paired with MAT-
LAB’s DAQ toolbox. The motor makes uses of the Halbach array and the lack of any
ferromagnetic materials in the system to ensure the internal magnetic field is sinusoidal.
The motor takes advantage of this fact to generate a torque that is independent of both the
rotor position and current distribution. Whereas most PM motors rely on the requirement
that the coil windings are sinusoidally distributed, this motor is able to compensate for not
having sinusoidally distributed coil windings by instead adjusting the current phase vector
based on rotor positioning.

After characterizing the motor and through the utilization of data collected during the
normal operation of the motor, and several procedures designed to account for discrepan-
cies in the timing of the DAQ board’s clocks, the response of the three embedded Hall-
effect sensors were mapped to the position of the rotor. Linear sections of this mapping
were then used to control the position of the rotor down to an accuracy of just a few hun-
dred thousandths of a degree. Additionally, due to the inherent nature and stability of the

system, the only controller required to achieve these results is a PID controller.

i

ACKNOWLEDGMENTS

I would firstly like to thank my committee chair, Dr. Won-jong Kim, for his guid-
ance during this research. I would also like to acknowledge my committee members, Dr.
Sivakumar Rathinam and Dr. Hamid Toliyat.

Special thanks go to Dr. Vu Nguyen, a former student of Dr. Kim, who had the initial
idea for this research and without who, this project would not have been possible.

I would also like to thank Sean Zachary Roberson for his excellent LATEX template
available through the Texas A&M University Office of Graduate and Professional Studies
website.

Lastly, I would like to thank my friends and family for their encouragement and sup-

port.

1l

CONTRIBUTORS AND FUNDING SOURCES

CONTRIBUTORS

This work was supported by a thesis committee consisting of Professor Won-jong Kim
and Professor Sivakumar Rathinam of the Department of Mechanical Engineering and
Professor Hamid Toliyat of the Department of Electrical Engineering.

The initial idea for this research comes from Dr. Vu Nguyen who also came up with
an initial design and had even begun printing some of the outer parts of the chassis.

All other work conducted for the thesis was completed by the student independently.
FUNDING SOURCES

This work was financed independently.

v

AC

EMF

PM
PMAC
DC
PMBLDC
NI

DAQ

E

<

NOMENCLATURE

Alternating Current
Electromotive force

Permanent Magnet

Permanent Magnet Alternating Current

Direct Current

Permanent Magnet Brushless Direct Current Motor

National Instruments

Data Acquisition
Magnetic Flux Density
Peak Flux Density

Torque Produced

Friction Torque

Torque Constant

Current

Peak Current

Radius

Number of Coils Per Phase
Number of Wraps Per Coil
Number of Poles

length

Frequency

rpm

ps

Time

Resistance

Inductance

Revolutions Per Minute

Revolutions Per Second

vi

TABLE OF CONTENTS

ABSTRACT e

ACKNOWLEDGMENTS o o e

CONTRIBUTORS AND FUNDING SOURCES

NOMENCLATURE e e

TABLE OF CONTENTS o e

LISTOFFIGURES e

LISTOFTABLES o e

1.

2.

3.

INTRODUCTION AND LITERATUREREVIEW

I.1 Motivation e
1.2 Novelty and Significance,
1.3 Halbach Array
1.4 ElectricMotor L
1.5 Prior Work on Precision Halbach Array Motors
1.6 Applications of Halbach Array Motors
1.7 Summaryof Work

DESIGN AND FINITE-ELEMENT ANALYSES

2.1 Imitial Design
2.2 Torque Analysis
2.3 Magnetostatic Analyses
2.4 Designed Torque Calculation
2.5 Design Summary e e

MOTOR CONSTRUCTION o .

3.1 Motor Infrastructure
3.1.1 Stator e e e
3.1.2 Rotor e e

3.1.3 MotorBaseand Spacer,

Vil

Page

il

iil

v

vii

X1V

AN N RN ==

3.2 Motor Support Infrastructure oL 34

32.1 NIPCI-6221 DAQBoard 35

3.2.2 Transconductance Amplifier 36

3.2.3 Hall-EffectSensor 40

324 PowerSupply 41

4. MOTOR EXPERIMENTAL PROPERTIES 43
4.1 Motor FrictionForce, 43
4.2 Torque Characteristics v v vt i 45
4.3 Motor Current/Hall-Effect Sensor Interaction 47
4.4 Motor Speed/Hall-Effect Sensor Interaction 54
4.5 Motor Back-EMF Measurements 56
4.6 Hall-Effect Sensor Positioning 61
4.6.1 [Initial Assumed Velocity Procedure 61

4.6.2 Time Interpolation Compensation 66

4.6.3 Linearizationof Data 70

4.6.4 Linearizationof AllData 73

4.6.5 Linearized Model Prediction Error 79

5. MOTOR POSITIONAL CONTROL 80
5.1 Controller Procedure 81

5.2 Controller Structure 85
5.3 Controller Design 85
5.4 Controller Implementation 91

6. SUMMARY AND CONCLUSIONS 99
6.1 Motor Characteristics Summary 99
6.2 FurtherStudy 100
REFERENCES e 102
APPENDIX A. MATLABCODE 106
Al LoadImpedance 106
A2 GamCalibration L L 107
A.2.1 Gain Calibration Collection. 107

A.2.2 Gain Calibration Data Plotting 112

A.3 Motor FrictionForce 116
A.3.1 Motor Deceleration Processing from Video 116

A.3.2 Motor Deceleration Processing from Sensor 116

A4 Torque Characteristics v 120

A.4.1 Torque Measurement 120

A4.2 TorqueDataPlotting 122

A.5 Motor Current/Hall-Effect Sensor Interaction 124
A.5.1 Sensor Current Relation Data Collection 124
A.5.2 Sensor Current Relation Data Plotting 126

A.6 Motor Back-EMF Measurements 130
A.6.1 Back-EMF Measurement 130
A.6.2 Back-EMF DataPlotting 134

A.7 Motor Speed Control 139
A.8 DataProcessing 144
A.8.1 Initial Data Processing 144
A.8.2 Data Time Compensation 147
A.8.3 Data Segment Linearization 152
A.8.4 All Data Channels Compensation and Linearization 157

A9 PositionControl 171
A.9.1 PositionController 171
A9.2 DataCollector. e 183
A93 OutputQueuer 185
A.9.4 Position DataPlotting 187
APPENDIX B. SOLIDWORKS DRAWINGS AND COMPONENT LABELS . . 190

1X

LIST OF FIGURES

FIGURE Page
1.1 Linear Halbach array magnetic field (©1993 IEEE)[1]. 2
1.2 Radial Halbach quadrupole magnetic field (©1993 IEEE)[1]. 3
2.1 BXO044-N52 field visualization [2]. 9
2.2 Linear magnet array with conventional north-south configuration. 15
2.3 Close-up of linear magnet array with conventional north-south configuration. 16
2.4 Halbach array magnetic field.o L. 17
2.5 Close-up of Halbach array magnetic field. 18
2.6 Circular magnet array with conventional north-south configuration. 19
2.7 Close-up of circular magnet array with conventional north-south configu-

TAtioN. e e e 20
2.8 Circular Halbach magnetarray. 21
2.9 Close-up of circular Halbach magnetarray. 22
3.1 Double cutaway view of motor internal structure. 24
3.2 Assembled Halbach array motor. 25
3.3 High-level system block diagram. 25
34 Statorof motor. 26
3.5 Design of stator of motor including the coils. 27
3.6 Implemented statorof motor. 28
3.7 Phase impedance vsmotorspeed. 28
3.8 Design of rotor frame of motor.o 29

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Rotor frame with the magnets inserted. 30

Rotor of motor with the magnets’ magnetization. 31
Assembled rotorof motor. oo 31
Motor Spacer. e e e e 32
Mechanical support components of motor. 33
Motor assembly final design. 34
NIPCI-6221 35
Transconductance amplifier with one amplifier and heat-sink removed. . . 36
Circuit diagram of transconductance amplifier. 38
Bode plot of transconductance amplifier. L. 39
Location of Hall-effect sensors. 41

One of the three power supplies from TDK-Lambda used to power the motor. 42

Deceleration curve from visual estimation. 43
Deceleration curve from Hall-effect sensor voltage. 44
Stall torque experimentation setup. L. 46
Torque vscurrent. e e 47
Hall-effect sensor data during phase 1 testing 50
Hall-effect sensor data during phase 2 testing 51
Hall-effect sensor response to phase 1 current 52
Hall-effect sensor response to phase 2 current 53
Hall-effect sensor response to motorspeed 55
Back-EMFofphase 1. 57
Back-EMFofphase 1. 57
Back-EMFof phase 2. 58

X1

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

5.1

5.2

5.3

54

5.5

5.6

5.7

Back-EMFof phase 2. 58
Back-EMF after the armature currents were removed. 59
Back-EMF vs motorspeed. L. 60
Hall-effect sensor data from steady state operation of motor. 62
Hall-effect sensor data with position sets visible. 63

Hall-effect sensor data with increasing color intensity over time demon-
strating phase shift. L o Lo 64

Hall-effect sensor data with increasing color intensity over time demon-
strating phase shift. L o oL oo 65

Time compensated Hall-effect sensor data with increasing color intensity
OVEr tIME.t ittt et e e e 67

Time compensated Hall-effect sensor data with increasing color intensity
OVEr tIME. ottt it e 68

Time compensated Hall-effect sensor data with increasing color intensity

OVEI tIME. . . . vt v it et et e e e e e e e 69
Linear regions of time compensated Hall-effect data. 71
Linear model overlaid on time compensated Hall-effect data. 72
Linear regions of all Hall-effectdata. 74
Linear models overlaid on all Hall-effectdata. 75
High-level controller block diagram. 80
Positioning PID controller block diagram. 81
Initial spin voltage overlayed on reference voltage. 82
Initial spin referenced location over linearized model. 83
Confirmation spin verified location over linearized model. 83
Force distribution around rotor for a static current vector. 86
System step response for both continuous-time and discrete-time. 89

Xil

5.8

59

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

B.1

B.2

Root locus of discrete-time system.
Applied controller step response.ol
Applied controller phases and phase angle.
Applied controller RMSE convergence over time.
Applied controller stepresponse.o
Applied controller phases and phase angle.
Applied controller RMSE convergence over time.
Step responses inside same linear segment of linear controller.
Close-up of step responses inside same linear segment of linear controller.
Applied controller phases and phase angle during stepped response.

Applied controller RMSE convergence over time during step response. . .
Inner motor components.

Motor infrastructure components.

Xiii

93

94

96

97

98

191

TABLE

3.1

3.2

33

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

5.1

5.2

6.1

LIST OF TABLES

Electrical properties of motor’s phases.
Technical Specifications of PAI2A.
Technical Specifications of A1302k.

Properties of torque vs current fitlines.

Hall-effect sensor 7 response to phase currents trend line information.

Hall-effect sensor 12 response to phase currents trend line information. . .

Hall-effect sensor 2 response to phase currents trend line information.

Back-EMF vs motor speed curve fit characteristics
Linearized model properties for Hall-effect sensor 7.
Linearized model properties for Hall-effect sensor 12.
Linearized model properties for Hall-effect sensor2.
Positions covered by all three Hall-effect sensor linearizations
Properties of discrete-time transfer function.

Summary of important system characteristics.

X1V

Page

29
37
40
47
49
49

49

100

1. INTRODUCTION AND LITERATURE REVIEW

1.1 Motivation

This thesis project’s objective is to design and demonstrate the improved characteristics
of a two-phase alternating current (AC) Halbach array motor over conventional motor

designs. The characteristics that are to be improved are

e Torque profile — due to torque independence of positioning

e Lack of cogging torque — due to the implementation of the Halbach array and

non-ferrous building materials

e Precision positioning — due to lack of cogging torque

e Torque strength — due to increased magnetic field strength from Halbach array

A motor that meets all of these objectives has potential in a variety of applications.
Precision positioning is useful in manufacturing applications or in areas where gearing
the shaft to achieve similar positioning precision may not be desirable. Improved torque
rating is desirable in any motor application where high motor torque is important. Lastly,

the lack of cogging torque means significantly smoother operation of the motor.
1.2 Novelty and Significance

A novel two-phase AC Halbach array motor has been designed and built to demon-
strate the superior positioning characteristics obtained by building the motor out of 3-D
printed plastic parts and the implementation of a Halbach array in the motor. The plastic
parts virtually eliminate the cogging torque caused by the non-uniform attraction of the
permanent magnets to the motor’s iron stator slots. This is in addition to the prevention

of eddy currents from being produced in the motor which cause power loss. These eddy

1

currents create their own non-uniform magnetic fields which would interfere with the mo-
tor’s operation by causing torques of their own. Additionally, the Halbach array provides
several desirable characteristics that aid in positioning. Though much work has been done
on the analysis of the use of Halbach arrays in motors, the first significant contribution of
this project is the construction and actual testing of the system. This is to say that while
many papers have modeled Halbach array systems, this experiment collects real data. The
second novel contribution of this paper is that though the improved torque characteristics
of motors utilizing Halbach arrays has been explored, this project seeks to take this a step

further by applying these torque benefits towards accurately positioning the motor.

1.3 Halbach Array

Figure 1.1: Linear Halbach array magnetic field (©1993 IEEE)[1].

In conventional permanent magnet (PM) motors, the permanent magnets are arranged

such that a north-south pattern is followed where each magnetization vector in the se-

2

e
b

)

o
\

<

=
%}fi//

»

o

i yg /
SN

1

:-\‘
———

o

4

\

,\\N

&

2
1%

\

9

"

J
A\

\

iy
Ny

Figure 1.2: Radial Halbach quadrupole magnetic field (©1993 IEEE)[1].

quence is rotated 180°. Through the implementation of a Halbach array, the magnetic field
can be concentrated on one side of the array of magnets. This has the effect of increasing
the strength of the magnetic field on one side of the array as compared to a conventional
magnetic array [3]. This idealized effect can be seen in Figure 1.1 where the magnetic
field is represented by the lines with arrows. The concentrated magnetic field lends itself

to a greater torque produced in a motor, a more ideally sinusoidal magnetic field, and a

more predictable back electromotive force (back-EMF) [4]. This type of design can also

be implemented in a radially oriented Halbach array as can be seen in Figure 1.2.
1.4 Electric Motor

The non-ideal nature of motors results in periodic changes in torque output, also known
as torque ripple. This fact implies that the torque output of a motor is dependent on the
position of the motor’s rotor. Even in synchronous motors, torque ripple remains a promi-
nent effect and is most commonly associated with the cogging torque from the interaction
of the PMs and the stator’s iron slots [5]. As this torque pulsation decreases motor perfor-
mance and increases wear on the motor, much work has been done to mitigate these effects
[6-9]. While these efforts focus on magnet shaping or skewing the teeth of the motor, the
underlying problem remains present [10]. Variations in torque caused by the nonuniform
attraction of the PMs to different parts of the motor create torque ripple. This is of particu-
lar concern in motors whose operating frequency can align with the mechanical resonance
frequency. In an ideal PMAC motor, these torque fluctuations do not exist as the magnetic
field is perfectly sinusoidal and is unaffected by the motor. In practice, however, the cog-
ging torque can be expected to be about 2% of the rated torque for a conventional Halbach
array motor (compared to about 10% of the rated torque for a conventionally magnetized
motor) [3]. It should be noted that cogging torque reductions to about 0.3% of the rated
torque have been reported in some PM systems due to skewing of the stator teeth [11].
The motor design presented in this thesis more accurately represents an idealized motor
as the Halbach array provides a more idealized sinusoidal magnetic field and the plastic
components do not interfere with the magnetic field unlike the metal components of a
conventional motor. Additionally, the motor presented here does not rely on an assumed
sinusoidal current distribution around the stator.

In order to facilitate the planning of the motor design, the method that Mohan outlines

in his book for calculating the current space vectors of a PMAC motor will be used in
conjunction with independent analysis [12]. The full derivation can be found in Section
2.2. To this end, the torque generated by a PMAC motor can be found to be independent

of angular positioning and the torque equation can be found to be

Tem(I) = krl (1.1)

where

kr = 2N, N,IrB, (1.2)

1.5 Prior Work on Precision Halbach Array Motors

Despite the improved torque-fluctuation performance that comes with the implemen-
tation of the Halbach array, additional work has been done to further smooth the torque in
rotary Halbach array systems. This has been done by reducing the cogging torque through
magnet skewing and also by developing a slotless PM brushless DC (PMBLDC) motor
[13, 14]. Though this second case specifically points out the use in precise positioning
applications, no data or calculations regarding relative positioning accuracy are offered.
In other words, despite the wide range of applications, this area of Halbach motor devel-
opment has been neglected.

Halbach arrays have been used successfully in linear motors to achieve higher force-
density motors [15-17]. Additionally, the use of the Halbach array means the field will
cause less interference and thus require less shielding in the system [18]. This in turn
means the system has less mass and will have a better dynamic performance. These sys-
tems, which can have positioning accuracies within 0.5 nm (rms), are still limited to a

fairly small stroke range and are thus relegated to fairly niche applications [19].

1.6 Applications of Halbach Array Motors

Motors, and PM motors in particular, are used in industrial applications, residential
applications, and everything in between [20]. Given the wide range of application of
motors in use today, the need for high-precision positioning systems is undisputed. Though
servomotors are traditionally thought of as providing the best positioning characteristics
when it comes to rotary motors, even with a rotary encoder of 4000 counts per revolution,
a positioning error of 1 count corresponds to 0.09°. Though not common, these kinds of
resolutions are possible with dual control systems [21]. Given the uniform torque potential
and the lack of cogging torque, the system designed here could be used to provide even
better angular precision. This is aided by the fact that the entire motor structure can be
3D printed to allow for reduced manufacturing costs. Combined with the decreased torque
ripple of the system design and the system developed in this work has the potential for
manufacturing applications that require high-precision.

Additionally, given the use of the Halbach array and the increased magnetic field
strength brought about by this, the system could find use in electric-vehicle engines. PM
motors are attractive in general to electric vehicle applications due to their high power den-
sity and efficiency [22]. Additionally, the fact that the torque is independent of both speed
and positioning and therefore can immediately achieve a high starting torque is very de-
sirable. The lack of torque ripple and constant torque potential would also be of particular

interest in this application.
1.7 Summary of Work

This body of work explores the design and analysis of an external-rotor two-phase PM
AC motor that makes use of a Halbach array in order to create a uniform torque potential
that is independent of both the rotor’s position and velocity. After this analysis, the con-

struction of the motor and all supporting equipment will be discussed. This discussion will

include both the mechanical and electrical components. The motor will function through
the use of MATLAB programs operating a National Instruments data acquisition board
that controls transconductance amplifiers. After this, a series of experiments designed to
characterize the motor will be presented. During this, the embedded Hall-effect sensors
will be used to map the measured magnetic field to specific angular positions of the ro-
tor. This series of experiments will support the explanation of algorithms developed to
compensate for deficiencies in the hardware as well as develop a linearized model of this
voltage to position mapping. Finally, a control scheme for precision positioning of the
system will be developed and implemented. The results of which will be explored and

used to tune the controller further.

2. DESIGN AND FINITE-ELEMENT ANALYSES

2.1 Initial Design

As the initial setup for this set of experiments was come up with by Dr. Nguyen, he
specified the initial size of some of the mechanical parts. Its approximate size was kept
because the dimensions proved to be of such a range that the motor would be ideal for
testing and modification. That is, it would not be too large as to be cumbersome and could
be easily moved while also being large enough that construction and working with the
internal components would not be too difficult. Additionally, the initial idea of making the
rotor an external rotor motor was kept so as to increase the radius the motor’s force acts
at, thereby increasing the torque of the motor.

The utilization of nine sets of Halbach arrays (for a grand total of thirty-six magnets)
around the rotor was selected as 180° is divided nicely by nine. Not only this, but the
magnet sizes and shapes that are easily available fit nicely into the dimensions of the
motor. That is, for a smaller number of repeating Halbach arrays, the magnets would
have had to be much larger. In the case of six Halbach arrays (the next smallest number
that divides 180° evenly), there would have been twenty-four magnets around the rotor.
This would have meant the magnets would have had to have been 50% larger in order
to create a similar magnetic field. A decreasing number of magnets means that there is
also a greater error between the circular profile from the magnets and an idealized circular
magnetic array. On the other hand, increasing the number of Halbach arrays used means
that a greater number of magnets are required. Given that the nine Halbach array magnets
already cover about 72% of the rotor’s inner circumference (% = (.719), increasing
the number of magnets for the 4-in inner diameter would require the reduction of the size

of the magnets in order to allow space for both the magnets and the supporting plastic

material used to separate them.

With the number of Halbach arrays determined and the approximate sizing of the rotor,
the magnets were next selected. The BX044-N52 magnets were chosen due to their large
pole surface area and their residual flux density value of 1.48 T'. The magnet’s field visual-
ization can be seen in Figure 2.1. Based on this, assuming the air gap is a sufficiently small
distance, the minimum magnetic flux density felt by the stator should be between 0.4553
and 0.5495 T (without considering the increased magnetic field from using the magnet in

a Halbach array).

K&J Magnetics
Magnetic Field Visualization
Single Magnet in Free Space

6497 - 6664

N 6330 - 6497

5996 - 6163
5829 - 5996
5662 - 5829

Cq))))N{[(L((@ 6163 - 6330

Grade = N52
Length = 1lin
Width = 0.25in
Thickness = 0.25in

Figure 2.1: BX044-N52 field visualization [2].

'K&J Magnetics, Inc.,18 Appletree Ln. Pipersville, PA U.S.A.

Based on this approximate sizing of the stator and rotor, and the characteristics previ-
ously discussed, the motor’s supporting infrastructure was designed. All of the drawings
of the mechanical components of the motor can be found in Appendix B.

With the initial mechanical design planned out, the electrical characteristics next had to
be determined. Based on the availability of resources, the stator’s coils were hand-wound
using 20 AWG NEMA MW 136-C magnet wire [23]. The wire coating allows bundles of
these wires to be easily fused together which facilitates coil wrapping. Based on the sizing
of the wire and the designed gaps in the stator, three layers of eight coils apiece will be
wrapped in each of the twelve slots of the stator. As the wire is 20 gauge, it is rated up to
approximately 6 A [24]. As the stator contains twelve coils, the motor could theoretically
have a number of phases equal to any factor of 12. For this series of tests however, the
motor will be wired as a two-phase motor but the ends of the coils will be fed through
the shaft to outside the motor where the ends of the coils could be rearranged so as to

reconfigure the number of phases of the motor at a later date.
2.2 Torque Analysis

With the given design of the rotor, the magnetic flux density can be described according

to the position around the rotor. That is

B(0,,) = Bycos(=0:m) (2.1)

where p is the number of poles of the motor (18 in this case), the subscript p denotes the
peak magnetic field, and the subscript m denotes the mechanical angle. As the motor is

synchronous, the mechanical speed is directly related to the frequency of the signal by

We = =W, (2.2)

10

where the subscript e denotes the electrical frequency. In other words, rather than tracking

the system based on the position around the ring, any arbitrary position on the rotor can be

described as a function of time given some frequency. As
0, = wyt
this yields

B(t) = chos(gwmt)

= Bjcos(w.t)
The stator current space vector is defined as
is(t) = 11(t) £0° +d9(t) £90°
where the subscript sv denotes a space vector. Each current is given by

i1(t) = I,cos(w,t)
T p)

io(t) = I,cos(wet — 595

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

With these equations developed, the expected torque generation of the motor can now be

calculated, and the Lorentz force equation for a current-carrying wire will be used. That

1s,

F(t) = i(t)l x B(t)

11

(2.9)

As only the components of the current that are axially-directed along the outside of the
stator will be considered, the current will always be perpendicular to the magnetic field.
This means the force will also always be directed tangential to the motor and the equation

simplifies to

F(t) = i()IB(1) (2.10)

The [in this case is the length of the wires crossing the radial face of the stator for each
phase. This means that each coil effectively counts as two wires along this face. Substitut-

ing in the equations found above yields

Fi(t) = I,cos(w,t)IB,cos(w,t) (2.11)

= 1,1B,cos?(w,t) (2.12)

Recognizing that the offset between the two phases of the motor corresponds to 75 (just
as in (2.8)) and the temporal offset for the magnetic field is the same, the equation for the

force from the second phase is

Fy(t) = II1B,cos* (wot + gg) (2.13)
p
Putting both forces back in terms of the mechanical speed yields
Fi(t) = Ipprcos2(§wmt) (2.14)
2P ™
F5(t) = LI Bycos™ (= (wmt + <)) (2.15)

2 2

12

As this shows the constant phase offset of the second phase, it can be rewritten as
Fy(t) = IpprsiHQ(gwmt) (2.16)
Adding the forces from both phases results in

Fiu(t) = I,1B, [COSQ(gwmt) + Sin2(§wmt)] (2.17)

— LIB, (2.18)

Given that there are six coils per phase with each coil being made of twenty-four wraps

that each have a side length of 2.54 cm (1 in), the final force equation becomes
Foo = 7.31521,B, (2.19)

Assuming the air gap is negligible and the outer radius of the stator and the inner radius of

the rotor are equivalent yields a torque equation of
Ter = 7.3152r1,B, (2.20)

This yields a torque independent of both position and time so long as the current vector is
rotated accordingly. It is significant to note that unlike most PMAC motors no assumption
was needed regarding the distribution of current around the stator. That is, where most
derivations require a sinusoidally distributed current around the stator, the current distri-
bution of this two-phase motor is unimportant so long as the current is regulated according
to the speed of the motor [12]. In this case, an approximately uniform distribution of cur-
rent results in an approximately uniform distribution of force on the rotor but other than

this, the distribution is unimportant. Though this Lorentz force is calculated as acting on

13

the stator, this force is equivalent to the one felt by the rotor. As the stator is fixed, this

results in the rotation of the rotor.
2.3 Magnetostatic Analyses

Through the use of the software Maxwell SV, magnetostatic simulations were per-
formed in order to verify the characteristics of the Halbach array implementation as well
as to calculate the expected strength of the internal magnetic fields within the motor. These
simulations were performed using N35 NdFeB magnets as opposed to the N52 NdFeB
magnets that are actually used in the motor. This grade differentiation is a reflection of
the maximum energy product of the magnet that is a good indicator of the strength of the
magnetic field. Though the grades are similar in that they share a similar magnetic coer-
civity value of about 877 kA/m, the distinction is important because N52 magnets have a
residual flux density that is about 20% higher than N35 magnets [25]. This means that the
simulations will represent a lower bound for the expected system performance but can still
be used as an indicator for expected conditions.

In Figure 2.2 the simulation is performed on a linear magnet array where every magnet
in sequence has their pole flipped by 180°. That is that every other magnet down the
array has their north pole upwards and the magnets in between these have their south pole
placed upwards. The magnetic field near the array can be more clearly seen in Figure 2.3.
In Figure 2.4 a linear Halbach array is modeled and Figure 2.5 shows the corresponding
near-field view. Figure 2.6 is the simulation results from a radially configured array of
magnets utilizing the same configuration as from Figure 2.2 and overlayed into the magnet
positions in the motor’s rotor. In other words, Figure 2.6 represents the configuration from
Figure 2.2 but wrapped into a circle where every magnet was placed in a proper location
for the motor being analyzed. A closer perspective of this configuration can bee seen in

Figure 2.7. Figure 2.8 is the results of a simulation in which a Halbach array was used to

14

"UONBINSYUOD YINOS-YLIOU [BUOTIUIAUOD PIM ABLIR JoUSRW JeUI] :7'7 2In31]

T00-20000°
T00-23TCE
T00-SLOFL
T00-5580€
T00-86050
T00-STTE0
T00-268T€E
S00-°8TF0
T00-°080€
T00-3C0ET
T00-28529
T00-SL8FT
T00-S86€8
T00-STESL
T00-°3096
T00-°5555
T00-28€92
000+20SkT
000+3€€TS
000420000

R R R R R e T R N R e

[zlg

15

"UONBINSHUOD YINOS-1I0U [BUOTIUIAUOD Im AR Jougew Jeaul] Jo dn-9so[) :¢ g 2In31q

EEREREREEEEEEE

C00-20000"
T00-°9TCE
T00-SL97L
T00-°580€
T00-26050
T00-STTE0
C00-68Z€
T00-28TF%0
S00-°080€
T00-SC0€T
T00-285C9
T00-SL8FT
T00-S85€8
T00-STESL
T00-°5096
T00-95555
T00-28£99
000420567
000+S€€TS
000+20000

A BOSmc o e W m oo

[zls

"PIPY onaudew Aeire yoeqeH ¢ 2In3ig

T00-20000°
T00-°9TgE"
T00-SL9FL"
T00-9580€"
T00-26050°
T00-3TCE0°
T00-%68T€"
T00-28TF0°
T00-2080€"
T00-SC0ET"
T00-98539°
T00-SLBFPT"
T00-986€8"
T00-2TESL”
T00-32096°
T00-85555°
T00-28£99°
000+20SFT"
000+9€ETS"
000+°0000°

[zla

17

‘PI_Y dnaugew Aelre yoeqreH Jo dn-aso[) :¢ g 2131

S00-20000"
T00-°2TTE"
T00-3L9FL"
C00-3580€°
T00-96050°
T00-STTE0"
T00-268T€E"
T00-°8TF0°
T00-2080€"
T00-220€T"
T00-28529°
T00-SLBFT"
T00-286€8"
T00-STESL”
100-S5096°
T00-35555"
T00-28€99"
000+S0SHT"
000+S€ETS"
000+20000°

[z]e

18

OO A A
SSSocoobobobo00000060
Soococoo000C0O0000000
B T T S A Y S

VD000 00000000000DDDD
OMODWAHDCDUO®A H NN =0
CMVNMVOMADNODIDUD B0 D
CHTOVOLMNIANOF MWD O M D
SR HCNOE DA MOMOOMEMND
L e e R R R i I U RS R

R

2

19

101.

