# EXPERIMENTAL STUDY OF THE STATIC AND DYNAMIC CHARACTERISTICS OF A LONG (L/D=0.65) SMOOTH ANNULAR SEAL OPERATING UNDER TWO-PHASE (LIQUID/GAS) CONDITIONS

A Dissertation

by

### MIN ZHANG

### Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

### DOCTOR OF PHILOSOPHY

Chair of Committee, Committee Members,

Head of Department,

Dara W. Childs Luis A. San Andrés Gerald L. Morrison W. Lynn Beason Andreas A. Polycarpou

December 2017

Major Subject: Mechanical Engineering

Copyright 2017 Min Zhang

#### ABSTRACT

This research documents the development of a 2-phase annular-seal stand (2PASS) in the Turbomachinery Laboratory at Texas A&M University to investigate the static and dynamic characteristics of annular seals operating under 2-phase flow conditions. The 2PASS is modified from an existing air-annular seal test stand. It uses either spargers or a specially designed mixer to make a 2-phase flow, comprised of air and silicone oil (PSF-5cSt).

Smooth annular seals with (length L=57.785 mm and length-to-diameter ratio L/D=0.65) are tested in the centered position for three radial clearances ( $C_r=0.140$ , 0.163, and 0.188 mm) with zero intentional pre-swirl. Due to the difficulties in making homogeneous mixtures over the gas-volume fraction (GVF) range from 10% to 92%, tests are performed at pure- and mainly-oil conditions (GVF $\leq 10\%$ ) and pure- and mainly-air conditions (92% $\leq$ GVF $\leq 100\%$ ), respectively. Under pure- and mainly-oil conditions, tests are conducted at exit pressure  $P_e=6.9$  bars, rotor speed  $\omega=5$ , 7.5, 10, and 15 krpm, pressure drop PD=31, 37.9, and 48.3 bars, and inlet GVF=0%, 2%, 4%, 6%, 8%, and 10%. At pure- and mainly-air conditions, tests are performed at inlet pressure  $P_i=62$  bars,  $\omega=10$ , 15, and 20 krpm, pressure ratio PR=0.57, 0.5, and 0.43, and inlet GVF=100%, 98%, 95%, and 92%. Leakage mass flow rate  $\dot{m}$  and rotordynamic coefficients are measured, and the effects of changing inlet GVF,  $C_r$ , PD (or PR), and  $\omega$  are studied.

Test results show that adding fine air bubbles into the oil flow does not significantly change  $\dot{m}$ , but remarkably influences the seal's rotordynamic performance. Increasing inlet GVF from zero to 10% generally decreases direct stiffness K when  $C_r$ =0.163 and 0.140 mm, but increases K when PD=31 and 37.9 bars and  $C_r$ =0.188 mm. As K drops to a large enough negative value, the seal stator's 1<sup>st</sup> natural frequency drops significantly, causing a subsynchronous vibration (instability at the stator's 1<sup>st</sup> damped natural frequency), preventing further tests. Increasing inlet GVF from zero to 10% has little effect on effective damping  $C_{eff}$  and does not change the seal's stabilizing force when  $C_r$ =0.188 mm, but generally increases  $C_{eff}$  and makes the seal more stabilizing when  $C_r$ =0.163 and 0.140 mm.

For all three clearances under pure- and mainly-air conditions,  $\dot{m}$  drops slightly (by less than 6%) as inlet GVF decreases from 100% to 98%, and then increases (by about 45%) with further decreasing inlet GVF to 92%. The oil presence in the air stream significantly impacts the seal's rotordynamic characteristics. Direct dynamic stiffness  $K_{\Omega}$  is frequency dependent and

generally increases as  $\Omega$  increases, especially after injecting oil. As inlet GVF decreases from 100% to 92%,  $K_{\Omega}$  generally decreases except that it increases as inlet GVF decreases from 100% to 98% in the following circumstances: (1) cases with PR=0.43 and  $C_r$ =0.188 mm, and (2) the case with PR=0.43,  $\omega$ =20 krpm, and  $C_r$ =0.163 mm. Decreasing the seal's  $K_{\Omega}$  would decrease the critical speed of the rotor in a centrifugal compressor.

As  $\Omega$  increases,  $C_{eff}$  changes from negative (destabilizing) to positive (stabilizing) at  $\Omega_c$ (the cross-over frequency).  $\Omega_c$  is of great interest to the system stability. Injecting oil into the air stream increases  $\Omega_c$ , making the seal less stabilizing. Increasing  $C_r$  from 0.140 to 0.188 mm decreases  $\Omega_c$ , making the seal more stabilizing. However, an immediate disadvantage is that  $\dot{m}$ increases significantly (by about 58%) as  $C_r$  increases from 0.140 to 0.188 mm.

A program developed by San Andrés based on a bulk-flow model and the Moody friction model with isothermal and homogeneous-mixture assumptions produces predictions to compare with test results. For all three clearances at pure- and mainly-oil conditions, the program reasonably predicts  $\dot{m}$  and  $C_{eff}$ . For most cases, K predictions are not close to test results. In a centrifugal pump, the poor agreement in K leads to prediction inaccuracy in the rotor's critical speed.

For all three clearances at pure- and mainly-air conditions, the program adequately predicts  $\dot{m}$ . Predicted  $K_{\Omega}$  values are close to test results only under pure-air conditions when PR=0.5 and 0.57. For all other test conditions,  $K_{\Omega}$  predictions are larger than measured, and the difference decreases as  $\Omega$  increases due to the frequency dependence of  $K_{\Omega}$ . In a centrifugal compressor, this discrepancy would mean that the rotor's critical speed would be lower than predicted.  $\Omega_c$  predictions agree with measurements when inlet GVF=100% and 98%, but are larger than measured results (by more than 37.1%) when inlet GVF=95% and 92%. Therefore, when inlet GVF=95% and 92%, the seal is more stabilizing than predicted. DEDICATION

This dissertation work is dedicated to my family.

### ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere thanks to Dr. Childs for giving me the opportunity to work at the Turbomachinery Laboratory, and his invaluable support and guidance in my research.

I would also like to thank Dr. San Andrés, Dr. Morrison, and Dr. Beason for graciously serving on my committee.

Sincere thanks to Stephen Phillips for the technical support on the test cell, and Ray Mathews for the help in the machine shop.

Special thanks to fellow graduate research assistants James Mclean, Jan Soto, Dung Tran, Hari Shrestha, J.J. Thiele, Andrew Crandall, Stephen Arthur, and Mauricio Ramirez. Many thanks to the undergraduate assistants Keaton Hruzek and Kyle Miller.

Finally, I want to thank my parents and wife for their unfailing love and support.

### CONTRIBUTORS AND FUNDING SOURCES

### Contributors

This work was supervised by a dissertation committee consisting of Professor Dara W. Childs, Professor Luis A. San Andrés, and Professor Gerald L. Morrison of the Department of Mechanical Engineering and Professor W. Lynn Beason of the Department of Civil Engineering.

The test rig described in Section 3 was completed by the student, in collaboration with James E. Mclean Jr. of the Department of Mechanical Engineering. All other work conducted for the dissertation was completed by the student independently.

#### **Funding Sources**

A consortium of private corporations in the oil and gas and compressor manufacturers provided funds plus direct funding from the Turbomachinery Laboratory.

### NOMENCLATURE

| $a_m, b_m, c_m, e_m$  | Coefficients in Moody's friction factor formula [-]                                |
|-----------------------|------------------------------------------------------------------------------------|
| $A_{ij}$              | Fourier transforms of the stator acceleration in $i$ direction due to a shake      |
|                       | in j direction $[L/T^2]$                                                           |
| С                     | Cross-coupled damping [FT/L]                                                       |
| С                     | Direct damping [FT/L]                                                              |
| $C_{e\!f\!f}$         | Effective damping [FT/L]                                                           |
| $C_{ij}$              | Damping coefficients [FT/L]                                                        |
| $C_r$                 | Seal radial clearance [L]                                                          |
| D                     | Seal inner diameter [L]                                                            |
| $D_r$                 | Rotor diameter [L]                                                                 |
| $\boldsymbol{D}_{ij}$ | Fourier transforms of the relative displacement of the stator to the rotor         |
|                       | in <i>i</i> direction due to a shake in <i>j</i> direction [L]                     |
| $ek_{\Omega}$         | The uncertainty of cross-coupled dynamic stiffness $k_{\Omega}$ [F/L]              |
| $eK_{\Omega}$         | The uncertainty of direct dynamic stiffness $K_{\Omega}$ [F/L]                     |
| $f_r, f_s$            | Moody's friction factors on the rotor and stator surfaces [-]                      |
| $f_{sX}, f_{sY}$      | Seal's reaction forces acting on the rotor in X and Y directions [F]               |
| $f_z$                 | Axial friction factor [-]                                                          |
| $F_{ij}$              | Fourier transforms of the excitation force in <i>i</i> direction due to a shake in |
|                       | j direction [F]                                                                    |
| $F_r$                 | The radial component of the seal's reaction force [F]                              |
| $F_{\theta}$          | The circumferential component of the seal's reaction force [F]                     |
| GVF                   | Gas-volume fraction, defined by Eq. (12) [-]                                       |
| $H_{ij}$              | Complex dynamic stiffness coefficients introduced in Eq. (19) [F/L]                |
| k                     | Cross-coupled stiffness [F/L]                                                      |
| $\overline{k}$        | The mean of the cross-coupled dynamic stiffness $k_{\Omega}$ [F/L]                 |
| $k_r, k_s$            | Turbulent shear parameters on the rotor and stator surfaces [-]                    |
| $k_z$                 | Axial flow shear parameter [-]                                                     |
| $k_{\Omega}$          | Cross-coupled dynamic stiffness [F/L]                                              |
| Κ                     | Direct stiffness [F/L]                                                             |

| $K_{ij}$            | Stiffness coefficients [F/L]                                                    |
|---------------------|---------------------------------------------------------------------------------|
| $K_{\Omega}$        | Direct dynamic stiffness [F/L]                                                  |
| L                   | Seal length [L]                                                                 |
| $m_q$               | Cross-coupled virtual-mass [M]                                                  |
| 'n                  | Leakage mass flow rate [M/T]                                                    |
| М                   | Direct virtual-mass [M]                                                         |
| $M_{ij}$            | Virtual-mass coefficients [M]                                                   |
| $[M_S]$             | Stator-mass coefficient matrix [M]                                              |
| $M_{Sij}$           | Mass coefficients of the stator assembly [M]                                    |
| Р                   | Pressure [F/L <sup>2</sup> ]                                                    |
| PD                  | Pressure drop, PD=inlet pressure $P_i$ -exit pressure $P_e$ [F/L <sup>2</sup> ] |
| $P_{gi}$            | Gas pressure at seal inlet [F/L <sup>2</sup> ]                                  |
| PR                  | Pressure ratio, $PR=P_i/P_e$ [-]                                                |
| $P_V$               | Liquid vapor pressure [F/L <sup>2</sup> ]                                       |
| Q                   | Volume flow rate $[L^3/T]$                                                      |
| $r_r, r_s$          | Mean surface roughness at rotor and stator [L]                                  |
| Re                  | Reynolds number [-]                                                             |
| $Re_a$              | Axial Reynolds number [-]                                                       |
| $Re_r, Re_s$        | Reynolds numbers relative to the rotor and stator surfaces [-]                  |
| $Re_{\theta}$       | Circumferential Reynolds number [-]                                             |
| $R_g$               | Gas constant [-]                                                                |
| S                   | Liquid surface tension per unit length [F/L]                                    |
| $t_e$               | Excitation time [T]                                                             |
| Т                   | Temperature [T]                                                                 |
| $u_0(0)$            | Pre-swirl ratio [-]                                                             |
| V <sub>a</sub>      | Axial bulk-flow velocity [L/T]                                                  |
| $V_{	heta}$         | Circumferential bulk-flow velocity [L/T]                                        |
| $V_{\theta 0}$      | Circumferential velocity of the fluid at the seal inlet [L/T]                   |
| WFR                 | Whirl Frequency Ratio [-]                                                       |
| <i>x</i> , <i>y</i> | Relative displacements of the stator to the rotor in $X$ and $Y$ directions [L] |
| $\epsilon_0$        | Static eccentricity ratio [-]                                                   |
| μ                   | Viscosity [FT/L <sup>2</sup> ]                                                  |
|                     |                                                                                 |

| ξ          | Empirical entrance loss coefficient [-]                        |
|------------|----------------------------------------------------------------|
| ρ          | Density [M/L <sup>3</sup> ]                                    |
| $	au_z$    | Axial wall shear stress function $[F/L^2]$                     |
| ω          | Rotor speed [T <sup>-1</sup> ]                                 |
| Ω          | Excitation frequency [T <sup>-1</sup> ]                        |
| Subscripts |                                                                |
| Х, Ү       | X and Y directions of the coordinate system defined in Fig. 20 |
| е          | Seal exit condition                                            |
| i          | Seal inlet condition                                           |
| l          | Liquid component                                               |
| g          | Gas component                                                  |
| Acronyms   |                                                                |
| ESP        | Electrical Submersible Pump                                    |
| GOR        | Gas/Oil Ratio                                                  |
| GVF        | Gas-Volume Fraction                                            |
| LGMR       | Liquid/Gas Mass Ratio                                          |
| LVF        | Liquid-Volume Fraction, LVF=1-GVF                              |
| OSI        | Onset Speed of Instability                                     |
| P&ID       | Piping and Instrumentation Diagram                             |
| 2PASS      | 2-Phase Annular-Seal Stand                                     |

## TABLE OF CONTENTS

|                                                                                                                                                     | Page                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| ABSTRACT                                                                                                                                            | ii                                                             |
| DEDICATION                                                                                                                                          | iv                                                             |
| ACKNOWLEDGEMENTS                                                                                                                                    | V                                                              |
| CONTRIBUTORS AND FUNDING SOURCES                                                                                                                    | vi                                                             |
| NOMENCLATURE                                                                                                                                        | vii                                                            |
| TABLE OF CONTENTS                                                                                                                                   | x                                                              |
| LIST OF FIGURES                                                                                                                                     | xii                                                            |
| LIST OF TABLES                                                                                                                                      | xvi                                                            |
| 1. INTRODUCTION                                                                                                                                     | 1                                                              |
| <ul> <li>1.1 Wet-Gas Compression</li> <li>1.2 Multiphase Pumps</li> <li>1.3 Cryogenic Annular Seals</li> <li>1.4 Two-Phase Annular Seals</li> </ul> | 4<br>9<br>10<br>13                                             |
| 2. OBJECTIVES                                                                                                                                       | 18                                                             |
| 3. TEST RIG DESCRIPTION                                                                                                                             | 20                                                             |
| <ul> <li>3.1 Experimental Setup</li></ul>                                                                                                           | 21<br>22<br>22<br>23<br>24<br>24<br>26<br>30<br>31<br>35<br>35 |
| 4. EXPERIMENTAL PROCEDURE                                                                                                                           | 36                                                             |

| 4.1 Parameter Identification                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. EXPERIMENTAL RESULTS FOR PURE- AND MAINLY-OIL TESTING                                                                                                                                                                                                                    |
| 5.1 Test Matrix415.2 Reynolds Number.455.3 Leakage Mass Flow Rate485.4 Direct Stiffness515.5 Cross-Coupled Stiffness535.6 Direct Damping545.7 Cross-Coupled Damping565.8 Direct Virtual-Mass575.9 Cross-Coupled Virtual-Mass595.10 Effective Damping60                      |
| 6. EXPERIMENTAL RESULTS FOR PURE- AND MAINLY-AIR TESTING                                                                                                                                                                                                                    |
| 6.1 Sensitivity of Excitation Time on Parameter Identification646.2 Test Matrix666.3 Flow Conditions686.4 Leakage Mass Flow Rate686.5 Direct Dynamic Stiffness696.6 Cross-Coupled Dynamic Stiffness746.7 Direct Damping776.8 Effective Damping786.9 Cross-Coupled Damping84 |
| 7. SUMMARY                                                                                                                                                                                                                                                                  |
| 7.1 Pure- and Mainly-Oil Conditions867.2 Pure- and Mainly-Air Conditions88                                                                                                                                                                                                  |
| REFERENCES                                                                                                                                                                                                                                                                  |
| APPENDIX A97                                                                                                                                                                                                                                                                |
| APPENDIX B112                                                                                                                                                                                                                                                               |
| APPENDIX C                                                                                                                                                                                                                                                                  |
| APPENDIX D127                                                                                                                                                                                                                                                               |

### LIST OF FIGURES

| Pa                                                                                                                                                                                                 | ge |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1. Seal's reaction forces on a forward precessing rotor                                                                                                                                     | 2  |
| Figure 2. Effects of two-phase flow on the compressor's vibration (horizontal component), measured at the driven-end of the machine (9651 rpm and 30 bars suction pressure) [5]                    | 5  |
| Figure 3. Typical waterfall plot of lateral vibrations at high flow region, ω=13.5 krpm, liquid-volume fraction LVF=1-GVF, GVF changes from 97% to 100% [10]                                       | 8  |
| Figure 4. Time averaged circumferential velocity contour plot of the liquid in the PDS cavities, seal inlet GVF=70% (rotor rotating from left to right, and fluid flowing from bottom to top) [10] | 9  |
| Figure 5. Predicted effects of GVF on power loss [6]                                                                                                                                               | 14 |
| Figure 6. Predicted effects of GVF on stiffness and damping coefficients [6]                                                                                                                       | 15 |
| Figure 7. Measurements and predictions of mass flow rate (liquid-volume fraction=<br>1-GVF, GVF at seal inlet decreases from 100% to zero) [24]                                                    | 16 |
| Figure 8. Piping and instrumentation diagram of the 2PASS [27]                                                                                                                                     | 21 |
| Figure 9. P&ID of mainly-oil mixing section                                                                                                                                                        | 23 |
| Figure 10. Section view and flow illustration of the oil-gas mixer [27]                                                                                                                            | 24 |
| Figure 11. Gas-oil mixer with an acrylic mixing chamber                                                                                                                                            | 25 |
| Figure 12. Cross-section view of the test section [27]                                                                                                                                             | 27 |
| Figure 13. 3-D model of the stator assembly                                                                                                                                                        | 28 |
| Figure 14. Photograph of the test section [27]                                                                                                                                                     | 28 |
| Figure 15. Section view of the stator assembly [27]                                                                                                                                                | 29 |
| Figure 16. Cross-section of the zero pre-swirl guide insert [27]                                                                                                                                   | 30 |
| Figure 17. Pitot tube and static pressure orifice                                                                                                                                                  | 30 |

| Figure 18. Silicone oils' viscosities under shear [33]                                                                                                                                          | 2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 19. Test smooth seal (dimensions are in inches)                                                                                                                                          | 5 |
| Figure 20. <i>X-Y</i> coordinate system [27]                                                                                                                                                    | 5 |
| Figure 21. Real parts of complex dynamic stiffness coefficients for a baseline test37                                                                                                           | 7 |
| Figure 22. The (a) real and (b) imaginary parts of $H_{ij}$ for a typical mainly-oil case (PD=31 bars, $C_r$ =0.188 mm, inlet GVF=4%, and $\omega$ =15 krpm) after subtracting baseline data    | 0 |
| Figure 23. Vibration spectra plots of y when PD=48.3 bars and $C_r$ =0.140 mm for (a) inlet GVF=0%, (b) inlet GVF=2%, and (c) inlet GVF=4%42                                                    | 2 |
| Figure 24. Calculated <i>Re<sub>i</sub></i> under pure- or mainly-oil conditions                                                                                                                | 5 |
| Figure 25. Calculated $Re_e$ under pure- or mainly-oil conditions                                                                                                                               | 5 |
| Figure 26. Axial and circumferential Reynolds numbers48                                                                                                                                         | 3 |
| Figure 27. Measured <i>m</i> vs. inlet GVF under pure- or mainly-oil conditions                                                                                                                 | 9 |
| Figure 28. Measured <i>K</i> vs. inlet GVF under pure- or mainly-oil conditions                                                                                                                 | 2 |
| Figure 29. Measured $k$ vs. inlet GVF under pure- or mainly-oil conditions                                                                                                                      | 4 |
| Figure 30. Measured C vs. inlet GVF under pure- or mainly-oil conditions                                                                                                                        | 5 |
| Figure 31. Measured $c$ vs. inlet GVF under pure- or mainly-oil conditions                                                                                                                      | 7 |
| Figure 32. Measured <i>M</i> vs. inlet GVF under pure- or mainly-oil conditions                                                                                                                 | 9 |
| Figure 33. Measured $m_q$ vs. inlet GVF under pure- or mainly-oil conditions60                                                                                                                  | ) |
| Figure 34. Measured $C_{eff}$ vs. inlet GVF under pure- or mainly-oil conditions                                                                                                                | 1 |
| Figure 35. The (a) real and (b) imaginary parts of $H_{ij}$ for a typical mainly-air case (PR=0.57, $C_r$ =0.188 mm, inlet GVF=95%, and $\omega$ =15 krpm) after subtracting baseline data [27] | 3 |
| Figure 36. Variation of $K_{\Omega}$ with $t_e$ when PR=0.57, $C_r$ =0.188 mm, inlet GVF=95%, and $\omega$ =15 krpm                                                                             | 4 |

| Figure 37. Variation of $eK_{\Omega}/K_{\Omega}$ with $t_e$ when PR=0.57, $C_r$ =0.188 mm, inlet GVF=95%, and $\omega$ =15 krpm  |
|----------------------------------------------------------------------------------------------------------------------------------|
| Figure 38. Variation of $k_{\Omega}$ with $t_e$ when PR=0.57, $C_r$ =0.188 mm, inlet GVF=95%, and $\omega$ =15 krpm              |
| Figure 39. Variation of $ek_{\Omega}/k_{\Omega}$ with $t_e$ when PR=0.57, $C_r$ =0.188 mm, inlet GVF= 95%, and $\omega$ =15 krpm |
| Figure 40. Measured <i>m</i> versus inlet GVF under pure- or mainly-air conditions                                               |
| Figure 41. Measured $K_{\Omega}$ under pure- or mainly-air conditions at $C_r=0.188$ mm71                                        |
| Figure 42. Measured $K_{\Omega}$ under pure- or mainly-air conditions at $C_r=0.163$ mm72                                        |
| Figure 43. Measured $K_{\Omega}$ at $C_r$ =0.140 mm for (a) PR=0.5 and (b) PR=0.4373                                             |
| Figure 44. Measured $k_{\Omega}$ under pure- or mainly-air conditions at $C_r=0.188$ mm75                                        |
| Figure 45. Measured $\bar{k}$ versus inlet GVF under pure- or mainly-air conditions77                                            |
| Figure 46. Measured C versus inlet GVF under pure- or mainly-air conditions                                                      |
| Figure 47. Measured $C_{eff}$ under pure- or mainly-oil conditions at $C_r=0.188$ mm80                                           |
| Figure 48. Measured $C_{eff}$ under pure- or mainly-oil conditions at $C_r=0.163$ mm                                             |
| Figure 49. Measured $C_{eff}$ at $C_r$ =0.140 mm for (a) PR=0.5 and (b) PR=0.4383                                                |
| Figure 50. Measured <i>c</i> versus inlet GVF under pure- or mainly-air conditions                                               |
| Figure 51. Predictions and measurements of <i>m</i> under pure- and mainly-oil conditions                                        |
| Figure 52. Predictions and measurements of <i>K</i> under pure- and mainly-oil conditions                                        |
| Figure 53. Predictions and measurements of <i>k</i> under pure- and mainly-oil conditions                                        |
| Figure 54. Predictions and measurements of <i>C</i> under pure- and mainly-oil conditions                                        |

| Figure 55. Predictions and measurements of <i>c</i> under pure- and mainly-oil conditions                                      |
|--------------------------------------------------------------------------------------------------------------------------------|
| Figure 56. Flow regions for predictions. Reproduced from Delgado [47]107                                                       |
| Figure 57. Predictions and measurements of <i>M</i> under pure- and mainly-oil conditions                                      |
| Figure 58. Predictions and measurements of $m_q$ under pure- and mainly-oil conditions                                         |
| Figure 59. Predictions and measurements of $C_{eff}$ under pure- and mainly-oil conditions                                     |
| Figure 60. Predictions and measurements of <i>m</i> versus inlet GVF114                                                        |
| Figure 61. Predictions and measurements of $K_{\Omega}$ at $C_r=0.188$ mm [27]116                                              |
| Figure 62. Variation of $K_{\Omega}$ with $C_r$ when PR=0.5 and $\omega$ =20 krpm for (a) inlet GVF=100% and (b) inlet GVF=98% |
| Figure 63. Predictions and measurements of $\overline{k}$                                                                      |
| Figure 64. Predictions and measurements of C versus inlet GVF120                                                               |
| Figure 65. Predictions and measurements of $C_{eff}$ when $C_r$ =0.188 mm, PR=0.5, and $\omega$ =15 krpm [27]                  |
| Figure 66. Variation of $\Omega_c$ with $C_r$ when PR=0.5, $\omega$ =10 krpm, and inlet GVF=98%123                             |
| Figure 67. Predictions and measurements of <i>c</i> versus inlet GVF124                                                        |

## LIST OF TABLES

| Page                                                                                       |
|--------------------------------------------------------------------------------------------|
| Table 1. Properties of the sparger                                                         |
| Table 2. Properties of the spray nozzle    25                                              |
| Table 3. Static uncertainties for volume/mass flow rates and oil density                   |
| Table 4. Static uncertainties for instruments in the test section [31]                     |
| Table 5. Silicone oil specifications and data [34]                                         |
| Table 6. Resultant test matrix under pure- and mainly-oil conditions       43              |
| Table 7. Measured pre-swirl ratios under pure- and mainly-oil conditions       44          |
| Table 8. Uncertainties of measured pre-swirl ratios under pure- and mainly-oil conditions  |
| Table 9. Resultant test matrix under pure- and mainly-air conditions    67                 |
| Table 10. Measured pre-swirl ratios under pure- and mainly-air conditions       67         |
| Table 11. Uncertainties of measured pre-swirl ratios under pure- and mainly-air conditions |
| Table 12. $\Omega_c$ values for pure- and mainly-air cases at $C_r=0.188$ mm               |
| Table 13. $\Omega_c$ values for pure- and mainly-air cases at $C_r=0.163$ mm               |
| Table 14. $\Omega_c$ values for pure- and mainly-air cases at PR=0.5 and $C_r$ =0.140 mm83 |
| Table 15. $\Omega_c$ values for pure-air cases at PR=0.43 and $C_r$ =0.140 mm              |
| Table 16. Input variables needed for predictions at pure- and mainly-oil conditions97      |
| Table 17. Input variables needed for predictions at pure- and mainly-air conditions112     |
| Table 18. $\Omega_c$ values for pure- and mainly-air cases at $C_r=0.188$ mm               |
| Table 19. Measured inlet and exit temperatures for pure- and mainly-oil cases              |
| Table 20. Measured inlet and exit temperatures for pure- and mainly-air cases              |

| Table 21. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%    | 127 |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| Table 22. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%.   | 127 |
| Table 23. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=4%.   | 128 |
| Table 24. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=6%    | 128 |
| Table 25. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%    | 129 |
| Table 26. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%   | 129 |
| Table 27. Raw data for the test seal at $\omega$ =7.5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%  | 130 |
| Table 28. Raw data for the test seal at $\omega$ =7.5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%  | 130 |
| Table 29. Raw data for the test seal at $\omega$ =7.5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=4%  | 131 |
| Table 30. Raw data for the test seal at $\omega$ =7.5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=6%  | 131 |
| Table 31. Raw data for the test seal at $\omega$ =7.5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%  | 132 |
| Table 32. Raw data for the test seal at $\omega$ =7.5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10% | 132 |
| Table 33. Raw data for the test seal at $\omega$ =10 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%   | 133 |
| Table 34. Raw data for the test seal at $\omega$ =10 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%   | 133 |
| Table 35. Raw data for the test seal at $\omega$ =10 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=4%   | 134 |
|                                                                                                                             |     |

| Table 36. Raw data for the test seal at $\omega$ =10 krpm, PD=48.3 bars, $C_r$ =0.188 mm, and inlet GVF=6%                    |
|-------------------------------------------------------------------------------------------------------------------------------|
| Table 37. Raw data for the test seal at $\omega$ =10 krpm, PD=48.3 bars, $C_r$ =0.188 mm, and inlet GVF=8%                    |
| Table 38. Raw data for the test seal at $\omega$ =10 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%    |
| Table 39. Raw data for the test seal at $\omega$ =15 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%136  |
| Table 40. Raw data for the test seal at $\omega$ =15 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%136  |
| Table 41. Raw data for the test seal at $\omega$ =15 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=4%137  |
| Table 42. Raw data for the test seal at $\omega$ =15 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=6%137  |
| Table 43. Raw data for the test seal at $\omega$ =15 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%     |
| Table 44. Raw data for the test seal at $\omega$ =15 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%    |
| Table 45. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=4%                     |
| Table 46. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=6%139                  |
| Table 47. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%140   |
| Table 48. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%140  |
| Table 49. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%141 |
| Table 50. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%141 |
|                                                                                                                               |

| Table 51. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=4%142 |
|-------------------------------------------------------------------------------------------------------------------------------|
| Table 52. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=6%142 |
| Table 53. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=8%                   |
| Table 54. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%   |
| Table 55. Raw data for the test seal at $\omega$ =10 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=0%144                 |
| Table 56. Raw data for the test seal at $\omega$ =10 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=2%144                 |
| Table 57. Raw data for the test seal at $\omega$ =10 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=4%145                 |
| Table 58. Raw data for the test seal at $\omega$ =10 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=6%145                 |
| Table 59. Raw data for the test seal at $\omega$ =10 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=8%146                 |
| Table 60. Raw data for the test seal at $\omega$ =10 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=10%146                |
| Table 61. Raw data for the test seal at $\omega$ =15 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=0%147                 |
| Table 62. Raw data for the test seal at $\omega$ =15 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%147  |
| Table 63. Raw data for the test seal at $\omega$ =15 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=4%                    |
| Table 64. Raw data for the test seal at $\omega$ =15 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=6%148                 |
| Table 65. Raw data for the test seal at $\omega$ =15 krpm, PD=37.9 bars, $C_r$ =0.188 mm, and inlet GVF=8%149                 |
|                                                                                                                               |

| Table 66. Raw data for the test seal at $\omega$ =15 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%149 |
|-------------------------------------------------------------------------------------------------------------------------------|
| Table 67. Raw data for the test seal at ω=5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=6%                |
| Table 68. Raw data for the test seal at ω=5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%                |
| Table 69. Raw data for the test seal at ω=5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%               |
| Table 70. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%151   |
| Table 71. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%152   |
| Table 72. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, $C_r$ =0.188 mm, and inlet GVF=4%152                  |
| Table 73. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, $C_r$ =0.188 mm, and inlet GVF=6%153                  |
| Table 74. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%153   |
| Table 75. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%154  |
| Table 76. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%154    |
| Table 77. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%155    |
| Table 78. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=4%155    |
| Table 79. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=6%156    |
| Table 80. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%156    |

| Table 81. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%    |
|-----------------------------------------------------------------------------------------------------------------------------|
| Table 82. Raw data for the test seal at $\omega$ =15 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=0%157  |
| Table 83. Raw data for the test seal at $\omega$ =15 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=2%158  |
| Table 84. Raw data for the test seal at $\omega$ =15 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=4%158  |
| Table 85. Raw data for the test seal at $\omega$ =15 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=6%159  |
| Table 86. Raw data for the test seal at $\omega$ =15 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=8%     |
| Table 87. Raw data for the test seal at $\omega$ =15 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=10%    |
| Table 88. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, $C_r$ =0.163 mm, and inlet GVF=0%                     |
| Table 89. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=2%      |
| Table 90. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=4%      |
| Table 91. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=6%      |
| Table 92. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=0%162 |
| Table 93. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=2%163 |
| Table 94. Raw data for the test seal at $\omega$ =5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=0%163 |
| Table 95. Raw data for the test seal at $\omega$ =5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=2%    |
|                                                                                                                             |

| Table 96. Raw data for the test seal at $\omega$ =5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=4%       |
|--------------------------------------------------------------------------------------------------------------------------------|
| Table 97. Raw data for the test seal at $\omega$ =5 krpm, PD=24.1 bars, $C_r$ =0.163 mm, and inlet GVF=6%                      |
| Table 98. Raw data for the test seal at $\omega$ =5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=8%       |
| Table 99. Raw data for the test seal at $\omega$ =5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=10%      |
| Table 100. Raw data for the test seal at $\omega$ =7.5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=0%    |
| Table 101. Raw data for the test seal at $\omega$ =7.5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=2%167 |
| Table 102. Raw data for the test seal at $\omega$ =7.5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=4%167 |
| Table 103. Raw data for the test seal at $\omega$ =7.5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=6%    |
| Table 104. Raw data for the test seal at $\omega$ =7.5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=8%    |
| Table 105. Raw data for the test seal at $\omega$ =7.5 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=10%   |
| Table 106. Raw data for the test seal at $\omega$ =10 krpm, PD=24.1 bars, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=0%169  |
| Table 107. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0%170   |
| Table 108. Raw data for the test seal at $\omega$ =5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=2%170   |
| Table 109. Raw data for the test seal at $\omega$ =7.5 krpm, PD=48.3 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0%171 |
| Table 110. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0%171   |

| Table 111. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=2%   | 172 |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| Table 112. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=4%   | 172 |
| Table 113. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=6%   | 173 |
| Table 114. Raw data for the test seal at $\omega$ =5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=8%   | 173 |
| Table 115. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0% | 174 |
| Table 116. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=2% | 174 |
| Table 117. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=4% | 175 |
| Table 118. Raw data for the test seal at $\omega$ =7.5 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=6% | 175 |
| Table 119. Raw data for the test seal at $\omega$ =10 krpm, PD=37.9 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0%  | 176 |
| Table 120. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0%     | 176 |
| Table 121. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=2%     | 177 |
| Table 122. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=4%     | 177 |
| Table 123. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=6%     | 178 |
| Table 124. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=8%     | 178 |
| Table 125. Raw data for the test seal at $\omega$ =5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=10%    | 179 |

| Table 126. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0%179 |
|------------------------------------------------------------------------------------------------------------------------------|
| Table 127. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=2%    |
| Table 128. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=4%    |
| Table 129. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=6%    |
| Table 130. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=8%    |
| Table 131. Raw data for the test seal at $\omega$ =7.5 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=10%   |
| Table 132. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=0%     |
| Table 133. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=2%     |
| Table 134. Raw data for the test seal at $\omega$ =10 krpm, PD=31 bars, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=4%     |
| Table 135. Raw data for the test seal at $\omega$ =10 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%      |
| Table 136. Raw data for the test seal at $\omega$ =10 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%       |
| Table 137. Raw data for the test seal at $\omega$ =10 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%       |
| Table 138. Raw data for the test seal at $\omega$ =10 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%       |
| Table 139. Raw data for the test seal at $\omega$ =15 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%      |
| Table 140. Raw data for the test seal at $\omega$ =15 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%186    |
|                                                                                                                              |

| Table 141. Raw data for the test seal at $\omega$ =15 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%187 |
|---------------------------------------------------------------------------------------------------------------------------|
| Table 142. Raw data for the test seal at $\omega$ =15 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%    |
| Table 143. Raw data for the test seal at $\omega$ =20 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%   |
| Table 144. Raw data for the test seal at $\omega$ =20 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%    |
| Table 145. Raw data for the test seal at $\omega$ =20 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%    |
| Table 146. Raw data for the test seal at $\omega$ =20 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%189 |
| Table 147. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%190 |
| Table 148. Raw data for the test seal at ω=10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%190          |
| Table 149. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%     |
| Table 150. Raw data for the test seal at ω=10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%191          |
| Table 151. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%192 |
| Table 152. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%     |
| Table 153. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%     |
| Table 154. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%     |
| Table 155. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%194 |
|                                                                                                                           |

| Table 156. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%194   |
|----------------------------------------------------------------------------------------------------------------------------|
| Table 157. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%      |
| Table 158. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%      |
| Table 159. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%196 |
| Table 160. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%     |
| Table 161. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%     |
| Table 162. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%     |
| Table 163. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%198 |
| Table 164. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%     |
| Table 165. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%     |
| Table 166. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%     |
| Table 167. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=100%200 |
| Table 168. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=98%     |
| Table 169. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=95%201  |
| Table 170. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.188 mm, and inlet GVF=92%201  |
|                                                                                                                            |

| 202 | Table 171. Raw data for the test seal at $\omega$ =10 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%  |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 202 | Table 172. Raw data for the test seal at $\omega$ =15 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%. |
| 203 | Table 173. Raw data for the test seal at $\omega$ =20 krpm, PR=0.57, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%  |
| 203 | Table 174. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%   |
| 204 | Table 175. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=98%    |
| 204 | Table 176. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=95%    |
| 205 | Table 177. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=92%    |
| 205 | Table 178. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%   |
| 206 | Table 179. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=98%    |
| 206 | Table 180. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=95%    |
| 207 | Table 181. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=92%    |
| 207 | Table 182. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%   |
| 208 | Table 183. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=98%    |
| 208 | Table 184. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=95%    |
| 209 | Table 185. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=92%    |
|     |                                                                                                                          |

| Table 186. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, $C_r$ =0.163 mm, and inlet GVF=100%209                |
|----------------------------------------------------------------------------------------------------------------------------|
| Table 187. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=98%     |
| Table 188. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=95%     |
| Table 189. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=92%     |
| Table 190. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%    |
| Table 191. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=98%     |
| Table 192. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=95%     |
| Table 193. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=92%     |
| Table 194. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=100%213 |
| Table 195. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=98%     |
| Table 196. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=95%     |
| Table 197. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.163 mm, and inlet GVF=92%     |
| Table 198. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=100%215  |
| Table 199. Raw data for the test seal at $\omega$ =10 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=98%216   |
| Table 200. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=100%216  |
|                                                                                                                            |

| Table 201. Raw data for the test seal at $\omega$ =15 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=98%   | 217 |
|-------------------------------------------------------------------------------------------------------------------------|-----|
| Table 202. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=100%  | 217 |
| Table 203. Raw data for the test seal at $\omega$ =20 krpm, PR=0.5, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=98%   | 218 |
| Table 204. Raw data for the test seal at $\omega$ =10 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=100% | 218 |
| Table 205. Raw data for the test seal at $\omega$ =15 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=100% | 219 |
| Table 206. Raw data for the test seal at $\omega$ =20 krpm, PR=0.43, <i>C<sub>r</sub></i> =0.140 mm, and inlet GVF=100% | 219 |

#### **1. INTRODUCTION**

Centrifugal pumps use smooth annular seals to minimize the leakage from high pressure areas to low pressure areas and increase efficiencies. The geometry of a smooth seal is similar to that of a plain journal bearing; however, the pressure distribution in a smooth seal is different. The axial leakage flow experiences a sudden pressure drop at the seal inlet. In combination with the pressure drop through the seal due to wall friction, this gives rise to a centering force, known as the "Lomakin effect". The "Lomakin effect" may produce large centering forces on the rotor and significantly affect the rotordynamic characteristics of a centrifugal pump. Rotor speed  $\omega$ , pre-swirl ratio  $u_0(0)$ , and other factors also influence the seal forces.

Childs [1] gives the following reaction force model for seal forces:

$$-\begin{cases} f_{sX} \\ f_{sY} \end{cases} = \begin{bmatrix} K_{XX} & K_{XY} \\ K_{YX} & K_{YY} \end{bmatrix} \begin{cases} x \\ y \end{cases} + \begin{bmatrix} C_{XX} & C_{XY} \\ C_{YX} & C_{YY} \end{bmatrix} \begin{cases} \dot{x} \\ \dot{y} \end{cases} + \begin{bmatrix} M_{XX} & M_{XY} \\ M_{YX} & M_{YY} \end{bmatrix} \begin{cases} \ddot{x} \\ \ddot{y} \end{cases},$$
(1)

where  $f_{sX}$  and  $f_{sY}$  are the seal's reaction forces in X and Y directions,  $K_{XX}$  and  $K_{YY}$  represent the direct stiffness coefficients,  $K_{XY}$  and  $K_{YX}$  are the cross-coupled stiffness coefficients,  $C_{XX}$  and  $C_{YY}$  denote the direct damping coefficients,  $C_{XY}$  and  $C_{YX}$  are the cross-coupled damping coefficients,  $M_{XX}$  and  $M_{YY}$  denote the direct virtual-mass coefficients,  $M_{XY}$  and  $M_{YX}$  are the cross-coupled virtual-mass coefficients, x and y are the relative displacements of the stator to the rotor in X and Y directions,  $\dot{x}$  and  $\dot{y}$  are the relative velocities of the stator to the rotor in X and Y directions, and  $\ddot{x}$  and  $\ddot{y}$  are the relative accelerations of the stator to the rotor in X and Y directions. Stiffness, damping, and virtual-mass coefficients are rotordynamic coefficients, and they are generally functions of static eccentricity ratio  $\varepsilon_0$ .

Since the rotordynamic coefficients of a smooth seal under two-phase conditions may be functions of the excitation frequency  $\Omega$ , Eq. (1) becomes:

$$-\begin{cases} f_{sX} \\ f_{sY} \end{cases} = \begin{bmatrix} K_{XX}(\Omega) & K_{XY}(\Omega) \\ K_{YX}(\Omega) & K_{YY}(\Omega) \end{bmatrix} \begin{cases} x \\ y \end{cases} + \\ \begin{bmatrix} C_{XX}(\Omega) & C_{XY}(\Omega) \\ C_{YX}(\Omega) & C_{YY}(\Omega) \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} M_{XX}(\Omega) & M_{XY}(\Omega) \\ M_{YX}(\Omega) & M_{YY}(\Omega) \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix}$$
(2)

For small motion around the concentric position, the following assumptions simplify Eq.

(2):

$$K_{XX}(\Omega) = K_{YY}(\Omega) = K(\Omega), K_{XY}(\Omega) = -K_{YX}(\Omega) = k(\Omega),$$
  

$$C_{XX}(\Omega) = C_{YY}(\Omega) = C(\Omega), C_{XY}(\Omega) = -C_{YX}(\Omega) = c(\Omega),$$
  

$$M_{XX}(\Omega) = M_{YY}(\Omega) = M(\Omega), M_{XY}(\Omega) = -M_{YX}(\Omega) = m_q(\Omega),$$
(3)

where K is the direct stiffness, k is the cross-coupled stiffness, C is the direct damping, c is the cross-coupled damping, M is the direct virtual-mass,  $m_q$  is the cross-coupled virtual-mass.

Equation (2) becomes:

$$-\begin{cases} f_{sX} \\ f_{sY} \end{cases} = \begin{bmatrix} K(\Omega) & k(\Omega) \\ -k(\Omega) & K(\Omega) \end{bmatrix} \begin{cases} x \\ y \end{cases} + \begin{bmatrix} C(\Omega) & c(\Omega) \\ -c(\Omega) & C(\Omega) \end{bmatrix} \begin{cases} \dot{x} \\ \dot{y} \end{cases} + \begin{bmatrix} M(\Omega) & m_q(\Omega) \\ -m_q(\Omega) & M(\Omega) \end{bmatrix} \begin{cases} \ddot{x} \\ \ddot{y} \end{cases}$$
(4)

Figure 1 shows the reaction forces generated by a seal on a forward precessing (in the direction of shaft rotation) rotor.  $r_0$  is the radius of the small circular orbit around the concentric position. The radial force component  $F_r$  resists the radial motion of the rotor and defines the effective stiffness  $K_{eff}$  as

$$K_{eff} = \frac{F_r}{r_0} = K(\Omega) + c(\Omega)\Omega - M(\Omega)\Omega^2$$
(5)

The circumferential force component  $F_{\theta}$  defines the effective damping  $C_{eff}$ , which is an indicator of the seal's stabilizing capacity.

$$C_{eff} = \frac{F_{\theta}}{\Omega r_0} = -\frac{k(\Omega)}{\Omega} + C(\Omega) + m_q(\Omega)\Omega$$
(6)



Figure 1. Seal's reaction forces on a forward precessing rotor

Experimental studies exist for smooth annular seals operating under either gas or liquid conditions. In 1997, Marquette et al. [2] tested a smooth seal (length-to-diameter ratio L/D=0.45, seal inner diameter D=50.8 mm, and radial clearance  $C_r=0.11$  mm) at rotor speed  $\omega=10.2$ , 17.4, and 24.6 krpm, pressure drop PD=41.4, 55.2, and 68.9 bars, and multiple eccentricities (from zero to 0.5). The test fluid was water, and the flow was turbulent. For the concentric position, test results showed that direct stiffness increased as PD increased but decreased as  $\omega$  increased. Cross-coupled stiffness was not sensitive to changes in PD and (as expected) increased as  $\omega$  increased as  $\omega$  increased as PD increased but was not sensitive to changes in  $\omega$ . Direct virtual-mass was not sensitive to changes in either  $\omega$  or PD.

In 2004, Kerr [3] tested a set of smooth gas seals (L/D=0.73, D=117.2 mm,  $C_r=0.1$  and 0.2 mm) with inlet pressure  $P_i=70$  bars,  $\omega=10.2$ , 15.2, and 20.2 krpm, and no intentional prerotation of the fluid at the seal inlet. When  $C_r=0.1$  mm, pressure ratio PR=0.17 and 0.53. When  $C_r=0.2$  mm, PR=0.28, 0.39, and 0.48 and 0.65. Test results showed that direct stiffness generally increased as  $\Omega$  increased. Direct stiffness was invariant with changes in  $\omega$ , increased as PR increased, and decreased as  $C_r$  increased. The cross-over excitation frequency  $\Omega_c$ , at which effective damping increased from negative to positive, had a considerably impact on the system stability.  $\Omega_c$  increased as  $\omega$  increased, did not change discernibly as PR increased, and increased as  $C_r$  increased.

Current knowledge and technology are enough to guide the design of a single-phase smooth annular seal; however, some compressors and pumps must function under two-phase flow conditions. For example, Ransom et al. [4] note that centrifugal compressors handling natural gas must tolerate a small amount of liquid-carryover (gas-volume fraction GVF≥95%). The two-phase flow in a smooth annular seal not only decreases the machine efficiency but may also lead to vibration issues. For example, Brenne et al. [5] report sub-synchronous vibrations in a single-stage centrifugal compressor operating under a wet-gas condition with a GVF of 97%. Therefore, the effects of two-phase flow conditions on the performance of smooth annular seals must be investigated. The increased knowledge will help in designing multiphase turbomachines and avoiding problems in field operations.

Smooth seals are widely used in pumps, but they are never used in centrifugal compressors; however, test data are sorely needed to examine the correctness of predictions [6] for annular seals with 2-phase flow, and obtaining results for a smooth seal is an appropriate starting place.

#### 1.1 Wet-Gas Compression

In natural gas compression, there is always a small amount of liquid-carryover in the natural gas stream. Typically, scrubbers and separators purge the liquid components before the process stream enters the compressors. Natural gas applications, particularly offshore applications, do not favor systems with separation devices, because those devices are large. Wet-gas compression, one of the most important recent developments in centrifugal compressor technology, has developed to directly handle the liquid components without purging them by a separation system. Eliminating the separation system significantly reduces the size, weight, and cost of a gas compression system and makes wet-gas compressors more attractive to the oil & gas industry. However, the presence of the liquid phase in the gas stream may cause sub-synchronous vibrations and affect the mechanical vibration performance of a compressor, according to Brenne et al. [5]. The balance of this section provides an overview of the past and current research on the mechanical vibration performances of compressors operating under wet-gas conditions.

Vannini et al. [7] reported that GE conducted a field test in 1972 for a back-to-back multistage compressor under wet-gas conditions. The compressor showed a performance decrease. Inspections revealed that the performance decrease would be induced by the deterioration of labyrinth shaft-end seals, which could be caused by high vibrations. GE designed two sets of tests to verify whether the high vibrations were induced by the presence of liquid in the labyrinth shaft-end seals. In the first set of the tests, when liquid was injected into the gas stream at suction flanges, the compressor's vibrations were not affected significantly. In the second set of the tests, when liquid was injected radially through vent lines into the labyrinth shaft-end seals, a sub-synchronous lateral vibration occurred. The frequency of the subsynchronous vibration was approximately  $0.5\omega$ . Elliptical bearings and tilting pads bearings were mounted and tested, respectively. The sub-synchronous vibration occurred irrespective of bearing types; however, it was more evident when using elliptical bearings. Vannini et al. [7] concluded that the presence of liquid in the labyrinth shaft-end seals could lead to subsynchronous vibrations.

Vannini et al. [7] also discussed a wet-gas-compression test campaign conducted by GE in 1993 for a vertical 8-stage barrel compressor. The wet-gas flow was made by mixing nitrogen

and heavy oil before entering the compressor inlet. The GVF varied from 99.16% to 97.97%. Test data showed that there were no rotordynamic problems induced by the liquid presence.

In 2005, Brenne et al. [5] experimentally investigated the effects of liquid presence on the performance of a single-stage centrifugal compressor. The test fluid was a mixture of hydrocarbon gas and hydrocarbon condensate with GVF $\geq$ 97%. The liquid was injected into the pressurized gas stream before entering the compressor inlet by two different patterns: (1) droplet injection pattern, aiming to distribute liquid droplets uniformly in gas, and (2) film injection pattern, aiming to produce a liquid film uniformly covering the wet surface of the inlet pipe. Tests were performed at suction pressures of 30 and 70 bars and rotor speeds of 9651 and 10732 rpm. The rotor speeds were less than the compressor's first critical speed, which was between 20300 and 21130 rpm. In general, the compressor's vibrations were not affected significantly by a small amount of hydrocarbon condensate (GVF $\geq$ 97%). However, when suction pressure=30 bars,  $\omega$ =9,651 rpm, and GVF=97%, sub-synchronous vibrations occurred, as shown in Fig. 2. Those sub-synchronous vibrations consisted of multiple frequencies around 0.5 $\omega$ , and they disappeared when GVF increased above 98%. Brenne et al. [5] believed that the subsynchronous vibrations were induced by the entrainment of liquid into impeller-eye seals or balance-piston seals.



#### TP-30-D-9651-2200 GVF = 1 and 0.97, X = 1 and 0.53

Figure 2. Effects of two-phase flow on the compressor's vibration (horizontal component), measured at the driven-end of the machine (9651 rpm and 30 bars suction pressure) [5]

In 2011, Griffin and Maier [8] experimentally evaluated the rotordynamic performance of an oil-free integrated motor-compressor machine with liquid injected at its inlet. The liquid/gas mass ratio (LGMR) at the machine inlet was up to 0.5. LGMR is the ratio of the mass of the liquid to the mass of the gas. The LGMR at the inlet of the compressor section of this integrated separator-compressor machine was not stated, but it should be much less than at the machine inlet because of the work of the separator section. The test results showed that the machine's rotordynamic performance was insensitive to the liquid injection. To assess the system stability, a magnetic bearing exciter was used to measure the logarithmic decrement. In some cases, the logarithmic decrement increased slightly with increasing liquid flow rate; i.e., adding liquid improved the system stability slightly.

Since 2010, GE Oil & Gas has collaborated with Southwest Research Institute (SwRI) on a closed-loop test stand to completely assess the mechanical vibration performances (including the vibration levels and system stabilities) of centrifugal compressors operating under wet-gas conditions. Ransom et al. [4], Bertoneri et al. [9], Vannini et al. [7], and Vannini et al. [10] presented test data from this test stand. Those references are discussed separately below.

In 2011, Ransom et al. [4] experimentally investigated the effects of wet-gas conditions on the mechanical vibration performance of a two-stage centrifugal compressor with a labyrinth balance piston seal. The compressor was tested at three rotor speeds (8, 9.5, and 11 krpm) and multiple GVFs varying from 99.5% to 95% with a suction pressure of about 20 bars. The test fluid was made by mixing air and water before the compressor inlet. Test results showed that the presence of liquid had negligible effects on lateral vibrations, which were always small and dominated by the synchronous response through all test cases.

In 2014, Bertoneri et al. [9] experimentally studied the performance of a single-stage centrifugal compressor operating under wet-gas conditions. The shaft end seals, impeller eye seal, and balance piston seal were all teeth-on-stator (TOS) labyrinth seals. The test rig was modified from the test rig of Ransom et al. [4]. The test fluid was a mixture of air and water with GVFs varying from 100% to 97%. The atomized water was injected through spiral injectors into the dry suction gas stream at suction pressure=10, 15, and 18.5 bars. The compressor was tested at  $\omega$ =9, 11.5, and 13.5 krpm. Test data demonstrated that lateral, axial, and torsional vibrations were not affected significantly by a small amount of water in air (GVF≥97%) in most test cases. In 2014, Vannini et al. [7] published more test results for this test rig. They further noted that critical speed was not sensitive to the liquid presence. Additionally, the measured logarithmic

decrement increased with decreasing GVF from 100% to 97%. This trend agreed well with the test results of Griffin and Maier [8].

From 2014 to 2015, Vannini et al. [7] and Vannini et al. [10] modified the test rig of Bertoneri et al. [9] by injecting liquid directly into the seals (including shaft-end seals, an impeller-eye seal, and a balance-piston seal) of the single-stage compressor to investigate the effects of seal flooding on the compressor's rotordynamic performance. All seals were teeth-on-stator (TOS) labyrinth seals. Test results showed that flooding the seals may cause synchronous vibrations, as shown in Fig. 3. Figure 3 shows the variation of GVF on the bottom part and the waterfall plot of the lateral vibrations on the top part with  $\omega$ =13.5 krpm (225 Hz) and suction pressure=10 bars. As time increases, GVF increases from 97% to 100% (LVF decreases from 3% to zero). Since the 0.5XREV (0.5 $\omega$ ) response is always present irrespective of dry seals or flooded seals, it is not related to seal flooding. Another sub-synchronous vibration occurs at a frequency of about 0.45XREV (0.45 $\omega$ ), which decreases slightly (within 20%) as GVF increases. Vannini et al. [7] thought the 0.45XREV sub-synchronous vibration was induced by the flooded TOS labyrinth balance-piston seal, whose annular cavities between teeth may trap liquid, because that there was no evident time lag between the closure/opening of liquid injectors and the disappearance/occurrence of the 0.45XREV sub-synchronous vibration.

To confirm this thought, Vannini et al. [7] injected nitrogen to purge the annular cavities of the TOS labyrinth balance-piston seal and found that the amplitude of the 0.45XREV subsynchronous vibration was reduced significantly. The amplitude of the 0.45XREV subsynchronous vibration was further reduced by replacing the original TOS labyrinth balancepiston seal with a pocket damper seal (PDS) which had physical brakes in the circumferential direction.


Figure 3. Typical waterfall plot of lateral vibrations at high flow region, ω=13.5 krpm, liquid-volume fraction LVF=1-GVF, GVF changes from 97% to 100% [10]

To provide a physical explanation for the experimental findings above, Vannini et al. [10], in 2015, conducted a multiphase CFD investigation of the original TOS labyrinth seal and the new PDS. Under wet-gas conditions, the cavities in the labyrinth seal showed a strong tendency to trap liquid. The trapped liquid had a high circumferential momentum, and it probably induced a sub-synchronous vibration. In a PDS cavity, some liquid was trapped; however, the liquid in a PDS cavity did not build up because it recirculated steadily in the circumferential direction, as shown in the CFD prediction of Fig. 4. The circumferential velocity of the liquid in a PDS cavity was much smaller in magnitude than in a corresponding labyrinth seal cavity and was even negative. Therefore, the PDS was less likely to prompt a sub-synchronous vibration, and it was a better option than the TOS labyrinth seal regarding the vibration performance. However, a drawback was that replacing the TOS labyrinth seal with the PDS led to an increase in leakage rate.



Figure 4. Time averaged circumferential velocity contour plot of the liquid in the PDS cavities, seal inlet GVF=70% (rotor rotating from left to right, and fluid flowing from bottom to top) [10]

With limited literature published on the mechanical vibration impact of wet-gas compressors, a general conclusion cannot be drawn to guide the design of annular seals in a wet-gas compressor. More experimental studies are needed to investigate the effects of wet-gas conditions on the performance of an annular seal.

#### **1.2 Multiphase Pumps**

With the increasing demand of the oil & gas industry, many pumps companies are developing multiphase pumps, which can handle liquid-gas flow directly without separating the liquid from a mixed flow. In general, there are two categories of multiphase pumps: rotordynamic pumps and positive displacement pumps. Since no annular seals are used in positive displacement pumps, this section only covers rotordynamic pumps, which have two types: centrifugal pumps and helico-axial pumps.

Many experimental studies focusing on the *performances* of multiphase centrifugal pumps have been published; however, those works were conducted to determine the operating performances of multiphase centrifugal pumps rather than the impacts of annular seals on the vibration characteristics.

Historically, helico-axial pumps did not have annular seals. However, according to Bibet et al. [11], this situation changed when the first multiphase helico-axial pump, equipped with a balance-piston seal, was introduced to the market in 2011. The balance piston seal compensated the axial thrust induced by impellers and made it possible to increase the pressure differential of a multiphase helico-axial pump. In 2013, Bibet et al. [11] presented the design process and test validation of a balance-piston seal in a full scale 1.8MW high boost helico-axial multiphase pump. The design of the balance-piston seal was chosen to be a smooth seal since textured seals, such as hole-pattern and honeycomb seals, tended to accumulate solid particles and liquid droplets in their cavities. The smooth balance-piston seal was then split into three segments by introducing two deep circumferential grooves. Swirl brakes were employed to reduce the preswirl ratio and enhance system stability. Test results showed that the system was stable through most cases; however, sub-synchronous vibrations occurred in some multiphase cases under low pressure differentials. In those cases, the pump was super-synchronously unstable.

To predict the rotordynamic coefficients and optimize the design of the smooth balancepiston seal, Bibet et al. [11] conducted CFD simulations. However, the simulations were only for pure-liquid conditions and did not include two-phase flow conditions. Therefore, more studies are needed to reveal the effects of gas components on a smooth annular seal in a multiphase pump.

### **1.3 Cryogenic Annular Seals**

Besides the wet-gas compressors and multiphase pumps noted in preceding sections, two-phase flow may also occur in a cryogenic liquid annular seal. According to Beatty and Hughes [12], when a cryogenic liquid seal is operating close to saturation, the pressure drop and enthalpy rise through the seal induce the sealed fluid to be much closer or even over the saturation point. In this case, boiling occurs, and the sealed fluid changes from a single-phase liquid to a two-phase mixture of boiling liquid and vapor. Although the formation process of the liquid-gas mixture in a cryogenic liquid annular seal differs from that in multiphase pumps and wet-gas compressors, the prediction models and experimental studies of a cryogenic liquid annular seal are still relevant, because in all three types of applications, the gas presence changes the fluid compressibility significantly. In 1981, Hughes and Beeler [13] developed the first prediction model for a cryogenic smooth annular seal with a phase change. The sealed fluid was turbulent, and it was regarded as a homogeneous liquid-gas mixture in thermodynamic equilibrium. Besides the phase change, the model also accounted for viscous dissipation, wall shear, fluid inertia, and inlet flow loss. The inlet pressure drop was simplified as an isentropic process. In 1987, Beatty and Hughes [12] made an improvement by using a new method to estimate the inlet thermodynamics state and calculated the mass flow rate of a centered smooth interstage seal (seal annular diameter D=65 mm, seal length L=26 mm, and radial clearance  $C_r=0.174$  mm) in a Space Shuttle Main Engine High-Pressure Oxidizer Turbopump, where the sealed fluid was assumed to be turbulent, nearly adiabatic, close to the saturated point, and in thermodynamic equilibrium. The mixture properties were determined based on a homogeneous assumption. Numerical results showed that the formation of the vapor in the seal reduced the mass flow rate.

In 1990, Beatty and Hughes [14] studied the effects of flow patterns on the leakage prediction of a cryogenic smooth annular seal. A stratified flow model rather than a homogeneous model was used to calculate the mixture properties. The stratified flow model assumed that the boiling liquid and vapor flowed separately at different velocities. A stratified flow could happen in some high-speed turbomachinery, such as rocket turbo-pumps, where the strong centrifugal inertia effect tended to drive the liquid phase from the vapor phase outward to the stationary surface while the vapor phase was still staying close to the shaft. For the smooth interstage seal analyzed by Beatty and Hughes [12], mass leakage rate predictions from the stratified flow model were close to predictions from the homogeneous model. Note that the effects of the flow pattern on the dynamic characteristics of a cryogenic liquid annular seal were not studied.

In 1987, Hendricks [15] measured the leakage rate and the pressure profile of a straightsmooth cryogenic-annular seal (L/D=0.51, D=84.2 mm, and  $C_r=0.1346$  mm) at static (nonrotating) conditions. Tests were conducted at both concentric and eccentric positions over a range of temperature and inlet pressure for both liquid nitrogen and liquid hydrogen. Test data showed that a sufficiently large pressure drop through the seal could lead to a two-phase flow region in the test cryogenic-annular seal.

In 1998, Arauz and San Andrés [16, 17] employed a "continuous vaporization" bulkflow model to analyze the mass flow rate, pressure profile, and rotordynamic coefficients of cryogenic annular seals operating close to the saturated status. They divided the whole flow through a seal into three regimes: all-liquid, liquid-gas mixture, and all-gas. The liquid-gas mixture was assumed to be homogeneous and in thermodynamic equilibrium. The flow turbulence, friction effect, and viscous dissipation were included in governing equations. Moody's friction model was used to determine shear stress. A perturbation analysis was conducted to identify the static and dynamic characteristics of a seal. The predicted leakage rates and pressure profiles were validated using Hendricks' test data [15] for several liquid nitrogen cases with two-phase flow regions at the seal exit. The predicted leakages, torques, and exit mixture qualities correlated well with the predictions of Beatty and Hughes [12] for a cryogenic smooth seal with a phase change.

The predictions of rotordynamic characteristics were presented for cases with different supply temperatures, which controlled the flow structures (all-liquid, liquid-mixture, all-mixture, and all-gas) in a seal. The phase change significantly impacted the dynamic performance of a seal. As the sealed fluid changed from pure-liquid to a mixture of liquid and vapor within a short physical zone, the direct stiffness increased while the cross-coupled stiffness decreased. Also, the presence of a two-phase flow made damping coefficients more sensitive to  $\Omega$ . For example, the direct damping decreased with increasing  $\Omega$ . Additionally, when  $\Omega=\omega$ , whirl frequency ratio (WFR) decreased significantly as the phase change occurred, implying that the gas presence improved the system stability.

In 1999, Oike et al. [18] designed a test apparatus, which could visually display the twophase flow in cryogenic smooth floating-ring seals. Tests were conducted under temperatures from 80 to 98 K, pressure differences up to 1.25 MPa, and rotor speeds up to 40 krpm. The observed two-phase flow was homogeneous. The two-phase flow region in the seal clearance increased with increasing  $\omega$ ; however, an increase of the two-phase flow region did not always lead to a decrease in the leakage mass flow rate. The effects of the two-phase flow area on the leakage flow mass rate depended on the upstream subcooling degree and the seal clearance.

In 2013, Hassini and Arghir [19] employed the same bulk-flow model as Arauz and San Andrés [16, 17] to predict the rotordynamic coefficients of a smooth cryogenic-annular seal with accommodations to handle choked flow regimes and a new method to estimate the speed of sound in both single-phase and two-phase flow regimes. Hassini and Arghir [19] covered a wider range of  $\Omega$  (from 0 to 6 $\omega$ ) than Arauz and San Andrés [16, 17], who only presented the rotordynamic characteristics at 3 excitation frequencies (0.01 $\omega$ , 0.5 $\omega$ , and 1 $\omega$ ). For pure-liquid cases, the complex dynamic stiffness coefficients could be curve-fitted to obtain constant stiffness, damping, and virtual-mass coefficients. For gas-dominated cases, in which the phase change occurred at the very inlet of the seal, the dynamic coefficients were sensitive to  $\Omega$ , and their dependencies on  $\Omega$  show some similarities with those in pure-gas cases, especially when  $\Omega > 2\omega$ .

### 1.4 Two-Phase Annular Seals

In 1992, Salhi et al. [20] measured the axial pressure gradient in a narrow annular space formed by two concentric cylinders under two-phase flow conditions. The exterior cylinder was fixed, and the interior cylinder was rotating at speeds up to 10 krpm. The interior cylinder diameter was 50 mm, and the annular space length was 312 mm. Tests were carried out at  $C_r$ =0.5 and 1 mm. The test liquid consisted of 95% water and 5% soluble oil. Nitrogen was injected through a sintered-metal element at the inlet, making a two-phase mixture at 5% gas/oil ratio (GOR). GOR is the ratio of the volume of gas to the volume of liquid at standard conditions (15.56 °C and 1 bar). Since the pressures at the seal inlet were not stated, GOR could not be converted to GVF. Photographic pictures at the outlet of the test cell showed that the diameter of nitrogen bubbles was around 30 µm. The Reynolds number of the mixture was above 4000. The measured pressure drop coefficients were consistent with the predictions from a homogeneous model. This consistency led to a hypothesis that the gas remained dispersed in liquid because the separation effect induced by the centrifugal force was limited by the turbulent flow and stopped by the coalescence time of a bubble. Therefore, the homogeneous model seemed to be validated experimentally for a two-phase flow case with a small amount of gas in liquid (GOR=5%).

In 1994, Iwatsubo and Nishino [21] experimentally investigated the dynamic characteristics of a long smooth annular seal (L/D=1, D=70 mm, and  $C_r=0.5$  mm) operating under two-phase (water-air) conditions at low inlet pressures (up to 4 bars) and low rotor speeds (0.5 to 3.5 krpm). Test data were only valid for mean GVFs less than 70%. When mean GVF>70%, the random vibration of the rotor due to the 2-phase flow was large and produced large measurement uncertainties. The mean GVF was defined as the average value between the seal inlet and the seal exit. The measured seal forces increased as inlet pressure increased, and this tendency did not change as mean GVF changed. The measured seal forces and the identified rotordynamic (stiffness and damping) coefficients decreased as mean GVF increased from zero

to 70%. Although predictions were made to compare to the test results, the prediction model was based on an inappropriate assumption, which simplified the mixture to be an incompressible flow.

In 2011, San Andrés [6] used a modified one-control-volume bulk-flow model to analyze the static and dynamic characteristics of annular pressure seals operating under twophase (liquid-gas) flow conditions. The two-phase mixture was assumed to be isothermal, homogeneous, and in thermostatic equilibrium. The wall stress model was based on Moody's friction formula. The static and dynamics performances of a seal were determined by a perturbation analysis.

For an example long smooth annular seal (L/D=0.75, D=116.8 mm, and  $C_r=0.1267$  mm) operating with a mixture of nitrogen gas and light oil (ISO VG2) at  $P_i=71$  bars,  $\omega=10$  krpm, and GVFs from zero to 100%, predictions showed that power loss and leakage mass flow rate generally decreased as GVF increased. However, when GVF $\approx$ 0.1, the increased viscosity of the lubricant led to a flow laminarization and produced a dip in power loss, as shown in Fig. 5. Cross-coupled stiffness and direct damping decreased as GVF increased, except in the region where the flow became laminar; i.e., GVF $\approx$ 0.1, as shown in Fig. 6. Direct stiffness increased to about 0.25. When GVF>0.25, direct stiffness increased with increasing GVF. Cross-coupled damping coefficients were small and inconsequential.