1 north-south configurat

10na

lar magnet array with conventi

ircu

C

Figure 2.6

"uoneIN3Yuod YINOS-Y1Iou [RUONUIAUOD M ABLIE JouSew Je[ndird Jo dn-aso[) :/ g 2In31

20

T00-20000"
T00-29TCE
T00-3L9FL
200-3580¢€
200-36050
c00-3TTE0
T00-3682¢€
T00-28TF0 "
200-2080¢€
T00-SZ0€T

T00-98529
T00-SL8FT
T00-986€8
T00-STESL
T00-52096 "
T00-9555%
T00-98£99
000+20S5T
000+9€€TS

000+20000°C “

R S R R R T RS

[zlg

¢

0000e+000
5133e+000
1450e+000

1
1
8
6

7531e-001

3

8398e-001

1

14872-001

58e-001

62

3080e-00;

o=

0428e-00;

3289e-00;

0321e-00;
0509e-00;
3085e-00;

o m el

74672-00;
3216e-00:
0000e-00;

1
1
1

21

Circular Halbach magnet array.

Figure 2.8

‘Aelre jougew yoeqreH Ie[naamn Jo dn-aso)) :6°g 2In31g

£00-20000"
C00-S9TZE"
C00-SL9FL"
T00-2580€"
©00-°6050"
T00-3TTE0"
C00-3682€"
200-28T70°
T00-=080€"
T00-ST0€T"
T00-S8559°
T00-2L8FT"
T00-=86€8"
TO0-STESL”
T00-S2096°
100-95555°
T00-28€99"
000430SFT"
000+5€€TS"
000+20000°

[zls

22

fill in the slots on the motor’s rotor and Figure 2.9 is the enhanced view of this setup. It is
important to keep in mind for Figures 2.6 and 2.8 that the red lines mark the edge of the
simulation and the results from outside of this area should not be considered accurate.
These simulation results confirm the expectations that a Halbach magnet array serves
to concentrate the magnetic field on a particular side of its configuration. In this way,
the strength of the magnetic field from the magnets can be amplified. This will serve to
increase the torque generated by the motor when current is passed through the coils. Based

on these results, the initial design of the motor was finalized.
2.4 Designed Torque Calculation

Referring to (1.1), the torque can be written as a function of the current and a torque
constant. Given the specifications of Ny and N,,, an approximate radius of 0.1 m, an
approximate wire length of 0.0254 m and a conservative magnetic field peak of 0.2 T on

the stator’s coils, the torque constant (from (1.2) can be found to be

kp=2-24-6-0.0254-0.05-0.2N - m/A (2.21)

=0.073152 N -m/A (2.22)

2.5 Design Summary

Given the preceding design description, the motor has the added benefit of being able to
have its rotor and stator be 3D printed (other than the coils and magnets). This allows cheap
and fast production as well as ensures the magnetic fields generated internally should be
minimally interfered with. By contrast, electrical steel has a relative permeability of about

5000 [26]. With the design of the motor completed, the construction can begin.

23

3. MOTOR CONSTRUCTION

3.1 Motor Infrastructure

Rotor Ring Stator

Coils

Keyway

Bearing

Halbach Array

Bearing Retainer

Rotor Spacer

Figure 3.1: Double cutaway view of motor internal structure.

In an effort to accomplish the objectives set forth in this thesis, a motor has been built

that incorporates a Halbach magnet array in a PMAC motor. This motor makes use of two

phases and is an external-rotor motor. The motor contains nine sets of Halbach magnet

arrays lining the rotor (making for a total of thirty-six magnets) and twelve coils between

the two phases. The designed internals of the motor can be seen in Figure 3.1, while

the fully assembled motor can be seen in Figure 3.2. Additionally, a high-level system

24

Figure 3.2: Assembled Halbach array motor.

Computer with
MATLAB

NI PCI-6221 DAQ
Board

Transconductance
Amplifier for
Phase 1

Transconductance
Amplifier for
Phase 2

Halbach Motor

Halbach
Motor
Rotor

Hall-effect
sensor

Hall-effect
sensor

Hall-effect
sensor

Figure 3.3: High-level system block diagram.

architecture of the motor is given in Figure 3.3.

25

Figure 3.4: Stator of motor.

3.1.1 Stator

The stator can be seen in Figure 3.4. It consists of a cog-like structure made of 3D
printed PLA with an outer diameter of 9.8044 cm (3.86 in) and an inner diameter of 9.2456
cm (3.64 in) for the twelve spokes evenly-spaced around the structure.

These spokes were then wrapped with 20 AWG NEMA MW136-c wire such that
twelve distinct coils were placed on the radial surface of the stator. Each of these coils
consisted of three layers of wire with each layer being eight layers of wire wide. This
resulted in each of the twelve coils consisting of twenty-four wraps of the wire. A repre-
sentation of the coil wrappings can be seen in Figure 3.5 where the small gap in the middle
of the sets of wires is the location where two adjacent coils abut. The final implementation
of the stator is given in Figure 3.6. The ends of the coils run through a hole in the shaft

where they are connected to a block of screw terminals in such a way that every other coil

26

Figure 3.5: Design of stator of motor including the coils.

is connected together in series. This produces two sets of six coils which give the motor its
two-phase property. Each of these phases’ properties were measured using an LCR meter
and the results are recorded in Table 3.1. Based on these properties, the impedance of each

of the phases was calculated with

Z = /(w.L)? + R? (3.1)

_ \/ Emorye + e (32)

for various speeds of the motor. The results of this procedure are displayed in Figure
3.7. The ends of each of the phases are the inputs to the motor and are connected to the

transconductance amplifiers.

27

Figure 3.6: Implemented stator of motor.

Phase Impedance vs Motor Speed
0.725 T T T T

0.72

0715

Phase Impedance (2
o
o
o S ~
~ a =

0.695

0.69

| | | |
200 400 600 800 1000 1200 1400 1600 1800
Motor Speed (rpm)

0.685 :
0

Figure 3.7: Phase impedance vs motor speed.

28

Table 3.1: Electrical properties of motor’s phases.

Phase | Resistance (€2) | Inductance (;:H)
One 0.6870 116.1
Two | 0.6937 121.6

3.1.2 Rotor

Figure 3.8: Design of rotor frame of motor.

The rotor frame can be seen in Figure 3.8. It consists of a ring of 3D printed plastic
with 36 notches meant to house the magnets that were epoxyed in place. These magnets

measured 0.638 cm (0.251 in) by 0.638 cm by 2.54 cm (1 in). The ring has an outer

29

Figure 3.9: Rotor frame with the magnets inserted.

diameter of 13.3 cm (5.24 in) and an approximate inner diameter of 10.2 cm (4.01 in)
including the magnets. That is the measurement from the center of the rotor to the middle
of the nearest face of any one of the magnets. The rotor with the magnets in place can be
seen in Figure 3.9. The magnets were attached to the rotor frame by using an epoxy to
glue a few of the magnets in place at a time. While drying, the magnets were clamped in
place to prevent any misalignments from the magnets interactions with one another. As
the magnets were inset, a Halbach array was created by alternating the direction the north
side of the magnet faced. The pattern used to create the array is visualized in Figure 3.10

and the final result can be seen in Figure 3.11.

30

Figure 3.11: Assembled rotor of motor.

31

3.1.3 Motor Base and Spacer

Figure 3.12: Motor spacer.

The 3D printed spacer used to connect the rotor to the shaft can be seen in Figure 3.12.
This part was affixed to both sides of the rotor via small inset screws and connected to the
shaft via bearings.

The motor base’s mechanical components can be seen in Figure 3.13. The base was
set atop an optical table and fixed into place. The bearings were affixed to the shaft and
inset inside the spacers. The shaft was used to ferry the wires from the stator’s coils to the
supporting electrical hardware.

The final design can be see in Figure 3.14 and the actual final product can be seen in

32

Bearing

Shaft

\ Housing Base

Housing Shaft Holder

Anchor-screw Hole /.

Figure 3.13: Mechanical support components of motor.

Figure 3.2. According to the model, the final weight of all of the rotor’s components is
0.482 kg (1.063 Ib) and the moment of inertia about the axis of interest is 0.00142 kg-m?
(4.853 1b-in?).

33

Figure 3.14: Motor assembly final design.

3.2 Motor Support Infrastructure

In order to test the properties of the motor, each phase is driven by a voltage-to-current
transconductance amplifier where the power is supplied from three 3-A power supplies
wired in parallel, and the control is handled by a NI PCI-6221 board integrated into a
computer. This board simultaneously handles both the output voltage to the amplifiers and

data input. The data input acquired is all analog. This board reads the voltage from the two

34

electrical poles (positive and negative) for each of the motor’s phases as well as from three
Hall-effect sensors embedded in the motor. The output voltage from the NI board is con-
trolled by one of several programs coded in MATLAB that allow for different objectives
to be accomplished with regards to testing the motor. These MATLAB programs make
use of MathWork’s Data Acquisition Toolbox to allow interfacing between the MATLAB

code and NI-DAQ hardware.

3.2.1 NIPCI-6221 DAQ Board

. | e !
- B X

,

Figure 3.15: NI PCI-6221

The National Instruments' PCI-6221 is the connection between a computer and the

experimental setup. In terms of output, the board is able to supply the necessary sinusoidal

'National Instruments, 11500 N Mopac Expwy Austin, TX U.S.A.

35

waves as input to the transconductance amplifiers as well as provide the 5-V supply voltage
to the Hall-effect sensors. In terms of input, the board acquires the voltage at both ends of
the motor’s phases so that the differential voltage across each set of coils can be calculated.
Additionally, the board reads the voltage from the Hall-effect sensors. This board was

integrated into MATLAB via Mathwork’s Data Acquisition Toolbox. The code that was
used along with the toolbox can be found in Appendix A, and the board itself can be seen

in Figure 3.15.

3.2.2 Transconductance Amplifier

—
—
-—

Figure 3.16: Transconductance amplifier with one amplifier and heat-sink removed

The transconductance amplifier comes on a board with a pair of them as can be seen
in Figure 3.16. This amplifier acts as a unity gain voltage-to-current buffer amplifier. That

is, no matter the load, if one volt is supplied at input, the amplifier will attempt to output

one amp. This amplifier was modified from the work of Kim [27]. Based on the Power

36

Operational Amplifier PA12A manufactured by Apex Microtechnology®. The technical

specifications for the PA12A are listed in Table 3.2.

Table 3.2: Technical Specifications of PA12A.

Maximum Supply Voltage 100 V
Maximum Output Current I5A
Maximum Power Dissipation 125 W
Input Impedance 200 MS2
Slew Rate 4 V/us
Settling Time to 0.1% of 2 V Step Input | 2 us

Figure 3.17 gives the circuit for one transconductance amplifier with LA and R11 rep-
resenting the load’s inductance and resistance. In this case, the LA and R11 values were
obtained by measuring the values for each phase of the motor. These properties are listed
in Table 3.1. In the transconductance amplifier, it is easy to see that all of the capacitors are
10 pF (except for two 47 uF capacitors attached to the power supply of the PA12A) and all
of the resistors are 10 k{2 except for R6 and R10 (which are 24 k€2 and 1 €2 respectively).

Given these values, the transfer function of the circuit can be calculated to be

s? 4+ 14167s + 4.1667 - 107

G=4-10°
s 4+ 7407953 4+ 1.3482 - 10952 4+ 8.7409 - 10125 + 1.6665 - 1016

(3.3)

This yields the Bode plot given in Figure 3.18. As this diagram confirms, the gain of
the transconductance amplifier is approximately 1 until 1 kHz where it has dropped to a

gain of 14/2. In other words, the bandwidth of this transconductance amplifier is 1 kHz.

2 Apex Microtechnology, 5980 N. Shannon Road Tucson, AZ 85741, U.S.A

37

‘1oyIdwe 90uB}ONPUOISURI) JO WRISRIP JINDILY) :/ [°¢ N3]

mmm
Mol

84 MoL

=
3
L
I
_|||

+1!

AGLT]

i

MoL [Y04

anzy \
A

dquor Y 8 Mol

\

,/d_N Lvdn

< -

angp A - vz.01Ln

I N - A~

1 .9_..2 sy Mol ot .</ N +0MNH_O>

I—i—
+

sl
“_“ | AL

WAV—|

AN

94 NPT €D duoL -
oLy
l AN
o MOL
AN IS y AN [
LY 690 ¥1 HNozL L4 Mol ol
o duol

peo

38

1.2

Magnitude (abs)
o
(00}

o
o

-30

Phase (deg)

-90

Bode Diagram

100 10" 102
Frequency (Hz)

Figure 3.18: Bode plot of transconductance amplifier.

108

3.2.3 Hall-Effect Sensor

The Hall-effect sensors used for this set of experiments is the A1302K ratiometric
linear Hall-effect sensor from Allegero MicroSystems®. The technical specifications are

listed in Table 3.3.

Table 3.3: Technical Specifications of A1302k.

Maximum Supply Voltage 8V

No Magnetic Field Output (B=0T) | 0.5 - Supply Voltage
Output Sensitivity 1.3 mV/G

Output Bandwidth 20 kHz

Linearity +2.5%

The Hall-effect sensors were labeled based on the stator cog’s they are situated on. That
is, 7, 12, and 2. Hall-effect sensor 7 was offset from Hall-effect sensor 12 by five spokes
or 150° and Hall-effect sensor 12 was offset from Hall-effect sensor 2 by two spokes or
60° in the same rotational direction. This can be seen in Figure 3.19. These sensors were
spaced around the stator such that the measurement plane was oriented radially with the
motor in an attempt to capture the magnetic field from the rotor. Specifically, as the stator
contained twelve spokes, the Hall effect sensors were placed on the sides of these spokes
near the inside of the coil windings. That is, the top of all of the Hall-effect sensors is in
the Z-direction while the front of Hall-effect sensors 7 and 12 is faced radially outwards.

Hall-effect sensor 2’s front face is situated radially inwards.

3Allegro MicroSystems, LL.C, 115 Northeast Cutoff, Worcester, MA 01606, U.S.A

40

H2

s H12

Figure 3.19: Location of Hall-effect sensors.

3.2.4 Power Supply

In order to supply the power necessary to run the motor, three TDK-Lambda* power
supplies (seen in Figure 3.20) were connected in parallel to the supply terminals of the
transconductance amplifier. Each of the power supplies was rated at 3 A and 15 V leading
to a maximum supply current of 9 A at 15 V. Given that this is a two-phase system, this
yields a maximum per-phase current of 9713 = 6.364 A. Given the measured resistance of
the coils listed in Table 3.1, the maximum per-phase power that can be delivered through
the power supply becomes

Imaa: 92

P = RI* = R(NG) = 0.687 =27.54 W (3.4)

4TDK-Lambda 3-9-1, Shibaura, Minato-ku, Tokyo 108-0023, JAPAN

41

y
(S2 - 08247+ 3) .
2‘ o R S

Figure 3.20: One of the three power supplies from TDK-Lambda used to power the motor.

42

4. MOTOR EXPERIMENTAL PROPERTIES

4.1 Motor Friction Force

In order to determine the friction force inherent in the motor system, experimental
dynamics data was captured on video. The motor was initially accelerated to 10 Hz before
input to the motor was removed. Then, the angular position of the motor was recorded
over time. This angular positioning was done via visual estimation from video shot at 60
Hz. The experimental data and a curve fit to the data can be seen in Figure 4.1. The R?

value of this fit is 0.9961.

1400 Motor Position During Deceleration
T T T

1200

t000- e o .

800 .

Position (deg)

600 - o .

400 - :

200 - ‘,." i
‘- «+='Best Fit Line
* Raw Data

|
0 0.2 0.4 0.6 0.8 1 1.2
Time (s)

Figure 4.1: Deceleration curve from visual estimation.

This data was then also confirmed by tracking the position of motor utilizing the Hall-
effect sensors. By recognizing that the Hall-effect sensors will cross their zero-field value

eighteen times during the course of every rotation, the position of the motor can be known

43

to have advanced 20° every time a single Hall-effect sensor crosses this value. By plotting
this positional progression over time, a more complete description of the motor’s move-
ment can be developed. This data and the corresponding quadratic curve fit (with an R?
value of 0.9989) can be seen in Figure 4.2. It is worth noting that the two methods yielded

friction forces that were within 5% of each other.

Motor Slow Down Over Time
1600 T T T

a—
=t

1400 - el q
'3

1200

T
A Y
1

1000 - o i
800 7 i

600 - / i

Motor Position (deg)

400 - 7 4

200 el

¢ == Best Fit Line

K * Raw Data

0 d | | | | | T
0 0.2 0.4 0.6 0.8 1 1.2 14

Time (s)

Figure 4.2: Deceleration curve from Hall-effect sensor voltage.

Given that over the time interval of deceleration the position (in degrees) is given by

O(t) = —1214¢> 4 2672t + 29.9 (4.1)

the rotational speed and acceleration can be given respectively by

w(t) = —2428¢ + 2672 (4.2)

o(t) = —2428 4.3)

44

This equation can then converted from degrees to radians and the motor dynamics can be

modeled as

16(t) = Top — Ty (t) (4.4)

where [is the mass moment of inertia about the axis of rotation and 7% is the torque from
friction. Given the deceleration model from Figure 4.1, 7T ,,, can be set to zero for all # and
w(t) is known. I was calculated from the system model to be 0.001414 kg-m?. Plugging
these values in yields an average friction torque (during the course of each motor rotation)

of

0.001414(—13.4897) = —T} (4.5)

Ty = 0.0599 N - m (4.6)

4.2 Torque Characteristics

As was established previously, the torque should only be dependent on current and
will be considered independent of rotor position. Given this, in the absence of an external
rotor dynamometer, the stall torque of the motor can be measured to instead determine the
motor’s torque vs current characteristics. To achieve this, a weight was first attached to
the rotor via fishing line and an initially high current was passed through the coils of one
phase. This current was then progressively lowered until the torque produced from the
motor was no longer large enough to prevent the weight from being pulled downward and
causing the rotor to spin. This experiment was repeated for a number of different weights
for each of the motor’s phases. The basic setup can be seen in Figure 4.3. It should be
noted that to prevent fluctuations in friction from differing rotor positions, the rotor was

started in the same place for every run. The results of this experiment can be seen in

45

Figure 4.3: Stall torque experimentation setup.

Figure 4.4 and the properties of the linear fit line can be found in Figure 4.1. In this case,
the y-intercept represents the friction force at the stable point of each phase (the intercepts
are slightly different between the phases due to the positional offset of the phases), and
the slope represents the generated torque per ampere for each phase. Though both phases
were wound with the same number of turns, the torque disparity between the phases means
that in order to achieve a torque that is independent of rotor position, the voltage supplied

to the first phase must be regulated down so the phase currents match. That is, the voltage

supplied to phase 1 must be 3522100 = 95.3% of the voltage supplied to phase 1. This

46

Torque vs Current
T

0.3 T T
0 o
0.25 N
o
E 02f o .]
N
o o .
|9 0.15 i
u““ M
01+ gy |
& e
0.05 ! ! ! ! ! ! !
0 0.5 1 1.5 2 25 3 3.5 4

Current (A)

Figure 4.4: Torque vs current.

is most likely It is worth noting that the measured torques per current are quite close to
the 0.0732 N - m/A calculated in (2.22). Given that the calculated torque was based on a
magnetic field that was 20% weaker than the expected magnetic field as stated in Section
2.3, it is more appropriate to compare the measured torque values to 1.2(0.0732) = 0.0878,

which yields a result even closer to the prior calculations.

Table 4.1: Properties of torque vs current fit lines.
Slope Y -Intercept | R Squared
Phase 1 | 0.08978 | 0.2099 0.9997
Phase 2 | 0.08557 | 0.02692 0.9996

4.3 Motor Current/Hall-Effect Sensor Interaction

Before the data collected from the Hall-effect sensors can be used to determine the

position of the motor, the interaction between the phase currents and the Hall-effect sensors

47

must be measured and accounted for. As the Hall-effect sensors are located on the stator,
the positioning of the rotor does not affect the interaction of the motor current and sensors.
In order to determine this interaction, a large current was first passed through phase 1 to
align the motor in an arbitrary orientation. This current was then dropped to zero and a
base voltage value for the Hall-effect sensors is established. This initial current spike is
done to ensure the motor does not turn further once current is applied. The base voltage
value represents the voltage response of the Hall-effect sensors in the given stable position
of the rotor. After this base voltage is established, the current being passed through phase
1 is increased from O to 3 A and then back down to 0. This procedure is repeated for
negative currents including the initial current spike. Though ideally the motor should not
turn with a negative current (as the motor’s rotor should be situated in a position where
the forces from every pair of phase 1 coils cancel out regardless of current direction), this
was done anyway to ensure thoroughness. As expected, the motor did in fact not change
position during the negative current spike. This was reflected in the fact that the base
voltage Hall-effect values obtained after the positive and negative current spikes differed
by less than 0.02 % for Hall-effect sensors 7 and 2 for example. This entire procedure was
then repeated for phase 2 as well. The results from both sets of procedures can be seen in
Figures 4.5 and 4.6.

Given the results of the above responses, a relationship was developed between each
of the phases and each of the Hall-effect sensors. This was done by first calculating the
base voltage as the average of the responses during the period after the initial current spike.
The change in voltage from this base voltage value during the current changing procedures
was then plotted against the current and a trend was developed. The Hall-effect sensor
response and corresponding trend lines can be seen in Figures 4.7 and 4.8. The trend line
information is given in Tables 4.2, 4.3, and 4.4. It is readily apparent in these figures that

phase 1 affects Hall-effect sensors 12 and 2 quite readily but does not affect Hall-effect

48

sensor 7. Contrarily, phase 2 only affects Hall-effect sensor 7. This makes sense based on
the positioning of the Hall-effect sensors where Hall-effect sensors 12 and 2 are located
inside of phase 1 coils while Hall-effect sensor 7 is located inside of one of phase 2’s coils.
With these results, all future data will be adjusted accordingly. That is, Hall-effect voltages
from sensors 2 and 12 will be adjusted based on the current in phase 1 while sensor 7 will

be adjusted based on the current in phase 2.

Table 4.2: Hall-effect sensor 7 response to phase currents trend line information.

Hall Effect Sensor 7
Slope Y-Intercept | R-Squared
Phase 1 | 8.6057e-4 | —1.0890e-4 | 0.1910
Phase 2 | —0.01067 | —3.0381-4 | 0.9885

Table 4.3: Hall-effect sensor 12 response to phase currents trend line information.

Hall Effect Sensor 12
Slope Y-Intercept | R-Squared
Phase 1 | 0.01857 0.00160 0.9676
Phase 2 | 6.2694e-4 | —8.8320e-4 | 0.0270

Table 4.4: Hall-effect sensor 2 response to phase currents trend line information.

Hall Effect Sensor 2
Slope Y-Intercept | R-Squared
Phase 1 | 0.01738 —2.0957-5 | 0.9889
Phase 2 | 2.4169e-5 | —2.7880e-4 | 0.0494

49

(A) abelop

3uns
Nsa) [aseyd SuLmp eyep J0Suas 109JJo-[[BH :S'{ 2Ing
: L |

) (s) swi
y i . L
, 14
" | | N
|
b m W ,
| |
\\ , ,
m- F L \\\ m m
\\ | |
\\ | ,
/ | |
\\ , ,
c- / ” W
\\\ | ,
\\\ // ” "
. / // | ,
g'cr- | W ”
/r\\ ! ,
\\\\\ 4 ,
€.
i T // \\
| Ve mx, ,,,,,,, SR g
Ger J— e A
2O0H - x x
14 2IH—
LOH - |
uauny- - -
m-.v /// \\\\
| : :
7 // \\
NG

uoneiqiied 193y3-|[eH | aseyd

(V) uaung

50

(A) ebeyop

3unsay g oseyd Sunmp eiep 10Suas 199JJo-[[BH :9'{ 2In31q

(s) swiL
2l ot 8 9 ¥ 2 0
g0 N , " I , , €-
RN I
\ | |
N ! |
\ ! |
// m !
- \ : I
/ AN ! |
/ N | I
\\\ 5 |
/ N ! |
. / ” !
SL- Y | |
/ \ ! |
/ N\ ! I
/ \ ! |
/ N ! |
/ N ! |
/ N ! I
2L e —— :
s e :
\ ;
N\ /
\ /
\ 7/
// \\
. N\ /
Gc- N\ /
\ /
" v
\ /
N /
20H o | /
€z
// \\
LOH -
auny- -
ge AN

| |
uoneiqied 193)3-|[eH g aseyd

(V) uauunn

51

juarnd [aseyd 03 asuodsar J0SUds 109JJ9-[[eH :L't In31

(V) uaun)
€ c 2 0 L- [€

80°0-

W 90-0-
$0°0-

¢00-

o
(A) abejop

00

00

900

800

| | |
uonelqied 30943-|[eH | aseyd

52

juarnd g aseyd 03 asuodsar J0suas 109J9-[[eH 8’1 IN31

(V) uaun)
2 0 L-

¥0°0-

LOH

€0°0-
:_: NO.OI

L0°0-

o

-
.
S

40

o

€00

“v00

GO0

| | |
uone.qied 39943-|[eH Z aseyd

(A) abejop

53

4.4 Motor Speed/Hall-Effect Sensor Interaction

To confirm that the speed of the motor was not impacting the Hall-effect sensors, data
was collected while the motor was accelerated. To facilitate this, the motor was run with a
purposefully long acceleration time to ensure a proper spread of data collection. This also
helps ensure that the phase between the rotor angle and current vector stay approximately
constant by allowing it to settle. Once the data was collected, the Hall-effect sensor data
was plotted against the motor speed while the motor was at the same point during each
rotation. To accomplish this, the motor position was assumed to be constant whenever
the input signal crossed 0 V. In this way, eighteen distinct positions on the rotor were
tracked for changes to the Hall-effect sensor based on motor speed. The corresponding
data can be seen in Figure 4.9. Aside from a small bump at 6 rps, near what may be a
resonant frequency of the motor, it is clear that speed does not impact the response of the

Hall-effect sensor in a meaningful way.

54

0l

paads 10jour 03 asuodsar J0Suas JOJJo-[[eH :6'H 2InIL]

(sd1) paads Joio|\

o

| | | | |
abey}joA 10suas 199443 |IBH SA paads Jojop

N A © «© < N
~— o o o o
(A\) ebeyjop Josuss 108)3-|leH

<
-

©
~

55

4.5 Motor Back-EMF Measurements

The back-EMF induced in the motor was calculated based on the motor’s phase’s elec-
trical properties, the specified current, and measured voltage. The current is known due to
the transconductance amplifier and the voltage across each phase was measured. Figures
4.10—4.11 show the back-EMF of phase 1 whereas Figures 4.12—4.13 show the back-EMF
of phase 2. Additionally, the back-EMF generated during the motor’s deceleration after
the armature currents to the motor were removed can be seen in Figure 4.14. As is clearly
seen in these figures, the back-EMF is directly proportional to the motor speed. By find-
ing the peaks of the back-EMF and comparing it to the known speed at these times, the
relationship between the two can be mathematically developed. This can be clearly seen
in Figure 4.15 where the linear curve fit coefficients are given in Table 4.5. Though there
is a disparity in the strength of the back-EMFs from each phase, this difference reflects the

same condition encountered during the torque measurements

Table 4.5: Back-EMF vs motor speed curve fit characteristics
Slope Y-Intercept | R-Squared
Phase 1 | 0.009115 | 0.2521 0.9920
Phase 2 | 0.008774 | 0.5867 0.9900

56

10 Phase 1 Back-EMF Voltage
T T T

Voltage (V)

[[—Phase Voltage
---Phase Back-EMF
T

0 1 2 3 4 5 6 7 8 9 10
Time (s)

Figure 4.10: Back-EMF of phase 1.

Phase 1 Back-EMF Voltage
T T T

Voltage (V)
N o S

'
EN

J N 1 / \ ! N

'
(o)}

||—Phase Voltage _
-~ -Phase Back-EMF ‘
T T

8.485 8.49 8.495 8.5 8.505 8.51 8.515 8.52 8.525 8.53
Time (s)

'
[oe]

Figure 4.11: Back-EMF of phase 1.

57

Voltage (V)

Phase 2 Back-EMF Voltage
T

10 T T
sl
6L
4l
L A
i i
0 Y i et |
‘0 l‘ i "\ I |
4
-6 =
-8 [—Phase Voltage
---Phase Back-EMF
-10 1 | | |
0 1 2 3 4 5 6 7 8 9 10
Time (s)
Figure 4.12: Back-EMF of phase 2.
Phase 2 Back-EMF Voltage
T T T T
. . 0
i RN Y I
\\“ "r \,}ﬁ\ / “‘Ak . \ . v
S |] \ ﬂ ! | ‘\\ |
= | \ f \ | \ 1
> i) i \ |
£ ‘ \ | ‘ N |] \ :
=) ! \\ ,: | “7 | “v‘) »'/‘
> i | i] J | i | 1
| 1 i \ i \ i
I ! i N
W iy i ,) B
‘f‘/“ ;/ "“A‘M/’ bxvﬁ\‘\""r‘ \’H\/“»r |
: u ‘ b
—Phase Voltage
-8 |-~ -Phase Back-EMF | | | | | | |]
T T
8.645 8.65 8.655 8.66 8.665 8.67 8.675 8.68 8.685 8.69
Time (s)

Figure 4.13: Back-EMF of phase 2.

58

"POAOUIAI QI9M SJUILIND AINJBULIE AY) J9)Je JIN-Joed 41t oIn31q

(s) Indu| ON Jeyy awi|
l

AV

4N3-0eg ¢ aseud - -

4N3-foeg | eseud
[T | , |
INdY 00Z 18}V JINI-ioeg

(A) ebejop

59

‘paads 10j0w SA JINF-oed G 2In31]

(wdl) paadsg Jo10|\
00L 009 009 00¥ 00€ 00¢ 00}

14 9AIND g 8seyd--—
114 8MND | 8seyd
syead JNI-oed g aseyd -
syead JN3-¥oeg | aseyd
[

| |
INdd SA dINT-oed

60

4.6 Hall-Effect Sensor Positioning
4.6.1 Initial Assumed Velocity Procedure

The next step is to verify the high-precision positioning characteristics. As the motor
does not have an encoder, being that it is an external-rotor motor, the use of the system’s
Hall-effect sensors is critical. The idea is that by determining the voltage from the Hall-
effect sensors over the full rotation of the motor, the position of the motor can then be
calculated based on a measured voltage from the sensors. As the rotor is embedded with
thirty-six magnets, or nine pitches of Halbach arrays, the Hall-effect sensors will experi-
ence nine repetitions of magnetic field peaks per revolution of the rotor. This means that
for 360° of applied AC signal, the motor will rotate 40°. This is illustrated in Figure 4.16.

The key here is that by taking a large number of samples during the motor’s steady-
state operation, a distribution of data points can be found that correspond to rotational
angles of the motor. In Figure 4.16, the phase signal frequency was specified as 90 Hz
which means the motor should be rotating ten revolutions per second (as the motor is
synchronous, the speed is known precisely based on the frequency of the input signal),
and the sampling rate is 32000 samples/s. This means that for each rotation of the motor
3200 data points should have been collected. This was repeated over fifty-two seconds
such that a data set is obtained where the 3200 assumed distinct positions of the motor
are measured 520 times via the Hall-effect sensors. As can be shown in Figure 4.17, the
distribution of each of these position sets results in a set of data points that are clustered
together with few outliers for each set.

During the course of data analysis, it was observed that larger samples of data resulted
in a larger spread of data points. This was calculated by finding the sample standard devi-
ation of each of the assumed 3200 positions around the motor. As the standard deviation

at each position should get smaller with an increasing data sample (in this case accom-

61

‘10j0w JO uonerado aye)s Apeo)s WoIy vjep I0Suas 109fJo-T[eH 9] oIS1]

(peJ) uonisod

9] 14 S 4 L 0
T T T _ 0
-190
-l
-9l
[A
_ 1 <
=]
528
]
e <
G'e
14
NI [.
¢lH - UoyE}0Y 10J0I\ o0F = UOHEIOY [LUSIS L09€ Sy
LOH ~
! | G

| | | |
uonjesadQ ajeys Apealg BurLing abejjoA J0suas 30947 |IeH

62

"9IqISIA $39s uonIsod YIrm ejep J0SUS 109JJo-[[eH L] { 9In3L]

(peJ) uonisod

LOH v
I

v2'e 22 22 81'g 91'g v1'g 2k 12
l l l l l T ., : l l
- g
- -50°¢
- e
- -she
w -¢'€

cH ; -62°¢

ZIH - |

| Lo | Lo | !
uonesadQ ajels Apeals Buling abejjo 10suas 19947 lIeH

abejjoN

—

(A

63

‘1J1ys aseyd Junensuowap W} JI9A0 AJISUIUI JO[0D FUISBAIOUL (1M BIBP JOSUS 109JJo-[[BH 8] § 2In31]

(peJ) uonisod
) 9 S v € Z ! 0

I] I I I I O

l I l

t | | | |

¥ o o v N
™ AN ~
(N\) Josuag 108y3-||eH

I
\
0
<F

| | | |
suone}oy 0zZS 19AQ abe)oA Josuas 32947 |1eH

64

‘J1ys aseyd Junensuowap W} A0 AJISUIUI JO[0D FUISBAIOUL (LM BIBP JOSUS 109JJo-[[BH :6] § 2In31]

(peJ) uonisod
4N 1’0 80°0 90°0 00
[[

I I

8L0 910 710
, I — G0

|
=,
<

I
0
.
<

\
™
<

|
Yol

€y

, .
suoljejoy 0zZS 19AQ uonisuel] an|g o} yoe|g vy

(N\) Josuag 108y3-|leH

65

plished by running the motor for longer periods of time), it became apparent that there
was a problem. Further inspection of the data yielded a continuous phase shift over time.
By plotting a single Hall-effect sensor’s data with an increasing color intensity over the
course of a number of rotations, this phase shift becomes readily apparent as can be seen

in Figure 4.18 and to a much clearer extent in Figure 4.19.
4.6.2 Time Interpolation Compensation

By analyzing the input signals to the coil phases, the actual frequency of the input
signals was determined. This was done by finding the times during operation when these
signals crossed O V and then calculating the time difference between each of these occur-
rences. As this time represents half of the signal’s current period, the speed of the motor
can be indirectly calculated. The exact algorithms that were developed can be found in
Appendix A. This method was used to determine that the measured DAQ output signal
frequency was 89.888 Hz during the motor’s steady-state operation. That is, once the mo-
tor is up to speed and the DAQ output signal frequency should be 90 Hz, the signal is
actually slightly slow. Despite the fact that the signal timestamps used to calculate the
signal frequency were of a greater resolution, the signal frequency varied slightly around
this value. Though this represents an error of only about 0.125%, it must be corrected for
by no longer assuming the prescribed frequencies are correct. It is important to note that
though the DAQ board’s output and input clocks are slightly out of sync, the input clock
that timestamped the measured data will be used to define the motor’s speed. In this way,
it will be assumed that the output clock is slow and the input clock represents the actual
time. This is acceptable, because any deviation the input clock has from a true clock is
small and will be applied linearly across all data points. It is also important to emphasize
that even if the output and input clocks are not out of sync and the results are caused by

some other error, the error manifests itself linearly over time and also affects the input and

66

"QUIT) JOAO A)ISUSIUL JO[0O SUISBAIOUT }IM BIEP JOSUDS J109)Jo-[[eH paesuadwod W], :0g ¢ 2InS1

(peJ) uonisod

9 S 14 € c l 0
I | I I I I o
)) " A N > \\., / \/, -G0
\ [1
-Gl W
1, &
ol
- S
Y2
(9]
g
H5e=
1y
v , V V \ ,,, ,,,,, v v_| Sy
v v g V
v
| | | m

| [|
uonesuadwo) uoljejodiaju] awi] - suoleIoy 0ZS 19AQ abej|oA 10943 |IeH

67

"QUIT) JOAO A)ISUSIUL JO[0O SUISBAIOUT [}IM BIEP JOSUDS J109)Jo-[[eH paesuadwod W], [9IS

(peJ) uoniso

d
0 800 900 v0'0
I

810 91’0 v10 430 I
I l I

| |
10¥ 02§ 12A0 abejjoA 319947 |leH

G0'¥

<t A <t
<

0]
<t
(A) Josusg 108)13-||eH

Ge'v

vy

Svr'y

68

"QUIT) JOAO A)ISUSIUL JO[0D SUISBAIOUT }IM BIEP JOSUDS J109)Jo-[[eH paesuadwod awil], 177’ 2In31

(peJ) uonisod
810 910 10 4N 1’0 80°0 90°0 00
[[[I t

I I

G0'¥

a

S e s
< ; <
(N\) Josuag 108y3-|leH

\
™
<

- G€V

| |

Svr'y

| | | | . | |
uonesuadwo) uoljejodiaju] awi] - suoleIoy 0ZS 19AQ abej|oA 10943 |IeH

69

output signals unevenly. This means that treating the problem as out of sync clocks should
be a valid approach. If this were a simple phase lag problem, the lag would not manifest
as it would not increase over time.

With the corrected motor speed, the actual rotational position of the motor can be
found during the course of the run. By once again overlaying the Hall-effect voltages with
the correct position information, the phase shift can be seen to be eliminated in Figures
4.20 and 4.21. This is further evidenced in Figure 4.22 where the data points are graphed
without lines connecting them. In this Figure, it is readily apparent that the clock does
not match up perfectly over the course of multiple runs as the plot appears striated. These
striations show that the compensation is working as the data points line up well and display

a consistent and expected pattern.
4.6.3 Linearization of Data

In order to determine the position of the motor from the Hall-effect sensor data, a
linearization procedure was determined to allow for simple position estimation. This was
done by setting a voltage range and removing the points outside this region. The results of
this can be seen in Figure 4.23. It is important to note that to assist in the calculations from
here on out two operations were performed on the data. First, the data was shifted to be
centered around zero which will be easily re-shifted at the end of the procedure. Second,
the first incomplete section of data was removed. That is, the first rotation of data through
the linearized region that did not extend across the full data range. This data can be seen in
Figure 4.20 as the data from O rad to approximately 0.1 rad during the first rotation. This
loss of a minimal fraction of the data was deemed acceptable and results in Figure 4.23
and subsequent figures having a position shift compared to previous plots.

With the linearized regions of the data identified, a linearized model was developed

for each region of the plot in Figure 4.23. This results in eighteen different linear equa-

70

“BIep 109JJo-[[eH paresuadwiod awn JO SUOIZAI Jeaul] (¢ { 9In3L]

(peJ) uonisod
S b € Z

| |
eje(Jo suoibay Jeaul

< N © N <
SHe SIS
(A\) Josuag 108y 3-||eH paIsjua)

©
o

vt
o

71

“BIep 109JJo-[[eH pAesuadiod oW U0 PIB[IAO [9POW JBAUIT 7 { 9INTL]

(peJ) uonisod

S %

€

|OPON pozIeauT-
10/d pajsnipy awi]

, | | , ,
uoresuedWIOD JIUS SwLL U0IBaY PaZLIEAIT - SUOREIOY 025 JOAD SBENOA 19943 IIeH

8l

© < N
(A) Josuas 108)3-||eH

&0
N

™

c€

v'e

72

tions. These linear equations were developed to go from a voltage, to a corresponding
position for a given segment. In other words, even though voltage is the dependent vari-
able in establishing a positional mapping, in testing, position is the dependent variable.
The overlaying of these models on top of the linearized data set can be seen in Figure

4.24.
4.6.4 Linearization of All Data

With the method for developing the linearized correlation between sensor data and
position completed, the same method was then applied to all three Hall-effect sensors
present in the motor. In the following plots, the data has been re-centered around its
original value and is no longer centered around zero. Though only one sensor might be all
that is technically necessary, multiple Hall-effect sensors will give rise to greater positional
accuracy and redundancy. The linear regions for the entirety of the Hall-effect sensor data
are shown in Figure 4.25 and the linear models overlaid on this data is shown in Figure
4.26. Additionally, the full properties of the linearized models are given for Hall-effect

sensors 7, 12, and 2 in Tables 4.6, 4.7, and 4.8 respectively.

73

“BIep 109JJo-[[eH [[® JO SuoI3al 1eaury :G7 ' 2In31]

(peJ) uonisod
b € Z

¢ 1944 lieH
cliody3lleH -

L3843 lleH -

,_ , 44 , ﬂ ,

S ——

, ,
eje(Jo suoibay Jeaul

< Te} ™ Te} N To)
o AN ~—
(A\) Josuss 108y3-||eH palsjua)

i
<t

74

“BIep 109JJo-[[eH [[B UO PIB[IAO S[OPOW JBUIT :

(peJ) uonisod

17

€

97'{ 231

T ey

===

D -

Z |9POIN paziueaul
Zl I9POIN pazLeaulT -----
/. |9POIN PoOzZLEaUIT -

¢ 1347 lleH

¢l 343 lIeH

/10347 |leH

I

=

ﬁ

S e

—

,

I

I
————— e

|

e

——

.
S

——

\
AN

|
o)
—

L
N

(a9}
(A) Josuag 108)3-|leH

0
™

[| | | , |
uonjesuadwo) Piys awi] uoibay paziieaul - suoiejoy 0zs 12A0 abeyoA 10943 IIeH

Qv

75

Table 4.6: Linearized model properties for Hall-effect sensor 7.

Region | Slope Y-Intercept | R Squared | RMSE
1 —0.0700 | 0.4114 0.9950 0.0046
2 0.0710 | 0.3968 0.9947 0.0049
3 —0.0708 | 1.1026 0.9945 0.0050
4 0.0702 1.0913 0.9950 0.0047
5 —0.0681 | 1.7904 0.9953 0.0043
6 0.1147 1.7243 0.9320 0.0237
7 —0.0597 | 2.5115 0.9866 0.0065
8 0.0682 | 2.4881 0.9951 0.0044
9 —0.0708 | 3.2026 0.9945 0.0049
10 0.0649 | 3.1989 0.9966 0.0035
11 —0.0640 | 3.8799 0.9963 0.0036
12 0.0598 | 3.9189 0.9959 0.0035
13 —0.0618 | 4.5836 0.9914 0.0053
14 0.0564 | 4.6216 0.9969 0.0028
15 —0.0587 | 5.2625 0.9970 0.0029
16 0.1085 | 5.2478 0.9518 0.0189
17 —0.0568 | 6.0004 0.9864 0.0061
18 0.0755 | 5.9737 0.9949 0.0021

76

Table 4.7: Linearized model properties for Hall-effect sensor 12.

Region | Slope Y-Intercept | R Squared | RMSE
1 —0.1269 | 0.4999 0.9973 0.0029
2 0.1292 | 0.2004 0.9928 0.0048
3 —0.1053 | 1.1494 0.9984 0.0018
4 0.1145 0.9213 0.9957 0.0033
5 —0.1211 | 1.8800 0.9960 0.0033
6 0.1482 1.5800 0.9735 0.0096
7 —0.1154 | 2.6084 0.9940 0.0040
8 0.1327 2.2732 0.9980 0.0027
9 —0.1253 | 3.2955 0.9975 0.0028
10 0.1325 2.9854 0.9948 0.0043
11 —0.1319 | 4.0024 0.9972 0.0031
12 0.1335 3.6745 0.9952 0.0041
13 —0.1320 | 4.7163 0.9974 0.0030
14 0.1785 4.2737 0.9835 0.0090
15 —0.1186 | 5.4098 0.9933 0.0043
16 0.1428 5.0436 0.9963 0.0039
17 —0.1382 | 6.1248 0.9978 0.0028
18 0.1235 5.7923 0.9964 0.0023

77

Table 4.8: Linearized model properties for Hall-effect sensor 2.

Region | Slope Y-Intercept | R Squared | RMSE
1 —0.1759 | 0.5608 0.9928 0.0046
2 0.1805 0.0198 0.9947 0.0040
3 —0.1625 | 1.2298 0.9958 0.0032
4 0.1564 | 0.7713 0.9943 0.0035
5 —0.1423 | 1.8855 0.9951 0.0031
6 0.1456 1.5116 0.9890 0.0047
7 —0.1306 | 2.5485 0.9973 0.0020
8 0.1393 22111 0.9965 0.0025
9 —0.2569 | 3.6113 0.9520 0.0149
10 0.1331 2.9856 0.9882 0.0042
11 —0.1733 | 4.0529 0.9960 0.0033
12 0.1662 3.5539 0.9966 0.0030
13 —0.1710 | 4.7582 0.9944 0.0040
14 0.1727 | 4.2245 0.9929 0.0045
15 —0.1711 | 5.4482 0.9948 0.0038
16 0.1745 4.9203 0.9930 0.0045
17 —0.2684 | 6.4054 0.9188 0.0213
18 0.1272 | 5.7898 0.9904 0.0029

78

4.6.5 Linearized Model Prediction Error

Given the voltage range of the linearized model of the Hall-effect sensors (about 3
V for Hall-effect sensor 7) and the fact that each 360° of signal rotation corresponds to
40° of the motor’s rotation, the degree per voltage can be calculated. Extending this,
given that each 180° of signal input corresponds to only 20° of rotation (as each of the
eighteen linear regions in Figure 4.23 comes in a pair that has both an increasing and
decreasing voltage component), the precision of the motor positioning based on the Hall-
effect sensors can be found to be about 7°/V. Pairing this with the data for each position
set allows the distribution of error to be calculated for a given linearized model. Excluding
the two outlier root-mean-square error (RMSE) values from each of Tables 4.6—4.8, yields
average RMSE values of 0.0043, 0.0040, and 0.0036 rad respectively. These RMSE values
correspond to approximately a 0.23° spread for a given position. In other words, utilizing
only a single sensor yields a rotational uncertainty for a given position of about 0.23° or
given the diameter of the rotor, a linear uncertainty of about 200 um. An equivalent RMSE

value of all of the sensors can be found by using the variance of each sensor. That is

Oior = (017 + 05" +057)7" 4.7
where the system is assumed unbiased and o is the RMSE of each sensor. This yields and
equivalent RMSE of 0.13° or a linear uncertainty of only 150 um. This allows for very
precise closed-loop position (and by extension velocity) control based on the feedback

obtained from the Hall-effect sensors.

79

5. MOTOR POSITIONAL CONTROL

Now that the motor is fully characterized (particularly with regard to positioning), the
motor’s positioning controller can be implemented. For starters, given the calculated motor
friction force of 0.06 N-m as well as the measured torque constant of 0.086 N - mA means
that in order for rotor to move, a current of more than 0.7 A must be applied. Therefore,
this stall-current is actually the base current required for all positioning operations. Rather
than regulating current, a current amplitude was set and the angle of the electrical signal
was controlled. That is, even though the motor should ideally respond perfectly to the
electrical input phase signals, this is not always the case. Instead, an initial set of signals
is sent to the motor that would ideally get it to the right position. The main purpose of this
is get the motor on the correct linearized segment (as defined in Subsection 4.6.4) as well
as to get the motor close to the desired position. From this position, the controller is then
implemented. An overview of the positioning process is shown in Figure 5.1, and a block

diagram of the positioning controller is given in Figure 5.2.

Transconductance| current Hall-Effect

Amplifiers Rotation Sensors

Position Sensor Data to Voltage Phase Current Voltage
Position Compensation

DAQ Card DAC

MATLAB and Data Acquisition Card

Figure 5.1: High-level controller block diagram.

80

Z
: (T
0, o ke + K, (+ Plant O,
B de
e

Figure 5.2: Positioning PID controller block diagram.

5.1 Controller Procedure

In order to properly relate the voltage of the Hall-effect sensors and the position of the
rotor, the motor must know its absolute position. That is, given the linearization described
in the previous section, the system must know what linear segment the rotor is currently on.
To achieve this, during the linearization processing, the two points corresponding to the
largest and smallest voltages of Hall-effect sensor 7 were identified. Referring to Figure
4.20 it is plain to see that two of the eighteen peaks are consistently and clearly higher and
lower (respectively) than the rest of the peaks. By identifying these two peaks and their
positional distance from one another, a standard of reference can be developed.

Before the motor can begin controlling its position, it is first rotated around once (in the
same direction as it was during the linearization procedure) and the Hall-effect voltages
are recorded. During this rotation, each consecutive data point is assigned a position from
0 to 27. For now, this positional association is arbitrary. Results from this procedure can
be seen in Figure 5.3. The maximum and minimum voltages of Hall-effect sensor 7 are
then found from this measured data and the distance between these points is compared to

the reference distance processed previously. As long as these two distances are sufficiently

81

Initial Spin To Determine Position
T T T

(&)]

—Measured
I A A /W /| | Referencepy

>
3

I

©
3

w

n

Hall-Effect Response (V)
o &

—_

o
w0

o

Motor Position (rad)

Figure 5.3: Initial spin voltage overlayed on reference voltage.

close, the motor proceeds, otherwise the system stops the procedure. After proceeding, the
system then compares the measured voltage positions to the reference voltage positions
and uses this calculate its actual position. This procedure and the corresponding results
overlayed on top of the linearized position model are shown in Figure 5.4.

Based on a given desired initial position, the motor then moves to this approximate
position. Up until this point, it does not matter how the phase angle of the applied signal
and the mechanical angle of the rotor relate to one another. Given the system now knows
the rotor position as well as the desired position, the system can rotate to this location
by simply applying an electrical signal that rotates nine times the difference between the
actual and desired position. Once the motor is close to the desired position, the system will
establish a relationship between electrical phase angle and mechanical position. Moving
forward, any desired change in the angle of the rotor can be made approximately by a
change of the electrical phase angle of nine times this value. Following this, the system

then repeats the test rotation procedure by comparing peak voltages to confirm its position,

82

(&)]

T
* Reference Max

451 Measured Max
* Reference Min
4 + Measured Min |

— Current Pos

w
o
T

1

w
T
1

N
T
1

Hall-Effect Response (Volt)
o &
T T
| |

—_
T
1

o
o
T

1

| | | |
3 4 5 6 7
Motor Position (rad)

o
o
-
N -

Figure 5.4: Initial spin referenced location over linearized model.

5 T
+ Reference Max
45 Measured Max H
+ Reference Min
41+ » Measured Min
— Current Pos

[N
3
T

1

w
T
1

N
T
1

Hall-Effect Response (V)
& &
T T
| |

e
T
1

<)
2
T
1

0 | | | | | |
0 1 2 3 4 5 6 7

Motor Position (rad)

Figure 5.5: Confirmation spin verified location over linearized model.

ensure it is on the correct linear segment, and verify the established rotor angle/phase angle

relationship. Figure 5.5 reflects the same information as Figure 5.4 but shows the that the

83

motor has moved to the desired starting position. It is worth noting that the cross and
circle in Figure 5.5 represent the positions determined from Hall-effect sensors 12 and 2
respectively and match up nearly perfectly with Hall-effect sensor 7.

Once this confirmation has occured, the system asks for a user determined position,
where this desired position is limited to the linear regions that were determined during the
linearization processing. Though the motor can be controlled to operate at any position
covered by the linearization procedure, this series of tests will focus only on those posi-
tions that are covered by the linearized segments of all three Hall-effect sensors. These
positional bounds are listed in Table 5.1. After receiving a desired position, the motor then
turns to the correct linear segment and approximate position specified before initiating the

positional controller.

Table 5.1: Positions covered by all three Hall-effect sensor linearizations

Lower Bound (rad) | Upper Bound (rad)
0.166 0.234
0.515 0.594
0.848 0.938
1.261 1.355
1.543 1.676
1.905 1.984
2.248 2.345
2.592 2.678
2.939 3.021
3.295 3.379
3.630 3.728
4.045 4.061
4.335 4.408
4.692 4.836
5.038 5.161
5.396 5.479
5.753 5.829
6.100 6.184

84

5.2 Controller Structure

The controller, as implemented through MATLAB and its events system, is broken into
three main programs or components. The first program handles all of the initial position
determination and user input. Once a desired position has been specified, this program
continues running waiting for the next desired position. The second program is an updating
event that is triggered whenever data is available from the DAQ board. Due to the nature
of the DAQ board and it’s integration with MATLAB, data is only collected whenever
the board is specified to be outputting signals. This function triggers whenever a certain
amount of data is available, stores the collected data, and determines the rotor’s position
from the Hall-effect sensor voltages. The third program is the controller of the system
which uses the position determined by the updating program to implement the controller

and adjust the phase signals as necessary.
5.3 Controller Design

In order to design a positional controller for the system, the system dynamics model

must be adjusted slightly. As in 4.4 the system model can be given as
10(t) = kpi — Ty (5.1)

so long as the current vector is rotated around to correspond with the changing angular
position of the rotor. For a constant current vector however, the system dynamics can

more accurately be described by

10(t) = kpisin(¢ — 0) — Ty (5.2)

85

—Clockwise Torque
— Counterclockwise Torque

Figure 5.6: Force distribution around rotor for a static current vector.

where ¢ is the angle of the current vector and 6 is the position of the rotor. This is due
to the sinusoidal distribution of the magnetic field which is illustrated in Figure 5.6. In
this diagram, rotating the rotor manually can be thought of as traversing around the curve
where a greater radial distance from the base circle corresponds to a greater torque and the

nine points tangential to the base circle are where no torque occurs. Similarly, rotating the

86

current vector would correspond to a rotation of the waveform. Based on this represen-
tation, it is plain to see that for a static current vector, there are nine stable points around
which the rotor could settle. It is around each of these stable points that the torque can be
said to be sinusoidally distributed with respect to angular position.

Based on this, the system can be linearized around each of these points. Continuing

from 5.2,
16 = kpi(¢ —) — Tysgn(h) (5.3)
The angle of the current vector input can then be made to be
. . t
krip = Tpsgn(0) + krifa — kab — k(0 — 04) — ki/ (0 —64q)de (5.4)
0

where 6, is the desired angular position and k,, k;, and k, are the associated terms for a
PID controller. This setup allows the controller to be designed as a PID controller for the

system while canceling out the friction force. Defining the error as

e=60—0, (5.5)

é=0 (5.6)
plugging 5.4 into 5.3, and canceling the appropriate terms yields

t
10 = —krie — kpe — kqé — k,/ edt 5.7
0

87

Rearranging these terms and taking the Laplace transform results in

k;©

15°0 + k5O + (kri + k,)0 + = (kyi + kp)0a + kib4 (5.8)

O (k’TZ + k:p)s + kz

i 5.
Oi Is®+kqs®+ (kri+ky)s+k; (5:9)

In order to make this system stable, k; must be greater than zero. This becomes readily

apparent by setting k; zero. The poles of the system can then be found to be

s = —ha % K3 — AT (kri +) (5.10)

Due to the hardware limitations of the system, the update rate of the system is only 9
Hz. This should not be confused with the sampling rate of 1200 Hz. This update rate is
how often new input can be fed to the controller to achieve the desired position. Given
that this series of test is focused on precision positioning, this should not cause a problem
provided that the controller gains do not result in too large of a response too quickly
and cause unstable oscillations. However, the system model does need to be converted
to a discrete system. due to the slow sampling rate. Using MATLAB, the system was

converted to a discrete-time transfer function defined by

© 0.72032% — 0.614z — 0.06683 5.1
O, 23 —1.19222 + 0.23142z — 0.0003867 '

A comparison of the step response of the continuous and discretized systems can be
seen in Figure 5.7 and the properties of discrete-time transfer function are given in Table
5.2. Additionally, the root locus of the system is given in Figure 5.8 where the poles were

found to be 0.0017, 0.2420, and 0.9479.

88

System Step Response
T T T

1.2
10 - — e
Vi
08 /]
o {/
° /
Ef |
506 b
S
<C
0.4r- b
02+ 1
/ —Continous-Time
| —Discrete-Time
O | | | | | | | | T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

Figure 5.7: System step response for both continuous-time and discrete-time.