Figure 5. Predicted effects of GVF on power loss [6]



In 2011, Arghir et al. [22] employed Kleynhans and Childs's [23] two-control-volume bulk-flow model to study the rotordynamic characteristics of a centered textured-annular seal  $(L=35 \text{ mm}, D=76.5 \text{ mm}, \text{ and } C_r=0.1 \text{ mm})$  operating under bubbly flow conditions with low GVFs, ranging from 0.1% to 10%. Benefitting from the two-control-volume method, the mass flow exchange between two control volumes and the effects of the cell depth were taken into consideration. The fluid inertia effect was also included. The model treated the textured seal as a smooth seal with equivalent friction factors on the two surfaces forming the seal clearance. The friction factors were determined by a 3-dimensional Navier-Stokes analysis. To simplify the analysis, the axial and circumferential flow were assumed to be dominated by Poiseuille effect and Couette effect, respectively. The mixture properties were determined using a homogeneousmixture assumption.

For pure-liquid cases, all rotordynamic coefficients had no or slight dependencies on  $\Omega$ . The presence of dissolved gas in liquid introduced compressibility to the sealed fluid, and made the rotordynamic coefficients significantly dependent on  $\Omega$ , especially when GVF $\geq$ 5%. For GVF $\leq$ 1%, the effects of GVF could be ignored. In addition, cross-coupled stiffness, direct virtual-mass, and cross-coupled virtual-mass decreased as GVF increased from 0.1% to 10%. Since those predictions were made for a round-hole-pattern seal with an area ratio of 44%, they could not be assessed using San Andrés's [6] predictions or Iwatsubo and Nishino's [21] test results.

In 2015, San Andrés et al. [24] introduced a test rig to measure the leakage flow rate and rotordynamic coefficients of a short smooth annular seal (L/D=0.36, D=127 mm, and  $C_r=0.127$  mm) operating under two-phase flow conditions. The test fluid was a mixture of ISO VG 10 oil and air. All tests were conducted at nonrotating conditions and ambient temperature. The exit

pressure was ambient. Leakage mass flow rates were measured at two inlet pressures (3 and 3.5 bars) and multiple GVFs ranging from 100% to zero (multiple LVFs ranging from zero to 100%). As shown in Fig. 7, measured leakage mass flow rate increased as GVF decreased from 100% to zero (LVF increases from zero to 100%). Predictions were given based on San Andrés's [6] bulk-flow model. Figure 7 shows that the measured leakage rates agreed well with the predictions. In Fig. 7,  $P_s$  is the seal supply pressure, and  $P_a$  denotes the ambient pressure.



Figure 7. Measurements and predictions of mass flow rate (liquid-volume fraction=1-GVF, GVF at seal inlet decreases from 100% to zero) [24]

Rotordynamic coefficients of the seal were measured at three different GVFs (100%, 98%, and 96%) when  $P_i=2$  bars. The seal cartridge was excited by two orthogonally mounted electromagnetic shakers with periodic loads, comprising multiple frequencies from 30 Hz to 200 Hz, in increments of 10 Hz. The real parts of the system's complex dynamic stiffness were curved-fitted to obtain frequency independent stiffness and virtual-mass coefficients. Measured direct stiffness and direct virtual-mass coefficients in the horizontal direction were different from the measured values in the vertical direction. As GVF decreased from 100% to 96%, measured direct stiffness increased by 78.6% from 1.4 to 2.5 MN/m in the horizontal direction and increased by 30% from 1 to 1.3 MN/m in the vertical direction. When GVF was dropped from 100% to 96%, measured direct virtual-mass increased from zero to about 1.2 kg in the horizontal direction and increased from zero to 0.9 kg in the vertical direction.

The imaginary parts of the system's complex dynamic stiffness could not be characterized by frequency independent damping coefficients since they were not proportional to  $\Omega$ . The liquid presence in air significantly affected the measured damping characteristics. Damping coefficients measured at GVF=96% were more than 20 times larger than at GVF=100%.

Quoting San Andrés et al. [24], "Damping force coefficients, although decreasing steadily with excitation frequency, are at about 50% of the experimental coefficients. The larger the content of liquid in the mixture, the larger the discrepancy. Predicted dynamic stiffnesses agree with the test coefficient only for the case with pure gas. Presently, the tests conducted without journal rotation and with a low supply/discharge pressure ratio (max. 3.5) show the mixture flow character is not homogeneous, in particular near the exit lane of the seal."

In 2017, San Andrés and Lu [25] presented more test data from the same test rig for the same test seal but with a rotating rotor ( $\omega$  up to 3.5 krpm). The exit pressure was 1 bar, and  $P_i$  was up to 3.5 bars. The GVF varied from zero to 90%, which is a typical range for multiphase pumps. As GVF increased, the mass flow rate and drag power decreased continuously. Rotordynamic coefficients were obtained for cases with  $P_i=2.5$  bars and  $\omega=3.5$  krpm. When GVF=0%, direct dynamic stiffness decreased as  $\Omega$  increased, indicating a large positive direct virtual-mass term. However, after adding air into the oil, direct dynamic stiffness increased as  $\Omega$  increased. Both direct damping and cross-coupled dynamic stiffness decreased as inlet GVF increased. Adding air into the oil significantly decreased the effective damping. Predictions from San Andrés's [6] model correlated well with measurements when GVF≤60%. For 60%<GVF≤90%, predicted force coefficients were lower than measurements in magnitude.

As noted above, existing test data are limited by some deficits, such as low supply pressures, low  $\omega$ , narrow GVF ranges, etc. Thus, a comprehensive set of test data is needed to study the static and dynamic characteristics of a two-phase annular smooth seal and validate the current prediction models.

### 2. OBJECTIVES

Despite the potentially adverse impacts of two-phase flow conditions on the static and dynamic characteristics of a smooth annular seal and the performance of a wet-gas compressor or a multiphase pump, previous experimental studies on a two-phase smooth annular seal are scarce. This dissertation discusses a comprehensive experimental investigation into the effects of two-phase flow conditions on a smooth annular seal through completion of the following tasks:

1. Modify an existing air-annular seal test stand to 2PASS. The development of 2PASS has one limitation and four major challenges.

Limitation: Although an ideal test stand should investigate the performance of a smooth annular seal with any GVF (zero to 100%), the GVF range is limited to mainly-oil conditions (GVF $\leq$ 10%) and mainly-air conditions (92% $\leq$ GVF $\leq$ 100%) due to the difficulties in making a homogeneous 2-phase mixture with GVF between 10% and 92%. Since most wet-air compressors are operating with a GVF above 95%, the test GVF range meet the needs of wet-gas compressor companies. However, it cannot completely satisfy the interests of multiphase pump companies since their multiphase rotordynamic pumps are expected to cope with any GVF (zero to 100%).

**Challenge 1:** Design an oil/air mixer, aiming to make a homogeneous mainly-air mixture ( $92\% \le GVF \le 100\%$ ). Since no commercial mixers could be found to meet the requirements of this test program, the mixer is designed mainly using CFD simulations and a low-pressure mixing test. During the low-pressure test, the pressure in the mixing chamber shown in Fig. 10 is reduced from 62 bars to 5.5 bars, and the stainless-steel mixing chamber is replaced by an acrylic mixing chamber, which allows the use of a high-speed camera to take slow motion videos and photographic pictures to visually inspect the mixing quality and estimate oil droplet size.

**Challenge 2:** Specify and install oil/air separation equipment, including a vertical oil/air separator, a bubble eliminator, and a coalescer. The separated oil is pumped back to oil tanks, and the purified air is discharged outside.

**Challenge 3:** Due to the possibility of "slugs" in the mixed flow and the possible negative direct stiffness of the test seals, 2PASS is too fragile to handle 2-phase flow under some seal configurations and/or some test conditions.

**Challenge 4:** 2-phase flow might introduce more fluctuations into data acquisition than air flow and then increase the uncertainties of the identified rotordynamic coefficients. The stator assembly is excited longer than under pure-air conditions, aiming to reduce the uncertainties of the identified rotordynamic coefficients by averaging more test data.

- 2. Experimentally investigate the effects of changes in radial clearance ( $C_r$ ), GVF, pressure drop/ratio (PD/PR), and rotor speed ( $\omega$ ) on the mass flow leakage rate and rotordynamic coefficients of a smooth annular seal.
- Compare test results to the predictions from a program developed by San Andrés [6] to investigate his predictive model for a smooth annular seal operating under 2phase flow conditions.

# 3. TEST RIG DESCRIPTION<sup>\*</sup>

The 2PASS is modified from an existing air-annular seal test stand in the Turbomachinery Laboratory at Texas A&M University to accommodate two-phase flow test conditions. Childs et al. [26] describe the existing air-annular seal test stand. The following major modifications has been completed by the author and James McLean under the supervision of Dr. Dara Childs, Professor of Mechanical Engineering, Texas A&M University, and some of these modifications will be discussed further in Sec. 3.1.

- To eliminate possible water/oil contamination, the supply fluid for hydrostatic bearings (that supported the test rotor) is changed from water to the test liquid (silicone oil PSF-5cSt).
- (2) To increase the maximum test rotor speed under pure-liquid conditions, the test seal's inner diameter is reduced from 114.3 mm (4.5 in) to 89.306 mm (3.5160 in), and the electric motor is upgraded from 93 kW (125 hp) to 110 kW (150 hp).
- (3) To reduce the minimum test rotor speed from 10 krpm to 5 krpm, an external lubrication system is added for the existing gearbox.
- (4) The water-supply/return system is removed, and a new silicone-oil supply/return system is designed, built, and installed.
- (5) A sparger system is designed, built, and installed, aiming to make homogeneous mainly-liquid mixtures.
- (6) An oil/gas mixer is designed, built, and installed, aiming to make homogeneous mainly-air mixtures.
- (7) To separate liquid components from the exhaust mixed flow and purify gas before discharging, separation equipment (including a vertical oil/gas separator, a bubble eliminator, and a coalescer) are specified and installed.
- (8) The data acquisition system and programmable logic controller (PLC) control system is upgraded.

<sup>&</sup>lt;sup>\*</sup> Portion of this section is reprinted with permission from "Experimental Study of the Static and Dynamic Characteristics of a Long Smooth Seal with Two-Phase, Mainly-Air Mixtures," by Zhang, M., McLean, J., and Childs, D., 2017, *ASME J. Eng. Gas Turbines Power*, 139(12), p. 122504, Copyright 2017 by ASME.

# 3.1 Experimental Setup

Figure 8 depicts the piping and instrumentation diagram (P&ID) of the 2PASS, which consists of the following sections: air-supply section, oil-supply/return section, mainly-oil mixing section, mainly-air mixing section, and test section. Each section is discussed separately below.



Figure 8. Piping and instrumentation diagram of the 2PASS [27]

## 3.1.1 Air-Supply Section

The 2PASS employs its predecessor's air-supply system. A compressor delivers air at a maximum supply pressure of 172 bars. A particulate filter removes solid particles, and a coalescing filter removes liquid droplets from the compressed-air stream. A rupture disk with a burst pressure of 129.4 bars ensures safety. A control valve adjusts the air flow, and turbine flowmeters with different ranges measure the volume flow rate. The low-range turbine flowmeter measures the flow rate of air entering the mainly-oil mixing section. The high-range turbine flowmeter measures the flow rate of air entering the mainly-air mixing section. Thermocouples and pressure transducers measure the temperatures and pressures before and after turbine flowmeters.

### 3.1.2 Oil-Supply/Return Section

The 2PASS renovation removed the water-supply/return system in the existing airannular seal test stand, and a new oil-supply/return system supplies silicone oil for the mixing sections and the hydrostatic bearings (described in Sec. 3.1.5 below). Figure 8 shows that two filters immediately after the main pump ensure that the oil supply is clean. The oil flow splits into two pipes: one pipe supplies oil for the hydrostatic bearings that support the rotor, and the other pipe provides oil for the mixing sections. A Coriolis flow meter measures the mass flow rate and density of the oil.

The two-phase flow from either the mainly-oil mixing section or mainly-air mixing section is injected into the test section. After the test section, the exhaust mixture enters a vertical oil/gas separator, which separates most air components from the mixture. A coalescer removes the liquid-carryover before the separated air discharges into the environment. The separated oil flows into a sump tank by the effect of gravity. A sump pump transfers the oil to a main tank or the main pump. A bubble eliminator removes the dissolved gas components in the oil. A heat exchanger loop cools the oil in the main tank; hence, the oil from the sump tank is normally hotter than the oil from the main tank. A control valve on the line from the sump tank to the

main pump adjusts the hot-oil flow rate and controls the discharge oil temperature of the main pump.

### 3.1.3 Mainly-Oil Mixing Section

Spargers produce mainly-oil mixtures by injecting air bubbles into the oil stream. Figure 9 shows the PI&D of the mainly-oil mixing section. The mainly-oil mixing section uses two spargers, and Table 1 gives their properties. Each sparger mounts in a tee. As the compressed air flows through the porous surface of a sparger, the silicon oil, flowing through the annulus between the sparger and pipe, shears the bubbles, resulting in an excellent mixing performance. A pressure relief valve with a relief pressure of 75.8 bars ensures safety. Two pressure transducers measure the pressures of oil and air before mixing, respectively.



Figure 9. P&ID of mainly-oil mixing section

| Name                                | Mott 850-Series sintered porous metal element |
|-------------------------------------|-----------------------------------------------|
| Porous Outer Diameter (mm)          | 25.4                                          |
| Wall Thickness (mm)                 | 3.2                                           |
| Porous Length (mm)                  | 215.9                                         |
| Nominal Length Without Fitting (mm) | 304.8                                         |
| Media Grade (µm)                    | 10                                            |
| Material                            | 316L stainless steel                          |

Table 1. Properties of the sparger

Figure 10 depicts the oil-air mixer that produces mainly-air mixtures. The mixer consists of the following 3 chambers: oil chamber, air chamber, and mixing chamber. Silicone oil enters the oil chamber and then flows into 9 injection tubes. At the other end of each injection tube, a spray nozzle (as described in Table 2) produces fine liquid droplets spreading in the mixing chamber. The compressed air, injected into the air chamber section from another line, passes through the clearances between the plate and injection tubes, and meets the atomized liquid droplets in the mixing chamber. The liquid-air mixture flows through a converging cone which compresses the mixture back into a manageable pipe diameter.



Figure 10. Section view and flow illustration of the oil-gas mixer [27]

In Fig. 11, an acrylic cylinder replaces the steel chamber shown in Fig. 10. An acrylic chamber provides visual confirmation of the mixer's performance. A high-speed camera with a sample rate of 8300 fps records the resulting mixture. The strength of the acrylic chamber limits

the mixing pressure to 5.5 bars. For a mixture of air and water with GVF=97% at 25 °C, the water droplets distribute evenly in the acrylic mixing chamber with a diameter of about 0.25 mm.

| Туре                    | Hollow Cone Spray Nozzle |
|-------------------------|--------------------------|
| Model                   | 1/4KKBP200S303           |
| Standard Pressure (bar) | 3                        |
| Spray Angle (°)         | 55±5                     |
| Spray Capacity (l/min)  | 2±0.1                    |

| Table 2. Pro | perties | of the | spray | nozzle |
|--------------|---------|--------|-------|--------|
|--------------|---------|--------|-------|--------|



Figure 11. Gas-oil mixer with an acrylic mixing chamber

According to Bracco [28], the mean droplet size of liquid drops produced by a nozzle is proportional to the surface tension  $\sigma$ , but inversely proportional to the gas density  $\rho_g$ ,

$$\overline{D} = B \frac{\sigma}{\rho_g} X_{xmax} \frac{2\pi}{v_r},\tag{7}$$

where  $v_r$  is the relative velocity between the liquid and gas,  $X_{xmax}$  is a coefficient depending on the Weber number, and *B* is a constant coefficient.

Using Eq. (7) to predict the droplet size of the silicon oil injected in the compressed air at 25°C and 62 bars,

$$D_{est} = \frac{\sigma_{oil}}{\sigma_{water}} \cdot \frac{\rho_{g,5.5}}{\rho_{g,62}} \cdot 250 \ \mu m = \frac{0.0197}{0.072} \cdot \frac{6.44 \ \text{kg} \ / \ \text{m}^3}{72.54 \ \text{kg} \ / \ \text{m}^3} \cdot 250 \ \mu m = 6.2 \ \mu m \,, \tag{8}$$

where  $D_{est}$  is the estimated mean droplet size of silicone oil,  $\sigma_{oil}$  is the surface tension of silicone oil,  $\sigma_{water}$  is the surface tension of water,  $\rho_{g,5.5}$  is the air density at 5.5 bars and 25°C, and  $\rho_{g,62}$  is the air density at 62 bars and 25°C. 62 bars is the supply pressure for the test seal under pure- and mainly-air conditions. Note the real mean droplet size of the silicone oil may be larger than  $D_{est}$ for the following reasons:

- 1.  $D_{est}$  is calculated based on the assumption that  $X_{xmax}$ , B, and  $v_r$  do not change significantly when changing from water to silicone oil and increasing the pressure in the mixing chamber from 5.5 bars to 62 bars.
- 2. Liquid droplets may merge when flowing in the pipes connecting the oil/air mixer and the test section.

### 3.1.5 Test Section

Figure 12 shows a cross-section view of the test section. Two hydrostatic bearings support the rotor, and use silicone oil at 69 bars as lubricant. The hydrostatic bearings provide high support stiffness to the rotor compared to the stiffness from test seals. A high-speed disc-type coupling connects the rotor to a Lufkin Gearbox. The gearbox increases the electric motor speed to the expected rotor speed by a ratio of 1:6.96, and a variable-speed drive controls the motor speed.



Figure 13 shows connections to the stator assembly. Two hydraulic shakers and three pairs of pitch stabilizers (shown in Fig. 12) support the stator assembly. Two orthogonally-oriented stingers connect the hydraulic shakers to the stator assembly. The hydraulic shakers not only control the static position of the stator and but also excite the stator with a pre-programed pseudo-random waveform. The pseudo-random waveform consists of 14 frequencies, ranging from 10 Hz to 140 Hz with increments of 10 Hz. The excitation force is adjusted to ensure that the peak-to-peak stator dynamic amplitude is less than 20% of the radial clearance. The pitch stabilizers, installed in an equilateral triangle pattern on each end of the stator assembly, control the stator's axial positon and enable the alignment between the stator and rotor.

Figure 14 shows additional supports (two pairs of horizontal cables and a vertical stiffener) to rotordynamically stabilize the stator. Picardo and Childs [29] used the horizontal cables to eliminate a stator dynamic instability by introducing orthotropic support stiffness for the stator. Mehta and Childs [30] added the vertical stiffener to overcome the static instability of the stator induced by negative static direct stiffness of the test seals.



Figure 13. 3-D model of the stator assembly



Figure 14. Photograph of the test section [27]

Figure 15 depicts the cross-section view of the stator assembly. For ease of viewing, the seal clearances are shown greatly enlarged. The stator assembly comprises two test seals, two swirl brakes, and two back-pressure labyrinth seals. The test seals and back-pressure labyrinth

seals are installed back-to-back to minimize the net-thrust force developed by the pressure drop through each seal. During tests, the test fluid enters the stator assembly through two inlet ports at the center annulus and flows through a zero pre-swirl guide insert.

Figure 16 shows the section view of the zero pre-swirl guide insert. The fluid then flows through test seals and reaches the back-pressure annuluses upstream of the back-pressure labyrinth seals. In this cavity, the fluid either exits radially through exit ports or axially through the back-pressure labyrinth seals. A bleed valve, downstream of the exit ports, adjusts the back pressures of test seals. Fully closing the bleed valve forces all fluid to discharge through the back-pressure labyrinth seals and generates the maximum back pressure for a certain supply pressure. Swirl brakes, upstream of the back-pressure labyrinth seals, reduce the circumferential velocity of the test fluid and minimizing the cross-coupled stiffness coefficients produced by the back-pressure labyrinth seals.



Figure 15. Section view of the stator assembly [27]

The zero pre-swirl-guide insert shown in Fig. 16 guides the test fluid radially inwards to produce a flow with minimum circumferential velocity at the seal inlet. However, the circumferential velocity of the test fluid at the seal inlet  $V_{\theta\theta}$  is not zero due to the rotor rotation. Figure 17 depicts a pitot tube setup (including a pitot tube and a static pressure orifice) that determines  $V_{\theta\theta}$ . A differential pressure transmitter measures the difference between the total pressure  $P_t$  and static pressure  $P_s$  at the seal inlet. Bernoulli's equation determines

$$V_{\theta 0} = \left[ 2 \left( P_t - P_s \right) / \rho \right]^{1/2}, \tag{9}$$

where  $\rho$  is the test fluid density defined in Eq. (13).

The pre-swirl ratio  $u_0(0)$  is the ratio of  $V_{\theta 0}$  to the surface speed of the rotor:

$$u_0(0) = \frac{V_{\theta 0}}{0.5D_r \omega} , \qquad (10)$$

where  $D_r$  is the rotor diameter.





Figure 17. Pitot tube and static pressure orifice

# **3.2 Instrumentation**

Table 3 gives the uncertainties of the instrumentations in the air-supply section and oilsupply/return section.

2PASS uses the same test-section instrumentation as its predecessor, and Kerr [3] describes the instrumentation in detail. Kurtin et al. [31] performed the uncertainty analysis for them, and Table 4 shows the results.

| Parameter                                          | Uncertainty                            |
|----------------------------------------------------|----------------------------------------|
| Air Volumetric Flow Rate for Mainly-Air Conditions | 0.305 ACFM (0.52 m <sup>3</sup> /h)    |
| Air Volumetric Flow Rate for Mainly-Oil Conditions | 0.0414 ACFM (0.0703 m <sup>3</sup> /h) |
| Liquid Mass Flow                                   | 0.11 kg/min                            |
| Liquid Density                                     | $0.18 \text{ kg/m}^3$                  |

Table 3. Static uncertainties for volume/mass flow rates and oil density

| Parameter                        | Uncertainty                             |  |  |  |
|----------------------------------|-----------------------------------------|--|--|--|
| Pressure                         | 0.838 psi (0.06 bars)                   |  |  |  |
| Temperature                      | 5.613 °F (3.1 K)                        |  |  |  |
| Pitot Tube Differential Pressure | 1.276 in-H <sub>2</sub> O (0.0032 bars) |  |  |  |

Table 4. Static uncertainties for instruments in the test section [31]

# 3.3 Test Fluid

The test fluid is a mixture of silicone oil (PSF-5cSt) and air. Silicone oils are non-Newtonian fluids, and their viscosities are only constant for shear rates below certain values (critical shear rates), as shown in Fig. 18. The critical shear rate increases as the nominal viscosity of the fluid decreases. Although Fig. 18 does not show the rheological behavior of the test silicone oil (PSF-5cSt), the vendor (Clearco Products Co., Inc.) [32] states that silicone oil (PSF-5cSt) shows Newtonian behavior under shear; i.e., its viscosity remains unchanged as shear rate increases.



Figure 18. Silicone oils' viscosities under shear [33]

Silicon oil (PSF-5cSt) was used for the following reasons:

- 1. It is hydrocarbon-based, non-flammable, hydrophobic, chemically inert, and has high resistance to oxidation [34]. It mixes safely with air, and air is cheaper than other non-explosive gas sources; e.g. nitrogen.
- 2. The viscosity-temperature coefficient, which is the ratio of the oil viscosity at 99 °C to the oil viscosity at 38 °C, is as low as 0.54 [34]. Therefore, the oil viscosity is not very sensitive to temperature change. It allows a tolerance in temperature control. Under mainly-oil conditions, the seal inlet temperature was controlled between 37.8 °C and 40.6 °C.
- The surface tension is only 0.0197 N/m, which is approximately 1/3 that of water [34]. A smaller surface tension leads to the formations of smaller liquid droplets, which are more likely to be distributed uniformly in an air stream than larger liquid droplets.

The measured viscosity index of silicone oil (PSF-5cSt) is 817, and Table 5 shows the other properties of silicone oil (PSF-5cSt).

| Chemical Name                                           | Polydimethylsiloxane       |
|---------------------------------------------------------|----------------------------|
| Appearance                                              | Clear, colorless, odorless |
| Viscosity-Temperature Coefficient                       | 0.54                       |
| Viscosity @ 25 °C (cSt)                                 | 5                          |
| Specific Gravity                                        | 0.918                      |
| Flash Point (°C)                                        | 135                        |
| Pour Point (°C)                                         | -90                        |
| Vapor Pressure @ 25°C (Pa)                              | 133.3                      |
| Thermal Expansion (m <sup>3</sup> / m <sup>3</sup> .°C) | 0.00109                    |
| Thermal Conductivity @25°C (W/m·K)                      | 1.172                      |
| Surface Tension (N/m)                                   | 0.0197                     |
| Boiling Point (°C)                                      | >200                       |

| Table 5. Silicone | oil s | pecifications | and data | [34] |
|-------------------|-------|---------------|----------|------|
|-------------------|-------|---------------|----------|------|

The test fluid was visually inspected through a sight-glass view port shortly upstream of the inlet ports of the stator. In most test cases, the two-phase mixture appeared homogeneous; i.e., the air bubbles (or oil droplets) are distributed evenly in the oil (or air) flow. Thus, a homogeneous assumption is used here to determine the mixture properties.

The gas phase (air) is simplified as an ideal gas with the following state equation:

$$\rho_g = \frac{P}{ZR_gT},\tag{11}$$

where Z is the gas compressibility factor,  $R_g$  is the gas constant, P is the pressure, and T denotes the temperature.

The gas-volume fraction GVF is:

$$GVF = \frac{\dot{Q}_g}{\dot{Q}_g + \dot{Q}_l},$$
(12)

where  $\dot{Q}_g$  and  $\dot{Q}_l$  are the local volume flow rates of gas and liquid.

From Tao et al. [35], the equivalent density of a gas-liquid mixture is:

$$\rho = \rho_g \text{GVF} + (1 - \text{GVF})\rho_l, \qquad (13)$$

where  $\rho_l$  denotes the liquid density.

According to Diaz [36], for a homogeneous, quasi-static, and isothermal mixture of a Newtonian incompressible liquid and an ideal gas, the local pressure P defines the local GVF,

$$GVF = \frac{1}{1 + \frac{P - (P_v + 2S/C_r)}{P_{gi}} \left(\frac{1}{GVF_i} - 1\right)},$$
(14)

where  $P_V$  is the liquid vapor pressure,  $P_{gi}$  is the gas pressure at the seal inlet, S is the liquid surface tension per unit length,  $C_r$  is the radial clearance,  $\text{GVF}_i$  is the GVF at the seal inlet.

From San Andrés [6], Eq. (14) simplifies to

$$GVF = \frac{1}{1 + \frac{P}{P_{gi}} \left(\frac{1}{GVF_i} - 1\right)},$$
(15)

since the magnitude of  $(P_V+2S/C_r)$  is negligible (only a few millibars for oil).

According to Eq. (12), the GVF at the seal inlet  $\text{GVF}_i$  is determined by the volume flow rates of gas and liquid at the seal inlet. Since silicone oil is considered incompressible, the liquid volume flow rate at the seal inlet  $\dot{Q}_{il}$  is:

$$\dot{Q}_{il} = \frac{\dot{m}_l}{\rho_l},\tag{16}$$

where  $\dot{m}_l$  and  $\rho_l$  are the mass flow rate and density of the oil measured by the Coriolis meter.

The gas volume flow rate at the seal inlet  $\dot{Q}_{ig}$  differs from the volume flow rate measured by a turbine flowmeter  $\dot{Q}_{FM}$ .

$$\dot{Q}_{ig} = \dot{Q}_{FM} \frac{P_{FM} T_i}{T_{FM} P_i},\tag{17}$$

where  $P_{FM}$  and  $T_{FM}$  are the pressure and temperature measured immediately after the turbine flowmeters, and  $P_i$  and  $T_i$  are the pressure and temperature measured at the seal inlet.

Unlike effective density, there is no widely recognized effective viscosity model for a gas-liquid mixture. Many models have been proposed; however, they differ significantly and can even be contradictory. This dissertation uses the model of Fourar and Bories [37],

$$\mu = (1 - \text{GVF})\mu_l + \text{GVF}\mu_g + 2\sqrt{\text{GVF}(1 - \text{GVF})\mu_l\mu_g} , \qquad (18)$$

since it is used by the *XLHseal\_mix* program [6], which produces predictions to compare with test data.

# **3.4 Test Seals**

Figure 19 shows the test seal's drawing. The nominal length of the test seal is 57.785 mm (2.2750 inches), and the test seal's inner diameter is 89.306 mm (3.5160 inches).



Figure 19. Test smooth seal (dimensions are in inches)

# **3.5 Test Rotors**

Tests employ three rotors with diameters of 88.930 mm (3.5012 inches), 88.981 mm (3.5032 inches), and 89.027 mm (3.5050 inches), yielding radial clearances of 0.188 mm (7.4 mils), 0.163 mm (6.4 mils), and 0.140 mm (5.5 mils).

### 4. EXPERIMENTAL PROCEDURE

### 4.1 Parameter Identification

This dissertation uses the dynamic parameter-identification approach discussed by Mehta and Childs [30]. Figure 20 shows the shaking (X-Y) and gravity-oriented  $(x_1-y_1)$  coordinate systems. The frequency-domain equation of motion for the stator is

$$\begin{bmatrix} F_{XX} & F_{XY} \\ F_{YX} & F_{YY} \end{bmatrix} - \begin{bmatrix} M_S \end{bmatrix} \begin{bmatrix} A_{XX} & A_{XY} \\ A_{YX} & A_{YY} \end{bmatrix} = \begin{bmatrix} H_{XX} & H_{XY} \\ H_{YX} & H_{YY} \end{bmatrix} \begin{bmatrix} D_{XX} & D_{XY} \\ D_{YX} & D_{YY} \end{bmatrix},$$
(19)

where  $F_{ij}$  are the Fourier transforms of the excitation forces,  $[M_s]$  is the stator-mass matrix,  $A_{ij}$  are the Fourier transforms of the stator accelerations,  $D_{ij}$  are the Fourier transforms of the relative displacements of the stator to the rotor, and  $H_{ij}$  are the complex dynamic stiffness coefficients. The subscript *ij* denotes the measured value in the *i* direction due to the excitation in the *j* direction.  $H_{ij}$  values are related to rotordynamic coefficients by:

$$\boldsymbol{H}_{ij} = \left(K_{ij} - \Omega^2 M_{ij}\right) + \boldsymbol{j}\Omega C_{ij}, \ \boldsymbol{j} = \sqrt{-1},$$
(20)

where  $K_{ij}$ ,  $C_{ij}$ , and  $M_{ij}$  are the frequency-independent seal stiffness, damping, and virtual-mass coefficients, and  $\Omega$  is the excitation frequency. Note that Eq. (20) assumes that the rotordynamic coefficients are independent from  $\Omega$ , but this is not required for the identification procedure.



Figure 20. X-Y coordinate system [27]

## $[M_S]$ is the stator-mass matrix

$$\begin{bmatrix} M_{s} \end{bmatrix} = \begin{bmatrix} M_{SXX} & M_{SXY} \\ M_{SYX} & M_{SYY} \end{bmatrix},$$
(21)

where  $M_{Sij}$  are mass coefficients of the stator assembly in the X-Y frame. Since the supports of the stator assembly are almost symmetric about  $y_1$  axis (vertical direction),  $M_{SXX} \approx M_{SYY}$ , and  $M_{SXY} \approx M_{SYX} \approx 0$ .

A baseline test excites the stator without test fluid or rotor rotation, and identifies  $M_{Sij}$ . In the baseline case,  $M_{ij}$  values are extremly close to zero since there is only uncompressed air in the seal clearance; i.e., the real components of the complex dynamic stiffness coefficients  $\text{Re}(H_{ij})$  barely depend on  $\Omega$ . Therefore,  $M_{Sij}$  can be determined by minimizing the frequency dependencies of the identified  $\text{Re}(H_{ij})$  in the baseline test. Figure 21 shows  $\text{Re}(H_{ij})$  for a typical baseline test. With  $M_{SXX}$ =46.53 Kg,  $M_{SYY}$ =47.78 Kg, and  $M_{SXY}$ = $M_{SYX}$ =0.69 Kg,  $\text{Re}(H_{ij})$  values are almost invariant with  $\Omega$ . Note that  $M_{Sij}$  may vary slightly after disassembling and reassembling the stator assembly.



Figure 21. Real parts of complex dynamic stiffness coefficients for a baseline test

### 4.2 Repeatability Analysis

During tests, the hydraulic shakers, shown in Fig. 13, alternately excite the stator in the X and Y directions with a pre-programed waveform, which consists of an ensemble of pseudo-random frequencies [38], ranging from 10 Hz to 140 Hz in increments of 10 Hz. The waveform

lasts 0.1024 seconds. Along each direction, the shaker steadily repeats the waveform 640 times for cases under single-phase and mainly-oil conditions and 1280 times for cases at mainly-air conditions. Post-processing divides the force, acceleration, and displacement measurements into 10 groups in each direction. The Fourier Transforms converts data from the time-domain to the frequency domain. Further processing assembles the 10 groups from each direction into 100 complex force, acceleration, and displacement matrices. Equation (19) produces 100 complex dynamic stiffness matrices. The matrix of standard deviations of all complex dynamic stiffness coefficients, and each plot for complex dynamic stiffness coefficients presents these repeatability values using error bars.

### 5. EXPERIMENTAL RESULTS FOR PURE- AND MAINLY-OIL TESTING

A baseline test excites the stator at zero speed without any test fluid to characterize the baseline dynamics of the test section. The contribution of the back-pressure labyrinth seals to the system dynamics is negligible, because of their short length (28.58 mm) and large clearance (0.254 mm). Post-processing computes repeatability values for the baseline test ( $\sigma_{baseline}$ ) using the procedure described in Sec. 4.2. Thus, the total repeatability  $\sigma_{total}$  of a measurement is:

$$\sigma_{total} = \sqrt{\sigma_{baseline}^2 + \sigma_{test}^2} , \qquad (22)$$

where  $\sigma_{test}$  is the test-data repeatability.

Figure 22 shows the real and imaginary parts of  $H_{ij}$  for a typical mainly-oil test (after subtracting the baseline data) when PD=31 bars,  $C_r$ =0.188 mm, inlet GVF=4%, and  $\omega$ =15 krpm. Dots represent measured data, and lines show the corresponding least-squares fitting curves. Figure 22(a) demonstrates that the quadratic function shown in Eq. (20) fits Re( $H_{ij}$ ) well, and delivers frequency-independent stiffness  $K_{ij}$  and virtual-mass  $M_{ij}$  coefficients. Figure 22(b) shows that the linear function of  $\Omega$  shown in Eq. (20) fits Im( $H_{ij}$ ) well, and produces frequencyindependent damping coefficients  $C_{ij}$ .

The magnitudes of  $K_{ij}$ ,  $M_{ij}$ , and  $C_{ij}$  coefficients in Fig. 22 are (as expected) almost identical in X and Y directions. Therefore, the following discussion uses the average values for the rotordynamic coefficients:

$$K = \frac{K_{XX} + K_{YY}}{2} \tag{23}$$

$$k = \frac{K_{XY} - K_{YX}}{2} \tag{24}$$

$$C = \frac{C_{XX} + C_{YY}}{2} \tag{25}$$

$$c = \frac{C_{XY} - C_{YX}}{2}$$
(26)

$$M = \frac{M_{XX} + M_{YY}}{2} \tag{27}$$

$$m_q = \frac{M_{XY} - M_{YX}}{2},$$
 (28)

where K is the direct stiffness, k is the cross-coupled stiffness, C is the direct damping, c is the cross-coupled damping, M is the direct virtual-mass, and  $m_q$  is the cross-coupled virtual-mass.



Figure 22. The (a) real and (b) imaginary parts of  $H_{ij}$  for a typical mainly-oil case (PD=31 bars,  $C_r$ =0.188 mm, inlet GVF=4%, and  $\omega$ =15 krpm) after subtracting baseline data

#### 5.1 Test Matrix

For tests under pure- and mainly-oil conditions, the test seal is centered, the seal exit pressure  $P_e$  is 6.9 bars, the seal inlet temperature is 39.4 °C, and there is no intentional fluid prerotation. The targeted test matrix covers:

- a) 6 inlet GVFs: 0, 2%, 4%, 6%, 8%, and 10%,
- b) 4 rotor speeds ( $\omega$ ): 5, 7.5, 10, and 15 krpm,
- c) 3 pressure drops (PDs): 31, 37.9, and 48.3 bars,
- d) 3 radial clearances  $(C_r)$ : 0.188, 0.163, and 0.140 mm.

The targeted test matrix was not completed due to stator instabilities. In the omitted cases, the stator had sub-synchronous vibrations, some with significant amplitudes. Figure 23 shows the vibration spectra plots of the stator-rotor relative displacement in *Y* direction (*y*) at  $C_r$ =0.140 mm and PD=48.3 bars. Since two hydrostatic bearings support the rotor and provide high support stiffness compared to the stiffness from test seals, the displacement of the rotor is negligible, and the vibration spectra plots in Fig. 23 also describe the motion of the stator. When  $\omega$ =5 krpm and inlet GVF=0% and 2%, the *y* displacement signal exhibits a small (less than 1 µm) synchronous component. Figure 23(c) shows that when the inlet GVF increases to 4%, the stator experiences a pronounced sub-synchronous vibration in the *Y* direction at 0.155 $\omega$ . When inlet GVF=4%, the stator is stable without external excitations, but becomes unstable immediately when excited by hydraulic shakers. Inlet GVF cannot be increased to 6% even without external excitations.

When inlet GVF=0%, the stator exhibits sub-synchronous vibration at  $0.297\omega$  when  $\omega$  increases to 10 krpm. At 10 krpm, the stator is stable without external excitations, but becomes unstable immediately when excited by hydraulic shakers.

Figure 23 shows that as inlet GVF increases from zero to 4%, the frequency of the subsynchronous vibration decreases from 49.48 to 12.92 Hz, and the ratio of the sub-synchronous frequency to the rotor speed drops from 0.297 to 0.155. Since there is no intentional fluid prerotation provided, the ratio of the circumferential flow velocity within the seal annulus to the rotor surface speed should not be very different at different test conditions for a long smooth annular seal. So, the sub-synchronous vibrations are not likely to be induced by the average flow circumferential velocity.



Figure 23. Vibration spectra plots of y when PD=48.3 bars and  $C_r$ =0.140 mm for (a) inlet GVF=0%, (b) inlet GVF=2%, and (c) inlet GVF=4%

Recall that hydraulic shakers and other mechanical components support the stator. For stable cases, the seal is also concentric with the rotor. When the test fluid enters the test section, the seal reaction force in the test seal clearance acts on the stator. Sec. 5.4 discusses the seal's direct stiffness K. One explanation for the sub-synchronous vibrations in Fig. 23 is that K becomes negative and lowers the stator's 1<sup>st</sup> natural frequency. This hypothesis suggests the sub-synchronous vibrations in Fig. 23 occur at the stator's 1<sup>st</sup> (rigid body) damped natural frequency. Tests cannot measure the seal's K in these (unstable) cases, so this hypothesis cannot be proved directly by measurements. The results herein omit test cases that encountered sub-synchronous vibrations.

Table 6 shows the resultant test matrix. The test campaign adds an extra PD of 24.1 bars for  $C_r$ =0.163 mm to study the effects of changing PD at this clearance. The test point at  $C_r$ =0.188 mm, PD=31 bars,  $\omega$ =15 krpm, and inlet GVF=10% produced poor mixing quality, and consequently produced large uncertainties for rotordynamic coefficients. The discussions below omit this case. The mainly-oil mixture in this case cannot be treated as homogeneous since large air bubbles are observed through the sight-glass view port shortly upstream of the inlet ports of the test section.

| PD     | Inlet GVF | $C_r = 0.188 \text{ mm}$          |     |    |    | $C_r$ = | =0.163      | mm          | $C_r = 0.140 \text{ mm}$          |     |    |
|--------|-----------|-----------------------------------|-----|----|----|---------|-------------|-------------|-----------------------------------|-----|----|
| (bars) | (%)       | ω (krpm)                          |     |    | (  | ນ (krpı | n)          | ı) ω (krpm) |                                   |     |    |
|        | 0         | 5                                 | 7.5 | 10 | 15 |         |             |             | 5                                 | 7.5 |    |
|        | 2         | 5                                 | 7.5 | 10 | 15 |         |             |             | 5                                 |     |    |
| 10.2   | 4         | 5                                 | 7.5 | 10 | 15 |         |             |             |                                   |     |    |
| -0.J   | 6         | 5                                 | 7.5 | 10 | 15 | 0 14 11 |             |             |                                   | -   | -  |
|        | 8         | 5                                 | 7.5 | 10 | 15 |         |             |             | -                                 |     |    |
|        | 10        | 5                                 | 7.5 | 10 | 15 |         | Omitted due |             |                                   |     |    |
|        | 0         |                                   | 7.5 | 10 | 15 |         | to state    | Jr<br>tion  | 5                                 | 7.5 | 10 |
|        | 2         | -                                 | 7.5 | 10 | 15 |         | staom       | ues         | 5                                 | 7.5 |    |
| 27.0   | 4         | 5                                 | 7.5 | 10 | 15 |         | -           |             |                                   | 7.5 | -  |
| 57.9   | 6         | 5                                 | 7.5 | 10 | 15 |         |             |             | 5                                 | 7.5 |    |
|        | 8         | 5                                 | 7.5 | 10 | 15 |         |             |             | 5                                 |     |    |
|        | 10        | 5                                 | 7.5 | 10 | 15 |         |             |             | -                                 | -   |    |
|        | 0         |                                   | 7.5 | 10 | 15 | 5       | 7.5         |             | 5                                 | 7.5 | 10 |
|        | 2         | -                                 | 7.5 | 10 | 15 | 5       | 7.5         |             | 5                                 | 7.5 | 10 |
| 21     | 4         |                                   | 7.5 | 10 | 15 | 5       |             |             | 5                                 | 7.5 | 10 |
| 51     | 6         | 5                                 | 7.5 | 10 | 15 | 5       |             | -           | 5                                 | 7.5 |    |
|        | 8         | 5                                 | 7.5 | 10 | 15 |         | -           |             | 5                                 | 7.5 | -  |
|        | 10        | 5                                 | 7.5 | 10 | -  | -       |             |             | 5                                 | 7.5 |    |
|        | 0         |                                   |     |    |    | 5       | 7.5         | 10          |                                   |     |    |
|        | 2         | Not covered by target test matrix |     |    |    | 5       | 7.5         |             | Not covered by target test matrix |     |    |
| 24.1   | 4         |                                   |     |    |    | 5       | 7.5         |             |                                   |     |    |
| 24.1   | 6         |                                   |     |    |    | 5       | 7.5         | -           |                                   |     |    |
|        | 8         | 1                                 |     |    | 5  | 7.5     |             |             |                                   |     |    |
|        | 10        | 1                                 |     |    |    | 5       | 7.5         | 1           |                                   |     |    |

Table 6. Resultant test matrix under pure- and mainly-oil conditions

Recall from Sec. 3.1.5 that the zero pre-swirl-guide insert injects the test fluid radially inwards to produce a flow with minimum circumferential velocity at the seal inlet. However, the fluid's pre-rotation at the seal inlet is not zero due to the rotor rotation. Table 7 shows measured pre-swirl ratio  $u_0(0)$  for all pure- and mainly-oil cases. The maximum  $u_0(0)$  is 0.22.

As shown in Table 4, the uncertainty of the pitot tube differential pressure is 0.0032 bars. This uncertainty produces the uncertainty of  $u_0(0)$ . Since the effective density of the fluid
| PD     | Inlet |      | <i>C</i> <sub><i>r</i></sub> =0.1 | 88 mm     |      | <i>C<sub>r</sub></i> =0.163 mm |      |             | <i>C<sub>r</sub></i> =0.140 mm |           |        |  |
|--------|-------|------|-----------------------------------|-----------|------|--------------------------------|------|-------------|--------------------------------|-----------|--------|--|
| (bars) | GVF   | 5    | 7.5                               | 10        | 15   | 5                              | 7.5  | 10          | 5                              | 7.5       | 10     |  |
|        | (70)  | krpm | krpm                              | krpm      | krpm | krpm                           | krpm | krpm        | krpm                           | krpm      | krpm   |  |
|        | 0     | 0.04 | 0.10                              | 0.12      | 0.16 |                                |      |             | 0.11                           | 0.13      |        |  |
| 19.2   | 2     | 0.04 | 0.10                              | 0.12      | 0.16 |                                |      |             | 0.09                           |           |        |  |
|        | 4     | 0.04 | 0.10                              | 0.12      | 0.16 |                                |      |             |                                |           |        |  |
| 40.5   | 6     | 0.03 | 0.10                              | 0.12      | 0.16 |                                |      |             |                                | -         | -      |  |
|        | 8     | 0.03 | 0.09                              | 0.11      | 0.16 |                                |      |             | -                              |           |        |  |
|        | 10    | 0.03 | 0.08                              | 0.10      | 0.15 |                                |      |             |                                |           |        |  |
|        | 0     |      | 0.09                              | 0.13      | 0.19 |                                | -    |             | 0.11                           | 0.14      | 0.19   |  |
|        | 2     | -    | 0.10                              | 0.13      | 0.19 |                                |      |             | 0.11                           | 0.14      |        |  |
| 27.0   | 4     | 0.09 | 0.10                              | 0.13      | 0.19 |                                |      |             | 0.11                           | 0.14      |        |  |
| 57.9   | 6     | 0.09 | 0.10                              | 0.13      | 0.19 |                                |      |             | 0.11                           | 0.14      | -      |  |
|        | 8     | 0.09 | 0.10                              | 0.13      | 0.19 |                                |      |             |                                |           |        |  |
|        | 10    | 0.10 | 0.10                              | 0.13      | 0.19 |                                |      |             | -                              | -         |        |  |
|        | 0     |      | 0.11                              | 0.14      | 0.22 | 0.09                           | 0.13 |             | 0.09                           | 0.16      | 0.21   |  |
|        | 2     | -    | 0.11                              | 0.14      | 0.22 | 0.09                           | 0.13 |             | 0.10                           | 0.17      | 0.22   |  |
| 21     | 4     |      | 0.11                              | 0.14      | 0.22 | 0.09                           |      |             | 0.09                           | 0.17      | 0.22   |  |
| 51     | 6     | 0.07 | 0.11                              | 0.14      | 0.22 | 0.09                           |      |             | 0.09                           | 0.18      |        |  |
|        | 8     | 0.09 | 0.11                              | 0.14      | 0.22 |                                | -    |             | 0.09                           | 0.17      | -      |  |
|        | 10    | 0.09 | 0.11                              | 0.14      | -    | -                              |      |             | 0.09                           | 0.17      |        |  |
|        | 0     |      |                                   |           |      | 0.11                           | 0.14 | 0.20        |                                |           |        |  |
| 24.1   | 2     |      |                                   |           |      | 0.10                           | 0.14 |             |                                |           |        |  |
|        | 4     |      | Not cov                           | vered by  |      | 0.10                           | 0.14 | - Not cover |                                | t covered | l by   |  |
|        | 6     |      | target te                         | st matrix |      | 0.10                           | 0.14 |             |                                | et test m | matrix |  |
|        | 8     |      |                                   |           |      | 0.10                           | 0.14 |             |                                |           |        |  |
|        | 10    |      |                                   |           |      | 0.10                           | 0.14 |             |                                |           |        |  |

varies with inlet GVF, the uncertainty of  $u_0(0)$  varies with inlet GVF. Table 8 shows the uncertainties of measured  $u_0(0)$  values.

Table 7. Measured pre-swirl ratios under pure- and mainly-oil conditions

| Inlet GVF (%) | 5 krpm | 7.5 krpm | 10 krpm | 15 krpm |
|---------------|--------|----------|---------|---------|
| 0             | 0.04   | 0.02     | 0.02    | 0.01    |
| 2             | 0.04   | 0.02     | 0.02    | 0.01    |
| 4             | 0.04   | 0.02     | 0.02    | 0.01    |
| 6             | 0.04   | 0.02     | 0.02    | 0.01    |
| 8             | 0.04   | 0.03     | 0.02    | 0.01    |
| 10            | 0.04   | 0.03     | 0.02    | 0.01    |

Table 8. Uncertainties of measured pre-swirl ratios under pure- and mainly-oil conditions

### 5.2 Reynolds Number

For a bulk-flow model, the Reynolds number Re is

$$Re = \sqrt{Re_{\theta}^2 + Re_a^2} \quad , \tag{29}$$

where  $Re_{\theta}$  is the circumferential Reynolds number, and  $Re_a$  is the axial Reynolds number.

 $Re_{\theta}$  is

$$Re_{\theta} = \frac{\rho C_r D_r \omega}{4\mu},\tag{30}$$

where  $\rho$  is the effective density defined by Eq. (13),  $\mu$  is the effective viscosity defined by Eq. (18),  $D_r$  is the rotor diameter, and  $C_r$  is the radial clearance.

 $Re_a$  relates to  $\dot{m}$  by

$$Re_a = \frac{\rho}{\mu} V_a C_r = \frac{\rho}{\mu} \frac{\dot{m}}{\rho C_r \pi D_r} C_r = \frac{\dot{m}}{\mu \pi D_r},$$
(31)

where  $V_a$  is the axial bulk-flow velocity.

Figure 24 shows the Reynolds number at the seal inlet  $Re_i$  versus inlet GVF over a range of  $\omega$ ,  $C_r$ , and PD values.  $Re_i$  increases slightly (by less than 12%) as inlet GVF increases from zero to 10%, due to the decrease in  $\mu$  induced by the air additions to the oil flow.

Figure 25 presents the Reynolds number at the seal exit  $Re_e$  versus inlet GVF over a range of  $\omega$ ,  $C_r$ , and PD values.  $Re_e$  increases with increasing inlet GVF, and the effects of changing inlet GVF on  $Re_e$  are more pronounced than on  $Re_i$  since the GVF at the seal exit is larger than inlet GVF due to the pressure drop through the seal. For example, when PD=37.9 bars and  $\omega$ =7.5 krpm, as inlet GVF increases from zero to 10%,  $Re_e$  increases by 53.9%, but  $Re_i$  only increases by 9.6%.

As expected,  $Re_e$  and  $Re_i$  values increase as  $C_r$  or PD increase since  $\dot{m}$  increases with increasing  $C_r$  or PD.



Figure 24. Calculated Rei under pure- or mainly-oil conditions



Figure 25. Calculated Ree under pure- or mainly-oil conditions

Although  $\dot{m}$  is constant throughout the seal, the calculated axial Reynolds number at the seal exit  $Re_{a,e}$  is larger than the axial Reynolds number at the seal inlet  $Re_{a,i}$  since  $\mu$  at the seal

exit is smaller than at the seal inlet because: (1) the temperature rise through the seal decreases the oil viscosity  $\mu_l$ , and (2) the pressure drop through the seal increases GVF, and  $\mu$  decreases as GVF increases.

Recall from Eq. (13),  $\rho$  decreases as GVF increases. Although decreasing  $\rho$  can decrease  $Re_{\theta}$ , the circumferential Reynolds number at the seal exit  $Re_{\theta,e}$  is larger than the circumferential Reynolds number at the seal inlet  $Re_{\theta,i}$  because the drop in  $\mu$  has more impact on  $Re_{\theta}$  than the drop in  $\rho$ . Therefore, the Reynolds number at the seal exit  $Re_e$  is greater than the Reynolds number at the seal inlet  $Re_{i}$ , as shown in Figs. 24 and 25.

From Cornish [39] and Yamada [40], the stability of a laminar flow within the seal annulus not only depends on  $Re_a$  but also depends on  $Re_{\theta}$ . Cornish [39] gives the boundary line, at which Taylor vortices occur, for a smooth water seal with L=150 mm, D=60 mm and  $C_r=0.0139$  mm. Figures 26(a) and (b) show this boundary by a solid line. Regarding this boundary line, the critical Taylor number  $Re_{\theta,c}(2C_r/D_r)^{1/2}$  increases as  $Re_a$  increases to 600.  $Re_{\theta,c}$  is the critical circumferential Reynolds number. From Yamada [40],  $Re_{\theta,c}(2C_r/D_r)^{1/2}$  decreases when  $Re_a$  increases beyond 600, and the boundary line beyond 600 is almost symmetric with the solid line about the line of  $Re_a=600$ . Also, according to Yamada [40], for a smooth water annular seal with  $\omega=0$  rpm ( $Re_{\theta}=0$ ), the critical Reynolds number  $Re_c$ =the critical axial Reynolds number  $Re_{a,c}\approx1500$ . Figures 26(a) and (b) show the boundary line beyond  $Re_a=600$  by a dashed line. The solid line and dashed line form the border between laminar and turbulent flow.

Figure 26(a) shows the Taylor number at the seal inlet  $Re_{\theta,i}(2C_r/D_r)^{1/2}$  versus  $Re_{a,i}$  for pure- and mainly-oil cases, and Fig. 26(b) depicts the Taylor number at the seal exit  $Re_{\theta,e}(2C_r/D_r)^{1/2}$  versus  $Re_{a,e}$ . The filled symbols are for pure-oil cases, and the hollow symbols are for mainly-oil cases. From Fig. 26(a), the flow at the seal inlet is laminar when  $C_r=0.140$  and 0.163 mm, but turbulent when  $C_r=0.188$  mm. From Fig. 30(b), when  $C_r=0.188$  mm, the flow at the seal exit is turbulent. When  $C_r=0.140$  and 0.163 mm, the flow at the seal exit is laminar except for some mainly-oil cases, where hollow symbols are above but close to the dash line. This dissertation treats these exceptional cases as laminar for the following two reasons:

 For mainly-oil conditions, the mixture's density and viscosity are calculated by Eqs. (13) and (18) rather than being measured directly, the accuracies of calculated Reynolds numbers depend on the correctness of the homogeneous mixture assumption and the models of the mixture density and viscosity. So, the calculated Reynolds numbers at mainly-oil conditions have less credibility than at pure-oil conditions.

2. The length of the test seal is only 38.5% of Cornish's [39] test seal. This difference can push up the boundary line since the test seal has a shorter time to develop turbulence than Cornish's test seal.



In short, the flow within the seal annulus is laminar when  $C_r$ =0.140 and 0.163 mm, but turbulent when  $C_r$ =0.188 mm. Note, for some  $C_r$ =0.188 mm cases, the transitional effects may still be evident; i.e., the flow may not be fully turbulent.

### 5.3 Leakage Mass Flow Rate

Figure 27 shows the test seal's leakage mass flow rate  $\dot{m}$  versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. Increasing inlet GVF from zero to 10% barely changes  $\dot{m}$  when  $C_r$ =0.188 mm, but increases  $\dot{m}$  slightly (by less than 8%) when  $C_r$ =0.140 and 0.163 mm. Recall from Eq. (13) and Eq. (18) that both effective viscosity and effective density decrease as inlet GVF increases. Decreasing effective viscosity can increase  $\dot{m}$ , while decreasing effective density can decrease  $\dot{m}$ . For  $C_r$ =0.188 mm, test results (negligible changes in  $\dot{m}$  as inlet GVF increases) indicate that the decrease in effective viscosity and the decrease in effective density have close

but opposite effects. For  $C_r$ =0.140 and 0.163 mm, test data ( $\dot{m}$  increases slightly as inlet GVF increases) imply that the decrease in effective viscosity has slightly more impact than the decrease in effective density.

For pure-oil conditions at  $C_r=0.188$  mm,  $\dot{m}$  decreases by (18%~29%) as  $\omega$  increases from 5 to 15 krpm. This outcome agrees with the test data of Jolly et al. [41] for a long (L/D=0.625) turbulent-water smooth seal and the test results from Marquette et al. [2] for a turbulent-water smooth (L/D=0.458) seal. This trend continues after adding air into the oil flow.



Figure 27. Measured *m* vs. inlet GVF under pure- or mainly-oil conditions

In Fig. 27,  $\dot{m}$  decreases as  $\omega$  increases for  $C_r$ =0.188 mm because the axial wall shear stress function  $\tau_z$  increases as  $\omega$  increases. The derivation of the relationship between  $\tau_z$  and  $\omega$ follows. According to Soulas and San Andrés [42],  $\tau_z$  is a function of the axial flow shear parameter  $k_z$ 

$$\tau_z = \frac{\mu}{C_r} k_z V_a \,, \tag{32}$$

where  $\mu$  is the mixture viscosity, and  $V_a$  is the axial bulk-flow velocity

Recall from Sec. 5.2 that the flow is turbulent for  $C_r=0.188$  mm. For turbulent flow,  $k_z$  is [42]

$$k_{z} = 0.5(k_{r} + k_{s}), \qquad (33)$$

where  $k_r$  is the turbulent shear parameter at the rotor surface, and  $k_s$  is the turbulent shear parameter at the stator surface.  $k_r$  and  $k_s$  are:

$$k_{r,s} = f_{r,s} R e_{r,s} \tag{34}$$

$$f_{r,s} = a_m \left[ 1 + \left( c_m r_{r,s} / C_r + b_m / R e_{r,s} \right)^{e_m} \right]$$
(35)

$$Re_r = \frac{\rho}{\mu} C_r \sqrt{\left(V_\theta - 0.5D_r\omega\right)^2 + V_a^2}$$
(36)

$$Re_s = \frac{\rho}{\mu} C_r \sqrt{V_\theta^2 + V_a^2} , \qquad (37)$$

where  $f_r$  is the rotor surface friction factor,  $f_s$  is the stator surface friction factor,  $r_r$  is rotor surface mean roughness,  $r_s$  is stator surface mean roughness,  $Re_r$  is the Reynolds number relative to the rotor surface,  $Re_s$  is the Reynolds number relative to the stator surface, and  $V_{\theta}$  is the circumferential bulk-flow velocity.  $A_m$ ,  $b_m$ ,  $c_m$ , and  $e_m$  are 0.001375, 5×10<sup>5</sup>, 10<sup>4</sup>, and 1/3, respectively. The stator and rotor surfaces are nominally smooth, and the surface roughness values from drawings are:

$$r_r = r_s = 0.4 \ \mu \mathrm{m} \tag{38}$$

Assuming  $V_{\theta}$  is half of the rotor surface speed,  $D_r \omega/4$ ,  $Re_r$  and  $Re_s$  become

$$Re_r = Re_s = \frac{\rho}{\mu} C_r \sqrt{\left(\frac{D_r \omega}{4}\right)^2 + V_a^2}$$
(39)

Because  $Re_r = Re_s$  and  $r_r = r_s$ ,  $f_r = f_s$ , and  $k_r = k_s$ . Hence  $k_z$  is:

$$k_{z} = a_{m} \frac{\rho}{\mu} C_{r} \sqrt{\left(\frac{D_{r}\omega}{4}\right)^{2} + V_{a}^{2}} + a_{m} \left[\frac{c_{m}r_{r}}{C_{r}} \left(\frac{\rho}{\mu} C_{r} \sqrt{\left(\frac{D_{r}\omega}{4}\right)^{2} + V_{a}^{2}}\right)^{1/e_{m}} + b_{m} \left(\frac{\rho}{\mu} C_{r} \sqrt{\left(\frac{D_{r}\omega}{4}\right)^{2} + V_{a}^{2}}\right)^{1/e_{m}-1}\right]^{e_{m}}$$
(40)

Substituting Eq. (40) into Eq. (32) renders

$$\tau_{z} = a_{m}\rho V_{a}\sqrt{\left(\frac{D_{r}\omega}{4}\right)^{2} + V_{a}^{2}} + a_{m}\frac{\mu V_{a}}{C_{r}}\left[\frac{c_{m}r_{r}}{C_{r}}\left(\frac{\rho}{\mu}C_{r}\sqrt{\left(\frac{D_{r}\omega}{4}\right)^{2} + V_{a}^{2}}\right)^{1/e_{m}} + b_{m}\left(\frac{\rho}{\mu}C_{r}\sqrt{\left(\frac{D_{r}\omega}{4}\right)^{2} + V_{a}^{2}}\right)^{1/e_{m}-1}\right]^{e_{m}}.$$
 (41)

Thus, when  $C_r=0.188$  mm (turbulent flow), increasing  $\omega$  increases  $\tau_z$  and reduces  $\dot{m}$ .

For  $C_r=0.140$  and 0.163 mm, the flow conditions within the seal annulus are laminar (as discussed previously in Sec. 5.2), and increasing  $\omega$  barely changes  $\dot{m}$  because under laminar flow conditions,  $k_z=12$  is a constant [43], and  $\tau_z$  is not related to  $\omega$ .

As expected,  $\dot{m}$  increases as  $C_r$  or PD increases for all clearances.

## **5.4 Direct Stiffness**

Figure 28 shows K versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. K can be comparable in magnitude to the direct stiffness of a hydrodynamic bearing and can strongly affect the rotordynamic characteristics of a centrifugal pump.

For  $C_r$ =0.188 mm, K generally increases as PD increases, which agrees with the test results from Marquette et al. [2] for a fully-turbulent-water smooth seal. In a centrifugal pump, this stiffness increment will increase the natural frequency of the rotor and increase the rotor's critical speed. Increasing the natural frequency of the rotor would also increase the onset speed of instability (OSI) and enhance the rotor's stability. Increasing  $\omega$  also generally increases K. This outcome is contrary to Marquette et al.'s [2] test results, where K decreases with increasing  $\omega$ . The predictions (presented in Appendix A.2) agree with Marquette et al.'s [2] test results but disagree with the author's measurements. A possible reason for this disagreement is that transitional effects might still be evident in many cases when  $C_r$ =0.188 mm; i.e., the flow is not fully turbulent.

In regard to the effects of changes in inlet GVF when  $C_r$ =0.188 mm, increasing inlet GVF increases K at low PDs (31 and 37.9 bars). At the highest PD (48.3 bars), K first increases as inlet GVF increases from zero to 6% and then drops with further increasing inlet GVF to 10%. The predictions in Appendix A.2 show that K always decreases with increasing inlet GVF from zero to 10% for all PDs. Hence the predicted trend only agrees with test results when PD=48.3 bars and 6%≤inlet GVF≤10%. A possible explanation is that the transitional effects disappear,

and the flow becomes fully-turbulent when PD=48.3 bars and inlet GVF=6%, and this flow status transition significantly changes the effects of changes in inlet GVF.

For  $C_r$ =0.140 and 0.163 mm, the effects of changing inlet GVF,  $\omega$ , or PD on K are different and even contrary to the trends observed at  $C_r$ =0.188 mm; specifically, K generally decreases as inlet GVF,  $\omega$ , or PD increase. A possible reason for this is that the flow transitions from laminar to turbulent as  $C_r$  increases from 0.163 to 0.188 mm, as previously discussed in Sec. 5.2.

Seal wear that increases  $C_r$  is a known cause for vibration issues in centrifugal pumps. The only circumstance where only  $C_r$  changes is at PD=31 bars. The flow remains laminar as  $C_r$  increases from 0.140 to 0.163 mm, but transitions to turbulent as  $C_r$  increases further to 0.188 mm. As  $C_r$  increases from 0.140 to 0.188 mm when  $\omega$ =7.5 krpm, there is no clear trend of *K*. For the laminar flow only, as  $C_r$  increases from 0.140 to 0.140 to 0.163 mm, *K* drops significantly when  $\omega$ =5 and 7.5 krpm. For example, when inlet GVF=2% and  $\omega$ =7.5 krpm, *K* decreases from 22.8 to -4.5 MN/m.



Figure 28. Measured K vs. inlet GVF under pure- or mainly-oil conditions

## 5.5 Cross-Coupled Stiffness

Increasing k directly decreases the rotordynamic stability. Figure 29 shows k versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. All k values are positive, producing destabilizing forces. As expected, k increases as  $\omega$  increases because increasing  $\omega$  increases the fluid's circumferential velocity. The increment of k increases the seal's destabilizing force.

For  $C_r$ =0.188 mm (turbulent flow), changing PD has negligible effects on k at pure-oil conditions. This outcome agrees with the test results from Marquette et al. [2]. Adding air into the oil flow does not change this trend. Also, adding air (increasing inlet GVF) has little effect on k, producing negligible effects on the seal's destabilizing force.

When  $C_r$ =0.140 and 0.163 mm (laminar flow), adding air strongly impacts *k*. Increasing inlet GVF generally increases *k*. For example, when  $C_r$ =0.140 mm, PD=37.9 bars, and  $\omega$ =7.5 krpm, *k* increases by 70.2% from 12.44 to 21.17 MN/m as inlet GVF increases from zero to 6%. Increasing PD also increases *k*.

In short, adding air or increasing PD have little effect on k when  $C_r=0.188$  mm (turbulent flow), but generally increase k for  $C_r=0.140$  and 0.163 mm (laminar flow).

PD=31 bars is the only circumstance where only  $C_r$  changes. As  $C_r$  increases from 0.140 to 0.163 mm, the flow remains laminar, and *k* increases significantly (by >52.7%) when  $\omega$ =5 and 7.5 krpm. As  $C_r$  further increases to 0.188 mm, the flow transitions to turbulent, and *k* decreases by about 44% when  $\omega$ =7.5 krpm and inlet GVF≤2%.



Figure 29. Measured k vs. inlet GVF under pure- or mainly-oil conditions

# 5.6 Direct Damping

Figure 30 shows C versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. All C values are positive, producing stabilizing forces.

For  $C_r$ =0.188 mm (turbulent flow), at pure-oil conditions, increasing PD from 31 to 48.3 bars increases *C* by about 15%, which generally agrees with test results from Marquette et al. [2]. This trend continues after adding air into the oil flow. The *C* increment will increase the seal's damping force, making the seal more stabilizing and reducing the peak amplitudes at critical speeds of the pump's rotor. Changing  $\omega$  has negligible effects on *C*. This outcome agrees with Marquette et al.'s [2] test data. Adding air into the oil flow (increasing inlet GVF) barely changes *C*, producing little effect on the seal's damping characteristics.

For  $C_r$ =0.140 and 0.163 mm (laminar flow), C increases as PD increases. This outcome is consistent with test results at  $C_r$ =0.188 mm. C generally increases as  $\omega$  increases. This trend is different from test results at  $C_r$ =0.188 mm, but agrees with predictions, which will be discussed in Appendix A.4. Increasing inlet GVF generally increases *C*. For example, when  $C_r$ =0.140 mm, PD=37.9 bars, and  $\omega$ =7.5 krpm, *C* increases by 43.8% as inlet GVF increases from zero to 6%.

In short, changing  $\omega$  or inlet GVF have significant effects on *C* when  $C_r=0.140$  and 0.163 mm, but have no discernible effects on *C* when  $C_r=0.188$  mm. A possible reason for this is that the flow transitions from laminar to turbulent as  $C_r$  changes from 0.163 to 0.188 mm.

PD=31 bars is the only circumstance to discuss the effects of changes in  $C_r$  since it is the only PD where only  $C_r$  changes. For PD=31 bars, as  $C_r$  increases from 0.140 to 0.163 mm, the flow remains laminar, and C increases (by 14.7%~42.1%) when  $\omega$ =5 and 7.5 krpm. As  $C_r$  further increases from 0.163 to 0.188 mm, the flow transitions to turbulent, and C decreases by about 26% when  $\omega$ =7.5 krpm and inlet GVF≤2%.



Figure 30. Measured C vs. inlet GVF under pure- or mainly-oil conditions

# 5.7 Cross-Coupled Damping

Figure 31 shows *c* versus inlet GVF for a range of  $\omega$ , *C<sub>r</sub>*, and PD values. All *c* values are positive except when *C<sub>r</sub>*=0.140 mm, PD=48.3 bars,  $\omega$ =7.5 krpm, and inlet GVF=0%, where the magnitude of the small negative *c* is near the same order as the uncertainty. According to Eq. (5), a positive *c* produces additional centering force on the rotor.

For  $C_r$ =0.188 mm (turbulent flow), *c* increases with increasing  $\omega$  under pure-oil conditions, which agrees with the test data from Marquette et al. [2]. This outcome is expected because the fluid's circumferential velocity increases as  $\omega$  increases. And this trend continues after adding air into the oil flow. The increment of *c* can increase the net centering force of the seal and can then increase the critical speed of the rotor in a centrifugal pump. As with test results from Marquette et al. [2], increasing PD does not significantly change *c* under pure-oil conditions. This trend generally continues as inlet GVF increases up to 10%. At low  $\omega$  and PD values, *c* is insensitive to changes in inlet GVF. As  $\omega$  or PD increase, *c* become more dependent on inlet GVF; i.e., *c* decreases as inlet GVF increases from zero to 10%. This decrease of *c* due to increasing inlet GVF is expected because the fluid's effective viscosity decreases as inlet GVF increases. For the same reason, *c* generally drops as inlet GVF increases for *C<sub>r</sub>*=0.140 and 0.163 mm. Note the rate of decrease varies significantly with operating conditions. For example, when *C<sub>r</sub>*=0.140 mm and PD=31 bars, as inlet GVF increases from zero to 10%, *c* decreases by 84.8% at  $\omega$ =7.5 krpm, but decreases by only 12.3% at  $\omega$ =5 krpm.

For  $C_r$ =0.140 and 0.163 mm (laminar flow), increasing PD decreases c. For  $C_r$ =0.163 mm, c is invariant with changes in  $\omega$ . For most cases at  $C_r$ =0.140 mm, c decreases as  $\omega$  increases.

In summary, the observed trends with changes in PD or  $\omega$  when  $C_r=0.140$  and 0.163 mm are different from test results at  $C_r=0.188$  mm. A possible reason for this is that the flow transitions from laminar to turbulent as  $C_r$  increases from 0.163 to 0.188 mm.

Concerning the effects of changes in  $C_r$ , PD=31 bars is the only circumstance where only  $C_r$  changes. As  $C_r$  increases from 0.140 to 0.163 mm, the flow remains laminar, and *c* drops dramatically (by more than a half) when  $\omega$ =5 and 7.5 krpm. As  $C_r$  further increases from 0.163 to 0.188 mm, the flow transitions to turbulent, and *c* almost doubles when  $\omega$ =7.5 krpm and inlet GVF≤2%.



### 5.8 Direct Virtual-Mass

Figure 32 presents M versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. M is caused by fluid inertia and can produce comparable dynamic effects in magnitude on the seal's net centering force to the seal's K. All M values are positive, reducing the net centering force of the seal, according to Eq. (5). Reducing the seal's net centering force can decrease the critical speed of the rotor in a pump.

When  $C_r=0.188$  mm (turbulent flow), M generally increases as  $\omega$  increases. This outcome differs from Marquette et al.'s [2] test results, where M is not sensitive to changes in  $\omega$ . The predictions in Appendix A.6 show good agreement with Marquette et al.'s [2] test trends; i.e., they also differ from measurements. A possible reason for this is that in many  $C_r=0.188$  mm cases, the transitional effects might still be evident, and the flow is not fully turbulent, while the flow is fully turbulent for Marquette et al.'s tests [2] and the predictions in Appendix A.6. In general, M is not sensitive to changes in PD. This outcome agree with Marquette et al.'s [2] test results. As expected, at high PD (48.3 bars) or at high  $\omega$  (15 krpm), M drops (by up to 51%) as inlet GVF increases to 10% because increasing inlet GVF decreases the fluid's effective density.

This outcome agrees with predictions in Appendix A.6, where predicted M decreases by about 50% as inlet GVF increases to 10%. However, for  $\omega$  from 5 to 10 krpm when PD=31 and 37.9 bars, as inlet GVF increases from zero to 10%, M remains generally unchanged, whereas predicted M decreases significantly (by about 50%). This disagreement may also result from the evident transitional effects in those cases while the flow is fully-turbulent in predictions.

For  $C_r=0.140$  and 0.163 mm (laminar flow), M (as expected) drops as inlet GVF increases. M drops as  $\omega$  increases. This trend is contrary to test results at  $C_r=0.188$  mm, where M generally increases as  $\omega$  increases. M generally decreases as PD increases. This outcome is different from test data at  $C_r=0.188$  mm, where M remains almost unchanged as PD increases.

In summary, the effects of changes in  $\omega$  and PD on *M* change significantly as  $C_r$  changes from 0.163 to 0.188 mm. This change may result from the flow status change (from laminar to turbulent) as  $C_r$  increases from 0.163 to 0.188 mm.

PD=31 bars is the only circumstance where only  $C_r$  changes. As  $C_r$  increases from 0.140 to 0.163 mm, the flow remains laminar, and M decreases significantly (by 31.4%~54.0%). Further increasing  $C_r$  to 0.188 mm makes the flow transition to turbulent. However, when  $\omega$ =7.5 krpm and inlet GVF≤2%, increasing  $C_r$  from 0.163 to 0.188 mm barely changes M.



Figure 32. Measured M vs. inlet GVF under pure- or mainly-oil conditions

## 5.9 Cross-Coupled Virtual-Mass

Figure 33 shows  $m_q$  versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. According to Eq. (6), a positive  $m_q$  acts as a stabilizing force, and a negative  $m_q$  acts as a destabilizing force.

For  $\omega$  from 5 to 10 krpm, the magnitudes of  $m_q$  values are near the same order of the uncertainties and  $|m_q\omega/(C-k/\omega)|$  is less than 13.2%, showing negligible effects on the seal's rotordynamic performance. When  $C_r=0.188$  mm, as  $\omega$  increases from 10 to 15 krpm,  $m_q$  remains negative but significantly increases in magnitude, producing a measurable destabilizing force  $(22.2\% < |m_q\omega/(C-k/\omega)| < 50.4\%)$ . For  $\omega=15$  krpm at  $C_r=0.188$  mm,  $m_q$  generally decreases (increases in magnitude) as inlet GVF increases from zero to 10%.



### 5.10 Effective Damping

Effective damping  $C_{eff}$  describes the seal's net damping force and is defined as:

$$C_{eff} = C - k / \omega + m_a \omega \tag{42}$$

Figure 34 shows  $C_{eff}$  versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD.  $C_{eff}$  is smaller than the corresponding C (shown in Fig. 30) because the corresponding k (shown in Fig. 29) is positive, and the corresponding  $m_q$  (shown in Fig. 33) is either negative (when  $\omega$ =15 krpm and  $C_r$ =0.188 mm) or negligible (for all other cases). For all clearances, increasing PD generally increases  $C_{eff}$  because C generally increases as PD increases. The  $C_{eff}$  increment increases the seal's effective damping force, making the seal more stabilizing and reducing the rotor's peak amplitudes at critical speeds in a pump.

For  $C_r$ =0.188 mm (turbulent flow), increasing inlet GVF from zero to 10% has negligible effects on  $C_{eff}$  since increases in inlet GVF generally does not changes C, k, and  $m_q$ . As expected,  $C_{eff}$  values decrease (by about 40%) as  $\omega$  increases from 5 to 15 krpm since increasing  $\omega$  increases k (shown in Fig. 29). When  $C_r=0.163$  and 0.140 mm (laminar flow), increasing inlet GVF generally increases  $C_{eff}$  because the increase in *C* surpasses the increase in *k*. Changing  $\omega$  generally produces negligible effects on  $C_{eff}$  because the increase in *C* offsets the increase in *k*. This outcome agrees with the predictions in Appendix A.8.

In summary, the effects of changes in inlet GVF and  $\omega$  on  $C_{eff}$  change significantly as  $C_r$  changes from 0.163 to 0.188 mm; specifically, increasing inlet GVF does not discernibly change  $C_{eff}$  when  $C_r=0.188$  mm but generally increases  $C_{eff}$  when  $C_r=0.163$  and 0.140 mm, and increasing  $\omega$  decreases  $C_{eff}$  when  $C_r=0.188$  mm but has little impact on  $C_{eff}$  when  $C_r=0.163$  and 0.140 mm. This change may result from the flow status change (from laminar to turbulent) as  $C_r$  increases from 0.163 to 0.188 mm.

PD=31 bars is the only circumstance where only  $C_r$  changes. When  $\omega$ =5 and 7.5 krpm, as  $C_r$  increases from 0.140 to 0.163 mm, the flow remains laminar, and  $C_{eff}$  increases by about 20%, making the seal more stabilizing. When  $\omega$ =7.5 krpm and inlet GVF $\leq$ 2%, further increasing  $C_r$  to 0.188 mm changes the flow to turbulent and decreases  $C_{eff}$  by about 20%.



Figure 34. Measured  $C_{eff}$  vs. inlet GVF under pure- or mainly-oil conditions

# 6. EXPERIMENTAL RESULTS FOR PURE- AND MAINLY-AIR TESTING<sup>\*</sup>

Figure 35 shows the real and imaginary parts of  $H_{ij}$  for a typical mainly-air test (after subtracting baseline data) when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm. Figure 35(a) shows that the quadratic function shown in Eq. (20) does a poor job of fitting Re( $H_{ij}$ ) since the resultant R<sup>2</sup> values are not close to 1.0. Therefore, frequency-independent stiffness  $K_{ij}$  and virtual-mass  $M_{ij}$  coefficients cannot be extracted from Re( $H_{ij}$ ). This paper uses Re( $H_{ij}$ ) directly to describe the dynamic stiffness of the test seal. Re( $H_{ij}$ ) is frequency-dependent.

Figure 35(b) demonstrates that the linear function of  $\Omega$  shown in Eq. (20) fits Im( $H_{ij}$ ) well, producing frequency-independent damping coefficients  $C_{ij}$ .

 $|\text{Re}(H_{ij})|$  and  $|C_{ij}|$  values in Fig. 35 are (as expected) almost identical in X and Y directions. Therefore, the following discussion uses the average values for the rotordynamic coefficients:

$$K_{\Omega} = \frac{\operatorname{Re}(\boldsymbol{H}_{XX}) + \operatorname{Re}(\boldsymbol{H}_{YY})}{2}$$
(43)

$$k_{\Omega} = \frac{\operatorname{Re}(\boldsymbol{H}_{XY}) - \operatorname{Re}(\boldsymbol{H}_{YX})}{2}$$
(44)

$$C = \frac{C_{XX} + C_{YY}}{2} \tag{45}$$

$$c = \frac{C_{XY} - C_{YX}}{2},$$
 (46)

where  $K_{\Omega}$  is the direct dynamic stiffness,  $k_{\Omega}$  is the cross-coupled dynamic stiffness, C is the direct damping, and c is the cross-coupled damping.

<sup>&</sup>lt;sup>\*</sup> Portion of this section is reprinted with permission from "Experimental Study of the Static and Dynamic Characteristics of a Long Smooth Seal with Two-Phase, Mainly-Air Mixtures," by Zhang, M., McLean, J., and Childs, D., 2017, *ASME J. Eng. Gas Turbines Power*, 139(12), p. 122504, Copyright 2017 by ASME.



Figure 35. The (a) real and (b) imaginary parts of  $H_{ij}$  for a typical mainly-air case (PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm) after subtracting baseline data [27]

### 6.1 Sensitivity of Excitation Time on Parameter Identification

As noted in Sec. 4.2, for a mainly-air case, the shaker excites the stator assembly along each direction by steadily repeating a pre-programed waveform 1280 times. Since a waveform lasts 0.1024 seconds, the excitation time  $t_e$  along each direction is 131.072 seconds. This section studies the effects of changes in  $t_e$  on the seal's identified stiffness coefficients ( $K_{\Omega}$  and  $k_{\Omega}$ ) and their uncertainties.

Figure 36 shows  $K_{\Omega}$  versus  $\Omega$  for three  $t_e$  values (32.768 s, 65.536 s, and 131.072 s) when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm. The three graphs in Fig. 36 are arranged in increasing  $t_e$  from left to right.  $K_{\Omega}$  generally increases as  $\Omega$  increases. However,  $K_{\Omega}$  does not steadily increase with increasing  $\Omega$ ; i.e.,  $K_{\Omega}$  is jittering. This jittering generally decreases as  $t_e$  increases.



Figure 37 shows the ratio of the direct dynamic stiffness's uncertainty  $eK_{\Omega}$  to  $K_{\Omega}$  for three  $t_e$  values when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm.  $eK_{\Omega}/K_{\Omega}$ generally decreases as  $\Omega$  increases. The decrease of  $eK_{\Omega}/K_{\Omega}$  indicates that the repeatability of  $K_{\Omega}$ becomes better. Also, as expected,  $eK_{\Omega}/K_{\Omega}$  decreases as  $t_e$  increases. When  $t_e$ =131.072 s,  $eK_{\Omega}/K_{\Omega}$ <5% for most  $\Omega$  values.



Figure 37. Variation of  $eK_{\Omega}/K_{\Omega}$  with  $t_e$  when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm

Figure 38 shows  $k_{\Omega}$  versus  $\Omega$  for three  $t_e$  values when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm. The three graphs in Fig. 38 are arranged in increasing  $t_e$  from left to right. Similar to  $K_{\Omega}$  in Fig. 36,  $k_{\Omega}$  is also jittering, and the jittering decreases as  $t_e$  increases.



Figure 38. Variation of  $k_{\Omega}$  with  $t_e$  when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm

Figure 39 shows the ratio of the cross-coupled dynamic stiffness's uncertainty  $ek_{\Omega}$  to  $k_{\Omega}$  for three  $t_e$  values when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm. As with  $eK_{\Omega}/K_{\Omega}$  in Fig. 37,  $ek_{\Omega}/k_{\Omega}$  generally decreases as  $\Omega$  increases, showing that the repeatability of  $k_{\Omega}$  becomes better. As expected,  $ek_{\Omega}/k_{\Omega}$  decreases as  $t_e$  increases. When  $t_e$ =131.072 s,  $ek_{\Omega}/k_{\Omega}$ <br/>for  $\Omega$ >20 Hz.



Figure 39. Variation of  $ek_{\Omega}/k_{\Omega}$  with  $t_e$  when PR=0.57,  $C_r$ =0.188 mm, inlet GVF=95%, and  $\omega$ =15 krpm

# 6.2 Test Matrix

For tests under pure- and mainly-air conditions, the test seal is centered, the seal inlet pressure  $P_i$  is 62 bars, and no intentional fluid pre-rotation is provided. The targeted test matrix covers:

- a) 4 inlet GVFs: 100%, 98%, 95%, and 92%,
- b) 3 rotor speeds: 10, 15, and 20 krpm,
- c) 3 pressure ratios (PRs): 0.57, 0.5, and 0.43,
- d) 3 radial clearances  $(C_r)$ : 0.140, 0.163, and 0.188 mm.

Since the back-pressure labyrinth seals shown in Fig. 17 did not provide enough resistance to generate the required seal exit pressure  $P_e$ , the targeted 0.57 PR was not achieved for all cases at  $C_r$ =0.140 mm and all mainly-air cases at  $C_r$ =0.163 mm.

For  $C_r=0.140$  mm, when PR=0.5 and 0.43, many mainly-air test cases were not accomplished due to unstable stator motions. In the omitted cases, the stator became unstable immediately when excited by hydraulic shakers. Table 9 shows the resultant test matrix.

Recall from Sec. 3.1.5 that the zero pre-swirl-guide insert injects the test fluid radially inwards to produce a flow with minimum circumferential velocity at the seal inlet. Table 10 shows measured pre-swirl ratio  $u_0(0)$  values for all test cases under pure- and mainly-air conditions. Measured  $u_0(0)$  values are close to zero, and they are between -0.07 and 0.08.

The uncertainty of the pitot tube differential pressure (shown in Table 4) produces the uncertainty of  $u_0(0)$ . Since the effective density of the fluid varies with inlet GVF, the uncertainty of  $u_0(0)$  varies with inlet GVF. Table 11 shows the uncertainties of measured  $u_0(0)$  values.

| PR   | Inlet GVF | <i>C<sub>r</sub></i> =0.188 mm |    |          | $C_r = 0.163 \text{ mm}$ |    |                       | $C_r = 0.140 \text{ mm}$ |    |        |
|------|-----------|--------------------------------|----|----------|--------------------------|----|-----------------------|--------------------------|----|--------|
| (-)  | (%)       | ω (krpm)                       |    | ω (krpm) |                          |    | ω (krpm)              |                          |    |        |
|      | 100       | 10                             | 15 | 20       | 10 15 20                 |    |                       |                          |    |        |
| 0.57 | 98        | 10                             | 15 | 20       | DD commot                |    | PR cannot be achieved |                          |    |        |
| 0.57 | 95        | 10                             | 15 | 20       | be achieved              |    |                       |                          |    |        |
|      | 92        | 10                             | 15 | 20       |                          |    |                       |                          |    |        |
| 0.5  | 100       | 10                             | 15 | 20       | 10                       | 15 | 20                    | 10                       | 15 | 20     |
|      | 98        | 10                             | 15 | 20       | 10                       | 15 | 20                    | 10                       | 15 | 20     |
| 0.5  | 95        | 10                             | 15 | 20       | 10                       | 15 | 20                    | Unstable to test         |    | taat   |
|      | 92        | 10                             | 15 | 20       | 10                       | 15 | 20                    |                          |    | ) test |
| 0.43 | 100       | 10                             | 15 | 20       | 10                       | 15 | 20                    | 10                       | 15 | 20     |
|      | 98        | 10                             | 15 | 20       | 10                       | 15 | 20                    | Unstable to test         |    |        |
|      | 95        | 10                             | 15 | 20       | 10                       | 15 | 20                    |                          |    | o test |
|      | 92        | 10                             | 15 | 20       | 10                       | 15 | 20                    |                          |    |        |

Table 9. Resultant test matrix under pure- and mainly-air conditions

| PR<br>(-) | Inlet GVF<br>(%) | <i>C<sub>r</sub></i> =0.188 mm |       |       | $C_r = 0.163 \text{ mm}$ |         |         | $C_r = 0.140 \text{ mm}$ |       |      |  |
|-----------|------------------|--------------------------------|-------|-------|--------------------------|---------|---------|--------------------------|-------|------|--|
|           |                  | 10                             | 15    | 20    | 10                       | 15      | 20      | 10                       | 15    | 20   |  |
|           |                  | krpm                           | krpm  | krpm  | krpm                     | krpm    | krpm    | krpm                     | krpm  | krpm |  |
|           | 100              | 0.05                           | 0.05  | 0.05  | 0.02                     | 0.04    | 0.03    |                          |       |      |  |
| 0.57      | 98               | -0.02                          | -0.01 | -0.01 | DD commot                |         |         | PR cannot                |       |      |  |
| 0.57      | 95               | -0.02                          | -0.01 | -0.01 | r<br>b                   | K canno | n<br>ad | be achieved              |       |      |  |
|           | 92               | 0.02                           | 0.04  | 0.03  | be achieved              |         |         |                          |       |      |  |
|           | 100              | 0.04                           | 0.06  | 0.05  | 0.04                     | 0.05    | 0.04    | 0.05                     | 0.05  | 0.05 |  |
| 0.5       | 98               | 0.01                           | 0.00  | 0.01  | 0.08                     | 0.01    | 0.00    | 0.03                     | -0.02 | 0.06 |  |
| 0.5       | 95               | 0.02                           | 0.01  | -0.01 | -0.07                    | -0.05   | -0.04   | Unstable to test         |       | tost |  |
|           | 92               | 0.01                           | 0.00  | 0.02  | -0.07                    | -0.04   | -0.03   |                          |       | lest |  |
| 0.43      | 100              | 0.03                           | 0.05  | 0.05  | 0.05                     | 0.03    | 0.02    | 0.06                     | 0.05  | 0.05 |  |
|           | 98               | 0.02                           | -0.02 | -0.01 | 0.08                     | 0.04    | 0.03    | Unstable to test         |       |      |  |
|           | 95               | 0.01                           | 0.02  | -0.01 | -0.05                    | -0.05   | -0.04   |                          |       | test |  |
|           | 92               | 0.02                           | 0.02  | 0.02  | -0.05                    | -0.03   | -0.03   |                          |       |      |  |

Table 10. Measured pre-swirl ratios under pure- and mainly-air conditions

| Inlet GVF (%) | 10 krpm | 15 krpm | 20 krpm |
|---------------|---------|---------|---------|
| 100           | 0.06    | 0.04    | 0.03    |
| 98            | 0.06    | 0.04    | 0.03    |
| 95            | 0.05    | 0.03    | 0.03    |
| 92            | 0.05    | 0.03    | 0.02    |

Table 11. Uncertainties of measured pre-swirl ratios under pure- and mainly-air conditions

### **6.3 Flow Conditions**

Under pure- and mainly-air conditions, the minimum calculated  $Re_a$  is 4336, and it is at the seal inlet when  $C_r=0.163$  mm, PR=0.5,  $\omega=10$  krpm, and inlet GVF=92%. Since the maximum critical axial Reynolds number  $Re_{a,c}$  shown in Figs. 26(a) and (b) is 1500, which is only 34.6% of 4336, the flow can be reasonably treated as fully turbulent under pure- and mainly-air conditions.

### 6.4 Leakage Mass Flow Rate

Figure 40 shows  $\dot{m}$  versus inlet GVF for three PRs (rows), three  $C_r$  values (columns), and three  $\omega$  values. For all clearances,  $\dot{m}$  decreases slightly (by less than 6%) as inlet GVF decreases from 100% to 98%, but then increases by about 45% with further decreasing inlet GVF to 92%. This outcome indicates that when inlet GVF decreases from 100% to 98%, the increase in effective viscosity dominates  $\dot{m}$ , but when inlet GVF further drops to 92%, the increase in effective density dominates. Both effective viscosity and effective density increase as inlet GVF drops. Increasing effective viscosity can decrease  $\dot{m}$  while increasing effective density can increase  $\dot{m}$ .

Under pure-air conditions,  $\dot{m}$  is not sensitive to changes in either  $\omega$  nor PR, which agrees with Kerr's [3] test results for smooth gas annular seals. This trend continues after adding oil into the air flow.

As expected,  $\dot{m}$  increases by about 57% as  $C_r$  increases from 0.140 to 0.188 mm.



### 6.5 Direct Dynamic Stiffness

Figure 41 shows  $K_{\Omega}$  versus  $\Omega$  at  $C_r=0.188$  mm for three PRs (rows), three  $\omega$  values (columns), and four inlet GVFs.

For pure-air conditions, as  $\Omega$  increases,  $K_{\Omega}$  remains constant when PR=0.57 but increases (stiffening effect) when PR=0.5 and 0.43. Decreasing PR (increasing PD) makes  $K_{\Omega}$ increase more rapidly with increasing  $\Omega$ . This outcome agrees with Kerr's test results [3] for smooth gas annular seals. Injecting oil into the air flow makes the stiffening effect more pronounced. Appendix B.2 will discuss more about this stiffening effect.

The effects of changing inlet GVF on  $K_{\Omega}$  are best discussed separately for the following two regions:

(1) As inlet GVF decreases from 100% to 98%,  $K_{\Omega}$  increases when PR=0.43, but decreases when PR=0.5 and 0.57. The larger that PR becomes, the larger the decrease.

(2) Further decreases in inlet GVF from 98% to 92% decrease  $K_{\Omega}$ .

In a centrifugal compressor, the rotor's natural frequency can depend strongly on  $K_{\Omega}$ , Kleynhans [44]. For all conditions except decreasing inlet GVF 100% to 98% when PR=0.43, decreasing inlet GVF can act to drop the rotor's natural frequency, and then decrease the rotor's critical speed. Dropping the rotor's natural frequency could also decrease the rotor's stability.

For pure-air conditions, increasing  $\omega$  does not significantly change  $K_{\Omega}$ . This outcome agrees with Kerr's [3] test data, and this trend continues after adding oil into the air flow.

As with Kerr's [3] test results,  $K_{\Omega}$  increases (the seal's centering force increases) as PR increases (PD drops) at pure-air conditions. Although  $K_{\Omega}$  still generally increases as PR increases (PD drops) after adding oil into the air flow, the increase in  $K_{\Omega}$  at mainly-air conditions is significantly less than at pure-air conditions.

Figure 42 shows  $K_{\Omega}$  versus  $\Omega$  at  $C_r=0.163$  mm for three PRs (rows), three  $\omega$  values (columns), and four inlet GVFs.  $K_{\Omega}$  at  $\Omega=30$  Hz is quite different from  $K_{\Omega}$  values at adjacent excitation frequencies; i.e., compared to  $K_{\Omega}$  values at  $\Omega=20$  and 40 Hz,  $K_{\Omega}$  at  $\Omega=30$  Hz is smaller (by about 12%) under pure-air conditions but generally larger (by about 65%) under mainly-air conditions. The unusual test data at  $\Omega=30$  Hz are caused by the resonance behavior of the stator at the nominal speed of the pump for hydraulic shakers. The nominal speed of the pump for hydraulic shakers is 1800 rpm (30 Hz), coinciding with the 30 Hz excitation frequency.

As with test data at  $C_r=0.188$  mm, under pure-air conditions, increasing  $\Omega$  does not change  $K_{\Omega}$  when PR=0.57 but increases  $K_{\Omega}$  (stiffening effect) when PR=0.5 and 0.43. Decreasing PR (increasing PD) makes  $K_{\Omega}$  increase more rapidly with increasing  $\Omega$ . Also, this stiffening effect becomes more pronounced after adding oil into the air flow.

 $K_{\Omega}$  decreases as PR decreases (PD increases) and does not change significantly as  $\omega$  increases. Therefore, the trends with changes in PR and  $\omega$  agree with test results at  $C_r$ =0.188 mm.

 $K_{\Omega}$  generally decreases as inlet GVF decreases from 100% to 95% except increasing as inlet GVF decreases from 100% to 98% when  $\omega$ =20 krpm and PR=0.43.  $K_{\Omega}$  does not change discernibly as inlet GVF decreases from 95% to 92%.



Figure 41. Measured  $K_{\Omega}$  under pure- or mainly-air conditions at  $C_r=0.188$  mm. Reproduced from [27]



Figure 42. Measured  $K_{\Omega}$  under pure- or mainly-air conditions at  $C_r$ =0.163 mm

Figure 43(a) shows  $K_{\Omega}$  versus  $\Omega$  for inlet GVF=100% and 98% when PR=0.5 and  $C_r$ =0.140 mm. Decreasing inlet GVF from 100% to 98% leads to a significant decrease in  $K_{\Omega}$ . Under pure-air conditions,  $K_{\Omega}$  increases slightly by about 10% as  $\Omega$  increases from 10 to 140 Hz. As inlet GVF changes from 100% to 98%,  $K_{\Omega}$  increases more rapidly with increasing  $\Omega$ ; i.e.,  $K_{\Omega}$  increases by about 180% as  $\Omega$  increases from 10 to 140 Hz.

Figure 43(b) presents  $K_{\Omega}$  versus  $\Omega$  when PR=0.43,  $C_r$ =0.140 mm, and inlet GVF=100%.  $K_{\Omega}$  increases by about 30% as  $\Omega$  increases from 10 to 140 Hz.

As shown in Figs. 43(a) and (b), at pure-air conditions,  $K_{\Omega}$  increases by about 70% as PR increases from 0.43 to 0.5 (PD decreases). This outcome agrees with the results at  $C_r$ =0.188 and 0.163 mm and Kerr's [3] test results.



Figure 43. Measured  $K_{\Omega}$  at  $C_r=0.140$  mm for (a) PR=0.5 and (b) PR=0.43

Unlike pure- and mainly-oil cases, all  $K_{\Omega}$  values at pure- and mainly-air conditions are positive, applying positive centering forces on the rotor. As shown in Fig. 41~43, decreasing inlet GVF from 100% to 92% normally decreases the seal's centering force except that the seal's centering force increases as inlet GVF decreases from 100% to 98% in the following circumstances: (1) cases with PR=0.43 and  $C_r$ =0.188 mm, and (2) the case with PR=0.43,  $\omega$ =20 krpm, and  $C_r$ =0.163 mm. In a centrifugal compressor, dropping the seal's centering force can drop the rotor's natural frequency, and then decrease the rotor's critical speed, Kleynhans [44]. Dropping the rotor's natural frequency could also decrease the rotor's stability.

At pure-air conditions, increasing  $C_r$  from 0.140 to 0.188 mm decreases  $K_{\Omega}$  and the seal's centering force. This outcome agrees with Kerr's [3] test results. PR=0.5 and inlet GVF=98% is the only mainly-air circumstance where only  $C_r$  changes. When PR=0.5 and inlet GVF=98%, increasing  $C_r$  from 0.140 to 0.188 mm generally increases  $K_{\Omega}$  and increases the seal's centering force. In short, the impact of changes in  $C_r$  on  $K_{\Omega}$  changes substantially after adding oil into the air flow.

### 6.6 Cross-Coupled Dynamic Stiffness

Figure 44 shows  $k_{\Omega}$  versus  $\Omega$  at  $C_r$ =0.188 mm for three PRs (rows), three  $\omega$  values (columns), and four inlet GVFs. Under pure-air conditions,  $k_{\Omega}$  is frequency independent. This outcome agrees with Kerr's [3] test results. After injecting oil into the air flow,  $k_{\Omega}$  remains generally insensitive to changes in  $\Omega$ . Although not presented,  $k_{\Omega}$  is also generally insensitive to changes in  $\Omega$  at the other two clearances ( $C_r$ =0.163 and 0.140 mm). A major finding in Fig. 44 is that when oil is introduced (as inlet GVF decreases from 100% to 98%),  $k_{\Omega}$  increases abruptly, and the test seal becomes suddenly more destabilizing.

Recall from Fig. 35 that for a typical mainly-air case, a quadratic fit of  $k_{\Omega}(\Omega)$  would not produce a curve-fit with an R<sup>2</sup> near 1.0. Hence  $k_{\Omega}(\Omega)$  cannot be fitted with frequency independent cross-coupled stiffness k and cross-coupled virtual-mass  $m_q$ . However,  $k_{\Omega}(\Omega)$  is just fluctuating around the average value  $\bar{k}$  as  $\Omega$  increases. Although this fluctuation of  $k_{\Omega}(\Omega)$ becomes more pronounced as inlet GVF decreases, the fluctuation level is always small compared to the magnitude of  $\bar{k}$ . Therefore, in the balance of this section,  $\bar{k}$  is used to describe the test seal's cross-coupled stiffness.



Figure 45 shows  $\bar{k}$  versus inlet GVF for three PRs (rows), three  $C_r$  values (columns), and three  $\omega$  values. All  $\bar{k}$  values are positive, producing destabilizing forces. As expected,  $\bar{k}$ increases as  $\omega$  increases since increasing  $\omega$  increases the fluid's circumferential velocity.  $\bar{k}$  is almost invariant with changes in PR, which agrees with Kerr's [3] test results under pure-air conditions. Hence decreasing PR (increasing PD) shows negligible effects on the seal's destabilizing force.

 $\overline{k}$  increases significantly (by a factor of about 2) as inlet GVF drops from 100% to 98%. Therefore, the initial increase of injected oil significantly increases the seal's destabilizing force. With further decreasing inlet GVF to 92%,  $\overline{k}$  decreases (by less than 35.8%), reducing the seal's destabilizing force. However,  $\overline{k}$  from any inlet GVF=92% case is still larger than the value of  $\overline{k}$  from the corresponding pure-air case. Therefore, the seal under mainly-air conditions is more destabilizing than at the corresponding pure-air conditions. The increase in  $\overline{k}$  as inlet GVF decreases from 100% to 98% is expected since the fluid's viscosity increases, and this outcome is consistent with predictions in Appendix B.3. The decreases in  $\overline{k}$  as inlet GVF decreases from 98% to 92% are contrary to predictions in Appendix B.3, where predicted  $\overline{k}$  increases steadily as inlet GVF decreases from 100% to 92%. The author has no explanation for these decreases in  $\overline{k}$ .

Increasing  $C_r$  from 0.140 to 0.188 mm decreases  $\overline{k}$ , decreases the seal's destabilizing force, and makes the rotor more stable in a centrifugal compressor. This outcome agrees with Kerr's [3] test results for smooth gas seals.



Figure 45. Measured  $\overline{k}$  versus inlet GVF under pure- or mainly-air conditions

# 6.7 Direct Damping

Figure 46 illustrates *C* versus inlet GVF for three PRs (rows), three  $C_r$  values (columns), and three  $\omega$  values. As with Kerr's [3] test results, under pure-air conditions, *C* is insensitive to changes in  $\omega$ . This trend continues after adding oil into the air flow. *C* increases by 15%~41% as inlet GVF drops from 100% to 98%, and then remains almost unchanged with further decreases in inlet GVF. Therefore, the initial increment of injected oil (decreasing inlet GVF to 98%) significantly increases the seal's damping (stabilizing) force, while further increments of injected oil have negligible effects on the seal's damping force. Increasing PR (decreasing PD) decreases *C*. Also, increasing  $C_r$  decreases *C* and the seal's damping force. The trends of *C* with changes in PR and  $C_r$  agree with Kerr's [3] test results for smooth gas seals.

Recall from Sec. 6.6 that  $k_{\Omega}$  increases significantly (by a factor of about 2) as inlet GVF drops from 100% to 98%. Since increasing  $k_{\Omega}$  and increasing C produce opposite effects on the seal's stabilizing capacity, effective damping  $C_{eff}$ , which combines the stabilizing impact of C

with the destabilizing impact of  $k_{\Omega}$ , will be analyzed to investigate the effects of oil injections (decreasing inlet GVF) on the seal's net damping force.  $C_{eff}$  is the topic of the next section.



# 6.8 Effective Damping

Effective damping  $C_{eff}$  combines the stabilizing impact of C with the destabilizing impact of  $k_{\Omega}$ 

$$C_{eff} = C - k_{\Omega} / \Omega \,. \tag{47}$$

Note that  $m_q$  in Eq. (6) has been dropped and its effect (if any) is absorbed by the frequencydependent nature of  $k_{\Omega}$ . A positive  $C_{eff}$  value ensures the system stability. A negative value of  $C_{eff}$  indicates that the destabilizing component  $k_{\Omega}$  dominates and will create a destabilizing force from the seal. Note that  $C_{eff} \rightarrow C$  as  $\Omega \rightarrow \infty$ .

Figure 47 shows  $C_{eff}$  versus  $\Omega$  at  $C_r=0.188$  mm. For low  $\Omega$  values,  $k_{\Omega}$  dominates Eq. (47), and  $C_{eff}$  values are negative (destabilizing). As  $\Omega$  increases,  $C_{eff}$  changes from negative to positive at  $\Omega_c$  (the cross-over frequency). Therefore, for  $\Omega$  values below  $\Omega_c$ , the seal's net damping forces are destabilizing, and for  $\Omega$  values above  $\Omega_c$ , the net damping forces are positive (stabilizing).

Table 12 shows  $\Omega_c$  values for  $C_r=0.188$  mm. Table 12 shows that injecting oil into the air flow highly influences the seal's effective damping. The initial increment of injected oil (decreasing inlet GVF to 98%) increases  $\Omega_c$ , indicating a drop in stability. Further increments of injected oil (decreasing inlet GVF further to 92%) decrease  $\Omega_c$ , showing the seal as less destabilizing. Also,  $\Omega_c$  in a mainly-air case is always larger than the corresponding value of  $\Omega_c$  at inlet GVF=100%. This outcome for smooth seals is consistent with the observations from Vannini et al. [10] that injecting liquid directly into the labyrinth seals of a centrifugal compressor could cause sub-synchronous vibrations.

As  $\omega$  increases,  $\Omega_c$  increases (become more destabilizing). This outcome is expected because increasing  $\omega$  increases the fluid's circumferential velocity, thereby increasing the destabilizing component  $k_{\Omega}$ .

In general, changing PR does not significantly change  $\Omega_c$ , showing little impact on the seal's effective stabilizing force. This outcome agrees with Kerr's pure-air test results [3].

| PR   | Rotor Speed ω | Cross-over Frequency $\Omega_c$ (Hz) |               |               |               |  |  |  |  |
|------|---------------|--------------------------------------|---------------|---------------|---------------|--|--|--|--|
| (-)  | (krpm)        | Inlet GVF=100%                       | Inlet GVF=98% | Inlet GVF=95% | Inlet GVF=92% |  |  |  |  |
|      | 10            | 8.7                                  | 28.6          | 25.4          | 27.7          |  |  |  |  |
| 0.57 | 15            | 21.4                                 | 48.7          | 38.4          | 35.1          |  |  |  |  |
|      | 20            | 31.6                                 | 68.7          | 52.3          | 48.4          |  |  |  |  |
|      | 10            | 10.4                                 | 28.0          | 24.8          | 22.2          |  |  |  |  |
| 0.5  | 15            | 22.1                                 | 42.6          | 38.6          | 33.8          |  |  |  |  |
|      | 20            | 31.7                                 | 68.2          | 53.4          | 46.0          |  |  |  |  |
| 0.43 | 10            | 18.3                                 | 27.8          | 24.7          | 22.9          |  |  |  |  |
|      | 15            | 24.7                                 | 46.7          | 36.3          | 34.8          |  |  |  |  |
|      | 20            | 36.1                                 | 68.7          | 50.0          | 47.0          |  |  |  |  |

Table 12.  $\Omega_c$  values for pure- and mainly-air cases at  $C_r=0.188$  mm


Figure 47. Measured  $C_{eff}$  under pure- or mainly-oil conditions at  $C_r$ =0.188 mm

Figure 48 shows  $C_{eff}$  versus  $\Omega$  at  $C_r=0.163$  mm. As with test results in Fig. 47 for  $C_r=0.188$  mm,  $C_{eff}$  values are negative (destabilizing) when  $\Omega < \Omega_c$ , and positive (stabilizing) when  $\Omega > \Omega_c$ .  $\Omega_c$  has a considerable impact on the system stability.

Table 13 shows  $\Omega_c$  values at  $C_r$ =0.163 mm. Table 13 shows that  $\Omega_c$  increases (become more destabilizing) as inlet GVF drops from 100% to 98%, and then decreases (become less destabilizing) with further decreasing inlet GVF to 92%. As expected, increasing  $\omega$  increases  $\Omega_c$ , making the seal more destabilizing. Changing PR barely changes  $\Omega_c$  and has negligible effects on the seal's effective stabilizing force. In general, the effects of changes in inlet GVF,  $\omega$ , and PR on  $\Omega_c$  largely coincide with the test results in Table 12 for  $C_r$ =0.188 mm.

| PR   | Rotor Speed ω<br>(krpm) | Cross-over Frequency $\Omega_c$ (Hz) |               |               |               |
|------|-------------------------|--------------------------------------|---------------|---------------|---------------|
| (-)  |                         | Inlet GVF=100%                       | Inlet GVF=98% | Inlet GVF=95% | Inlet GVF=92% |
| 0.57 | 10                      | 19.9                                 |               |               |               |
|      | 15                      | 33.8                                 | -             |               |               |
|      | 20                      | 54.8                                 |               |               |               |
| 0.5  | 10                      | 19.4                                 | 35.4          | 30.8          | 27.0          |
|      | 15                      | 32.3                                 | 58.1          | 44.2          | 43.5          |
|      | 20                      | 52.0                                 | 76.9          | 65.6          | 59.0          |
| 0.43 | 10                      | 19.4                                 | 36.7          | 29.3          | 28.0          |
|      | 15                      | 31.9                                 | 60.3          | 44.9          | 39.1          |
|      | 20                      | 50.9                                 | 80.9          | 66.9          | 55.9          |

Table 13.  $\Omega_c$  values for pure- and mainly-air cases at  $C_r=0.163$  mm



Figure 48. Measured  $C_{eff}$  under pure- or mainly-oil conditions at  $C_r$ =0.163 mm

Figure 49(a) shows  $C_{eff}$  at PR=0.5 and  $C_r$ =0.140 mm for inlet GVF=100% and 98%. Table 14 shows the corresponding  $\Omega_c$  values. As shown in Fig. 49(a) and Table 14, decreasing inlet GVF from 100% to 98% increases  $\Omega_c$  values (by more than 32%) and increases the magnitudes of negative  $C_{eff}$ , making the seal more destabilizing. As expected, increasing  $\omega$ decreases  $C_{eff}$  and increases  $\Omega_c$ , reducing the seal's effective damping force and making the seal less stabilizing.



| Rotor Speed ω | Cross-over Frequency $\Omega_c$ (Hz) |               |  |  |
|---------------|--------------------------------------|---------------|--|--|
| (krpm)        | Inlet GVF=100%                       | Inlet GVF=98% |  |  |
| 10            | 29.7                                 | 51.6          |  |  |
| 15            | 53.8                                 | 71.0          |  |  |
| 20            | 73.0                                 | 107.6         |  |  |

Table 14.  $\Omega_c$  values for pure- and mainly-air cases at PR=0.5 and  $C_r$ =0.140 mm

Figure 49 (b) shows  $C_{eff}$  at PR=0.43,  $C_r$ =0.140 mm, and inlet GVF=100%. Table 15 shows the corresponding  $\Omega_c$  values. As expected, increasing  $\omega$  decreases  $C_{eff}$  and increases  $\Omega_c$ , making the seal less stabilizing.

| Rotor Speed ω (krpm) | Cross-over Frequency $\Omega_{c}$ (Hz) |  |
|----------------------|----------------------------------------|--|
| 10                   | 28.5                                   |  |
| 15                   | 50.3                                   |  |
| 20                   | 69.5                                   |  |

Table 15.  $\Omega_c$  values for pure-air cases at PR=0.43 and  $C_r$ =0.140 mm

As shown in Tables 14 and 15, at pure-air conditions, changing PR from 0.5 to 0.43 barely changes  $\Omega_c$ , producing negligible additional effects on rotor's stability in a centrifugal compressor.

As shown in Tables 12~15, increasing  $C_r$  from 0.140 to 0.188 mm decreases  $\Omega_c$  values, making the rotor in a centrifugal compressor more stable. This outcome agrees with Kerr's [3] test results.

## 6.9 Cross-Coupled Damping

Figure 50 shows *c* versus inlet GVF for three PRs (rows), three  $C_r$  values (columns), and three  $\omega$  values. Cross-coupled damping coefficients are close to zero, producing insignificant centering forces compared to  $K_{\Omega}$  (the magnitude of  $c\Omega/K_{\Omega}$  is about 6.9%). Note that as inlet GVF changes from 100% to 92%, *c* generally has its minimum value at inlet GVF=98%. This pattern is similar to the test results of Fig. 46, where  $\bar{k}$  has its maximum value at inlet GVF=98%. A possible explanation for this similarity is that both  $\bar{k}$  and *c* values are induced by the fluid's rotation within the seal annulus.



Figure 50. Measured c versus inlet GVF under pure- or mainly-air conditions

#### 7. SUMMARY

This dissertation documents the development of a 2-phase annular-seal stand (2PASS) and presents test results for a set of long (length L=57.785 mm and length-to-diameter ratio L/D=0.65) smooth annular seals under 2-phase flow conditions using a mixture of air and silicone oil (PSF-5cSt). The effects of changes in inlet GVF, radial clearance ( $C_r$ ), pressure drop/ratio (PD/PR), and rotor speed ( $\omega$ ) on the test seal's leakage mass flow rate  $\dot{m}$  and rotordynamic coefficients are investigated. A model developed by San Andrés [6] produces predictions to compare with test results. Appendixes A and B show the comparison between measurements and predictions.

Due to the difficulties in making 2-phase homogeneous mixtures with a GVF between 10% and 92% and stator instabilities in some targeted test conditions, the resultant test matrix is divided into two sections: (1) pure- and mainly-oil conditions (inlet  $GVF \le 10\%$ ) and (2) pure- and mainly-air conditions (92% ≤ inlet  $GVF \le 100\%$ ). The summary for each section follows.

## 7.1 Pure- and Mainly-Oil Conditions

For tests under mainly-oil conditions, the flow within the seal annulus is predicted to transition from laminar to turbulent as  $C_r$  increases from 0.163 to 0.188 mm; i.e., the flow is predicted to be laminar when  $C_r$ =0.140 and 0.163 mm, and is predicted to become turbulent when  $C_r$ =0.188 mm. Note, in some  $C_r$ =0.188 mm cases, the transitional effects may still be evident; i.e., the flow may not be fully turbulent.

Test results show that the presence of the gas phase in the oil does not significantly change  $\dot{m}$ , but remarkably impacts the seal's rotordynamic performance. As inlet GVF increases from zero to 10%,  $\dot{m}$  remains generally unchanged when  $C_r$ =0.188 mm, but slightly increases (by less than 8%) when  $C_r$ =0.163 and 0.140 mm.

The targeted test matrix was not completed due to stator instabilities. In the omitted cases, the stator experiences pronounced sub-synchronous vibrations. One possible explanation is that the seal's direct stiffness K becomes negative and lowers the stator's 1<sup>st</sup> natural frequency. This hypothesis suggests the sub-synchronous vibration occurs at the stator's 1<sup>st</sup> (rigid body) damped natural frequency. This hypothesis was not proved directly by measurements because

the seal's K cannot be measured in the omitted cases. However, the variation of K with changes in inlet GVF suggests that K should be negative in the omitted cases.

When  $C_r$ =0.188 mm, increasing inlet GVF from zero to 10% increases direct stiffness *K* for PD=31 and 37.9 bars. For PD=48.3 bars, *K* first increases as inlet GVF increases from zero to 6% and then drops when further increasing the inlet GVF to 10%. A possible explanation is that the transitional effects disappear (the flow becomes fully turbulent) when PD=48.3 bars and inlet GVF=6%, and this flow-status transition significantly affects the impact of changes in inlet GVF on *K*. In a centrifugal pump, the stiffness increment will increase the natural frequency of the pump's rotor and will increase the rotor's critical speed. Increasing the natural frequency of the rotor would also increase the onset speed of instability (OSI) and enhance the rotor's stability.

Effective damping  $C_{eff}$  is a measure of the seal's stabilizing capacity. When  $C_r=0.188$  mm, increasing inlet GVF from zero to 10% barely changes  $C_{eff}$ , showing negligible effects on the seal's stabilizing force.

When  $C_r=0.140$  and 0.163 mm, the trends of K and  $C_{eff}$  with changes in inlet GVF are different from and even contrary to the trends observed at  $C_r=0.188$  mm; specifically, increasing inlet GVF generally decreases K, but increases  $C_{eff}$ . A possible reason for this difference is that the flow transitions from laminar to turbulent as  $C_r$  increases from 0.163 to 0.188 mm.

In regard to predictions, predicted  $\dot{m}$  values are close to test results. However, the predicted and measured trends of  $\dot{m}$  with changes in inlet GVF does not agree. As inlet GVF increases from zero to 10%, predicted  $\dot{m}$  decreases (by up to 15%) for all three clearances, while measured  $\dot{m}$  remains unchanged when  $C_r$ =0.188 mm and increases slightly (by less than 8%) when  $C_r$ =0.140 and 0.163 mm.

For most cases, predicted and measured K values are not close. All predicted K values are positive; measured K values are negative at some test conditions. This discrepancy would mean that the critical speed of the rotor in a pump would be lower than predicted. When  $C_r$ =0.188 mm, predicted K always decreases with increasing inlet GVF for all PDs. This predicted trend only agrees with test results when PD=48.3 bars and 6%≤inlet GVF≤10%. For all other  $C_r$ =0.188 mm cases, increasing inlet GVF increases measured K. A possible explanation for this discrepancy is that for all  $C_r$ =0.188 mm cases, except the cases with PD=48.3 bars and 6%≤inlet GVF≤10%, the transitional effects might still be evident; i.e., the flow is not fully turbulent. When  $C_r$ =0.163 or 0.140 mm, increasing inlet GVF decreases predicted K, which agrees with measurements.  $C_{eff}$  predictions are reasonably close to test results. For all three clearances, changing inlet GVF has little effect on predicted  $C_{eff}$ . This predicted trend agrees with test results when  $C_r$ =0.188 mm, but not for  $C_r$ =0.163 or 0.140 mm, where increasing inlet GVF generally increases measured  $C_{eff}$ .

Since the flow may not be fully turbulent in some  $C_r=0.188$  mm cases, further tests of smooth seals with larger clearances, lower oil viscosity, or higher rotating speeds are needed to have a better understanding of the rotordynamic characteristics of smooth annulus seals under fully-turbulent mainly-oil conditions. Further tests of smooth seals with shorter lengths are also recommended.

#### 7.2 Pure- and Mainly-Air Conditions

For tests under pure- and mainly-air conditions, the inlet GVF changes from 100% to 92%, which covers the expected range for wet-gas compression.

Test results show a remarkable impact of the oil presence in the air flow.  $\dot{m}$  decreases slightly (by less than 6%) as inlet GVF drops from 100% to 98%, and then increases (by about 45%) as inlet GVF further decreases to 92%. This outcome indicates that as inlet GVF decreases to 98%, the increase in the fluid's effective viscosity dominates  $\dot{m}$ , but as inlet GVF further drops to 92%, the increase in the fluid's effective density dominates. Increasing the fluid's effective viscosity can decrease  $\dot{m}$ , while increasing the fluid's effective density can increase  $\dot{m}$ . Predicted  $\dot{m}$  values correlate well with test results.

For the present smooth seal with pure-air and mainly-air mixtures, frequency-dependent behavior forced the usage of frequency-dependent direct  $K_{\Omega}$  and cross-coupled  $k_{\Omega}$  stiffness coefficients. The imaginary components of the dynamic-stiffness coefficients could be fitted with frequency-independent direct *C* and cross-coupled *c* damping coefficients.

 $K_{\Omega}$  is identical to the seal's effective centering force since *c* produces insignificant centering force compared to  $K_{\Omega}$  (the magnitude of  $c\Omega/K_{\Omega}$  is about 6.9%). All  $K_{\Omega}$  values are positive, applying positive centering forces on the rotor. Under pure-air conditions, increasing excitation frequency  $\Omega$  does not change  $K_{\Omega}$  when PR=0.57 but increases  $K_{\Omega}$  when PR=0.5 and 0.43. This outcome agrees with Kerr's [3] measurements, where  $K_{\Omega}$  increases as  $\Omega$  increases (stiffening effect), and the stiffening effect becomes more pronounced as PR decreases. Adding oil into the air flow makes  $K_{\Omega}$  increase more rapidly with increasing  $\Omega$ . Also, decreasing inlet GVF from 100% to 92% generally decreases  $K_{\Omega}$  except that  $K_{\Omega}$  increases as inlet GVF decreases from 100% to 98% in the following circumstances: (1) cases with PR=0.43 and  $C_r$ =0.188 mm, and (2) the case with PR=0.43,  $\omega$ =20 krpm, and  $C_r$ =0.163 mm. In a centrifugal compressor, decreasing the seal's  $K_{\Omega}$  would decrease the rotor's natural frequency and decrease the rotor's critical speed. Dropping the rotor's natural frequency would also decrease the rotor's stability.

 $k_{\Omega}(\Omega)$  is fluctuating around the average value  $\bar{k}$ . Since the fluctuation level is small compared to  $\bar{k}$ 's magnitude,  $\bar{k}$  is used to describe the test seal's cross-coupled stiffness.  $\bar{k}$ increases significantly (by a factor of about 2) as inlet GVF drops from 100% to 98%, but decreases (by less than 35.8%) with further drops in inlet GVF to 92%. Therefore, the initial increment of injected oil (decreasing inlet GVF to 98%) significantly increases the seal's destabilizing force, but further increments of injected oil (decreasing inlet GVF further to 92%) reduces the seal's destabilizing force.

As with Kerr's test data [3] for a smooth seal tested in air, C is insensitive to changes in  $\omega$  at pure-air conditions. This tendency continues after adding oil into the air flow. C increases by 15%~41% as inlet GVF decreases from 100% to 98% and then remains generally unchanged with further decreases in inlet GVF. Therefore, decreasing inlet GVF from 100% to 98% increases the seal's damping force, but further decreases in inlet GVF to 92% have negligible effects on the seal's damping characteristics.

 $C_{eff}$  combines the destabilizing effect of  $k_{\Omega}$  and the stabilizing effect of *C*. At low  $\Omega$  values,  $k_{\Omega}$  dominates  $C_{eff}$ , and  $C_{eff}$  values are negative (destabilizing). As  $\Omega$  increases,  $C_{eff}$  changes from negative to positive at  $\Omega_c$  (the cross-over frequency).  $\Omega_c$  has a considerable impact on the system stability. Decreasing inlet GVF from 100% to 98% increases  $\Omega_c$  values (become more destabilizing), but further decreases of inlet GVF to 92% decrease  $\Omega_c$  values (become less destabilizing). In general, as oil enters the air stream,  $\Omega_c$  increases and the seal becomes more destabilizing. This outcome explains the observation from Vannini et al. [10] that injecting liquid directly into the labyrinth seals of a centrifugal compressor could cause sub-synchronous vibrations. Also, as  $C_r$  increases from 0.140 to 0.188 mm,  $\Omega_c$  decreases, and the seal become more stabilizing.

In regard to predictions, predicted  $K_{\Omega}$  values are close to test results only under pure-air conditions when PR=0.5 and 0.57. For all other test conditions,  $K_{\Omega}$  predictions are larger than measured, and the discrepancy decreases as  $\Omega$  increases due to the frequency dependence of measured  $K_{\Omega}$ . In a centrifugal compressor, this discrepancy would mean that the rotor's critical speed would be lower than predicted. Predicted  $K_{\Omega}$  decreases slightly (by less than 7.1%) as  $\Omega$  increases from 10 to 140 Hz while measured  $K_{\Omega}$  generally increases. For all clearances, predicted  $K_{\Omega}$  decreases as inlet GVF drops from 100% to 92%. This predicted trend generally agrees with measurements.

Average cross-coupled stiffness  $\overline{k}$  predictions are close to test results when inlet GVF=100% and 95%, are about 34% smaller than measurements when inlet GVF=98%, and are around 40% larger than measured results when inlet GVF=92%. Therefore, in regard to  $\overline{k}$ , the seal is more destabilizing than predicted when inlet GVF=98%, but less destabilizing when inlet GVF=92%. Both predicted and measured  $\overline{k}$  values increase significantly as inlet GVF decreases from 100% to 98%. As inlet GVF further decreases to 92%, predicted  $\overline{k}$  continues increasing while measured  $\overline{k}$  decreases. Therefore, as inlet GVF decreases from 98% to 92%, although predictions show that the seal's destabilizing force increases, the seal's actual destabilizing force decreases.

Predicted cross-over frequency  $\Omega_c$  values are close to measurements when inlet GVF=100% and 98%. When inlet GVF=95% and 92%,  $\Omega_c$  predictions are larger than measurements by more than 37.1%. Therefore, when inlet GVF=95% and 92%, the seal is more stabilizing than predicted. Predicted  $\Omega_c$  increases as inlet GVF decreases from 100% to 92%, while measured  $\Omega_c$  first increases as inlet GVF decreases from 100% to 98%, and then decreases as inlet GVF drops further to 92%. As with test results, increasing  $C_r$  from 0.140 to 0.188 mm decreases predicted  $\Omega_c$  and makes the seal more stabilizing.

Measurements and predictions under pure- and mainly-air conditions lead to the following major conclusions:

- (1) Injecting oil into the air flow increases  $\Omega_c$ , making the seal more destabilizing.
- (2) Increasing  $C_r$  from 0.140 to 0.188 mm decreases  $\Omega_c$  and makes the seal more stabilizing. However, an immediate disadvantage is that  $\dot{m}$  increases significantly (by about 58%) as  $C_r$  increases from 0.140 to 0.188 mm.
- (3) The seal's centering force as generated by the effective-stiffness coefficient generally decreases with decreasing inlet GVF from 100% to 92% except that it increases as inlet GVF decreases from 100% to 98% in the following circumstances:
  (1) cases with PR=0.43 and C<sub>r</sub>=0.188 mm, and (2) the case with PR=0.43, ω=20 krpm, and C<sub>r</sub>=0.163 mm. For a centrifugal compressor, decreasing the seal's

centering force would decrease the rotor's critical speed, reduce the onset speed of instability, and decrease the rotor's stability.

As previously noted, smooth seals are never used in centrifugal compressors, the test data presented here are sorely needed to examine the correctness of the predictive model [6], and the test of smooth seals is a just a starting place. Further testing of different seal types, such as labyrinth seals, hole-pattern seals, and honeycomb seals, is recommended to fully understand their behavior under mainly-gas conditions and to help the design of centrifugal compressors.

### REFERENCES

- [1] Childs, D., 1983, "Finite-Length Solutions for Rotordynamic Coefficients of Turbulent Annular Seals," ASME J. Tribol., **105**(3), pp. 437-444.
- Marquette, O. R., Childs, D. W., and San Andres, L., 1997, "Eccentricity Effects on the Rotordynamic Coefficients of Plain Annular Seals: Theory Versus Experiment," ASME J. Tribol., 119(3), pp. 443-447.
- [3] Kerr, B., 2004, "Experimental and Theoretical Rotordynamic Coefficients and Leakage of Straight Smooth Annular Gas Seals," Master thesis, Texas A&M University, College Station, TX.
- [4] Ransom, D., Podesta, L., Camatti, M., Wilcox, M., Bertoneri, M., and Bigi, M., 2011,
   "Mechanical Performance of a Two Stage Centrifugal Compressor under Wet Gas Conditions," Proc. 40th Turbomachinery Symposium, Houston, TX.
- [5] Brenne, L., Bjørge, T., Gilarranz, J. L., Koch, J., and Miller, H., 2005, "Performance Evaluation of a Centrifugal Compressor Operating under Wet-Gas Conditions," Proc. 34th Turbomachinery Symposium, Houston, TX, pp. 111-120.
- [6] San Andrés, L., 2011, "Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals," ASME J. Eng. Gas Turbines Power, 134(2), p. 022503.
- [7] Vannini, G., Bertoneri, M., Del Vescovo, G., and Wilcox, M., 2014, "Centrifugal Compressor Rotordynamics in Wet Gas Conditions," Proc. 43rd Turbomachinery Symposium, Houston, TX.
- [8] Griffin, T., and Maier, W., 2011, "Demonstration of the Rotordynamic Effects of Centrifugal Liquid Separation and Gas Compression in an Oil-Free Integrated Motor-Compressor," Proc. 40th Turbomachinery Symposium, Houston, TX.
- [9] Bertoneri, M., Wilcox, M., Toni, L., and Beck, G., 2014, "Development of Test Stand for Measuring Aerodynamic, Erosion, and Rotordynamic Performance of a Centrifugal Compressor Under Wet Gas Conditions," Proc. ASME Turbo Expo 2014, American Society of Mechanical Engineers, Düsseldorf, Germany.
- [10] Vannini, G., Bertoneri, M., Nielsen, K. K., Iudiciani, P., and Stronach, R., 2015,
   "Experimental Results and CFD Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression," Proc. ASME Turbo Expo 2015, American Society of Mechanical Engineers, Montreal, Quebec, Canada.

- Bibet, P. J., Klepsvik, K. H., Lumpkin, V. A., and Grimstad, H., 2013, "Design and Verification Testing of a New Balance Piston for High Boost Multiphase Pumps," Proc. 29th International Pump User Symposium, Houston, TX.
- [12] Beatty, P., and Hughes, W., 1987, "Turbulent Two-Phase Flow in Annular Seals," ASLE Trans., 30(1), pp. 11-18.
- [13] Hughes, W. F., and Beeler, R. M., 1981, "Turbulent Two-Phase Flow in Ring and Face Seals," Proc. 9th International Conference on Fluid Sealing, Noordwijkerhout, Netherlands, pp. 185-202.
- [14] Beatty, P., and Hughes, W., 1990, "Stratified Two-Phase Flow in Annular Seals," ASME J. Tribol., 112(2), pp. 372-381.
- [15] Hendricks, R. C., 1987, "Straight Cylindrical Seal for High-Performance
   Turbomachines," No. NASA-TP-1850, NASA Lewis Research Center, Cleveland, OH.
- [16] Arauz, G. L., and San Andrés, L., 1998, "Analysis of Two-Phase Flow in Cryogenic Damper Seals—Part I: Theoretical Model," ASME J. Tribol., 120(2), pp. 221-227.
- [17] Arauz, G. L., and San Andrés, L., 1998, "Analysis of Two-Phase Flow in Cryogenic Damper Seals—Part II: Model Validation and Predictions," ASME J. Tribol., 120(2), pp. 228-233.
- [18] Oike, M., Nosaka, M., Kikuchi, M., and Hasegawa, S., 1999, "Two-Phase Flow in Floating-Ring Seals for Cryogenic Turbopumps," Tribol. Trans., 42(2), pp. 273-281.
- [19] Hassini, M. A., and Arghir, M., 2013, "Phase Change and Choked Flow Effects on Rotordynamic Coefficients of Cryogenic Annular Seals," ASME J. Tribol., 135(4), p. 042201.
- [20] Salhi, A., Rey, C., and Rosant, J. M., 1992, "Pressure Drop in Single-Phase and Two-Phase Couette-Poiseuille Flow," ASME J. Fluids Eng., 114(1), pp. 80-84.
- [21] Iwatsubo, T., and Nishino, T., 1994, "An Experimental Study on the Static and Dynamic Characteristics of Pump Annular Seals with Two Phase Flow," Proc. Rotordynamic Instability Problems in High-Performance Turbomachinery, pp. 49-64.
- [22] Arghir, M., Zerarka, A., and Pineau, G., 2011, "Rotordynamic Analysis of Textured Annular Seals With Multiphase (Bubbly) Flow," Incas Bulletin, 3(3), pp. 3-13.
- [23] Kleynhans, G., and Childs, D., 1997, "The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals," ASME J. Eng. Gas Turbines Power, 119(4), pp. 949-956.

- [24] San Andrés, L., Lu, X., and Liu, Q., 2015, "Measurements of Flowrate and Force Coefficients in a Short Length Annular Seal Supplied with a Liquid/Gas Mixture (Stationary Journal)," Tribol. Trans., 59(4), pp. 758-767.
- [25] San Andrés, L., and Lu, X., 2017, "Leakage, Drag Power, and Rotordynamic Force Coefficients of an Air in Oil (Wet) Annular Seal," ASME J. Eng. Gas Turbines Power, 140(1), p. 012505.
- [26] Childs, D., McLean, J., Zhang, M., and Arthur, S., 2015, "Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal," ASME J. Eng. Gas Turbines Power, 138(6), p. 062505.
- [27] Zhang, M., McLean, J., and Childs, D., 2017, "Experimental Study of the Static and Dynamic Characteristics of a Long Smooth Seal with Two-Phase, Mainly-Air Mixtures," ASME J. Eng. Gas Turbines Power, 139(12), p. 122504.
- [28] Bracco, F., 1985, "Modeling of Engine Sprays," No. 850394, SAE Technical Paper, Warrendale, PA.
- [29] Picardo, A., and Childs, D., 2004, "Rotordynamic Coefficients for a Tooth-on-Stator Labyrinth Seal at 70 Bar Supply Pressures: Measurements Versus Theory and Comparisons to a Hole-Pattern Stator Seal," ASME J. Eng. Gas Turbines Power, 127(4), pp. 843-855.
- [30] Mehta, N., and Childs, D., 2013, "Measured Comparison of Leakage and Rotordynamic Characteristics for a Slanted-Tooth and a Straight-Tooth Labyrinth Seal," ASME J. Eng. Gas Turbines Power, 136(1), p. 012501.
- [31] Kurtin, K. A., Childs, D., San Andres, L., and Hale, K., 1993, "Experimental Versus Theoretical Characteristics of a High-Speed Hybrid (Combination Hydrostatic and Hydrodynamic) Bearing," ASME J. Tribol., 115(1), pp. 160-168.
- [32] Clearco Products Co., "Low Viscosity Pure Silicone Fluids," http://www.clearcoproducts.com/pure-silicone-low-viscosity.html (accessed May 20, 2017).
- [33] Clearco Products Co., "Rheological Behavior of Silicone Fluids under Shear," http://www.clearcoproducts.com/pdf/library/Shear-Rhealogical.pdf (accessed May 20, 2017).

- [34] Clearco Products Co., "PSF-5cSt Pure Silicone Fluid," http://www.clearcoproducts.com/pdf/low-viscosity/NP-PSF-5cSt.pdf (accessed May 20, 2017).
- [35] Tao, L., Diaz, S., San Andrés, L., and Rajagopal, K. R., 1999, "Analysis of Squeeze Film Dampers Operating With Bubbly Lubricants," ASME J. Tribol., 122(1), pp. 205-210.
- [36] Diaz, S., 1999, "The Effect of Air Entrapment on the Performance of Squeeze Film Dampers: Experiments and Analysis," Ph.D dissertation, Texas A&M University, College Station, TX.
- [37] Fourar, M., and Bories, S., 1995, "Experimental study of air-water two-phase flow through a fracture (narrow channel)," Int. J. Multiphase Flow, **21**(4), pp. 621-637.
- [38] Stanway, R., Burrows, C., and Holmes, R., 1979, "Pseudo-Random Binary Sequence Forcing in Journal and Squeeze-Film Bearings," ASLE Trans., **22**(4), pp. 315-322.
- [39] Cornish, R. J., 1933, "Flow of Water through Fine Clearances with Relative Motion of the Boundaries," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 140(840), pp. 227-240.
- [40] Yamada, Y., 1962, "Resistance of a Flow Through an Annulus with an Inner Rotating Cylinder," Bulletin of JSME, 5(18), pp. 302-310.
- [41] Jolly, P., Hassini, A., Arghir, M., and Bonneau, O., 2014, "Experimental and Theoretical Rotordynamic Coefficients of Smooth and Round-Hole Pattern Water Fed Annular Seals," Proc. ASME Turbo Expo 2014, American Society of Mechanical Engineers, Düsseldorf, Germany.
- [42] Soulas, T., and Andres, L. S., 2007, "A Bulk Flow Model for Off-Centered Honeycomb Gas Seals," ASME J. Eng. Gas Turbines Power, **129**(1), pp. 185-194.
- [43] San Andres, L., 2010, "Notes 12(a). Annular Pressure Seals," Modern Lubrication Theory, Texas A&M University Digital Libraries, College Station, TX.
- [44] Kleynhans, G., 1991, "A Comparison of Experimental Results and Theoretical Predictions for the Rotordynamic and Leakage Characteristics of Short (L/D=1/6) Honeycomb and Smooth Annular Pressure Seals," Master thesis, Texas A&M University, College Station, TX.
- [45] Zirkelback, N., and San Andres, L., 1996, "Bulk-Flow Model for the Transition to Turbulence Regime in Annular Pressure Seals," Tribol. Trans., 39(4), pp. 835-842.