Table 5.2: Properties of discrete-time transfer function.

Proptery Value
Kp 1

Ki 0.5
Kd 0.1

Rise Time: 0.1847
Settling Time: | 0.2870
Settling Min: | 0.9645
Settling Max: | 1.0359
Overshoot: 1.7108
Undershoot: 0

Peak: 1.0359
Peak Time: 0.5556

89

Imaginary Axis

Root Locus

0.4

0.2

-0.6 -

-0.8 1

-0.2¢

®

-0.5

0

Real Axis

90

0.5

Figure 5.8: Root locus of discrete-time system.

5.4 Controller Implementation

This controller was implemented and the full system response is given in Figure 5.9,
the corresponding phase currents and electrical phase angle are shown in Figure 5.10, and
the convergence of the RMSE is shown in Figure 5.11. For the sake of consistency and
ease of comparison, all system responses to step inputs (unless otherwise specified) will
begin at 5.05 radians.

These system responses demonstrate an RMSE convergence value of about 0.016 de-
grees (or 2.8 - 107* radians). Given that the outer diameter of the rotor is 0.133 meters,
this rotational precision corresponds to a circumferential precision of about 19 microme-
ters. Despite this convergence, there remains a persistent noise in the system caused by the
flipping sign of the velocity and its alternating effect on the controller. The effect of this is
exacerbated by the slow update rate. The system convergence can therefore be improved
by removing this term. The system’s new step response results are shown in Figures 5.12—
5.14. Tt is readily apparent from Figure 5.13 that the noise from the oscillating friction
term is now gone. This corresponds with the improved RMSE performance which now
converges to about 0.012 degrees (or approximately 2.1 - 10~%. Given this, it doesn’t seem
there is any need to compensate for removing the friction term from the controller. Though
these results don’t take into account the error from the linearization procedure (but speak
more to the noise within the system), they show that given a mapping of the Hall-effect
sensor voltages to a corresponding position, the motor can consistently and accurately
move to the specified location.

The response of the system to consecutive step responses within the same linearized
segment is shown in Figures 5.15-5.18. The first two steps are rotations of only 5 - 107° °
and though the data is noisy, the steps are clearly visible. This corresponds to an error of

only 8.73 - 1077 radians and a circumferential error of just over 58 nm.

91

Position over Time

0.75 T T I
—Recorded Position
—Desired Position
0.7 Segment Upper BoundaryH
‘ ---Segment Lower Boundary
0.65 *
o
S 06 L ,,, -
s \
L \
'g 0.55 AN _
o
|
05 \]
045 .
O. 4 | | | | | |
0 5 10 15 20 25 30 35
Time (s)
Figure 5.9: Applied controller step response.
0 Currents and Associated Phase Angle 0
T T T T
-0.5- -1-0.5
-1 —-1
— | MARAMAAMMAAAMAARAAAE AR RARAAY A | i) I \ m [
< | F A A A
I,/
g-15F ’ 41-15
5 !
O |
2r -2
251 it ~Phase One Current|| 2"
i A N A S A 0 YO0 Fiv ot vegsovovosi |-~ -Phiase Twio Current
Phase Angle
3 | | | | | i 3
0 5 10 15 20 25 30 35
Time (s)

Figure 5.10: Applied controller phases and phase angle.

92

Phase Angle (rad)

RMSE Between 5 and X Seconds

0.026 T T T 1 I
—Cumulative RMSE
—RMSE of Preceding Second
0.024 - B
0.022 3
s
S 0.02 - *
]
n
= 0.018 3
o
0.016 M\ J
M%"’Wx b P g
2 W AWM
0.014|- U Wt]
001 2 | | | | | |
0 5 10 15 20 25 30 35
Time (s)
Figure 5.11: Applied controller RMSE convergence over time.
Position over Time
0.75 T T 1
—Recorded Position
—Desired Position
0.7 Segment Upper BoundaryH
---Segment Lower Boundary
0.65 ‘ |
K] w
£ o6 L\ ,,, .
[
£ 0
'g 0.55 o -
o
|
05 \ -
0451 .
04 | | | | | |
0 5 10 15 20 25 30 35
Time (s)

Figure 5.12: Applied controller step response.

93

Currents and Associated Phase Angle
T T T

0 \ 0
05 7-0.5
-1 h -1-1
z | I
g as5- V +4-1.5
5 i
o i
oL —4.2
251 i ‘7‘\, ~ Phase One Current]| ="
y l‘;,'” 77777777 S e ---Phase Two Current
Phase Angle
3 I I I I I i 3
0 5 10 15 20 25 30 35
Time (s)
Figure 5.13: Applied controller phases and phase angle.
RMSE Between 5 and X Seconds
0.035 T T T 1 1
—Cumulative RMSE
—RMSE of Preceding Second
0.03- A :
0.025 - _
3
S 0.02 - N
i}
n
= 0.015 n
o
0.01 i
0.005 - n
0 | | | | | |
0 5 10 15 20 25 30 35
Time (s)

Figure 5.14: Applied controller RMSE convergence

94

over time.

Phase Angle (rad)

“IQ[[OIIUOD JeAUI] JO JUAWITS Jeaul] swes apisul sasuodsar doyg :G1°¢ 231

(s) swi
00¢ 081 091 ovl 0clt 00t 08 09 oy 0¢ ov.o
l l l l l l
= 11 G¥°0
= 160
-
- mm.ow
o
-]
T T T T 90 3
2
= 1690
Arepunog JamoT Juswbag -
- Arepunog Jaddn juswbeg 420
uonisod paliseq—
uonIsod papioday
I I | | | MNO

awil] Jano uonisod

95

“IQ[[OIIUOD JeaUI] JO JUdWFs Jeaur] auwres apisur sasuodsar days jo dn-9so[) :91°¢ 231

(s) swiy
002 081 091 0¥l 0zl 001 08 09 0¥ 0z 0

uonisod paial|d
uonIsod patisaq—

| | |
awil] Jano uonisod

I I I 1 96750

GGo

(peJ) uonisod

G0SG°0

LSS0

96

(peJ) o)buy aseyd

(s) swiL

moom 081 091 ovl 0clt 00t 08 09 oy 0¢

O_O,C/.\ aseug [I I I I I I I
Luaungom] eseyd---| B o T — by
[i i I i
a1n) auQ eseyd— i ! I 1 |
ge- ueLng suo i fd ! j 1 | H
2 : | | | : 1
G- | | ! ! I 1
| i i |
L B I e | \
?A _\I\I\\\\i///\\,
- = H
G0~]

O | | | | |

-asuodsar paddays Surmp o[3ue aseyd pue soseyd zo[jonuod parddy :/1°¢ 23]

a|buy aseyd paleId0SSy pue sjualing

G'¢

G'I-

go-

(V) uaung

97

-asuodsar doys Furmp awn I9A0 90UIZISAU0D FSIAY Io[[0Nu0d parddy :8°¢ 2In31

(s) swiy
002 081 091 ovl 0zl 001 08 09 ov 0z 0o
[[[[[[[[[moo O
1100
16100
1200
my
16200 =

-G€0°0
B \1 | 1¥00
Tpuooag Buipsdeald Jo JSINH V -G¥0°0
JdSINY aAleInwng ——
, , : S00

, , , ,
SPU0I3S X pue G usomlag 3JSINY

98

6. SUMMARY AND CONCLUSIONS

In this thesis, a two-phase external-rotor PMAC motor making use of a Halbach mag-
net array for high-precision positioning was proposed, designed, modeled, and tested. The
system was made from non-ferromagnetic materials to ensure the motor’s internal field
from the Halbach magnet array was as close to sinusoidal as possible. This setup was
modeled and confirmed in Maxwell SV. This property was then taken advantage of to de-
sign a system that was able to generate a torque that was independent of both rotor position
and current distribution due to a lack of cogging torque from winding asymmetries. The
motor was then built and characterized. During the processing of data, corrections were
made to account for discrepancies in the DAQ system clocks. With these corrections, the
full rotation of the rotor was mapped based on data from the three embedded Hall-effect
sensors. Linearized segments from this data were then generated to allow for rotor posi-
tioning based only on this data.

A position control system was then implemented using the motor characterization and
linearization methods. The motor system was able to identify its absolute angular position
and then respond to user input to reach desired positions. The system was then able to
accurately move between step inputs of 8.73 - 10~7 radians (0.00005°). This corresponds

to a circumferential error of just over 58 nm.
6.1 Motor Characteristics Summary

Based on the experiments performed to characterize the system, Table 6.1 lists some of
the motor’s properties. The max speed was found by slowing accelerating the motor until
the rotor slipped and lost synchronicity. The max torque was calculated by multiplying
the average of the two torque constants by the maximum per-phase current. The friction

torque corresponds to the average torque from friction during one rotation of the rotor. The

99

resolutions were obtained from the RMSE of the position data against the desired position.

Table 6.1: Summary of important system characteristics.

Property Value Units
Max Current 9 A
Max Speed 1140 rpm
Max Torque 0.554 N-m

Back-EMF Constant 0.0089 | V/rpm
Average Friction Torque | 0.0599 | N-m

Angular Resolution 0.00005 | °
Linear Resolution 58 nm

6.2 Further Study

During the position control of the system, the voltages from each Hall-effect sensor
was converted to a position, and these positions were averaged with equal weighting to de-
termine the actual position. Weighting based on the variance of each sensor could slightly
improve the response of the system. In order to properly do this, a baseline variance for
each Hall-effect sensor would need to be measured. The change in variance based on
both the current voltage of the sensors as well as the currents in the phases would need
to be taken into account to do a proper weighting. That is, not only does the currents in
the phases affect the sensors’ variances, but more likely than not, the variance would be
affected by the current voltage level being output by the Hall-effect sensors.

Additionally, adaptive control systems could be implemented to improve the system’s
response to external inputs. With more powerful hardware, it would also be possible to
decrease the sampling time or implement more complex or nonlinear control systems. This
could particularly be used to generate more complex curves to fit the Hall-effect sensors

output. In this way, the linearized segments demonstrated in this series of experiments

100

could be made of fitting segments of a higher order designed to further reduce the error
inherent when converting the Hall-effect voltages to positions.

Finally, given a different distribution of Hall-effect sensors, the position of the rotor
throughout the entire rotation could be mapped. In this way, only the linear regions of
the Hall-effect sensors could be used provided that switching between Hall-effect sensors
was implemented. In this way, if the voltage from each Hall-effect sensor was outside of
a certain range, it would not be used to determine position. This type of positioning could
help ensure the phase current was being applied at the correct angle to ensure uniform

torque generation around the full revolution of the rotor.

101

[1]

[2]

(3]

[4]

[5]

[6]

(71

[8]

REFERENCES

D. L. Trumper, M. E. Williams, and T. H. Nguyen, “Magnet arrays for synchronous
machines,” in Proceedings of Conference Record of the 1993 IEEE Industry
Applications Conference Twenty-Eighth IAS Annual Meeting, vol. 1, pp. 9—18,
October 1993.

“K&J Magnetics - Magnetic Field Visualization.” Available:
https://www.kjmagnetics.com/magfield.asp?pName=BX044-N52.

J. Ofori-Tenkorrang and J. H. Lang, “A comparative analysis of torque production in
halbach and conventional surface-mounted permanent-magnet synchronous
motors,” in Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting,
IAS °95., Conference Record of the 1995 IEEE, vol. 1, pp. 657-663, October 1995.
Z. Q. Zhu, “Recent development of halbach permanent magnet machines and
applications,” in 2007 Power Conversion Conference - Nagoya, pp. K-9-K-16,
April 2007.

J. A. Guemes, A. M. Iraolagoitia, J. I. D. Hoyo, and P. Fernandez, “Torque analysis
in permanent-magnet synchronous motors: A comparative study,” IEEE
Transactions on Energy Conversion, vol. 26, no. 1, pp. 55-63, March 2011.

F. Zhao, T. A. Lipo, and B. I. Kwon, “A novel two-phase permanent magnet
synchronous motor modeling for torque ripple minimization,” IEEE Transactions
on Magnetics, vol. 49, no. 5, pp. 2355-2358, May 2013.

V. SimAsn-Sempere, M. Burgos-PayAan, and J. R. Cerquides-Bueno, “Cogging
torque cancellation by magnet shaping in surface-mounted permanent-magnet
motors,” IEEE Transactions on Magnetics, vol. 53, no 7, pp. 1-7, July 2017.

T. M. Jahns and W. L. Soong, “Pulsating torque minimization techniques for

102

permanent magnet ac motor drives-a review,” IEEE Transactions on Industrial
Electronics, vol. 43, no. 2, pp. 321-330, April 1996.

[9] L. Wu, W. Jin, J. Ni, and J. Ying, “A cogging torque reduction method for surface
mounted permanent magnet motor,” in 2007 International Conference on Electrical
Machines and Systems (ICEMS), pp. 769—773, October 2007.

[10] D. Wang, X. Wang, D. Qiao, Y. Pei, and S. Y. Jung, “Reducing cogging torque in
surface-mounted permanent-magnet motors by nonuniformly distributed teeth
method,” IEEE Transactions on Magnetics, vol. 47, no. 9, pp. 2231-2239,
September 2011.

[11] T. Li and G. Slemon, “Reduction of cogging torque in permanent magnet motors,”
IEEE Transactions on Magnetics, vol. 24, no. 6, pp. 2901-2903, November 1988.

[12] N. Mohan, Electric Machines and Drives. Hoboken: Wiley, 2012.

[13] S. Sadeghi and L. Parsa, “Improved technique for minimizing torque pulsation in
halbach array permanent magnet machines,” COMPEL - The International Journal
for Computation and Mathematics in Electrical and Electronic Engineering,
vol. 31, no. 6, pp. 1590-1602, 2012.

[14] R. P. Praveen, M. H. Ravichandran, V. T. S. Achari, V. P. J. Raj, G. Madhu, and
G. R. Bindu, “A novel slotless pmbldc motor for precise positioning applications,”
in Proceedings of 2010 International Conference on Communication Control and
Computing Technologies, pp. 250-254, October 2010.

[15] Z. Jiao, T. Wang, and L. Yan, “Design of a tubular linear oscillating motor with a
novel compound halbach magnet array,” IEEE/ASME Transactions on
Mechatronics, vol. 22, no. 1, pp. 498-508, February 2017.

[16] X. Hao, P. Xing, and L. Bai, “Design and analysis of moving magnet synchronous
surface motor with linear halbach array,” Procedia Engineering, vol. 16, pp. 108 —

118, 2011. International Workshop on Automobile, Power and Energy Engineering.

103

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. L. Trumper, W.-J. Kim, and M. E. Williams, “Design and analysis framework for
linear permanent-magnet machines,” IEEE Transactions on Industry Applications,
vol. 32, no. 2, pp. 371-379, March 1996.

A. K. M. Parvezlgbal, F. A. M. Mokhtar, K. S. M. Sahari, and I. Aris, “A review of
permanent magnet linear motor with halbach array,” Journal of Engineering and
Applied Sciences, vol. 11, pp. 1752 — 1761, January 2016.

J. W. Jeon, M. Caraiani, D. H. Hwang, J. H. Lee, D. S. Kang, Y. J. Kim, and S. S.
Kim, “High-precision and decomposition control of several permanent magnet
linear motors for magnetic levitation,” in Proceedings of the 2006 37th IEEE Power
Electronics Specialists Conference, pp. 1-6, June 2006.

G. H. Kang, Y. D. Son, G. T. Kim, and J. Hur, “A novel cogging torque reduction
method for interior-type permanent-magnet motor,” IEEE Transactions on Industry
Applications, vol. 45, no. 1, pp. 161-167, January 2009.

K. L. Yung, S. T. Mak, and D. K. W. Cheng, “Dual control of closed-loop stepping
motor precision servo,” in Power Electronics and Drive Systems, 1999. PEDS ’99.
Proceedings of the IEEE 1999 International Conference on, vol. 2, pp. 803—808,
August 1999.

C. C. Chan, K. T. Chau, J. Z. Jiang, W. Xia, M. Zhu, and R. Zhang, “Novel
permanent magnet motor drives for electric vehicles,” IEEE Transactions on
Industrial Electronics, vol. 43, no. 2, pp. 331-339, April 1996.

A. N. Standard, “American national standard magnet wire,” tech. rep., American
National Standards Institute, Inc., 10 2015.

The Engineering Toolbox, “Wire Gauges - Current Ratings.” Available:
http://www.engineeringtoolbox.com/wire-gauges-d_419.html.

“K&J Magnetics - Specifications.” Available:

https://www.kjmagnetics.com/specs.asp.

104

[26] E. Gumlich and D. I. P. Goerens, “Magnetic properties of iron-carbon and
iron-silicon alloys,” Transactions of the Faraday Society, vol. 8, pp. 98—114,
October 1912.

[27] W.-J. Kim, High-Precision Planar Magnetic Levitation. Ph.d. thesis, Massachusetts

Institute of Technology, Cambridge, MA, June 1997.

105

APPENDIX A

MATLAB CODE

A.1 Load Impedance

rpm = linspace(0,1800,18000);
rps = rpm/60;

sps = rps=*9;
Ral = 0.6870;
Lal = 116.1%10"-6;

Ra2 = 0.6937;
La2 121.6%10"-6;

XLal = 2xpixspsxLal;
XLa2 = 2*pixspsxLa2;

Xal = sqrt(XLal.”2 + Ral.”"2);
Xa2 sgrt (XLa2.”2 + Ra2."2);

plot (rpm, Xal, 'r',rpm,Xaz2,'b','Linewidth',4);
xlabel ("Motor Speed (RPM)');

ylabel ('Phase Impedance (\Omega)');

title ('Phase Impedance vs Motor Speed');
legend ('Phase 1', "Phase 2'");

% ylim ([0 17)

106

A.2 Gain Calibration
A.2.1 Gain Calibration Collection

d = dag.getDevices;

s = dag.createSession('ni');

Fs = 32000;

runTime = 5; $%Actual run time is double this
Len = runTime=*Fs;

T = 1/Fs;

t = linspace (0, runTime, Len) ;

windowSize = 100;

settleTime = 1;

Rl = 0.6870; % ohms

R2 = 0.6937; % ohms

L1 = 116.1%10%-6; % henries

L2 = 121.6%10"-6; % henries
s.Rate = F's;

aOChannel0 = 'ao0'; $Pin 22
aOChannell = 'aol'; $Pin 21
aIOPlus = 'ailb';

aIOMin = 'ail3';

allPlus = 'ail2';

allMin = 'ailO';

aBoardOutput0 = 'ai6';
aBoardOutputl = 'ai8';

% aBoardOutputGND = 'ai8';

Channels Not Working 28,30,33,57,60,65, 68,
Channels Working 23,25,26,31,34,58,61,63,66,

)
°
)

°

addAnalogOutputChannel (s, 'Devl ', aOChannel0, 'voltage');

107

addAnalogOutputChannel (s, 'Devl ', aOChannell, 'voltage');

chl5 = addAnalogInputChannel (s, 'Devl', aIOPlus, '
Voltage');

chl3 = addAnalogInputChannel (s, 'Devl', aIOMin, 'Voltage
")

chl?2 addAnalogInputChannel (s, 'Devl', aIlPlus, '
Voltage');

chl0 addAnalogInputChannel (s, 'Devl', aIlMin, 'Voltage
")

ch6 = addAnalogInputChannel (s, 'Devl', aBoardOutputO, '
Voltage');

% ch8 = addAnalogInputChannel (s, 'Devl', aBoardOutputGND
, 'Voltage');

ch8 = addAnalogInputChannel (s, 'Devl', aBoardOutputl, '
Voltage');

Il ~e

% legend ('AIO+', '"AIO-', 'AI1l+','AI1l-"', 'ABoardO+"',"'
ABoardl+"');
chl5.TerminalConfig = 'SingleEnded';

chl3.TerminalConfig
chl2.TerminalConfig
chl0.TerminalConfig

'SingleEnded’';
'SingleEnded’;
'SingleEnded’;

ch6.TerminalConfig = 'SingleEnded';

ch8.TerminalConfig = 'SingleEnded';

% ch9.TerminalConfig = 'SingleEnded';

out0 = zeros (Len, 2);

outl = zeros(Len, 2);

sig = [];

% out0(:,1) = transpose([linspace(-3,-0.5,L/2),
linspace(0.5,3,L/2)]);

% outl(:,2) = transpose([linspace(-3,-0.5,L/2),

linspace (0.5,3,L/2)1);
outO(:,1) = [linspace(-4,-4,Len/8), linspace(-3,-3,Len

/8), ...
linspace(-2,-2,Len/8), linspace(-1,-1,Len/8)

108

linspace(l,1,Len/8), linspace(2,2,Len/8),
linspace(3,3,Len/8), linspace(4,4,Len/8)]1"';
outl(:,2) = [linspace(-4,-4,Len/8), linspace(-3,-3,Len
/8), ...
linspace(-2,-2,Len/8), linspace(-1,-1,Len/8)
linspace(l,1,Len/8), linspace(2,2,Len/8), ...
linspace(3,3,Len/8), linspace(4,4,Len/8)]1"';

queueOutputData (s, [—-4xones(settleTimexFs,1l) zeros(
settleTimexFs,1)]);
[dontCare,dontCare] = s.startForeground;

queueOutputData (s, outO0);

[datal,timel] = s.startForeground;

queueOutputData(s, [0 0]);

[dontCare,dontCare] = s.startForeground;

queueOutputData (s, [zeros(settleTimexFs,1) —-4+ones (
settleTimexFs,1)]);

[dontCare,dontCare] = s.startForeground;

queueOutputData (s, outl);

[data2,time2] = s.startForeground;
queueOutputData (s, [0 0]);
[dontCare,dontCare] = s.startForeground;

preDatal = datal;

preData2 = data?2;

a0l = (datal(:,1)-datal(:,2))./R1l;
a02 = (data2(:,3)-data2(:,4))./R2;
aOlBoard = datal(:,5);

aO2Board = data2(:,0);

preGainl = a0l (:,1)./out0(:,1);
preGain?2 a02(:,1)./outl(:,2);

b = (1/windowSize)xones (1l,windowSize) ;

109

siglf = filter(b,a,all);
sig2f = filter(b,a,al2);

% ml = (Lxsum(outO(:,1).+a0l) - sum(outO(:,1))*sum(aOl)
)/ ...

% (Lxsum(outO(:,1).72) — sum(outO(:,1))"2)

ml = mean (preGainl);

% bl = sum(aOl-mlxoutO(:,1))/L;

bl = (sum(a0Ol)-ml*xsum(outO(:,1)))/Len;

m2 = mean (preGain?2);

b2 = (sum(a02) -m2*sum(outl(:,1)))/Len;

plot (time,data,time, all, time, al2) ;

legend ('Voltl+"', 'Voltl-", 'Volt2+', 'Volt2-"', 'Voltl

+=','"Volt2+-");

figure (1)

plot (timel, aOlBoard, timel, a0Ol, timel, preGainl,timel
,siglf);

legend ('Voltage Input', 'Current Measured',6 'Gain','
Filtered Current', '"Location', "southeast');

xlabel ("Time (secs)'");

ylabel ('Voltage (V) and Current (A)');

title('Phase 1 Pre-Calibration');

figure (2)

plot (time2, outl(:,2), time2, al02, time2, preGain2z,
time2, sig2f);

legend('Voltage Input', 'Current Measured', 'Gain','’
Filtered Current', '"Location', "'southeast');

xlabel ('Time (secs) ");

ylabel ('Voltage (V) and Current (A)"'");

title('Phase 2 Pre-Calibration');

%
%

figure (3)

Y = fft(data(:,4));
P2 = abs(Y/L);

Pl = P2(1:L/2+1);

o° o° o oe

110

Pl(2:end-1) = 2+«P1(2:end-1);
f = Fs*x(0:(L/2))/L;

o® o° o o©

figure (3)
plot (f,P1);

%% Validation

y0 = (out0-bl)./ml;

yl = (outl-b2)./m2;

queueOutputData (s, [—-4*ones(settleTimexFs,1l) zeros
settleTime*Fs,1)]);

[dontCare,dontCare] = s.startForeground;

queueOutputData (s, y0);

[datal,timel] = s.startForeground;

queueOutputData (s, [0 0]);

[dontCare,dontCare] = s.startForeground;

queueOutputData (s, [zeros(settleTimexFs,1) —-4xones (
settleTimexFs,1)]);

[dontCare,dontCare] = s.startForeground;

queueOutputData (s, yl);

[data2,time2] = s.startForeground;
queueOutputData(s, [0 0]);
[dontCare,dontCare] = s.startForeground;
postDatal = datal;

postData?2 = data2z;

a0l = (datal(:,1)-datal(:,2))./R1l;

a02 = (data2(:,3)-data2(:,4))./R2;

aOlBoard = datal(:,5);
a02Board = data2(:,6);

a0l (:,1)./out0¢(:,1);
a02(:,1)./outl(:,2);

postGainl
postGain?2

111

b = (1/windowSize)xones (1l,windowSize) ;
a=1;

siglf = filter(b,a,all);

sig2f filter (b, a,al?);

figure (3)

plot (timel, outO(:,1), timel, a0Ol, timel, postGainl,
timel, siglf);

legend ('Voltage Input', 'Current Measured',k 'Gain','
Filtered Current', '"Location', "southeast');

xlabel ('"Time (secs)'");

ylabel ('Voltage (V) and Current (A)'");

title('Phase 1 Post-Calibration');

figure (4)

plot (time2, outl(:,2), time2, a02, time2, postGain2z,
time2, sig2f);

legend ('Voltage Input', 'Current Measured',6 'Gain','
Filtered Current', '"Location', "southeast');

xlabel ('Time (secs)'");

ylabel ('Voltage (V) and Current (A)"'");

title ('Phase 2 Post—-Calibration');

¢

% save ('steppedCalibration.mat');

A.2.2 Gain Calibration Data Plotting

load('linearCalibration.mat');

¢

% load('steppedCalibration.mat');

a0l = preDatal(:,1)-preDatal (:,2);
a02 = preData2(:,3)-preData2(:,4);
aOlBoard = prebatal(:,5);
a02Board = prebata2(:,06);

gainl = a0l (:,1)./out0(:,1);
gain? a02(:,1)./outl(:,2);

b = (1/windowSize)xones (1l,windowSize) ;

112

siglf = filter(b,a,all);
filter (b, a,al2);
gainlf = filter(b,a,gainl);

0]
-
Q
N
Hh
I

gain2f = filter(b,a,gain2);

% ml = (Lxsum(outO(:,1).+xa0l) — sum(outO(:,1))*sum(a0l)
)/ ...

% (Lxsum(outO(:,1).72) — sum(outO0(:,1))"2)

ml = mean (gainl);

% bl = sum(aOl-ml*xoutO(:,1))/L;

bl = (sum(aOl) -ml*sum(outO(:,1)))/L;

m2 = mean(gain2?);

b2 = (sum(a02)-m2*sum(outl (:,1)))/L;

figure (1)

plot (timel, outO(:,1), timel, aOlBoard, timel, aOl,
timel,siglf, timel, gainlf);
legend('Desired 1', 'Board Output 1', 'Amp Output 1', 'Amp
Output Filtered 1', 'Gain 1 Filtered',6 'Location','
southeast');
xlabel ("Time (secs)'");
ylabel ('Voltage');
title('Phase 1 Pre-Calibration');
figure (2)
plot (time2, outl(:,2), time2, aO2Board, time2, a02,
time2,sig2f, time2, gain2f);
legend('Desired 2', '"Board Output 2', 'Amp Output 2', 'Amp
Output Filtered 2', 'Gain 2 Filtered',6 'Location','
southeast');
xlabel ('Time (secs) ");
ylabel ('Voltage');
title ('Phase 2 Pre-Calibration');

a0l = postbhatal(:,1)-postbhatal(:,2);

a02 = postDataZ2(:,3)-postDataz2(:,4);
aOlBoard = postDatal(:,5);

113

a02Board = postDatal(:,6);

gainl = a0l (:,1)./out0(:,1);
gain2 = a02(:,1)./outl(:,2);

b = (1/windowSize) xones (1l,windowSize) ;
a=1;

siglf = filter(b,a,all);

sig2f = filter(b,a,al2);

gainlf = filter(b,a,gainl);

gain2f = filter (b, a,gain2);

figure (3)
plot (timel, outO(:,1), timel, aOlBoard, timel, aOl,
timel, siglf, timel, gainlf);
legend('Desired 1', 'Board Output 1', 'Amp Output 1', 'Amp
Output Filtered 1','Gain 1 Filtered',6 'Location','
southeast');
xlabel ('"Time (secs)'");
ylabel ('Voltage');
title('Phase 1 Post—Calibration');
figure (4)
plot (time2, outl(:,2), time2, aO2Board, time2, a02,
time2, sig2f, time2, gain2f);
legend('Desired 2', 'Board Output 2', 'Amp Output 2', 'Amp
Output Filtered 2', 'Gain 2 Filtered',6 'Location','
southeast');
xlabel ('"Time (secs)'");
ylabel ('Voltage');
title('Phase 2 Post—-Calibration');

figure (5);

plot (timel, preDatal)

xlabel ('"Time (secs)'

ylabel ('Voltage');

legend ('AIO+', '"AIO-", '"AT1+','ATI1-"', "ABoardO+"', '"ABoardl+
")

title('Phase 1 Pre-Calibration Raw Voltages');

) ;

114

figure (6);

plot (time2, preData?)

xlabel ('Time (secs)'

ylabel ('Voltage');

legend ('AIO+"', "AIO-", "AI1l+"', 'ATI1-", "ABoardO+', "ABoardl+
")

title('Phase 2 Pre-Calibration Raw Voltages');

) ;

figure (7);
plot (timel, postDatal);
xlabel ('Time (secs)'");

ylabel ('Voltage');

legend ('AIO+', "ATO-", "AI1+"', "ATI1-"', 'ABoardO+"', "ABoardl+
")

title('Phase 1 Post-Calibration Raw Voltages');

figure (8);

plot (time2, postData?2) ;

xlabel ('Time (secs)'");

ylabel ('Voltage');

legend ('AIO+', "AIO-", "ATI1+"','AT1-"', "ABoardO+"', '"ABoardl+
")

title('Phase 2 Post-Calibration Raw Voltages');

115

A.3 Motor Friction Force

A.3.1 Motor Deceleration Processing from Video

close all;

load ('videoPoints.mat");
time = videoPoints(:,1);
pos = videoPoints(:,2);

for i = 2:1length (pos)
if (pos (i) < pos(i-1))
pos (i:end) = pos(i:end) + 360;

end
end
posCorrected = pos — pos(l);
[fitOb gof] = fit (time,posCorrected, 'poly2'");
coeffs = coeffvalues (£fitOb);
a = coeffs(1l);
b = coeffs(2);
c = coeffs(3);
xs = linspace (0, time (end), 1000);
ysS = axxs.”2 + bxxs + c;
figure (1);
hold on;
plot (xs,ys,':', 'LinewWidth',5);
plot (time, posCorrected, '.', "MarkerSize', 24);

title('Motor Position During Deceleration');

xXlabel ("Time (sec)'");

ylabel ('Position (degree) ');

legend ('Best Fit Line', 'Raw Data', 'Location', 'SouthEast
")

% grid minor

hold off;

A.3.2 Motor Deceleration Processing from Sensor

116

load('friction_Meas.mat');
close all

segs = 18;
I =0.001414;

testResult{2,end}{end} = testResult{2,end}{end} (end);
propslLeg = testResult{l, :};
props = cellZmat (testResult{2, :});

%$Assign properties and basic vectors

sr = props(l); % samping rate

timeVector = slowDownTime;

inputSig0 = slowDown(:,5) - (max(slowDown(:,5)) + min/(
slowDown (:,5)))/2;

inputSign0 = sign (inputSig0);

inputSignODiff = [0; diff (inputSign0)];

crossoverIndicesO = find (inputSign0ODiff);

numCrosses = length(crossoverIndicesO);

crossoverIndicesDiff0 = diff([1l; crossoverIndices0]);

crossoverTimes0 = timeVector (crossoverIndicesO);

crossoverTimeDiff0 = diff ([0 ;crossoverTimes0]); % sec
(difference)

crossoverVelO = (l1./crossoverTimeDiff0)./2; % Hz

motorVelAtCross0 = crossoverVel0./9; % Hz

slowingPos = [360/segs+linspace (0, numCrosses, numCrosses
+1)1";

weightVec = linspace(l,numCrosses+1l,numCrosses+1);

[fitOb gof] = fit ([0; crossoverTimesO],slowingPos, '
poly2');%, 'Weights',weightVec);

coeffs = coeffvalues (fitQOb);

a = coeffs(1l);

b = coeffs(2);

c = coeffs (3);

xs = linspace (0, crossoverTimesO (end), 1000);

ys = axxs.”2 + bxxs + ¢c;

117

[fitOb2 gof2] = fit (crossoverTimes0,360x*
motorVelAtCross0, "poly2'); %, '"Weights',weightVec) ;

coeffs2 = coeffvalues (fitOb2);

a2 = coeffs2(1);

b2 = coeffs2(2);

c2 = coeffs2(3);

xs2 = linspace (0, crossoverTimesO (end),1000);

ys2 a2xxs2 .2 + b2%xs2 + c2;

b3 = 0.002;

c3 = —-log(c2)x*I;

Xs3 = Xs2;

ys3 = exp(—(b3*xs3 + ¢3)./1);
posFromVel = cumsum(motorVelAtCross0.x*

crossoverTimeDiff0) «360;

figure (1) ;

plot (xs2,ys2,'-.", '"LineWidth', 4);

hold on;

plot (crossoverTimes0, 360xmotorVelAtCrossO, '. ", '

MarkerSize',14);
plot (xs3,ys3,"':'", '"LineWidth', 4);

hold off;
ylabel ('"Motor Velocity (Degrees)');
xlabel ('Time (sec)');

title ('Motor Slow Down Over Time');
legend ('Best Fit Line', '"Raw Data', 'Damping', 'Location’,
'NorthEast');

figure (2);

plot (xs,ys, '—.", 'LineWidth', 4);

hold on;

plot ([0; crossoverTimesO],slowingPos,'.', '"MarkerSize'
,14);

% plot (crossoverTimesO, posFromVel) ;

hold off;

118

68 |ylabel ("Motor Position (Degrees)');

09 |xlabel ('Time (sec)');

70 |title ('Motor Slow Down Over Time');

71 |legend ('Best Fit Line', 'Raw Data', 'Location', 'SouthEast
")

119

A4 Torque Characteristics

A.4.1 Torque Measurement

d = dag.getDevices;

s = dag.createSession('ni');
Fs = 8000;

numberOfScans = Fs%*2;

maxIl = 3;

s.Rate = F's;

aOChannel0 = 'ao0'; $Pin 22
aOChannell = 'aol'; $Pin 21
aIO0Plus = 'ailb5"';
alOMin = 'ail3';

allPlus = 'ail2';
allMin = 'ailO';

aBoardOutput0 = 'ai6';
aBoardOutputl = 'ai8';
% aBoardOutputGND = 'ai8';

Channels Not Working 28,30,33,57,60,65, 68,
Channels Working 23,25,26,31,34,58,61,63,66,

)
°
)

°

addAnalogOutputChannel (s, 'Devl ', aOChannel0, 'voltage');

addAnalogOutputChannel (s, 'Devl',aOChannell, 'voltage');

chl5 = addAnalogInputChannel (s, 'Devl', aIOPlus, '
Voltage');

chl3 = addAnalogInputChannel (s, 'Devl', aIOMin, 'Voltage
")

chl2 addAnalogInputChannel (s, 'Devl', aIlPlus, '
Voltage');

chl0 addAnalogInputChannel (s, 'Devl', aIlMin, 'Voltage
")

I ~e

120

ch6 = addAnalogInputChannel (s, 'Devl', aBoardOutputO, '

Voltage');
% ch8 = addAnalogInputChannel (s, 'Devl', aBoardOutputGND
, 'Voltage');

ch8 = addAnalogInputChannel (s, 'Devl', aBoardOutputl, '
Voltage');

% legend ('AIO+', 'ATO-', '"AI1+','AI1l-"', 'ABoardO+"',"'
ABoardl+"');

chl5.TerminalConfig = 'SingleEnded’;
chl3.TerminalConfig 'SingleEnded’;
chl2.TerminalConfig 'SingleEnded’;
chl0.TerminalConfig 'SingleEnded’;
ch6.TerminalConfig = 'SingleEnded';

ch8.TerminalConfig = 'SingleEnded';

% ch9.TerminalConfig = 'SingleEnded';

prompt = ['Please input desired current in amps: '];
allData = [];
totTime = O;
totTimeVec = []
allDataTotTime

|| ~e

[1;

while (true)
desCurrent = input (prompt) ;

if (desCurrent == 0)
break;
end

if (desCurrent > maxI)
desCurrent = maxI;
disp(['Max current is ' num2str (maxI) ' amps.'])
7

end

if (desCurrent < -maxI)
desCurrent = —-maxI;

121

disp(['Max negative current is —-' num2str (maxI)

' amps.']);
end
phaselOut = desCurrentxones (numberOfScans, 1) ;
phase20ut = 0*ones (numberOfScans, 1) ;

queueOutputData (s, [phaselOut phase20ut]);

[captured_data,time] = s.startForeground();
beep () ;

totTimeVec = [totTimeVec; time+totTime];
allData = [allData; time,captured_data];
allDataTotTime = [allDataTotTime; time+totTime,

captured_data];

phaselVolt = allDataTotTime(:,2) - allDataTotTime
(:,3);

plot (totTimeVec, phaselVolt, totTimeVec,
allDataTotTime (:,6));

totTime = totTime + time (end);

end

queueOutputData (s, [0 0]);
s.startForeground () ;

A4.2 Torque Data Plotting

load ('torque_measurements.mat');

d = 13.3096; % cm
r = d/2/100; % m

¢

massKg = massMeasured/1000; % kg
g = 9.81; % m/s"2
weightTorque = massKgxgxr;

[£itObl,gofl] = fit (currentReql,weightTorque, 'polyl');

122

[£it0Ob2,gof2] = fit (currentReqg2,weightTorque, 'polyl');
coeffsl = coeffvalues (fitObl);
coeffs2 = coeffvalues (fitOb2);

coeffBoth(l) = (coeffsl(l) + coeffs2(1l))/2xsqgrt(2);
coeffBoth(2) = (coeffsl(2) + coeffs2(2))/2;

X1 (1) = min(currentReql);

X1 (2) = max(currentReql);

X2 (1) = min(currentReqg2);

X2 (2) = max (currentReqg2);

Y1l = coeffsl(l).xX1 + coeffsl(2);

Y2 = coeffs2(1l).xX2 + coeffs2(2);

figure (1) ;

plot (currentReqgl,weightTorque,'.', "MarkerSize', 24);
hold on;

plot (currentReg2,weightTorque, '.', "MarkerSize', 24);
plot (X1,Y1,':', 'LinewWidth',3.5);

plot (X2,Y2,"':"',"'LineWidth',3.5);

hold off;

xlabel ('Current (A)");

ylabel ('Torque (Nxm)');

title('Torque vs Current');

legend ('Phase 1 Data', 'Phase 2 Data', 'Phase 1 Fit Line'
, 'Phase 2 Fit Line', '"Location', "NorthWest');

123

A.5 Motor Current/Hall-Effect Sensor Interaction

A.5.1 Sensor Current Relation Data Collection

settleTime = 1;

runTime = 2;

sampleRate = 8000;

maxCurrent = 3;

aOChannel0 = 'ao0'; $Pin 22
aOChannell = 'aol'; %$Pin 21
aIOPlus = 'ailb';

aIOMin = 'ail3';

allPlus = 'ail2';

allMin = 'ailO';

aIHQ7 = 'ai9'; %$Pin
alHl2 = 'aill'; %$Pin
aIlHO02 = 'aild'; %$Pin

d = dag.getDevices;

s = dag.createSession('ni');
s.Rate = sampleRate;
s.DurationInSeconds = runTime;

addAnalogOutputChannel (s, 'Devl ', aOChannel0, 'voltage');
addAnalogOutputChannel (s, 'Devl ', aOChannell, 'voltage');
addAnalogInputChannel (s, 'Devl', aIOPlus, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIOMin, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIlPlus, 'Voltage');
addAnalogInputChannel (s, 'Devl', allMin, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIHO07, 'Voltage'); %Pin

26

addAnalogInputChannel (s, 'Devl', aIHl2, 'Voltage'); %Pin
58

addAnalogInputChannel (s, 'Devl', alIH02, 'Voltage'); %Pin
23

124

chl5.TerminalConfig = 'SingleEnded';
chl3.TerminalConfig 'SingleEnded’;

chl2.TerminalConfig = 'SingleEnded';
chl0.TerminalConfig = 'SingleEnded';
ch9.TerminalConfig = 'SingleEnded';
chll.TerminalConfig = 'SingleEnded';

'SingleEnded’;

chl4.TerminalConfig

tVecSettle = sampleRatexsettleTime;

tVec = sampleRatexrunTime;

totPhaseTime = settleTimex2 + runTimex2;

outSettle = [maxCurrent*ones (tVecSettle/2,1); zeros
tVecSettle/2,1)];

outLine = [linspace (0,maxCurrent,tVec/2), linspace
maxCurrent, 0,tVec/2)1"';;

outZeroSettle = zeros (tVecSettle,1);

outZero = zeros (tVec,1l);

% Phase 1

queueOutputData (s, [outSettle outZeroSettle]);

[settlePhaselPos, settleTimePhaselPos] = s.
startForeground;

queueOutputData (s, [outLine outZero]);
[phaselPos, timePhaselPos] = s.startForeground;

queueOutputData (s, [-outSettle outZeroSettle]);
[settlePhaselNeg, settleTimePhaselNeg] = s.

startForeground;

queueOutputData (s, [-outLine outZero]);

[phaselNeg, timePhaselNeg] = s.startForeground;

% Phase 2

queueOutputData (s, [outZeroSettle outSettle]);

[settlePhase?2Pos, settleTimePhase?2Pos] = s.
startForeground;

125

queueOutputData (s, [outZero outLine]);
[phase2Pos,timePhase2Pos] = s.startForeground;

queueOutputData (s, [outZeroSettle —-outSettle]);
[settlePhase2Neqg, settleTimePhase2Neg] = s.
startForeground;

queueOutputData (s, [outZero -outLine]);
[phase2Neg, timePhase2Neg] = s.startForeground;

e

% save ('sensor_current_relation.mat');

A.5.2 Sensor Current Relation Data Plotting

load ('sensor_current_relation.mat');
close all;

timeVec = [linspace (0,totPhaseTime, totPhaseTimex
sampleRate)]"';

phaseCurrents = [outSettle; outLine; -outSettle;
outLine];

halbachDatal = [settlePhaselPos; phaselPos;
settlePhaselNeg; phaselNeqg];

halbachData2 = [settlePhase2Pos; phase2Pos;

settlePhase2Neg; phase2Neqg];

tSettled = settleTimexsampleRate/2;

phaselPosRefValue = mean (settlePhaselPos (tSettled:end
r i)

phaselNegRefValue
ri))i

phase2PosRefValue
ri))i

phase2NegRefValue = mean (settlePhase2Neg (tSettled:end
ri))

mean (settlePhaselNeg (tSettled:end

mean (settlePhase?2Pos (tSettled:end

phaselPosMeanVec = ones(runTimexsampleRate, 1) *
phaselPosRefValue (5:7);

126

phaselNegMeanVec = ones (runTimexsampleRate, 1) *
phaselNegRefValue (5:7);

phase2PosMeanVec = ones (runTimexsampleRate, 1)
phase2PosRefValue (5:7);
phase2NegMeanVec = ones (runTimexsampleRate, 1) *

phaseZ2NegRefValue (5:7);

currentAfterSettle = [outLine; -outlLine];

phaselHalbachAdj = [phaselPos(:,5:7); phaselNeg(:,5:7)]

— [phaselPosMeanVec; phaselNegMeanVec];

phase2HalbachAdj = [phase2Pos(:,5:7); phase2Neg(:,5:7)]

— [phase2PosMeanVec; phaseZ2NegMeanVec];

[fitPhaselH07 gofP1lHO7] = fit (currentAfterSettle,
phaselHalbachAdj(:,1), 'polyl");
coeffsP1HO07(1,1:2) = coeffvalues (fitPhaselH07);
[fitPhaselH12 gofP1H12] = fit (currentAfterSettle,
phaselHalbachAdj(:,2), 'polyl'");
coeffsP1H12(1,1:2) = coeffvalues (fitPhaselH1l2);
[fitPhaselH02 gofP1HO02] = fit (currentAfterSettle,
phaselHalbachAdj(:,3), 'polyl'");
coeffsP1HO02(1,1:2) = coeffvalues (fitPhaselH02);

[fitPhase2H07 gofP2HO07] = fit (currentAfterSettle,
phase2HalbachAdj(:,1), 'polyl'");
coeffsP2H07(1,1:2) = coeffvalues (fitPhase2H07);
[fitPhase2H12 gofP2H12] = fit (currentAfterSettle,
phase?2HalbachAdj(:,2), 'polyl'");
coeffsP2H12(1,1:2) = coeffvalues (fitPhase2H12);
[fitPhase2H02 gofP2H02] = fit (currentAfterSettle,
phase2HalbachAdj(:,3), 'polyl'");
coeffsP2H02(1,1:2) = coeffvalues (fitPhase2H02);

fitVec = linspace (-maxCurrent,maxCurrent, 20);

P1HO7fitLine = fitVec*coeffsP1lHO07 (1) + coeffsP1HO7
P1H12fitlLine = fitVecxcoeffsP1lH12(1l) + coeffsP1H12
P1HO2fitLine = fitVecxcoeffsP1H02 (1) + coeffsP1lHO0O2
P2HO07fitLine = fitVec*coeffsP2H07 (1) + coeffsP2HO07

127

P2H12fitLine = fitVec*coeffsP2H12 (1) + coeffsP2H12(2);

P2HO02fitLine = fitVecxcoeffsP2H02 (1) + coeffsP2H02(2);
figure (1) ;

yyaxis left

plot (timeVec, phaseCurrents, '--");

ylabel ('Current (A)"');

hold on;

yyaxis right

plot (timeVec (1:4000:end),halbachDatal (1:4000:end, 5), 'x'
)

plot (timeVec (1:4000:end), halbachDatal (1:4000:end,6), '—"'
) ;

plot (timeVec (1:4000:end),halbachDatal (1:4000:end,7), '0o’
)

plot (timeVec, halbachDatal (:,5));

plot (timeVec, halbachDatal (:,6));

plot (timeVec, halbachDatal (:,7));

hold off;

xlabel ('"Time (s)');

ylabel ('Voltage (V) ");

legend ('Current', "HO7', "H12'", "HO2"') ;

title('Phase 1 Hall-Effect Calibration');

figure (2);

yyaxis left

plot (timeVec, phaseCurrents, '--");
ylabel ('Current (A)"');

hold on;

yyaxis right

plot (timeVec (1:4000:end),halbachData2(1:4000:end, 5), 'x'
)

plot (timeVec (1:4000:end), halbachData2(1:4000:end,6), '—"'
) ;

plot (timeVec (1:4000:end),halbachData2 (1:4000:end,7), 'o’
)

plot (timeVec, halbachData2 (:,5));

plot (timeVec, halbachData2 (:,6), '="');

128

plot (timeVec, halbachDataz2 (:,7), '="');

hold off;

xlabel ("Time (s)');

ylabel ('Voltage (V) '");

legend ('Current', "HO7"', "H12'", "HO2") ;
title ('Phase 2 Hall-Effect Calibration');

figure (3);

plot (currentAfterSettle, phaselHalbachAdj);
hold on;

hl = plot (fitVec,P1lHO7fitLine, '"=");

h2 = plot (fitVec,PlH12fitLine, 'o-");

h3 = plot (fitVec,P1lHO2fitLine, "x-");
hold off;
xlabel ('Current (s)");

ylabel ('"Voltage (V) ');
legend([hl,h2,h3], "HO7", 'H12", "HO2");
title ('Phase 1 Hall-Effect Calibration');

figure (4);

plot (currentAfterSettle, phase2HalbachAdj) ;
hold on;

hl = plot (fitVec,P2H07fitLine, '"=");

h2 = plot (fitVec,P2H12fitLine, '0-");

h3 = plot (fitVec,P2H02fitLine, "x-");

hold off;

xlabel ('Current (s)');

ylabel ('Voltage (V) "');
legend([hl,h2,h3], '"HO7"', "H12", "HO2");
title('Phase 2 Hall-Effect Calibration');

save ('sensorCurrentFit.mat', 'coeffsP1H12', 'coeffsP1HO2'
, 'coeffsP2HO07");

129

A.6 Motor Back-EMF Measurements
A.6.1 Back-EMF Measurement

runTime = 10;

sampleRate = 16000;

rem = 900;
desiredMaxCurrent = 3.5;
windowSize = 1;
emfCollectTime = 2;
movMeanWin = 100;

Ral = 0.6870;
Lal 116.1%10"-6;

Ra2 = 0.6937;
La2 = 121.6%10"-6;

ml = 0.9216;
m2 = 1.0001;

bl = 0;

b2 = 0;

aOChannel0 = 'ao0'; $Pin 22
aOChannell = 'aol'; $Pin 21
aIO0Plus = 'ailb5"';

alOMin = 'ail3';

allPlus = 'ail2';

allMin = 'ailO';

aIHO07 = 'ai9'; %$Pin
alHl2 = 'aill'; %Pin
aIHO02 = 'aild'; %$Pin
aBoardOutput0 = 'ai6';
aBoardOutputl = 'ai8"';

finalSigFreq = rpmx9/60;

130

finalSpdTime = round(2+ (1.2xlog(finalSigFreq/9) +
.8158),0);

steadyStateTime = runTime - finalSpdTime;

sigSpeedAccVector = linspace (0, finalSigFreq,
finalSpdTimexsampleRate) ';

sigSpeedVector = [sigSpeedAccVector; finalSigFreg*ones (
steadyStateTimexsampleRate, 1)];

finalSpdPoint = finalSpdTimexsampleRate;

phaselImpedance = sqgrt (Ral.”2 + (2xpixsigSpeedVectorx
Lal) ."2);

phase2Impedance = sqrt(Ra2.”2 + (2*pixsigSpeedVectorx
Laz2) ."2);

filename = [num2str (rpm) 'rpm' num2str (finalSpdTime)
"secAccel' num2str (runTime) 'secRun.xlsx'];

yo = [1;

vyl = [1;

taccel = linspace (0, finalSpdTime, sampleRatex
finalSpdTime) ';

tconst = linspace (finalSpdTime, runTime, sampleRatex (
runTime-finalSpdTime)) ';

yOaccel = chirp(taccel,0,finalSpdTime, finalSigFreq);
ylaccel = chirp(taccel,0,finalSpdTime, finalSigFreq, '
linear',90);

yFreq = [(finalSigFreqg-0)/finalSpdTime*taccel;
finalSigFregxones (length(tconst),1)];

yOChirpEnd = yOaccel (end);
y1ChirpEnd ylaccel (end) ;

if (yOChirpEnd == 1)
yOconst = cos (2xpixfinalSigFreqgx (tconst-—
finalSpdTime)) ;
elseif (yOChirpEnd == -1)

131

yOconst = —-cos (2xpixfinalSigFregx (tconst-
finalSpdTime)) ;
elseif (abs(y0ChirpEnd) < 0.01)
if (yOaccel (end-1) > y0ChirpEnd)
yOconst = —-sin(2xpixfinalSigFreqgx (tconst-
finalSpdTime)) ;
else
yOconst = sin(2+«pixfinalSigFregx* (tconst—
finalSpdTime)) ;
end
end

if (ylChirpEnd == 1)

ylconst = cos (2«pixfinalSigFreqgx (tconst-
finalSpdTime)) ;
elseif (ylChirpEnd == -1)
ylconst = —-cos (2xpixfinalSigFregx (tconst-

finalSpdTime)) ;
elseif (abs(ylChirpEnd) < 0.01)
if (ylaccel(end-1) > ylChirpEnd)
ylconst = —-sin(2xpixfinalSigFreqgx (tconst-
finalSpdTime)) ;

else
ylconst = sin(2*xpixfinalSigFreqgx (tconst-
finalSpdTime)) ;

end
end
y0 = [yOaccel; yOconst]';
yl = [ylaccel; ylconst]';
t = [taccel; tconst]';

% plot(t,y0,t,yl);

y0Desired = desiredMaxCurrentxy0;
ylDesired = desiredMaxCurrentxyl;

y0 = (desiredMaxCurrent*y0-bl)/ml;
vyl = (desiredMaxCurrent*yl-b2)/m2;

132

o\

plot ([t t],[y0 y11);

d = dag.getDevices;
= dag.createSession('ni');
s.Rate = sampleRate;

0

addAnalogOutputChannel (s, 'Devl',aOChannel0, 'voltage');
addAnalogOutputChannel (s, 'Devl ', aOChannell, 'voltage');

chl5 = addAnalogInputChannel (s, 'Devl', aIOPlus, '
Voltage');

chl3 = addAnalogInputChannel (s, 'Devl', aIOMin, 'Voltage

")
chl?2 = addAnalogInputChannel (s, 'Devl', aIlPlus, '
Voltage');

chl0 = addAnalogInputChannel (s, 'Devl', aIlMin, 'Voltage

")

ch6 = addAnalogInputChannel (s, 'Devl', aBoardOutputO,
Voltage');

ch8 = addAnalogInputChannel (s, 'Devl', aBoardOutputl,

Voltage');

% legend ('AIO+', 'ATO-','AI1+','AI1l-"', 'ABoardO+"',"'
ABoardl+");

chl5.TerminalConfig = 'SingleEnded’;

chl3.TerminalConfig
chl2.TerminalConfig
chl0.TerminalConfig

'SingleEnded’;
'SingleEnded’;
'SingleEnded’;

ch6.TerminalConfig = 'SingleEnded';
ch8.TerminalConfig = 'SingleEnded';
output_datal = [y0'];
output_datal = [y1'];

queueOutputData (s, [output_datal output_datall]);
plot ([output_datalO output_datall]);
title ('Output Data Queued');

o)
°
o)

°

133

v

[captured_data,time] = s.startForeground();

beep () ;

emfCollect = emfCollectTime*xsampleRate;
queueOutputData (s, [zeros (emfCollect,1l) zeros(emfCollect

+1)1)3

[emfAfterData,timeAfter] = s.startForeground() ;
sig = [1;

sig(:,1) = captured_data(:,1)-captured_data(:,2);
sig(:,2) = captured_data(:,3)-captured_data(:,4);

currentl sig(:,1) ./phaselImpedance;

current?2 = sig(:,2)./phase2Impedance;

b = (1/windowSize) xones (1l,windowSize) ;

a = 1;

siglf = filter(b,a,sig(:,1));

siglf = [siglf((windowSize+1)/2:end); =zeros((windowSize
-1)/2,1)1;

sig2f = filter(b,a,sig(:,2));

sig2f = [sig2f ((windowSize+l)/2:end); zeros((windowSize
-1)/2,1)1;

emfAfterl = emfAfterData(:,1) - emfAfterDatal(:,2);

emfAfter2 = emfAfterData(:,3) - emfAfterData(:,4);

SSData = captured_data (finalSpdPoint-1:end, :);
SSTime time (finalSpdPoint-1:end);

save ('backEMF .mat ') ;

A.6.2 Back-EMF Data Plotting

close all;
load ('backEMF .mat ") ;

n = length(time);
tVec = time;

134

Vsl = sig(:,1);
Vs2 = sig(:,2);
Ral = 0.6870;

Lal = 116.1+x10"-6;

Ra2 = 0.6937;

La2 = 121.6%x10"-6;

currentl = yODesired';

diffCcl = [0; diff(currentl)./diff (time)];
current?2 = ylDesired';

diffC2 = [0; diff (current2)./diff (time)];

epsl = Vsl - currentlxRal - LalxdiffCl;
eps?2 Vs2 — current2xRa2 - La2xdiffC2;

%$%%% Phase 1 Back EMF Sectional Voltages
siglSign = sign (yODesired) ';
siglSignDiff = [0; diff(siglSign)];

crossoverIndicesl = find(siglSignDiff);

crossoverHalfl = crossoverIndicesl (2:2:1ength (
crossoverIndicesl));

maxVl = [];

maxVvVlInd = [];

maxEpsl = [];

maxkEpslInd = [];

firstInd = 1;

for 1 = 1l:1length(crossoverHalfl)
secondInd = crossoverHalfl (i);
[maxV1 (i, 1) maxV1lInd(i,1l)] = max(Vsl (firstInd:

secondInd)) ;

[maxEpsl(i,1l) maxEpslInd(i,1l)] = max(epsl (firstInd:

secondInd)) ;
maxVlInd(i,1l) = maxVlInd(i,1l) + firstInd - 1;
maxEpslInd(i,1l) = maxEpslInd(i,1l) + firstInd -