- [46] Childs, D. W., Rodriguez, L. E., Cullotta, V., Al-Ghasem, A., and Graviss, M., 2005,
   "Rotordynamic-Coefficients and Static (Equilibrium Loci and Leakage) Characteristics for Short, Laminar-Flow Annular Seals," ASME J. Tribol., 128(2), pp. 378-387.
- [47] Delgado-Marquez, A., 2008, "A Linear Fluid Inertia Model for Improved Prediction of Force Coefficients in Grooved Squeeze Film Dampers and Grooved Oil Seal Rings," Ph.D dissertation, Texas A&M University, College Station, TX.
- [48] Kleynhans, G. F., 1996, "A Two-Control-Volume Bulk-Flow Rotordynamic Analysis for Smooth-Rotor/Honeycomb-Stator Gas Annular Seals," Ph.D dissertation, Texas A&M University, College Station, TX.

# APPENDIX A

This section compares the test results previously presented and discussed in Sec. 5 to predictions from a program developed by San Andrés [6] based on a bulk-flow model and the Moody friction model, assuming the fluid within the seal annulus is a homogeneous mixture with a constant temperature. Besides the operating conditions (inlet GVF,  $\omega$ , PD, and  $C_r$  values) shown in Table 6 and  $u_0(0)$  values shown in Table 7, Table 16 shows other input variables needed for predictions.

| Variable                      | Value    | Unit              |  |  |
|-------------------------------|----------|-------------------|--|--|
| Diameter, D                   | 88.9     | mm                |  |  |
| Axial Length, L               | 57.8     | mm                |  |  |
| Entrance Pressure Loss Factor | 0.2      | -                 |  |  |
| Exit pressure Recovery Factor | 0        | -                 |  |  |
| Seal Inlet Temperature        | 39.4     | °C                |  |  |
| Seal Exit Pressure, $P_e$     | 6.9      | bars              |  |  |
| Liquid Properties             |          |                   |  |  |
| Viscosity, $\mu_l$            | 3.83     | cP                |  |  |
| Density, $\rho_l$             | 899.4    | kg/m <sup>3</sup> |  |  |
| Bulk-Modulus                  | 9987     | bars              |  |  |
| Surface Tension/Length        | 0.0197   | N/m               |  |  |
| Liquid Vapor Pressure         | 0.001    | bars              |  |  |
| Gas Properties                |          |                   |  |  |
| Gas Constant                  | 286.90   | J/kg-C            |  |  |
| Compressibility               | 1.00     | -                 |  |  |
| Gas Viscosity, $\mu_g$        | 1.82E-02 | cP                |  |  |
| Ratio of the Specific Heat    | 1.40     | -                 |  |  |

Table 16. Input variables needed for predictions at pure- and mainly-oil conditions

Before presenting comparisons between predictions and measurements for pure- and mainly-oil conditions, the following differences between the predictive model and experiment need to be noted:

- (1) The model assumes that the fluid's temperature remains constant in the seal clearance; however, the fluid's actual/measured temperature increases as the fluid flows through the seal due to power dissipation. The temperature increment decreases as inlet GVF increases from zero to 10%. Table 19 in Appendix C shows the fluid's measured temperatures at the seal inlet and seal exit.
- (2) The model assumes that the mixture is homogeneous in the seal clearance while the reality may be different. Although the mixture was visually inspected through a sight-glass view port shortly upstream of the inlet ports of the stator, the mixture might not remain homogeneous in the seal clearance due to the bubble coalescence and centrifugal-inertia effects. The coalescence of fine bubbles could make larger bubbles with diameters larger than the seal clearance. The centrifugal-inertia effect could drive the oil phase outward to the seal surface, with the air phase staying close to the shaft; i.e., the centrifugal inertia effect could lead to a stratified-flow.
- (3) As noted in Sec. 5.2, the flow is judged to be laminar when  $C_r$ =0.140 and 0.163 mm and turbulent when  $C_r$ =0.188 mm. For most  $C_r$ =0.188 mm cases, the transitional effects might still be evident. Different from the method described in Sec. 5.2, the model [6] uses another way to determine the flow status. The model treats the flow as laminar when  $Re_r$  (or  $Re_s$ )<1000, as transitional when 1000< $Re_r$  (or  $Re_s$ )<3000, and as fully turbulent when  $Re_r$  (or  $Re_s$ )>3000 [45]. Since the flow transitions from laminar to turbulent as  $C_r$  increases, the code may not predict the flow status correctly.

## A.1 Leakage Mass Flow Rate

Figure 51 compares predicted and measured  $\dot{m}$  versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. As expected, both predicted and measured  $\dot{m}$  values increase as PD or  $C_r$  increase for all clearances.

When  $C_r=0.188$  mm, predicted  $\dot{m}$  values are larger (by up to 28%) than test results at pure-oil conditions. Since predicted  $\dot{m}$  drops as inlet GVF increases while measured  $\dot{m}$  is

invariant with changes in inlet GVF, predicted  $\dot{m}$  becomes close to measured and even become smaller than measured as inlet GVF increases. Increasing  $\omega$  from 5 to 15 krpm decreases predicted  $\dot{m}$ . This predicted pattern agrees with test results.

For  $C_r=0.140$  and 0.163 mm,  $\dot{m}$  predictions agree with measurements at pure-oil conditions. Prediction become worse as inlet GVF increases because, as inlet GVF increases, predicted  $\dot{m}$  drops slightly (by less than 12%) versus measured  $\dot{m}$  that increases slightly (by less than 8%). Under mainly-oil conditions, predicted  $\dot{m}$  values are smaller (by up to 19%) than measured. Changing  $\omega$  has little effect on predicted  $\dot{m}$ . This predicted trend agrees with measurements.

As inlet GVF increases from zero to 10%, predicted  $\dot{m}$  decreases (by up to 15%) for all three clearances, while measured  $\dot{m}$  remains generally unchanged when  $C_r$ =0.188 mm and increases slightly (by less than 8%) when  $C_r$ =0.140 and 0.163 mm. Both effective viscosity and effective density decrease as inlet GVF increases. Decreasing effective viscosity can increase  $\dot{m}$ , while decreasing effective density can decrease  $\dot{m}$ . Therefore, the decreases in predicted  $\dot{m}$  for all clearances as inlet GVF increases indicate that the decrease in effective density has more impact than the decrease in effective viscosity, while the negligible changes in measured  $\dot{m}$ when  $C_r$ =0.188 mm indicate that the decrease in effective viscosity and the decrease in effective density have close but opposite effects. The increases in measured  $\dot{m}$  when  $C_r$ =0.140 and 0.163 mm imply that the decrease in effective viscosity has slightly more impact than the decrease in effective density.



Figure 51. Predictions and measurements of *m* under pure- and mainly-oil conditions

# **A.2 Direct Stiffness**

Figure 52 compares predicted and measured *K* versus inlet GVF for a range of  $\omega$ , *C<sub>r</sub>*, and PD values.

When  $C_r=0.188$  mm, predicted K decreases with increasing inlet GVF. This trend only agrees with test results when PD=48.3 bars and 6%≤inlet GVF≤10%. For other conditions, the predicted effects of changes in inlet GVF are contrary to measurements because measured K increases with increasing inlet GVF. Predicted K generally decreases as  $\omega$  increases, especially at low inlet GVFs. This predicted trend is contrary to measurements since measured K generally increases with increasing  $\omega$ .

In summary, for most  $C_r$ =0.188 mm cases, the predicted effects of changes in inlet GVF and  $\omega$  on K are contrary to measurements. A possible explanation for this (as previously noted in Sec. 5.4) is that the transitional effects might still be evident in these cases. When  $C_r=0.163$  and 0.140 mm, predicted K decreases as inlet GVF increases. This predicted trend agrees with measurements. As with measurements, predicted K decreases as  $\omega$  increases but at a much slower rate.

Concerning the effects of increasing  $C_r$  from 0.140 to 0.163 mm, when PD=31 bars and  $\omega$ =5 and 7.5 krpm, predicted *K* does not change discernibly, but the actual *K* decreases significantly.

For most cases, predicted and measured K values are not close. All predicted K values are positive; measured K values are negative at some test conditions. In a centrifugal pump, the prediction accuracy of the seal's K can affect the prediction accuracy of the rotor's natural frequency. If predicted K is smaller (or larger) than the seal's actual K, the rotor's actual natural frequency will be larger (or smaller) than the predicted natural frequency. A poorly predicted natural frequency means OSI and critical speeds are also poorly predicted.



Figure 52. Predictions and measurements of K under pure- and mainly-oil conditions

## **A.3 Cross-Coupled Stiffness**

Figure 53 compares measured and predicted k versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. As expected, both predicted and measured k values increase as  $\omega$  increases.

In regard to the effects of changes in inlet GVF, when  $C_r$ =0.188 mm, increasing inlet GVF from zero to 10% has little effect on predicted k. This predicted trend agrees with measurements. For  $C_r$ =0.163 and 0.140 mm, as inlet GVF increases, predicted k remains almost unchanged while measured k generally increases. Hence at  $C_r$ =0.163 and 0.140 mm, although predictions show that increasing inlet GVF has negligible effects on the seal's destabilizing force, the seal's actual destabilizing force increases as inlet GVF increases.

When  $C_r$ =0.188 mm, predicted k values are close to test results when PD=31 and 37.9 bars and  $\omega$ =5 and 7.5 krpm. At higher PD (48.3 bars) or higher  $\omega$  values (10 and 15 krpm), predicted k values are larger than measured, and the discrepancy increases as PD increases because predicted k increases while measured k remains unchanged. For example, when PD=48.3 bars and  $\omega$ =10 krpm, predicted k values are about 2.2 times as large as measured k values. When the predicted k is larger than the actual k, the seal's actual destabilizing force is smaller than predicted.

When  $C_r$ =0.163 and 0.140 mm, predicted k is invariant to changes in PD, which differs from measurements because measured k generally increases as PD increases. For  $C_r$ =0.163 mm, k predictions are reasonably close to test results at PD=24.1 bars and  $\omega$ =5 krpm. For all other cases at  $C_r$ =0.163 mm, predicted k values are about 50% of test results. For most cases at  $C_r$ =0.140 mm, k predictions are not close to test results.

Also, predictions do not show the significant increases in k (by at least 52.7%) as  $C_r$  increases from 0.140 to 0.163 mm when PD=31 bars and  $\omega$ =5 and 7.5 krpm. Instead, the corresponding predicted value of k decreases by about 50%. When PD=31 bars,  $\omega$ =7.5 krpm, and inlet GVF $\leq$ 2%, as  $C_r$  increases from 0.163 to 0.188 mm, predicted k increases slightly by 7.8% while measured k decreases by about 44%.



Figure 53. Predictions and measurements of k under pure- and mainly-oil conditions

## A.4 Direct Damping

Figure 54 compares measured and predicted C versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. For all clearances, C predictions reasonably correlate with test results, and they are 61.6%~134.4% of measured results. Predictions generally become better as PD decreases.

The code predicts the trends with changes in PD and  $\omega$ ; specifically, both predicted and measured *C* values increase as PD increases for all clearances, remain almost unchanged as  $\omega$  increases when  $C_r$ =0.188 mm, and generally increase with increasing  $\omega$  when  $C_r$ =0.163 and 0.140 mm.

Concerning the effects of changes in inlet GVF, increasing inlet GVF barely changes predicted C when  $C_r$ =0.188 mm. This predicted trend agrees with test results. When  $C_r$ =0.163 and 0.140 mm, predicted C remains insensitive to changes in inlet GVF, whereas, measured C generally increases as inlet GVF increases. Due to this disagreement, when  $C_r$ =0.163 and 0.140 mm, predictions generally become worse as inlet GVF increases. When  $\omega$ =5 and 7.5 krpm and PD=31 bars, predicted *C* decreases by about 15% as  $C_r$  increases from 0.140 to 0.163 mm, while the seal's measured *C* increases (by 14.7%~42.1%). When 7.5 krpm and PD=31 bars, as  $C_r$  increases further to 0.188 mm, predicted *C* remains almost unchanged while the seal's measured *C* decreases by about 26%.



Figure 54. Predictions and measurements of C under pure- and mainly-oil conditions

## A.5 Cross-Coupled Damping

Figure 55 compares measured and predicted *c* versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values.

When  $C_r$ =0.188 mm, predicted *c* values are close to measurements at  $\omega$ =5 krpm. For other speeds at this clearance, predictions agree with test results under pure-oil conditions, but not at mainly-oil conditions, where predictions are generally smaller than test results. For  $\omega$ >5 krpm, predictions generally become worse as inlet GVF increases because predicted *c* decreases as inlet GVF increases while measured *c* decreases at a slower rate at high  $\omega$  and PD values and remains unchanged at low  $\omega$  and PD values. Under pure-oil conditions, predicted *c* increases as  $\omega$  increases, which agrees with measurements. As inlet GVF increases, the predicted rate of increase of *c* with respect to increasing  $\omega$  decreases significantly and becomes negligible when inlet GVF=10%. This predicted trend is different from measurements because measured *c* remains strongly dependent on changes in  $\omega$  as inlet GVF increases from zero to 10%. Predicted *c* remains generally unchanged as PD increases, which agrees with test results.

When  $C_r$ =0.163 mm, c predictions agree with measurements when  $\omega$ =5 and 7.5 krpm and PD=24.1 bars. For all other cases at this clearance, predicted c values are larger than measured, and the discrepancy increases as PD increases since predicted c is invariant with changes in PD while measured c decreases as PD increases. Predictions generally become worse as  $\omega$  increases because predicted c increases as  $\omega$  increases while measured c is not sensitive to changes in  $\omega$ . When  $C_r$ =0.140 mm, there is no clear correlation between predictions and test results, and predicted c could be larger or smaller than measured c. When  $C_r$ =0.163 and 0.140 mm, predicted c decreases as inlet GVF increases. This predicted trend agrees with measurements.

Concerning the effects of changes in  $C_r$ , as  $C_r$  increases from 0.140 to 0.163 mm when PD=31 bars and  $\omega$ =5 and 7.5 krpm, predicted *c* barely changes, whereas measured *c* decreases significantly (by more than 50%). As  $C_r$  further increases to 0.188 mm when  $\omega$ =7.5 krpm and inlet GVF≤2%, predicted *c* decreases by about 23% while measured *c* almost doubles.

In general, all predicted and measured *c* values are positive except at  $C_r$ =0.140 mm, PD=48.3 bars,  $\omega$ =7.5 krpm, and inlet GVF=0%, where the magnitude of the small negative measured *c* is near the same order as the uncertainty. When *c*>0, it produces additional centering force on the rotor.



Figure 55. Predictions and measurements of c under pure- and mainly-oil conditions

#### A.6 Direct Virtual-Mass

Figure 57 compares measured and predicted M versus inlet GVF over a range of  $\omega$ ,  $C_r$ , and PD values.

When  $C_r=0.188$  mm, predicted *M* values are close to test results at pure-oil conditions. Predictions become worse after adding air into the oil flow: as inlet GVF increases, predicted *M* decreases, while measured *M* remains unchanged (for  $\omega$  from 5 to 10 krpm when PD=31 and 37.9 bars) or drops at a slower rate (for all other  $C_r=0.188$  mm cases). Under mainly-oil conditions, predicted *M* is smaller than measured *M*. Referring to Eq. (5), in a centrifugal pump, *M* affects the seal's centering force, and consequently affects the rotor's critical speed. For cases with measured *M* larger than predicted *M*, the seal's centering force is smaller than predicted, and the rotor's critical speed is lower than predicted. Increasing PD has little effect on predicted *M*, which agrees with measurements. Predictions do not show the observed increases in *M* with increasing  $\omega$ . Instead, changing  $\omega$  has little effect on predicted *M*. A possible explanation for this discrepancy is that, for most cases at this clearance, the transitional effects (as noted in Sec. 5.8) might still be evident, while the flow is fully turbulent in predictions.

When  $C_r=0.163$  and 0.140 mm, as expected, increasing inlet GVF decreases both predicted and measured *M* values because the fluid's density decreases as inlet GVF increases. Increasing PD has little effect on predicted *M* but generally decreases measured *M*. Predicted *M* is invariant to changes in  $\omega$ , whereas measured *M* generally decreases as  $\omega$  increases. In general, *M* predictions are either close to test results or less than measurements by less than 60%. Measured *M* from the case with  $C_r=0.140$  mm, PD=48.3 bars, and  $\omega=7.5$  krpm is excluded from comparison because of its large uncertainty.

The discrepancy between predictions and measurements for  $C_r$ =0.163 and 0.140 mm (predictions are either close to or less than measurements) is consistent with Childs et al.'s [46] test results for a short (L/D=0.21) smooth laminar-liquid seal, where M predictions are less than 17% of measurements. Regarding this discrepancy, Delgado [47] suggests that an appropriate model is needed to make better predictions. Figure 56 shows the modelled flow regions for predictions. For ease of viewing, the seal clearances are shown greatly enlarged. The flow region 1 is in the oil supply chamber, and the flow region 2 is the seal clearance. A proper height needs to be selected for the flow region 1 to reproduce measured M values. For the short seal tested by Childs et al. [46], the appropriate height for the flow region 1 is 10 to 15 times of the seal radial clearance.



Figure 56. Flow regions for predictions. Reproduced from Delgado [47]

When PD=31 bars and  $\omega$ =5 and 7.5 krpm, as  $C_r$  increases from 0.140 to 0.163 mm, predicted M remains unchanged, whereas measured M decreases significantly (by 31.4%~54.0%). When PD=31 bars,  $\omega$ =7.5 krpm, and inlet GVF≤2%, increasing  $C_r$  further to 0.188 mm decreases predicted M slightly (by about 15%). This generally agrees with test results, where the corresponding measured M remains almost unchanged.



Figure 57. Predictions and measurements of M under pure- and mainly-oil conditions

#### A.7 Cross-Coupled Virtual-Mass

Figure 58 compares measured and predicted  $m_q$  versus inlet GVF over a range of  $\omega$ ,  $C_r$ , and PD values. According to Eq. (6), a positive  $m_q$  acts as a stabilizing force, and a negative  $m_q$  acts as a destabilizing force.

For  $\omega$  from 5 to 10 krpm at all three clearances, both predicted and measured  $m_q$  values are close to zero. Since the predicted and measured magnitudes of  $m_q \omega/(C-k/\omega)$  are less than

13.2%, both predicted and measured  $m_q$  values have little effect on the test seal's rotordynamic performance.

Increasing  $\omega$  from 10 to 15 krpm when  $C_r=0.188$  mm barely changes predicted  $m_q$ , but significantly decreases measured  $m_q$  (increase in magnitude). When  $\omega=15$  krpm and  $C_r=0.188$ mm, both predicted and measured  $m_q$  values are negative. However,  $m_q$  predictions are close to zero and can be neglected for rotordynamic analysis (the predicted magnitudes of  $m_q\omega/(C-k/\omega)$ are less than 16.1%), while measured  $m_q$  values are larger in magnitude and produce considerable destabilizing forces (the measured magnitudes of  $m_q\omega/(C-k/\omega)$  are larger than 22.2% and lower than 50.4%). In regard to  $m_q$ , when  $\omega=15$  krpm and  $C_r=0.188$  mm, the seal is more destabilizing than predicted.



Figure 58. Predictions and measurements of  $m_q$  under pure- and mainly-oil conditions

#### A.8 Effective Damping

Figure 59 compares measured and predicted  $C_{eff}$  versus inlet GVF for a range of  $\omega$ ,  $C_r$ , and PD values. For all clearances, increasing PD increases predicted  $C_{eff}$ . This predicted trend agrees with test results. The  $C_{eff}$  increment increases the seal's net damping force and makes the seal more stabilizing.

When  $C_r=0.188$  mm, both predicted and measured  $C_{eff}$  values remain generally unchanged as inlet GVF increases from zero to 10%. For  $C_r=0.163$  and 0.140 mm, as inlet GVF increases, predicted  $C_{eff}$  remains almost unchanged, while measured  $C_{eff}$  generally increases. This discrepancy occurs because when  $C_r=0.163$  and 0.140 mm, increasing inlet GVF has little effect on predicted C and predicted k, but has pronounced effects on measured C and measured k.

As  $\omega$  increases, both predicted and measured  $C_{eff}$  values decrease when  $C_r$ =0.188 mm and remain generally unchanged when  $C_r$ =0.163 and 0.140 mm.

When PD=31 bars and  $\omega$ =5 and 7.5 krpm, predictions do not show the increases (by about 20%) in  $C_{eff}$  (make the seal more stabilizing) as  $C_r$  increases from 0.140 to 0.163 mm. Instead, increasing  $C_r$  from 0.140 to 0.163 mm has little effect on predicted  $C_{eff}$ . For the same PD, when  $\omega$ =7.5 krpm and inlet GVF≤2%, as  $C_r$  further increases to 0.188 mm, predicted  $C_{eff}$  remains unchanged, while measured  $C_{eff}$  decreases by about 20%.

In general, for all clearances,  $C_{eff}$  predictions are reasonably close to measurements if considering the measurement uncertainties.



Figure 59. Predictions and measurements of  $C_{eff}$  under pure- and mainly-oil conditions

# APPENDIX $B^*$

This section compares the test results previously presented and discussed in Sec. 6 to predictions. Besides the operating conditions (inlet GVF,  $\omega$ , PR, and  $C_r$  values) shown in Table 9 and  $u_0(0)$  values shown in Table 10, Table 17 shows other input variables needed for predictions.

| Variable                      | Value                      | Unit              |  |  |  |
|-------------------------------|----------------------------|-------------------|--|--|--|
| Diameter, D                   | 88.9                       | mm                |  |  |  |
| Axial Length, L               | 57.8                       | mm                |  |  |  |
| Entrance Pressure Loss Factor | 0.2                        | -                 |  |  |  |
| Exit pressure Recovery Factor | 0                          | -                 |  |  |  |
| Seal Inlet Temperature        | See Table 20 in Appendix C |                   |  |  |  |
| Seal Inlet Pressure, $P_i$    | 62                         | bars              |  |  |  |
| Liquid Properties             |                            |                   |  |  |  |
| Viscosity, $\mu_l$            | 6.28                       | cP                |  |  |  |
| Density, $\rho_l$             | 908.2                      | kg/m <sup>3</sup> |  |  |  |
| Bulk-Modulus                  | 9987                       | bars              |  |  |  |
| Surface Tension/Length        | 0.0197                     | N/m               |  |  |  |
| Liquid Vapor Pressure         | 0.001                      | bars              |  |  |  |
| Gas Properties                |                            |                   |  |  |  |
| Gas Constant                  | 286.90                     | J/kg-C            |  |  |  |
| Compressibility               | 1.00                       | -                 |  |  |  |
| Gas Viscosity, $\mu_g$        | 1.82E-02                   | cP                |  |  |  |
| Ratio of the Specific Heat    | 1.40                       | -                 |  |  |  |

 Table 17. Input variables needed for predictions at pure- and mainly-air conditions

<sup>&</sup>lt;sup>\*</sup> Portion of this section is reprinted with permission from "Experimental Study of the Static and Dynamic Characteristics of a Long Smooth Seal with Two-Phase, Mainly-Air Mixtures," by Zhang, M., McLean, J., and Childs, D., 2017, *ASME J. Eng. Gas Turbines Power*, 139(12), p. 122504, Copyright 2017 by ASME.

Unlike measured  $\operatorname{Re}(H_{ij})$  shown in Fig. 35, predicted  $\operatorname{Re}(H_{ij})$  can be adequately fitted with frequency-independent direct stiffness K, cross-coupled stiffness k, direct virtual-mass M, and cross-coupled virtual-mass  $m_q$ . Hence, the predicted  $K_{\Omega}$  and  $k_{\Omega}$  are,

$$K_{\Omega} = \frac{\operatorname{Re}(\boldsymbol{H}_{XX}) + \operatorname{Re}(\boldsymbol{H}_{YY})}{2} = K - M\Omega^{2}$$
(48)

$$k_{\Omega} = \frac{\operatorname{Re}(\boldsymbol{H}_{XY}) - \operatorname{Re}(\boldsymbol{H}_{YX})}{2} = k - m_q \Omega^2$$
(49)

Before presenting the comparison between predictions and measurements for pure- and mainly-air conditions, the following differences between the predictive model and experiment need to be noted:

- (1) Although the model assumes that the fluid's temperature remains constant in the seal clearance, the fluid's actual/measured temperature throughout the seal may decrease (due to air expansion) or increase (due to power dissipation). Table 20 in Appendix C shows the fluid's measured temperatures at the seal inlet and seal exit.
- (2) Although the model assumes the mixture is homogeneous, the actual mixture in the seal clearance might not be homogeneous due to the drop coalescence and centrifugal-inertia effects. During a test, the mixture was visually inspected through a sight-glass view port shortly upstream of the inlet ports of the stator to ensure that the mixture was homogeneous; however, in the seal clearance, the coalescence of fine oil drops can make larger oil drops with diameters larger than the seal clearance. Also, the centrifugal-inertia effect can drive the oil phase outward to the seal surface, with the air phase staying close to the shaft; i.e., the centrifugal inertia effect can lead to a stratified-flow.

#### **B.1 Leakage Mass Flow Rate**

Figure 60 compares measured and predicted  $\dot{m}$  versus inlet GVF for three PRs (rows), three  $C_r$  values (columns), and three  $\omega$  values. For all clearances, both predicted and measured  $\dot{m}$ values decrease slightly (by less than 6%) as inlet GVF decreases from 100% to 98%, and then increase as inlet GVF further decreases to 92%. However, as inlet GVF decreases from 98% to 92%, predicted  $\dot{m}$  increases at a slower rate than measured. So, predictions become worse as inlet GVF drops from 98% to 92%; i.e., the discrepancy between predicted and measured  $\dot{m}$  values increases with decreasing inlet GVF from 98% to 92%. As expected, both predicted and measured  $\dot{m}$  values increase as  $C_r$  increases. Neither predicted nor measured  $\dot{m}$  values are sensitive to changes in  $\omega$ .

In general,  $\dot{m}$  predictions correlate well with test results. Predicted  $\dot{m}$  values are close to measurements when inlet GVF=100% and 98%. When inlet GVF=95% and 92%, predicted  $\dot{m}$  values are smaller than measured by less than 28%.



**B.2 Direct Dynamic Stiffness** 

Figure 61 compares measured and predicted  $K_{\Omega}$  versus  $\Omega$  at  $C_r=0.188$  mm for three PRs (rows), three  $\omega$  values (columns), and four inlet GVFs.

As  $\Omega$  increases, predicted  $K_{\Omega}$  decreases slightly by up to 7.1% while measured  $K_{\Omega}$  generally increases. The slight decrease in predicted  $K_{\Omega}$  is due to the direct virtual-mass M in Eq. (48). The code assumes that M is induced by fluid inertia. Hence, predicted M is a low positive value because the effective density of the fluid (air or mainly-air mixtures) is low. However, Kerr's [3] test results show that for smooth gas seals, there is a mass-like term causing increases in  $K_{\Omega}$  with increasing  $\Omega$  (stiffening effect). This mass-like term is not induced by fluid inertia and can be incorporated as a negative M. Also, Kerr [3] correctly predicts the stiffening effect for smooth gas seals by using Kleynhans's [48] model.

Injecting oil into the air flow (decreasing inlet GVF from 100% to 92%) decreases predicted  $K_{\Omega}$  for all conditions, which agrees with test results except at PR=0.43 and inlet GVF=100% and 98%, where measured  $K_{\Omega}$  increases as inlet GVF drops from 100% to 98% while predicted  $K_{\Omega}$  decreases. Therefore, when PR=0.43, although predictions show that decreasing inlet GVF from 100% to 98% decreases the seal's centering force, this initial increment of injected oil increases the seal's actual centering force. Increasing/decreasing the seal's centering force can increase/decrease the rotor's critical speed in a centrifugal compressor. Note that for all cases except the pure-air cases when PR=0.43, predicted  $K_{\Omega}$  decreases at a significantly slower rate with respect to decreasing inlet GVF than measured.

Increasing  $\omega$  from 10 to 20 krpm barely changes predicted  $K_{\Omega}$ . This predicted trend agrees with test results.

Predicted  $K_{\Omega}$  values are close to measurements only under pure-air conditions when PR=0.57 and 0.5. For all other test conditions,  $K_{\Omega}$  predictions are larger than measured, and the discrepancy decreases as  $\Omega$  increases due to the frequency dependence of measured  $K_{\Omega}$ . In a centrifugal compressor, this discrepancy would mean that the rotor's critical speed would be lower than predicted.


Figure 61. Predictions and measurements of  $K_{\Omega}$  at  $C_r=0.188$  mm [27]

Figure 62(a) shows the variation of  $K_{\Omega}$  with  $C_r$  when PR=0.5,  $\omega$ =20 krpm, and inlet GVF=100%. Predicted  $K_{\Omega}$  decreases as  $C_r$  increases from 0.140 to 0.188 mm, which agrees with measurements. Although not presented, for all other pure-air cases, the predicted trend with changes in  $C_r$  agrees with test results.

Figure 62(b) shows the variation of  $K_{\Omega}$  with  $C_r$  at typical mainly-air conditions (PR=0.5,  $\omega$ =20 krpm, and inlet GVF=98%). As  $C_r$  increases from 0.140 to 0.188 mm, predicted  $K_{\Omega}$  decreases, while measured  $K_{\Omega}$  generally increases.

As shown in Figs. 62(a) and (b), at PR=0.5 and  $\omega$ =20 krpm, although both predicted and measured  $K_{\Omega}$  values decrease as inlet GVF drops from 100% to 98%, the predicted rate of decrease is significantly smaller than measured.



GVF=98%

Although not presented,  $K_{\Omega}$  predictions for other test cases with  $C_r$ =0.163 and 0.140 mm generally agree/disagree with measurements in the same manner as shown in Figs. 61 and 62.

#### **B.3 Cross-Coupled Dynamic Stiffness**

Predicted  $k_{\Omega}(\Omega)$  is invariant with changes in  $\Omega$ ; i.e., predicted  $k_{\Omega}(\Omega) \approx$  predicted  $\overline{k}$ .

Figure 63 compares predicted and measured  $\overline{k}$  for three PRs (rows), three  $C_r$  values (columns), and three  $\omega$  values. As expected, both predicted and measured  $\overline{k}$  values increase as  $\omega$  increases since increasing  $\omega$  increases the fluid's circumferential velocity.

Both predicted and measured  $\bar{k}$  values are almost invariant with changes in PR (or PD). This outcome shows that decreasing PR (increasing PD) has negligible effects on the seal's destabilizing force.

Predictions show that increasing  $C_r$  decreases  $\overline{k}$  and makes the seal more stabilizing. This predicted trend agrees with measurements.

Both predicted and measured  $\overline{k}$  values increase significantly as inlet GVF drops from 100% to 98%. As inlet GVF further decreases to 92%, predicted  $\overline{k}$  continues increasing while measured  $\overline{k}$  decreases. Therefore, as inlet GVF decreases from 98% to 92%, although predictions show that the seal's destabilizing force increases, the seal's actual destabilizing force decreases.

When inlet GVF=100% and 95%, predicted  $\overline{k}$  values are close to test results. When inlet GVF=98%,  $\overline{k}$  predictions are smaller than measured by about 34%. When inlet GVF=92%,  $\overline{k}$  predictions are larger than measured by around 40%. Therefore, the seal is more destabilizing than predicted when inlet GVF=98%, but less destabilizing than predicted when inlet GVF=98%.



Figure 63. Predictions and measurements of k

#### **B.4 Direct Damping**

Figure 64 compares measured and predicted C versus inlet GVF for three PRs (rows), three  $C_r$  values (columns), and three  $\omega$  values.

For all clearances, both predicted and measured C values increase as inlet GVF decreases from 100% to 98%. As inlet GVF further drops to 92%, predicted C continues increasing versus measured C that remains generally unchanged. Therefore, as inlet GVF decreases from 98% to 92%, although the predicted damping force of the seal increases, the seal's actual damping force remains generally unchanged.

The predicted trends with changes in  $\omega$ ,  $C_r$ , and PR agree with test results; specifically, predicted C remains unchanged as  $\omega$  increases, decreases as  $C_r$  increases, and decreases as PR increases (PD decreases).

*C* predictions are reasonably close to measurements, and are smaller than test results by  $14\%\sim48\%$ . Therefore, the test seal has larger damping (stabilizing) force than predicted. Also, predictions become better as  $C_r$  increases.



#### **B.5 Effective Damping**

Both measured and predicted  $C_{eff}$  values are defined by Eq. (47). Figure 65 compares predicted and measured  $C_{eff}$  versus  $\Omega$  when  $C_r$ =0.188 mm, PR=0.5, and  $\omega$ =15 krpm. As with

measured results, predicted  $C_{eff}$  increases from negative to positive at  $\Omega_c$ . A negative  $C_{eff}$  produces a destabilizing force, and a positive  $C_{eff}$  acts as a stabilizing force.



Figure 65. Predictions and measurements of  $C_{eff}$  when  $C_r=0.188$  mm, PR=0.5, and  $\omega=15$  krpm [27]

 $\Omega_c$  has a considerable impact on the system stability. Table 18 shows predicted and measured  $\Omega_c$  values for all cases at  $C_r$ =0.188 mm. Predicted  $\Omega_c$  increases as inlet GVF decreases from 100% to 92%, while measured  $\Omega_c$  first increases as inlet GVF decreases from 100% to 98% and then decreases as inlet GVF drops further to 92%. Therefore, predictions show that decreasing inlet GVF from 98% to 92% makes the seal more destabilizing, whereas test results show that the seal becomes less destabilizing as inlet GVF decreases from 98% to 92%.

When inlet GVF=100% and 98%, predicted  $\Omega_c$  values are close to test results except at cases with PR=0.57 and 0.5 and  $\omega$ =10 krpm, where predicted  $\Omega_c$  values are larger than measurements by at least 58.7%. The author has no explanation for this exception. Also, this exception does not occur for the other two clearances (0.163 and 0.140 mm); i.e., when  $C_r$ =0.163

and 0.140 mm, predicted  $\Omega_c$  values are close to test results for all cases when inlet GVF=100% and 98%. For inlet GVF=95% and 92% at  $C_r$ =0.188 mm, predicted  $\Omega_c$  values are larger than measured by more than 37.1%, showing the seal more stabilizing than predicted. This happens for the following reasons:

- (1) When inlet GVF=95% and 92%, measured C values are larger than predicted;
- (2) Measured  $k_{\Omega}$  values are close to predictions when inlet GVF=95%, and are smaller than predictions when inlet GVF=92%.

Adding oil into the air flow increases both predicted and measured  $\Omega_c$  values, making the seal more destabilizing. This outcome for smooth seals is consistent with the observations from Vannini et al. [10] that injecting liquid directly into the labyrinth seals of a centrifugal compressor could cause sub-synchronous vibrations.

As expected, increasing  $\omega$  increases predicted  $\Omega_c$ , making the seal more destabilizing. This predicted trend agrees with test results.

Increasing PR from 0.43 to 0.57 (decreasing PD) barely changes  $\Omega_c$  values, showing little impact on the stabilizing capacity of the seal. This predicted trend agrees with measurements.

| DD        | Rotor          |          |        |          | $\Omega_{\rm c}$ ( | Hz)      |        |          |        |
|-----------|----------------|----------|--------|----------|--------------------|----------|--------|----------|--------|
| PR<br>(-) | Speed $\omega$ | Inlet GV | F=100% | Inlet GV | /F=98%             | Inlet GV | /F=95% | Inlet GV | /F=92% |
| (-)       | (krpm)         | Meas.    | Pred.  | Meas.    | Pred.              | Meas.    | Pred.  | Meas.    | Pred.  |
|           | 10             | 8.7      | 16.2   | 28.6     | 28.4               | 25.4     | 34.7   | 27.7     | 38.8   |
| 0.57      | 15             | 21.4     | 24.1   | 48.7     | 47.8               | 38.4     | 59.8   | 35.1     | 64.8   |
|           | 20             | 31.6     | 34.4   | 68.7     | 67.9               | 52.3     | 78.4   | 48.4     | 86.1   |
|           | 10             | 10.4     | 16.5   | 28.0     | 28.3               | 24.8     | 34.0   | 22.2     | 37.4   |
| 0.5       | 15             | 22.1     | 24.3   | 42.6     | 47.2               | 38.6     | 58.7   | 33.8     | 63.3   |
|           | 20             | 31.7     | 34.4   | 68.2     | 67.2               | 53.4     | 77.0   | 46.0     | 82.9   |
|           | 10             | 18.3     | 17.0   | 27.8     | 28.4               | 24.7     | 33.9   | 22.9     | 37.2   |
| 0.43      | 15             | 24.7     | 24.8   | 46.7     | 47.3               | 36.3     | 58.3   | 34.8     | 62.7   |
|           | 20             | 36.1     | 35.2   | 68.7     | 67.1               | 50.0     | 76.4   | 47.0     | 82.0   |

Table 18.  $\Omega_c$  values for pure- and mainly-air cases at  $C_r=0.188$  mm

Although not presented,  $\Omega_c$  predictions for the other two clearances ( $C_r$ =0.163 and 0.140 mm) agree/disagree with measurements in the same manner as shown in Table 18.

Figure 66 compares measured and predicted  $\Omega_c$  versus  $C_r$  when inlet GVF=98%, PR=0.5, and  $\omega$ =10 krpm. Increasing  $C_r$  from 0.140 to 0.188 mm decreases predicted  $\Omega_c$ , making the seal more stabilizing. This predicted trend agrees with test results. Although not presented, predicted  $\Omega_c$  for all other test conditions decreases as  $C_r$  increases, which agrees with measurements.



Figure 66. Variation of  $\Omega_c$  with  $C_r$  when PR=0.5,  $\omega$ =10 krpm, and inlet GVF=98%

### **B.6 Cross-Coupled Damping**

Figure 67 compares predicted and measured *c* versus inlet GVF. *c* predictions are close to measurements. Both predicted and measured *c* values produce insignificant centering forces compared to  $K_{\Omega}$ ; specifically, the predicted magnitude of  $c\Omega/K_{\Omega}$  is about 3.1%, and the measured magnitude of  $c\Omega/K_{\Omega}$  is about 6.9%. Therefore, both predicted and measured *c* values has little effect on the seal's rotordynamic characteristics.

As inlet GVF drops from 100% to 92%, measured c generally has its minimum value at inlet GVF=98%. This observed pattern is similar to the measurements of  $\bar{k}$  in Fig. 63, where  $\bar{k}$  reaches its maximum value at inlet GVF=98%. As noted in in Sec. 6.9, this similarity may result from the fact that both  $\bar{k}$  and c coefficients are induced by the fluid's rotation in the seal.

For cases with PR=0.57 and 0.5 at  $C_r$ =0.188 mm and cases with PR=0.43 at  $C_r$ =0.163 mm, predicted *c* first decreases as inlet GVF decreases from 100% to 98% and then generally increases with further decreases in inlet GVF to 92%. This predicted trend generally agrees with measurements. For all other test cases, the model predicts the decreases in *c* as inlet GVF drops from 100% to 98% but does not predict the increases in *c* with further decreasing inlet GVF to



92%; i.e., as inlet GVF decreases from 98% to 92%, predicted c decreases while measured c generally increases.

Figure 67. Predictions and measurements of c versus inlet GVF

# APPENDIX C

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Radial     | סת           | Inlat CVE | 5 k   | rpm   | 7.51  | rpm   | 10 k  | rpm   | 15 k  | rpm   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|
| C. (mm)         (bits)         (*0)         (*C)         (*C) | Clearance  | PD<br>(have) | Inlet GVF | $T_i$ | $T_e$ | $T_i$ | $T_e$ | $T_i$ | $T_e$ | $T_i$ | $T_e$ |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $C_r$ (mm) | (bars)       | (%)       | (°Č)  |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 0         | 38.5  | 40.3  | 38.3  | 40.5  | 38.6  | 41.9  | 38.4  | 45.0  |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 2         | 38.7  | 40.2  | 38.7  | 41.0  | 37.3  | 40.5  | 39.3  | 45.7  |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 10.2         | 4         | 38.2  | 39.7  | 37.9  | 40.1  | 38.7  | 42.0  | 39.1  | 45.2  |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 48.3         | 6         | 38.3  | 39.8  | 38.0  | 40.2  | 38.1  | 41.2  | 39.3  | 45.3  |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 8         | 38.9  | 40.5  | 38.8  | 41.2  | 36.3  | 39.1  | 38.1  | 43.9  |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 10        | 39.6  | 41.3  | 39.1  | 41.2  | 38.8  | 41.8  | 38.9  | 44.9  |
| $0.188 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 0         |       |       | 38.0  | 39.9  | 41.2  | 44.0  | 39.9  | 47.1  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | 2         |       | -     | 39.2  | 41.2  | 38.2  | 41.2  | 39.1  | 46.3  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.100      | 27.0         | 4         | 38.9  | 40.1  | 39.1  | 41.2  | 38.6  | 41.7  | 39.2  | 46.2  |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.188      | 37.9         | 6         | 39.1  | 40.4  | 37.7  | 39.6  | 37.6  | 40.4  | 37.9  | 44.3  |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 8         | 38.9  | 40.0  | 39.2  | 41.1  | 39.0  | 42.0  | 37.7  | 43.8  |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 10        | 38.9  | 40.1  | 38.4  | 40.2  | 38.3  | 41.0  | 39.1  | 44.8  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | 0         |       | -     | 37.9  | 39.4  | 38.3  | 41.2  | 37.8  | 45.8  |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 2         |       | _     | 40.1  | 41.8  | 38.6  | 41.5  | 39.5  | 47.5  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | 4         |       |       | 38.1  | 39.8  | 38.5  | 41.4  | 38.8  | 46.4  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 31           | 6         | 38.6  | 39.5  | 39.4  | 41.1  | 36.4  | 39.0  | 39.3  | 46.2  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | 8         | 38.9  | 39.7  | 38.6  | 40.3  | 40.0  | 42.8  | 38.1  | 44.4  |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 10        | 38.2  | 38.9  | 39.3  | 40.7  | 38.4  | 41.1  | 39.4  | 45.6  |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 0         | 38.0  | 39.1  | 37.9  | 39.7  |       | 1     |       |       |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              | 2         | 38.1  | 39.2  | 38.2  | 40.1  |       |       |       |       |
| $0.163 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 31           | 4         | 38.3  | 39.2  |       | -     |       | -     |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              | 6         | 38.3  | 39.2  | -     | -     |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1.62     |              | 0         | 38.3  | 39.2  | 38.2  | 39.8  | 38.3  | 41.4  |       |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.163      |              | 2         | 38.1  | 38.9  | 38.2  | 39.8  |       |       |       |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 24.1         | 4         | 39.1  | 40.2  | 38.7  | 40.4  |       |       |       |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 24.1         | 6         | 37.8  | 38.6  | 38.5  | 40.2  |       |       |       |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | 8         | 37.6  | 38.4  | 38.4  | 40.1  |       | _     |       |       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | 10        | 38.0  | 38.8  | 38.3  | 40.0  |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 10.0         | 0         | 39.1  | 40.7  | 39.0  | 41.3  |       |       |       |       |
| $0.140 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 48.3         | 2         | 39.0  | 40.5  |       | -     |       |       |       | -     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              | 0         | 38.8  | 40.3  | 39.1  | 41.2  | 39.1  | 42.5  |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              | 2         | 38.9  | 40.2  | 39.3  | 41.3  |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 37.9         | 4         | 39.4  | 40.7  | 39.2  | 41.2  |       |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | -            | 6         | 38.8  | 40.2  | 39.4  | 41.4  | · ·   | -     |       |       |
| $31 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.140      |              | 8         | 39.4  | 40.8  |       | -     | 1     |       |       |       |
| $31 \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |              | 0         | 39.5  | 40.5  | 39.8  | 41.6  | 39.4  | 42.4  |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              | 2         | 39.6  | 40.5  | 38.4  | 39.8  | 39.1  | 42.2  |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |              | 4         | 39.5  | 40.5  | 38.2  | 39.8  | 38.9  | 41.9  |       |       |
| 8         39.2         40.1         39.2         40.8         -           10         39.3         40.1         39.6         41.1         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 31           | 6         | 39.3  | 40.2  | 39.2  | 40.8  |       |       |       |       |
| 10 39.3 40.1 39.6 41.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | 8         | 39.2  | 40.1  | 39.2  | 40.8  | .     | -     |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              | 10        | 39.3  | 40.1  | 39.6  | 41.1  |       |       |       |       |

 10
 39.3
 40.1
 39.6
 41.1

 Table 19. Measured inlet and exit temperatures for pure- and mainly-oil cases

| Radial Clearance | PR   | Inlet GVF | 10 k       | rpm        | 15 k       | rpm        | 20 k       | rpm        |
|------------------|------|-----------|------------|------------|------------|------------|------------|------------|
| $C_r$ (mm)       | (-)  | (%)       | $T_i$ (°C) | $T_e$ (°C) | $T_i$ (°C) | $T_e$ (°C) | $T_i$ (°C) | $T_e$ (°C) |
|                  |      | 100       | 8.6        | 0.7        | 6.9        | 0.4        | 5.3        | 0.6        |
|                  | 0.42 | 98        | 12.3       | 7.5        | 8.9        | 5.5        | 8.2        | 7.8        |
|                  | 0.45 | 95        | 16.0       | 12.9       | 16.2       | 14.7       | 16.8       | 17.4       |
|                  |      | 92        | 21.4       | 19.5       | 20.7       | 19.9       | 22.1       | 22.5       |
|                  |      | 100       | 10.3       | 4.0        | 8.2        | 3.3        | 7.8        | 4.6        |
| 0.199            | 0.5  | 98        | 11.8       | 7.6        | 9.9        | 7.3        | 10.3       | 10.8       |
| 0.188            | 0.5  | 95        | 16.0       | 13.8       | 18.5       | 17.8       | 17.2       | 18.2       |
|                  |      | 92        | 21.1       | 19.3       | 20.0       | 19.4       | 21.4       | 22.4       |
|                  |      | 100       | 5.5        | 0.3        | 6.4        | 2.3        | 9.1        | 7.2        |
|                  | 0.57 | 98        | 12.6       | 9.6        | 10.9       | 9.5        | 12.3       | 13.8       |
|                  | 0.57 | 95        | 20.4       | 19.0       | 17.9       | 17.6       | 17.5       | 19.3       |
|                  |      | 92        | 20.3       | 19.2       | 21.9       | 21.9       | 21.8       | 23.1       |
|                  |      | 100       | 10.6       | 3.2        | 11.6       | 6.1        | 12.5       | 9.4        |
|                  | 0.42 | 98        | 11.4       | 7.5        | 12.3       | 10.5       | 11.0       | 12.6       |
|                  | 0.45 | 95        | 20.0       | 18.3       | 22.4       | 22.3       | 18.9       | 21.2       |
| 0.162            |      | 92        | 22.8       | 22.3       | 25.4       | 25.9       | 26.6       | 28.8       |
| 0.105            |      | 100       | 7.0        | 0.8        | 8.7        | 4.1        | 9.7        | 7.5        |
|                  | 0.5  | 98        | 12.7       | 9.6        | 15.4       | 14.3       | 15.7       | 17.8       |
|                  | 0.5  | 95        | 19.7       | 18.3       | 20.9       | 21.1       | 23.1       | 25.6       |
|                  |      | 92        | 24.0       | 23.2       | 24.9       | 25.5       | 25.0       | 27.5       |
|                  | 0.57 | 100       | 5.1        | 0.1        | 5.5        | 2.0        | 6.4        | 5.3        |
| 0.140            | 0.43 | 100       | 5.2        | -0.6       | 4.9        | 1.0        | 5.7        | 4.6        |
| 0.140            | 0.5  | 100       | 12.7       | 10.1       | 16.9       | 20.4       | 9.4        | 4.5        |
|                  | 0.5  | 98        | 15.3       | 15.1       | 8.9        | 2.3        | 10.2       | 8.0        |

Table 20. Measured inlet and exit temperatures for pure- and mainly-air cases

## APPENDIX D

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(\boldsymbol{H}_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|------------------------------------------|------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                                     | MN/m                                     | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.5                         | 6.6                         | -2.8                        | 8.6                         | 3.2                                      | -0.1                        | -0.2                                     | 4.0                                      | -0.3                  | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | 9.7                         | 6.8                         | -3.2                        | 9.1                         | 5.9                                      | 0.5                         | -0.7                                     | 5.5                                      | -0.3                  | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 9.7                         | 6.7                         | -3.3                        | 9.7                         | 7.9                                      | 1.1                         | -1.0                                     | 7.9                                      | -0.3                  | -0.1                         | -0.2                         | -0.5                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         |
| 39.1  | 8.8                         | 6.9                         | -3.1                        | 8.6                         | 11.0                                     | 0.3                         | -1.4                                     | 11.0                                     | -0.3                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 8.3                         | 7.2                         | -3.0                        | 7.5                         | 14.0                                     | 1.0                         | -2.1                                     | 14.0                                     | -0.3                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 8.1                         | 6.6                         | -3.3                        | 7.6                         | 16.0                                     | 1.4                         | -2.4                                     | 16.0                                     | -0.3                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 7.1                         | 7.6                         | -3.2                        | 5.7                         | 19.0                                     | 1.2                         | -2.7                                     | 20.0                                     | -0.2                  | -0.2                         | -0.2                         | -0.5                         | 0.0                          | -0.2                         | -0.2                         | -0.3                         |
| 78.1  | 6.6                         | 7.4                         | -3.4                        | 5.9                         | 22.0                                     | 1.6                         | -3.7                                     | 23.0                                     | -0.2                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 5.2                         | 7.5                         | -3.7                        | 4.9                         | 25.0                                     | 1.8                         | -3.6                                     | 26.0                                     | -0.2                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 4.5                         | 7.8                         | -4.6                        | 4.3                         | 28.0                                     | 2.0                         | -3.6                                     | 28.0                                     | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         |
| 107.4 | 4.0                         | 7.9                         | -4.4                        | 4.2                         | 31.0                                     | 1.3                         | -3.8                                     | 32.0                                     | -0.3                  | -0.1                         | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 117.2 | 2.8                         | 8.2                         | -3.9                        | 2.3                         | 33.0                                     | 1.8                         | -4.2                                     | 34.0                                     | -0.4                  | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | 1.3                         | 7.5                         | -3.9                        | 2.4                         | 36.0                                     | 2.2                         | -4.2                                     | 36.0                                     | -0.3                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 136.7 | -0.5                        | 8.7                         | -3.6                        | -1.4                        | 39.0                                     | 1.8                         | -5.2                                     | 41.0                                     | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |

Table 21. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{YY})$ | Re(eH <sub>XX</sub> ) | Re(eH <sub>XY</sub> ) | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|------------------------------------------|-----------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                                     | MN/m                                     | MN/m                  | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 6.3                         | -2.9                        | 11.0                                     | 3.5                         | 0.0                         | -0.6                                     | 4.0                                      | -0.1                  | -0.2                  | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 12.0                        | 6.1                         | -2.8                        | 12.0                                     | 5.8                         | 0.5                         | -0.7                                     | 5.6                                      | -0.1                  | -0.3                  | -0.1                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 29.3  | 12.0                        | 5.8                         | -3.4                        | 12.0                                     | 7.8                         | 1.0                         | -0.7                                     | 8.4                                      | -0.3                  | -0.1                  | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 12.0                        | 5.9                         | -3.3                        | 11.0                                     | 10.0                        | 0.5                         | -1.6                                     | 11.0                                     | -0.2                  | -0.2                  | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | 11.0                        | 6.0                         | -3.3                        | 11.0                                     | 13.0                        | 0.8                         | -1.8                                     | 13.0                                     | -0.1                  | -0.2                  | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 58.6  | 11.0                        | 5.9                         | -3.1                        | 10.0                                     | 16.0                        | 1.2                         | -2.0                                     | 16.0                                     | -0.1                  | -0.2                  | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 11.0                        | 6.3                         | -3.0                        | 9.6                                      | 18.0                        | 1.3                         | -2.2                                     | 19.0                                     | -0.2                  | -0.1                  | -0.1                         | -0.7                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         |
| 78.1  | 9.9                         | 6.0                         | -3.1                        | 9.0                                      | 21.0                        | 1.5                         | -2.8                                     | 21.0                                     | -0.1                  | -0.1                  | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | 9.0                         | 6.8                         | -3.7                        | 7.9                                      | 23.0                        | 1.7                         | -3.3                                     | 24.0                                     | -0.2                  | -0.2                  | -0.1                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 8.5                         | 6.6                         | -4.2                        | 7.7                                      | 26.0                        | 1.8                         | -3.5                                     | 27.0                                     | -0.2                  | -0.2                  | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | 7.7                         | 6.7                         | -4.0                        | 7.1                                      | 29.0                        | 1.7                         | -3.3                                     | 29.0                                     | -0.2                  | -0.1                  | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 117.2 | 6.6                         | 7.0                         | -4.1                        | 5.6                                      | 31.0                        | 1.7                         | -3.6                                     | 32.0                                     | -0.2                  | -0.2                  | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | 5.4                         | 6.6                         | -4.0                        | 5.4                                      | 33.0                        | 2.2                         | -3.7                                     | 34.0                                     | -0.1                  | -0.2                  | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | 3.3                         | 7.5                         | -3.8                        | 2.2                                      | 36.0                        | 2.2                         | -4.6                                     | 38.0                                     | -0.2                  | -0.2                  | -0.1                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |

Table 22. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 13.0                        | 5.6                         | -2.6                        | 11.0                        | 3.0                         | -0.1                        | -0.2         | 3.7                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 13.0                        | 5.5                         | -3.0                        | 12.0                        | 5.6                         | 0.6                         | -0.9         | 5.4                                                                | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 13.0                        | 6.1                         | -3.3                        | 12.0                        | 7.7                         | 0.4                         | -1.1         | 8.2                                                                | -0.1                         | -0.3                         | -0.1                         | 0.0                          | -0.1                         | -0.3                         | -0.1                         | -0.1                         |
| 39.1  | 13.0                        | 5.8                         | -3.3                        | 12.0                        | 10.0                        | 0.3                         | -1.4         | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 12.0                        | 6.1                         | -3.4                        | 11.0                        | 13.0                        | 0.6                         | -1.6         | 14.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 12.0                        | 5.5                         | -3.3                        | 11.0                        | 16.0                        | 0.9                         | -1.9         | 16.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 12.0                        | 5.7                         | -3.1                        | 10.0                        | 18.0                        | 1.2                         | -2.1         | 19.0                                                               | -0.1                         | -0.3                         | 0.0                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 11.0                        | 6.0                         | -3.3                        | 9.8                         | 21.0                        | 1.2                         | -2.7         | 21.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 11.0                        | 5.8                         | -3.4                        | 9.1                         | 23.0                        | 1.4                         | -3.1         | 24.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 9.7                         | 6.1                         | -3.7                        | 8.3                         | 26.0                        | 1.4                         | -3.2         | 26.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 8.8                         | 6.2                         | -3.8                        | 7.9                         | 28.0                        | 1.6                         | -3.6         | 29.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 8.1                         | 6.6                         | -3.7                        | 6.3                         | 31.0                        | 1.6                         | -3.8         | 32.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 6.5                         | 6.4                         | -4.1                        | 5.8                         | 34.0                        | 2.0                         | -3.9         | 34.0                                                               | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         |
| 136.7 | 4.6                         | 7.0                         | -4.2                        | 2.5                         | 37.0                        | 2.1                         | -4.6         | 38.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 23. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(\boldsymbol{eH}_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                                      | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 13.0                        | 4.8                         | -2.8                        | 13.0                        | 3.4                         | 0.3                         | 0.1                                      | 3.3                         | -0.2                  | -0.2                         | -0.2                                      | -0.1     | -0.3                         | -0.3                         | -0.2                         | -0.2                         |
| 19.5  | 13.0                        | 4.9                         | -2.6                        | 13.0                        | 5.7                         | 0.5                         | -0.7                                     | 5.7                         | -0.1                  | -0.2                         | -0.2                                      | -0.1     | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 29.3  | 13.0                        | 5.4                         | -3.4                        | 13.0                        | 8.1                         | 0.4                         | -1.3                                     | 8.4                         | -0.4                  | -0.2                         | -0.1                                      | -0.3     | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 39.1  | 12.0                        | 5.8                         | -3.4                        | 13.0                        | 10.0                        | 0.5                         | -1.1                                     | 11.0                        | -0.1                  | -0.1                         | -0.2                                      | -0.3     | -0.3                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 13.0                        | 5.0                         | -3.1                        | 13.0                        | 13.0                        | 0.8                         | -1.4                                     | 13.0                        | -0.2                  | -0.2                         | -0.1                                      | -0.2     | -0.1                         | -0.1                         | -0.3                         | -0.3                         |
| 58.6  | 13.0                        | 4.8                         | -3.6                        | 12.0                        | 16.0                        | 0.8                         | -1.8                                     | 15.0                        | -0.3                  | -0.2                         | -0.2                                      | -0.1     | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 12.0                        | 5.2                         | -3.1                        | 12.0                        | 18.0                        | 0.9                         | -1.9                                     | 18.0                        | -0.3                  | -0.3                         | -0.3                                      | -0.1     | -0.2                         | -0.2                         | -0.1                         | -0.3                         |
| 78.1  | 12.0                        | 5.4                         | -2.9                        | 12.0                        | 21.0                        | 1.5                         | -2.3                                     | 21.0                        | -0.2                  | -0.3                         | -0.2                                      | -0.2     | -0.4                         | -0.1                         | -0.3                         | -0.1                         |
| 87.9  | 11.0                        | 5.2                         | -3.3                        | 10.0                        | 23.0                        | 1.3                         | -2.7                                     | 24.0                        | -0.1                  | -0.2                         | -0.1                                      | -0.2     | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 97.7  | 10.0                        | 5.5                         | -3.8                        | 9.4                         | 26.0                        | 1.9                         | -3.1                                     | 27.0                        | -0.1                  | -0.3                         | -0.2                                      | -0.1     | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | 9.2                         | 5.6                         | -3.6                        | 9.1                         | 28.0                        | 1.6                         | -3.9                                     | 29.0                        | -0.1                  | -0.1                         | -0.2                                      | -0.2     | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 117.2 | 8.7                         | 5.6                         | -3.7                        | 7.7                         | 31.0                        | 2.1                         | -3.8                                     | 31.0                        | -0.2                  | -0.1                         | -0.2                                      | -0.2     | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 6.7                         | 5.8                         | -4.1                        | 7.5                         | 34.0                        | 2.2                         | -3.5                                     | 34.0                        | -0.4                  | -0.2                         | -0.2                                      | -0.4     | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 136.7 | 5.5                         | 5.9                         | -4.1                        | 4.8                         | 37.0                        | 2.5                         | -4.1                                     | 38.0                        | -0.2                  | -0.2                         | -0.2                                      | -0.3     | -0.2                         | -0.2                         | -0.2                         | -0.1                         |

Table 24. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 5.3                         | -2.7                        | 12.0                        | 3.0                         | 0.1                         | -0.5                        | 3.5                                                                | -0.2                          | -0.2                         | -0.4                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 19.5  | 12.0                        | 5.1                         | -2.9                        | 12.0                        | 5.7                         | 0.3                         | -1.0                        | 6.2                                                                | -0.1                          | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 29.3  | 12.0                        | 5.5                         | -2.8                        | 12.0                        | 8.3                         | 0.8                         | -1.2                        | 8.8                                                                | -0.2                          | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 12.0                        | 5.6                         | -3.2                        | 12.0                        | 11.0                        | 0.4                         | -1.1                        | 11.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 48.8  | 12.0                        | 5.3                         | -3.2                        | 12.0                        | 14.0                        | 0.6                         | -1.3                        | 14.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 58.6  | 11.0                        | 4.8                         | -3.3                        | 12.0                        | 17.0                        | 0.2                         | -1.4                        | 17.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 11.0                        | 5.4                         | -3.3                        | 12.0                        | 19.0                        | 0.8                         | -1.7                        | 19.0                                                               | -0.1                          | -0.4                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 78.1  | 11.0                        | 5.1                         | -2.9                        | 12.0                        | 21.0                        | 1.1                         | -2.4                        | 22.0                                                               | -0.3                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 87.9  | 10.0                        | 5.1                         | -3.4                        | 10.0                        | 24.0                        | 0.7                         | -2.7                        | 25.0                                                               | -0.1                          | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 97.7  | 9.2                         | 5.0                         | -3.3                        | 9.6                         | 27.0                        | 1.6                         | -2.9                        | 27.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 107.4 | 8.6                         | 5.1                         | -3.6                        | 9.3                         | 30.0                        | 1.9                         | -3.3                        | 30.0                                                               | -0.1                          | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 117.2 | 7.5                         | 5.2                         | -3.6                        | 7.9                         | 32.0                        | 1.7                         | -3.8                        | 32.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 6.5                         | 6.0                         | -3.8                        | 7.5                         | 34.0                        | 1.9                         | -3.6                        | 34.0                                                               | -0.1                          | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.4                         |
| 136.7 | 4.7                         | 5.4                         | -4.3                        | 5.8                         | 38.0                        | 2.1                         | -4.4                        | 39.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.4                         |

Table 25. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.9                         | 5.1                         | -2.6                                     | 7.7                         | 3.3                         | 0.0                         | -0.1                                     | 3.7                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 8.1                         | 5.5                         | -2.9                                     | 7.3                         | 6.0                         | 0.2                         | -0.9                                     | 6.7                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         |
| 29.3  | 7.9                         | 5.6                         | -3.2                                     | 7.2                         | 9.1                         | 0.6                         | -0.9                                     | 9.7                         | -0.1                  | -0.1                         | -0.2                         | -0.4                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 39.1  | 7.6                         | 5.4                         | -3.8                                     | 7.3                         | 12.0                        | 0.6                         | -1.1                                     | 12.0                        | -0.1                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 48.8  | 8.0                         | 5.6                         | -3.5                                     | 7.4                         | 15.0                        | 0.5                         | -1.3                                     | 15.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 58.6  | 7.7                         | 5.4                         | -3.8                                     | 7.6                         | 18.0                        | 0.6                         | -1.6                                     | 19.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 68.4  | 7.1                         | 5.3                         | -3.4                                     | 6.8                         | 21.0                        | 0.0                         | -1.5                                     | 21.0                        | -0.2                  | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.4                         | -0.2                         | -0.4                         |
| 78.1  | 7.3                         | 5.1                         | -3.5                                     | 7.5                         | 24.0                        | 1.0                         | -2.0                                     | 25.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 87.9  | 6.6                         | 5.2                         | -3.7                                     | 6.2                         | 27.0                        | 0.8                         | -2.4                                     | 28.0                        | -0.1                  | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 97.7  | 6.3                         | 5.4                         | -4.3                                     | 6.0                         | 30.0                        | 1.0                         | -2.7                                     | 31.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 107.4 | 5.7                         | 5.3                         | -3.7                                     | 5.4                         | 32.0                        | 1.0                         | -2.9                                     | 34.0                        | -0.2                  | 0.0                          | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 117.2 | 4.7                         | 5.4                         | -3.9                                     | 4.5                         | 35.0                        | 1.5                         | -3.7                                     | 37.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 3.9                         | 5.5                         | -3.9                                     | 4.4                         | 38.0                        | 1.9                         | -3.6                                     | 39.0                        | -0.1                  | -0.4                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.3                         | -0.4                         |
| 136.7 | 2.8                         | 6.0                         | -3.9                                     | 2.7                         | 42.0                        | 1.7                         | -3.8                                     | 43.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |

Table 26. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.2                         | 9.2                         | -7.5                        | 8.6                         | 2.8                         | 0.4                         | -0.3         | 3.7                                                                | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 9.1                         | 8.9                         | -7.0                        | 8.7                         | 6.0                         | 0.9                         | -1.1         | 5.8                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 9.2                         | 9.2                         | -6.9                        | 8.7                         | 8.2                         | 1.0                         | -1.1         | 8.7                                                                | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 39.1  | 8.7                         | 9.1                         | -7.1                        | 8.5                         | 11.0                        | 1.5                         | -1.9         | 11.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 48.8  | 8.6                         | 9.2                         | -6.9                        | 8.0                         | 14.0                        | 2.3                         | -2.3         | 14.0                                                               | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 58.6  | 7.7                         | 9.2                         | -7.1                        | 7.1                         | 16.0                        | 2.5                         | -2.6         | 17.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         |
| 68.4  | 7.0                         | 9.2                         | -6.9                        | 5.8                         | 19.0                        | 2.6                         | -3.6         | 20.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | 6.8                         | 10.0                        | -7.5                        | 5.6                         | 22.0                        | 3.2                         | -4.5         | 23.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 6.0                         | 9.9                         | -7.6                        | 5.1                         | 25.0                        | 3.5                         | -4.7         | 26.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.1                         | 10.0                        | -8.5                        | 4.6                         | 28.0                        | 3.8                         | -5.0         | 29.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 4.8                         | 10.0                        | -8.1                        | 4.1                         | 31.0                        | 3.6                         | -5.5         | 31.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 3.8                         | 11.0                        | -7.9                        | 2.7                         | 33.0                        | 4.4                         | -5.7         | 34.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.9                         | 19.0                        | -13.0                       | -4.9                        | 30.0                        | -1.8                        | -7.2         | 30.0                                                               | -9.1                         | -5.2                         | -5.0                         | -7.3                         | -5.5                         | -8.1                         | -8.3                         | -5.4                         |
| 136.7 | -0.1                        | 11.0                        | -7.8                        | -0.6                        | 38.0                        | 5.1                         | -6.8         | 40.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 27. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 11.0                        | 8.4                         | -6.7                        | 11.0                        | 3.2                         | 0.2                         | -0.9                        | 3.7                         | -0.2                  | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 11.0                        | 8.3                         | -6.6                        | 11.0                        | 5.6                         | 0.5                         | -0.7                        | 5.6                         | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 11.0                        | 8.5                         | -6.4                        | 11.0                        | 8.3                         | 1.3                         | -1.1                        | 8.6                         | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 11.0                        | 8.5                         | -6.6                        | 11.0                        | 11.0                        | 1.1                         | -1.6                        | 11.0                        | 0.0                   | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 10.0                        | 8.3                         | -6.7                        | 10.0                        | 13.0                        | 1.6                         | -1.9                        | 13.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 10.0                        | 8.1                         | -6.7                        | 10.0                        | 16.0                        | 2.4                         | -2.2                        | 16.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 9.6                         | 8.7                         | -6.6                        | 8.9                         | 19.0                        | 2.3                         | -2.9                        | 19.0                        | -0.3                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | 9.5                         | 9.1                         | -6.7                        | 9.0                         | 21.0                        | 3.0                         | -3.7                        | 22.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 8.7                         | 9.0                         | -7.3                        | 8.1                         | 24.0                        | 3.1                         | -4.2                        | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 97.7  | 7.9                         | 9.0                         | -7.7                        | 7.9                         | 27.0                        | 3.4                         | -4.6                        | 27.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 7.3                         | 9.3                         | -7.5                        | 7.1                         | 29.0                        | 3.5                         | -4.9                        | 29.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 6.3                         | 9.6                         | -7.5                        | 6.0                         | 31.0                        | 4.1                         | -5.5                        | 32.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.2                         | 16.0                        | -7.9                        | 4.2                         | 33.0                        | 4.1                         | -5.6                        | 29.0                        | -2.5                  | -5.0                         | -3.3                         | -6.7                         | -3.8                         | -7.3                         | -2.5                         | -4.5                         |
| 136.7 | 2.9                         | 10.0                        | -7.6                        | 2.7                         | 36.0                        | 4.8                         | -6.6                        | 37.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 28. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 8.3                         | -6.2                        | 11.0                        | 3.4                         | 0.1                         | -0.4                                     | 3.3                                                                | -0.1                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 19.5  | 12.0                        | 8.6                         | -6.5                        | 11.0                        | 6.0                         | 0.8                         | -1.2                                     | 6.1                                                                | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 29.3  | 12.0                        | 8.7                         | -6.2                        | 12.0                        | 8.1                         | 1.1                         | -1.3                                     | 8.2                                                                | -0.1                          | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 12.0                        | 8.6                         | -6.3                        | 11.0                        | 10.0                        | 1.1                         | -1.8                                     | 11.0                                                               | -0.2                          | -0.2                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 12.0                        | 8.6                         | -6.4                        | 11.0                        | 13.0                        | 1.5                         | -1.8                                     | 13.0                                                               | -0.2                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 58.6  | 12.0                        | 8.3                         | -6.2                        | 10.0                        | 16.0                        | 1.9                         | -2.7                                     | 16.0                                                               | -0.3                          | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         |
| 68.4  | 11.0                        | 7.9                         | -6.0                        | 9.4                         | 19.0                        | 2.2                         | -3.2                                     | 19.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | 11.0                        | 8.9                         | -6.4                        | 9.3                         | 21.0                        | 2.6                         | -3.9                                     | 22.0                                                               | -0.2                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 10.0                        | 8.9                         | -6.8                        | 8.9                         | 24.0                        | 3.0                         | -4.3                                     | 24.0                                                               | -0.2                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 9.5                         | 9.1                         | -7.4                        | 8.2                         | 26.0                        | 3.1                         | -4.5                                     | 27.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 8.7                         | 9.4                         | -7.0                        | 7.8                         | 29.0                        | 3.1                         | -5.0                                     | 29.0                                                               | -0.2                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 7.2                         | 9.6                         | -7.1                        | 6.3                         | 31.0                        | 3.7                         | -5.4                                     | 32.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | -2.7                        | 26.0                        | -2.9                        | -7.7                        | 37.0                        | -7.9                        | 2.2                                      | 21.0                                                               | -7.4                          | -8.5                         | -4.5                         | -5.3                         | -4.5                         | -5.4                         | -6.6                         | -7.8                         |
| 136.7 | 3.9                         | 10.0                        | -7.3                        | 2.8                         | 37.0                        | 4.2                         | -6.7                                     | 37.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 29. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 13.0                        | 8.0                         | -5.6                                     | 12.0                        | 3.4                         | 0.4                         | -0.6                                     | 3.4                         | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | 14.0                        | 7.7                         | -5.7                                     | 13.0                        | 5.7                         | 0.7                         | -0.9                                     | 5.9                         | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 13.0                        | 8.2                         | -5.9                                     | 13.0                        | 7.7                         | 0.8                         | -1.1                                     | 7.8                         | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 13.0                        | 8.2                         | -5.9                                     | 12.0                        | 11.0                        | 1.5                         | -1.9                                     | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 48.8  | 13.0                        | 8.2                         | -6.0                                     | 12.0                        | 13.0                        | 1.5                         | -2.2                                     | 13.0                        | -0.3                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 12.0                        | 8.3                         | -5.9                                     | 11.0                        | 16.0                        | 1.3                         | -2.1                                     | 15.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 12.0                        | 7.9                         | -5.5                                     | 11.0                        | 18.0                        | 1.6                         | -3.0                                     | 19.0                        | -0.2                  | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         |
| 78.1  | 12.0                        | 8.0                         | -5.8                                     | 11.0                        | 21.0                        | 2.5                         | -4.0                                     | 21.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 87.9  | 11.0                        | 8.6                         | -6.2                                     | 9.8                         | 23.0                        | 2.7                         | -4.0                                     | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 11.0                        | 8.5                         | -6.6                                     | 9.5                         | 26.0                        | 2.8                         | -4.3                                     | 27.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 9.7                         | 8.7                         | -6.6                                     | 9.0                         | 28.0                        | 3.0                         | -4.8                                     | 29.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 8.5                         | 8.9                         | -6.7                                     | 7.4                         | 31.0                        | 3.5                         | -5.4                                     | 32.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.3                         | 15.0                        | -6.6                                     | -1.8                        | 34.0                        | -4.3                        | -3.1                                     | 30.0                        | -4.5                  | -6.4                         | -4.8                         | -7.4                         | -4.9                         | -8.0                         | -3.9                         | -6.4                         |
| 136.7 | 5.4                         | 9.8                         | -6.9                                     | 4.3                         | 37.0                        | 4.2                         | -6.3                                     | 38.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 30. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 11.0                        | 8.0                         | -5.8                        | 11.0                        | 3.2                         | 0.0                         | -0.1         | 3.5                                                                | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 19.5  | 11.0                        | 7.9                         | -5.7                        | 11.0                        | 5.8                         | 0.5                         | -0.7         | 5.9                                                                | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 10.0                        | 8.1                         | -6.0                        | 11.0                        | 8.4                         | 0.8                         | -1.3         | 8.8                                                                | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 11.0                        | 8.2                         | -5.9                        | 11.0                        | 11.0                        | 0.9                         | -1.6         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 48.8  | 10.0                        | 8.3                         | -6.4                        | 11.0                        | 14.0                        | 1.1                         | -1.7         | 14.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 58.6  | 10.0                        | 8.0                         | -6.3                        | 11.0                        | 17.0                        | 1.6                         | -2.2         | 17.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 9.6                         | 8.5                         | -6.0                        | 10.0                        | 20.0                        | 1.6                         | -2.7         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         |
| 78.1  | 10.0                        | 8.2                         | -6.2                        | 10.0                        | 22.0                        | 2.3                         | -3.3         | 23.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 9.1                         | 8.5                         | -6.3                        | 9.2                         | 25.0                        | 2.3                         | -3.8         | 26.0                                                               | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | 8.5                         | 8.3                         | -6.9                        | 8.8                         | 28.0                        | 2.3                         | -4.1         | 28.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 7.9                         | 8.4                         | -6.8                        | 8.3                         | 30.0                        | 2.5                         | -4.7         | 31.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 6.7                         | 8.6                         | -6.9                        | 6.8                         | 33.0                        | 3.1                         | -5.0         | 34.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 5.9                         | 10.0                        | -7.5                        | -2.7                        | 35.0                        | -6.6                        | -4.8         | 37.0                                                               | -4.9                         | -6.8                         | -4.6                         | -6.2                         | -4.2                         | -6.6                         | -4.3                         | -6.9                         |
| 136.7 | 4.0                         | 9.5                         | -6.6                        | 4.6                         | 39.0                        | 3.8                         | -5.7         | 40.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |

Table 31. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=48.3 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.0                         | 8.6                         | -6.4                                     | 6.5                         | 3.7                         | -0.3                        | -0.3                                     | 3.6                         | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 19.5  | 7.3                         | 8.9                         | -6.3                                     | 6.9                         | 6.4                         | 0.3                         | -0.7                                     | 6.5                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 7.3                         | 9.1                         | -6.4                                     | 6.3                         | 9.0                         | 0.9                         | -1.2                                     | 9.4                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 7.1                         | 9.1                         | -6.7                                     | 6.8                         | 12.0                        | 1.0                         | -1.2                                     | 13.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 48.8  | 6.8                         | 9.0                         | -7.1                                     | 6.3                         | 15.0                        | 0.8                         | -1.8                                     | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 7.0                         | 8.8                         | -6.6                                     | 6.3                         | 18.0                        | 1.1                         | -1.8                                     | 18.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         |
| 68.4  | 6.4                         | 8.6                         | -6.9                                     | 5.4                         | 21.0                        | 1.2                         | -2.1                                     | 22.0                        | -0.4                  | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 78.1  | 6.8                         | 9.0                         | -7.3                                     | 5.6                         | 24.0                        | 1.4                         | -2.5                                     | 25.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 6.1                         | 9.2                         | -7.0                                     | 5.1                         | 27.0                        | 1.6                         | -3.2                                     | 28.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.5                         | 9.1                         | -7.5                                     | 4.6                         | 30.0                        | 1.9                         | -3.8                                     | 31.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 4.7                         | 9.1                         | -7.4                                     | 4.6                         | 33.0                        | 1.8                         | -3.8                                     | 34.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 4.1                         | 9.2                         | -7.4                                     | 3.4                         | 35.0                        | 2.2                         | -4.0                                     | 37.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 1.4                         | 20.0                        | -10.0                                    | 1.0                         | 34.0                        | 1.5                         | -1.7                                     | 30.0                        | -7.2                  | -13.0                        | -8.7                         | -8.7                         | -9.2                         | -9.3                         | -7.1                         | -13.0                        |
| 136.7 | 2.0                         | 10.0                        | -7.3                                     | 1.7                         | 42.0                        | 2.8                         | -4.8                                     | 44.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         |

Table 32. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 13.0                        | -11.0                       | 9.3                         | 3.2                         | -0.5                        | -1.1         | 3.8                                                                | -0.3                         | -0.3                         | -0.5                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 19.5  | 12.0                        | 13.0                        | -10.0                       | 10.0                        | 6.1                         | 1.1                         | -1.1         | 5.9                                                                | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | 11.0                        | 13.0                        | -10.0                       | 10.0                        | 8.1                         | 1.3                         | -1.5         | 7.9                                                                | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 11.0                        | 13.0                        | -10.0                       | 10.0                        | 11.0                        | 2.0                         | -2.6         | 11.0                                                               | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 48.8  | 11.0                        | 13.0                        | -10.0                       | 9.8                         | 13.0                        | 2.8                         | -3.2         | 13.0                                                               | -0.1                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 58.6  | 10.0                        | 13.0                        | -11.0                       | 8.8                         | 16.0                        | 3.2                         | -3.5         | 16.0                                                               | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 9.3                         | 13.0                        | -11.0                       | 8.6                         | 19.0                        | 4.0                         | -4.5         | 20.0                                                               | -0.1                         | -0.4                         | -0.2                         | -0.4                         | -0.3                         | -0.4                         | -0.1                         | -0.3                         |
| 78.1  | 9.0                         | 13.0                        | -11.0                       | 7.9                         | 22.0                        | 4.1                         | -5.3         | 22.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.4                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         |
| 87.9  | 8.5                         | 14.0                        | -11.0                       | 7.4                         | 25.0                        | 4.4                         | -5.9         | 26.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 97.7  | 7.7                         | 14.0                        | -11.0                       | 7.1                         | 28.0                        | 4.9                         | -6.6         | 28.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 107.4 | 7.3                         | 14.0                        | -11.0                       | 6.8                         | 30.0                        | 5.2                         | -6.7         | 30.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 6.2                         | 14.0                        | -11.0                       | 4.9                         | 32.0                        | 6.1                         | -7.6         | 32.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.6                         | 14.0                        | -11.0                       | 4.0                         | 34.0                        | 6.8                         | -8.5         | 35.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         |
| 136.7 | 2.0                         | 15.0                        | -11.0                       | 1.7                         | 37.0                        | 7.2                         | -9.5         | 38.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |

Table 33. Raw data for the test seal at  $\omega$ =10 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 13.0                        | -10.0                                    | 11.0                        | 3.1                         | -0.2                        | -0.2                                     | 3.3                         | -0.1                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 19.5  | 13.0                        | 12.0                        | -9.8                                     | 11.0                        | 5.5                         | 1.1                         | -1.1                                     | 5.9                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 29.3  | 13.0                        | 13.0                        | -9.7                                     | 11.0                        | 8.2                         | 1.0                         | -1.3                                     | 8.3                         | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 12.0                        | 13.0                        | -9.4                                     | 11.0                        | 10.0                        | 1.4                         | -2.1                                     | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 12.0                        | 13.0                        | -9.8                                     | 11.0                        | 13.0                        | 2.1                         | -2.8                                     | 13.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 12.0                        | 12.0                        | -9.7                                     | 11.0                        | 15.0                        | 2.9                         | -3.5                                     | 15.0                        | -0.3                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 11.0                        | 13.0                        | -9.8                                     | 9.0                         | 18.0                        | 3.4                         | -4.2                                     | 19.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 78.1  | 11.0                        | 13.0                        | -10.0                                    | 9.0                         | 21.0                        | 3.6                         | -4.8                                     | 22.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | 10.0                        | 13.0                        | -10.0                                    | 8.7                         | 23.0                        | 4.0                         | -5.6                                     | 24.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 9.9                         | 13.0                        | -11.0                                    | 8.2                         | 26.0                        | 4.5                         | -6.4                                     | 27.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 107.4 | 9.4                         | 13.0                        | -10.0                                    | 7.9                         | 28.0                        | 4.5                         | -6.8                                     | 29.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 8.0                         | 14.0                        | -11.0                                    | 6.4                         | 30.0                        | 5.4                         | -7.4                                     | 31.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 6.8                         | 14.0                        | -11.0                                    | 5.9                         | 32.0                        | 5.9                         | -8.0                                     | 33.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | 4.5                         | 15.0                        | -10.0                                    | 3.1                         | 35.0                        | 6.6                         | -9.3                                     | 36.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 34. Raw data for the test seal at  $\omega$ =10 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 13.0                        | 11.0                        | -11.0                       | 13.0                        | 2.8                         | 0.0                         | -0.3                        | 3.1                                                                | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         |
| 19.5  | 13.0                        | 11.0                        | -10.0                       | 13.0                        | 5.4                         | 0.9                         | -0.6                        | 5.5                                                                | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 13.0                        | 11.0                        | -9.7                        | 13.0                        | 7.7                         | 1.5                         | -1.1                        | 8.3                                                                | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 39.1  | 13.0                        | 12.0                        | -9.8                        | 13.0                        | 10.0                        | 1.7                         | -2.1                        | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | 13.0                        | 11.0                        | -10.0                       | 13.0                        | 13.0                        | 2.3                         | -3.1                        | 13.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 12.0                        | 12.0                        | -10.0                       | 12.0                        | 15.0                        | 2.5                         | -2.9                        | 15.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 12.0                        | 12.0                        | -10.0                       | 11.0                        | 18.0                        | 3.0                         | -3.9                        | 18.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |
| 78.1  | 12.0                        | 12.0                        | -10.0                       | 11.0                        | 21.0                        | 3.7                         | -4.6                        | 22.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 87.9  | 11.0                        | 12.0                        | -11.0                       | 11.0                        | 23.0                        | 4.2                         | -5.4                        | 24.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 10.0                        | 12.0                        | -11.0                       | 10.0                        | 26.0                        | 4.6                         | -5.7                        | 26.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.2                         |
| 107.4 | 9.9                         | 13.0                        | -11.0                       | 10.0                        | 28.0                        | 5.0                         | -6.2                        | 28.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 117.2 | 8.9                         | 13.0                        | -11.0                       | 8.4                         | 30.0                        | 5.6                         | -7.1                        | 30.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 7.2                         | 12.0                        | -11.0                       | 7.4                         | 31.0                        | 6.7                         | -7.0                        | 32.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 4.6                         | 13.0                        | -11.0                       | 4.6                         | 35.0                        | 7.3                         | -8.8                        | 36.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 35. Raw data for the test seal at  $\omega$ =10 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 13.0                        | 11.0                        | -9.7                        | 13.0                        | 2.8                         | 0.4                         | -0.7                                     | 2.9                         | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | 13.0                        | 11.0                        | -9.5                        | 13.0                        | 5.5                         | 1.2                         | -0.8                                     | 5.6                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 13.0                        | 11.0                        | -9.4                        | 13.0                        | 7.9                         | 1.6                         | -1.3                                     | 8.1                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 13.0                        | 11.0                        | -9.5                        | 13.0                        | 10.0                        | 1.9                         | -2.4                                     | 11.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 13.0                        | 12.0                        | -10.0                       | 13.0                        | 13.0                        | 2.3                         | -2.7                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 12.0                        | 12.0                        | -10.0                       | 12.0                        | 16.0                        | 2.6                         | -2.8                                     | 15.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 68.4  | 12.0                        | 12.0                        | -9.2                        | 12.0                        | 19.0                        | 3.1                         | -3.8                                     | 19.0                        | -0.2                  | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         |
| 78.1  | 12.0                        | 11.0                        | -10.0                       | 12.0                        | 21.0                        | 3.8                         | -4.9                                     | 21.0                        | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 87.9  | 12.0                        | 12.0                        | -11.0                       | 11.0                        | 23.0                        | 4.2                         | -4.8                                     | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 11.0                        | 12.0                        | -11.0                       | 11.0                        | 25.0                        | 4.5                         | -5.4                                     | 26.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | 10.0                        | 12.0                        | -11.0                       | 10.0                        | 28.0                        | 4.7                         | -5.7                                     | 28.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 9.1                         | 12.0                        | -10.0                       | 8.5                         | 30.0                        | 5.0                         | -6.5                                     | 30.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 127.0 | 7.9                         | 12.0                        | -10.0                       | 6.8                         | 31.0                        | 5.6                         | -7.1                                     | 33.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 136.7 | 4.4                         | 13.0                        | -10.0                       | 4.4                         | 34.0                        | 6.8                         | -8.5                                     | 36.0                        | -0.1                  | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |

Table 36. Raw data for the test seal at  $\omega$ =10 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 12.0                        | -9.6                        | 12.0                        | 2.8                         | 0.3                         | -0.9         | 3.2                                                                | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 19.5  | 12.0                        | 12.0                        | -9.6                        | 11.0                        | 5.7                         | 0.8                         | -1.5         | 6.0                                                                | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 11.0                        | 12.0                        | -9.8                        | 12.0                        | 8.1                         | 1.6                         | -2.2         | 8.9                                                                | 0.0                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 39.1  | 11.0                        | 12.0                        | -10.0                       | 12.0                        | 11.0                        | 2.0                         | -2.6         | 12.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 11.0                        | 13.0                        | -10.0                       | 11.0                        | 14.0                        | 2.0                         | -2.9         | 14.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 11.0                        | 13.0                        | -10.0                       | 11.0                        | 17.0                        | 1.7                         | -2.6         | 16.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 68.4  | 10.0                        | 12.0                        | -9.9                        | 11.0                        | 20.0                        | 2.2                         | -3.4         | 20.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         |
| 78.1  | 11.0                        | 12.0                        | -10.0                       | 9.9                         | 23.0                        | 2.8                         | -4.6         | 22.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 87.9  | 10.0                        | 12.0                        | -11.0                       | 9.5                         | 25.0                        | 3.1                         | -4.8         | 25.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 9.4                         | 13.0                        | -11.0                       | 10.0                        | 27.0                        | 3.7                         | -5.2         | 27.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 8.8                         | 13.0                        | -11.0                       | 9.1                         | 30.0                        | 3.8                         | -5.7         | 30.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 117.2 | 7.9                         | 13.0                        | -10.0                       | 7.6                         | 32.0                        | 4.2                         | -6.7         | 32.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         |
| 127.0 | 6.4                         | 13.0                        | -11.0                       | 7.4                         | 34.0                        | 4.7                         | -6.2         | 34.0                                                               | -0.2                         | -0.5                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 136.7 | 4.3                         | 13.0                        | -10.0                       | 4.4                         | 37.0                        | 5.0                         | -7.7         | 38.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |

Table 37. Raw data for the test seal at  $\omega$ =10 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 8.4                         | 12.0                        | -10.0                       | 7.7                         | 2.6                         | 0.3                         | -0.7                                     | 3.3                         | -0.2                  | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 8.0                         | 12.0                        | -11.0                       | 7.3                         | 6.1                         | 0.9                         | -1.3                                     | 6.1                         | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 7.9                         | 13.0                        | -11.0                       | 7.1                         | 8.8                         | 1.6                         | -1.8                                     | 9.0                         | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 8.0                         | 13.0                        | -11.0                       | 7.3                         | 11.0                        | 1.6                         | -2.2                                     | 12.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 7.3                         | 14.0                        | -12.0                       | 7.0                         | 14.0                        | 1.6                         | -2.2                                     | 15.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 6.7                         | 13.0                        | -11.0                       | 7.0                         | 18.0                        | 1.7                         | -2.0                                     | 18.0                        | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         |
| 68.4  | 6.6                         | 13.0                        | -11.0                       | 6.4                         | 22.0                        | 1.5                         | -2.7                                     | 21.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | 7.4                         | 13.0                        | -11.0                       | 6.2                         | 24.0                        | 1.9                         | -3.4                                     | 25.0                        | -0.1                  | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | 7.1                         | 13.0                        | -11.0                       | 6.0                         | 27.0                        | 2.1                         | -3.9                                     | 27.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | 6.5                         | 13.0                        | -12.0                       | 6.0                         | 29.0                        | 2.6                         | -4.3                                     | 30.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | 5.8                         | 14.0                        | -11.0                       | 5.6                         | 33.0                        | 2.8                         | -5.0                                     | 33.0                        | -0.3                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 5.4                         | 14.0                        | -12.0                       | 4.3                         | 35.0                        | 2.9                         | -5.2                                     | 36.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 4.7                         | 13.0                        | -12.0                       | 3.6                         | 37.0                        | 3.0                         | -5.2                                     | 39.0                        | -0.2                  | -0.4                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         |
| 136.7 | 2.6                         | 14.0                        | -12.0                       | 2.2                         | 41.0                        | 3.8                         | -5.8                                     | 43.0                        | -0.1                  | -0.2                         | 0.0                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |

Table 38. Raw data for the test seal at  $\omega$ =10 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 14.0                        | 21.0                        | -19.0                                    | 15.0                        | 2.3                         | 1.5                         | -1.2                                     | 1.3                                                                | -0.4                         | -0.4                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         |
| 19.5  | 14.0                        | 21.0                        | -19.0                                    | 14.0                        | 4.7                         | 1.8                         | -2.8                                     | 5.1                                                                | -0.2                         | -0.3                         | -0.4                         | -0.3                         | -0.5                         | -0.4                         | -0.5                         | -0.4                         |
| 29.3  | 14.0                        | 21.0                        | -19.0                                    | 13.0                        | 7.9                         | 1.9                         | -3.5                                     | 7.1                                                                | -0.2                         | -0.3                         | -0.5                         | -0.4                         | -0.6                         | -0.6                         | -0.2                         | -0.4                         |
| 39.1  | 13.0                        | 21.0                        | -19.0                                    | 13.0                        | 9.8                         | 3.1                         | -3.2                                     | 9.8                                                                | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         | -0.5                         | -0.4                         | -0.3                         |
| 48.8  | 13.0                        | 21.0                        | -19.0                                    | 13.0                        | 12.0                        | 3.8                         | -4.8                                     | 12.0                                                               | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         |
| 58.6  | 12.0                        | 21.0                        | -19.0                                    | 12.0                        | 14.0                        | 5.4                         | -5.0                                     | 15.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         |
| 68.4  | 11.0                        | 20.0                        | -19.0                                    | 11.0                        | 18.0                        | 6.3                         | -6.5                                     | 18.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         |
| 78.1  | 11.0                        | 20.0                        | -19.0                                    | 11.0                        | 20.0                        | 7.2                         | -8.2                                     | 21.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 87.9  | 11.0                        | 20.0                        | -19.0                                    | 11.0                        | 23.0                        | 9.2                         | -10.0                                    | 24.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 11.0                        | 23.0                        | -20.0                                    | 10.0                        | 25.0                        | 11.0                        | -12.0                                    | 25.0                                                               | -0.4                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         |
| 107.4 | 7.3                         | 24.0                        | -22.0                                    | 8.2                         | 26.0                        | 10.0                        | -11.0                                    | 27.0                                                               | -0.2                         | -0.2                         | -0.4                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 117.2 | 5.1                         | 24.0                        | -21.0                                    | 5.7                         | 29.0                        | 11.0                        | -11.0                                    | 30.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         |
| 127.0 | 3.2                         | 24.0                        | -21.0                                    | 4.3                         | 33.0                        | 11.0                        | -11.0                                    | 33.0                                                               | -0.3                         | -0.4                         | -0.3                         | -0.4                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         |
| 136.7 | 1.6                         | 23.0                        | -21.0                                    | 2.3                         | 36.0                        | 12.0                        | -14.0                                    | 37.0                                                               | -0.3                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         |

Table 39. Raw data for the test seal at  $\omega$ =15 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 15.0                        | 20.0                        | -19.0                                    | 14.0                        | 2.0                         | 0.7                         | -1.4                                     | 2.2                                                                | -0.2                  | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 19.5  | 15.0                        | 20.0                        | -19.0                                    | 14.0                        | 4.5                         | 1.9                         | -1.8                                     | 5.3                                                                | -0.3                  | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 29.3  | 13.0                        | 21.0                        | -19.0                                    | 13.0                        | 7.1                         | 3.2                         | -2.7                                     | 7.4                                                                | -0.4                  | -0.5                         | -0.2                         | -0.2                         | -0.3                         | -0.4                         | -0.4                         | -0.5                         |
| 39.1  | 13.0                        | 21.0                        | -19.0                                    | 13.0                        | 10.0                        | 3.1                         | -3.5                                     | 10.0                                                               | -0.2                  | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         |
| 48.8  | 12.0                        | 21.0                        | -19.0                                    | 13.0                        | 12.0                        | 3.6                         | -4.2                                     | 13.0                                                               | -0.2                  | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 58.6  | 12.0                        | 21.0                        | -19.0                                    | 12.0                        | 15.0                        | 4.4                         | -5.0                                     | 15.0                                                               | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         |
| 68.4  | 11.0                        | 20.0                        | -19.0                                    | 12.0                        | 18.0                        | 5.7                         | -6.0                                     | 18.0                                                               | -0.2                  | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.4                         |
| 78.1  | 11.0                        | 20.0                        | -19.0                                    | 11.0                        | 21.0                        | 6.9                         | -7.4                                     | 21.0                                                               | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 87.9  | 11.0                        | 20.0                        | -19.0                                    | 11.0                        | 23.0                        | 8.9                         | -9.5                                     | 24.0                                                               | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 11.0                        | 22.0                        | -21.0                                    | 11.0                        | 25.0                        | 11.0                        | -12.0                                    | 25.0                                                               | -0.2                  | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         |
| 107.4 | 8.0                         | 24.0                        | -22.0                                    | 8.4                         | 26.0                        | 9.4                         | -11.0                                    | 27.0                                                               | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 117.2 | 6.2                         | 24.0                        | -22.0                                    | 6.6                         | 30.0                        | 9.7                         | -11.0                                    | 30.0                                                               | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 4.7                         | 23.0                        | -22.0                                    | 4.7                         | 33.0                        | 9.6                         | -11.0                                    | 34.0                                                               | -0.3                  | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.5                         |
| 136.7 | 2.7                         | 23.0                        | -21.0                                    | 4.0                         | 36.0                        | 11.0                        | -13.0                                    | 37.0                                                               | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |

Table 40. Raw data for the test seal at  $\omega$ =15 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 15.0                        | 19.0                        | -18.0                                    | 15.0                        | 2.0                         | 0.2                         | -1.6         | 2.5                                                                | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 19.5  | 14.0                        | 20.0                        | -19.0                                    | 14.0                        | 4.4                         | 2.7                         | -2.1         | 4.8                                                                | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | 15.0                        | 20.0                        | -19.0                                    | 14.0                        | 7.0                         | 2.1                         | -3.4         | 7.6                                                                | -0.4                         | -0.5                         | -0.3                         | -0.4                         | -0.1                         | -0.2                         | -0.4                         | -0.5                         |
| 39.1  | 14.0                        | 20.0                        | -19.0                                    | 14.0                        | 9.1                         | 3.2                         | -3.8         | 9.5                                                                | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 48.8  | 13.0                        | 20.0                        | -19.0                                    | 13.0                        | 12.0                        | 4.2                         | -4.4         | 13.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.3                         |
| 58.6  | 12.0                        | 21.0                        | -19.0                                    | 12.0                        | 15.0                        | 5.1                         | -5.6         | 15.0                                                               | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 68.4  | 12.0                        | 21.0                        | -19.0                                    | 12.0                        | 18.0                        | 5.4                         | -6.4         | 18.0                                                               | -0.2                         | -0.4                         | -0.3                         | -0.4                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         |
| 78.1  | 12.0                        | 21.0                        | -19.0                                    | 12.0                        | 21.0                        | 6.4                         | -7.5         | 20.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | 12.0                        | 21.0                        | -20.0                                    | 11.0                        | 23.0                        | 8.1                         | -8.7         | 23.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | 11.0                        | 22.0                        | -21.0                                    | 11.0                        | 24.0                        | 9.5                         | -11.0        | 25.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 107.4 | 8.4                         | 24.0                        | -22.0                                    | 9.2                         | 26.0                        | 9.6                         | -11.0        | 27.0                                                               | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 117.2 | 5.8                         | 24.0                        | -22.0                                    | 6.5                         | 29.0                        | 9.3                         | -11.0        | 30.0                                                               | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 127.0 | 3.0                         | 24.0                        | -22.0                                    | 4.2                         | 33.0                        | 9.2                         | -10.0        | 33.0                                                               | -0.4                         | -0.5                         | -0.5                         | -0.7                         | -0.5                         | -0.7                         | -0.4                         | -0.5                         |
| 136.7 | 2.0                         | 23.0                        | -21.0                                    | 2.0                         | 37.0                        | 11.0                        | -13.0        | 37.0                                                               | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |

Table 41. Raw data for the test seal at  $\omega$ =15 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 16.0                        | 20.0                        | -17.0                                    | 15.0                        | 2.0                         | 1.1                         | -1.1                                     | 2.7                         | -0.3                  | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         |
| 19.5  | 14.0                        | 19.0                        | -17.0                                    | 15.0                        | 5.0                         | 1.5                         | -2.0                                     | 4.4                         | -0.2                  | -0.3                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.6                         | -0.4                         |
| 29.3  | 14.0                        | 19.0                        | -18.0                                    | 14.0                        | 6.3                         | 3.2                         | -3.6                                     | 7.4                         | -0.2                  | -0.3                         | -0.3                         | -0.5                         | -0.4                         | -0.4                         | -0.3                         | -0.6                         |
| 39.1  | 13.0                        | 20.0                        | -19.0                                    | 14.0                        | 8.9                         | 3.4                         | -4.0                                     | 9.6                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 48.8  | 13.0                        | 20.0                        | -18.0                                    | 13.0                        | 12.0                        | 4.1                         | -5.0                                     | 12.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         |
| 58.6  | 12.0                        | 20.0                        | -19.0                                    | 12.0                        | 15.0                        | 5.3                         | -6.1                                     | 15.0                        | -0.3                  | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 68.4  | 12.0                        | 20.0                        | -19.0                                    | 13.0                        | 18.0                        | 5.5                         | -6.6                                     | 18.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.5                         | -0.3                         | -0.4                         |
| 78.1  | 12.0                        | 21.0                        | -19.0                                    | 12.0                        | 21.0                        | 6.9                         | -8.2                                     | 21.0                        | -0.1                  | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 11.0                        | 21.0                        | -20.0                                    | 11.0                        | 22.0                        | 9.1                         | -9.3                                     | 23.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 11.0                        | 22.0                        | -21.0                                    | 10.0                        | 24.0                        | 10.0                        | -11.0                                    | 25.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 107.4 | 9.3                         | 25.0                        | -22.0                                    | 9.7                         | 27.0                        | 9.5                         | -11.0                                    | 27.0                        | -0.3                  | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         |
| 117.2 | 6.0                         | 25.0                        | -24.0                                    | 7.0                         | 30.0                        | 8.3                         | -10.0                                    | 30.0                        | -0.4                  | -0.3                         | -0.5                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.4                         |
| 127.0 | 4.1                         | 24.0                        | -24.0                                    | 5.4                         | 34.0                        | 7.5                         | -8.9                                     | 34.0                        | -0.4                  | -0.7                         | -0.5                         | -0.4                         | -0.3                         | -0.3                         | -0.5                         | -0.9                         |
| 136.7 | 3.0                         | 24.0                        | -21.0                                    | 3.9                         | 39.0                        | 8.8                         | -11.0                                    | 39.0                        | -0.3                  | -0.4                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.5                         | -0.4                         |

Table 42. Raw data for the test seal at  $\omega$ =15 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 14.0                        | 20.0                        | -19.0                       | 15.0                        | 2.2                         | 0.7                         | -1.0         | 3.4                                                                | -0.4                         | -0.4                         | -0.3                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         |
| 19.5  | 13.0                        | 20.0                        | -19.0                       | 13.0                        | 4.2                         | 1.3                         | -1.3         | 4.8                                                                | -0.2                         | -0.3                         | -0.4                         | -0.4                         | -0.5                         | -0.6                         | -0.4                         | -0.3                         |
| 29.3  | 13.0                        | 20.0                        | -18.0                       | 13.0                        | 6.5                         | 3.0                         | -2.8         | 7.7                                                                | -0.3                         | -0.3                         | -0.3                         | -0.5                         | -0.3                         | -0.5                         | -0.3                         | -0.5                         |
| 39.1  | 12.0                        | 21.0                        | -19.0                       | 13.0                        | 9.3                         | 3.8                         | -4.0         | 9.3                                                                | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |
| 48.8  | 11.0                        | 21.0                        | -19.0                       | 11.0                        | 12.0                        | 3.8                         | -4.1         | 12.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 58.6  | 10.0                        | 20.0                        | -19.0                       | 11.0                        | 15.0                        | 5.4                         | -4.9         | 16.0                                                               | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         | -0.4                         |
| 68.4  | 11.0                        | 20.0                        | -19.0                       | 10.0                        | 19.0                        | 6.0                         | -6.8         | 19.0                                                               | -0.4                         | -0.5                         | -0.3                         | -0.4                         | -0.2                         | -0.4                         | -0.4                         | -0.4                         |
| 78.1  | 11.0                        | 22.0                        | -20.0                       | 11.0                        | 22.0                        | 7.4                         | -7.8         | 21.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         |
| 87.9  | 9.6                         | 23.0                        | -21.0                       | 9.7                         | 23.0                        | 8.5                         | -9.1         | 24.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 97.7  | 9.1                         | 24.0                        | -22.0                       | 9.2                         | 26.0                        | 8.5                         | -9.9         | 26.0                                                               | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | 8.1                         | 26.0                        | -24.0                       | 8.0                         | 28.0                        | 8.0                         | -11.0        | 28.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         |
| 117.2 | 5.1                         | 27.0                        | -25.0                       | 5.4                         | 31.0                        | 6.7                         | -9.3         | 31.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         |
| 127.0 | 4.2                         | 25.0                        | -23.0                       | 2.4                         | 36.0                        | 4.9                         | -8.4         | 36.0                                                               | -0.4                         | -0.6                         | -0.4                         | -0.6                         | -0.3                         | -0.4                         | -0.4                         | -0.4                         |
| 136.7 | 1.9                         | 24.0                        | -23.0                       | 2.9                         | 40.0                        | 8.7                         | -9.0         | 41.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |

Table 43. Raw data for the test seal at  $\omega$ =15 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 11.0                        | 22.0                        | -20.0                                    | 11.0                        | 3.1                         | 0.7                         | -0.5                                     | 0.9                         | -0.6                  | -0.6                         | -0.4                         | -0.4                         | -0.3                         | -0.2                         | -0.4                         | -0.3                         |
| 19.5  | 11.0                        | 22.0                        | -20.0                                    | 10.0                        | 5.0                         | 1.1                         | -1.9                                     | 4.0                         | -0.5                  | -0.4                         | -0.4                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         |
| 29.3  | 10.0                        | 21.0                        | -20.0                                    | 8.9                         | 7.6                         | 1.9                         | -2.5                                     | 8.2                         | -0.5                  | -0.5                         | -0.5                         | -0.4                         | -0.4                         | -0.3                         | -0.4                         | -0.4                         |
| 39.1  | 9.3                         | 22.0                        | -21.0                                    | 8.9                         | 10.0                        | 2.9                         | -3.5                                     | 9.8                         | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         |
| 48.8  | 8.3                         | 22.0                        | -21.0                                    | 8.7                         | 13.0                        | 3.6                         | -2.3                                     | 14.0                        | -0.2                  | -0.2                         | -0.4                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         |
| 58.6  | 7.9                         | 22.0                        | -20.0                                    | 7.9                         | 16.0                        | 4.8                         | -4.7                                     | 17.0                        | -0.4                  | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         |
| 68.4  | 7.6                         | 22.0                        | -21.0                                    | 7.3                         | 19.0                        | 5.8                         | -7.2                                     | 21.0                        | -0.5                  | -0.4                         | -0.4                         | -0.5                         | -0.3                         | -0.3                         | -0.6                         | -0.6                         |
| 78.1  | 7.3                         | 23.0                        | -21.0                                    | 7.5                         | 23.0                        | 7.0                         | -6.8                                     | 23.0                        | -0.2                  | -0.3                         | -0.5                         | -0.4                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         |
| 87.9  | 7.1                         | 24.0                        | -23.0                                    | 6.1                         | 25.0                        | 7.7                         | -8.2                                     | 25.0                        | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.4                         | -0.3                         |
| 97.7  | 7.2                         | 26.0                        | -24.0                                    | 6.3                         | 28.0                        | 8.0                         | -9.3                                     | 28.0                        | -0.2                  | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.1                         | -0.3                         | -0.3                         |
| 107.4 | 5.1                         | 27.0                        | -27.0                                    | 5.5                         | 29.0                        | 7.0                         | -9.3                                     | 30.0                        | -0.3                  | -0.5                         | -0.4                         | -0.3                         | -0.8                         | -0.6                         | -0.6                         | -0.6                         |
| 117.2 | 2.5                         | 28.0                        | -26.0                                    | 2.6                         | 33.0                        | 4.5                         | -6.1                                     | 32.0                        | -0.4                  | -0.5                         | -0.9                         | -0.4                         | -0.5                         | -0.3                         | -0.7                         | -0.8                         |
| 127.0 | 0.2                         | 27.0                        | -24.0                                    | 0.7                         | 39.0                        | 5.4                         | -6.3                                     | 38.0                        | -0.7                  | -0.6                         | -0.5                         | -0.8                         | -0.6                         | -0.6                         | -0.9                         | -0.6                         |
| 136.7 | 0.4                         | 25.0                        | -24.0                                    | 0.4                         | 42.0                        | 7.3                         | -7.4                                     | 43.0                        | -0.5                  | -0.5                         | -0.6                         | -0.7                         | -0.2                         | -0.4                         | -0.7                         | -0.5                         |

Table 44. Raw data for the test seal at  $\omega$ =15 krpm, PD=48.3 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.9                         | 6.8                         | -3.6                                     | 1.5                         | 3.2                         | 0.5                         | -0.3                                     | 3.5                                                                | -0.3                          | -0.3                         | -0.1                         | -0.5                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 2.9                         | 7.1                         | -3.4                                     | 1.8                         | 5.3                         | 0.4                         | -0.6                                     | 5.6                                                                | -0.2                          | -0.4                         | -0.1                         | -0.4                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 2.6                         | 6.9                         | -3.5                                     | 2.3                         | 7.7                         | 0.8                         | -0.9                                     | 7.8                                                                | -0.1                          | -0.3                         | -0.1                         | -0.5                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 2.0                         | 7.2                         | -3.6                                     | 1.0                         | 10.0                        | 0.2                         | -1.1                                     | 11.0                                                               | -0.2                          | -0.3                         | -0.1                         | -0.5                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 48.8  | 2.0                         | 7.1                         | -3.5                                     | 1.0                         | 13.0                        | 0.5                         | -1.8                                     | 14.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.5                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 58.6  | 1.5                         | 6.8                         | -3.4                                     | 0.8                         | 15.0                        | 1.3                         | -1.7                                     | 16.0                                                               | -0.2                          | -0.3                         | -0.2                         | -0.5                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 68.4  | 1.1                         | 8.2                         | -3.5                                     | -0.7                        | 18.0                        | 0.5                         | -2.5                                     | 20.0                                                               | -0.1                          | -0.4                         | -0.1                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         |
| 78.1  | 1.1                         | 7.6                         | -3.9                                     | -0.1                        | 21.0                        | 1.0                         | -2.6                                     | 22.0                                                               | -0.2                          | -0.4                         | -0.2                         | -0.5                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | -0.3                        | 7.4                         | -3.9                                     | -1.5                        | 23.0                        | 1.4                         | -3.2                                     | 24.0                                                               | -0.1                          | -0.3                         | -0.2                         | -0.4                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 97.7  | -1.3                        | 7.4                         | -4.3                                     | -1.7                        | 26.0                        | 1.5                         | -3.3                                     | 27.0                                                               | -0.3                          | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 107.4 | -2.1                        | 7.6                         | -4.2                                     | -2.3                        | 28.0                        | 1.1                         | -3.5                                     | 29.0                                                               | -0.2                          | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         |
| 117.2 | -3.7                        | 8.1                         | -3.9                                     | -3.9                        | 31.0                        | 1.4                         | -3.6                                     | 32.0                                                               | -0.2                          | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 127.0 | -4.5                        | 6.9                         | -3.6                                     | -4.0                        | 34.0                        | 2.4                         | -3.5                                     | 34.0                                                               | -0.2                          | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.4                         | -0.1                         | -0.4                         |
| 136.7 | -6.6                        | 8.0                         | -4.2                                     | -6.8                        | 37.0                        | 1.2                         | -4.3                                     | 39.0                                                               | -0.2                          | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.4                         |

Table 45. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.9                         | 6.0                         | -3.2                        | 5.2                         | 3.2                         | 0.2                         | -0.5                                     | 3.2                         | -0.2                  | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 5.7                         | 6.1                         | -3.3                        | 5.5                         | 5.2                         | 0.8                         | -0.6                                     | 5.2                         | -0.3                  | -0.3                         | -0.1                         | -0.4                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         |
| 29.3  | 5.6                         | 6.0                         | -3.5                        | 5.3                         | 7.2                         | 0.7                         | -0.9                                     | 7.6                         | -0.2                  | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 5.2                         | 6.5                         | -3.6                        | 4.8                         | 10.0                        | 0.3                         | -0.9                                     | 11.0                        | -0.3                  | -0.2                         | -0.1                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 5.2                         | 6.1                         | -3.4                        | 4.5                         | 13.0                        | 0.6                         | -1.2                                     | 13.0                        | -0.3                  | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 5.0                         | 5.7                         | -3.5                        | 4.2                         | 15.0                        | 1.0                         | -1.6                                     | 15.0                        | -0.3                  | -0.2                         | -0.2                         | -0.4                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 68.4  | 4.3                         | 6.5                         | -3.1                        | 3.5                         | 17.0                        | 0.6                         | -1.8                                     | 18.0                        | -0.2                  | -0.3                         | -0.2                         | -0.6                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | 4.0                         | 6.4                         | -3.6                        | 3.2                         | 20.0                        | 1.0                         | -2.5                                     | 21.0                        | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 87.9  | 3.0                         | 6.5                         | -3.5                        | 2.1                         | 23.0                        | 1.4                         | -2.8                                     | 23.0                        | -0.4                  | -0.3                         | -0.2                         | -0.5                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 97.7  | 2.1                         | 6.4                         | -3.9                        | 1.9                         | 24.0                        | 1.5                         | -3.0                                     | 26.0                        | -0.4                  | -0.2                         | -0.1                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | 1.3                         | 6.5                         | -4.1                        | 1.3                         | 27.0                        | 1.4                         | -3.3                                     | 28.0                        | -0.3                  | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 0.1                         | 6.7                         | -3.8                        | 0.0                         | 30.0                        | 1.7                         | -3.5                                     | 31.0                        | -0.4                  | -0.1                         | -0.1                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | -1.4                        | 6.8                         | -3.9                        | -0.6                        | 32.0                        | 2.3                         | -3.2                                     | 33.0                        | -0.3                  | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         |
| 136.7 | -3.0                        | 6.7                         | -3.8                        | -3.3                        | 35.0                        | 2.0                         | -4.1                                     | 37.0                        | -0.3                  | -0.1                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |

Table 46. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.8                         | 5.7                         | -2.8                        | 6.1                         | 2.7                         | -0.1                        | -0.4         | 3.4                                                                | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 6.7                         | 5.9                         | -3.0                        | 6.2                         | 5.0                         | 0.8                         | -0.7         | 5.2                                                                | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 6.3                         | 5.7                         | -3.6                        | 6.6                         | 7.4                         | 0.5                         | -0.9         | 7.5                                                                | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 6.3                         | 6.0                         | -3.5                        | 6.2                         | 9.9                         | 0.5                         | -1.3         | 10.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | 6.2                         | 5.8                         | -3.4                        | 5.6                         | 13.0                        | 0.4                         | -1.0         | 13.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 58.6  | 5.6                         | 5.2                         | -3.4                        | 5.7                         | 15.0                        | 1.1                         | -1.7         | 15.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 5.0                         | 5.7                         | -3.2                        | 4.8                         | 17.0                        | 0.8                         | -1.7         | 17.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         |
| 78.1  | 4.8                         | 6.1                         | -3.6                        | 4.5                         | 20.0                        | 1.2                         | -2.5         | 20.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 4.0                         | 6.1                         | -3.6                        | 3.5                         | 22.0                        | 1.6                         | -2.8         | 22.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.0                         | 5.8                         | -3.8                        | 2.8                         | 24.0                        | 1.8                         | -3.1         | 25.0                                                               | 0.0                          | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 2.4                         | 6.3                         | -4.0                        | 2.3                         | 27.0                        | 1.6                         | -3.3         | 28.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 117.2 | 1.2                         | 6.5                         | -4.0                        | 1.0                         | 29.0                        | 2.0                         | -3.3         | 30.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -0.2                        | 6.0                         | -4.2                        | 0.6                         | 32.0                        | 2.6                         | -3.4         | 32.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | -1.8                        | 6.6                         | -3.9                        | -2.4                        | 35.0                        | 2.0                         | -4.0         | 36.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         |

Table 47. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.1                         | 5.5                         | -2.9                        | 6.6                         | 3.2                         | 0.1                         | -0.3                                     | 3.2                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 7.0                         | 5.8                         | -3.2                        | 6.9                         | 5.2                         | 0.3                         | -1.1                                     | 5.4                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 6.7                         | 5.9                         | -3.3                        | 6.9                         | 7.4                         | 0.6                         | -1.1                                     | 8.0                         | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 6.6                         | 5.8                         | -3.6                        | 6.6                         | 10.0                        | 0.3                         | -1.1                                     | 11.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 6.6                         | 5.8                         | -3.3                        | 6.4                         | 13.0                        | 0.4                         | -1.0                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 6.6                         | 5.5                         | -3.2                        | 6.3                         | 15.0                        | 1.0                         | -1.6                                     | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.0                         | 5.7                         | -3.3                        | 5.9                         | 17.0                        | 0.4                         | -2.0                                     | 18.0                        | -0.1                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         |
| 78.1  | 5.7                         | 5.7                         | -3.2                        | 5.6                         | 20.0                        | 1.1                         | -2.3                                     | 20.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 87.9  | 4.8                         | 5.7                         | -3.3                        | 4.0                         | 22.0                        | 1.1                         | -2.9                                     | 23.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 97.7  | 3.9                         | 5.7                         | -3.8                        | 3.6                         | 25.0                        | 1.4                         | -3.3                                     | 25.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 3.3                         | 5.9                         | -4.0                        | 3.0                         | 27.0                        | 1.5                         | -3.5                                     | 28.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 2.1                         | 6.3                         | -3.9                        | 1.7                         | 30.0                        | 1.8                         | -3.6                                     | 30.0                        | -0.2                  | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 1.1                         | 6.1                         | -4.1                        | 1.3                         | 32.0                        | 2.0                         | -3.3                                     | 32.0                        | -0.2                  | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | -0.5                        | 6.1                         | -3.9                        | -1.3                        | 36.0                        | 1.9                         | -3.8                                     | 37.0                        | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |

Table 48. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 0.9                         | 10.0                        | -7.7                        | -0.9                        | 3.1                         | 0.0                         | -0.6         | 3.4                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 0.8                         | 10.0                        | -7.7                        | -0.7                        | 5.3                         | 0.8                         | -0.8         | 5.6                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 0.5                         | 10.0                        | -7.3                        | -0.9                        | 7.9                         | 1.5                         | -1.0         | 7.3                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 39.1  | 0.3                         | 10.0                        | -7.6                        | -1.1                        | 11.0                        | 1.1                         | -1.9         | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -0.3                        | 10.0                        | -7.6                        | -1.9                        | 13.0                        | 1.6                         | -2.5         | 14.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | -0.7                        | 10.0                        | -7.6                        | -2.3                        | 16.0                        | 2.5                         | -2.6         | 16.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | -1.6                        | 11.0                        | -7.7                        | -4.1                        | 19.0                        | 2.3                         | -3.8         | 20.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 78.1  | -1.3                        | 11.0                        | -8.2                        | -3.0                        | 22.0                        | 2.7                         | -4.3         | 23.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -2.6                        | 11.0                        | -8.4                        | -4.1                        | 24.0                        | 3.3                         | -4.5         | 25.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -3.3                        | 11.0                        | -8.3                        | -4.6                        | 27.0                        | 3.7                         | -4.6         | 27.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -4.1                        | 11.0                        | -8.5                        | -5.1                        | 29.0                        | 3.7                         | -5.4         | 31.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -5.5                        | 11.0                        | -8.3                        | -6.8                        | 31.0                        | 4.1                         | -6.0         | 33.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -8.4                        | 19.0                        | -16.0                       | -10.0                       | 25.0                        | 2.9                         | -3.7         | 29.0                                                               | -5.9                         | -11.0                        | -7.0                         | -7.2                         | -7.8                         | -6.7                         | -5.6                         | -9.4                         |
| 136.7 | -9.6                        | 12.0                        | -8.5                        | -11.0                       | 36.0                        | 4.6                         | -7.0         | 39.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |

Table 49. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.2                         | 9.5                         | -7.4                        | 2.4                         | 3.0                         | 0.2                         | -0.5                                     | 3.2                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 19.5  | 3.2                         | 9.5                         | -7.4                        | 2.6                         | 5.4                         | 0.8                         | -0.8                                     | 5.3                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 29.3  | 3.2                         | 9.7                         | -7.1                        | 2.5                         | 7.7                         | 1.2                         | -0.9                                     | 7.3                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 2.9                         | 9.7                         | -7.2                        | 2.2                         | 10.0                        | 1.2                         | -1.6                                     | 10.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 48.8  | 2.6                         | 9.6                         | -7.4                        | 1.5                         | 13.0                        | 1.5                         | -2.0                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 2.1                         | 9.4                         | -7.3                        | 1.2                         | 15.0                        | 2.3                         | -2.5                                     | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 1.4                         | 10.0                        | -7.2                        | 0.3                         | 18.0                        | 2.6                         | -3.2                                     | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 1.6                         | 9.9                         | -7.5                        | 0.6                         | 20.0                        | 2.6                         | -3.7                                     | 21.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 0.7                         | 10.0                        | -7.7                        | -0.3                        | 23.0                        | 2.9                         | -4.1                                     | 23.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 0.0                         | 10.0                        | -7.9                        | -0.7                        | 25.0                        | 3.4                         | -4.3                                     | 25.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 107.4 | -0.9                        | 10.0                        | -7.8                        | -1.4                        | 27.0                        | 3.5                         | -4.9                                     | 28.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | -2.2                        | 11.0                        | -7.8                        | -2.9                        | 29.0                        | 4.0                         | -5.5                                     | 30.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 127.0 | -5.4                        | 9.5                         | -9.1                        | -2.7                        | 30.0                        | 5.5                         | -3.6                                     | 34.0                        | -1.0                  | -2.8                         | -1.2                         | -2.2                         | -1.2                         | -2.5                         | -0.9                         | -2.6                         |
| 136.7 | -6.1                        | 12.0                        | -7.6                        | -6.5                        | 34.0                        | 4.5                         | -6.4                                     | 36.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 50. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.1                         | 9.0                         | -7.1                        | 4.0                         | 3.0                         | 0.1                         | -0.3         | 3.2                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 19.5  | 5.2                         | 9.2                         | -6.9                        | 4.2                         | 5.4                         | 0.6                         | -0.9         | 5.2                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 29.3  | 5.0                         | 9.5                         | -6.7                        | 4.1                         | 7.7                         | 1.0                         | -0.9         | 7.4                                                                | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 39.1  | 4.9                         | 9.2                         | -7.0                        | 4.1                         | 9.8                         | 1.2                         | -1.6         | 10.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 48.8  | 4.6                         | 9.3                         | -6.9                        | 3.4                         | 12.0                        | 1.5                         | -2.0         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 4.3                         | 9.0                         | -6.9                        | 2.8                         | 15.0                        | 2.0                         | -2.6         | 15.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 3.5                         | 9.4                         | -7.0                        | 2.3                         | 17.0                        | 2.3                         | -3.2         | 18.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 3.5                         | 9.6                         | -7.3                        | 2.3                         | 20.0                        | 2.7                         | -4.0         | 21.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 87.9  | 2.7                         | 9.8                         | -7.4                        | 1.3                         | 22.0                        | 3.0                         | -4.2         | 23.0                                                               | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | 2.0                         | 9.8                         | -7.8                        | 0.9                         | 25.0                        | 3.2                         | -4.4         | 25.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 107.4 | 1.0                         | 10.0                        | -7.7                        | 0.3                         | 27.0                        | 3.6                         | -4.9         | 28.0                                                               | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 117.2 | -0.3                        | 10.0                        | -7.6                        | -1.4                        | 29.0                        | 3.8                         | -5.5         | 29.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | -1.6                        | 9.5                         | -8.2                        | -3.0                        | 30.0                        | 3.9                         | -5.8         | 33.0                                                               | -2.8                         | -4.5                         | -2.5                         | -3.2                         | -2.6                         | -3.5                         | -2.6                         | -4.3                         |
| 136.7 | -4.8                        | 11.0                        | -7.4                        | -5.4                        | 34.0                        | 4.8                         | -6.4         | 35.0                                                               | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |

Table 51. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.2                         | 9.1                         | -6.7                        | 4.4                         | 2.9                         | 0.2                         | -0.4                        | 2.9                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 5.6                         | 9.0                         | -6.8                        | 4.6                         | 5.3                         | 0.7                         | -1.0                        | 5.2                         | 0.0                   | -0.1                         | 0.0                          | 0.0      | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 29.3  | 5.4                         | 9.4                         | -6.5                        | 4.5                         | 7.6                         | 1.1                         | -1.3                        | 7.4                         | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 5.1                         | 9.2                         | -7.0                        | 4.3                         | 9.8                         | 1.2                         | -1.7                        | 10.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.7                         | 9.3                         | -6.9                        | 3.8                         | 13.0                        | 1.3                         | -1.7                        | 12.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0      | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 4.5                         | 9.0                         | -6.6                        | 3.5                         | 15.0                        | 2.2                         | -2.3                        | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 4.1                         | 9.0                         | -6.9                        | 3.1                         | 17.0                        | 2.1                         | -3.1                        | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 3.9                         | 9.6                         | -7.0                        | 2.8                         | 20.0                        | 2.5                         | -3.6                        | 20.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 3.2                         | 9.8                         | -7.3                        | 2.0                         | 22.0                        | 2.9                         | -4.0                        | 23.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | 2.3                         | 9.6                         | -7.6                        | 1.5                         | 24.0                        | 3.0                         | -4.2                        | 25.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1     | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 107.4 | 1.4                         | 9.8                         | -7.7                        | 0.7                         | 27.0                        | 3.3                         | -4.9                        | 28.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 117.2 | 0.0                         | 10.0                        | -7.6                        | -1.2                        | 29.0                        | 3.7                         | -5.3                        | 29.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | -0.2                        | 8.2                         | -9.4                        | -3.9                        | 29.0                        | 2.7                         | -6.4                        | 34.0                        | -0.5                  | -0.3                         | -0.2                         | -0.4     | -0.3                         | -0.4                         | -0.5                         | -0.3                         |
| 136.7 | -4.3                        | 11.0                        | -7.3                        | -4.9                        | 34.0                        | 4.7                         | -6.0                        | 35.0                        | 0.0                   | -0.1                         | 0.0                          | 0.0      | -0.1                         | 0.0                          | -0.1                         | -0.1                         |

Table 52. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.1                         | 8.4                         | -6.6                        | 6.8                         | 2.7                         | 0.3                         | -0.5         | 2.8                                                                | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 7.2                         | 8.3                         | -6.6                        | 6.7                         | 5.0                         | 0.8                         | -1.1         | 5.2                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 7.0                         | 8.7                         | -6.5                        | 6.6                         | 7.4                         | 1.1                         | -1.2         | 7.4                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 6.7                         | 8.7                         | -7.1                        | 6.4                         | 9.7                         | 1.4                         | -1.7         | 10.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 48.8  | 6.4                         | 8.7                         | -6.8                        | 6.2                         | 12.0                        | 1.4                         | -1.6         | 12.0                                                               | -0.2                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 58.6  | 6.4                         | 8.6                         | -6.5                        | 5.4                         | 15.0                        | 1.9                         | -2.4         | 15.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 68.4  | 5.8                         | 8.6                         | -6.9                        | 5.2                         | 17.0                        | 2.1                         | -3.0         | 18.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 5.6                         | 9.0                         | -7.1                        | 5.0                         | 20.0                        | 2.7                         | -3.5         | 20.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 4.7                         | 9.1                         | -7.1                        | 4.2                         | 22.0                        | 2.8                         | -4.0         | 22.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.9                         | 8.9                         | -7.5                        | 3.5                         | 24.0                        | 3.0                         | -4.1         | 25.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 2.9                         | 9.1                         | -7.4                        | 2.8                         | 26.0                        | 3.3                         | -4.5         | 27.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 1.7                         | 9.3                         | -7.3                        | 1.1                         | 29.0                        | 3.7                         | -5.0         | 29.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 0.1                         | 9.5                         | -7.9                        | 0.8                         | 31.0                        | 5.3                         | -4.8         | 32.0                                                               | -3.4                         | -4.0                         | -2.5                         | -4.2                         | -2.8                         | -4.6                         | -3.1                         | -3.8                         |
| 136.7 | -2.2                        | 10.0                        | -6.8                        | -2.5                        | 34.0                        | 4.7                         | -6.0         | 35.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |

Table 53. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.0                         | 8.5                         | -5.7                                     | 5.9                         | 2.7                         | 0.4                         | -0.7                                     | 3.2                         | -0.2                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 6.4                         | 8.6                         | -6.3                                     | 5.9                         | 5.3                         | 0.7                         | -0.8                                     | 5.0                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 5.9                         | 8.8                         | -6.1                                     | 5.9                         | 7.3                         | 1.3                         | -1.4                                     | 7.4                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 5.7                         | 8.9                         | -6.6                                     | 5.6                         | 10.0                        | 1.1                         | -1.9                                     | 10.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 48.8  | 5.3                         | 9.0                         | -6.5                                     | 5.1                         | 13.0                        | 1.3                         | -1.9                                     | 13.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 5.4                         | 9.2                         | -6.4                                     | 5.0                         | 15.0                        | 1.6                         | -1.8                                     | 15.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 5.4                         | 9.0                         | -6.7                                     | 4.3                         | 18.0                        | 1.3                         | -3.0                                     | 19.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 5.1                         | 9.0                         | -6.7                                     | 4.3                         | 20.0                        | 2.2                         | -3.4                                     | 20.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | 4.2                         | 9.1                         | -6.6                                     | 3.3                         | 22.0                        | 2.4                         | -3.8                                     | 23.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.3                         | 9.2                         | -7.1                                     | 2.9                         | 25.0                        | 2.6                         | -4.3                                     | 25.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 2.8                         | 9.3                         | -7.2                                     | 2.2                         | 27.0                        | 2.7                         | -4.6                                     | 27.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         |
| 117.2 | 1.7                         | 9.4                         | -7.2                                     | 0.8                         | 29.0                        | 2.9                         | -5.1                                     | 30.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -0.6                        | 18.0                        | -6.9                                     | 0.6                         | 32.0                        | 5.8                         | -4.5                                     | 24.0                        | -3.8                  | -2.6                         | -2.9                         | -5.7                         | -3.1                         | -6.4                         | -3.4                         | -2.8                         |
| 136.7 | -1.4                        | 9.6                         | -7.4                                     | -2.5                        | 35.0                        | 3.9                         | -6.0                                     | 36.0                        | -0.1                  | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |

Table 54. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.3                         | 13.0                        | -12.0                       | 5.7                         | 2.6                         | 0.0                         | -0.7         | 3.3                                                                | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 7.2                         | 13.0                        | -11.0                       | 6.4                         | 5.1                         | 1.2                         | -1.1         | 4.9                                                                | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 7.0                         | 13.0                        | -11.0                       | 6.3                         | 7.5                         | 2.0                         | -1.5         | 7.1                                                                | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 39.1  | 7.0                         | 13.0                        | -11.0                       | 5.8                         | 9.8                         | 1.8                         | -2.8         | 9.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 6.1                         | 13.0                        | -11.0                       | 5.4                         | 12.0                        | 2.8                         | -3.4         | 13.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 5.6                         | 13.0                        | -11.0                       | 4.5                         | 15.0                        | 3.1                         | -3.6         | 15.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 4.9                         | 14.0                        | -11.0                       | 4.2                         | 17.0                        | 4.1                         | -4.4         | 18.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | 4.8                         | 14.0                        | -12.0                       | 4.2                         | 20.0                        | 4.0                         | -4.8         | 21.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | 3.9                         | 14.0                        | -11.0                       | 3.4                         | 22.0                        | 4.6                         | -5.7         | 23.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.3                         | 14.0                        | -12.0                       | 2.5                         | 25.0                        | 5.4                         | -6.2         | 25.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 2.1                         | 14.0                        | -12.0                       | 1.6                         | 26.0                        | 6.0                         | -6.9         | 28.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 0.6                         | 14.0                        | -12.0                       | -0.1                        | 29.0                        | 6.9                         | -7.9         | 30.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -1.1                        | 15.0                        | -12.0                       | -1.6                        | 30.0                        | 7.2                         | -8.6         | 32.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 136.7 | -4.4                        | 16.0                        | -11.0                       | -4.1                        | 34.0                        | 8.2                         | -9.7         | 35.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 55. Raw data for the test seal at  $\omega$ =10 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.2                         | 14.0                        | -11.0                       | 6.1                         | 3.3                         | 0.0                         | -0.3                                     | 3.0                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 7.1                         | 13.0                        | -11.0                       | 6.0                         | 5.2                         | 0.9                         | -0.7                                     | 5.3                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 7.1                         | 14.0                        | -10.0                       | 5.6                         | 7.5                         | 1.3                         | -1.3                                     | 7.0                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 7.1                         | 14.0                        | -10.0                       | 5.4                         | 9.9                         | 1.4                         | -2.3                                     | 9.7                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 6.6                         | 14.0                        | -11.0                       | 4.9                         | 12.0                        | 2.2                         | -3.2                                     | 12.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 6.0                         | 14.0                        | -11.0                       | 4.5                         | 14.0                        | 2.9                         | -3.6                                     | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 5.3                         | 14.0                        | -11.0                       | 3.6                         | 17.0                        | 2.9                         | -4.2                                     | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 78.1  | 5.4                         | 14.0                        | -11.0                       | 3.9                         | 20.0                        | 3.3                         | -4.8                                     | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 4.7                         | 14.0                        | -11.0                       | 3.0                         | 22.0                        | 3.9                         | -5.5                                     | 22.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.9                         | 14.0                        | -11.0                       | 2.5                         | 24.0                        | 4.5                         | -5.9                                     | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 107.4 | 3.0                         | 14.0                        | -11.0                       | 1.8                         | 26.0                        | 5.1                         | -6.8                                     | 27.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 1.6                         | 15.0                        | -11.0                       | 0.1                         | 28.0                        | 5.9                         | -7.6                                     | 28.0                        | -0.1                  | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 0.0                         | 15.0                        | -11.0                       | -1.5                        | 30.0                        | 6.1                         | -8.3                                     | 31.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | -2.9                        | 16.0                        | -11.0                       | -3.8                        | 33.0                        | 7.0                         | -9.3                                     | 34.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |

Table 56. Raw data for the test seal at  $\omega$ =10 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 8.3                         | 13.0                        | -11.0                                    | 7.2                         | 3.0                         | 0.2                         | -0.4         | 3.1                                                                | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 19.5  | 8.4                         | 13.0                        | -10.0                                    | 7.3                         | 4.9                         | 0.9                         | -0.6         | 4.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 8.3                         | 13.0                        | -9.9                                     | 6.8                         | 7.3                         | 1.4                         | -1.4         | 7.0                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 8.2                         | 13.0                        | -10.0                                    | 7.1                         | 9.5                         | 1.7                         | -2.4         | 9.7                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 48.8  | 7.7                         | 13.0                        | -10.0                                    | 6.5                         | 12.0                        | 2.3                         | -3.0         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 7.2                         | 13.0                        | -10.0                                    | 5.7                         | 14.0                        | 2.9                         | -3.4         | 14.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.6                         | 14.0                        | -10.0                                    | 4.6                         | 17.0                        | 3.1                         | -4.4         | 17.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 6.9                         | 13.0                        | -11.0                                    | 5.4                         | 19.0                        | 3.5                         | -5.1         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 5.9                         | 14.0                        | -11.0                                    | 4.7                         | 21.0                        | 4.0                         | -5.5         | 21.0                                                               | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | 5.3                         | 13.0                        | -11.0                                    | 3.8                         | 23.0                        | 4.6                         | -5.9         | 24.0                                                               | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 4.3                         | 14.0                        | -11.0                                    | 3.1                         | 25.0                        | 5.0                         | -6.6         | 26.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 2.9                         | 14.0                        | -11.0                                    | 1.1                         | 27.0                        | 6.0                         | -7.6         | 28.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 0.7                         | 14.0                        | -11.0                                    | -0.5                        | 29.0                        | 6.7                         | -8.5         | 30.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | -2.2                        | 16.0                        | -11.0                                    | -3.5                        | 32.0                        | 7.1                         | -9.9         | 33.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 57. Raw data for the test seal at  $\omega$ =10 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 8.4                         | 13.0                        | -10.0                                    | 7.9                         | 2.9                         | 0.4                         | -0.9                                     | 2.8                                                                | -0.1                  | -0.1                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 19.5  | 8.2                         | 12.0                        | -11.0                                    | 7.8                         | 5.0                         | 0.9                         | -0.7                                     | 5.0                                                                | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 8.2                         | 13.0                        | -10.0                                    | 7.3                         | 7.2                         | 1.5                         | -1.3                                     | 7.1                                                                | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 8.3                         | 13.0                        | -10.0                                    | 7.6                         | 9.8                         | 1.8                         | -2.5                                     | 9.8                                                                | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 48.8  | 7.7                         | 13.0                        | -11.0                                    | 7.0                         | 12.0                        | 2.3                         | -2.9                                     | 12.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 7.2                         | 13.0                        | -10.0                                    | 6.3                         | 14.0                        | 2.6                         | -2.8                                     | 14.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.9                         | 13.0                        | -10.0                                    | 5.7                         | 17.0                        | 3.1                         | -4.1                                     | 17.0                                                               | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 7.0                         | 13.0                        | -11.0                                    | 6.0                         | 19.0                        | 3.3                         | -4.8                                     | 20.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 6.1                         | 13.0                        | -11.0                                    | 5.3                         | 21.0                        | 4.0                         | -5.1                                     | 22.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.5                         | 13.0                        | -11.0                                    | 4.5                         | 23.0                        | 4.4                         | -5.5                                     | 23.0                                                               | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 4.5                         | 13.0                        | -11.0                                    | 3.6                         | 25.0                        | 4.9                         | -6.3                                     | 26.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 2.9                         | 13.0                        | -11.0                                    | 1.4                         | 27.0                        | 6.0                         | -7.5                                     | 28.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 0.6                         | 14.0                        | -11.0                                    | -0.4                        | 29.0                        | 7.1                         | -8.2                                     | 30.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | -3.2                        | 15.0                        | -11.0                                    | -3.5                        | 32.0                        | 8.2                         | -9.8                                     | 34.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 58. Raw data for the test seal at  $\omega$ =10 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 11.0                        | 12.0                        | -9.4                                     | 10.0                        | 1.4                         | 0.0                         | -0.4         | 2.0                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 9.9                         | 11.0                        | -9.6                                     | 9.9                         | 3.5                         | 0.5                         | -0.6         | 4.1                                                                | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 9.3                         | 11.0                        | -8.8                                     | 9.1                         | 6.3                         | 1.3                         | -1.4         | 6.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 39.1  | 9.1                         | 11.0                        | -8.9                                     | 9.1                         | 9.1                         | 1.9                         | -2.6         | 9.0                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 9.1                         | 11.0                        | -9.1                                     | 8.8                         | 12.0                        | 2.9                         | -3.5         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 9.7                         | 12.0                        | -9.3                                     | 9.0                         | 14.0                        | 4.5                         | -5.0         | 14.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 9.4                         | 13.0                        | -11.0                                    | 9.1                         | 15.0                        | 5.1                         | -5.9         | 16.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 7.4                         | 15.0                        | -13.0                                    | 6.8                         | 16.0                        | 3.8                         | -5.4         | 16.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | 4.4                         | 13.0                        | -11.0                                    | 4.3                         | 21.0                        | 2.3                         | -3.8         | 21.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 4.4                         | 12.0                        | -11.0                                    | 4.4                         | 24.0                        | 3.9                         | -5.0         | 24.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 4.6                         | 12.0                        | -11.0                                    | 4.4                         | 26.0                        | 4.5                         | -5.9         | 26.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 3.6                         | 12.0                        | -10.0                                    | 2.7                         | 28.0                        | 5.5                         | -7.0         | 28.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 1.8                         | 13.0                        | -10.0                                    | 1.4                         | 30.0                        | 6.2                         | -7.3         | 31.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | -0.6                        | 14.0                        | -9.5                                     | -0.6                        | 33.0                        | 6.7                         | -8.8         | 34.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |

Table 59. Raw data for the test seal at  $\omega$ =10 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.3                         | 12.0                        | -9.8                        | 8.8                         | 2.5                         | 0.9                         | -0.7                                     | 2.5                         | -0.1                  | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 19.5  | 9.5                         | 12.0                        | -10.0                       | 9.2                         | 5.2                         | 1.1                         | -0.9                                     | 5.4                         | -0.2                  | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 29.3  | 9.1                         | 11.0                        | -10.0                       | 9.1                         | 7.1                         | 2.3                         | -2.0                                     | 8.0                         | -0.2                  | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.5                         |
| 39.1  | 9.3                         | 12.0                        | -11.0                       | 10.0                        | 9.3                         | 2.4                         | -2.1                                     | 9.5                         | -0.2                  | -0.4                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         |
| 48.8  | 8.6                         | 13.0                        | -11.0                       | 8.6                         | 12.0                        | 1.6                         | -2.9                                     | 12.0                        | -0.2                  | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.5                         |
| 58.6  | 8.5                         | 12.0                        | -10.0                       | 7.8                         | 15.0                        | 2.4                         | -3.2                                     | 14.0                        | -0.4                  | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.1                         | -0.4                         | -0.3                         |
| 68.4  | 8.1                         | 12.0                        | -10.0                       | 8.1                         | 17.0                        | 3.2                         | -2.9                                     | 17.0                        | -0.4                  | -0.5                         | -0.4                         | -0.4                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         |
| 78.1  | 8.4                         | 11.0                        | -10.0                       | 8.0                         | 19.0                        | 3.4                         | -4.2                                     | 20.0                        | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 87.9  | 7.4                         | 12.0                        | -10.0                       | 6.9                         | 21.0                        | 3.5                         | -4.5                                     | 21.0                        | -0.1                  | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         |
| 97.7  | 7.2                         | 12.0                        | -11.0                       | 6.1                         | 23.0                        | 4.0                         | -5.5                                     | 23.0                        | -0.2                  | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |
| 107.4 | 5.8                         | 12.0                        | -11.0                       | 4.8                         | 25.0                        | 5.0                         | -6.0                                     | 25.0                        | -0.2                  | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         |
| 117.2 | 4.0                         | 12.0                        | -11.0                       | 3.1                         | 26.0                        | 5.7                         | -7.1                                     | 27.0                        | -0.2                  | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 127.0 | 1.6                         | 12.0                        | -11.0                       | 1.7                         | 28.0                        | 6.6                         | -7.3                                     | 29.0                        | -0.2                  | -0.4                         | -0.5                         | -0.8                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         |
| 136.7 | -1.1                        | 13.0                        | -12.0                       | 0.1                         | 32.0                        | 8.2                         | -8.5                                     | 33.0                        | -0.2                  | -0.4                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.4                         |

Table 60. Raw data for the test seal at  $\omega$ =10 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.1                         | 20.0                        | -19.0                       | 9.3                         | 2.9                         | 1.3                         | -1.1         | 2.8                                                                | -0.4                         | -0.4                         | -0.4                         | -0.6                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         |
| 19.5  | 8.6                         | 21.0                        | -19.0                       | 8.9                         | 4.5                         | 2.0                         | -2.3         | 4.7                                                                | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 29.3  | 8.4                         | 22.0                        | -19.0                       | 8.0                         | 7.1                         | 2.9                         | -2.7         | 6.2                                                                | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 39.1  | 8.7                         | 21.0                        | -20.0                       | 8.6                         | 8.8                         | 3.5                         | -4.3         | 9.4                                                                | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         |
| 48.8  | 7.1                         | 21.0                        | -20.0                       | 7.7                         | 12.0                        | 4.0                         | -4.8         | 11.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 58.6  | 6.5                         | 21.0                        | -19.0                       | 6.8                         | 14.0                        | 5.4                         | -5.0         | 14.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 6.0                         | 21.0                        | -19.0                       | 6.3                         | 16.0                        | 5.8                         | -7.0         | 17.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | 5.8                         | 21.0                        | -19.0                       | 5.7                         | 19.0                        | 7.7                         | -8.2         | 19.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 5.1                         | 22.0                        | -19.0                       | 4.8                         | 21.0                        | 9.2                         | -10.0        | 21.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 4.1                         | 22.0                        | -20.0                       | 3.8                         | 23.0                        | 11.0                        | -11.0        | 23.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 107.4 | 2.2                         | 23.0                        | -21.0                       | 2.3                         | 25.0                        | 11.0                        | -12.0        | 25.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 117.2 | 0.3                         | 24.0                        | -22.0                       | 0.2                         | 28.0                        | 11.0                        | -12.0        | 28.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 127.0 | -1.5                        | 24.0                        | -21.0                       | -1.5                        | 30.0                        | 12.0                        | -13.0        | 31.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 136.7 | -4.0                        | 24.0                        | -20.0                       | -3.7                        | 33.0                        | 13.0                        | -15.0        | 34.0                                                               | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |

Table 61. Raw data for the test seal at  $\omega$ =15 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.2                         | 21.0                        | -18.0                                    | 8.7                         | 2.5                         | 0.7                         | -1.4                                     | 2.4                         | -0.2                  | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | 8.8                         | 21.0                        | -19.0                                    | 8.4                         | 4.6                         | 2.3                         | -2.6                                     | 4.8                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | 8.4                         | 22.0                        | -19.0                                    | 8.4                         | 7.0                         | 3.3                         | -3.1                                     | 6.7                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 39.1  | 8.3                         | 22.0                        | -20.0                                    | 8.3                         | 9.1                         | 3.8                         | -4.3                                     | 9.1                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 48.8  | 7.6                         | 22.0                        | -20.0                                    | 7.5                         | 11.0                        | 4.1                         | -4.8                                     | 11.0                        | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | 6.9                         | 21.0                        | -20.0                                    | 6.6                         | 14.0                        | 5.1                         | -5.4                                     | 14.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 6.0                         | 21.0                        | -19.0                                    | 6.3                         | 17.0                        | 6.0                         | -6.4                                     | 17.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 6.0                         | 21.0                        | -19.0                                    | 5.7                         | 19.0                        | 7.4                         | -8.4                                     | 19.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 5.2                         | 22.0                        | -20.0                                    | 4.8                         | 21.0                        | 9.2                         | -10.0                                    | 21.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 4.2                         | 23.0                        | -21.0                                    | 3.7                         | 23.0                        | 10.0                        | -11.0                                    | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 2.3                         | 24.0                        | -22.0                                    | 2.6                         | 25.0                        | 11.0                        | -11.0                                    | 26.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 0.7                         | 24.0                        | -22.0                                    | 0.3                         | 28.0                        | 11.0                        | -12.0                                    | 28.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 127.0 | -1.4                        | 24.0                        | -22.0                                    | -1.2                        | 30.0                        | 12.0                        | -13.0                                    | 31.0                        | -0.2                  | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 136.7 | -3.8                        | 24.0                        | -21.0                                    | -2.8                        | 33.0                        | 13.0                        | -14.0                                    | 34.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |

Table 62. Raw data for the test seal at  $\omega$ =15 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.2                         | 20.0                        | -18.0                       | 9.0                         | 2.5                         | 1.2                         | -1.1         | 2.4                                                                | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 19.5  | 8.9                         | 21.0                        | -19.0                       | 9.2                         | 4.1                         | 2.1                         | -2.4         | 4.3                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 29.3  | 8.6                         | 21.0                        | -19.0                       | 8.5                         | 6.9                         | 2.6                         | -2.8         | 6.5                                                                | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 8.0                         | 21.0                        | -20.0                       | 8.1                         | 8.7                         | 3.8                         | -4.1         | 9.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 7.5                         | 21.0                        | -20.0                       | 7.5                         | 11.0                        | 4.2                         | -4.8         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 58.6  | 7.2                         | 21.0                        | -20.0                       | 6.9                         | 14.0                        | 5.4                         | -5.7         | 14.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.8                         | 21.0                        | -20.0                       | 6.8                         | 17.0                        | 6.1                         | -6.5         | 17.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 6.4                         | 22.0                        | -20.0                       | 6.4                         | 19.0                        | 7.5                         | -7.9         | 19.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 5.7                         | 22.0                        | -20.0                       | 5.4                         | 21.0                        | 8.5                         | -9.2         | 21.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | 4.2                         | 23.0                        | -21.0                       | 4.2                         | 23.0                        | 9.7                         | -10.0        | 23.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 2.8                         | 24.0                        | -22.0                       | 3.0                         | 25.0                        | 9.9                         | -11.0        | 26.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 117.2 | 0.5                         | 24.0                        | -22.0                       | 0.9                         | 28.0                        | 10.0                        | -12.0        | 28.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -1.0                        | 24.0                        | -22.0                       | -1.6                        | 31.0                        | 11.0                        | -12.0        | 31.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         |
| 136.7 | -4.1                        | 25.0                        | -22.0                       | -3.1                        | 35.0                        | 12.0                        | -14.0        | 36.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 63. Raw data for the test seal at  $\omega$ =15 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.9                         | 21.0                        | -18.0                       | 10.0                        | 1.9                         | 1.6                         | -1.6                                     | 1.5                         | -0.3                  | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 19.5  | 8.8                         | 20.0                        | -19.0                       | 8.8                         | 3.7                         | 1.9                         | -1.7                                     | 4.4                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | 8.9                         | 20.0                        | -18.0                       | 8.3                         | 6.4                         | 2.9                         | -3.0                                     | 6.5                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 39.1  | 8.7                         | 20.0                        | -18.0                       | 8.8                         | 8.5                         | 3.7                         | -4.1                                     | 8.7                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 7.8                         | 21.0                        | -19.0                       | 7.3                         | 11.0                        | 4.9                         | -5.3                                     | 11.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 7.5                         | 21.0                        | -19.0                       | 6.9                         | 14.0                        | 6.2                         | -6.3                                     | 14.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 6.8                         | 21.0                        | -19.0                       | 6.9                         | 17.0                        | 6.3                         | -6.9                                     | 17.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 6.4                         | 22.0                        | -20.0                       | 7.1                         | 19.0                        | 7.8                         | -8.1                                     | 19.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 5.8                         | 22.0                        | -21.0                       | 5.9                         | 21.0                        | 8.2                         | -9.7                                     | 21.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.0                         | 24.0                        | -22.0                       | 5.2                         | 24.0                        | 9.0                         | -9.8                                     | 23.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 107.4 | 3.4                         | 24.0                        | -22.0                       | 3.4                         | 25.0                        | 8.8                         | -10.0                                    | 25.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 117.2 | 2.4                         | 24.0                        | -22.0                       | 1.2                         | 28.0                        | 9.2                         | -11.0                                    | 28.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | 0.2                         | 24.0                        | -23.0                       | 0.8                         | 31.0                        | 9.9                         | -11.0                                    | 32.0                        | -0.2                  | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         |
| 136.7 | -2.6                        | 25.0                        | -22.0                       | -1.6                        | 35.0                        | 11.0                        | -13.0                                    | 35.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |

Table 64. Raw data for the test seal at  $\omega$ =15 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 10.0                        | 20.0                        | -18.0                       | 11.0                        | 1.7                         | 1.7                         | -0.6         | 0.8                                                                | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.4                         | -0.4                         |
| 19.5  | 9.4                         | 20.0                        | -18.0                       | 9.0                         | 3.9                         | 1.3                         | -1.2         | 3.7                                                                | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 29.3  | 8.8                         | 19.0                        | -18.0                       | 8.5                         | 6.2                         | 2.4                         | -2.0         | 6.4                                                                | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 9.0                         | 20.0                        | -18.0                       | 9.2                         | 8.9                         | 3.7                         | -4.0         | 8.9                                                                | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 8.3                         | 20.0                        | -18.0                       | 8.6                         | 11.0                        | 4.5                         | -5.4         | 11.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 8.3                         | 20.0                        | -19.0                       | 8.2                         | 13.0                        | 6.2                         | -6.3         | 13.0                                                               | -0.1                         | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         |
| 68.4  | 7.1                         | 21.0                        | -19.0                       | 7.1                         | 16.0                        | 6.6                         | -7.5         | 17.0                                                               | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 78.1  | 7.3                         | 22.0                        | -20.0                       | 7.0                         | 18.0                        | 7.3                         | -8.5         | 19.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 5.8                         | 23.0                        | -21.0                       | 6.2                         | 21.0                        | 8.2                         | -9.7         | 20.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | 5.3                         | 23.0                        | -22.0                       | 5.2                         | 23.0                        | 8.2                         | -9.4         | 23.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | 3.7                         | 24.0                        | -21.0                       | 3.7                         | 25.0                        | 8.9                         | -9.9         | 25.0                                                               | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 117.2 | 2.4                         | 24.0                        | -22.0                       | 2.2                         | 28.0                        | 9.8                         | -11.0        | 28.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 1.2                         | 24.0                        | -22.0                       | 0.9                         | 29.0                        | 9.3                         | -11.0        | 30.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 136.7 | -2.1                        | 25.0                        | -21.0                       | -1.2                        | 33.0                        | 10.0                        | -12.0        | 34.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |

Table 65. Raw data for the test seal at  $\omega$ =15 krpm, PD=37.9 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(\boldsymbol{eH}_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                                      | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 10.0                        | 20.0                        | -19.0                       | 9.4                         | 0.9                         | 1.2                         | -0.9                                     | 1.9                         | -0.4                  | -0.5                         | -1.0                                      | -0.9     | -0.9                         | -1.0                         | -0.7                         | -0.7                         |
| 19.5  | 8.5                         | 20.0                        | -19.0                       | 7.4                         | 2.9                         | 1.2                         | -1.6                                     | 4.0                         | -0.7                  | -0.6                         | -0.5                                      | -0.6     | -0.6                         | -0.8                         | -0.8                         | -0.8                         |
| 29.3  | 7.7                         | 19.0                        | -18.0                       | 7.6                         | 7.4                         | 0.7                         | -1.5                                     | 7.3                         | -0.7                  | -1.0                         | -0.9                                      | -1.4     | -0.5                         | -0.7                         | -0.7                         | -0.7                         |
| 39.1  | 10.0                        | 18.0                        | -18.0                       | 6.3                         | 9.6                         | 1.8                         | -3.5                                     | 8.2                         | -0.8                  | -1.3                         | -0.6                                      | -0.7     | -0.8                         | -1.1                         | -0.7                         | -1.1                         |
| 48.8  | 8.3                         | 18.0                        | -18.0                       | 7.7                         | 12.0                        | 4.4                         | -5.4                                     | 12.0                        | -0.5                  | -0.7                         | -0.7                                      | -0.9     | -0.6                         | -0.8                         | -0.5                         | -0.5                         |
| 58.6  | 7.1                         | 21.0                        | -20.0                       | 7.3                         | 14.0                        | 5.9                         | -4.6                                     | 12.0                        | -0.7                  | -0.8                         | -0.8                                      | -1.0     | -0.4                         | -0.6                         | -0.7                         | -0.7                         |
| 68.4  | 8.9                         | 19.0                        | -18.0                       | 7.2                         | 18.0                        | 1.7                         | -4.8                                     | 13.0                        | -1.0                  | -1.4                         | -1.4                                      | -1.8     | -1.3                         | -1.9                         | -1.1                         | -1.6                         |
| 78.1  | 7.3                         | 21.0                        | -18.0                       | 5.5                         | 18.0                        | 7.2                         | -8.0                                     | 18.0                        | -0.5                  | -0.5                         | -0.7                                      | -1.0     | -0.4                         | -0.5                         | -0.4                         | -0.4                         |
| 87.9  | 5.3                         | 23.0                        | -21.0                       | 6.1                         | 21.0                        | 7.8                         | -8.4                                     | 20.0                        | -0.6                  | -0.6                         | -0.6                                      | -0.7     | -0.2                         | -0.5                         | -0.8                         | -1.0                         |
| 97.7  | 5.3                         | 22.0                        | -22.0                       | 4.2                         | 23.0                        | 6.6                         | -8.6                                     | 22.0                        | -0.5                  | -0.8                         | -0.7                                      | -0.8     | -0.6                         | -0.7                         | -0.7                         | -0.9                         |
| 107.4 | 4.4                         | 23.0                        | -21.0                       | 3.8                         | 25.0                        | 8.0                         | -9.0                                     | 27.0                        | -0.7                  | -0.7                         | -1.1                                      | -1.4     | -0.6                         | -0.6                         | -1.0                         | -1.4                         |
| 117.2 | 3.3                         | 22.0                        | -20.0                       | 4.5                         | 27.0                        | 9.2                         | -9.8                                     | 28.0                        | -0.5                  | -0.8                         | -0.4                                      | -0.9     | -0.6                         | -0.7                         | -0.9                         | -1.1                         |
| 127.0 | -1.4                        | 26.0                        | -20.0                       | -1.6                        | 31.0                        | 9.7                         | -12.0                                    | 29.0                        | -1.3                  | -1.1                         | -0.7                                      | -0.8     | -0.4                         | -1.3                         | -0.9                         | -1.0                         |
| 136.7 | -0.6                        | 24.0                        | -22.0                       | -0.9                        | 34.0                        | 7.9                         | -11.0                                    | 34.0                        | -0.8                  | -2.0                         | -0.7                                      | -1.0     | -1.2                         | -0.6                         | -0.4                         | -0.5                         |

Table 66. Raw data for the test seal at  $\omega$ =15 krpm, PD=37.9 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -1.2                        | 8.0                         | -3.7                        | -4.0                        | 3.3                         | -0.3                        | -0.4         | 2.6                                                                | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | -1.7                        | 8.2                         | -3.9                        | -4.3                        | 5.3                         | 0.4                         | -0.7         | 5.0                                                                | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 29.3  | -1.8                        | 8.6                         | -3.5                        | -5.8                        | 7.6                         | 0.1                         | -1.0         | 8.0                                                                | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | -2.1                        | 8.1                         | -4.3                        | -4.5                        | 10.0                        | -0.6                        | -1.1         | 10.0                                                               | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 48.8  | -2.0                        | 7.4                         | -4.1                        | -4.9                        | 13.0                        | -0.7                        | -1.5         | 13.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | -2.6                        | 8.0                         | -4.0                        | -5.3                        | 15.0                        | -0.2                        | -1.9         | 16.0                                                               | -0.3                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 68.4  | -3.3                        | 7.8                         | -4.3                        | -4.9                        | 17.0                        | -0.3                        | -2.0         | 19.0                                                               | -0.4                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 78.1  | -2.5                        | 7.7                         | -4.2                        | -6.1                        | 20.0                        | -0.5                        | -2.4         | 21.0                                                               | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 87.9  | -4.1                        | 7.1                         | -4.2                        | -6.9                        | 22.0                        | -0.3                        | -3.3         | 24.0                                                               | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         |
| 97.7  | -4.9                        | 7.3                         | -5.0                        | -7.5                        | 24.0                        | -0.4                        | -3.2         | 27.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 107.4 | -5.9                        | 7.5                         | -4.7                        | -8.1                        | 28.0                        | -0.4                        | -3.5         | 29.0                                                               | -0.3                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 117.2 | -7.3                        | 7.5                         | -4.8                        | -9.3                        | 30.0                        | -0.1                        | -3.6         | 32.0                                                               | -0.4                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 127.0 | -7.2                        | 7.7                         | -5.2                        | -11.0                       | 33.0                        | -0.3                        | -3.7         | 37.0                                                               | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.4                         | -0.1                         | -0.4                         |
| 136.7 | -9.4                        | 6.8                         | -4.8                        | -12.0                       | 35.0                        | 0.5                         | -3.9         | 38.0                                                               | -0.4                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |

Table 67. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(\boldsymbol{eH}_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                  | MN/m                         | MN/m                                      | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -1.2                        | 7.6                         | -3.6                                     | -3.1                        | 3.1                         | 0.3                         | -0.3                        | 2.8                         | -0.6                  | -0.3                         | -0.2                                      | -0.1     | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 19.5  | -1.2                        | 7.5                         | -3.7                                     | -3.1                        | 5.0                         | 0.4                         | -0.8                        | 5.3                         | -0.6                  | -0.2                         | -0.2                                      | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | -1.9                        | 8.1                         | -3.7                                     | -3.6                        | 7.5                         | 0.2                         | -1.1                        | 7.9                         | -0.7                  | -0.3                         | -0.2                                      | -0.2     | -0.1                         | -0.3                         | -0.1                         | -0.1                         |
| 39.1  | -2.0                        | 8.0                         | -3.9                                     | -3.4                        | 10.0                        | -0.2                        | -1.1                        | 11.0                        | -0.6                  | -0.2                         | -0.2                                      | -0.2     | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 48.8  | -2.1                        | 7.3                         | -3.7                                     | -3.8                        | 13.0                        | 0.1                         | -1.4                        | 13.0                        | -0.6                  | -0.1                         | -0.2                                      | -0.1     | -0.2                         | -0.2                         | 0.0                          | -0.1                         |
| 58.6  | -2.2                        | 7.0                         | -3.8                                     | -3.9                        | 14.0                        | 0.3                         | -1.9                        | 15.0                        | -0.6                  | -0.1                         | -0.2                                      | -0.2     | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | -3.0                        | 7.0                         | -4.1                                     | -4.0                        | 17.0                        | 0.0                         | -2.3                        | 19.0                        | -0.6                  | -0.1                         | -0.2                                      | -0.1     | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | -2.0                        | 7.8                         | -3.7                                     | -4.8                        | 20.0                        | 0.0                         | -2.7                        | 20.0                        | -0.4                  | -0.1                         | -0.1                                      | -0.1     | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | -4.0                        | 7.6                         | -4.2                                     | -5.7                        | 22.0                        | 0.5                         | -3.1                        | 23.0                        | -0.7                  | -0.1                         | -0.2                                      | -0.2     | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 97.7  | -4.9                        | 7.4                         | -4.7                                     | -6.7                        | 25.0                        | 0.4                         | -3.6                        | 26.0                        | -0.6                  | -0.1                         | -0.2                                      | -0.2     | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | -6.1                        | 7.9                         | -4.6                                     | -7.2                        | 28.0                        | 0.3                         | -3.3                        | 29.0                        | -0.6                  | -0.2                         | -0.2                                      | -0.2     | -0.4                         | -0.2                         | -0.3                         | -0.1                         |
| 117.2 | -7.2                        | 7.9                         | -4.5                                     | -8.5                        | 29.0                        | 0.2                         | -3.6                        | 31.0                        | -0.7                  | -0.1                         | -0.2                                      | -0.2     | -0.3                         | -0.2                         | -0.1                         | -0.1                         |
| 127.0 | -7.2                        | 8.4                         | -4.2                                     | -8.9                        | 32.0                        | 0.6                         | -3.2                        | 34.0                        | -0.5                  | -0.1                         | -0.1                                      | -0.2     | -0.5                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | -9.5                        | 7.7                         | -4.7                                     | -10.0                       | 35.0                        | 0.5                         | -4.1                        | 38.0                        | -0.8                  | -0.2                         | -0.1                                      | -0.1     | -0.4                         | -0.3                         | -0.1                         | -0.3                         |

Table 68. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 0.2                         | 7.6                         | -3.2                                     | -2.3                        | 3.0                         | 0.3                         | -0.4                        | 2.8                                                                | -0.3                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 0.2                         | 7.4                         | -3.4                                     | -2.2                        | 4.9                         | 0.2                         | -0.8                        | 5.3                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 29.3  | -0.2                        | 7.7                         | -3.4                                     | -2.4                        | 7.1                         | 0.4                         | -1.0                        | 7.5                                                                | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | -0.4                        | 7.6                         | -3.6                                     | -2.5                        | 9.8                         | 0.1                         | -1.1                        | 10.0                                                               | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -0.6                        | 7.4                         | -3.3                                     | -2.9                        | 13.0                        | 0.1                         | -1.6                        | 13.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | -0.9                        | 7.1                         | -3.4                                     | -3.3                        | 14.0                        | 0.4                         | -1.8                        | 15.0                                                               | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 68.4  | -1.6                        | 7.7                         | -3.6                                     | -3.7                        | 16.0                        | 0.0                         | -2.4                        | 18.0                                                               | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | -1.0                        | 7.7                         | -3.5                                     | -3.9                        | 19.0                        | 0.2                         | -2.6                        | 20.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | -2.5                        | 7.4                         | -3.5                                     | -5.3                        | 22.0                        | 0.2                         | -3.1                        | 23.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | -3.7                        | 7.6                         | -3.9                                     | -6.0                        | 24.0                        | 0.3                         | -3.4                        | 25.0                                                               | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | -4.5                        | 7.7                         | -4.2                                     | -6.4                        | 27.0                        | 0.4                         | -3.6                        | 28.0                                                               | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | -5.6                        | 7.9                         | -4.2                                     | -7.9                        | 29.0                        | 0.4                         | -3.7                        | 31.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -5.8                        | 7.7                         | -4.0                                     | -8.4                        | 31.0                        | 0.6                         | -3.3                        | 33.0                                                               | -0.4                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.4                         | -0.1                         | -0.1                         |
| 136.7 | -7.9                        | 7.0                         | -4.2                                     | -9.6                        | 34.0                        | 0.7                         | -4.4                        | 37.0                                                               | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |

Table 69. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -4.6                        | 11.0                        | -8.0                                     | -5.3                        | 3.4                         | 0.1                         | -0.3                                     | 2.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | -4.4                        | 11.0                        | -8.3                                     | -5.7                        | 5.3                         | 0.2                         | -1.0                                     | 5.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | -5.3                        | 11.0                        | -7.3                                     | -7.5                        | 7.9                         | 1.0                         | -1.7                                     | 7.5                         | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | -5.1                        | 11.0                        | -8.1                                     | -6.3                        | 10.0                        | 1.4                         | -2.0                                     | 9.9                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -6.0                        | 10.0                        | -8.3                                     | -7.1                        | 13.0                        | 1.7                         | -2.7                                     | 13.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | -6.6                        | 11.0                        | -8.5                                     | -8.3                        | 15.0                        | 1.8                         | -3.6                                     | 17.0                        | -0.2                  | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 68.4  | -6.7                        | 9.8                         | -8.8                                     | -6.3                        | 18.0                        | 2.2                         | -3.0                                     | 18.0                        | -0.3                  | -0.7                         | -0.2                         | -0.6                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | -6.7                        | 11.0                        | -8.6                                     | -8.2                        | 21.0                        | 2.0                         | -4.5                                     | 21.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -7.9                        | 11.0                        | -9.0                                     | -9.2                        | 23.0                        | 2.6                         | -4.8                                     | 24.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | -8.9                        | 11.0                        | -9.1                                     | -11.0                       | 26.0                        | 3.1                         | -5.7                                     | 27.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 107.4 | -9.7                        | 11.0                        | -8.6                                     | -11.0                       | 28.0                        | 3.0                         | -5.9                                     | 28.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 117.2 | -12.0                       | 11.0                        | -9.3                                     | -12.0                       | 30.0                        | 3.8                         | -6.7                                     | 31.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | -20.0                       | 21.0                        | -16.0                                    | -9.5                        | 25.0                        | 12.0                        | -0.5                                     | 25.0                        | -0.4                  | -1.1                         | -1.0                         | -0.7                         | -1.1                         | -0.6                         | -0.5                         | -1.0                         |
| 136.7 | -16.0                       | 11.0                        | -9.5                                     | -15.0                       | 35.0                        | 5.8                         | -7.0                                     | 36.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |

Table 70. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=0%
| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -2.3                        | 8.6                         | -8.8                        | -2.6                        | 1.9                         | 0.4                         | 0.2          | 3.4                                                                | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | 0.0                          | -0.2                         | -0.1                         |
| 19.5  | -2.2                        | 9.0                         | -8.8                        | -2.7                        | 4.7                         | 0.9                         | -0.5         | 5.5                                                                | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | -2.4                        | 9.1                         | -8.5                        | -2.7                        | 7.0                         | 1.3                         | -0.9         | 7.6                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | -2.6                        | 9.4                         | -8.6                        | -3.0                        | 9.5                         | 1.2                         | -1.3         | 10.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -3.3                        | 9.2                         | -8.8                        | -3.7                        | 12.0                        | 1.8                         | -1.6         | 12.0                                                               | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | -3.8                        | 9.0                         | -8.7                        | -3.8                        | 14.0                        | 2.5                         | -2.0         | 15.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | -4.5                        | 9.3                         | -8.7                        | -4.8                        | 17.0                        | 2.7                         | -2.9         | 19.0                                                               | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 78.1  | -4.4                        | 9.3                         | -9.0                        | -4.1                        | 19.0                        | 2.6                         | -3.2         | 21.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -5.3                        | 9.5                         | -8.7                        | -5.2                        | 21.0                        | 3.4                         | -3.6         | 22.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -6.3                        | 9.6                         | -8.9                        | -5.8                        | 23.0                        | 4.0                         | -4.0         | 25.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -7.6                        | 9.8                         | -8.9                        | -6.5                        | 26.0                        | 4.2                         | -4.6         | 27.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -8.9                        | 10.0                        | -8.8                        | -8.5                        | 28.0                        | 4.7                         | -5.1         | 29.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -15.0                       | 29.0                        | -5.1                        | -9.6                        | 34.0                        | 9.2                         | -1.8         | 16.0                                                               | -5.6                         | -6.6                         | -5.8                         | -5.1                         | -6.7                         | -7.3                         | -3.8                         | -5.7                         |
| 136.7 | -13.0                       | 10.0                        | -9.0                        | -11.0                       | 33.0                        | 6.3                         | -5.6         | 35.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 71. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -1.7                        | 10.0                        | -7.7                        | -3.5                        | 2.6                         | 0.2                         | -0.5                        | 2.7                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | -1.7                        | 9.9                         | -7.7                        | -3.3                        | 4.9                         | 0.4                         | -0.8                        | 5.2                         | 0.0                   | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | -2.1                        | 9.8                         | -7.5                        | -3.3                        | 7.3                         | 1.1                         | -1.0                        | 7.6                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | -2.1                        | 10.0                        | -7.7                        | -3.6                        | 9.6                         | 1.0                         | -1.9                        | 10.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -2.6                        | 10.0                        | -7.7                        | -4.6                        | 12.0                        | 1.1                         | -2.4                        | 12.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | -3.1                        | 9.7                         | -7.5                        | -4.7                        | 14.0                        | 2.1                         | -2.6                        | 15.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 68.4  | -3.5                        | 10.0                        | -7.9                        | -5.4                        | 17.0                        | 1.7                         | -3.5                        | 18.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | -3.4                        | 10.0                        | -8.4                        | -5.3                        | 20.0                        | 2.1                         | -4.0                        | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -4.5                        | 10.0                        | -8.0                        | -6.3                        | 22.0                        | 2.8                         | -4.3                        | 22.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | -5.4                        | 10.0                        | -8.4                        | -7.0                        | 24.0                        | 3.3                         | -4.8                        | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -6.4                        | 10.0                        | -8.4                        | -7.5                        | 26.0                        | 3.5                         | -5.1                        | 27.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -7.8                        | 11.0                        | -8.5                        | -9.4                        | 28.0                        | 3.9                         | -5.6                        | 29.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -16.0                       | 32.0                        | -3.4                        | -11.0                       | 35.0                        | 7.8                         | -0.9                        | 13.0                        | -4.5                  | -5.1                         | -3.6                         | -3.4                         | -4.0                         | -4.4                         | -3.6                         | -4.6                         |
| 136.7 | -12.0                       | 11.0                        | -8.6                        | -13.0                       | 32.0                        | 5.0                         | -6.6                        | 34.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 72. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -0.3                        | 8.7                         | -8.4                        | -1.1                        | 2.3                         | 0.2                         | -0.1         | 3.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | -0.4                        | 8.9                         | -8.0                        | -0.6                        | 4.9                         | 0.9                         | -0.6         | 5.5                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 29.3  | -0.7                        | 9.2                         | -7.9                        | -0.9                        | 7.2                         | 1.1                         | -1.0         | 7.4                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | -0.9                        | 9.3                         | -8.3                        | -0.9                        | 9.3                         | 1.2                         | -1.4         | 9.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -1.6                        | 9.1                         | -8.0                        | -1.6                        | 12.0                        | 1.6                         | -1.7         | 12.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | -1.6                        | 9.0                         | -7.8                        | -2.0                        | 14.0                        | 2.2                         | -2.2         | 15.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 68.4  | -2.1                        | 9.7                         | -8.0                        | -2.4                        | 17.0                        | 2.3                         | -2.9         | 17.0                                                               | -0.1                         | -0.4                         | -0.2                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | -2.4                        | 9.5                         | -8.5                        | -2.5                        | 19.0                        | 2.7                         | -3.3         | 20.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 87.9  | -3.1                        | 9.6                         | -8.3                        | -3.4                        | 21.0                        | 3.1                         | -3.5         | 22.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -4.0                        | 9.4                         | -8.6                        | -4.1                        | 23.0                        | 3.6                         | -4.1         | 24.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -5.4                        | 9.7                         | -8.6                        | -5.1                        | 25.0                        | 4.0                         | -4.5         | 26.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | -7.1                        | 10.0                        | -8.5                        | -6.7                        | 28.0                        | 4.7                         | -4.9         | 28.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -10.0                       | 24.0                        | -9.4                        | -11.0                       | 29.0                        | 5.1                         | -3.6         | 20.0                                                               | -4.9                         | -7.7                         | -5.4                         | -4.0                         | -6.6                         | -5.2                         | -3.6                         | -6.2                         |
| 136.7 | -11.0                       | 11.0                        | -8.7                        | -11.0                       | 33.0                        | 5.7                         | -5.9         | 34.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 73. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 1.2                         | 9.8                         | -6.8                                     | -0.6                        | 2.6                         | 0.3                         | -0.6                                     | 2.4                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 1.4                         | 9.8                         | -6.8                                     | -0.3                        | 5.1                         | 0.6                         | -0.9                                     | 4.8                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 1.1                         | 9.7                         | -6.7                                     | -0.5                        | 7.0                         | 0.9                         | -1.3                                     | 7.0                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 39.1  | 0.8                         | 10.0                        | -7.2                                     | -0.6                        | 9.3                         | 0.8                         | -2.0                                     | 9.6                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 0.6                         | 9.9                         | -6.8                                     | -1.5                        | 12.0                        | 1.0                         | -1.9                                     | 12.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | 0.5                         | 9.7                         | -6.9                                     | -1.7                        | 14.0                        | 2.0                         | -2.6                                     | 14.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | -0.4                        | 11.0                        | -6.9                                     | -2.2                        | 17.0                        | 1.4                         | -3.2                                     | 17.0                        | -0.3                  | -0.4                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 78.1  | -0.2                        | 10.0                        | -7.2                                     | -2.1                        | 19.0                        | 2.1                         | -3.8                                     | 19.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | -1.0                        | 10.0                        | -7.2                                     | -3.4                        | 21.0                        | 2.5                         | -4.2                                     | 21.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | -2.0                        | 10.0                        | -7.7                                     | -4.1                        | 23.0                        | 2.9                         | -4.5                                     | 23.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -3.3                        | 9.8                         | -7.7                                     | -5.1                        | 25.0                        | 3.1                         | -5.0                                     | 26.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 117.2 | -4.6                        | 10.0                        | -7.5                                     | -7.1                        | 27.0                        | 3.7                         | -5.7                                     | 28.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -4.3                        | 28.0                        | -3.8                                     | -17.0                       | 34.0                        | -4.6                        | -7.5                                     | 16.0                        | -10.0                 | -7.7                         | -9.4                         | -11.0                        | -12.0                        | -12.0                        | -9.0                         | -6.0                         |
| 136.7 | -8.8                        | 11.0                        | -7.9                                     | -11.0                       | 33.0                        | 5.0                         | -6.5                                     | 34.0                        | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |

Table 74. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 1.8                         | 8.3                         | -7.3                        | 1.4                         | 2.3                         | 0.5                         | -0.4         | 2.6                                                                | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 1.9                         | 8.5                         | -7.5                        | 1.8                         | 4.8                         | 0.8                         | -0.7         | 5.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 1.6                         | 8.9                         | -7.4                        | 1.4                         | 6.9                         | 1.1                         | -1.0         | 7.2                                                                | -0.1                          | -0.1                         | -0.2                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 1.2                         | 8.9                         | -7.9                        | 1.4                         | 9.1                         | 1.3                         | -1.5         | 9.5                                                                | -0.1                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 0.8                         | 8.6                         | -7.6                        | 1.0                         | 12.0                        | 1.6                         | -1.5         | 12.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 0.8                         | 8.7                         | -7.4                        | 0.6                         | 14.0                        | 2.1                         | -2.1         | 14.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 0.2                         | 9.1                         | -7.5                        | -0.1                        | 16.0                        | 2.3                         | -2.6         | 16.0                                                               | -0.2                          | -0.2                         | -0.1                         | -0.3                         | 0.0                          | -0.1                         | -0.2                         | -0.3                         |
| 78.1  | 0.1                         | 9.0                         | -7.8                        | 0.3                         | 18.0                        | 2.6                         | -3.1         | 19.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -0.8                        | 9.1                         | -7.7                        | -0.9                        | 20.0                        | 2.9                         | -3.6         | 21.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | -1.8                        | 9.1                         | -8.0                        | -1.6                        | 22.0                        | 3.1                         | -4.0         | 23.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.3                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | -3.1                        | 8.9                         | -8.1                        | -2.6                        | 24.0                        | 3.6                         | -4.0         | 25.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | -4.7                        | 9.3                         | -8.1                        | -4.1                        | 27.0                        | 4.4                         | -4.6         | 28.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -9.0                        | 24.0                        | -6.0                        | -8.2                        | 31.0                        | 4.7                         | -2.9         | 18.0                                                               | -4.0                          | -3.7                         | -2.3                         | -4.4                         | -2.3                         | -6.1                         | -3.1                         | -3.9                         |
| 136.7 | -8.2                        | 9.6                         | -8.3                        | -7.3                        | 32.0                        | 5.4                         | -5.8         | 33.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |

Table 75. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars, C<sub>r</sub>=0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 0.3                         | 15.0                        | -13.0                       | -1.8                        | 3.2                         | 0.5                         | -0.3                        | 3.2                         | -0.1                  | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         |
| 19.5  | 0.1                         | 15.0                        | -12.0                       | -1.5                        | 5.2                         | 1.1                         | -1.1                        | 5.1                         | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | -0.2                        | 15.0                        | -12.0                       | -2.1                        | 7.4                         | 1.7                         | -1.9                        | 7.2                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 39.1  | -0.7                        | 15.0                        | -13.0                       | -2.1                        | 9.8                         | 2.3                         | -2.6                        | 10.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -1.4                        | 15.0                        | -13.0                       | -2.6                        | 12.0                        | 2.9                         | -2.9                        | 13.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | -1.6                        | 15.0                        | -13.0                       | -3.4                        | 14.0                        | 3.1                         | -3.7                        | 15.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | -2.1                        | 16.0                        | -13.0                       | -3.7                        | 17.0                        | 3.1                         | -4.2                        | 18.0                        | -0.1                  | -0.5                         | -0.3                         | -0.5                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         |
| 78.1  | -2.2                        | 15.0                        | -12.0                       | -4.1                        | 20.0                        | 3.8                         | -5.1                        | 20.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | -3.7                        | 16.0                        | -13.0                       | -5.1                        | 22.0                        | 4.8                         | -5.9                        | 22.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -4.8                        | 16.0                        | -13.0                       | -5.8                        | 24.0                        | 5.9                         | -6.3                        | 25.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -5.8                        | 16.0                        | -13.0                       | -6.9                        | 27.0                        | 6.2                         | -7.3                        | 27.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | -7.2                        | 16.0                        | -13.0                       | -8.9                        | 28.0                        | 6.9                         | -8.6                        | 29.0                        | -0.2                  | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 127.0 | -8.9                        | 17.0                        | -14.0                       | -9.9                        | 31.0                        | 7.6                         | -8.5                        | 32.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | -12.0                       | 18.0                        | -14.0                       | -13.0                       | 33.0                        | 8.2                         | -9.8                        | 35.0                        | -0.2                  | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |

Table 76. Raw data for the test seal at  $\omega$ =10 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.9                         | 15.0                        | -11.0                                    | 2.1                         | 2.9                         | 0.4                         | -0.4         | 2.5                                                                | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 4.0                         | 14.0                        | -11.0                                    | 2.2                         | 4.7                         | 0.6                         | -1.0         | 4.8                                                                | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 3.8                         | 15.0                        | -10.0                                    | 1.6                         | 6.9                         | 1.1                         | -1.6         | 6.6                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 39.1  | 3.6                         | 15.0                        | -11.0                                    | 1.5                         | 9.0                         | 1.6                         | -2.4         | 9.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 3.0                         | 15.0                        | -11.0                                    | 1.2                         | 11.0                        | 2.5                         | -2.9         | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 2.5                         | 15.0                        | -11.0                                    | 0.6                         | 13.0                        | 2.8                         | -3.6         | 14.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 2.4                         | 15.0                        | -11.0                                    | 0.2                         | 16.0                        | 2.8                         | -4.2         | 16.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 2.3                         | 15.0                        | -11.0                                    | 0.0                         | 18.0                        | 3.4                         | -5.0         | 18.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 1.0                         | 15.0                        | -11.0                                    | -1.0                        | 20.0                        | 4.0                         | -5.8         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 0.2                         | 15.0                        | -11.0                                    | -1.8                        | 22.0                        | 4.8                         | -6.5         | 22.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -1.0                        | 15.0                        | -11.0                                    | -3.1                        | 24.0                        | 5.3                         | -7.4         | 24.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -2.4                        | 16.0                        | -11.0                                    | -4.7                        | 26.0                        | 5.9                         | -8.3         | 26.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -4.0                        | 16.0                        | -12.0                                    | -6.4                        | 28.0                        | 6.4                         | -8.7         | 29.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | -6.7                        | 17.0                        | -11.0                                    | -8.5                        | 30.0                        | 6.7                         | -9.7         | 31.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 77. Raw data for the test seal at  $\omega=10$  krpm, PD=31 bars,  $C_r=0.188$  mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.8                         | 14.0                        | -11.0                       | 3.1                         | 2.7                         | 0.3                         | -0.6                                     | 2.6                         | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 19.5  | 4.8                         | 14.0                        | -11.0                       | 3.2                         | 4.8                         | 0.9                         | -1.0                                     | 4.6                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 4.7                         | 14.0                        | -10.0                       | 2.9                         | 6.8                         | 1.3                         | -1.4                                     | 6.4                         | 0.0                   | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 39.1  | 4.4                         | 14.0                        | -11.0                       | 2.9                         | 8.8                         | 1.7                         | -2.4                                     | 9.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 48.8  | 3.9                         | 14.0                        | -11.0                       | 2.1                         | 11.0                        | 2.2                         | -3.0                                     | 11.0                        | -0.1                  | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 3.5                         | 14.0                        | -11.0                       | 1.7                         | 13.0                        | 2.8                         | -3.4                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 3.2                         | 14.0                        | -11.0                       | 1.0                         | 16.0                        | 2.6                         | -4.3                                     | 17.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 3.1                         | 14.0                        | -11.0                       | 1.2                         | 18.0                        | 3.6                         | -4.9                                     | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 87.9  | 2.1                         | 14.0                        | -11.0                       | 0.0                         | 19.0                        | 4.1                         | -5.7                                     | 20.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 97.7  | 1.0                         | 14.0                        | -11.0                       | -0.6                        | 21.0                        | 4.9                         | -6.2                                     | 22.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | -0.3                        | 15.0                        | -11.0                       | -1.7                        | 23.0                        | 5.5                         | -7.2                                     | 24.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | -1.8                        | 15.0                        | -11.0                       | -3.7                        | 25.0                        | 6.2                         | -8.2                                     | 26.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 127.0 | -3.5                        | 16.0                        | -12.0                       | -5.4                        | 27.0                        | 6.7                         | -8.9                                     | 28.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | -6.8                        | 16.0                        | -11.0                       | -8.1                        | 30.0                        | 7.4                         | -10.0                                    | 31.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |

Table 78. Raw data for the test seal at  $\omega$ =10 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.9                         | 14.0                        | -12.0                       | 2.3                         | 2.6                         | 0.9                         | -0.4         | 2.8                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 3.7                         | 14.0                        | -11.0                       | 2.4                         | 5.0                         | 1.0                         | -0.8         | 5.0                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 29.3  | 3.6                         | 14.0                        | -11.0                       | 2.1                         | 6.9                         | 1.4                         | -1.3         | 6.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 39.1  | 3.4                         | 14.0                        | -11.0                       | 2.1                         | 9.1                         | 1.8                         | -2.2         | 9.3                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 48.8  | 3.0                         | 14.0                        | -12.0                       | 1.7                         | 11.0                        | 2.4                         | -2.8         | 11.0                                                               | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 2.2                         | 14.0                        | -11.0                       | 1.0                         | 14.0                        | 2.5                         | -3.2         | 14.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 2.8                         | 14.0                        | -12.0                       | 0.6                         | 16.0                        | 2.7                         | -4.4         | 17.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 2.4                         | 14.0                        | -11.0                       | 1.0                         | 18.0                        | 3.6                         | -4.8         | 18.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 1.1                         | 14.0                        | -12.0                       | -0.3                        | 20.0                        | 4.0                         | -5.3         | 20.0                                                               | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 0.1                         | 14.0                        | -12.0                       | -1.2                        | 21.0                        | 4.8                         | -5.8         | 22.0                                                               | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | -1.3                        | 14.0                        | -12.0                       | -2.6                        | 24.0                        | 5.7                         | -7.0         | 24.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | -3.2                        | 15.0                        | -12.0                       | -4.5                        | 26.0                        | 6.8                         | -8.2         | 26.0                                                               | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | -5.3                        | 16.0                        | -12.0                       | -6.4                        | 28.0                        | 7.5                         | -8.6         | 29.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | -8.4                        | 17.0                        | -12.0                       | -8.9                        | 31.0                        | 8.1                         | -9.7         | 32.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |

Table 79. Raw data for the test seal at  $\omega=10$  krpm, PD=31 bars,  $C_r=0.188$  mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.2                         | 12.0                        | -11.0                       | 6.2                         | 2.2                         | 0.4                         | -1.1                                     | 2.9                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 6.8                         | 12.0                        | -10.0                       | 6.1                         | 4.6                         | 1.1                         | -0.9                                     | 4.5                         | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 29.3  | 6.6                         | 13.0                        | -10.0                       | 5.9                         | 6.5                         | 1.9                         | -1.5                                     | 6.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 39.1  | 6.9                         | 13.0                        | -10.0                       | 6.1                         | 8.6                         | 1.8                         | -2.5                                     | 8.8                         | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 6.2                         | 13.0                        | -11.0                       | 5.4                         | 10.0                        | 2.1                         | -2.9                                     | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 6.0                         | 12.0                        | -10.0                       | 5.0                         | 13.0                        | 2.5                         | -3.2                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.1                         | 13.0                        | -10.0                       | 4.4                         | 15.0                        | 2.4                         | -4.7                                     | 16.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 5.6                         | 12.0                        | -11.0                       | 4.6                         | 17.0                        | 3.6                         | -4.7                                     | 17.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 4.5                         | 13.0                        | -10.0                       | 3.6                         | 19.0                        | 4.1                         | -5.3                                     | 19.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | 3.4                         | 12.0                        | -10.0                       | 2.3                         | 20.0                        | 4.9                         | -6.0                                     | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 1.8                         | 12.0                        | -11.0                       | 0.9                         | 22.0                        | 5.9                         | -7.4                                     | 23.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -0.3                        | 13.0                        | -11.0                       | -1.2                        | 24.0                        | 7.0                         | -8.2                                     | 25.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | -2.5                        | 14.0                        | -12.0                       | -2.9                        | 27.0                        | 7.6                         | -8.9                                     | 28.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | -5.8                        | 16.0                        | -12.0                       | -5.6                        | 31.0                        | 8.2                         | -10.0                                    | 32.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 80. Raw data for the test seal at  $\omega$ =10 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 8.1                         | 12.0                        | -9.8                                     | 7.8                         | 2.0                         | 0.4                         | -0.7         | 1.8                                                                | -0.1                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 7.6                         | 12.0                        | -10.0                                    | 7.2                         | 3.8                         | 1.0                         | -0.9         | 3.9                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 29.3  | 6.7                         | 12.0                        | -9.7                                     | 5.9                         | 6.0                         | 1.0                         | -1.7         | 6.0                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.5                         | -0.2                         | -0.2                         |
| 39.1  | 6.6                         | 12.0                        | -9.8                                     | 6.7                         | 8.2                         | 1.7                         | -2.4         | 8.2                                                                | -0.1                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         |
| 48.8  | 6.6                         | 12.0                        | -9.9                                     | 5.9                         | 10.0                        | 2.7                         | -3.4         | 10.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 6.5                         | 12.0                        | -10.0                                    | 6.6                         | 12.0                        | 3.3                         | -4.6         | 12.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 68.4  | 5.9                         | 13.0                        | -11.0                                    | 4.7                         | 14.0                        | 5.0                         | -5.4         | 14.0                                                               | -0.2                          | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.6                         |
| 78.1  | 4.7                         | 14.0                        | -12.0                                    | 4.6                         | 15.0                        | 4.3                         | -5.2         | 15.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 87.9  | 2.3                         | 13.0                        | -12.0                                    | 2.0                         | 18.0                        | 2.9                         | -4.2         | 18.0                                                               | -0.2                          | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 97.7  | 1.8                         | 13.0                        | -11.0                                    | 1.7                         | 22.0                        | 3.9                         | -5.3         | 22.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |
| 107.4 | 2.1                         | 13.0                        | -12.0                                    | 1.8                         | 24.0                        | 4.5                         | -5.9         | 24.0                                                               | -0.2                          | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 117.2 | 0.2                         | 13.0                        | -11.0                                    | -0.8                        | 26.0                        | 6.0                         | -7.5         | 26.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.3                         |
| 127.0 | -0.1                        | 13.0                        | -11.0                                    | -1.0                        | 28.0                        | 5.2                         | -7.3         | 28.0                                                               | -0.2                          | -0.5                         | -0.3                         | -0.8                         | -0.2                         | -0.3                         | -0.4                         | -0.5                         |
| 136.7 | -2.4                        | 14.0                        | -11.0                                    | -3.3                        | 31.0                        | 6.5                         | -8.7         | 31.0                                                               | -0.3                          | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |

Table 81. Raw data for the test seal at  $\omega$ =10 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.2                         | 21.0                        | -20.0                       | 4.5                         | 2.3                         | 1.2                         | -1.5                                     | 2.8                         | -0.3                  | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 19.5  | 5.0                         | 21.0                        | -19.0                       | 4.9                         | 4.8                         | 2.1                         | -2.5                                     | 4.3                         | -0.1                  | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 29.3  | 4.4                         | 22.0                        | -20.0                       | 4.1                         | 6.7                         | 3.2                         | -3.2                                     | 6.6                         | -0.3                  | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 39.1  | 4.9                         | 22.0                        | -20.0                       | 4.4                         | 8.8                         | 4.0                         | -4.6                                     | 8.8                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 4.5                         | 22.0                        | -21.0                       | 3.9                         | 10.0                        | 5.1                         | -6.0                                     | 11.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 3.2                         | 22.0                        | -21.0                       | 2.9                         | 13.0                        | 5.7                         | -6.5                                     | 14.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 2.6                         | 22.0                        | -20.0                       | 2.4                         | 16.0                        | 6.9                         | -7.3                                     | 15.0                        | -0.2                  | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 78.1  | 2.4                         | 22.0                        | -21.0                       | 1.9                         | 18.0                        | 7.6                         | -8.6                                     | 18.0                        | -0.3                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 0.6                         | 23.0                        | -21.0                       | 0.6                         | 20.0                        | 9.3                         | -9.7                                     | 20.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | -0.3                        | 23.0                        | -21.0                       | -1.0                        | 22.0                        | 10.0                        | -11.0                                    | 22.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | -1.6                        | 23.0                        | -21.0                       | -1.8                        | 24.0                        | 11.0                        | -12.0                                    | 24.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 117.2 | -3.3                        | 24.0                        | -21.0                       | -4.1                        | 27.0                        | 12.0                        | -13.0                                    | 26.0                        | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | -5.3                        | 24.0                        | -22.0                       | -5.5                        | 28.0                        | 13.0                        | -14.0                                    | 30.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 136.7 | -7.7                        | 24.0                        | -21.0                       | -7.3                        | 32.0                        | 14.0                        | -16.0                                    | 32.0                        | -0.2                  | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |

Table 82. Raw data for the test seal at  $\omega$ =15 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.8                         | 21.0                        | -19.0                       | 4.9                         | 2.3                         | 0.8                         | -1.3         | 2.9                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 19.5  | 5.2                         | 21.0                        | -19.0                       | 4.8                         | 4.6                         | 2.2                         | -2.0         | 4.7                                                                | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 4.8                         | 22.0                        | -20.0                       | 4.1                         | 6.5                         | 3.4                         | -3.2         | 6.8                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 4.7                         | 22.0                        | -20.0                       | 4.3                         | 9.0                         | 3.9                         | -4.4         | 9.0                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.0                         | 22.0                        | -20.0                       | 3.7                         | 10.0                        | 4.5                         | -5.1         | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 2.8                         | 22.0                        | -20.0                       | 2.4                         | 13.0                        | 5.1                         | -5.3         | 13.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 2.5                         | 22.0                        | -20.0                       | 2.1                         | 16.0                        | 6.2                         | -7.1         | 16.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 2.1                         | 22.0                        | -20.0                       | 1.8                         | 18.0                        | 7.8                         | -8.5         | 18.0                                                               | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 1.1                         | 22.0                        | -21.0                       | 0.7                         | 20.0                        | 8.8                         | -9.8         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | -0.2                        | 23.0                        | -22.0                       | -0.4                        | 22.0                        | 10.0                        | -11.0        | 23.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -1.4                        | 24.0                        | -22.0                       | -1.7                        | 24.0                        | 11.0                        | -12.0        | 24.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -3.4                        | 24.0                        | -22.0                       | -3.7                        | 27.0                        | 11.0                        | -13.0        | 27.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -5.0                        | 25.0                        | -22.0                       | -5.2                        | 29.0                        | 12.0                        | -13.0        | 30.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         |
| 136.7 | -7.6                        | 25.0                        | -22.0                       | -6.8                        | 32.0                        | 13.0                        | -15.0        | 33.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |

Table 83. Raw data for the test seal at  $\omega$ =15 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.2                         | 21.0                        | -19.0                       | 5.7                         | 2.3                         | 0.9                         | -1.1                                     | 2.6                         | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | 5.7                         | 21.0                        | -19.0                       | 5.7                         | 3.7                         | 2.4                         | -2.1                                     | 3.5                         | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 5.3                         | 21.0                        | -19.0                       | 4.9                         | 6.3                         | 2.9                         | -2.8                                     | 6.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 4.8                         | 22.0                        | -20.0                       | 4.9                         | 8.1                         | 4.0                         | -4.3                                     | 8.2                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.3                         | 21.0                        | -20.0                       | 3.9                         | 10.0                        | 4.8                         | -5.5                                     | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 3.4                         | 22.0                        | -21.0                       | 2.4                         | 12.0                        | 5.6                         | -6.1                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 68.4  | 2.6                         | 22.0                        | -20.0                       | 2.7                         | 16.0                        | 6.7                         | -7.2                                     | 16.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 2.6                         | 22.0                        | -20.0                       | 2.3                         | 18.0                        | 7.9                         | -8.6                                     | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 1.8                         | 23.0                        | -21.0                       | 1.4                         | 20.0                        | 8.8                         | -9.7                                     | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 0.6                         | 23.0                        | -22.0                       | 0.4                         | 23.0                        | 9.8                         | -11.0                                    | 23.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | -0.3                        | 24.0                        | -22.0                       | -0.6                        | 25.0                        | 10.0                        | -12.0                                    | 25.0                        | -0.1                  | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 117.2 | -1.8                        | 26.0                        | -23.0                       | -2.4                        | 27.0                        | 11.0                        | -12.0                                    | 27.0                        | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 127.0 | -4.2                        | 26.0                        | -24.0                       | -4.1                        | 30.0                        | 11.0                        | -13.0                                    | 31.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 136.7 | -6.9                        | 27.0                        | -24.0                       | -6.0                        | 33.0                        | 12.0                        | -13.0                                    | 34.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |

Table 84. Raw data for the test seal at  $\omega$ =15 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.4                         | 21.0                        | -19.0                       | 6.2                         | 2.0                         | 1.2                         | -1.0         | 1.8                                                                | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         |
| 19.5  | 5.3                         | 21.0                        | -19.0                       | 4.8                         | 4.0                         | 1.5                         | -1.6         | 3.5                                                                | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         |
| 29.3  | 5.1                         | 21.0                        | -18.0                       | 4.3                         | 6.7                         | 2.0                         | -2.4         | 6.9                                                                | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 5.6                         | 21.0                        | -18.0                       | 5.1                         | 8.6                         | 3.5                         | -4.1         | 9.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 5.4                         | 21.0                        | -19.0                       | 5.1                         | 11.0                        | 4.7                         | -5.4         | 11.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 4.9                         | 21.0                        | -20.0                       | 4.0                         | 12.0                        | 5.7                         | -6.4         | 12.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 3.2                         | 21.0                        | -19.0                       | 2.5                         | 15.0                        | 6.3                         | -7.2         | 15.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | 2.9                         | 22.0                        | -20.0                       | 2.7                         | 18.0                        | 7.8                         | -8.4         | 17.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 2.2                         | 23.0                        | -21.0                       | 1.5                         | 20.0                        | 8.4                         | -9.8         | 20.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 1.4                         | 23.0                        | -22.0                       | 0.4                         | 22.0                        | 8.9                         | -10.0        | 22.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 0.1                         | 24.0                        | -22.0                       | -0.1                        | 24.0                        | 9.9                         | -11.0        | 25.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 117.2 | -1.3                        | 25.0                        | -22.0                       | -1.7                        | 26.0                        | 11.0                        | -11.0        | 26.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | -3.1                        | 25.0                        | -23.0                       | -3.4                        | 28.0                        | 11.0                        | -12.0        | 29.0                                                               | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.4                         |
| 136.7 | -6.1                        | 26.0                        | -22.0                       | -5.0                        | 32.0                        | 11.0                        | -13.0        | 33.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |

Table 85. Raw data for the test seal at  $\omega$ =15 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.3                         | 21.0                        | -19.0                       | 6.4                         | 1.1                         | 1.2                         | -1.2                                     | 1.1                         | -0.5                  | -0.5                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         |
| 19.5  | 4.5                         | 21.0                        | -19.0                       | 4.3                         | 3.5                         | 0.6                         | -1.2                                     | 3.4                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | 4.7                         | 20.0                        | -18.0                       | 4.7                         | 7.0                         | 2.5                         | -2.5                                     | 7.5                         | -0.2                  | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 5.5                         | 20.0                        | -19.0                       | 5.7                         | 9.2                         | 3.7                         | -4.3                                     | 9.5                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 5.9                         | 21.0                        | -19.0                       | 5.7                         | 11.0                        | 4.0                         | -5.2                                     | 10.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 5.0                         | 21.0                        | -19.0                       | 3.8                         | 12.0                        | 5.3                         | -6.4                                     | 12.0                        | -0.1                  | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 3.2                         | 21.0                        | -19.0                       | 3.1                         | 15.0                        | 6.3                         | -6.8                                     | 15.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 78.1  | 2.8                         | 22.0                        | -20.0                       | 2.7                         | 17.0                        | 7.9                         | -8.3                                     | 17.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 87.9  | 2.0                         | 23.0                        | -21.0                       | 1.8                         | 19.0                        | 8.3                         | -9.0                                     | 19.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | 0.9                         | 23.0                        | -21.0                       | 0.5                         | 22.0                        | 8.8                         | -9.6                                     | 21.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 0.1                         | 23.0                        | -21.0                       | -0.5                        | 24.0                        | 9.3                         | -10.0                                    | 24.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 117.2 | -1.4                        | 24.0                        | -21.0                       | -1.8                        | 26.0                        | 10.0                        | -11.0                                    | 27.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 127.0 | -2.9                        | 25.0                        | -22.0                       | -3.1                        | 29.0                        | 10.0                        | -12.0                                    | 29.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 136.7 | -5.8                        | 24.0                        | -21.0                       | -4.5                        | 32.0                        | 11.0                        | -13.0                                    | 32.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |

Table 86. Raw data for the test seal at  $\omega$ =15 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.4                         | 26.0                        | -24.0                       | 7.5                         | 1.4                         | 1.7                         | -0.6         | 2.3                                                                | -1.4                         | -1.4                         | -1.1                         | -1.2                         | -0.5                         | -0.9                         | -1.4                         | -1.5                         |
| 19.5  | 3.3                         | 25.0                        | -23.0                       | 4.9                         | 4.4                         | 0.5                         | -0.9         | 3.4                                                                | -0.8                         | -0.8                         | -0.6                         | -0.8                         | -0.5                         | -0.6                         | -0.6                         | -0.5                         |
| 29.3  | 3.8                         | 25.0                        | -22.0                       | 5.4                         | 7.6                         | 1.1                         | -0.2         | 2.9                                                                | -0.7                         | -0.6                         | -1.0                         | -1.2                         | -0.8                         | -1.0                         | -0.8                         | -0.7                         |
| 39.1  | 2.5                         | 28.0                        | -21.0                       | 1.8                         | 8.5                         | 3.5                         | -4.2         | 8.9                                                                | -1.1                         | -1.0                         | -1.3                         | -1.4                         | -0.6                         | -0.9                         | -1.0                         | -1.1                         |
| 48.8  | 1.7                         | 26.0                        | -24.0                       | 3.6                         | 12.0                        | 1.9                         | -2.8         | 9.7                                                                | -0.9                         | -0.9                         | -0.6                         | -0.6                         | -0.4                         | -0.5                         | -0.6                         | -0.7                         |
| 58.6  | 2.1                         | 26.0                        | -24.0                       | 2.2                         | 12.0                        | 2.4                         | -2.5         | 12.0                                                               | -1.3                         | -1.5                         | -0.9                         | -1.0                         | -1.2                         | -1.0                         | -0.9                         | -0.8                         |
| 68.4  | -1.6                        | 29.0                        | -23.0                       | 0.9                         | 18.0                        | 3.7                         | -2.1         | 13.0                                                               | -0.8                         | -1.1                         | -1.0                         | -0.9                         | -1.1                         | -0.9                         | -1.2                         | -1.3                         |
| 78.1  | 0.4                         | 27.0                        | -25.0                       | 1.0                         | 18.0                        | 3.2                         | -4.2         | 15.0                                                               | -0.5                         | -0.6                         | -1.3                         | -0.8                         | -0.6                         | -0.5                         | -0.6                         | -1.2                         |
| 87.9  | -1.6                        | 29.0                        | -24.0                       | -0.5                        | 21.0                        | 3.9                         | -4.0         | 17.0                                                               | -0.4                         | -0.5                         | -1.0                         | -0.9                         | -0.7                         | -0.7                         | -0.6                         | -0.8                         |
| 97.7  | -5.0                        | 30.0                        | -23.0                       | -2.9                        | 24.0                        | 2.3                         | -1.2         | 18.0                                                               | -1.0                         | -1.3                         | -1.9                         | -1.2                         | -1.5                         | -1.4                         | -0.8                         | -1.9                         |
| 107.4 | -4.9                        | 31.0                        | -16.0                       | -7.4                        | 33.0                        | -1.2                        | -1.6         | 20.0                                                               | -2.2                         | -1.7                         | -1.7                         | -1.7                         | -1.6                         | -1.8                         | -1.6                         | -1.5                         |
| 117.2 | 0.2                         | 22.0                        | -17.0                       | -8.9                        | 31.0                        | -2.0                        | -8.6         | 30.0                                                               | -2.0                         | -1.0                         | -0.6                         | -1.6                         | -1.0                         | -2.0                         | -2.1                         | -0.7                         |
| 127.0 | -2.2                        | 23.0                        | -23.0                       | -6.0                        | 34.0                        | 3.5                         | -10.0        | 36.0                                                               | -1.6                         | -0.9                         | -1.0                         | -2.6                         | -0.6                         | -1.7                         | -2.3                         | -1.0                         |
| 136.7 | -4.2                        | 23.0                        | -24.0                       | -7.2                        | 36.0                        | 5.8                         | -13.0        | 40.0                                                               | -0.7                         | -1.2                         | -0.8                         | -1.6                         | -1.0                         | -1.0                         | -1.5                         | -1.0                         |