135

1;

firstInd = secondInd+l1;
end

maxEpsl = maxEpsl (2:end);
maxEpslInd = maxEpslInd(2:end);

epslSpeeds = sigSpeedVector (maxEpslInd) «60./9;
[fitObl gofl] = fit (epslSpeeds,maxEpsl, 'polyl');
coeffsl = coeffvalues (£fitObl) ;

al = coeffsl(1l);

bl = coeffsl(2);

xsl = [epslSpeeds(l);epslSpeeds(end)];

ysl alxxsl+bl;

%$%%% Phase 2 Back EMF Sectional Voltages
sig2Sign = sign(ylDesired)';

sig2SignDiff = [0; diff(sig2Sign)];

crossoverIndices2 = find(sig2SignDiff);

crossoverHalf2 = crossoverIndices2 (2:2:1length(
crossoverIndices?2));

maxvz = [];

maxvz2Ind = [];

maxkEps2 = [];

maxEps2Ind = [];

firstInd = 1;
for i = l:length(crossoverHalf2)
secondInd = crossoverHalf2 (i);
[maxV2 (i, 1) maxvV2Ind(i,1l)] = max(Vs2(firstInd:
secondInd)) ;

[maxEps2(i,1l) maxEps2Ind(i,1l)] = max(eps2(firstlInd:
secondInd)) ;
maxv2Ind(i,1l) = maxV2Ind(i,1l) + firstInd - 1;

maxEps2Ind (i, 1) = maxEps2Ind(i,l) + firstInd - 1;
firstInd = secondInd+l;
end

maxEps2 = maxEps2 (2:end);

136

maxEps2Ind maxEps2Ind(2:end);

eps2Speeds = sigSpeedVector (maxEps2Ind)+x60./9;
[fitOb2 gof2] = fit (eps2Speeds,maxEps2, 'polyl');
coeffs?2 = coeffvalues (£fitOb2);

a2z = coeffs2(1l);

b2 = coeffs2(2);

xXs2 = [eps2Speeds (1) ;eps2Speeds (end)];

yS2 = aZ2xxs2+b2;

figure (1) ;
plot (tVec,Vsl, tVec,epsl, "x"');
xlabel ('Time (sec)');

ylabel ('Voltage (Volts) ');

title('Phase 1 Back-EMF Voltage');

legend ('Phase Voltage', '"Phase Back-EMF', 'Location','
Southwest');

figure (2);
plot (tVec,Vs2, tVec, eps2);
xlabel ('Time (sec)');

ylabel ('Voltage (Volts)'");

title('Phase 2 Back-EMF Voltage');

legend ('Phase Voltage', 'Phase Back-EMF', '"Location','
Southwest') ;

figure (3);

plot (timeAfter,emfAfterl, '--',timeAfter,emfAfter2, '-.")
xlabel ('Time After No Input (sec)');

ylabel ('Voltage (Volts)');

title(['Back-EMF After ' num2str(rpm) ' RPM']);

legend ('Phase 1 Back-EMF', 'Phase 2 Back-EMF');

figure (4);

hold on;

plot (epslSpeeds, maxEpsl, '.',eps2Speeds, maxEps2, '*', "'
MarkerSize',4);

137

110
111
112
113
114
115

plot (xsl,ysl,':',xs2,ys2,'—-.", "'Linewidth', 3)

hold off;

xlabel ('Motor Speed (RPM) '");

ylabel ('Voltage (Volts) ');

title (['Back-EMF vs RPM']);

legend ('Phase 1 Back-EMF Peaks', 'Phase 2 Back-EMF Peaks
', "Phase 1 Curve Fit', '"Phase 2 Curve Fit', 'Location'
, 'NorthWest');

138

A.7 Motor Speed Control

runTime = 2;

sampleRate = 32000;

repm = 60;

desiredMaxVolt = 3;

windowSize = 1;

aOChannel0 = 'ao0'; $Pin 22
aOChannell = 'aol'; $Pin 21
aIOPlus = 'ailb5"';

alOMin = 'ail3';

allPlus = 'ail2';

allMin = 'ailO';

alHO7 = 'ai9'; $Pin
alHl2 = 'aill'; %Pin
alH02 = 'aild'; $Pin

finalSigFreq = round (rpmx9/60);

finalSpdTime = round((l.2xlog(finalSigFreq/6) + .8158)
,0);

filename = [num2str (rpm) 'rpm' num2str (finalSpdTime)

"secAccel' num2str (runTime) 'secRun.xlsx'];

yo = [1;

vyl = [1;

taccel = linspace (0, finalSpdTime, sampleRatex
finalSpdTime) ';

tconst = linspace (finalSpdTime, runTime, sampleRatex (
runTime-finalSpdTime)) ';

yOaccel = chirp(taccel,0,finalSpdTime, finalSigFreq);
ylaccel = chirp(taccel, 0, finalSpdTime, finalSigFreq, '
linear',90);

139

yFreq = [(finalSigFreg-0)/finalSpdTime*taccel;
finalSigFregxones (length (tconst),1)];

y0ChirpEnd = yOaccel (end) ;
y1ChirpEnd ylaccel (end) ;

if (yOChirpEnd == 1)

yOconst = cos (2xpixfinalSigFreqgx* (tconst—
finalSpdTime)) ;
elseif (yOChirpEnd == -1)
yOconst = —-cos (2xpixfinalSigFregx (tconst-

finalSpdTime)) ;
elseif (abs(yOChirpEnd) < 0.01)
if (yOaccel (end-1) > yO0ChirpEnd)
yOconst = —-sin(2xpixfinalSigFreqgx (tconst-
finalSpdTime)) ;
else
yOconst = sin(2+xpixfinalSigFregx* (tconst—
finalSpdTime)) ;
end
end

if (ylChirpEnd == 1)

ylconst = cos (2xpixfinalSigFreqgx* (tconst-
finalSpdTime)) ;
elseif (ylChirpEnd == -1)
ylconst = —-cos (2xpixfinalSigFregx (tconst-

finalSpdTime)) ;
elseif (abs(ylChirpEnd) < 0.01)
if (ylaccel(end-1) > ylChirpEnd)
ylconst = —-sin(2xpixfinalSigFreqgx (tconst-
finalSpdTime)) ;
else
ylconst = sin(2+xpixfinalSigFregx* (tconst—
finalSpdTime));
end
end

140

y0 = [yOaccel; yOconst]';
[ylaccel; ylconst]';
t = [taccel; tconst]';

~
'_\
Il

plot(t,y0,t,y1l);

y0ODesired = desiredMaxVoltxyO0;

ylDesired = desiredMaxVoltx*yl;
y0 = (desiredMaxVolt*y0-bl)/ml;
yl = (desiredMaxVolt*yl-b2)/m2;

o\°

plot ([t t],[y0 y11);

d = dag.getDevices;
s = dag.createSession('ni'");
s.Rate = sampleRate;

addAnalogOutputChannel (s, 'Devl', aOChannelQ, 'voltage');
addAnalogOutputChannel (s, 'Devl ', aOChannell, 'voltage');
addAnalogInputChannel (s, 'Devl', aIOPlus, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIOMin, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIlPlus, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIlMin, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIHQ07, 'Voltage'); %Pin

26

addAnalogInputChannel (s, 'Devl', aIHl2, 'Voltage'); %Pin
58

addAnalogInputChannel (s, 'Devl', aIH02, 'Voltage'); %Pin
23

% output_datal0 = 3xsin(linspace (0, 2xpixrunTimex*
finalSigFreq, sampleRatexrunTime) ") ;

% output_datal = 3xcos(linspace (0, 2*pi*runTimex
finalSigFreq, sampleRatexrunTime) ') ;

% output_data = linspace (3,3, sampleRatextime) ';

output_datal0 = [y0'];

output_datal = [y1'];

141

o)

% Last zero value is so channels are turned off

gqueueOutputData (s, [output_datal output_datall);
plot ([output_datal output_datall]);
title ('Output Data Queued');

o)
©°
o)

°

[captured_data,time] = s.startForeground();

queueOutputData(s, [0 0]);

[dontCare,dontcare] = s.startForeground();

sig = [1;

sig(:,1) = captured_data(:,1)-captured_data(:,2);

sig(:,2) = captured_data(:,3)-captured_data(:,4);

b = (1/windowSize) *xones (1,windowSize) ;

a=1;

siglf = filter(b,a,sig(:,1));

siglf = [siglf((windowSize+1l)/2:end); =zeros ((windowSize
-1)/2,1)1;

sig2f = filter(b,a,sig(:,2));

sig2f = [sig2f((windowSize+1l)/2:end); zeros((windowSize
-1)/2,1)1;

% export_data = [yODesired' ylDesired' sig(:,1) sig

(:,2) siglf sig2f];

% plot (export_data);

leg = {'Desired 0', 'Desired 1','Sig 0','Sig 1',"
Filtered 0', 'Filtered 1'};

% legend(leq);

% title(['Accel to ' numZ2str(rpm) ' RPM in ' numZstr(
finalSpdTime) ' sec']);

infoLeg = {'Sample Rate', 'Desired Volt', 'Run Time', 'RPM
', '"FinalSigFreq', 'Accel Time'};

runInfo = {sampleRate,desiredMaxVolt,runTime, rpm,
finalSigFreq, taccel};

exportleg = {'Time', 'AIO+','AIO-','AIl+','AI1l-",'HO7"',"
H12','H2', 'Output 0', 'Output 1'};

142

export_data = [time,captured_data(:,1),captured_data
(:,2),captured_data(:,3),captured_data(:,4) ...
captured_data(:,5),captured_data(:, 6),captured_data
(:,7),output_data0l, output_datall;

testResult = {infoleg;runInfo;exportlLeg;export_data};
save ('testResultsd4d.mat', 'testResult');
xlswrite (filename, infoleg, 1, "A1");

(filename, runInfo, 1, "A2");
xlswrite(filename, leg, 1, 'A3");
x1lswrite (filename, export_data,l, 'A4");

xlswrite

o® o® o o°

143

A.8 Data Processing
A.8.1 Initial Data Processing

close all
clear;
c = 0;

% Load data and pull out saved properties and data
load('six_hundred_RPM.mat');
load('sensorCurrentFit.mat"');

testResult{2,end}{end} = testResult{2,end}{end} (end);
propslLeg = testResult{l, :};

props = cellZmat (testResult{2, :});

dataleg = testResult{3, :};

data = testResult {4, :};

$Compensate Hall-effects for phase currents

data(:,6) = data(:,06) — coeffsP2HO07 (1) .+data(:,10);
data(:,7) = data(:,7) - coeffsP1lH12 (1) .*data(:,9);
data(:,8) = data(:,8) - coeffsPlHO02(1l).xdata(:,9);

%$Assign properties and basic vectors

sr = props(l); % samping rate

accelTime = props(6); %time it takes motor to
accelerate

¢

wSS = props(4)/60; % motor steady-state speed % Hz

timeWs = 1/wSS; % samping time % sec

totalPoints = length (data);

accelPoints = accelTimexsr; % number of data points
before SS

ssPoints = totalPoints - accelPoints;

% sigFreq = [ws*9%ones(l,ssPoints+1l)]'; % Hz

sigFreq = [linspace(0,wSS*9,accelPoints) wSS*9xones (1,
ssPoints)]'; % signal speed (assumed linear
acceleration) % Hz

sigFreqRot = sigFreq/sr; % Rotations per sample

[

sigFregPos = 2xpixmod(cumsum(sigFreqRot),9); % signal

Q.

position % radians

o\

144

rotorPos = sigFreqgPos/9; % radians

SSDataTime = 2xaccelTimexsr; % when to start analyzing
data

lagFactor = 0; % Lag factor for time variability
compensation

rotorPosAccel = rotorPos(l:SSDataTime) - sigFregRot (1:
SSDataTime) rlagFactor;

rotorPosAccel = rotorPosAccel - min(rotorPosAccel);

dataAccel = data(l:SSDhataTime, :);

% dataSS = data(SSDataTime+l:SSDataTime+pointsPerRot
*50, :);

dataSS = data(SSDataTime+l:end, :);

% Start at steady-state time

t = dataSS(:,1);

startUsefulTime = t (1);

pos = 2*pi/timeWs*mod (t, timeWs) ;

rots = (t(end)-t(l))*~wSS;

pointsPerRot = sr/wSS;

% Differential output voltage calculation
output0 = dataSS(:,2) - dataSS(:,3);
outputl = dataSS(:,4) - dataSS(:,5);

plot (t,outputO,t,outputl,t,datasSsS(:,6));

figure (1) ;

plot (pos,dataSs(:,6),'.",pos,datasSsS(:,7),"'."',pos,datasSs
(:,8),"'.", "MarkerSize', 3);

hold on;

hl = plot (pos(1:100:end/round(rots)),dataSS(1:100:end/
round(rots),6), '"");

h2 = plot (pos(1:100:end/round(rots)),dataSS(1:100:end/
round (rots),7), 'x");

h3 = plot (pos(1:100:end/round(rots)),dataSS(1:100:end/
round(rots),8),'o");

hold off;

legend ([hl,h2,h3],dataleg(6:8))

145

title('Hall Effect Sensors During Steady State
Operation');

xlabel ("Position (rad)');

ylabel ('Voltage (V) '");

figure (2);
plot (pos, outputO, '.',pos,outputl, '.',pos,datasSs(:,9),".
',pos,datass(:,10),"'.");

legend (['AIO'", "AI1l',dataleg(9:10)])
title('Voltage During SS');

xlabel ('Position');

ylabel ('Voltage');

figure (3);
plot (rotorPos,data(:,6),'."',rotorPos,data(:,7),"'.",
rotorPos,data(:,8),"'.");

legend (dataleg (6:8))

title('Entire Run Hall Effect Sensor Data');
xlabel ('Position');

ylabel ('Voltage');

figure (4);

% plot (rotorPos (l:SSDataTime-1),dataAccel(:,6),"'.");

plot (rotorPosAccel,dataAccel (:,6),"'."',rotorPosAccel,
dataAccel (:,7),"'."'",rotorPosAccel,dataAccel (:,8),".")

14

title(['Accelerating Portion Hall Effect Data with Lag
Offset ¢ = ' num2str (lagFactor)]);

xlabel ("Position');

ylabel ('Voltage');

Data correlation properties

h7range = max (dataSS(:,6)) - min(dataSS(:,6));

h7slope = h7range/ (360/9); % volts/deg

h7mat = reshape(dataSS(:,7),pointsPerRot, []); % volts
h7max = max (h7mat, [],2);

min (h7mat, [1,2);

h7diff = h7max-h7min;

o o° oP°

o® o o°
oy
~J
3
i
o]
I

146

h7LeastPrecision = max(h7diff)/h7slope; % deg
h7sdPrecision = max (h7sd)/h7slope % deg
h7normPrecision = norm(h7diff)/length (h7diff) % deg

o°® o° o

A.8.2 Data Time Compensation

close all
%% Show Phase Shift

h7sd = std(h7mat, 0, 2);

h7sdAverage = mean (h7sd);

numPlots = size (h7mat, 2);
motor over data

deg
number of rotations of

o
°
o)

°

figure (1) ;
posInRot = (l:pointsPerRot)/pointsPerRot*2*pi;

plot (posInRot, h7mat) ;

xlabel ('"Position (rad)');

ylabel ('Hall-Effect Sensor (Volt)');

title(['Hall Effect Voltage Over ' num2str (numPlots) '

Rotations']);

figure (2);

plot (posInRot, h7mat) ;

title (['Matlab Chosen Colors Over ' num2str (numPlots) '
Rotations']);

xlabel ('Position (rad)');

ylabel ('"Hall-Effect Sensor (Volt)');
x1im([0.1 0.267);
ylim([3.5 3.971);

figure (3);
hold on
for i = l:numPlots
rat = (i-1)/numPlots;

plot (posInRot,h7mat (:,1), 'Color', [rat/2 rat rat]);
end
hold off
xlabel ('Position (rad)');

147

31 |ylabel ("Hall-Effect Sensor (Volt)');
32 |title(['Hall Effect Voltage Over ' num2str (numPlots) '

Rotations']);

33

34 | figure (4);

35 |hold on

36 |numPlots = size (h7mat,2);

37 |for 1 = l:numPlots

38 rat = (i-1)/numPlots;

39 plot (posInRot,h7mat (:,1), 'Color', [rat/2 rat rat]);

40 |end

41 |hold off

47 |xlabel ('Position (rad)');

43 |ylabel ('Hall-Effect Sensor (Volt)');

44 1title(['Black to Blue Transition Over ' num2str (
numPlots) ' Rotations']);

45 |x1im([0.1 0.261);

46 im([3.5 3.91);

figure (5);
hold on
numPlots = size (h7mat, 2);
for i = l:numPlots
plot3 (posInRot,h7/mat (:,1i),i%ones (3200,1), 'Color
', [0 0 (i-1)/numPlots]);

N
o0
o° o 0P o o° o kG
'_l

53 1% end

54 1% hold off

55 1% xlabel ('Position (rad)');

56 |% ylabel ('Hall-Effect Sensor (Volt');

57 1% zlabel ('Rotation Iteration');

58 |% title(['Black to Blue Transition Over ' num2str (
numPlots) ' Rotations']);

59

o°

60 |%% Phase Shift Compensator

61 |$ Time Based Interpolation Compensator
62
65 |timeVector = data(:,1);
64 |inputSig0 = data(:,9);

148

inputSign0 = sign (inputSig0);

inputSignODiff = [0; diff (inputSign0)];

crossoverIndices0 = find(inputSignODiff);

crossoverIndicesDiff0 = diff([1l; crossoverIndices0]);

crossoverTimes0 = timeVector (crossoverIndicesO);

crossoverTimeDiff0 = diff (crossoverTimes0); % sec (
difference)

crossoverVelO = [0; 1./crossoverTimeDiff0]./2;

motorVelAtCross0 = crossoverVel0./9; % Hz

o\

Hz

motorVelO = zeros(length(data),l);

motorPos0 = zeros (length(data),1);
crossoverIndicesPluslInd = [1l; crossoverIndicesO];
indx = 0;

for i=l:length (motorVelAtCross0)-1;
els = crossoverIndicesDiff0(i)+1;
elsVec = linspace(0,1,els);
velSlope = (motorVelAtCrossO(i+l) -
motorVelAtCrossO(i));
vels = velSlopexelsVec + motorVelAtCrossO0 (i) ;
indl = crossoverIndicesPluslInd(i);
ind?2 crossoverIndicesPluslInd(i+1);

motorVelO (indl:ind2,1) = vels;

motorPos0 (indl:ind2,1) = linspace(0,pi,els) + pix
indx;

indx = indx + 1;

if (indx == 18)
indx = 0;

end

end

motorVelO (ind2:end, 1) = motorVelAtCrossO (end);

motorPos0 (ind2:crossoverIndices0 (end),1l) = linspace (0,
pi,crossoverIndicesDiff0 (end)+1) + pixindx;

remPoints = length(data) - crossoverIndicesO (end);

149

indx = indx + 1;

if (indx == 18)
indx = 0;
end
motorPos0 (crossoverIndicesO (end) :end) = linspace(0,pix

remPoints/crossoverIndicesDiff0 (end), remPoints+1) +
pixindx;
posSS = motorPosO (SSDataTime+l:end, :);

figure (6);

keepRunning = 1;

hold on;

tempPosSS = posSS./ (9);
tempDataSS = datasSS(:,7);
numPlotsCount = 0;

while (keepRunning)
indl = find(tempPosSS == 0,2, 'first');
if (length(indl)<2)
break;
end
if (numPlotsCount == 0)
if (ind1(1) ~= 0)
indl = indl1(1)-1;

else
indl = indl (2)-1;
end
else
indl = indl(2)-1;
end
rat = (numPlotsCount)/numPlots;

plot (tempPosSS(l:indl), tempDataSS(l:indl), "Color'
[0 0 rat]);
numPlotsCount = numPlotsCount + 1;
tempPosSS = tempPosSS (indl+l:end);
tempDataSS = tempDataSS(indl+l:end);
end

150

%$ x1im([1.57 1.75]);

% ylim([4.5 4.9]);

plot (posSS./9,dataSsS(:,7),'.", "Color', [0.929 0.694
0.125]); % Same data from while loop but without
color gradient

xlabel ('Position (rad)');

ylabel ('Hall-Effect Sensor (Volt');

title(['Hall Effect Voltage Over ' num2str (numPlots) '
Rotations - Time Interpolation Compensation']);

hold off

%%% Verification of Time Interpolation Compensation
posDiff = 2xpix[0; diff (timeVector)].xmotorVell;
posCumSum = cumsum (posDiff);

posModSS = posCumSum(SSDataTime+1l:end);

posModSSAd] = posModSS - posModSS(1);

indl = 1;
numPlotsCount = 0;
posModInd = [];
figure (7);
hold on
for i = l:numPlots
ind2 = find(posModSSAdj > 2xpixi,1l) - 1;

if (isempty (ind2))
ind2 = length (posModSSAd]) ;

end
rat = (numPlotsCount)/numPlots;
numPlotsCount = numPlotsCount + 1;

posModInd (i, :) = [indl, ind2];

plot (mod (posModSSAd] (indl:ind2),2xpi) ,datasSS (indl:
ind2,7), '"Color', [rat/2 rat rat]);

indl = ind2 + 1;

end

posCtrlTestData = posModSSAd]j (posModInd(end, 1) :
posModInd(end, 2));

151

datCtrlTestData = dataSS (posModInd(end, l) :posModInd (end
$2), 06 7 81);

save ('ctrlTestData.mat', 'posCtrlTestData', '
datCtrlTestData');

xlabel ('Position (rad)');

ylabel ('"Hall-Effect Sensor (Volt)');

title(['Hall Effect Voltage Over ' num2str (numPlots) '
Rotations - Time Interpolation Compensation']);

% plot (mod (posModSSAdj, 2xpi),datasSS(:,7),"'.");

x1im([0.1 0.26]);

ylim([3.5 3.9]1);

hold off

adjustedPosition = mod (posModSSAdij, 2xpi);

%$%%%% Linear Phase Shift Compensator

figure (8);

phaseShiftA = (1.325-1.335)/numPlots; % Based on phase
shift width

hold on

for i = l:numPlots

plot (posInRot—-(i-1) *phaseShiftA,h7mat (:,i), 'Color'
, [0 0 (i-1)/numPlots]);
end
hold off
xlabel ('Position (rad)');
yvlabel ('"Hall-Effect Sensor (Volt');
title(['Hall Effect Voltage Over ' num2str (numPlots) '
Rotations - Time Shift Compensation']);
% x1lim([1.4 1.58171);
% ylim([4.5 4.9]);

A.8.3 Data Segment Linearization

close all
maxV = 0.75;
maxX = 0.05;

152

%% Linear Regions

dataSS = data(SSDataTime+l:end, :);
posInRotRep = adjustedPosition;

meanDataSS = mean (dataSS(:,7));
dataSSAdj = dataSS(:,7) — meanDataSS5;

%$Remove first (incomplete) linear region
indDel = find(abs(dataSSAdj) - maxV > 0,1)+1;
dataSSAd] = dataSSAdj(indDel (1) :end);
posInRotRep = posInRotRep (l:end-indDel (1)+1);

$Remove data outside linear sections based on maxV

indDel = find(abs(dataSSAdj) - maxV > 0);
dataSSAdj (indDel) = [];
posInRotRep (indDel) = [];

figure (1) ;

plot (posInRotRep,dataSSAd], '.");

xlabel ('Position (rad)');

ylabel ('Centered Hall-Effect Sensor (Volt)');
title(['Linear Regions of Data'l);

gapIndices = find(diff (posInRotRep) - maxX > 0);

endIndices = find(diff (posInRotRep) < 0);

dataSSAdj = dataSSAdj + meanDataSS;
dataSsSMat = {};

posRotMat {};

lineSegs = 18;

lastInd = 1;

segCount = 1;

% Create dataSSMat & posRotMat with size (i, j, k) where
length (i) 1is number

% of data points per jth linear region of kth rotation

for i = l:endIndices+1

153

for j = 1l:1lineSegs-1

if (segCount <= length(gapIndices))
thisInd = gapIndices (segCount);

else
thisInd = length (dataSSAdj) ;

end

segCount = segCount + 1;

dat = dataSSAdj(lastInd:thisInd);

lenDat = length(dat);

dataSSMat (1:1enDat, j,1) = num2cell (dat);

posRotMat (1:1enbat, j, 1) num2cell (posInRotRep (

lastInd:thisInd));

lastInd = thisInd + 1;

if (segCount > length (gapIndices))
break;

end

end

if (segCount > length (gapIndices))
dat = dataSSAdj(gapIndices (end)+1l:end);
lenDat = length(dat);

dataSSMat (1:1enDat, j+1,1) = num2cell (dat);
posRotMat (1:1lenDat, j+1,1i) = num2cell (

posInRotRep (gapIndices (end)+l:end));
break;

end

if (1 <= length(endIndices))

thisInd = endIndices (i) ;
else

thisInd = length (dataSSAdj);
end

dat = dataSSAdj(lastInd:thisInd);

lenDat = length(dat);

dataSSMat (1:1lenDat, lineSegs, i) = num2cell (dat);

posRotMat (1:1lenDat, lineSegs, i) = numZcell (
posInRotRep (lastInd:thisInd));

154

lastInd = thisInd + 1;
end
avgDif = [];
for i = 1l:1ineSegs
firstXs = cellZmat (squeeze (posRotMat (:,1,1)));
lastXs = cell2mat (squeeze (posRotMat (:,1i,numPlots)))
’
avgDif (i) = mean(firstXs) - mean(lastXs);
end
linShiftAlpha = 0;%mean (avgDif);
minVecVec = [];
sds = []1;
ps = [,
posMin = {};
datMin = {};
rsquare = [];
% gof = {};
for i = 1l:1ineSegs
dat = squeeze(dataSSMat (:,1i,:));
pos = squeeze (posRotMat (:,1,:));
inter = cellfun('size', dat, 1);
vectorSizes = sum(inter);
minVec = min (vectorSizes);

minVecVec (i) =

minVec;

dat = cell2mat (dat (1:minVec,

pos = cellZmat (pos (l:minVec,

addMat =
minVec, 1) ;

posShift = pos + addMat;

posMin (1l:minVec, i, 1)

datMin(l:minVec,i, :) =

155

2)) i
2))
repmat (linspace (0, 1linShiftAlpha, numPlots),

= num2cell (posShift);
num2cell (dat) ;

o® o o°

o® o o°

[p,S] = polyfit (posShift,dat,1);
rval = corr2 (posShift,dat);
rsquare (i, 1) = rval.”"2;
tempPos = reshape (posShift, [],1);
tempDat = reshape(dat, []1,1);
[fitobject gof(i)] = fit (tempPos,tempDat, 'polyl');

ps(i,1:2) = coeffvalues(fitobject);
ps(i,1:2) = p;
[y, sDelta] = polyval (p,posShift,S);
sds (i, :) = mean (sDhelta);

end

figure (2);

hold on;
for 1 = 1:1ineSegs
for j = l:numPlots
xs = cellZmat (posMin(:,1, 3));
ys = cell2mat (datMin(:,1, 3));
if (1 == lineSegs && Jj == numPlots)
plottedl = plot (xs,ys, 'Color', [0 0 (j-1)/
numPlots]);
else
plot (xs,ys, 'Color', [0 O (j-1)/numPlots]);
end
end
end
for i = 1l:1ineSegs
x1l = (-maxV + meanDataSS - ps(i,2))/ps(i,1);
x2 = (maxV + meanDataSS - ps(i,2))/ps(i,1);

plotted2 = plot ([x1,x2], [-maxV,maxV]+meanDataSS, ':r
', 'LineWidth',1.5);

end
hold off;
xlabel ('Position (rad)');

ylabel ('Hall-Effect Sensor (Volt');
title(['Hall Effect Voltage Over ' numZstr (numPlots) '

Rotations — Linearized Region Time Shift

156

Compensation']);
legend ([plottedl plotted2], 'Time Adjusted Plot','
Linearized Model')

A.8.4 All Data Channels Compensation and Linearization

close all

%% Show Phase Shift
maxVe = 1.5;

maxV7 = 0.75;

maxVva 0.50;

maxX = 0.05;
h7sd = std(h7mat, 0, 2);

h7sdAverage = mean (h7sd); deg

o
°
o

°

numPlots = size (h7mat, 2); number of rotations of
motor over data
hallEffectVectors = [6 7 8]; % Hall Effect 7, 12, 2