Table 87. Raw data for the test seal at  $\omega$ =15 krpm, PD=31 bars,  $C_r$ =0.188 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(\boldsymbol{eH}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|---------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                                                                | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.2                         | 7.9                         | -6.9                        | 14.0                        | 3.1                         | 1.7                         | -1.8                        | 7.5                         | -0.1                  | -0.1                         | -0.4                         | -0.3                                                                | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 19.5  | 9.5                         | 7.2                         | -6.2                        | 12.0                        | 5.6                         | 0.6                         | -0.6                        | 4.7                         | -0.2                  | -0.2                         | -0.2                         | -0.1                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 11.0                        | 4.0                         | -7.4                        | 13.0                        | 7.7                         | 1.4                         | 0.7                         | 4.7                         | -0.2                  | -0.1                         | -0.2                         | -0.2                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 9.1                         | 6.3                         | -5.3                        | 11.0                        | 11.0                        | 1.5                         | -1.3                        | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 8.9                         | 4.3                         | -5.3                        | 8.2                         | 15.0                        | 1.4                         | -2.0                        | 15.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 8.6                         | 4.8                         | -5.3                        | 12.0                        | 17.0                        | 1.9                         | -1.7                        | 17.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 7.9                         | 7.1                         | -5.6                        | 7.0                         | 21.0                        | 0.8                         | -2.0                        | 21.0                        | -0.2                  | -0.2                         | -0.1                         | -0.3                                                                | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 78.1  | 6.8                         | 5.3                         | -6.9                        | 8.6                         | 23.0                        | 1.2                         | -2.0                        | 24.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                                                                | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 87.9  | 6.5                         | 5.3                         | -4.9                        | 7.7                         | 26.0                        | 1.8                         | -2.3                        | 26.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.5                         | 6.0                         | -4.8                        | 6.7                         | 29.0                        | 1.7                         | -2.8                        | 28.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 3.9                         | 5.7                         | -5.5                        | 6.3                         | 32.0                        | 1.7                         | -3.8                        | 33.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 2.3                         | 5.8                         | -4.6                        | 4.3                         | 34.0                        | 2.4                         | -3.0                        | 34.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | 0.2                         | 6.1                         | -5.3                        | 3.8                         | 37.0                        | 2.3                         | -3.5                        | 39.0                        | -0.2                  | -0.1                         | -0.1                         | -0.2                                                                | -0.2                         | 0.0                          | -0.2                         | -0.2                         |
| 136.7 | -2.2                        | 8.1                         | -2.9                        | -2.5                        | 41.0                        | 2.5                         | -4.1                        | 43.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 88. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.163 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 0.2                         | 6.4                         | -8.4                                     | 1.9                         | 2.5                         | 1.5                         | -1.2         | 4.0                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 1.2                         | 6.8                         | -8.7                                     | 1.7                         | 6.2                         | 1.3                         | 0.0          | 7.4                                                                | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.3                         |
| 29.3  | 4.3                         | 5.3                         | -9.8                                     | 4.7                         | 9.5                         | 0.3                         | 0.9          | 8.2                                                                | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 39.1  | 2.2                         | 6.7                         | -7.2                                     | 1.8                         | 13.0                        | 0.6                         | -0.6         | 14.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 1.5                         | 5.5                         | -7.4                                     | 0.9                         | 15.0                        | 0.5                         | -1.6         | 16.0                                                               | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | 1.8                         | 6.5                         | -7.4                                     | 1.1                         | 19.0                        | 0.1                         | -1.3         | 19.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 68.4  | 1.0                         | 6.9                         | -7.7                                     | -0.3                        | 23.0                        | 0.8                         | -0.9         | 22.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | -1.7                        | 5.8                         | -8.8                                     | -0.9                        | 25.0                        | 0.6                         | -1.4         | 26.0                                                               | -0.2                         | -0.1                         | -0.3                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         |
| 87.9  | -0.1                        | 5.9                         | -7.2                                     | -0.6                        | 28.0                        | 0.7                         | -1.4         | 28.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -0.8                        | 6.9                         | -7.1                                     | -0.7                        | 31.0                        | 0.2                         | -1.6         | 31.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 107.4 | -2.4                        | 6.5                         | -7.0                                     | -2.6                        | 34.0                        | 0.9                         | -2.3         | 35.0                                                               | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         |
| 117.2 | -3.0                        | 6.5                         | -6.8                                     | -4.2                        | 38.0                        | 1.2                         | -1.1         | 38.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         |
| 127.0 | -6.9                        | 6.5                         | -7.9                                     | -5.5                        | 41.0                        | 1.3                         | -2.5         | 42.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         |
| 136.7 | -7.3                        | 7.7                         | -5.5                                     | -7.7                        | 45.0                        | 3.3                         | -1.5         | 45.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |

Table 89. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.163 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -2.7                        | 6.7                         | -8.7                                     | -1.4                        | 3.2                         | 0.5                         | 0.2                                      | 3.0                         | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 19.5  | -0.8                        | 6.9                         | -9.4                                     | -2.7                        | 6.4                         | 0.0                         | -0.2                                     | 7.2                         | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 29.3  | 1.8                         | 6.1                         | -11.0                                    | 0.3                         | 9.8                         | 1.1                         | 0.8                                      | 10.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | 0.0                          | -0.2                         | -0.2                         |
| 39.1  | -0.8                        | 7.3                         | -9.0                                     | -1.5                        | 13.0                        | 0.2                         | 0.0                                      | 14.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | -1.3                        | 6.8                         | -8.5                                     | -1.5                        | 16.0                        | 0.3                         | -0.3                                     | 17.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         |
| 58.6  | -1.3                        | 8.5                         | -8.8                                     | -2.4                        | 21.0                        | -0.6                        | -0.6                                     | 20.0                        | -0.2                  | -0.4                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         |
| 68.4  | -1.5                        | 6.6                         | -9.5                                     | -2.6                        | 24.0                        | 0.2                         | 0.5                                      | 23.0                        | -0.1                  | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.3                         |
| 78.1  | -6.3                        | 6.8                         | -8.8                                     | -4.0                        | 26.0                        | 1.1                         | -1.1                                     | 27.0                        | -0.3                  | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.5                         | -0.3                         |
| 87.9  | -3.1                        | 6.6                         | -8.3                                     | -3.3                        | 30.0                        | 0.0                         | -0.4                                     | 30.0                        | -0.3                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -3.3                        | 6.7                         | -8.1                                     | -3.5                        | 33.0                        | -0.4                        | -0.1                                     | 34.0                        | -0.3                  | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | -4.5                        | 6.8                         | -7.1                                     | -5.8                        | 36.0                        | 0.5                         | -1.3                                     | 37.0                        | -0.2                  | -0.1                         | -0.3                         | -0.1                         | -0.4                         | -0.1                         | -0.4                         | -0.1                         |
| 117.2 | -5.6                        | 7.0                         | -8.1                                     | -6.4                        | 40.0                        | 1.1                         | -0.7                                     | 40.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 127.0 | -9.0                        | 7.4                         | -8.1                                     | -8.4                        | 43.0                        | 1.0                         | -1.7                                     | 45.0                        | -0.3                  | -0.2                         | -0.2                         | -0.5                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         |
| 136.7 | -8.9                        | 7.9                         | -6.7                                     | -9.8                        | 47.0                        | 1.6                         | -1.1                                     | 47.0                        | -0.2                  | -0.3                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.4                         |

Table 90. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.163 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -5.8                        | 6.9                         | -8.2                        | -3.4                        | 3.2                         | 0.5                         | 0.0          | 2.8                                                                | -0.1                          | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 19.5  | -4.8                        | 6.9                         | -12.0                       | -6.2                        | 5.9                         | -0.1                        | -3.5         | 6.8                                                                | -0.1                          | -0.1                         | -0.3                         | -0.2                         | -0.1                         | 0.0                          | -0.2                         | -0.2                         |
| 29.3  | -3.0                        | 6.1                         | -17.0                       | -2.0                        | 10.0                        | 1.6                         | 3.0          | 12.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         |
| 39.1  | -4.5                        | 7.7                         | -10.0                       | -3.6                        | 14.0                        | 0.0                         | 1.6          | 15.0                                                               | -0.2                          | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         |
| 48.8  | -4.3                        | 7.7                         | -8.2                        | -2.8                        | 18.0                        | 0.0                         | 2.0          | 17.0                                                               | -0.3                          | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | -4.5                        | 8.9                         | -9.7                        | -5.9                        | 22.0                        | -1.0                        | -0.4         | 22.0                                                               | -0.2                          | -0.4                         | -0.2                         | -0.4                         | -0.4                         | -0.1                         | -0.3                         | -0.2                         |
| 68.4  | -4.6                        | 7.6                         | -12.0                       | -3.9                        | 26.0                        | -0.1                        | 0.1          | 24.0                                                               | -0.5                          | -0.2                         | -0.4                         | -0.2                         | -0.4                         | -0.2                         | -0.4                         | -0.4                         |
| 78.1  | -8.0                        | 7.3                         | -6.0                        | -5.6                        | 27.0                        | 0.6                         | -3.8         | 26.0                                                               | -0.3                          | -0.2                         | -0.4                         | -0.2                         | -0.5                         | -0.4                         | -0.2                         | -0.4                         |
| 87.9  | -6.6                        | 7.0                         | -8.5                        | -5.2                        | 31.0                        | 0.3                         | 0.0          | 31.0                                                               | -0.3                          | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         |
| 97.7  | -7.1                        | 7.0                         | -9.2                        | -5.9                        | 35.0                        | -0.3                        | 0.6          | 35.0                                                               | -0.2                          | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | -8.3                        | 7.8                         | -7.5                        | -7.3                        | 38.0                        | 0.1                         | 1.1          | 38.0                                                               | -0.1                          | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.3                         |
| 117.2 | -7.5                        | 7.2                         | -9.7                        | -7.7                        | 43.0                        | 0.3                         | 0.1          | 42.0                                                               | -0.1                          | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | -11.0                       | 7.6                         | -6.8                        | -11.0                       | 46.0                        | 1.4                         | -2.1         | 46.0                                                               | -0.6                          | -0.2                         | -0.5                         | -0.3                         | -0.3                         | -0.4                         | -0.4                         | -0.4                         |
| 136.7 | -12.0                       | 8.0                         | -7.2                        | -10.0                       | 49.0                        | 1.4                         | 0.0          | 47.0                                                               | -0.3                          | -0.3                         | -0.2                         | -0.3                         | -0.4                         | -0.3                         | -0.5                         | -0.2                         |

Table 91. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.163 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -5.2                        | 13.0                        | -16.0                       | -1.1                        | 1.7                         | 0.8                         | 3.1                         | 5.6                         | -0.2                  | -0.1                         | -0.2                         | -0.2     | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 19.5  | -2.6                        | 15.0                        | -17.0                       | -2.0                        | 7.7                         | 0.2                         | 0.7                         | 8.2                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 0.2                         | 14.0                        | -20.0                       | -0.2                        | 10.0                        | 1.0                         | 1.5                         | 9.8                         | -0.1                  | -0.1                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | -3.3                        | 16.0                        | -17.0                       | -3.1                        | 14.0                        | 1.9                         | -1.1                        | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -2.6                        | 14.0                        | -17.0                       | -4.4                        | 17.0                        | 0.8                         | -0.9                        | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | -3.1                        | 15.0                        | -17.0                       | -5.6                        | 21.0                        | 1.3                         | -3.0                        | 21.0                        | -0.2                  | -0.1                         | -0.3                         | -0.2     | -0.1                         | -0.1                         | -0.3                         | -0.1                         |
| 68.4  | -2.9                        | 15.0                        | -18.0                       | -2.7                        | 24.0                        | 1.3                         | -0.9                        | 23.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | -4.0                        | 15.0                        | -15.0                       | -4.8                        | 27.0                        | 1.7                         | -2.7                        | 27.0                        | -0.1                  | -0.1                         | -0.1                         | 0.0      | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -4.0                        | 14.0                        | -17.0                       | -4.8                        | 30.0                        | 1.2                         | -1.3                        | 31.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -4.8                        | 15.0                        | -16.0                       | -4.5                        | 33.0                        | 1.0                         | -1.8                        | 34.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1     | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -6.8                        | 15.0                        | -16.0                       | -6.5                        | 36.0                        | 3.1                         | -1.3                        | 37.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | -8.0                        | 15.0                        | -16.0                       | -8.7                        | 40.0                        | 3.6                         | -2.7                        | 40.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | -12.0                       | 16.0                        | -14.0                       | -10.0                       | 43.0                        | 5.1                         | -3.7                        | 42.0                        | -1.8                  | -1.1                         | -2.1                         | -0.7     | -1.9                         | -0.8                         | -1.8                         | -1.2                         |
| 136.7 | -12.0                       | 16.0                        | -14.0                       | -12.0                       | 47.0                        | 4.7                         | -3.4                        | 45.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 92. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars, C<sub>r</sub>=0.163 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -9.5                        | 19.0                        | -13.0                                    | 6.0                         | 8.0                         | 2.1                         | 15.0         | 4.6                                                                | -0.3                         | -0.3                         | -0.5                         | -0.5                         | -0.4                         | -0.2                         | -0.7                         | -0.3                         |
| 19.5  | -6.6                        | 16.0                        | -16.0                                    | -5.4                        | 7.8                         | 0.9                         | 0.6          | 8.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | -3.2                        | 15.0                        | -19.0                                    | -2.7                        | 11.0                        | 1.4                         | 1.9          | 10.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | -4.9                        | 16.0                        | -15.0                                    | -7.1                        | 13.0                        | -0.2                        | -3.1         | 13.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -7.3                        | 14.0                        | -18.0                                    | -7.6                        | 16.0                        | 0.6                         | -0.8         | 18.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | -7.4                        | 15.0                        | -18.0                                    | -11.0                       | 19.0                        | 0.6                         | -6.0         | 20.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 68.4  | -7.5                        | 15.0                        | -19.0                                    | -5.6                        | 22.0                        | 1.2                         | -1.1         | 24.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | -5.4                        | 16.0                        | -12.0                                    | -7.9                        | 28.0                        | 0.5                         | -3.3         | 26.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -8.8                        | 15.0                        | -19.0                                    | -7.3                        | 30.0                        | 1.5                         | -0.2         | 33.0                                                               | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | -8.0                        | 16.0                        | -15.0                                    | -6.9                        | 34.0                        | 0.8                         | -1.5         | 35.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -11.0                       | 16.0                        | -18.0                                    | -8.3                        | 38.0                        | 2.6                         | 0.7          | 37.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | -12.0                       | 15.0                        | -18.0                                    | -10.0                       | 40.0                        | 2.7                         | -1.9         | 40.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -13.0                       | 16.0                        | -13.0                                    | -12.0                       | 43.0                        | 2.9                         | -3.4         | 40.0                                                               | -1.2                         | -1.3                         | -2.9                         | -2.2                         | -2.6                         | -1.9                         | -1.5                         | -1.6                         |
| 136.7 | -15.0                       | 17.0                        | -14.0                                    | -12.0                       | 48.0                        | 3.8                         | -2.2         | 45.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |

Table 93. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.163 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 19.0                        | 4.1                         | -2.0                                     | 20.0                        | 2.4                         | -0.1                        | -0.5                        | 2.8                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 18.0                        | 2.8                         | -1.8                                     | 20.0                        | 4.0                         | 1.9                         | -1.1                        | 4.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 20.0                        | 0.7                         | -4.6                                     | 22.0                        | 5.2                         | 2.3                         | -1.0                        | 4.2                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 18.0                        | 2.7                         | -1.6                                     | 18.0                        | 8.0                         | 1.9                         | -2.4                        | 7.8                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 17.0                        | 2.5                         | -2.0                                     | 17.0                        | 10.0                        | 2.6                         | -3.4                        | 10.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 17.0                        | 2.2                         | -2.2                                     | 17.0                        | 12.0                        | 2.8                         | -3.7                        | 12.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 16.0                        | 3.6                         | -2.3                                     | 16.0                        | 14.0                        | 3.0                         | -4.1                        | 14.0                        | 0.0                   | -0.1                         | -0.1                         | 0.0      | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 78.1  | 15.0                        | 2.9                         | -2.3                                     | 15.0                        | 16.0                        | 3.5                         | -4.6                        | 15.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 13.0                        | 3.0                         | -2.4                                     | 14.0                        | 17.0                        | 4.1                         | -5.5                        | 17.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 97.7  | 11.0                        | 3.5                         | -2.5                                     | 12.0                        | 19.0                        | 4.4                         | -5.8                        | 19.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0      | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 9.4                         | 3.7                         | -2.6                                     | 10.0                        | 22.0                        | 4.7                         | -6.1                        | 21.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0      | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 7.3                         | 4.1                         | -2.3                                     | 7.5                         | 24.0                        | 5.3                         | -6.7                        | 23.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0      | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 5.2                         | 4.4                         | -2.5                                     | 5.3                         | 26.0                        | 5.6                         | -7.5                        | 26.0                        | 0.0                   | 0.0                          | -0.1                         | 0.0      | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 136.7 | 2.4                         | 6.0                         | -1.7                                     | 2.1                         | 29.0                        | 5.9                         | -8.2                        | 29.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0      | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 94. Raw data for the test seal at  $\omega$ =5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 15.0                        | 4.1                         | -3.0                        | 16.0                        | 1.9                         | 1.2                         | -1.3                                     | 4.7                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 19.5  | 15.0                        | 4.1                         | -2.9                        | 16.0                        | 4.1                         | 1.5                         | -0.9                                     | 4.5                                                                | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 17.0                        | 1.6                         | -5.2                        | 18.0                        | 5.9                         | 1.3                         | -0.4                                     | 2.8                                                                | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 15.0                        | 4.6                         | -2.5                        | 15.0                        | 8.5                         | 0.7                         | -2.0                                     | 8.7                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.2                         | -0.1                         |
| 48.8  | 14.0                        | 4.0                         | -3.0                        | 14.0                        | 11.0                        | 1.9                         | -3.2                                     | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 14.0                        | 3.9                         | -3.1                        | 14.0                        | 13.0                        | 1.7                         | -3.0                                     | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 68.4  | 13.0                        | 4.3                         | -2.9                        | 12.0                        | 15.0                        | 0.7                         | -3.0                                     | 15.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 78.1  | 12.0                        | 4.2                         | -3.4                        | 12.0                        | 16.0                        | 2.2                         | -3.6                                     | 17.0                                                               | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 11.0                        | 4.3                         | -2.9                        | 11.0                        | 18.0                        | 2.6                         | -4.3                                     | 19.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 97.7  | 9.2                         | 4.3                         | -3.0                        | 9.4                         | 21.0                        | 2.8                         | -4.8                                     | 20.0                                                               | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 7.5                         | 4.6                         | -3.3                        | 8.4                         | 23.0                        | 2.9                         | -5.1                                     | 23.0                                                               | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 5.7                         | 5.0                         | -2.6                        | 6.4                         | 25.0                        | 3.5                         | -5.5                                     | 25.0                                                               | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | 3.9                         | 5.1                         | -2.9                        | 5.0                         | 28.0                        | 3.8                         | -6.2                                     | 28.0                                                               | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 136.7 | 1.4                         | 7.1                         | -1.7                        | 0.7                         | 31.0                        | 3.7                         | -7.3                                     | 31.0                                                               | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |

Table 95. Raw data for the test seal at  $\omega$ =5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(\boldsymbol{eH}_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                  | MN/m                         | MN/m                                      | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 6.8                         | -4.2                                     | 13.0                        | 2.8                         | 1.2                         | -1.3                        | 4.9                         | -0.1                  | -0.1                         | -0.2                                      | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 13.0                        | 6.0                         | -3.8                                     | 12.0                        | 4.6                         | 1.2                         | -0.9                        | 4.5                         | -0.1                  | 0.0                          | -0.1                                      | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 29.3  | 15.0                        | 3.8                         | -6.3                                     | 15.0                        | 6.5                         | 1.8                         | 0.0                         | 4.3                         | -0.1                  | 0.0                          | -0.2                                      | 0.0                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 12.0                        | 5.4                         | -3.1                                     | 12.0                        | 9.4                         | 0.6                         | -1.7                        | 9.9                         | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 12.0                        | 5.1                         | -3.5                                     | 11.0                        | 12.0                        | 1.1                         | -2.8                        | 12.0                        | -0.1                  | 0.0                          | -0.1                                      | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 58.6  | 11.0                        | 4.3                         | -3.6                                     | 11.0                        | 14.0                        | 1.2                         | -2.4                        | 13.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 10.0                        | 6.6                         | -3.6                                     | 8.6                         | 16.0                        | 0.8                         | -2.7                        | 17.0                        | -0.1                  | 0.0                          | -0.2                                      | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 78.1  | 9.9                         | 5.1                         | -4.5                                     | 9.3                         | 18.0                        | 1.3                         | -3.2                        | 19.0                        | -0.2                  | -0.1                         | 0.0                                       | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 8.6                         | 4.8                         | -3.5                                     | 8.1                         | 20.0                        | 1.8                         | -3.6                        | 21.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 97.7  | 7.1                         | 5.4                         | -3.5                                     | 6.8                         | 23.0                        | 2.0                         | -4.1                        | 23.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.9                         | 5.3                         | -3.9                                     | 6.3                         | 25.0                        | 2.0                         | -4.4                        | 26.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 4.2                         | 5.6                         | -3.2                                     | 4.3                         | 28.0                        | 2.7                         | -4.5                        | 28.0                        | -0.1                  | 0.0                          | -0.1                                      | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 2.4                         | 5.8                         | -3.6                                     | 3.5                         | 31.0                        | 2.7                         | -5.4                        | 31.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 0.4                         | 7.6                         | -2.6                                     | -0.9                        | 34.0                        | 3.0                         | -6.1                        | 35.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |

Table 96. Raw data for the test seal at  $\omega$ =5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 13.0                        | 6.5                         | -4.1                        | 15.0                        | 2.6                         | 1.1                         | -1.1                        | 5.0                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         |
| 19.5  | 13.0                        | 5.8                         | -3.8                        | 14.0                        | 4.7                         | 1.3                         | -1.1                        | 4.5                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 29.3  | 15.0                        | 3.0                         | -6.3                        | 17.0                        | 6.5                         | 1.3                         | -0.1                        | 4.0                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 13.0                        | 5.2                         | -3.1                        | 13.0                        | 9.7                         | 0.7                         | -1.6                        | 9.4                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | 0.0                          |
| 48.8  | 12.0                        | 4.7                         | -3.4                        | 12.0                        | 12.0                        | 1.0                         | -2.8                        | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 12.0                        | 4.0                         | -3.4                        | 12.0                        | 14.0                        | 1.6                         | -2.6                        | 13.0                                                               | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 11.0                        | 5.9                         | -3.5                        | 10.0                        | 16.0                        | 0.8                         | -2.8                        | 16.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 11.0                        | 4.5                         | -4.2                        | 11.0                        | 18.0                        | 1.5                         | -3.0                        | 18.0                                                               | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 9.2                         | 4.7                         | -3.4                        | 9.5                         | 20.0                        | 1.9                         | -3.7                        | 20.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | 7.9                         | 5.0                         | -3.5                        | 8.2                         | 22.0                        | 2.2                         | -3.9                        | 22.0                                                               | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 6.6                         | 5.0                         | -3.8                        | 7.5                         | 25.0                        | 2.1                         | -4.2                        | 25.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 5.0                         | 5.2                         | -3.0                        | 5.6                         | 27.0                        | 2.8                         | -4.4                        | 27.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 3.4                         | 5.4                         | -3.5                        | 4.7                         | 30.0                        | 3.0                         | -5.2                        | 30.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 136.7 | 1.4                         | 7.0                         | -2.5                        | 0.6                         | 33.0                        | 3.0                         | -6.2                        | 34.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |

Table 97. Raw data for the test seal at  $\omega$ =5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 6.6                         | -4.3                        | 13.0                        | 2.9                         | 1.1                         | -1.1                                     | 4.9                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 12.0                        | 6.0                         | -4.1                        | 13.0                        | 4.6                         | 1.3                         | -0.8                                     | 4.5                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 14.0                        | 3.5                         | -6.7                        | 16.0                        | 6.6                         | 1.5                         | 0.1                                      | 4.0                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 12.0                        | 5.4                         | -3.4                        | 12.0                        | 9.7                         | 0.6                         | -1.3                                     | 9.6                         | -0.2                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 11.0                        | 4.9                         | -3.4                        | 11.0                        | 12.0                        | 1.2                         | -2.5                                     | 12.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 58.6  | 11.0                        | 4.2                         | -3.5                        | 12.0                        | 14.0                        | 1.4                         | -2.3                                     | 13.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 10.0                        | 6.2                         | -3.5                        | 9.2                         | 16.0                        | 0.8                         | -2.5                                     | 16.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 78.1  | 9.8                         | 4.9                         | -4.4                        | 9.6                         | 18.0                        | 1.4                         | -3.1                                     | 19.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 8.3                         | 4.9                         | -3.5                        | 8.8                         | 21.0                        | 2.0                         | -3.6                                     | 21.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 7.1                         | 5.2                         | -3.4                        | 7.3                         | 23.0                        | 2.0                         | -3.8                                     | 22.0                        | 0.0                   | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 6.0                         | 5.2                         | -4.1                        | 6.8                         | 26.0                        | 2.0                         | -4.3                                     | 26.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 4.1                         | 5.6                         | -3.1                        | 5.0                         | 28.0                        | 2.7                         | -4.1                                     | 28.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 2.6                         | 5.6                         | -3.5                        | 4.2                         | 31.0                        | 2.5                         | -5.0                                     | 31.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 0.8                         | 7.2                         | -2.3                        | 0.2                         | 34.0                        | 3.0                         | -6.0                                     | 35.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 98. Raw data for the test seal at  $\omega$ =5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 8.2                         | 7.4                         | -5.2                        | 9.3                         | 2.4                         | 1.1                         | -1.1                                     | 4.8                                                                | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 8.6                         | 6.6                         | -4.6                        | 8.9                         | 4.6                         | 1.2                         | -0.7                                     | 5.2                                                                | 0.0                          | 0.0                          | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         |
| 29.3  | 11.0                        | 4.6                         | -7.1                        | 12.0                        | 7.0                         | 1.2                         | 0.6                                      | 4.4                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 8.6                         | 6.3                         | -3.8                        | 8.9                         | 10.0                        | 0.6                         | -0.9                                     | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 7.9                         | 5.7                         | -4.0                        | 7.4                         | 12.0                        | 0.7                         | -2.4                                     | 13.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 7.5                         | 5.2                         | -4.1                        | 8.4                         | 15.0                        | 0.9                         | -2.3                                     | 15.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.8                         | 7.0                         | -3.7                        | 5.6                         | 17.0                        | 1.0                         | -2.8                                     | 18.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 6.5                         | 5.8                         | -4.7                        | 6.4                         | 20.0                        | 1.0                         | -2.9                                     | 20.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 5.6                         | 5.8                         | -4.0                        | 5.6                         | 22.0                        | 1.4                         | -3.2                                     | 22.0                                                               | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 4.3                         | 6.0                         | -3.9                        | 4.7                         | 24.0                        | 1.3                         | -3.6                                     | 24.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 3.1                         | 6.2                         | -4.4                        | 4.0                         | 27.0                        | 1.5                         | -4.0                                     | 28.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 1.4                         | 6.3                         | -3.5                        | 2.4                         | 30.0                        | 1.9                         | -3.8                                     | 30.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -0.2                        | 6.6                         | -3.8                        | 2.0                         | 33.0                        | 1.8                         | -4.7                                     | 34.0                                                               | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 136.7 | -1.6                        | 7.7                         | -2.6                        | -2.4                        | 36.0                        | 2.4                         | -5.7                                     | 38.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 99. Raw data for the test seal at  $\omega$ =5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 8.9                         | 13.0                        | -13.0                       | 10.0                        | 3.0                         | 0.4                         | -0.9                                     | 3.6                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 9.7                         | 12.0                        | -11.0                       | 9.4                         | 4.9                         | 1.1                         | -1.3                                     | 5.1                         | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 11.0                        | 10.0                        | -14.0                       | 13.0                        | 6.9                         | 2.4                         | -0.4                                     | 5.0                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 9.0                         | 12.0                        | -11.0                       | 9.2                         | 9.9                         | 1.7                         | -2.0                                     | 10.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 8.5                         | 11.0                        | -12.0                       | 7.5                         | 12.0                        | 1.8                         | -3.2                                     | 13.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 8.8                         | 11.0                        | -11.0                       | 8.7                         | 15.0                        | 2.3                         | -3.0                                     | 15.0                        | -0.1                  | 0.0                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 8.0                         | 12.0                        | -11.0                       | 6.7                         | 18.0                        | 2.9                         | -3.7                                     | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 7.1                         | 11.0                        | -11.0                       | 6.4                         | 20.0                        | 3.2                         | -4.3                                     | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 6.2                         | 11.0                        | -11.0                       | 5.6                         | 22.0                        | 3.8                         | -5.1                                     | 22.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 4.5                         | 11.0                        | -11.0                       | 3.9                         | 24.0                        | 4.4                         | -5.8                                     | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 2.8                         | 12.0                        | -12.0                       | 2.5                         | 27.0                        | 4.7                         | -6.6                                     | 27.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 0.9                         | 12.0                        | -11.0                       | 0.6                         | 29.0                        | 5.6                         | -6.4                                     | 29.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | -1.1                        | 14.0                        | -12.0                       | -2.3                        | 32.0                        | 4.4                         | -7.1                                     | 32.0                        | -2.0                  | -2.1                         | -2.1                         | -2.6                         | -1.9                         | -2.4                         | -2.2                         | -2.2                         |
| 136.7 | -3.3                        | 14.0                        | -10.0                       | -4.6                        | 35.0                        | 6.4                         | -8.4                                     | 36.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 100. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.7                         | 12.0                        | -13.0                       | 1.8                         | 1.1                         | 0.8                         | -1.2                        | 3.2                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 4.1                         | 12.0                        | -13.0                       | 1.8                         | 5.1                         | 0.6                         | -1.0                        | 6.0                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 29.3  | 7.1                         | 11.0                        | -15.0                       | 4.9                         | 7.6                         | 1.2                         | -0.1                        | 5.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 3.8                         | 13.0                        | -12.0                       | 2.8                         | 11.0                        | 1.2                         | -1.5                        | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 48.8  | 3.6                         | 12.0                        | -12.0                       | 1.5                         | 12.0                        | 1.6                         | -2.3                        | 14.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 3.6                         | 13.0                        | -12.0                       | 2.1                         | 16.0                        | 1.4                         | -2.6                        | 16.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 3.9                         | 12.0                        | -12.0                       | 0.4                         | 18.0                        | 1.6                         | -2.9                        | 18.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 1.8                         | 12.0                        | -12.0                       | -0.2                        | 20.0                        | 2.9                         | -4.0                        | 21.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 1.4                         | 12.0                        | -12.0                       | -0.5                        | 23.0                        | 3.2                         | -4.4                        | 24.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 0.3                         | 13.0                        | -12.0                       | -1.5                        | 25.0                        | 3.2                         | -4.9                        | 26.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -1.8                        | 13.0                        | -12.0                       | -3.6                        | 28.0                        | 4.1                         | -5.6                        | 29.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -3.3                        | 14.0                        | -12.0                       | -5.0                        | 31.0                        | 4.9                         | -5.6                        | 32.0                                                               | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -5.6                        | 15.0                        | -12.0                       | -7.1                        | 34.0                        | 4.7                         | -6.7                        | 35.0                                                               | -0.6                         | -0.6                         | -0.6                         | -0.6                         | -0.6                         | -0.6                         | -0.6                         | -0.6                         |
| 136.7 | -7.9                        | 15.0                        | -11.0                       | -9.9                        | 37.0                        | 6.1                         | -7.4                        | 38.0                                                               | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         |

Table 101. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(\boldsymbol{eH}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|---------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                                                                | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 0.5                         | 13.0                        | -14.0                                    | 0.4                         | 0.7                         | 0.5                         | -0.6                        | 3.3                         | -0.1                  | -0.1                         | -0.2                         | -0.1                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 1.1                         | 13.0                        | -14.0                                    | -0.4                        | 5.1                         | 0.4                         | -0.4                        | 6.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 4.4                         | 12.0                        | -16.0                                    | 2.6                         | 8.0                         | 0.9                         | 0.5                         | 6.9                         | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 39.1  | 1.5                         | 14.0                        | -13.0                                    | 0.4                         | 11.0                        | 1.2                         | -1.3                        | 12.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 1.8                         | 13.0                        | -13.0                                    | -0.2                        | 13.0                        | 1.4                         | -1.7                        | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 0.8                         | 14.0                        | -14.0                                    | -0.6                        | 16.0                        | 1.4                         | -2.6                        | 17.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 1.1                         | 13.0                        | -13.0                                    | -1.8                        | 19.0                        | 0.2                         | -2.2                        | 18.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                                                                | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | -1.3                        | 13.0                        | -12.0                                    | -1.9                        | 22.0                        | 2.0                         | -3.3                        | 22.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | -1.1                        | 13.0                        | -13.0                                    | -2.7                        | 24.0                        | 2.3                         | -3.5                        | 25.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -2.3                        | 14.0                        | -13.0                                    | -3.4                        | 27.0                        | 2.1                         | -4.2                        | 28.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -3.8                        | 14.0                        | -13.0                                    | -4.6                        | 29.0                        | 3.1                         | -4.3                        | 31.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -5.4                        | 14.0                        | -13.0                                    | -6.1                        | 33.0                        | 3.9                         | -5.1                        | 34.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -8.2                        | 15.0                        | -13.0                                    | -8.9                        | 36.0                        | 3.9                         | -5.7                        | 37.0                        | -0.8                  | -1.0                         | -1.0                         | -1.1                                                                | -0.9                         | -0.7                         | -1.0                         | -1.0                         |
| 136.7 | -9.6                        | 15.0                        | -12.0                                    | -10.0                       | 39.0                        | 5.8                         | -6.8                        | 40.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         |

Table 102. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -0.6                        | 13.0                        | -14.0                                    | -0.5                        | 1.1                         | 0.2                         | 0.4          | 3.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 0.4                         | 13.0                        | -14.0                                    | -0.8                        | 5.7                         | 0.6                         | -0.2         | 6.7                                                                | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 29.3  | 4.1                         | 12.0                        | -16.0                                    | 1.8                         | 8.5                         | 0.6                         | 0.3          | 7.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 39.1  | 0.4                         | 14.0                        | -14.0                                    | -0.8                        | 11.0                        | 1.1                         | -1.1         | 12.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 48.8  | 0.7                         | 13.0                        | -13.0                                    | -1.2                        | 14.0                        | 0.8                         | -1.1         | 15.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 0.3                         | 14.0                        | -14.0                                    | -1.9                        | 17.0                        | 1.3                         | -2.6         | 18.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 0.5                         | 13.0                        | -14.0                                    | -1.3                        | 19.0                        | 1.0                         | -2.1         | 19.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | -1.3                        | 13.0                        | -13.0                                    | -2.5                        | 21.0                        | 2.3                         | -3.4         | 22.0                                                               | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | -1.5                        | 13.0                        | -14.0                                    | -3.1                        | 24.0                        | 2.2                         | -3.1         | 25.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -3.1                        | 14.0                        | -14.0                                    | -4.4                        | 27.0                        | 2.3                         | -3.9         | 28.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | -5.1                        | 14.0                        | -13.0                                    | -6.0                        | 29.0                        | 3.4                         | -4.3         | 31.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | 0.0                          |
| 117.2 | -6.4                        | 15.0                        | -14.0                                    | -7.4                        | 33.0                        | 4.1                         | -4.9         | 34.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | -8.4                        | 16.0                        | -13.0                                    | -10.0                       | 37.0                        | 3.8                         | -6.1         | 37.0                                                               | -0.9                         | -0.9                         | -1.0                         | -1.1                         | -0.9                         | -0.9                         | -1.1                         | -1.1                         |
| 136.7 | -10.0                       | 15.0                        | -12.0                                    | -11.0                       | 40.0                        | 5.2                         | -5.8         | 40.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 103. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -2.3                        | 13.0                        | -14.0                                    | -1.1                        | 1.4                         | 0.5                         | 1.0                         | 3.3                         | -0.2                  | -0.1                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | -1.2                        | 14.0                        | -15.0                                    | -2.3                        | 5.8                         | 0.7                         | -0.4                        | 7.0                         | 0.0                   | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 2.2                         | 13.0                        | -17.0                                    | 0.9                         | 9.1                         | 0.8                         | 0.5                         | 7.8                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | -1.1                        | 15.0                        | -14.0                                    | -2.1                        | 12.0                        | 1.0                         | -0.8                        | 12.0                        | -0.1                  | -0.1                         | -0.1                         | 0.0      | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | -1.0                        | 13.0                        | -14.0                                    | -2.6                        | 14.0                        | 0.8                         | -1.3                        | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | -1.2                        | 14.0                        | -14.0                                    | -3.5                        | 17.0                        | 1.2                         | -3.1                        | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | -1.2                        | 14.0                        | -15.0                                    | -2.5                        | 20.0                        | 0.9                         | -2.1                        | 19.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | -3.0                        | 14.0                        | -13.0                                    | -3.7                        | 22.0                        | 2.1                         | -3.1                        | 22.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | -3.3                        | 14.0                        | -14.0                                    | -4.6                        | 25.0                        | 2.2                         | -3.2                        | 26.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | -4.3                        | 14.0                        | -14.0                                    | -5.3                        | 28.0                        | 2.0                         | -3.3                        | 29.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -6.3                        | 14.0                        | -14.0                                    | -7.0                        | 30.0                        | 3.4                         | -3.7                        | 31.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1     | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | -7.7                        | 15.0                        | -14.0                                    | -8.6                        | 34.0                        | 3.9                         | -5.1                        | 35.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -9.5                        | 15.0                        | -14.0                                    | -11.0                       | 37.0                        | 3.4                         | -5.8                        | 38.0                        | -1.0                  | -1.0                         | -0.9                         | -1.0     | -0.9                         | -0.8                         | -1.2                         | -1.1                         |
| 136.7 | -11.0                       | 15.0                        | -13.0                                    | -11.0                       | 41.0                        | 4.5                         | -5.5                        | 40.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.2                         |

Table 104. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -5.1                        | 14.0                        | -17.0                                    | -2.0                        | 1.5                         | 1.1                         | 3.2          | 4.6                                                                | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         |
| 19.5  | -2.9                        | 15.0                        | -16.0                                    | -4.9                        | 5.9                         | 0.5                         | -0.6         | 6.3                                                                | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         |
| 29.3  | -0.2                        | 14.0                        | -19.0                                    | -1.5                        | 9.2                         | 1.0                         | 1.2          | 8.5                                                                | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | -3.2                        | 15.0                        | -15.0                                    | -5.0                        | 12.0                        | 0.6                         | -0.8         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | -3.1                        | 14.0                        | -15.0                                    | -5.2                        | 15.0                        | 0.5                         | -0.6         | 16.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | -3.5                        | 14.0                        | -15.0                                    | -6.5                        | 18.0                        | 1.0                         | -2.8         | 18.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | -3.4                        | 14.0                        | -16.0                                    | -4.2                        | 20.0                        | 1.0                         | -1.2         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | -4.3                        | 14.0                        | -14.0                                    | -6.1                        | 23.0                        | 1.6                         | -2.6         | 24.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | -5.0                        | 14.0                        | -16.0                                    | -6.7                        | 26.0                        | 1.7                         | -2.3         | 27.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 97.7  | -6.1                        | 14.0                        | -15.0                                    | -7.1                        | 29.0                        | 1.9                         | -2.6         | 30.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | -7.8                        | 15.0                        | -15.0                                    | -8.9                        | 32.0                        | 3.4                         | -2.9         | 33.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 117.2 | -9.3                        | 15.0                        | -15.0                                    | -10.0                       | 35.0                        | 3.5                         | -4.1         | 36.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | -11.0                       | 16.0                        | -15.0                                    | -13.0                       | 38.0                        | 2.2                         | -4.7         | 39.0                                                               | -0.7                         | -0.8                         | -0.6                         | -0.7                         | -0.6                         | -0.5                         | -1.0                         | -0.9                         |
| 136.7 | -12.0                       | 16.0                        | -14.0                                    | -12.0                       | 42.0                        | 4.2                         | -4.5         | 42.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |

Table 105. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=24.1 bars, C<sub>r</sub>=0.163 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -9.2                        | 20.0                        | -23.0                       | 2.3                         | 0.9                         | -1.6                        | 9.6                         | 9.8                         | -0.2                  | -0.1                         | -0.5                         | -0.1     | -0.1                         | -0.2                         | -0.2                         | -0.4                         |
| 19.5  | -7.9                        | 21.0                        | -24.0                       | -4.0                        | 4.8                         | -0.1                        | 3.1                         | 10.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2     | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | -3.1                        | 22.0                        | -28.0                       | -4.0                        | 8.0                         | 0.5                         | 3.9                         | 11.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | -7.1                        | 24.0                        | -23.0                       | -9.7                        | 12.0                        | 0.7                         | -1.0                        | 14.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 48.8  | -7.4                        | 22.0                        | -23.0                       | -10.0                       | 15.0                        | 0.8                         | -1.9                        | 17.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | -6.8                        | 22.0                        | -23.0                       | -11.0                       | 18.0                        | 0.6                         | -3.7                        | 21.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2     | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | -8.8                        | 23.0                        | -22.0                       | -12.0                       | 20.0                        | 3.2                         | -4.9                        | 21.0                        | -0.2                  | -0.2                         | -0.1                         | -0.2     | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 78.1  | -7.6                        | 26.0                        | -26.0                       | -10.0                       | 27.0                        | 2.1                         | -1.2                        | 30.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2     | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 87.9  | -10.0                       | 23.0                        | -26.0                       | -17.0                       | 28.0                        | 3.5                         | -7.6                        | 30.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | -11.0                       | 23.0                        | -28.0                       | -13.0                       | 31.0                        | 3.4                         | -3.2                        | 35.0                        | -0.2                  | -0.2                         | -0.2                         | -0.1     | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 107.4 | -12.0                       | 24.0                        | -27.0                       | -12.0                       | 36.0                        | 4.1                         | -1.1                        | 38.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2     | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 117.2 | -15.0                       | 24.0                        | -26.0                       | -18.0                       | 38.0                        | 6.1                         | -8.3                        | 41.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1     | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | -13.0                       | 24.0                        | -20.0                       | -16.0                       | 42.0                        | 4.6                         | -5.0                        | 39.0                        | -0.2                  | -0.2                         | -0.2                         | -0.1     | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | -14.0                       | 26.0                        | -28.0                       | -13.0                       | 48.0                        | 4.6                         | -2.3                        | 48.0                        | -0.2                  | -0.2                         | -0.1                         | -0.2     | -0.2                         | -0.2                         | -0.2                         | -0.1                         |

Table 106. Raw data for the test seal at  $\omega$ =10 krpm, PD=24.1 bars,  $C_r$ =0.163 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 30.0                        | 5.8                         | -6.7                        | 31.0                        | 0.2                         | 1.8                         | -3.0                        | 9.8                                                                | -0.2                         | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 31.0                        | 4.9                         | -6.2                        | 29.0                        | 7.4                         | -0.5                        | 0.5                         | 5.9                                                                | -0.2                         | -0.2                         | -0.4                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 32.0                        | 5.0                         | -4.4                        | 29.0                        | 9.6                         | -0.3                        | -1.3                        | 9.8                                                                | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 39.1  | 34.0                        | 5.4                         | -3.9                        | 27.0                        | 10.0                        | 1.2                         | -2.6                        | 13.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 29.0                        | 5.1                         | -6.1                        | 26.0                        | 12.0                        | 1.6                         | -4.4                        | 18.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 31.0                        | 5.8                         | -5.7                        | 28.0                        | 20.0                        | 2.1                         | -3.1                        | 20.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 68.4  | 29.0                        | 4.1                         | -6.5                        | 25.0                        | 25.0                        | 2.9                         | -1.9                        | 26.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 29.0                        | 5.7                         | -6.3                        | 26.0                        | 26.0                        | 3.2                         | -3.0                        | 28.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | 31.0                        | 6.5                         | -4.3                        | 26.0                        | 28.0                        | 2.9                         | -4.1                        | 32.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 97.7  | 27.0                        | 5.9                         | -5.4                        | 23.0                        | 31.0                        | 2.8                         | -4.4                        | 35.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 25.0                        | 6.5                         | -6.1                        | 24.0                        | 37.0                        | 4.2                         | -3.4                        | 38.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 117.2 | 25.0                        | 6.7                         | -4.7                        | 21.0                        | 41.0                        | 3.8                         | -3.8                        | 41.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 24.0                        | 8.0                         | -5.1                        | 22.0                        | 42.0                        | 4.9                         | -5.2                        | 46.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.3                         |
| 136.7 | 20.0                        | 6.8                         | -4.2                        | 15.0                        | 47.0                        | 6.0                         | -6.1                        | 52.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         |

Table 107. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 12.0                        | 9.8                         | -8.8                                     | 9.7                                                                | 2.6                         | 0.4                         | -2.2                                     | 5.9                         | -1.3                  | -0.5                         | -0.6                         | -0.8                         | -0.2                         | -0.2                         | -0.1                         | -0.4                         |
| 19.5  | 12.0                        | 10.0                        | -9.3                                     | 11.0                                                               | 7.9                         | -0.3                        | 0.3                                      | 8.1                         | -1.4                  | -0.5                         | -0.7                         | -0.8                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | 14.0                        | 11.0                        | -7.3                                     | 11.0                                                               | 12.0                        | 0.2                         | 0.5                                      | 13.0                        | -1.4                  | -0.4                         | -0.5                         | -0.9                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 39.1  | 15.0                        | 11.0                        | -6.5                                     | 11.0                                                               | 17.0                        | 0.2                         | -0.3                                     | 17.0                        | -1.1                  | -0.4                         | -0.5                         | -0.7                         | -0.4                         | -0.4                         | -0.2                         | -0.1                         |
| 48.8  | 13.0                        | 10.0                        | -7.6                                     | 10.0                                                               | 18.0                        | 0.3                         | -2.7                                     | 21.0                        | -1.3                  | -0.4                         | -0.3                         | -0.5                         | -0.3                         | -0.4                         | -0.4                         | -0.2                         |
| 58.6  | 13.0                        | 11.0                        | -8.0                                     | 11.0                                                               | 26.0                        | 0.3                         | -0.6                                     | 26.0                        | -1.1                  | -0.3                         | -0.7                         | -0.9                         | -0.4                         | -0.3                         | -0.4                         | -0.4                         |
| 68.4  | 13.0                        | 11.0                        | -8.3                                     | 8.8                                                                | 31.0                        | 0.4                         | 0.1                                      | 31.0                        | -1.3                  | -0.3                         | -0.4                         | -0.7                         | -0.8                         | -0.5                         | -0.3                         | -0.1                         |
| 78.1  | 9.3                         | 11.0                        | -9.5                                     | 9.8                                                                | 33.0                        | 1.1                         | -0.8                                     | 35.0                        | -1.6                  | -0.2                         | -0.6                         | -0.7                         | -0.5                         | -0.4                         | -0.2                         | -0.2                         |
| 87.9  | 13.0                        | 12.0                        | -6.1                                     | 9.7                                                                | 38.0                        | -0.3                        | -0.9                                     | 39.0                        | -1.2                  | -0.3                         | -0.6                         | -1.0                         | -0.7                         | -0.5                         | -0.4                         | -0.2                         |
| 97.7  | 12.0                        | 11.0                        | -6.6                                     | 8.9                                                                | 42.0                        | -0.4                        | -1.8                                     | 42.0                        | -1.0                  | -0.2                         | -0.4                         | -0.8                         | -0.7                         | -0.5                         | -0.4                         | -0.5                         |
| 107.4 | 9.8                         | 11.0                        | -6.8                                     | 9.7                                                                | 46.0                        | -0.1                        | -1.2                                     | 48.0                        | -1.1                  | -0.4                         | -0.2                         | -1.2                         | -0.6                         | -0.5                         | -0.5                         | -0.4                         |
| 117.2 | 11.0                        | 12.0                        | -6.3                                     | 6.7                                                                | 53.0                        | -0.1                        | -1.5                                     | 51.0                        | -0.9                  | -0.2                         | -0.2                         | -1.0                         | -1.0                         | -0.4                         | -0.3                         | -0.4                         |
| 127.0 | 7.5                         | 13.0                        | -7.1                                     | 6.5                                                                | 56.0                        | 1.0                         | -2.2                                     | 59.0                        | -1.2                  | -0.3                         | -0.6                         | -1.3                         | -1.0                         | -0.6                         | -0.4                         | -0.6                         |
| 136.7 | 8.2                         | 11.0                        | -5.4                                     | 1.8                                                                | 60.0                        | 1.0                         | -2.9                                     | 62.0                        | -1.0                  | -0.2                         | -0.4                         | -0.8                         | -0.9                         | -0.5                         | -0.5                         | -0.3                         |

Table 108. Raw data for the test seal at  $\omega$ =5 krpm, PD=48.3 bars,  $C_r$ =0.140 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -5.1                        | 21.0                        | -19.0                       | -3.7                        | 2.7                         | -1.4                        | 1.1                         | 4.9                                                                | -0.6                         | -1.4                         | -0.5                         | -0.2                         | -0.6                         | -0.3                         | -0.3                         | -0.6                         |
| 19.5  | -4.2                        | 23.0                        | -22.0                       | -4.7                        | 7.9                         | -0.4                        | 0.8                         | 11.0                                                               | -0.7                         | -1.1                         | -0.7                         | -0.4                         | -0.7                         | -0.2                         | -0.2                         | -0.7                         |
| 29.3  | -2.1                        | 24.0                        | -22.0                       | -4.1                        | 14.0                        | -2.4                        | 1.9                         | 17.0                                                               | -0.6                         | -0.9                         | -0.9                         | -0.3                         | -0.8                         | -0.2                         | -0.3                         | -0.9                         |
| 39.1  | -4.1                        | 25.0                        | -21.0                       | -5.2                        | 19.0                        | 0.4                         | 0.5                         | 21.0                                                               | -0.9                         | -1.1                         | -0.8                         | -0.6                         | -0.9                         | -0.4                         | -0.3                         | -0.7                         |
| 48.8  | -4.9                        | 26.0                        | -23.0                       | -6.3                        | 25.0                        | 1.6                         | -0.8                        | 27.0                                                               | -1.3                         | -1.0                         | -1.2                         | -0.8                         | -0.6                         | -0.8                         | -0.5                         | -0.9                         |
| 58.6  | -3.7                        | 28.0                        | -24.0                       | -6.3                        | 33.0                        | -0.6                        | -0.9                        | 34.0                                                               | -1.4                         | -0.8                         | -1.3                         | -0.9                         | -0.6                         | -1.2                         | -0.5                         | -1.0                         |
| 68.4  | -5.2                        | 27.0                        | -25.0                       | -4.9                        | 36.0                        | 2.3                         | 0.2                         | 40.0                                                               | -1.5                         | -0.5                         | -1.1                         | -0.6                         | -0.3                         | -0.9                         | -0.6                         | -0.8                         |
| 78.1  | -2.4                        | 26.0                        | -18.0                       | -3.9                        | 38.0                        | -2.5                        | 0.7                         | 42.0                                                               | -1.0                         | -0.5                         | -0.5                         | -1.0                         | -0.5                         | -0.7                         | -0.7                         | -0.4                         |
| 87.9  | -0.7                        | 25.0                        | -21.0                       | -4.7                        | 46.0                        | -1.1                        | 2.4                         | 49.0                                                               | -0.9                         | -0.3                         | -0.4                         | -0.8                         | -0.7                         | -0.5                         | -0.8                         | -0.5                         |
| 97.7  | -0.5                        | 24.0                        | -20.0                       | -3.5                        | 48.0                        | -3.2                        | 1.8                         | 53.0                                                               | -0.4                         | -0.3                         | -0.4                         | -0.7                         | -0.2                         | -0.3                         | -0.8                         | -0.5                         |
| 107.4 | -3.9                        | 24.0                        | -18.0                       | -3.4                        | 52.0                        | -1.6                        | 1.4                         | 54.0                                                               | -1.2                         | -0.3                         | -0.2                         | -0.8                         | -0.3                         | -0.7                         | -0.7                         | -0.3                         |
| 117.2 | -6.3                        | 26.0                        | -20.0                       | -5.9                        | 59.0                        | -0.2                        | 0.5                         | 60.0                                                               | -1.2                         | -0.3                         | -0.5                         | -0.5                         | -0.4                         | -0.5                         | -0.6                         | -0.3                         |
| 127.0 | -0.4                        | 27.0                        | -17.0                       | -18.0                       | 66.0                        | -9.5                        | -7.2                        | 60.0                                                               | -3.8                         | -6.5                         | -5.6                         | -7.2                         | -4.9                         | -6.3                         | -4.6                         | -8.0                         |
| 136.7 | -5.2                        | 26.0                        | -17.0                       | -6.0                        | 71.0                        | -1.7                        | 1.4                         | 69.0                                                               | -0.7                         | -0.3                         | -0.1                         | -0.6                         | -0.8                         | -0.3                         | -0.5                         | -0.3                         |

Table 109. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=48.3 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 32.0                        | 3.7                         | -1.6                                     | 31.0                        | 2.5                         | 0.1                         | -0.8                                     | 3.5                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 32.0                        | 3.6                         | -1.2                                     | 31.0                        | 5.0                         | 1.0                         | -1.2                                     | 5.4                         | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 31.0                        | 3.5                         | -0.9                                     | 31.0                        | 7.7                         | 1.8                         | -2.1                                     | 7.4                         | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 31.0                        | 3.8                         | -1.2                                     | 31.0                        | 9.7                         | 2.4                         | -3.0                                     | 10.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 30.0                        | 4.1                         | -1.5                                     | 30.0                        | 13.0                        | 3.1                         | -4.2                                     | 13.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 30.0                        | 4.0                         | -1.9                                     | 29.0                        | 16.0                        | 3.8                         | -4.5                                     | 16.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 29.0                        | 4.4                         | -2.3                                     | 29.0                        | 18.0                        | 4.4                         | -4.7                                     | 18.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 78.1  | 28.0                        | 4.8                         | -2.4                                     | 28.0                        | 20.0                        | 4.9                         | -5.3                                     | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 27.0                        | 5.1                         | -2.6                                     | 26.0                        | 22.0                        | 5.2                         | -6.1                                     | 23.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 24.0                        | 5.3                         | -3.0                                     | 24.0                        | 25.0                        | 5.6                         | -6.8                                     | 25.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 107.4 | 22.0                        | 5.6                         | -3.0                                     | 22.0                        | 28.0                        | 6.2                         | -7.0                                     | 28.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 20.0                        | 5.9                         | -2.9                                     | 20.0                        | 31.0                        | 6.7                         | -8.0                                     | 31.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 18.0                        | 6.7                         | -3.0                                     | 17.0                        | 33.0                        | 7.2                         | -8.8                                     | 34.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 136.7 | 14.0                        | 7.9                         | -2.4                                     | 14.0                        | 37.0                        | 7.4                         | -9.6                                     | 38.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 110. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 31.0                        | 3.5                         | -2.0                        | 31.0                        | 2.6                         | 0.4                         | -1.0         | 4.0                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 31.0                        | 3.6                         | -2.0                        | 32.0                        | 5.3                         | 0.9                         | -0.3         | 5.2                                                                | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 31.0                        | 3.6                         | -1.5                        | 31.0                        | 7.3                         | 1.4                         | -1.8         | 7.3                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 31.0                        | 4.0                         | -1.3                        | 31.0                        | 9.9                         | 1.9                         | -2.7         | 10.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 48.8  | 30.0                        | 3.7                         | -1.9                        | 30.0                        | 12.0                        | 2.8                         | -3.9         | 13.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 30.0                        | 3.8                         | -2.1                        | 30.0                        | 15.0                        | 3.3                         | -4.2         | 15.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 29.0                        | 4.1                         | -2.6                        | 29.0                        | 18.0                        | 3.9                         | -4.2         | 18.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         |
| 78.1  | 28.0                        | 4.5                         | -2.7                        | 28.0                        | 20.0                        | 4.2                         | -4.9         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 27.0                        | 5.1                         | -2.6                        | 27.0                        | 22.0                        | 4.6                         | -5.7         | 22.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 25.0                        | 5.0                         | -3.3                        | 25.0                        | 24.0                        | 4.8                         | -6.1         | 25.0                                                               | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 23.0                        | 5.2                         | -3.2                        | 24.0                        | 28.0                        | 5.4                         | -6.1         | 27.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 117.2 | 22.0                        | 5.4                         | -3.0                        | 21.0                        | 31.0                        | 5.7                         | -7.0         | 30.0                                                               | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 20.0                        | 6.0                         | -3.1                        | 20.0                        | 33.0                        | 6.3                         | -7.7         | 33.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 136.7 | 16.0                        | 7.1                         | -2.5                        | 17.0                        | 37.0                        | 6.9                         | -8.6         | 37.0                                                               | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |

Table 111. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 29.0                        | 4.1                         | -3.3                                     | 30.0                        | 2.1                         | 0.9                         | -1.7                                     | 4.8                                                                | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 29.0                        | 3.9                         | -2.9                                     | 30.0                        | 5.2                         | 0.6                         | -0.7                                     | 5.3                                                                | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 29.0                        | 4.4                         | -2.4                                     | 30.0                        | 7.7                         | 1.0                         | -1.5                                     | 7.3                                                                | -0.1                  | -0.1                         | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 30.0                        | 4.4                         | -2.0                                     | 30.0                        | 10.0                        | 1.6                         | -2.4                                     | 11.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 28.0                        | 4.3                         | -3.0                                     | 29.0                        | 12.0                        | 2.3                         | -3.7                                     | 13.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 58.6  | 28.0                        | 4.6                         | -3.0                                     | 29.0                        | 16.0                        | 2.8                         | -3.7                                     | 15.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 27.0                        | 4.0                         | -3.5                                     | 28.0                        | 19.0                        | 3.2                         | -3.3                                     | 19.0                                                               | -0.1                  | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 78.1  | 26.0                        | 5.0                         | -3.2                                     | 27.0                        | 21.0                        | 3.6                         | -4.2                                     | 21.0                                                               | 0.0                   | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 26.0                        | 5.3                         | -2.6                                     | 26.0                        | 23.0                        | 3.8                         | -5.1                                     | 23.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 24.0                        | 5.1                         | -3.6                                     | 24.0                        | 26.0                        | 4.2                         | -5.5                                     | 26.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 22.0                        | 5.7                         | -3.7                                     | 23.0                        | 30.0                        | 4.9                         | -5.3                                     | 29.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 21.0                        | 5.8                         | -3.3                                     | 20.0                        | 33.0                        | 5.1                         | -6.0                                     | 32.0                                                               | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 127.0 | 19.0                        | 6.7                         | -3.3                                     | 19.0                        | 35.0                        | 5.6                         | -6.9                                     | 35.0                                                               | -0.1                  | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 16.0                        | 7.1                         | -2.8                                     | 15.0                        | 39.0                        | 6.2                         | -7.8                                     | 40.0                                                               | -0.1                  | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |

Table 112. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 26.0                        | 5.2                         | -3.7                        | 28.0                        | 1.8                         | 1.0                         | -1.8         | 5.4                                                                | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 27.0                        | 5.2                         | -3.6                        | 27.0                        | 5.8                         | 0.3                         | -0.8         | 5.3                                                                | -0.2                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 27.0                        | 5.4                         | -3.1                        | 27.0                        | 8.4                         | 0.4                         | -1.4         | 8.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 28.0                        | 5.4                         | -2.4                        | 27.0                        | 11.0                        | 1.1                         | -2.1         | 11.0                                                               | -0.2                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 25.0                        | 5.0                         | -3.6                        | 27.0                        | 12.0                        | 1.7                         | -3.6         | 14.0                                                               | -0.1                          | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 26.0                        | 5.4                         | -3.3                        | 26.0                        | 17.0                        | 2.1                         | -3.0         | 16.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 25.0                        | 4.6                         | -3.8                        | 26.0                        | 20.0                        | 2.9                         | -2.9         | 20.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 78.1  | 24.0                        | 5.7                         | -3.8                        | 25.0                        | 22.0                        | 3.2                         | -3.6         | 22.0                                                               | -0.2                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 24.0                        | 5.8                         | -3.0                        | 24.0                        | 25.0                        | 3.0                         | -4.7         | 25.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 22.0                        | 5.8                         | -4.0                        | 22.0                        | 28.0                        | 3.3                         | -5.0         | 28.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 20.0                        | 6.4                         | -4.2                        | 21.0                        | 31.0                        | 4.1                         | -4.7         | 31.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 19.0                        | 6.5                         | -3.6                        | 19.0                        | 35.0                        | 4.2                         | -5.3         | 34.0                                                               | -0.1                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 18.0                        | 7.2                         | -3.7                        | 19.0                        | 38.0                        | 4.5                         | -6.2         | 38.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 15.0                        | 7.3                         | -2.8                        | 15.0                        | 41.0                        | 5.1                         | -7.0         | 42.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 113. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 11.0                        | 8.8                         | -8.2                        | 13.0                        | 2.1                         | 0.2                         | -2.1                                     | 5.7                         | -0.2                  | -0.2                         | -0.2                         | -0.4                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 11.0                        | 9.1                         | -7.6                        | 13.0                        | 6.8                         | 0.3                         | 0.0                                      | 6.8                         | -0.2                  | -0.1                         | -0.2                         | -0.5                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 12.0                        | 9.7                         | -5.9                        | 14.0                        | 11.0                        | -0.2                        | 0.0                                      | 11.0                        | -0.3                  | -0.3                         | -0.1                         | -0.4                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 13.0                        | 9.5                         | -5.2                        | 13.0                        | 14.0                        | 0.1                         | -0.3                                     | 15.0                        | -0.2                  | -0.2                         | -0.2                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 12.0                        | 8.6                         | -6.0                        | 13.0                        | 16.0                        | 0.3                         | -2.7                                     | 18.0                        | -0.2                  | -0.2                         | -0.1                         | -0.4                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 12.0                        | 9.7                         | -5.6                        | 14.0                        | 22.0                        | 0.8                         | -1.3                                     | 21.0                        | -0.3                  | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 68.4  | 11.0                        | 8.8                         | -5.9                        | 12.0                        | 26.0                        | 1.0                         | -0.9                                     | 26.0                        | -0.3                  | -0.3                         | -0.1                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 8.9                         | 9.0                         | -7.3                        | 12.0                        | 29.0                        | 1.6                         | -2.0                                     | 29.0                        | -0.2                  | -0.1                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 87.9  | 11.0                        | 9.5                         | -5.0                        | 12.0                        | 32.0                        | 1.0                         | -2.0                                     | 32.0                        | -0.1                  | -0.1                         | -0.2                         | -0.5                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 9.7                         | 9.5                         | -5.5                        | 10.0                        | 36.0                        | 1.0                         | -3.1                                     | 35.0                        | -0.3                  | -0.1                         | -0.1                         | -0.5                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | 8.6                         | 9.7                         | -5.9                        | 11.0                        | 40.0                        | 1.3                         | -3.2                                     | 39.0                        | -0.3                  | -0.1                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 117.2 | 8.0                         | 10.0                        | -5.0                        | 8.4                         | 45.0                        | 1.2                         | -2.7                                     | 43.0                        | -0.1                  | 0.0                          | -0.1                         | -0.4                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 127.0 | 5.6                         | 11.0                        | -6.2                        | 9.8                         | 48.0                        | 2.2                         | -3.3                                     | 49.0                        | -0.3                  | -0.3                         | -0.2                         | -0.5                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 136.7 | 5.4                         | 9.7                         | -4.1                        | 5.1                         | 52.0                        | 2.4                         | -4.3                                     | 53.0                        | -0.2                  | -0.1                         | -0.1                         | -0.5                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         |

Table 114. Raw data for the test seal at  $\omega$ =5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 24.0                        | 14.0                        | -12.0                       | 23.0                        | 2.2                         | 0.1                         | -2.7         | 4.6                                                                | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 24.0                        | 14.0                        | -12.0                       | 23.0                        | 6.4                         | 0.5                         | -1.1         | 5.6                                                                | -0.3                         | -0.4                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 29.3  | 24.0                        | 14.0                        | -11.0                       | 23.0                        | 8.9                         | 0.8                         | -2.0         | 8.3                                                                | -0.2                         | -0.5                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 24.0                        | 14.0                        | -10.0                       | 23.0                        | 12.0                        | 1.4                         | -3.0         | 12.0                                                               | -0.3                         | -0.4                         | -0.3                         | -0.5                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         |
| 48.8  | 23.0                        | 14.0                        | -12.0                       | 21.0                        | 14.0                        | 1.9                         | -5.1         | 15.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 58.6  | 22.0                        | 14.0                        | -11.0                       | 22.0                        | 19.0                        | 2.4                         | -3.5         | 19.0                                                               | -0.2                         | -0.3                         | -0.4                         | -0.5                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 68.4  | 22.0                        | 13.0                        | -12.0                       | 21.0                        | 22.0                        | 3.5                         | -3.7         | 23.0                                                               | -0.1                         | -0.4                         | -0.3                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 21.0                        | 13.0                        | -12.0                       | 21.0                        | 24.0                        | 4.1                         | -4.7         | 25.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.4                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         |
| 87.9  | 21.0                        | 14.0                        | -11.0                       | 20.0                        | 27.0                        | 4.3                         | -6.2         | 27.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 97.7  | 19.0                        | 14.0                        | -12.0                       | 18.0                        | 30.0                        | 4.9                         | -7.2         | 30.0                                                               | -0.1                         | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 107.4 | 17.0                        | 14.0                        | -12.0                       | 17.0                        | 33.0                        | 5.9                         | -6.7         | 33.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         |
| 117.2 | 15.0                        | 15.0                        | -12.0                       | 14.0                        | 37.0                        | 6.4                         | -7.2         | 36.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         |
| 127.0 | 13.0                        | 16.0                        | -12.0                       | 13.0                        | 40.0                        | 6.4                         | -8.2         | 40.0                                                               | -1.4                         | -2.2                         | -1.8                         | -2.5                         | -1.3                         | -2.2                         | -1.6                         | -2.5                         |
| 136.7 | 9.6                         | 16.0                        | -10.0                       | 9.3                         | 44.0                        | 7.3                         | -9.4         | 44.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         |