%% Phase Shift Compensator
% Time Based Interpolation Compensator

timeVector = data(:,1);
inputSig0 = data(:,9);
inputSign0 = sign (inputSig0);

inputSignODiff = [0; diff (inputSign0)1];

crossoverIndicesO0 = find(inputSign0ODiff);

crossoverIndicesDiff0 = diff([1l; crossoverIndicesO0]);

crossoverTimes0 = timeVector (crossoverIndicesO);

crossoverTimeDiff0 = diff (crossoverTimes0); % sec (
difference)

crossoverVelO = [0; 1./crossoverTimeDiff0]./2; % Hz

motorVelAtCross0 = crossoverVel0./9; % Hz

motorVelO = zeros (length(data),1l);

motorPos0 = zeros(length(data),l);

crossoverIndicesPluslInd = [1l; crossoverIndicesO];

indx = 0;

157

for i=l:length (motorVelAtCross0)-1;

els = crossoverIndicesDiff0(i)+1;
elsVec = linspace(0,1,els);
velSlope = (motorVelAtCrossO (i+l) -

motorVelAtCrossO(i));
vels = velSlopexelsVec + motorVelAtCrossO (i) ;
indl = crossoverIndicesPluslInd(i);
ind?2 crossoverIndicesPluslInd(i+1);

motorVelO (indl:ind2,1) = vels;

motorPosO (indl:ind2, 1) linspace (0,pi,els) + pix
indx;

indx = indx + 1;

if (indx == 18)
indx = 0;

end

end

motorVelO (ind2:end, 1) = motorVelAtCrossO (end) ;

motorPos0 (ind2:crossoverIndicesO(end),1l) = linspace (0,
pi,crossoverIndicesDiff0 (end)+1) + pixindx;

remPoints = length(data) - crossoverIndicesO (end);

indx = indx + 1;
if (indx == 18)
indx = 0;

end

o\

% Motor Speed Influence on Hall Sensors
figure (8);

% hold onj;

% for i = 1:18

% vecPlot = 1i:18:length(crossoverIndicesO);
% crossImp = motorVelAtCrossO (vecPlot);

% dataImp = hallCrossover (vecPlot);

% plot (crossImp,datalmp) ;

% end

% hold off;

158

title('Motor Speed vs Hall-Effect Sensor');
xlabel ("Motor Speed (RPS)');
ylabel ('Hall-Effect Voltage (V)'");

o® o o°

%%% Verification of Time Interpolation Compensation
posDiff = 2xpix[0; diff (timeVector)].xmotorVell;
posCumSum = cumsum(posDiff);

posModSS = posCumSum(SSDataTime+1:end) ;

posModSSAd]j = posModSS - posModSS(1);

indl = 1;

posModInd = [];

adjustedPosition = mod (posModSSAdij, 2xpi);

%% Linear Regions
posInRotRep = adjustedPosition;

meanDataSS = mean (dataSS(:,hallEffectVectors));
dataSSAdj = dataSS(:,hallEffectVectors) - meanDataSsS;

$Remove first (incomplete) linear region from all three

datasets
indDel6 = find(abs (dataSSAdj(:,1)) - maxvée > 0,1);
indDel7 = find(abs (dataSSAdj(:,2)) - maxV7 > 0,1);
indDel8 = find(abs (dataSSAdj(:,3)) - maxv8 > 0,1);
indDel = max([indDel6 indDel?7 indDel8])+1;

dataSSAdj = dataSSAdj(indDel:end, :);
posInRotRep = posInRotRep (l:end-indDel+1);

[maxHO7Voltage, maxHO7VoltageInd] = max (dataSSAdj(:,1))
7

maxHO7Voltage = maxHO07Voltage + meanDataSS(1l);

maxHO7VoltagePos = posInRotRep (maxHO07VoltageInd) ;

[minHO7Voltage, minHO7VoltageInd] = min(dataSSAdj(:,1))
7

minHO7Voltage = minHO7Voltage + meanDataSS(1l);

minHO7VoltagePos = posInRotRep (minHO7VoltagelInd);

159

%Remove data outside linear sections based on maxV
dataSSAdj6 dataSSAdj(:,1);
dataSSAdj7 = dataSSAdj(:,2);
dataSSAdj8 = dataSSAdj(:,3);

indDel6 = find(abs (dataSSAdj6) - maxVé > 0);
indDel”7 = find(abs (dataSSAdj7) - maxV7 > 0);
indDel8 = find(abs (dataSSAdj8) - maxV8 > 0);

posInRotRep6 = posInRotRep;
posInRotRep? posInRotRep;
posInRotRep8 posInRotRep;

dataSSAdj6 (indDel6) = [];

dataSSAdj6 = dataSSAdj6 + meanDataSS(1l);
posInRotRep6 (indDel6) = [];

dataSSAdj7 (indbel7) = [1;

dataSSAdj7 = dataSSAd]j7 + meanDataSS(2);
posInRotRep7 (indDel7) = [];

dataSSAdj8 (indDbel8) = [];

dataSSAdj8 = dataSSAdj8 + meanDataSS (3);
posInRotRep8 (indDel8) = [];

figure (1) ;
plot (posInRotRep6,dataSSAdj6, '. ", posInRotRep7,

dataSSAdj7,'"'."',posInRotRep8,dataSSAdj8,"'.");

hold on;

hl = plot (posInRotRep6 (1:20:round(end/rots)),dataSSAd]j6
(1:20:round(end/rots)), '*");

h2 = plot (posInRotRep7 (1:20:round(end/rots)),dataSSAd]7
(1:20:round (end/rots)), "x");

h3 = plot (posInRotRep8 (1:20:round(end/rots)),dataSSAd]8
(1:20:round(end/rots)), 'o");

% plot (maxHO7VoltagePos,maxHO07Voltage,'."',
minHO7VoltagePos, minHO7Voltage, '.");

hold off;

xlabel ('Position (rad)');

ylabel ('Centered Hall-Effect Sensor (Volt)');

160

title(['Linear Regions of Data'l);
legend ([hl h2 h3], 'Hall Effect 7','Hall Effect 12','
Hall Effect 2');

gapIndices6 = find(diff (posInRotRepb) - maxX > 0);
endIndices6 = find(diff (posInRotRepb6) < 0);
gapIndices7 = find(diff (posInRotRep7) - maxX > 0);
endIndices7 = find(diff (posInRotRep7) < 0);
gapIndices8 = find(diff (posInRotRep8) - maxX > 0);
endIndices8 = find(diff (posInRotRep8) < 0);

if (length(gapIndices6) ~= length(gapIndices6) ||

length (gapIndices7) ~= length (gapIndices8))
error ('gapIndices are not the same length');
end

dataSSMato6 {};
posRotMat6 {};
dataSsSMat7 = {};
posRotMat7 = {};
dataSSMat8 = {};
posRotMat8 = {};

lineSegs = 18;
lastIndo = 1;
lastInd7 = 1;
lastInd8 = 1;
segCount = 1;

% Create dataSSMat & posRotMat with size (i, j,k) where
length (i) is number

% of data points per jth linear region of kth rotation

for i = l:endIndices6+1

for j = 1l:1lineSegs-1

if (segCount <= length (gapIndicesb))
thisInd6 = gapIndicesé6 (segCount)

t)

)

4
.
14

thisInd7 = gapIndices’7 (segCoun
thisInd8 = gapIndices8 (segCount

14

161

else
thisInd6 = length (dataSSAdj6);
thisInd7 = length(dataSSAdj7);
thisInd8 length (dataSSAdj8) ;

end

segCount = segCount + 1;

dat6 = dataSSAdj6(lastInd6:thisIndb);
dat7 dataSSAdj7 (lastInd7:thisInd7);
dat8 dataSSAdj8 (lastInd8:thisInd8);
lenDat6 = length (datb6);
lenDat”7 = length(dat?7);

lenDat8 = length (dat8);
dataSSMat6 (l:1lenDat6, j, i) = num2cell (datb);
posRotMaté6 (1:1enDat6, j,1i) = numZcell (
posInRotRepb (lastIndb:thisIndb));
dataSSMat7 (1:1enDat7, j,1i) = num2cell (dat7);
posRotMat7 (l:1lenDat7, j,1i) = num2cell (
posInRotRep7 (lastInd7:thisInd7));
dataSSMat8 (l:1enDat8, j, i) = num2cell (dat8);
posRotMat8 (1:1enDat8, j,1) = numZcell (

posInRotRep8 (lastInd8:thisInd8));

lastInd6 = thisInd6 + 1;
lastInd? thisInd7 + 1;
lastIndS8 thisInd8 + 1;
if (segCount > length (gapIndices6))
break;
end
end

if (segCount > length (gapIndicesé6))
dat6 = dataSSAd]j6 (gapIndices6 (end)+1l:end);
dat7 = dataSSAdj7 (gapIndices7 (end)+1l:end);
dat8 dataSSAdj8 (gapIndices8 (end)+1:end);
lenDat6 = length (datb6);
lenDat”7 = length(dat?7);

162

lenDat8 = length (dat8);

dataSSMat6 (1:1enDat6, j+1,1) num2cell (dat6) ;

posRotMat6 (1l:1lenDat6, j+1,1) = num2cell (

posInRotRep6 (gapIndices6 (end)+1l:end));
dataSSMat7(1l:1lenDat7, j+1,1i) = num2cell (dat7);
posRotMat7 (1:1enDat7, j+1,1i) = numZcell (

posInRotRep7 (gapIndices? (end) +1:end)) ;
dataSSMat8 (l:1enDat8, j+1,1i) = num2cell (dat8);
posRotMat8 (l:1enDat8, j+1,1i) = num2cell (

posInRotRep8 (gapIndices8 (end)+l:end));
break;

end

if (i <= length(endIndices®b))
thisInd6 = endIndices6 (i) ;
thisInd7 = endIndices7 (i) ;

)

thisInd8 = endIndices8 (i) ;
else
thisInd6 = length(dataSSAdj6);
thisInd7 = length(dataSSAdj7);
thisInd8 = length (dataSSAdj8);
end
dat6 = dataSSAd]j6(lastInd6:thisIndb);
dat7 = dataSSAdj7 (lastInd7:thisInd7);
dat8 = dataSSAdj8 (lastInd8:thisInd8);

lenDat6 = length (datb);
lenDat7 = length(dat?);
lenDat8 length (dat8) ;

dataSSMat6 (l:1lenDat6,lineSegs, i) = num2cell (datb);

posRotMat6 (1:1lenDat6, lineSegs, i) num2cell (
posInRotRepb (lastInd6:thisInd6));

lastInd6 = thisInd6 + 1;

dataSSMat7 (1:1enDat7, 1lineSegs, i) = num2cell (dat7);

posRotMat7 (1:1lenDat7,lineSegs, i) = num2cell (
posInRotRep7 (lastInd7:thisInd7));

lastInd7 = thisInd7 + 1;

dataSSMat8 (1:1enDat8, 1ineSegs, i) = num2cell (dat8);

163

posRotMat8 (l:1enDat8,1lineSegs, i) = numlZcell (
posInRotRep8 (lastInd8:thisInd8));
lastInd8 = thisInd8 + 1;

end

% avgDhif = [];

% for i = 1l:1lineSegs

% firstXs = cellZ2mat (squeeze (posRotMat (:,1,1)));

% lastXs = cellZ2mat (squeeze (posRotMat (:,1i,numPlots)
))

% avgDif (i) = mean(firstXs) - mean(lastXs);

% end

% linShiftAlpha = 0;%mean (avgDif);

minVecVec = [];

sds = [];

ps = [1;

posMin = {};

datMin = {};

figure (3);
hold on;
for 1 = 1:1ineSegs

dat6 = squeeze (dataSSMat6(:,1i,:));

dat6 = numZcell (cell2mat (dat6) + meanDataSS(1l));
pos6 = squeeze (posRotMatb6 (:,1,:));
inter6 = cellfun('size', date, 1);
dat7 = squeeze (dataSSMat7(:,1i,:));

dat7 = num2cell (cell2mat (dat7) + meanDataSS(2));
pos7 = squeeze (posRotMat7 (:,1i,:));
inter7 = cellfun('size', dat7, 1);
dat8 = squeeze (dataSSMat8(:,1i,:));

dat8 = num2cell (cellZmat (dat8) + meanDataSS(3));
pos8 = squeeze (posRotMat8(:,1i,:));
inter8 = cellfun('size', dat8, 1);

o\

o\°

o\

164

o® o° o o©

o\°

vectorSizes6 = sum(inter6);

minVec6 = min(vectorSizeso6);
minVecVec6 (i) = minVec6;
vectorSizes7 = sum(inter7);
minVec7 = min(vectorSizes7);
minVecVec7 (i) = minVec7;
vectorSizes8 = sum(inter8);
minVec8 = min(vectorSizes8);
minVecVec8 (i) = minVec8;

dat6 = cell2mat (daté
pos6 = cell2mat (pos6(l:minVecb, :
dat7 = cellZmat (dat? :minVec7, :

(1l:minVeco, :
(1
(1
pos7 = cellZmat (pos7 (l:minVec7, :
(1
(1

Ne N

¢« Ne

dat8 = cell2mat (dat8(l:minVecs8, :
pos8 = cell2mat (pos8(l:minVecs, :

~— ~— ~— ~— ~— ~—
—_— — ~— ~— ~— ~—
N~e N

~e

addMat = 0; %$repmat (linspace (0, 1inShiftAlpha,

numPlots),minVec, 1) ;
posShift6 = pos6 + addMat;

posMin6 (1:minVec6,i, :) = num2cell (posShift6);

datMin6 (1 :minVec6, i, :) num2cell (datb6);
posShift7 = pos7 + addMat;

posMin7 (l:minVec7,1i, :) = num2cell (posShift7);

datMin7 (1:minVec7,1i, :) = num2cell (dat7);
posShift8 = pos8 + addMat;

posMin8 (l:minVec8,1i, :) = num2cell (posShift8);

datMin8 (1:minVec8, i, :) num2cell (dat8);

[p6,S6] = polyfit (posShift6,dato,1);
ps6(i,1:2) = p6;

[y6, sDelta6] = polyval (p6,posShift6,S6);

sds6 (i, :) = mean(sDeltab);

tempPos6 = reshape (posShifte, [],1);
tempDat6 = reshape(dat6, []1,1);

[fitobject6 gof6(i)] = fit (tempPos6,tempbDato,’

polyl'");

165

[fitobject
")
ps6(i,1:2)

plot (tempDat6, tempDatb6xps6 (i, 1)

6 gofoe(i)] =

= coeffvalues (fitobjecto6)

.
14

fit (tempDat6, tempPos6, 'polyl

+ Ps6(i,2),".");

tempPos7 = reshape (posShift7,([]1,1);
tempDat7 = reshape(dat7,1[1,1);
% [fitobject7 gof7(i)] = fit (tempPos7,tempbDat?,’
polyl');
[fitobject7 gof7(i)] = fit (tempDat7,tempPos7, 'polyl
")
ps7(i,1:2) = coeffvalues (fitobject?);
tempPos8 = reshape (posShift8,[],1);
tempDat8 = reshape(dat8, []1,1);

o\°

[fitobject8 gof8 (i)]
polyl');

[fitobject8 gof8(i)] =

")
ps8(i,1:2) =
end

figure (2);
hold on;

for 1 = 1:1ineSegs

[

= fit (tempPos8, tempDats, '

fit (tempDat8, tempPos8, 'polyl

coeffvalues (fitobject8);

o

]

o® o© o o o°

for 7
Xs6 =
ys6 =
xsT =
ysT =
xXs8 =
ys8 =

boun
boun
boun
boun
boun

= l:numPlots

cell2mat (squeeze (posMin6 (:
cell2mat (squeeze (datMin6 (:
cell2mat (squeeze (posMin7 (:
cellZ2mat (squeeze (datMin7 (:
cell2mat (squeeze (posMin8 (:
cell2mat (squeeze (datMin8 (:

ds6
ds6
ds’/
ds’/
ds8

(i,
(i,
(1,
(1,
(1

1)
2)
1) =
2) =
1)

’

rds
rise
yi,
PRI
PP
rds

—_— — — ~— ~— ~—
—_— — — ~— ~— ~—
— — ~— ~— ~— ~—

Ne Ne Ne Ne o

~e

o\

o\°

bounds8 (i, 2)

voBounds (i, 1)

meanDataSs (

voBounds (i, 2)

meanDataSs (

v7/Bounds (i, 1)

meanDataSs (

v7Bounds (i, 2)

meanDatasSs (

v8Bounds (i, 1)

meanDataSs (

v8Bounds (1, 2)

= max (max (xs8)) ;

sign (mean(ys6(1l,:)) -

1)) »maxV6 + meanDataSS(1l);

sign (mean (ys6 (end, :))

1)) maxV6 + meanDataSS(1l);

= sign(mean(ys7(1,:)) -
2))xmaxV7 + meanDataSS

(2);
= sign(mean(ys7(end, :)) -
2))*maxV7 + meanDataSS (2);

sign (mean (ys8 (1, :))

3))*maxV8 + meanDataSS (3);

= sign(mean (ys8(end, :))

meanDataSS (3)) *maxV8 + meanDataSS (3);

p6Bounds (i,1) = v6Bounds (i, 1) *ps6(i,1)
' 2);

p6Bounds (i,2) = v6Bounds (i,2) *ps6(i, 1)
1 2);

p7Bounds (i, 1) = v7Bounds (i, 1) *ps7(i, 1)
' 2)

p7Bounds (i,2) = v7Bounds (i,2)*ps7(i,1)
' 2);

p8Bounds (i,1l) = v8Bounds (i, 1) *ps8(i, 1)
r2);

p8Bounds (i, 2) = v8Bounds (i, 2) *ps8(i, 1)
1 2);

bounds6 (i, 1) = min(min (xs6));

bounds6 (i, 2) = max(max (xs6));

bounds7(i,1) = min(min (xs7));

bounds7(i,2) = max(max(xs7));

bounds8 (i, 1) = min(min (xs8));

bounds8 (i, 2) = max(max (xs8));
rat = (j-1)/numPlots;

rat = 1;

if (i == lineSegs)% && J == numPlots)

167

+

pPs6 (1
ps6 (i
ps7 (1
ps7 (1
ps8 (1

ps8 (i

plottedl6 = plot(xs6,ys6,'.', 'Color', [0 O
rat], "MarkerSize', 3);
plottedl7 = plot(xs7,ys7,'.',"'Color', [0 rat
0], "MarkerSize', 3);
plottedl8 = plot(xs8,ys8,'.", 'Color', [rat O
0], "MarkerSize', 3);

plottedl6 = plottedlb (end);

plottedl”7 = plottedl’ (end);

plottedl8 = plottedl8(end);
else

plot (xs6,ys6,'."', "Color', [0 O rat],'
MarkerSize', 3);

plot (xs7,ys7,'."', 'Color', [0 rat 0],
MarkerSize', 3);

plot (xs8,ys8,'."', "Color', [rat O O],
MarkerSize', 3);

end
% end
end
for 1 = 1:1ineSegs
x16 = (-maxV6 + meanDataSS(l) — ps6(i,2))/ps6(i,1);
xX26 = (maxVe6 + meanDataSS(l) - ps6(i,2))/ps6(i,1);
x17 = (-maxV7 + meanDataSS(2) - ps7(i,2))/ps7(i,1);
x27 = (maxV7 + meanDataSS(2) - ps7(i,2))/ps7(i,1);
x18 = (—-maxV8 + meanDataSS(3) - ps8(i,2))/ps8(i,1);
x28 = (maxV8 + meanDataSS(3) - ps8(i,2))/ps8(i,1);
% plotted26 = plot ([x16,x26], [-maxV6,maxVe] +
meanDataSS (1), ':y', '"MarkerSize', 4, 'LineWidth',1.5);
% plotted27 = plot ([x17,x27], [[maxV7,maxV7] +

meanDataSS(2), ':m', '"MarkerSize', 4, 'LineWidth',1.5);
% plotted28 = plot ([x18,x28], [-maxV8,maxVv8] +
meanDataSS(3), ':c', "MarkerSize', 4, 'LineWidth',1.5);
plotted26 = plot (p6Bounds (i, :),v6Bounds (i, :), '—.
, 'MarkerSize', 4, 'LineWidth',1.5);

168

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

418
419

plotted27 = plot (p7Bounds (i, :),v/Bounds (i, :),'—.xm'
, 'MarkerSize', 4, 'LineWidth',1.5);

plotted28 = plot (p8Bounds (i, :),v8Bounds (i, :), " '—.oc'
, '"MarkerSize', 4, 'LineWidth',1.5);

end
hold off;
xlabel ('Position (rad)');

yvlabel ('Hall-Effect Sensor (Volt');

title(['Hall Effect Voltage Over ' num2str (numPlots) '
Rotations - Linearized Region Time Shift
Compensation']);

plotVec = [plottedl6 plottedl7 plottedl8 plotted26
plotted27 plotted28];

legend (plotVec, 'Hall Effect 7','Hall Effect 12', 'Hall
Effect 2','Linearized Model 7', 'Linearized Model 12'
, 'Linearized Model 2"')

save ('posFromVCTRLEssentials.mat', "bounds6', "bounds7"', '
bounds8', 'dataSSAdj6', 'dataSSAdj7"', ...

'dataSSAdj8', 'lineSegs', 'maxVe', 'maxV7', 'maxv3g', '
meanDataSS', 'posInRotRepb', ...

'posInRotRep7', 'posInRotRep8', 'ps6', 'ps7"', 'ps8', !
vo6Bounds', 'v7Bounds'. ..

, 'v8Bounds', 'p6Bounds', '"p7Bounds"', 'p8Bounds', '
maxHO07Voltage', 'maxHO7VoltagePos'...

, 'minHO7Voltage', 'minHO7VoltagePos"') ;

% boundSep6 = (bounds6(2:end,1l) + bounds6(l:end-1,2))
/2;

% boundSep7 = (bounds7(2:end,l) + bounds7(l:end-1,2))
/2;

% boundSep8 = (bounds8(2:end,1l) + bounds8(l:end-1,2))
/2;

% x = (l:1ineSegs-1)"';

% boundLines6 = fit (x,boundSep6, 'polyl');

% boundLineCoeffs6(1:2) = coeffvalues (boundLineso6) ;

% boundLines7 = fit (x,boundSep7, 'polyl');

% boundLineCoeffs7(1:2) = coeffvalues (boundLines?7);

169

420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439

o o° o° o o° o

o o o o0 o0 o A OO o0 o° oO° o o oP

boundLines8 = fit (x,boundSep8, 'polyl');

boundLineCoeffs8(1:2) = coeffvalues (boundLines8);

figure (3);

hold on;

plot (posInRotRepb,dataSSAdj6, '."',posInRotRep7,

dataSSAdj7, '.',posInRotRep8,datasSSAdj8, "'.");

for i = 1:1ineSegs-1
X6 = ixboundLineCoeffs6(l) + boundLineCoeffs6(2);
X7 = ixboundLineCoeffs7(l) + boundLineCoeffs8(2);
x8 = ixboundLineCoeffs7 (1) + boundLineCoeffs8(2);

plot ([x6 x6], [-maxV6,maxVe],"':"', 'LinewWwidth',1.5);

plot ([x7 x7], [-maxV7,maxV7],"':"', 'LinewWwidth',1.5);

plot ([x8 x8], [-maxV8,maxVv8],':', 'LineWidth',1.5);
end

hold off;

xlabel ('Position (rad)');

ylabel ('Centered Hall-Effect Sensor (Volt)');
title(['Linear Regions of Data'l);

legend ('Hall Effect 7','Hall Effect 12','Hall Effect
2','"Hall Effect 7 Boundaries');

170

A.9 Position Control
A.9.1 Position Controller

close all;

desiredMaxCurrent = 3;
startCurrent = 1.5;
settlePoints = 100;

vCutOff = 2;
vCutOffMinor = 1.25;
sampleRate = 1200;
global spinPoints;

spinPoints = sampleRatex4;
global scanQueuelLimit;
scanQueuelLimit = sampleRate/16;
desiredStartPos = 5.05; % rad
zeroEntries = sampleRatex60;
posCorrectTime = 0.5;

global Kp;

global Kij;

global Kd;

global Ksat;
global KiCounter;
global KiSat;
global lastError;
global lastTime;

Ku = 50;
Tu = 2.3;

Kp = 0.2%xKu;

Ki = Tu/2;

Kd = Tu/3;

% Ksat = 1000;

% KiSat = pi/2/9/10;
KiCounter = 0;
lastError = 0;

171

lastTime = 0O;

global data;

global time;

global position;
global currentPos;
global desiredPos;
global posSegment;
global coeffsPs6;
global coeffsPs’;
global coeffsPsS§;
global meanValues;
global maxCurrent;
global dataSize;
global P1HO0Z2cToV;
global P1H12cToV;
global P2HQ7cToV;
global phaselCurrent;
global phase2Current;
global timeCounter;
global counterAmount;
global outSaver;
global currentElectricalPos;
global desiredElectricalPos;

windowSize = 7;

smoothPkFinder = 150;

load ('posFromVCTRLEssentials.mat');
load ('sensorCurrentFit.mat"'");

% load('ctrlTestDataSlow.mat');

P1HO2cToV = coeffsP1H02 (1) ;
P1H12cToV = coeffsP1H12(1);
P2HO07cToV = coeffsP2HO07 (1) ;
phaselCurrent = 0;
phase2Current = 0;
coeffsPs6 = ps6;

coeffsPs7 = ps7;

172

coeffsPs8 = ps8;
meanValues = meanDataSS;

maxCurrent = desiredMaxCurrent;
allBounds(:,1) = max([p6Bounds(:,1),p7Bounds(:,1),
p8Bounds(:,1)]1,1[1,2);

14
allBounds (:,2) = min([p6Bounds(:,2),p7Bounds(:,2),
p8Bounds (:,2)1,[1,2);
posDestinations = flipud((p6Bounds(:,1) + p6Bounds(:,2)
)/2);

lowerLimit6 = desiredStartPos > p6Bounds(:,1);
upperLimit6 = desiredStartPos < p6Bounds(:,2);
posStartSegment = find(and(lowerLimité6,upperLimit6));

% ps6(:,2) = ps6(:,2) + meanDataSS(1l);
% ps7(:,2) = psT7(:,2) + meanDataSS(2);
% ps8(:,2) = ps8(:,2) + meanDataSS(3);
d = dag.getDevices;

s = dag.createSession('ni');

s.Rate = sampleRate;

aOChannel0 = 'ao0'; $Pin 22
aOChannell = 'aol'; $Pin 21
aIOPlus = 'ailb';

aIOMin = 'ail3';

allPlus = 'ail2';

allMin = 'ailO';

aIlHO7 = 'ai9'; %$Pin

aIlHl12 = 'aill'; %Pin

aIlHO02 = 'aild';

addAnalogOutputChannel (s, 'Devl ', aOChannelQ, 'voltage');
addAnalogOutputChannel (s, 'Devl ', aOChannell, 'voltage');
addAnalogInputChannel (s, 'Devl', aIOPlus, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIOMin, 'Voltage');

173

addAnalogInputChannel (s, 'Devl', aIlPlus, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIlMin, 'Voltage');
addAnalogInputChannel (s, 'Devl', aIHQ07, 'Voltage'); %Pin

26

addAnalogInputChannel (s, 'Devl', aIHl2, 'Voltage'); %Pin
58

addAnalogInputChannel (s, 'Devl', aIH02, 'Voltage'); %Pin
23

chl5.TerminalConfig = 'SingleEnded';

chl3.TerminalConfig
chl2.TerminalConfig
chl0.TerminalConfig

'SingleEnded’;
'SingleEnded’;
'SingleEnded’;

ch9.TerminalConfig = 'SingleEnded';
chll.TerminalConfig = 'SingleEnded’;
chl4.TerminalConfig = 'SingleEnded’;

o

% set (s, "ExternalTriggerTimeout', 200);

[posInRotRepb6SmoothOrder, posSmoothInd] = sort (
posInRotRepb) ;

dataSSAdj6SmoothOrder = dataSSAd]j6 (posSmoothInd) ;

dataSSAdj6Smooth = smooth (dataSSAdj6SmoothOrder,
smoothPkFinder) ;

dataSSAdj6Smooth = smooth (dataSSAdj6Smooth,
smoothPkFinder) ;

% dataSSAdj6Smooth = smooth (dataSSAdj6Smooth,
smoothPkFinder) ;

tVec_Spinl = (linspace (0,spinPoints—-1,spinPoints) *x2*pi
*9/spinPoints) ';

out0_Spinl = startCurrent*sin(tVec_Spinl);

outl_Spinl = startCurrent*cos (tVec_Spinl);

queueOutputData (s, [out0_Spinl (1) rones (posCorrectTimex
sampleRate, 1), outl_Spinl (1) +*ones (posCorrectTimex
sampleRate,1)]);

[align_for_spin, ~] = s.startForeground();

queueOutputData (s, [out0_Spinl outl_Spinl]);

174

[captured_data_Spinl, ~] = s.startForeground();
posDatal = linspace (0, 2%pi, spinPoints);
datDatal = captured_data_Spinl(:,5);

smoothDatl = smooth (datDatal,windowSize);
smoothDatl smooth (smoothDatl,windowSize);

[maxMeasHO7Voltage, maxMeasHO7VoltageInd] = max (
smoothDatl);

maxMeasHO7VoltagePos = posDatal (maxMeasHO7VoltageInd);

[minMeasHO7Voltage, minMeasHO7VoltageInd] = min (
smoothDatl);

minMeasHO7VoltagePos = posDatal (minMeasHO7VoltageInd);

currentRef = maxMeasH(O7VoltagePos;

figure (1) ;

plot (posDatal, datDatal);

hold on;

plot (posInRotRep6SmoothOrder, dataSSAdj6Smooth, "—=");

plot (maxHO7VoltagePos,maxH07Voltage, '+,
minHO7VoltagePos, minHO07Voltage, "+« "');

plot (maxMeasHO7VoltagePos, maxMeasHO7Voltage, """,

minMeasHO7VoltagePos,minMeasHO7Voltage, '"");

plot (posDatalCO (dipLocs) ,dipPks, '.");

plot (posInRotRep6SmoothOrder (smoothDipLocs),

smoothDipPks, '.");

xlabel ('Motor Position (rad)');

ylabel ('"Hall-Effect Response (Volt) ');

title(['Initial Spin To Determine Position']);

legend ('Measured', 'Reference');

¢

% legend ('Smoothed Measured Data', 'Absolute Position

)
°
)

°

Reference Frame', 'Smoothed Absolute Reference Frame
")

hold off;

maxMaxDist = mod(maxHO7VoltagePos -

maxMeasHO7VoltagePos, 2+pi);
minMinDist = mod(minHO7VoltagePos -
minMeasHO7VoltagePos, 2%pi);

175

if ((maxMaxDist-minMinDist)/maxMaxDist > 0.05)
queueOutputData (s, [0 0]1);
[dontCare,dontcare] = s.startForeground();
error ('Peak locations do not match');

end

figure (2);
hold on;
for 1 = 1:1ineSegs
plotted26 = plot (p6Bounds (i, :),v6Bounds (i, :), " ":y',"'
MarkerSize', 4, 'LineWidth',1.5);
plotted27 = plot (p7Bounds (i, :),v/Bounds (i, :),"':m',"'
MarkerSize',4, 'LineWidth',1.5);
plotted28 = plot (p8Bounds (i, :),v8Bounds (i, :),"':c','
MarkerSize', 4, 'LineWidth',1.5);

end
ylabel ('"Hall-Effect Response (Volt) ');
xlabel ("Motor Position (rad)'");

savefig('LinearPlots.fig');

hl = plot (maxHO7VoltagePos,maxHO07Voltage, 'x");

h2 = plot (minHO7VoltagePos,minHO07Voltage, "*"');

h3 = plot (maxMeasHO7VoltagePos,maxMeasHO7Voltage, '"");
h4 = plot (minMeasHO7VoltagePos,minMeasHO7Voltage, """);
h5 = plot ([maxMaxDist,maxMaxDist], [0.5,4.5]);

legend ([hl,h3,h2,h4,h5], '"Reference Max', '"Measured Max',

'Reference Min', '"Measured Min', 'Current Pos');

currentPos = maxMaxDist;

posRefFrameCorrection = mod(desiredStartPos-currentPos
y2xpi);

% posCorrectedRefFrame = mod (posDatal +
posRefFrameCorrection, 2xpi) ;

tPoints = round(posRefFrameCorrection/ (2+pi) *spinPoints
)i

tVec_frameCorrect = linspace (0,posRefFrameCorrection*9,
abs (tPoints)) ';

out0_frameCorrect = startCurrentxsin(tVec_frameCorrect)

.
14

176

outl_frameCorrect = startCurrentxcos (tVec_frameCorrect)

.
14

queueOutputData (s, [outO0_frameCorrect outl_frameCorrect
1)

[captured_data_frameCorrect, time_dat_frameCorrect] = s
.startForeground () ;

posCorrectVec = [outO_frameCorrect (end) rones (sampleRate
*posCorrectTime, 1), outl_frameCorrect (end) xones (
sampleRatexposCorrectTime, 1)];

queueOutputData (s, posCorrectVec);

[captured_data_posCorrect, time_dat_posCorrect] = s.
startForeground() ;
v07 = captured_data_posCorrect(:,5) - posCorrectVec (end

,2)*xP2H07cToV;

P07 = v07xcoeffsPsb6 (posStartSegment, 1) + coeffsPs6(
posStartSegment, 2) ;

pO7Error = desiredStartPos - mean(p07);

currentElectricalPos = atan2 (out0_frameCorrect (end),
outl_frameCorrect (end)) + pO7Error;

tVec_Spin2 = (currentElectricalPos + linspace (0, 9x2x*pi,
spinPoints)) ';

out0_Spin2 = startCurrent*sin (tVec_Spin2);

outl_Spin2 = startCurrent*cos (tVec_Spin2);

queueOutputData (s, [out0_Spin2 outl_Spin2]);

[captured_data_Spin2, time_dat_Spin2] = s.
startForeground() ;

posDatal = [mod(linspace (mean (p07),mean (p07)+2xpi,
spinPoints),2*pi)]"';

datDatal = captured_data_Spin2(:,5);
[maxMeasHO7Voltage, maxMeasHO7VoltageInd] = max(

smoothDatl) ;
maxMeasHO7VoltagePos = posDatal (maxMeasHO7VoltagelInd);

177

[minMeasHO7Voltage, minMeasHO7VoltageInd] = min (
smoothDatl) ;

minMeasHO7VoltagePos = posDatal (minMeasHO7VoltageInd);

maxMaxDist = mod (maxHO07VoltagePos -
maxMeasHQO7VoltagePos, 2%pi);

currentRef = maxMeasH(O7VoltagePos;

currentPos = captured_data_Spin2(end, 5) xcoeffsPs6 (
posStartSegment, 1) + coeffsPs6 (posStartSegment, 2);

currentPosl2 = captured_data_Spin2 (end, 6) xcoeffsPs7 (
posStartSegment,1l) + coeffsPs7 (posStartSegment, 2);

currentPos02 = captured_data_Spin2(end,7) xcoeffsPs8 (
posStartSegment, 1) + coeffsPs8(posStartSegment, 2);

figure (3);
hold on;
for i = 1l:1ineSegs
plotted26 = plot (p6Bounds (i, :),v6Bounds (i, :),"':yv"',"'
MarkerSize',4, 'LineWidth',1.5);
plotted27 = plot (p7Bounds (i, :),v7/Bounds (i, :),"':m"',"'
MarkerSize', 4, 'LineWidth',1.5);
plotted28 = plot (p8Bounds (i, :),v8Bounds (i, :),"':c',"'
MarkerSize', 4, 'LineWidth',1.5);
end
hl = plot (maxHO07VoltagePos,maxHO07Voltage, "*"');
h2 = plot (minHO7VoltagePos,minHO7Voltage, "+x");
h3 = plot (maxMeasHO7VoltagePos,maxMeasHO7Voltage, """);
h4 = plot (minMeasH(O7VoltagePos,minMeasHO7Voltage, """);
h5 = plot ([currentPos,currentPos], [0.5,4.5]);
% plot (posDatal,datbatal, '.");
plot (currentPosl?2, captured_data_Spin2 (end, 6), 'x"',"'
MarkerSize',10);
plot (currentPos02, captured_data_Spin2(end,7), 'c"',"’
MarkerSize',10);
legend([hl,h3,h2,h4,h5], '"Reference Max', '"Measured Max',
'Reference Min', "Measured Min', 'Current Pos');

desiredPos = desiredStartPos;

o

% currentPos = desiredStartPos;

178

s.IsContinuous = true;

allData = [];

allTime = [];

data = [];

time = [];

timeCounter = 0;

position = [];

outSaver = [];

posSegment = posStartSegment;

firstRun = 1;

lastTimeCounter = 0;

nowTimeCounter = 0;

desiredPosVec = [desiredStartPos];

desiredPosTimes = [0];

while (true)
prompt = ['Input desired motor position in radians.

Current position is ' num2str (currentPos) '
radians. '];

desiredPos = input (prompt) ;
desiredPosVec = [desiredPosVec; desiredPos];
desiredPosTimes = [desiredPosTimes; timeCounter];
lastTimeCounter = nowTimeCounter;
nowTimeCounter = timeCounter;
KiCounter = 0;

if (desiredPos <= 2xpi)

delPos = desiredPos - currentPos;
desiredElectricalPos = currentElectricalPos +
delPos=*9;

if (delPos < 0)
delPos = delPos + 2xpi;

end
delPoints = round(delPos/ (2+pi) *spinPoints);
delVec = linspace (currentElectricalPos,

desiredElectricalPos,delPoints) ';

179

o® o o°

end

if

currentElectricalPos = desiredElectricalPos;
delVec = mod(delVec, 2xpi);

needPoints = scanQueuelLimit - delPoints;
if (needPoints > 0)
delVec = [delVec; delVec (end) *ones (
needPoints, 1)];

end
out0 = startCurrentxsin (delVec);
outl = startCurrentxcos (delVec);

figure (4);

hold on;

plot (delVec/9, out0);
phaselCurrent = outO (end);
phase2Current = outl (end);
queueOutputData (s, [out0 outl]);
lowerLimit6 = desiredPos > p6Bounds(:,1);
upperLimit6 = desiredPos < p6Bounds(:,2);
posSegment = find(and(lowerLimit6,upperLimit6))

14
(firstRun)

firstRun = 0;

s.NotifyWhenDataAvailableExceeds =
scanQueuelLimit;

counterAmount = s.
NotifyWhenDataAvailableExceeds;

s.NotifyWhenScansQueuedBelow = 2*scanQueuelLimit
7

1lhl = addlistener (s, 'DatalAvailable’', @ (src,
event) updateEvent (src,event,s));

1h2 = addlistener (s, 'DataRequired', @(src,event
) queueEvent (src,event, s));
if (posSegment == posStartSegment)

queueOutputData (s, [out0 (end) xones (2x*
scanQueuelimit, 1) outl (end) *ones (2x*
scanQueuelLimit, 1)1]1);
end

180

if (desiredPos > 2xpi)
delete (1hl);
delete (1h2);
break;

end

s.startBackground () ;

else
openfig('LinearPlots.fig', 'reuse');
hold on;
plot (position (lastTimeCounter+1:
nowTimeCounter, :), data(lastTimeCounter+1:
nowTimeCounter, :));
hold off;

o® o o°

o\°

end

if (desiredPos > 2xpi)
delete (1hl);
delete (1h2);
stop (s);
break;

end

if (isempty (posSegment))
delete (1hl);
delete (1h2);
stop(s);
queueOutputData (s, zeros (scanQueuelimit, 2));
s.startBackground () ;
error ('Not inside linearized regions');

end

end

queueOutputData (s, zeros (sampleRate, 2)) ;
s.startBackground () ;

o

% outSaverDelIndices = find(outSaver(:,1) == 0);

181

% outSaver (outSaverDelIndices, :) = [];

figure (5);

plot (outSaver) ;

figure (6);

plot (time, mean (position, 2));

hold on;

plot ([time (1), time(end)], [desiredPosVec(2),
desiredPosVec (2)]);

hold off;

save ('posCTRLResults.mat') ;

save ('globeVars.mat', 'data');

for 1 = 1l:length(globalVars)

tempName = globalVars{i};

save ('globeVars.mat', char (tempName) , '—-append') ;

o° o o°

o

°
o
°

o\

end

figure (3);

hold on;

plot (posDatal,datDatal);
plot (posbatal, smoothDatl) ;

% plot (posDatal (locs),pks,'."', '"MarkerSize', 30);
plot (posDatal (dipLocs),dipPks, '.', "MarkerSize',24);

plot (posInRotRep6SmoothOrder, dataSSAdj6SmoothOrder) ;
plot (posInRotRepbSmoothOrder, dataSSAdj6Smooth) ;

% plot (posInRotRep6SmoothOrder (smoothLocs), smoothPks
,'.", "MarkerSize', 30);

plot (posInRotRep6SmoothOrder (smoothDipLocs),

smoothDipPks, '."', 'MarkerSize', 24);

A o o° o° A° o o o° o o

o\

xlabel ('Motor Position (rad)');

ylabel ('Hall-Effect Response (Volt)'");
title(['Critical Points of Current Position vs
Absolute Position']);

legend ('Measured Reference Frame', 'Smoothed Measured
Data', "Measured Frame Peaks', ...

o® o° o° oP

o\

182

378

379
380
381
382
383
384
385
386
387
388
389

390

391

392

393
394

15

o\

A o o° o° o° o o o o o

o o\

o\

'Absolute Reference Frame', 'Smoothed Reference
Data', "Absolute Frame Peaks');

for 1 = 1:1ineSegs
x16 = (—-maxV6 — ps6(i,2))/ps6(i,1);
xX26 = (maxVe — ps6(i,2))/ps6(i,1);
x17 = (—maxV7 — ps7(i,2))/ps7(i,1);
%27 = (maxV7 — ps7(i,2))/ps7(i,1);
x18 = (-maxV8 - ps8(i,2))/ps8(i,1);
%28 = (maxV8 — ps8(i,2))/ps8(i,1);

plotted26 = plot([x16,x26], [-maxV6,maxVe6] +
meanDataSS (1), ':y', '"MarkerSize', 4, 'LineWidth',1.5);
plotted27 = plot ([x17,x27], [-maxV7,maxV7] +
meanDataSS(2), ':m', '"MarkerSize', 4, 'LineWidth',1.5);
plotted28 = plot ([x18,x28], [-maxV8,maxVv8] +
meanDataSS(3), ':c', '"MarkerSize', 4, 'LineWidth',1.5);

end

hold off;

A.9.2 Data Collector

function updateEvent (src, event, s)

o o°

persistent tempData;

persistent tempTime;
global data;
global time;
global position;
global currentPos;
global posSegment;
global scanQueuelimit;
global coeffsPs6;
global coeffsPs7;
global coeffsPs8;
global meanValues;
global phaselCurrent;

183

o° oo

o\ o\

o\°

global phase2Current;
global dataSize;
global P1HO2cToV;
global P1H12cToV;
global P2HO07cToV;
global timeCounter;
global counterAmount;

% data: aIO+,aI0-,all+,all-,alIH07,aIH12,aIH02

tempData = event.Data;

tempTime = event.TimeStamps;

timeCounter = timeCounter + counterAmount;

v07 = tempData(:,5) - phase2Current+xP2HQ07cToV;
vl2 = tempData(:,6) - phaselCurrent*«P1H12cToV;
v02 = tempData(:,7) - phaselCurrentxP1H02cToV;
tempData(:,5:7) = [v07,v12,v02];

data (timeCounter—-counterAmount+1l:timeCounter, :) =
tempData(:,5:7);
time (timeCounter-counterAmount+1l:timeCounter) =

tempTime;

data = tempData;

time = tempTime;

p07 = (vO07-coeffsPs6(posSegment,2) + meanValues
(1)) ./coeffsPs6 (posSegment, 1) ;

pl2 = (vl2-coeffsPs7 (posSegment,2) + meanValues
(2)) ./coeffsPs7 (posSegment, 1) ;

p02 = (v02-coeffsPs8 (posSegment,2) + meanValues

(3))./coeffsPs8 (posSegment, 1) ;

pQ07 = v07xcoeffsPsb6 (posSegment,1l) + coeffsPs6(
posSegment, 2) ;

pl2 = vl12xcoeffsPs7 (posSegment,1l) + coeffsPs7 (
posSegment, 2) ;

p02 = v02xcoeffsPs8 (posSegment,1l) + coeffsPs8(
posSegment, 2) ;

tempPosition = [p07, pl2, p02];

184

position (timeCounter-counterAmount+1:timeCounter,

= tempPosition;
% currentPos = mean (p07 (scanQueuelLimit-10:end));
% currentPos = (p07 + pl2 + p02)./3;
% disp([mean (p07), mean(pl2), mean (p02)1]1);
% queueOutputData (s, [zeros (scanQueuelLimit,2) 1);

end

D)

A.9.3 Output Queuer

function queueEvent (src, event, s)

global
global
global
global
global
global
global
global
global
global
global
global
global
global

global
global
global
global
global
global
global
global

scanQueuelimit;
currentPos;
desiredPos;
phaselCurrent;
phase2Current;
maxCurrent;

position;
timeCounter;
counterAmount;
spinPoints;

outSaver;
currentElectricalPos;
desiredElectricalPos;
time;

Kp;

Ki;

Kd;

Ksat;
Kisat;
KiCounter;
lastError;
lastTime;

185

o\

o\

o® o o°

o o°

o\°

o o° o

o\

o® o o

currentPos = mean (mean (position (timeCounter-

counterAmount+1l:timeCounter, :)));
delPos = desiredPos - currentPos;
desiredElectricalPos = currentElectricalPos + 9%
delPos;
KiCounter = 0;

KiCounter = KiCounter + delPos;
if (abs (KiCounter)+Ki > KiSat)
KiCounter = sign (KiCounter) *KiSat./Ki;
end

if (abs(KpxdelPos) < abs (lxKixKiCounter))
KiCounter = sign(KiCounter) xKpxabs (delPos)
./ (1xKi);
end

Ktot = KpxdelPos + KixKiCounter + Kdx (delPos -

lastError) ./ (time (end) - lastTime);
lastTime = time (end);
lastError = delPos;

if (abs(Ktot) > Ksat)
Ktot = sign (Ktot) *Ksat;
end
desiredElectricalPos = currentElectricalPos + Ktot
/9;
disp([position (timeCounter, :), currentPos, currentPos
+ Ktot, time(end)]);

tVec = [linspace (currentElectricalPos,
desiredElectricalPos, 2xscanQueuelLimit)]';
tVec = [linspace((currentPos + Ktot)x9, (
currentPos + Ktot)*9, 2+«*scanQueuelimit)]’';
currentElectricalPos = desiredElectricalPos;
needPoints = scanQueuelLimit - delPoints;
if (needPoints > 0)
if (length(tVec) > 0)

186

% tVec = [tVec; tVec (end) *ones (needPoints
1) 15
% else
% tVec = [tVec (end) xones (needPoints,1)];
% end
% end
out0 = maxCurrent*sin (tVec);
outl = maxCurrent=*cos (tVec);

outSaver (timeCounter—-2*scanQueuelimit+1:timeCounter

,) = [outO outl];
phaselCurrent = outO (end);
phase2Current = outl (end);
queueOutputData (s, [out0 outl]);
% queueOutputData (s, [zeros (scanQueuelLimit, 2) 1);

end

A.9.4 Position Data Plotting

load('singlestep.mat');
close all;

timeVec = linspace (0,time (end),double (timeCounter));
outDiam 0.133;

dPos = desiredPosVec (2);

lowerDPosBounds = dPos > allBounds(:,1);

upperDPosBounds = dPos < allBounds (:,2);

regionBounds = find(and(lowerDPosBounds, upperDPosBounds
)) i

avgPos = mean (position,2);

startEvalTime = 35;
startEvalIndex = startEvalTimexsampleRate;
evalPosVector = avgPos (startEvallIndex:end);

evalDelInd = find(evalPosVector > mean (evalPosVector) +
5xstd(evalPosVector));

187

timeVecEval = timeVec (startEvallIndex:end);

timeVecEval (evalDelInd) = [];

evalPosVector (evalDelInd) = [];

rmseEvalVec = ((dPos - evalPosVector) .”2);

rmseEval = sqgrt (sum(rmseEvalVec) ./length (evalPosVector)
)

cumSumLenVec = (l:length(evalPosVector))"';

rmseCumSum = sqgrt (cumsum (rmseEvalVec) ./cumSumLenVec) ;

degreeError = rmseCumSum=*180/pi;

circumError = outDiamxpixdegreeError/360;

outTimeVec = (linspace (0, length(outSaver) ./sampleRate,
length (outSaver)))';

phaseAngle = atan2 (outSaver(:,1),outSaver(:,2));

figure (1) ;
hO = plot (timeVec, avgPos);

hold on;

timelLimits = [timeVec (l) timeVec (end)];

hl = plot(timeLimits, [dPos, dPos], 'LineWidth',1);

h2 = plot (timelLimits, allBounds (regionBounds, 1) xones
(1,2),"'-——");

h3 = plot(timelimits,allBounds (regionBounds, 2) xones
(1,2),"'—");

h4 = plot (timeVecEval, evalPosVector);

legend ([h0O, hl, h2, h3, h4], 'Recorded Position',
Desired Position', ...
'Segment Upper Boundary', 'Segment Lower Boundary','
Evaluated Segment');
ylabel ('Position (rad)'");
xlabel ("Time (sec)'");
title('Position over Time');
hold off;

figure (2);

yyaxis left
plot (outTimeVec, outSaver(:,1),"'-");

188

hold on;

plot (outTimeVec, outSaver(:,2),"'——");

ylabel ("Current (A)");

yyaxis right

plot (outTimeVec, phaseAngle, ':");

ylabel ('"Phase Angle (rad)');

hold off;

legend ('Phase One Current', 'Phase Two Current', 'Phase
Angle');

xlabel ('Time (sec)');

title('Currents and Associated Phase Angle');

figure (3);

plot (timeVecEval, degreeError) ;

xlabel ('Time (sec)');

ylabel ('"RMSE (deg) '),

title (['RMSE Between ',num2str (startEvalTime), ' and X
Seconds']);

189

APPENDIX B

SOLIDWORKS DRAWINGS AND COMPONENT LABELS

190

Rotor Ring Stator

Coils

Halbach Array

. . Shaft
Bearing Retainer

Rotor Spacer

Figure B.1: Inner motor components.

Bearing

Shaft

\ Housing Base

Housing Shaft Holder

Anchor-screw Hole /

Figure B.2: Motor infrastructure components.

191

?5.620

0.236

®2.600
D1.626

0.455

4,.
o
o

0.674

O A0

1.523

4».4%‘4}

4 ¢ 4
1.300
®2.250

4
.(I%
\ +

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF

BRADFORD STRICKLIN. ANY

REPRODUCTION IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF NEXT ASSY USED ON
BRADFORD STRICKLIN IS

PROHIBITED. APPLICATION

2

UNLESS OTHERWISE SPECIFIED: NAME DATE

DIMENSIONS ARE IN INCHES DRAWN

DIMENSIONS ARE TYPICAL CHECKED TITLE
ENG APPR. . .
Bearing Retainer

INTERPRET GEOMETRIC Q.A.

TOLERANCING PER: COMMENTS:

MATERIAL SIZE DWG. NO. REV

FINISH A

DO NOT SCALE DRAWING SCALE: 1:2 WEIGHT: SHEET 1 OF 1

]

A

0.500

o
v

2\

0.438

™
O
3 S
S o jo8
®O0l145 $»0.301
©0.219 ©»0.375
7.000
= i 28]
- gl ©
Lol N o
S

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
BRADFORD STRICKLIN. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
BRADFORD STRICKLIN IS

PROHIBITED.

NEXT ASSY

APPLICATION

USED ON

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
DIMENSIONS ARE TYPICAL

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

NAME

DRAWN
CHECKED
ENG APPR.
MFG APPR.

QA.
COMMENTS:

DATE

TITLE:

Housing Base

SIZE DWG. NO.

A

SCALE: 1:2 WEIGHT:

]

REV

SHEET 1 OF 1

b ——

I

2.500

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
BRADFORD STRICKLIN. ANY
REPRODUCTION IN PART OR AS A WHOLE

1.125 %,
0.094
0094 |
F
R0.395) -
R0.395 | =
%
S
~O
Q8
sl 8
=
NEXT ASSY USED ON

WITHOUT THE WRITTEN PERMISSION OF
BRADFORD STRICKLIN IS
PROHIBITED. APPLICATION

2

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
DIMENSIONS ARE TYPICAL

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

DRAWN
CHECKED
ENG APPR.
MFG APPR.

QA.
COMMENTS:

NAME

DATE

TITLE:

A

Housing Shaft Holder

SIZE DWG. NO.

A

SCALE: 1:2 WEIGHT:

]

REV

SHEET 1 OF 1

o
o
(@]
—
o
1)
N
o
UNLESS OTHERWISE SPECIFIED: NAME | DATE
DIMENSIONS ARE IN INCHES DRAWN
DIMENSIONS ARE TYPICAL .
CHECKED TITLE:
ENG APPR.
Keyway
INTERPRET GEOMETRIC QA.
I FoMATON CONTANED TS IoLSRENG commens
MATERIAL
DRAWING IS THE SOLE PROPERTY OF SIZE DWG. NO. REV
BRADFORD STRICKLIN. ANY — A
REPRODUCTION IN PART OR AS A WHOLE NEXT ASSY USED ON

WITHOUT THE WRITTEN PERMISSION OF
BRADFORD STRICKLIN IS

PROHIBITED. APPLICATION DO NOT SCALE DRAWING SCALE: 2:1 WEIGHT: SHEET 1 OF 1

2]

1.00

0.251

D

o

0.251

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
BRADFORD STRICKLIN. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
BRADFORD STRICKLIN IS

PROHIBITED.

NEXT ASSY USED ON

APPLICATION

2

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
DIMENSIONS ARE TYPICAL

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

NAME
DRAWN
CHECKED
ENG APPR.
MFG APPR.

QA.
COMMENTS:

DATE

TITLE:
Magnet Bar
SIZE DWG. NO. REV
A
SCALE: 2:1 WEIGHT: SHEET 1 OF 1

]

1.000

2.438

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
BRADFORD STRICKLIN. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
BRADFORD STRICKLIN IS

PROHIBITED. APPLICATION

2

NEXT ASSY USED ON

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
DIMENSIONS ARE TYPICAL

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL
ABS
FINISH

DO NOT SCALE DRAWING

DRAWN
CHECKED
ENG APPR.
MFG APPR.

QA.
COMMENTS:

All holes are thru holes

NAME

DATE

TITLE:

Rotor Ring

SIZE DWG. NO.

A

SCALE: 1:2 WEIGHT:

]

REV

SHEET 1 OF 1

0.500

0O 087

2.438

UNLESS OTHERWISE SPECIFIED: NAME | DATE
DIMENSIONS ARE IN INCHES DRAWN
DIMENSIONS ARE TYPICAL CHECKED TITLE:
ENG APPR.
Rotor Spacer
INTERPRET GEOMETRIC QA.
I FoMATON CONTANED TS e comments S BWG. NO .
DRAWING IS THE SOLE PROPERTY OF . .
BRADFORD STRICKLIN. ANY NS A
PRI e oo
?F}éi?nig,m'“““ s APPLICATION DO NOT SCALE DRAWING SCALE: 1:2 WEIGHT: SHEET 1 OF 1

2]

®.550
! ‘
!
310 — 1.00
610 | %

% F®.5oo

®1.00

©.75

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
BRADFORD STRICKLIN. ANY
REPRODUCTION IN PART OR AS A WHOLE

ngmgg%?@@fﬁﬁﬁpf’roduct. E6F Instructional UgseE%%'fy

PROHIBITED. APPLICATION

2

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
DIMENSIONS ARE TYPICAL

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

1259] 2220 =
l — (2.280) =

[j v

E

Li 7.500 ——————

NAME DATE

DRAWN
CHECKED TITLE:

ENG APPR.

o Shaft

QA.
COMMENTS:

SIZE DWG. NO.

A

SCALE: 1:4 WEIGHT:

]

REV

SHEET 1 OF 1

1.000

0.132

1.101

1.565

©0.090

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
BRADFORD STRICKLIN. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
BRADFORD STRICKLIN IS

PROHIBITED.

NEXT ASSY USED ON

APPLICATION

2

UNLESS OTHERWISE SPECIFIED:

DIMENSIONS ARE IN INCHES
DIMENSIONS ARE TYPICAL

INTERPRET GEOMETRIC
TOLERANCING PER:

MATERIAL

FINISH

DO NOT SCALE DRAWING

All holes are thru holes

NAME DATE

DRAWN
CHECKED TITLE:
ENG APPR.
MFG APPR.

QA.
COMMENTS:

SIZE DWG. NO.

A

SCALE: 1:2 WEIGHT:

]

Stator

REV

SHEET 1 OF 1