Table 115. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 11.0                        | 21.0                        | -17.0                       | 11.0                        | 2.6                         | -0.5                        | -1.3                                     | 3.9                         | -0.3                  | -0.5                         | -0.3                         | -0.4                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 12.0                        | 21.0                        | -17.0                       | 12.0                        | 7.6                         | -0.8                        | -0.2                                     | 6.9                         | -0.2                  | -0.4                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 29.3  | 12.0                        | 21.0                        | -16.0                       | 12.0                        | 11.0                        | -0.8                        | -0.5                                     | 11.0                        | -0.3                  | -0.4                         | -0.3                         | -0.5                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 39.1  | 13.0                        | 21.0                        | -15.0                       | 12.0                        | 15.0                        | -0.6                        | -0.8                                     | 14.0                        | -0.3                  | -0.5                         | -0.3                         | -0.5                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 48.8  | 11.0                        | 20.0                        | -16.0                       | 11.0                        | 18.0                        | -0.6                        | -2.1                                     | 19.0                        | -0.2                  | -0.4                         | -0.3                         | -0.6                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 58.6  | 12.0                        | 20.0                        | -15.0                       | 12.0                        | 23.0                        | -0.3                        | -1.3                                     | 22.0                        | -0.2                  | -0.4                         | -0.3                         | -0.5                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 12.0                        | 20.0                        | -16.0                       | 11.0                        | 26.0                        | -0.2                        | -1.9                                     | 26.0                        | -0.2                  | -0.4                         | -0.3                         | -0.7                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 78.1  | 11.0                        | 20.0                        | -17.0                       | 9.9                         | 29.0                        | 0.4                         | -2.2                                     | 29.0                        | -0.2                  | -0.4                         | -0.3                         | -0.6                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 87.9  | 12.0                        | 20.0                        | -15.0                       | 9.7                         | 32.0                        | 0.0                         | -2.7                                     | 32.0                        | -0.3                  | -0.3                         | -0.2                         | -0.7                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         |
| 97.7  | 10.0                        | 20.0                        | -15.0                       | 8.4                         | 35.0                        | 0.3                         | -3.3                                     | 36.0                        | -0.2                  | -0.3                         | -0.2                         | -0.7                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         |
| 107.4 | 8.3                         | 20.0                        | -15.0                       | 7.9                         | 39.0                        | 0.9                         | -3.6                                     | 39.0                        | -0.2                  | -0.3                         | -0.2                         | -0.5                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         |
| 117.2 | 6.9                         | 20.0                        | -15.0                       | 5.9                         | 44.0                        | 0.8                         | -3.6                                     | 43.0                        | -0.3                  | -0.2                         | -0.1                         | -0.6                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 127.0 | 5.2                         | 23.0                        | -14.0                       | 3.4                         | 49.0                        | -0.2                        | -4.2                                     | 45.0                        | -1.6                  | -3.0                         | -2.4                         | -3.0                         | -1.8                         | -2.2                         | -2.2                         | -3.9                         |
| 136.7 | 3.8                         | 20.0                        | -13.0                       | 2.9                         | 52.0                        | 1.3                         | -4.4                                     | 51.0                        | -0.2                  | -0.2                         | -0.1                         | -0.6                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         |

Table 116. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.3                         | 21.0                        | -20.0                       | 3.3                         | 2.0                         | -0.8                        | -1.0         | 4.6                                                                | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 19.5  | 5.5                         | 21.0                        | -20.0                       | 4.2                         | 7.5                         | -0.8                        | 0.3          | 8.6                                                                | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 5.8                         | 22.0                        | -19.0                       | 4.4                         | 12.0                        | -0.8                        | 0.5          | 13.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 5.7                         | 21.0                        | -19.0                       | 4.8                         | 16.0                        | -0.1                        | 0.4          | 17.0                                                               | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 48.8  | 5.5                         | 21.0                        | -18.0                       | 4.3                         | 19.0                        | -0.3                        | -0.4         | 21.0                                                               | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 5.5                         | 21.0                        | -18.0                       | 5.3                         | 24.0                        | 0.2                         | 0.0          | 25.0                                                               | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 5.1                         | 21.0                        | -18.0                       | 4.2                         | 27.0                        | 0.6                         | -0.5         | 29.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 78.1  | 4.2                         | 21.0                        | -19.0                       | 4.4                         | 31.0                        | 0.5                         | -0.9         | 33.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 4.5                         | 21.0                        | -17.0                       | 4.0                         | 35.0                        | 0.7                         | -0.6         | 36.0                                                               | -0.4                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 97.7  | 3.5                         | 21.0                        | -17.0                       | 3.0                         | 38.0                        | 0.3                         | -1.2         | 40.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | 2.0                         | 21.0                        | -17.0                       | 2.6                         | 42.0                        | 1.2                         | -1.7         | 43.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.4                         | -0.1                         |
| 117.2 | 0.7                         | 22.0                        | -18.0                       | 0.5                         | 48.0                        | 1.1                         | -1.9         | 48.0                                                               | -0.4                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.4                         | -0.1                         |
| 127.0 | -2.7                        | 25.0                        | -16.0                       | -0.8                        | 53.0                        | 1.5                         | -0.9         | 50.0                                                               | -2.6                         | -4.5                         | -4.1                         | -5.2                         | -3.1                         | -3.9                         | -3.6                         | -5.9                         |
| 136.7 | -2.3                        | 22.0                        | -17.0                       | -3.0                        | 57.0                        | 2.0                         | -2.9         | 58.0                                                               | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |

Table 117. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -2.9                        | 20.0                        | -21.0                                    | -5.5                        | 2.6                         | -2.0                        | -0.2                                     | 6.2                                                                | -0.3                  | -0.5                         | -0.3                         | -0.3                         | -0.4                         | -0.1                         | -0.2                         | -0.4                         |
| 19.5  | -3.9                        | 20.0                        | -22.0                                    | -5.6                        | 6.7                         | -0.2                        | 0.8                                      | 11.0                                                               | -0.3                  | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.4                         |
| 29.3  | -3.6                        | 21.0                        | -22.0                                    | -5.0                        | 11.0                        | 0.5                         | 1.7                                      | 15.0                                                               | -0.3                  | -0.4                         | -0.4                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.3                         |
| 39.1  | -4.0                        | 21.0                        | -22.0                                    | -4.6                        | 17.0                        | 0.4                         | 0.7                                      | 21.0                                                               | -0.4                  | -0.5                         | -0.5                         | -0.4                         | -0.4                         | -0.1                         | -0.2                         | -0.4                         |
| 48.8  | -4.4                        | 21.0                        | -21.0                                    | -4.8                        | 21.0                        | 1.3                         | -0.2                                     | 25.0                                                               | -0.5                  | -0.5                         | -0.4                         | -0.4                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         |
| 58.6  | -4.4                        | 21.0                        | -22.0                                    | -3.6                        | 26.0                        | 1.9                         | -0.3                                     | 28.0                                                               | -0.6                  | -0.4                         | -0.5                         | -0.6                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         |
| 68.4  | -6.2                        | 24.0                        | -22.0                                    | -6.7                        | 31.0                        | 3.0                         | -2.0                                     | 34.0                                                               | -0.4                  | -0.4                         | -0.6                         | -0.6                         | -0.3                         | -0.4                         | -0.4                         | -0.4                         |
| 78.1  | -4.5                        | 21.0                        | -19.0                                    | -1.8                        | 32.0                        | 0.3                         | 2.3                                      | 36.0                                                               | -0.4                  | -0.2                         | -0.3                         | -0.6                         | -0.1                         | -0.4                         | -0.6                         | -0.2                         |
| 87.9  | -5.2                        | 23.0                        | -20.0                                    | -4.8                        | 39.0                        | 2.6                         | 0.8                                      | 39.0                                                               | -0.5                  | -0.3                         | -0.3                         | -0.6                         | -0.3                         | -0.4                         | -0.4                         | -0.2                         |
| 97.7  | -5.3                        | 23.0                        | -20.0                                    | -5.3                        | 43.0                        | 2.2                         | 0.9                                      | 44.0                                                               | -0.4                  | -0.1                         | -0.3                         | -0.6                         | -0.2                         | -0.3                         | -0.5                         | -0.3                         |
| 107.4 | -5.8                        | 23.0                        | -20.0                                    | -4.0                        | 47.0                        | 1.2                         | 2.0                                      | 49.0                                                               | -0.4                  | -0.2                         | -0.2                         | -0.5                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         |
| 117.2 | -7.7                        | 24.0                        | -21.0                                    | -6.8                        | 53.0                        | 1.7                         | -0.7                                     | 54.0                                                               | -0.5                  | -0.2                         | -0.4                         | -0.4                         | -0.5                         | -0.3                         | -0.3                         | -0.3                         |
| 127.0 | -9.5                        | 26.0                        | -16.0                                    | -7.8                        | 57.0                        | 0.4                         | -0.3                                     | 54.0                                                               | -5.2                  | -7.7                         | -4.9                         | -8.6                         | -3.6                         | -6.9                         | -6.8                         | -11.0                        |
| 136.7 | -8.8                        | 24.0                        | -19.0                                    | -8.5                        | 62.0                        | 0.3                         | -0.2                                     | 64.0                                                               | -0.4                  | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         |

Table 118. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -0.3                        | 34.0                        | -31.0                       | -3.6                        | 2.4                         | -2.7                        | -1.8                        | 4.6                                                                | -0.6                         | -0.6                         | -0.4                         | -0.6                         | -0.3                         | -0.3                         | -0.6                         | -0.7                         |
| 19.5  | 0.6                         | 34.0                        | -30.0                       | -2.1                        | 8.0                         | -2.5                        | 0.3                         | 8.5                                                                | -0.3                         | -0.4                         | -0.5                         | -0.7                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         |
| 29.3  | 1.2                         | 34.0                        | -30.0                       | -2.4                        | 12.0                        | -1.7                        | 0.5                         | 13.0                                                               | -0.4                         | -0.6                         | -0.8                         | -0.6                         | -0.4                         | -0.2                         | -0.2                         | -0.8                         |
| 39.1  | 1.0                         | 35.0                        | -30.0                       | -2.2                        | 17.0                        | -0.6                        | -0.9                        | 18.0                                                               | -0.4                         | -0.6                         | -0.7                         | -0.7                         | -0.4                         | -0.2                         | -0.1                         | -0.6                         |
| 48.8  | -0.6                        | 34.0                        | -30.0                       | -2.4                        | 20.0                        | 0.5                         | -1.4                        | 22.0                                                               | -0.4                         | -0.6                         | -0.7                         | -0.5                         | -0.4                         | -0.2                         | -0.2                         | -0.7                         |
| 58.6  | 0.6                         | 34.0                        | -30.0                       | -2.9                        | 25.0                        | -0.2                        | -1.3                        | 26.0                                                               | -0.5                         | -0.8                         | -0.9                         | -0.5                         | -0.7                         | -0.1                         | -0.1                         | -0.8                         |
| 68.4  | -1.4                        | 36.0                        | -30.0                       | -4.5                        | 30.0                        | 1.4                         | -3.0                        | 31.0                                                               | -0.7                         | -0.9                         | -1.2                         | -0.6                         | -0.6                         | -0.4                         | -0.4                         | -1.1                         |
| 78.1  | 0.4                         | 37.0                        | -31.0                       | -3.3                        | 36.0                        | 0.7                         | -2.1                        | 36.0                                                               | -0.7                         | -0.8                         | -1.2                         | -0.3                         | -0.6                         | -0.5                         | -0.6                         | -1.1                         |
| 87.9  | -1.5                        | 36.0                        | -30.0                       | -5.1                        | 38.0                        | 2.5                         | -3.0                        | 39.0                                                               | -1.2                         | -0.8                         | -0.8                         | -0.4                         | -0.5                         | -0.8                         | -0.6                         | -0.8                         |
| 97.7  | -2.3                        | 35.0                        | -30.0                       | -6.0                        | 41.0                        | 1.9                         | -4.0                        | 44.0                                                               | -1.2                         | -0.5                         | -0.8                         | -0.6                         | -0.4                         | -0.9                         | -0.7                         | -0.8                         |
| 107.4 | -2.5                        | 37.0                        | -31.0                       | -5.1                        | 48.0                        | 0.5                         | -3.3                        | 49.0                                                               | -1.2                         | -0.2                         | -0.8                         | -0.7                         | -0.4                         | -1.0                         | -0.9                         | -0.7                         |
| 117.2 | -5.5                        | 38.0                        | -32.0                       | -7.8                        | 53.0                        | 2.9                         | -5.0                        | 54.0                                                               | -1.2                         | -0.2                         | -0.6                         | -0.7                         | -0.5                         | -0.9                         | -0.8                         | -0.5                         |
| 127.0 | -3.6                        | 36.0                        | -31.0                       | -7.3                        | 55.0                        | 0.2                         | -3.8                        | 59.0                                                               | -1.0                         | -0.2                         | -0.3                         | -0.9                         | -0.3                         | -0.7                         | -1.1                         | -0.3                         |
| 136.7 | -5.9                        | 38.0                        | -30.0                       | -9.6                        | 62.0                        | 0.9                         | -4.4                        | 64.0                                                               | -0.7                         | -0.4                         | -0.4                         | -0.4                         | -0.7                         | -0.6                         | -0.7                         | -0.5                         |

Table 119. Raw data for the test seal at  $\omega$ =10 krpm, PD=37.9 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(\boldsymbol{eH}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|---------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                                                                | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 24.0                        | 4.8                         | -3.2                        | 23.0                        | 2.7                         | 0.3                         | -0.3                        | 3.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 19.5  | 23.0                        | 5.0                         | -3.0                        | 23.0                        | 4.9                         | 1.1                         | -1.2                        | 5.0                         | 0.0                   | 0.0                          | 0.0                          | -0.1                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 23.0                        | 5.1                         | -2.9                        | 23.0                        | 7.4                         | 1.8                         | -2.1                        | 7.3                         | -0.1                  | 0.0                          | -0.1                         | -0.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 22.0                        | 5.3                         | -2.9                        | 22.0                        | 10.0                        | 2.2                         | -3.0                        | 10.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                                                                 | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 48.8  | 22.0                        | 5.4                         | -3.5                        | 22.0                        | 13.0                        | 2.9                         | -3.9                        | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 22.0                        | 5.4                         | -3.5                        | 21.0                        | 15.0                        | 3.4                         | -4.2                        | 15.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1                                                                | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 68.4  | 20.0                        | 5.5                         | -3.7                        | 20.0                        | 17.0                        | 4.1                         | -4.7                        | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 78.1  | 19.0                        | 5.9                         | -3.8                        | 19.0                        | 19.0                        | 4.5                         | -5.7                        | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 17.0                        | 6.3                         | -4.2                        | 17.0                        | 22.0                        | 5.2                         | -6.3                        | 22.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 15.0                        | 6.6                         | -4.6                        | 15.0                        | 24.0                        | 5.5                         | -6.9                        | 25.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                                                                | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 107.4 | 13.0                        | 6.9                         | -4.6                        | 13.0                        | 27.0                        | 6.1                         | -7.5                        | 28.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                                                                 | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 11.0                        | 7.5                         | -4.8                        | 11.0                        | 30.0                        | 6.4                         | -8.3                        | 31.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                                                                | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 9.1                         | 8.0                         | -5.0                        | 8.7                         | 33.0                        | 6.8                         | -8.8                        | 34.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1                                                                | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 136.7 | 6.1                         | 8.6                         | -4.7                        | 6.0                         | 36.0                        | 7.0                         | -9.6                        | 38.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                                                                | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 120. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 24.0                        | 4.3                         | -2.7                        | 24.0                        | 2.9                         | 0.3                         | -0.3                                     | 3.3                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 24.0                        | 4.4                         | -2.7                        | 24.0                        | 5.0                         | 1.1                         | -0.9                                     | 5.1                                                                | -0.1                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 29.3  | 24.0                        | 4.8                         | -2.5                        | 24.0                        | 7.3                         | 1.4                         | -1.8                                     | 7.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 23.0                        | 4.5                         | -2.6                        | 23.0                        | 9.8                         | 1.9                         | -2.6                                     | 10.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 23.0                        | 4.8                         | -3.0                        | 23.0                        | 12.0                        | 2.8                         | -3.6                                     | 12.0                                                               | -0.1                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 23.0                        | 4.7                         | -3.3                        | 23.0                        | 15.0                        | 3.4                         | -4.0                                     | 15.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 22.0                        | 5.1                         | -3.5                        | 22.0                        | 17.0                        | 3.7                         | -4.5                                     | 17.0                                                               | -0.1                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 78.1  | 21.0                        | 5.5                         | -3.4                        | 21.0                        | 19.0                        | 4.4                         | -5.3                                     | 19.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 87.9  | 19.0                        | 5.7                         | -3.9                        | 19.0                        | 21.0                        | 4.9                         | -6.0                                     | 21.0                                                               | -0.1                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 17.0                        | 5.9                         | -4.3                        | 17.0                        | 24.0                        | 5.2                         | -6.4                                     | 24.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 107.4 | 16.0                        | 6.0                         | -4.3                        | 15.0                        | 27.0                        | 5.5                         | -6.9                                     | 27.0                                                               | 0.0                           | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 117.2 | 14.0                        | 6.4                         | -4.4                        | 13.0                        | 29.0                        | 6.2                         | -7.6                                     | 30.0                                                               | -0.1                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 12.0                        | 6.9                         | -4.3                        | 11.0                        | 32.0                        | 6.6                         | -8.3                                     | 32.0                                                               | -0.1                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 136.7 | 8.8                         | 7.8                         | -4.0                        | 8.7                         | 35.0                        | 7.0                         | -9.3                                     | 36.0                                                               | -0.1                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 121. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 24.0                        | 4.1                         | -2.5                        | 24.0                        | 2.8                         | 0.5                         | -0.6                                     | 3.3                         | -0.1                  | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 24.0                        | 4.2                         | -2.5                        | 25.0                        | 5.0                         | 1.2                         | -1.1                                     | 4.9                         | 0.0                   | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 29.3  | 24.0                        | 4.4                         | -2.4                        | 24.0                        | 7.3                         | 1.5                         | -1.8                                     | 7.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 24.0                        | 4.1                         | -2.4                        | 24.0                        | 9.7                         | 2.2                         | -2.6                                     | 10.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 23.0                        | 4.4                         | -2.6                        | 24.0                        | 12.0                        | 2.9                         | -3.5                                     | 12.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 23.0                        | 4.5                         | -3.1                        | 23.0                        | 15.0                        | 3.3                         | -4.1                                     | 15.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 22.0                        | 4.8                         | -3.4                        | 22.0                        | 17.0                        | 3.8                         | -4.6                                     | 17.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 78.1  | 21.0                        | 5.1                         | -3.4                        | 21.0                        | 18.0                        | 4.4                         | -5.3                                     | 19.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 87.9  | 19.0                        | 5.4                         | -3.9                        | 19.0                        | 21.0                        | 5.0                         | -5.9                                     | 21.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 17.0                        | 5.6                         | -4.3                        | 17.0                        | 23.0                        | 5.2                         | -6.3                                     | 24.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 107.4 | 15.0                        | 5.9                         | -4.1                        | 16.0                        | 26.0                        | 5.6                         | -6.8                                     | 26.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 13.0                        | 6.3                         | -4.2                        | 13.0                        | 29.0                        | 6.1                         | -7.6                                     | 29.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 11.0                        | 6.8                         | -4.3                        | 11.0                        | 32.0                        | 6.7                         | -8.3                                     | 32.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 136.7 | 8.4                         | 7.6                         | -4.0                        | 8.5                         | 35.0                        | 6.9                         | -9.2                                     | 36.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 122. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 25.0                        | 3.8                         | -1.9                        | 25.0                        | 2.8                         | 0.7                         | -0.7         | 3.3                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 19.5  | 25.0                        | 4.2                         | -2.1                        | 25.0                        | 4.9                         | 0.9                         | -1.3         | 5.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 29.3  | 24.0                        | 4.2                         | -2.1                        | 25.0                        | 7.3                         | 1.4                         | -1.6         | 7.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 24.0                        | 4.2                         | -1.9                        | 24.0                        | 9.8                         | 2.2                         | -2.4         | 10.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 48.8  | 24.0                        | 4.3                         | -2.3                        | 24.0                        | 12.0                        | 2.7                         | -3.6         | 12.0                                                               | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 24.0                        | 4.4                         | -2.6                        | 23.0                        | 14.0                        | 3.1                         | -4.0         | 15.0                                                               | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 68.4  | 23.0                        | 4.5                         | -3.0                        | 23.0                        | 16.0                        | 3.7                         | -4.5         | 17.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 78.1  | 21.0                        | 4.8                         | -3.1                        | 21.0                        | 18.0                        | 4.3                         | -5.3         | 19.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 87.9  | 20.0                        | 5.2                         | -3.2                        | 19.0                        | 21.0                        | 4.9                         | -5.7         | 21.0                                                               | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 18.0                        | 5.5                         | -3.6                        | 18.0                        | 24.0                        | 5.2                         | -6.3         | 24.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 107.4 | 16.0                        | 5.9                         | -3.7                        | 16.0                        | 26.0                        | 5.6                         | -7.0         | 27.0                                                               | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 15.0                        | 6.1                         | -3.8                        | 14.0                        | 29.0                        | 6.1                         | -7.6         | 30.0                                                               | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 13.0                        | 6.6                         | -4.0                        | 12.0                        | 32.0                        | 6.5                         | -8.2         | 33.0                                                               | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 9.7                         | 7.6                         | -3.7                        | 9.3                         | 35.0                        | 6.9                         | -9.1         | 36.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 123. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 25.0                        | 3.7                         | -2.0                        | 25.0                        | 2.9                         | 0.7                         | -0.9                                     | 2.9                         | -0.1                  | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 19.5  | 25.0                        | 4.0                         | -2.0                        | 25.0                        | 4.8                         | 1.0                         | -1.3                                     | 4.9                         | -0.1                  | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 29.3  | 25.0                        | 4.2                         | -2.1                        | 25.0                        | 7.4                         | 1.2                         | -1.6                                     | 7.4                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 39.1  | 25.0                        | 3.9                         | -1.6                        | 25.0                        | 9.9                         | 1.9                         | -2.3                                     | 9.9                         | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 24.0                        | 3.9                         | -2.0                        | 24.0                        | 12.0                        | 2.8                         | -3.5                                     | 12.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 24.0                        | 4.2                         | -2.3                        | 24.0                        | 14.0                        | 3.1                         | -3.9                                     | 14.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 23.0                        | 4.1                         | -2.7                        | 23.0                        | 17.0                        | 3.7                         | -4.6                                     | 16.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 78.1  | 22.0                        | 4.5                         | -2.8                        | 22.0                        | 19.0                        | 4.3                         | -5.3                                     | 19.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 21.0                        | 5.0                         | -3.2                        | 20.0                        | 21.0                        | 5.0                         | -5.6                                     | 21.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 19.0                        | 5.2                         | -3.5                        | 18.0                        | 24.0                        | 5.2                         | -6.0                                     | 24.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 107.4 | 17.0                        | 5.7                         | -3.4                        | 17.0                        | 27.0                        | 5.6                         | -6.6                                     | 26.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 117.2 | 15.0                        | 6.0                         | -3.4                        | 15.0                        | 30.0                        | 5.9                         | -7.3                                     | 29.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 13.0                        | 6.5                         | -3.4                        | 13.0                        | 32.0                        | 6.4                         | -8.0                                     | 33.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 11.0                        | 7.2                         | -3.1                        | 10.0                        | 36.0                        | 6.8                         | -8.9                                     | 36.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 124. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 25.0                        | 3.8                         | -2.0                        | 25.0                        | 2.9                         | 0.7                         | -0.7         | 2.9                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 25.0                        | 4.4                         | -2.1                        | 25.0                        | 4.9                         | 1.0                         | -1.2         | 4.9                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 29.3  | 24.0                        | 4.1                         | -2.1                        | 25.0                        | 7.5                         | 1.0                         | -1.4         | 7.5                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 24.0                        | 4.0                         | -1.6                        | 25.0                        | 9.8                         | 1.6                         | -2.0         | 10.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 48.8  | 24.0                        | 4.0                         | -1.8                        | 25.0                        | 12.0                        | 2.5                         | -3.3         | 12.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 23.0                        | 4.3                         | -2.1                        | 24.0                        | 15.0                        | 2.9                         | -4.0         | 15.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 23.0                        | 3.9                         | -2.7                        | 23.0                        | 17.0                        | 3.5                         | -4.5         | 17.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 22.0                        | 4.6                         | -2.7                        | 22.0                        | 19.0                        | 4.2                         | -5.2         | 19.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 20.0                        | 5.1                         | -3.2                        | 21.0                        | 22.0                        | 4.4                         | -5.5         | 21.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 97.7  | 19.0                        | 5.2                         | -3.4                        | 19.0                        | 24.0                        | 4.8                         | -5.9         | 24.0                                                               | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 17.0                        | 5.6                         | -3.3                        | 18.0                        | 27.0                        | 5.2                         | -6.2         | 27.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 117.2 | 16.0                        | 5.8                         | -3.2                        | 15.0                        | 30.0                        | 5.6                         | -7.1         | 30.0                                                               | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 14.0                        | 6.5                         | -3.2                        | 14.0                        | 33.0                        | 6.1                         | -7.8         | 33.0                                                               | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 136.7 | 11.0                        | 6.9                         | -3.0                        | 11.0                        | 36.0                        | 6.4                         | -8.7         | 36.0                                                               | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         |

Table 125. Raw data for the test seal at  $\omega$ =5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 22.0                        | 11.0                        | -7.5                        | 22.0                        | 2.0                         | 0.7                         | -0.6                                     | 2.1                         | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 21.0                        | 9.9                         | -7.6                        | 22.0                        | 4.9                         | 0.8                         | -1.3                                     | 5.4                         | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 21.0                        | 10.0                        | -7.2                        | 22.0                        | 7.7                         | 1.7                         | -2.6                                     | 7.6                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 21.0                        | 9.6                         | -7.2                        | 21.0                        | 11.0                        | 3.0                         | -3.6                                     | 11.0                        | 0.0                   | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 48.8  | 21.0                        | 10.0                        | -7.1                        | 21.0                        | 13.0                        | 5.1                         | -5.7                                     | 13.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 19.0                        | 11.0                        | -9.0                        | 20.0                        | 14.0                        | 4.8                         | -6.0                                     | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 68.4  | 18.0                        | 11.0                        | -8.6                        | 18.0                        | 18.0                        | 5.4                         | -6.0                                     | 17.0                        | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 17.0                        | 11.0                        | -8.2                        | 17.0                        | 21.0                        | 5.9                         | -7.3                                     | 21.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 15.0                        | 11.0                        | -8.4                        | 15.0                        | 24.0                        | 7.0                         | -8.4                                     | 24.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | 14.0                        | 11.0                        | -8.8                        | 14.0                        | 27.0                        | 7.6                         | -9.6                                     | 27.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 13.0                        | 12.0                        | -8.9                        | 13.0                        | 29.0                        | 9.0                         | -11.0                                    | 30.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 11.0                        | 12.0                        | -9.4                        | 10.0                        | 32.0                        | 9.9                         | -12.0                                    | 32.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | -9.9                        | 25.0                        | -30.0                       | -5.8                        | 19.0                        | -1.4                        | 8.0                                      | 22.0                        | -12.0                 | -20.0                        | -10.0                        | -8.3                         | -8.5                         | -6.6                         | -15.0                        | -24.0                        |
| 136.7 | 5.2                         | 14.0                        | -9.9                        | 5.8                         | 38.0                        | 12.0                        | -14.0                                    | 39.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |

Table 126. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 21.0                        | 10.0                        | -8.1                        | 22.0                        | 2.6                         | 0.2                         | -0.4         | 3.2                                                                | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 19.5  | 22.0                        | 10.0                        | -7.9                        | 22.0                        | 5.7                         | 0.6                         | -1.4         | 5.2                                                                | -0.1                         | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 22.0                        | 10.0                        | -7.7                        | 22.0                        | 7.9                         | 1.7                         | -2.3         | 7.3                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 21.0                        | 10.0                        | -7.9                        | 21.0                        | 10.0                        | 2.7                         | -3.5         | 10.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 21.0                        | 10.0                        | -8.3                        | 21.0                        | 13.0                        | 3.1                         | -4.6         | 13.0                                                               | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 20.0                        | 11.0                        | -8.1                        | 21.0                        | 16.0                        | 4.1                         | -4.7         | 16.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 20.0                        | 9.9                         | -9.0                        | 20.0                        | 18.0                        | 5.1                         | -5.8         | 18.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 19.0                        | 11.0                        | -8.6                        | 19.0                        | 20.0                        | 6.1                         | -6.8         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 18.0                        | 11.0                        | -8.6                        | 17.0                        | 23.0                        | 6.6                         | -8.1         | 22.0                                                               | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | 15.0                        | 12.0                        | -9.6                        | 16.0                        | 25.0                        | 7.0                         | -8.8         | 25.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 107.4 | 14.0                        | 12.0                        | -9.7                        | 14.0                        | 28.0                        | 7.9                         | -9.3         | 28.0                                                               | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 12.0                        | 13.0                        | -10.0                       | 12.0                        | 31.0                        | 8.3                         | -10.0        | 31.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 9.9                         | 14.0                        | -9.5                        | 11.0                        | 34.0                        | 10.0                        | -11.0        | 33.0                                                               | -0.4                         | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 136.7 | 7.1                         | 14.0                        | -10.0                       | 7.3                         | 37.0                        | 9.9                         | -12.0        | 38.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |

Table 127. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 22.0                        | 11.0                        | -8.8                        | 21.0                        | 2.5                         | 0.3                         | -0.9                                     | 3.1                         | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 22.0                        | 11.0                        | -8.1                        | 22.0                        | 5.8                         | 0.6                         | -1.2                                     | 5.4                         | -0.2                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 21.0                        | 11.0                        | -8.0                        | 22.0                        | 8.0                         | 1.4                         | -2.4                                     | 7.4                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 21.0                        | 11.0                        | -8.0                        | 21.0                        | 10.0                        | 2.7                         | -3.4                                     | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 48.8  | 20.0                        | 11.0                        | -8.1                        | 21.0                        | 14.0                        | 3.0                         | -4.0                                     | 13.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 20.0                        | 11.0                        | -8.1                        | 21.0                        | 16.0                        | 4.1                         | -4.8                                     | 16.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 68.4  | 20.0                        | 10.0                        | -8.9                        | 20.0                        | 18.0                        | 4.9                         | -5.7                                     | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 19.0                        | 11.0                        | -8.7                        | 19.0                        | 20.0                        | 5.9                         | -6.6                                     | 20.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 87.9  | 17.0                        | 11.0                        | -8.9                        | 17.0                        | 23.0                        | 6.4                         | -8.0                                     | 22.0                        | -0.1                  | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 97.7  | 16.0                        | 12.0                        | -9.7                        | 15.0                        | 25.0                        | 7.1                         | -8.7                                     | 25.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 13.0                        | 13.0                        | -9.7                        | 13.0                        | 28.0                        | 7.8                         | -9.2                                     | 28.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 12.0                        | 13.0                        | -9.9                        | 11.0                        | 31.0                        | 8.3                         | -10.0                                    | 31.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 9.8                         | 15.0                        | -11.0                       | 7.6                         | 34.0                        | 7.4                         | -12.0                                    | 33.0                        | -1.7                  | -2.2                         | -2.0                         | -3.0                         | -1.6                         | -2.4                         | -2.1                         | -2.6                         |
| 136.7 | 6.8                         | 14.0                        | -10.0                       | 6.9                         | 38.0                        | 9.6                         | -12.0                                    | 39.0                        | -0.1                  | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 128. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 18.0                        | 14.0                        | -13.0                       | 18.0                        | 1.8                         | 0.2                         | -2.0                                     | 3.8                                                                | -0.3                          | -0.3                         | -0.4                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 18.0                        | 14.0                        | -12.0                       | 17.0                        | 5.6                         | 0.2                         | -1.1                                     | 4.8                                                                | -0.2                          | -0.4                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 18.0                        | 14.0                        | -12.0                       | 17.0                        | 8.0                         | 0.5                         | -1.9                                     | 7.7                                                                | -0.2                          | -0.3                         | -0.5                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 18.0                        | 14.0                        | -11.0                       | 17.0                        | 11.0                        | 1.3                         | -2.6                                     | 11.0                                                               | -0.2                          | -0.4                         | -0.4                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 48.8  | 18.0                        | 14.0                        | -12.0                       | 16.0                        | 14.0                        | 2.3                         | -4.7                                     | 14.0                                                               | -0.2                          | -0.3                         | -0.4                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 17.0                        | 14.0                        | -12.0                       | 16.0                        | 16.0                        | 2.7                         | -3.1                                     | 17.0                                                               | -0.2                          | -0.3                         | -0.5                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 68.4  | 15.0                        | 14.0                        | -13.0                       | 14.0                        | 19.0                        | 2.3                         | -2.9                                     | 20.0                                                               | -0.3                          | -0.3                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 78.1  | 14.0                        | 14.0                        | -13.0                       | 14.0                        | 22.0                        | 3.4                         | -3.9                                     | 23.0                                                               | -0.3                          | -0.3                         | -0.5                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 87.9  | 14.0                        | 14.0                        | -12.0                       | 14.0                        | 25.0                        | 3.8                         | -5.2                                     | 25.0                                                               | -0.2                          | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 97.7  | 12.0                        | 14.0                        | -12.0                       | 12.0                        | 28.0                        | 4.2                         | -5.9                                     | 28.0                                                               | -0.2                          | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 107.4 | 11.0                        | 14.0                        | -12.0                       | 10.0                        | 31.0                        | 4.7                         | -6.4                                     | 32.0                                                               | -0.2                          | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.1                         |
| 117.2 | 9.2                         | 14.0                        | -12.0                       | 8.6                         | 35.0                        | 5.7                         | -6.7                                     | 35.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 127.0 | 8.7                         | 15.0                        | -12.0                       | 5.2                         | 38.0                        | 4.3                         | -9.0                                     | 39.0                                                               | -0.2                          | -0.2                         | -0.1                         | -0.2                         | -0.4                         | -0.3                         | -0.4                         | -0.4                         |
| 136.7 | 4.8                         | 15.0                        | -12.0                       | 4.8                         | 41.0                        | 6.9                         | -9.0                                     | 42.0                                                               | -0.3                          | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         |

Table 129. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=6%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 15.0                        | 16.0                        | -16.0                                    | 15.0                        | 1.7                         | -0.2                        | -1.7                                     | 3.7                         | -0.4                  | -0.4                         | -0.6                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 15.0                        | 16.0                        | -14.0                                    | 14.0                        | 5.6                         | -0.3                        | -0.9                                     | 4.9                         | -0.4                  | -0.4                         | -0.5                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 29.3  | 15.0                        | 16.0                        | -15.0                                    | 14.0                        | 8.7                         | 0.0                         | -1.2                                     | 8.7                         | -0.3                  | -0.4                         | -0.5                         | -0.4                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 15.0                        | 16.0                        | -14.0                                    | 14.0                        | 12.0                        | 0.4                         | -1.6                                     | 12.0                        | -0.4                  | -0.4                         | -0.5                         | -0.4                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 48.8  | 15.0                        | 15.0                        | -14.0                                    | 14.0                        | 14.0                        | 1.5                         | -3.8                                     | 15.0                        | -0.5                  | -0.4                         | -0.5                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 14.0                        | 16.0                        | -15.0                                    | 14.0                        | 17.0                        | 2.0                         | -2.1                                     | 17.0                        | -0.4                  | -0.3                         | -0.5                         | -0.4                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         |
| 68.4  | 13.0                        | 15.0                        | -14.0                                    | 12.0                        | 21.0                        | 1.2                         | -1.4                                     | 21.0                        | -0.4                  | -0.3                         | -0.4                         | -0.4                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 78.1  | 12.0                        | 15.0                        | -15.0                                    | 12.0                        | 24.0                        | 2.4                         | -2.4                                     | 25.0                        | -0.4                  | -0.3                         | -0.4                         | -0.4                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 87.9  | 11.0                        | 15.0                        | -13.0                                    | 11.0                        | 27.0                        | 2.7                         | -3.3                                     | 27.0                        | -0.4                  | -0.4                         | -0.4                         | -0.4                         | -0.2                         | -0.3                         | -0.4                         | -0.2                         |
| 97.7  | 10.0                        | 15.0                        | -14.0                                    | 9.6                         | 30.0                        | 3.0                         | -4.3                                     | 31.0                        | -0.4                  | -0.3                         | -0.4                         | -0.4                         | -0.2                         | -0.3                         | -0.4                         | -0.2                         |
| 107.4 | 8.7                         | 16.0                        | -14.0                                    | 8.8                         | 33.0                        | 3.7                         | -4.8                                     | 34.0                        | -0.4                  | -0.3                         | -0.4                         | -0.4                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         |
| 117.2 | 7.5                         | 16.0                        | -14.0                                    | 7.2                         | 37.0                        | 4.2                         | -4.8                                     | 37.0                        | -0.4                  | -0.2                         | -0.4                         | -0.4                         | -0.3                         | -0.3                         | -0.4                         | -0.2                         |
| 127.0 | 5.8                         | 17.0                        | -14.0                                    | 6.0                         | 41.0                        | 4.3                         | -5.4                                     | 41.0                        | -0.5                  | -0.1                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.5                         | -0.4                         |
| 136.7 | 3.9                         | 17.0                        | -13.0                                    | 4.1                         | 44.0                        | 5.6                         | -6.8                                     | 45.0                        | -0.4                  | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.4                         | -0.2                         |

Table 130. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=8%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.0                         | 20.0                        | -19.0                       | 8.0                         | 0.7                         | -0.3                        | -0.5         | 2.6                                                                | -0.3                         | -0.4                         | -0.4                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 19.5  | 9.0                         | 19.0                        | -18.0                       | 7.1                         | 5.0                         | -1.3                        | 0.1          | 5.5                                                                | -0.4                         | -0.5                         | -0.4                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 29.3  | 8.0                         | 19.0                        | -18.0                       | 6.4                         | 8.9                         | -1.2                        | 0.4          | 9.8                                                                | -0.4                         | -0.5                         | -0.5                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 39.1  | 8.0                         | 19.0                        | -17.0                       | 7.0                         | 13.0                        | -0.1                        | -0.2         | 14.0                                                               | -0.4                         | -0.5                         | -0.5                         | -0.5                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 48.8  | 8.0                         | 19.0                        | -18.0                       | 7.0                         | 16.0                        | 0.6                         | -1.3         | 17.0                                                               | -0.4                         | -0.4                         | -0.4                         | -0.5                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 58.6  | 7.5                         | 21.0                        | -19.0                       | 5.8                         | 19.0                        | -0.3                        | -0.8         | 20.0                                                               | -0.4                         | -0.5                         | -0.5                         | -0.5                         | -0.3                         | -0.4                         | -0.4                         | -0.3                         |
| 68.4  | 5.0                         | 19.0                        | -17.0                       | 3.9                         | 24.0                        | -2.4                        | 1.0          | 24.0                                                               | -0.5                         | -0.3                         | -0.2                         | -0.6                         | -0.3                         | -0.4                         | -0.4                         | -0.2                         |
| 78.1  | 5.5                         | 18.0                        | -17.0                       | 4.9                         | 28.0                        | -0.4                        | -0.6         | 29.0                                                               | -0.4                         | -0.4                         | -0.2                         | -0.6                         | -0.3                         | -0.5                         | -0.4                         | -0.3                         |
| 87.9  | 6.1                         | 18.0                        | -16.0                       | 4.6                         | 31.0                        | 0.4                         | -1.3         | 32.0                                                               | -0.4                         | -0.2                         | -0.2                         | -0.6                         | -0.2                         | -0.4                         | -0.4                         | -0.3                         |
| 97.7  | 5.4                         | 18.0                        | -16.0                       | 4.0                         | 34.0                        | 0.7                         | -1.9         | 35.0                                                               | -0.4                         | -0.2                         | -0.2                         | -0.5                         | -0.2                         | -0.4                         | -0.4                         | -0.4                         |
| 107.4 | 3.8                         | 19.0                        | -16.0                       | 3.3                         | 38.0                        | 1.5                         | -2.6         | 39.0                                                               | -0.5                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.4                         | -0.3                         | -0.3                         |
| 117.2 | 2.9                         | 19.0                        | -16.0                       | 2.3                         | 42.0                        | 1.3                         | -2.7         | 43.0                                                               | -0.5                         | -0.1                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.3                         | -0.4                         |
| 127.0 | 2.1                         | 17.0                        | -17.0                       | 0.2                         | 45.0                        | 0.8                         | -3.8         | 49.0                                                               | -1.7                         | -3.0                         | -2.3                         | -2.2                         | -1.7                         | -1.7                         | -2.2                         | -3.9                         |
| 136.7 | 0.9                         | 18.0                        | -15.0                       | 0.5                         | 50.0                        | 3.1                         | -3.9         | 50.0                                                               | -0.4                         | -0.1                         | -0.1                         | -0.4                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         |

Table 131. Raw data for the test seal at  $\omega$ =7.5 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=10%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 16.0                        | 25.0                        | -16.0                       | 18.0                        | 2.4                         | 1.1                         | -1.1                        | 1.4                         | -0.4                  | -0.8                         | -0.2                         | -0.3     | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 16.0                        | 25.0                        | -17.0                       | 18.0                        | 6.4                         | 0.2                         | -2.3                        | 6.0                         | -0.4                  | -0.8                         | -0.2                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 16.0                        | 25.0                        | -17.0                       | 18.0                        | 9.2                         | 0.0                         | -3.6                        | 8.9                         | -0.3                  | -0.8                         | -0.2                         | -0.3     | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 15.0                        | 25.0                        | -16.0                       | 17.0                        | 12.0                        | 1.4                         | -3.3                        | 11.0                        | -0.3                  | -0.7                         | -0.2                         | -0.4     | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 48.8  | 14.0                        | 24.0                        | -16.0                       | 16.0                        | 15.0                        | 2.3                         | -5.4                        | 14.0                        | -0.3                  | -0.7                         | -0.2                         | -0.3     | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 14.0                        | 24.0                        | -16.0                       | 16.0                        | 18.0                        | 3.5                         | -6.8                        | 18.0                        | -0.3                  | -0.7                         | -0.2                         | -0.3     | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 68.4  | 14.0                        | 24.0                        | -18.0                       | 16.0                        | 20.0                        | 5.5                         | -7.7                        | 19.0                        | -0.3                  | -0.7                         | -0.2                         | -0.3     | -0.2                         | -0.3                         | -0.1                         | -0.2                         |
| 78.1  | 12.0                        | 25.0                        | -18.0                       | 13.0                        | 23.0                        | 4.5                         | -8.5                        | 22.0                        | -0.3                  | -0.7                         | -0.2                         | -0.3     | -0.3                         | -0.4                         | -0.1                         | -0.1                         |
| 87.9  | 10.0                        | 25.0                        | -17.0                       | 11.0                        | 28.0                        | 4.4                         | -9.2                        | 26.0                        | -0.3                  | -0.7                         | -0.2                         | -0.3     | -0.3                         | -0.3                         | -0.1                         | -0.1                         |
| 97.7  | 8.8                         | 25.0                        | -18.0                       | 9.8                         | 31.0                        | 4.9                         | -11.0                       | 30.0                        | -0.3                  | -0.6                         | -0.2                         | -0.4     | -0.3                         | -0.3                         | -0.1                         | -0.1                         |
| 107.4 | 7.5                         | 25.0                        | -17.0                       | 8.4                         | 34.0                        | 6.3                         | -11.0                       | 32.0                        | -0.2                  | -0.6                         | -0.2                         | -0.4     | -0.3                         | -0.4                         | -0.2                         | -0.1                         |
| 117.2 | 6.3                         | 25.0                        | -18.0                       | 6.6                         | 38.0                        | 6.9                         | -13.0                       | 36.0                        | -0.2                  | -0.7                         | -0.2                         | -0.4     | -0.3                         | -0.4                         | -0.2                         | -0.2                         |
| 127.0 | 3.9                         | 26.0                        | -17.0                       | 4.3                         | 41.0                        | 8.1                         | -14.0                       | 39.0                        | -0.2                  | -0.7                         | -0.3                         | -0.5     | -0.4                         | -0.6                         | -0.2                         | -0.1                         |
| 136.7 | 1.4                         | 25.0                        | -18.0                       | 2.9                         | 44.0                        | 9.6                         | -15.0                       | 42.0                        | -0.1                  | -0.5                         | -0.2                         | -0.4     | -0.4                         | -0.6                         | -0.2                         | -0.1                         |

Table 132. Raw data for the test seal at  $\omega$ =10 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=0%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -1.2                        | 31.0                        | -28.0                       | -1.1                        | -1.0                        | -1.9                        | -2.8         | 0.1                                                                | -0.4                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 19.5  | 4.6                         | 31.0                        | -27.0                       | -0.7                        | 6.7                         | -3.9                        | -1.7         | 4.6                                                                | -0.2                         | -0.3                         | -0.4                         | -0.4                         | -0.3                         | -0.2                         | -0.1                         | -0.3                         |
| 29.3  | 4.3                         | 30.0                        | -27.0                       | -1.0                        | 9.5                         | -3.0                        | -1.8         | 9.4                                                                | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 2.9                         | 33.0                        | -25.0                       | -0.6                        | 15.0                        | -1.7                        | -1.1         | 14.0                                                               | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.3                         |
| 48.8  | 1.4                         | 29.0                        | -26.0                       | -2.2                        | 17.0                        | -0.3                        | -3.9         | 17.0                                                               | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         |
| 58.6  | 2.8                         | 31.0                        | -26.0                       | -1.3                        | 23.0                        | 0.2                         | -4.0         | 21.0                                                               | -0.3                         | -0.4                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.3                         |
| 68.4  | 0.7                         | 33.0                        | -26.0                       | -2.2                        | 25.0                        | 2.9                         | -4.5         | 25.0                                                               | -0.3                         | -0.4                         | -0.4                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.3                         |
| 78.1  | 3.0                         | 34.0                        | -28.0                       | -3.0                        | 32.0                        | 0.6                         | -3.2         | 30.0                                                               | -0.2                         | -0.5                         | -0.5                         | -0.2                         | -0.4                         | -0.3                         | -0.2                         | -0.4                         |
| 87.9  | 1.4                         | 33.0                        | -26.0                       | -4.5                        | 34.0                        | 1.5                         | -4.6         | 33.0                                                               | -0.4                         | -0.4                         | -0.5                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.4                         |
| 97.7  | 0.6                         | 32.0                        | -26.0                       | -5.8                        | 37.0                        | 1.2                         | -6.2         | 37.0                                                               | -0.4                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.4                         | -0.3                         | -0.3                         |
| 107.4 | -0.7                        | 33.0                        | -27.0                       | -6.2                        | 42.0                        | 2.0                         | -6.5         | 42.0                                                               | -0.4                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.4                         | -0.3                         | -0.3                         |
| 117.2 | -1.3                        | 34.0                        | -28.0                       | -7.0                        | 48.0                        | 2.8                         | -6.1         | 47.0                                                               | -0.4                         | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.4                         | -0.4                         | -0.2                         |
| 127.0 | -0.6                        | 34.0                        | -27.0                       | -8.6                        | 49.0                        | 2.1                         | -7.9         | 51.0                                                               | -0.4                         | -0.1                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.4                         | -0.3                         |
| 136.7 | -3.6                        | 33.0                        | -25.0                       | -7.6                        | 52.0                        | 4.6                         | -6.2         | 53.0                                                               | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.4                         | -0.2                         |

Table 133. Raw data for the test seal at  $\omega$ =10 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=2%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re( <i>eH<sub>XX</sub></i> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|-----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                        | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | -4.2                        | 30.0                        | -29.0                       | -4.7                        | -0.4                        | -2.9                        | -0.9         | 2.1                         | -0.7                         | -0.4                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.5                         | -0.4                         |
| 19.5  | -0.3                        | 31.0                        | -30.0                       | -4.7                        | 5.9                         | -4.1                        | -0.6         | 6.7                         | -0.5                         | -0.4                         | -0.4                         | -0.3                         | -0.4                         | -0.1                         | -0.2                         | -0.5                         |
| 29.3  | -1.1                        | 31.0                        | -30.0                       | -4.5                        | 9.1                         | -3.1                        | 0.0          | 11.0                        | -0.5                         | -0.5                         | -0.4                         | -0.3                         | -0.4                         | -0.2                         | -0.1                         | -0.4                         |
| 39.1  | -1.6                        | 33.0                        | -28.0                       | -4.8                        | 16.0                        | -1.5                        | -0.9         | 16.0                        | -0.5                         | -0.7                         | -0.4                         | -0.4                         | -0.5                         | -0.1                         | -0.1                         | -0.4                         |
| 48.8  | -2.6                        | 30.0                        | -28.0                       | -5.2                        | 18.0                        | 0.1                         | -2.4         | 19.0                        | -0.4                         | -0.6                         | -0.4                         | -0.2                         | -0.5                         | -0.1                         | -0.2                         | -0.4                         |
| 58.6  | -1.1                        | 32.0                        | -28.0                       | -4.8                        | 23.0                        | -0.1                        | -2.9         | 24.0                        | -0.4                         | -0.8                         | -0.5                         | -0.2                         | -0.7                         | -0.2                         | -0.2                         | -0.5                         |
| 68.4  | -4.5                        | 35.0                        | -28.0                       | -6.9                        | 27.0                        | 1.7                         | -4.2         | 27.0                        | -0.4                         | -0.9                         | -0.7                         | -0.2                         | -0.8                         | -0.3                         | -0.2                         | -0.7                         |
| 78.1  | -0.5                        | 36.0                        | -31.0                       | -5.2                        | 33.0                        | -1.5                        | -1.5         | 34.0                        | -0.5                         | -0.9                         | -0.7                         | -0.4                         | -0.9                         | -0.6                         | -0.3                         | -0.7                         |
| 87.9  | -4.8                        | 33.0                        | -27.0                       | -7.9                        | 35.0                        | 2.6                         | -3.4         | 35.0                        | -0.9                         | -0.6                         | -0.7                         | -0.4                         | -0.5                         | -0.8                         | -0.2                         | -0.7                         |
| 97.7  | -4.8                        | 32.0                        | -28.0                       | -9.6                        | 38.0                        | 1.9                         | -5.5         | 40.0                        | -0.8                         | -0.3                         | -0.6                         | -0.6                         | -0.3                         | -0.8                         | -0.4                         | -0.6                         |
| 107.4 | -4.0                        | 34.0                        | -30.0                       | -7.9                        | 44.0                        | 0.6                         | -4.2         | 46.0                        | -0.7                         | -0.2                         | -0.6                         | -0.7                         | -0.3                         | -0.7                         | -0.6                         | -0.5                         |
| 117.2 | -7.7                        | 36.0                        | -31.0                       | -11.0                       | 51.0                        | 4.2                         | -6.1         | 51.0                        | -0.7                         | -0.2                         | -0.4                         | -0.8                         | -0.3                         | -0.6                         | -0.5                         | -0.3                         |
| 127.0 | -5.7                        | 34.0                        | -28.0                       | -10.0                       | 50.0                        | 1.5                         | -5.5         | 53.0                        | -0.6                         | -0.2                         | -0.3                         | -0.7                         | -0.2                         | -0.5                         | -0.6                         | -0.4                         |
| 136.7 | -6.6                        | 37.0                        | -29.0                       | -7.8                        | 58.0                        | 0.8                         | -2.9         | 58.0                        | -0.5                         | -0.4                         | -0.3                         | -0.3                         | -0.4                         | -0.6                         | -0.5                         | -0.2                         |

Table 134. Raw data for the test seal at  $\omega$ =10 krpm, PD=31 bars,  $C_r$ =0.140 mm, and inlet GVF=4%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.8                         | 0.7                         | -0.6                                     | 7.3                         | 0.5                         | 0.0                         | 0.1          | 0.7                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 7.6                         | 0.8                         | -0.8                                     | 7.4                         | 1.4                         | 0.1                         | 0.0          | 1.1                                                                | -0.1                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 29.3  | 7.7                         | 0.7                         | -0.8                                     | 7.4                         | 2.0                         | 0.2                         | -0.1         | 1.9                                                                | 0.0                           | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 7.6                         | 0.8                         | -1.0                                     | 7.4                         | 2.6                         | 0.2                         | 0.0          | 2.6                                                                | 0.0                           | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 7.5                         | 0.9                         | -0.9                                     | 7.4                         | 3.3                         | 0.2                         | 0.0          | 3.3                                                                | -0.1                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 58.6  | 7.6                         | 1.0                         | -0.9                                     | 7.5                         | 4.1                         | 0.2                         | -0.2         | 4.0                                                                | -0.1                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 68.4  | 7.5                         | 1.1                         | -0.9                                     | 7.6                         | 4.8                         | 0.1                         | -0.2         | 4.9                                                                | 0.0                           | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 78.1  | 7.6                         | 0.9                         | -0.8                                     | 7.5                         | 5.3                         | 0.1                         | -0.2         | 5.2                                                                | 0.0                           | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 7.6                         | 0.9                         | -0.9                                     | 7.4                         | 6.2                         | 0.2                         | -0.2         | 6.0                                                                | 0.0                           | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 7.5                         | 0.9                         | -0.9                                     | 7.6                         | 6.8                         | 0.1                         | -0.1         | 6.7                                                                | 0.0                           | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 107.4 | 7.6                         | 1.0                         | -0.7                                     | 7.5                         | 7.6                         | 0.2                         | -0.2         | 7.3                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 7.9                         | 0.8                         | -0.9                                     | 7.6                         | 8.4                         | 0.1                         | -0.5         | 8.0                                                                | 0.0                           | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 8.0                         | 0.7                         | -0.9                                     | 7.6                         | 8.7                         | 0.2                         | -0.2         | 8.8                                                                | 0.0                           | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 8.0                         | 0.8                         | -1.1                                     | 7.5                         | 9.2                         | 0.2                         | -0.2         | 9.4                                                                | 0.0                           | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 135. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.1                         | 2.3                         | -2.3                        | 4.0                         | 0.9                         | 0.2                         | -0.1                        | 1.3                         | -0.1                  | -0.1                         | -0.2                         | -0.2     | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 19.5  | 4.1                         | 2.6                         | -2.8                        | 3.8                         | 2.3                         | 0.1                         | 0.3                         | 2.1                         | -0.1                  | -0.1                         | -0.1                         | -0.2     | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 29.3  | 4.2                         | 2.5                         | -2.5                        | 4.3                         | 3.2                         | 0.2                         | 0.4                         | 2.7                         | -0.1                  | -0.1                         | -0.1                         | -0.2     | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 4.9                         | 2.4                         | -2.5                        | 4.2                         | 3.8                         | 0.2                         | -0.1                        | 3.7                         | -0.1                  | 0.0                          | -0.1                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.6                         | 2.5                         | -2.8                        | 4.4                         | 4.7                         | 0.4                         | 0.1                         | 4.6                         | -0.1                  | -0.1                         | -0.1                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 4.8                         | 2.6                         | -2.6                        | 4.4                         | 5.5                         | 0.7                         | 0.2                         | 5.1                         | 0.0                   | 0.0                          | -0.1                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 4.8                         | 2.7                         | -2.6                        | 4.8                         | 6.4                         | 0.2                         | 0.0                         | 6.5                         | -0.1                  | -0.2                         | -0.1                         | -0.1     | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 78.1  | 5.0                         | 2.7                         | -2.4                        | 4.4                         | 7.2                         | 0.3                         | 0.0                         | 6.7                         | 0.0                   | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 4.9                         | 2.6                         | -2.8                        | 4.4                         | 8.1                         | 0.3                         | 0.1                         | 7.7                         | -0.1                  | 0.0                          | -0.1                         | 0.0      | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 97.7  | 5.0                         | 2.7                         | -2.8                        | 4.6                         | 9.1                         | 0.5                         | 0.2                         | 8.8                         | -0.1                  | -0.1                         | 0.0                          | 0.0      | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 5.0                         | 2.7                         | -2.6                        | 4.7                         | 10.0                        | 0.3                         | 0.0                         | 9.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 5.2                         | 2.6                         | -2.8                        | 4.7                         | 11.0                        | 0.3                         | -0.4                        | 10.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 127.0 | 5.3                         | 2.5                         | -2.9                        | 5.2                         | 11.0                        | 0.5                         | 0.0                         | 11.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | 5.4                         | 2.2                         | -3.1                        | 5.3                         | 12.0                        | 0.7                         | 0.0                         | 12.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1     | 0.0                          | -0.1                         | 0.0                          | -0.1                         |

Table 136. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.7                         | 0.8                         | -2.6                                     | 3.4                         | -0.6                        | 0.5                         | 0.6                                      | 1.2                                                                | -0.2                          | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.5                         | -0.2                         |
| 19.5  | 3.2                         | 2.0                         | -2.7                                     | 2.9                         | 1.0                         | 0.9                         | 0.3                                      | 2.0                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         |
| 29.3  | 3.6                         | 1.8                         | -1.6                                     | 3.0                         | 2.3                         | 0.4                         | 0.5                                      | 2.9                                                                | -0.1                          | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.4                         |
| 39.1  | 3.4                         | 2.3                         | -2.1                                     | 3.8                         | 3.4                         | 0.8                         | 0.3                                      | 4.1                                                                | -0.2                          | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | 3.5                         | 2.3                         | -1.9                                     | 3.8                         | 4.4                         | 0.6                         | 0.0                                      | 5.1                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 3.5                         | 2.7                         | -2.0                                     | 3.8                         | 5.5                         | 0.5                         | 0.0                                      | 5.4                                                                | -0.2                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 3.7                         | 2.3                         | -1.8                                     | 4.1                         | 6.1                         | 1.0                         | -0.3                                     | 6.4                                                                | -0.1                          | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         |
| 78.1  | 3.9                         | 2.2                         | -2.0                                     | 3.7                         | 7.0                         | 0.8                         | -0.2                                     | 7.2                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 3.7                         | 2.3                         | -2.2                                     | 3.5                         | 8.1                         | 0.6                         | -0.1                                     | 7.9                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         |
| 97.7  | 3.8                         | 2.4                         | -2.3                                     | 3.8                         | 9.1                         | 0.5                         | -0.1                                     | 8.6                                                                | 0.0                           | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 4.2                         | 2.4                         | -2.2                                     | 3.8                         | 9.9                         | 0.5                         | -0.3                                     | 9.6                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 4.2                         | 2.4                         | -2.2                                     | 3.8                         | 10.0                        | 0.4                         | -0.6                                     | 10.0                                                               | -0.1                          | 0.0                          | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.3                         | 2.5                         | -2.2                                     | 3.8                         | 11.0                        | 0.7                         | -0.2                                     | 11.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 136.7 | 4.3                         | 1.9                         | -2.7                                     | 4.0                         | 12.0                        | 0.8                         | -0.1                                     | 12.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.2                         |

Table 137. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.9                         | 1.4                         | -2.5                        | 2.8                         | -1.3                        | 1.7                         | 0.9                                      | 0.7                         | -0.3                  | -0.2                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.2                         |
| 19.5  | 3.7                         | 2.8                         | -1.4                        | 2.7                         | 0.1                         | 1.2                         | 0.8                                      | 2.7                         | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 29.3  | 4.0                         | 2.3                         | -1.6                        | 3.1                         | 1.7                         | 0.8                         | 0.1                                      | 2.9                         | -0.1                  | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 3.7                         | 2.6                         | -1.4                        | 3.8                         | 3.3                         | 0.3                         | -0.3                                     | 4.5                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 4.0                         | 2.3                         | -1.4                        | 3.5                         | 4.3                         | 0.7                         | -0.1                                     | 5.1                         | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 58.6  | 4.1                         | 2.3                         | -1.4                        | 3.4                         | 5.5                         | 0.7                         | -0.3                                     | 5.5                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 4.1                         | 2.4                         | -1.6                        | 4.1                         | 6.3                         | 0.6                         | -0.2                                     | 7.3                         | -0.2                  | -0.4                         | -0.1                         | -0.4                         | -0.2                         | -0.1                         | -0.3                         | -0.4                         |
| 78.1  | 4.2                         | 2.5                         | -1.5                        | 3.7                         | 7.4                         | 0.0                         | 0.0                                      | 6.9                         | -0.1                  | -0.1                         | -0.1                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | 4.3                         | 2.7                         | -2.0                        | 3.8                         | 8.7                         | 0.3                         | 0.2                                      | 8.1                         | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 97.7  | 4.7                         | 2.5                         | -2.2                        | 3.5                         | 9.2                         | 0.6                         | -0.5                                     | 8.8                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 4.7                         | 2.3                         | -1.9                        | 3.5                         | 9.9                         | 0.3                         | -0.7                                     | 10.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | 0.0                          | -0.2                         | -0.1                         |
| 117.2 | 4.7                         | 2.4                         | -2.0                        | 3.5                         | 11.0                        | 0.4                         | -0.6                                     | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.4                         | 2.5                         | -2.1                        | 3.2                         | 11.0                        | 1.1                         | -0.4                                     | 12.0                        | -0.1                  | -0.1                         | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 136.7 | 4.6                         | 2.0                         | -2.3                        | 3.8                         | 12.0                        | 0.8                         | -0.4                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 138. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.57,  $C_r$ =0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.5                         | 1.6                         | -1.3                        | 7.0                         | 0.5                         | 0.0                         | -0.2         | 0.8                                                                | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 7.5                         | 1.5                         | -1.4                        | 7.2                         | 1.3                         | 0.1                         | 0.0          | 1.3                                                                | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 7.6                         | 1.2                         | -1.8                        | 7.4                         | 1.9                         | 0.3                         | -0.2         | 2.0                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 7.6                         | 1.4                         | -1.5                        | 7.3                         | 2.8                         | 0.2                         | -0.2         | 2.7                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 48.8  | 7.5                         | 1.5                         | -1.6                        | 7.3                         | 3.4                         | 0.1                         | -0.2         | 3.3                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 58.6  | 7.6                         | 1.6                         | -1.6                        | 7.2                         | 4.0                         | 0.5                         | -0.2         | 3.9                                                                | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 7.3                         | 2.0                         | -1.5                        | 7.0                         | 4.8                         | 0.6                         | -0.3         | 4.3                                                                | -0.2                         | -0.5                         | -0.1                         | -0.3                         | -0.2                         | -0.5                         | -0.1                         | -0.3                         |
| 78.1  | 7.6                         | 1.5                         | -1.6                        | 7.2                         | 5.4                         | 0.2                         | -0.4         | 5.2                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 7.6                         | 1.5                         | -1.8                        | 7.2                         | 6.3                         | 0.2                         | -0.2         | 5.9                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 7.6                         | 1.4                         | -1.7                        | 7.2                         | 6.8                         | 0.3                         | -0.3         | 6.7                                                                | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 7.6                         | 1.5                         | -1.5                        | 7.2                         | 7.6                         | 0.4                         | -0.3         | 7.2                                                                | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 7.9                         | 1.5                         | -1.6                        | 7.3                         | 8.4                         | 0.2                         | -0.6         | 8.1                                                                | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 8.0                         | 1.4                         | -1.7                        | 7.2                         | 8.6                         | 0.2                         | -0.4         | 8.7                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 8.0                         | 1.3                         | -1.9                        | 7.2                         | 9.1                         | 0.4                         | -0.3         | 9.4                                                                | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |

Table 139. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(\boldsymbol{eH}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|---------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                                                                | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.4                         | 3.7                         | -4.6                                     | 4.1                         | 0.9                         | 0.0                         | 0.2                         | 1.3                         | -0.2                  | -0.1                         | -0.2                         | -0.1                                                                | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 4.8                         | 4.2                         | -4.7                                     | 4.3                         | 2.1                         | 0.1                         | 0.1                         | 2.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 5.0                         | 4.1                         | -4.6                                     | 4.3                         | 3.1                         | 0.1                         | 0.2                         | 3.1                         | 0.0                   | -0.1                         | -0.1                         | -0.3                                                                | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 5.0                         | 4.2                         | -4.8                                     | 4.7                         | 3.9                         | 0.2                         | 0.1                         | 3.7                         | 0.0                   | 0.0                          | -0.2                         | -0.1                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 5.1                         | 3.9                         | -4.5                                     | 4.5                         | 4.8                         | 0.2                         | 0.2                         | 4.6                         | 0.0                   | -0.1                         | -0.1                         | -0.1                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 5.4                         | 4.1                         | -4.7                                     | 4.6                         | 5.7                         | 0.6                         | 0.1                         | 5.7                         | 0.0                   | -0.1                         | -0.1                         | -0.2                                                                | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 5.4                         | 4.3                         | -4.3                                     | 5.3                         | 6.4                         | 0.3                         | 0.0                         | 6.1                         | -0.1                  | -0.1                         | -0.2                         | -0.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 5.4                         | 4.3                         | -4.3                                     | 4.8                         | 7.0                         | 0.4                         | 0.1                         | 6.7                         | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 5.4                         | 4.3                         | -4.7                                     | 4.6                         | 8.2                         | 0.5                         | 0.3                         | 7.9                         | 0.0                   | 0.0                          | -0.1                         | 0.0                                                                 | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 97.7  | 5.4                         | 4.3                         | -4.6                                     | 4.9                         | 9.1                         | 0.5                         | 0.4                         | 8.9                         | 0.0                   | 0.0                          | -0.1                         | 0.0                                                                 | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 5.5                         | 4.3                         | -4.2                                     | 5.1                         | 10.0                        | 0.4                         | 0.2                         | 9.7                         | -0.1                  | -0.1                         | -0.1                         | -0.1                                                                | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 117.2 | 5.7                         | 4.2                         | -4.3                                     | 4.9                         | 11.0                        | 0.3                         | -0.3                        | 10.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0                                                                 | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.7                         | 4.2                         | -4.4                                     | 5.2                         | 11.0                        | 0.4                         | -0.1                        | 11.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 5.7                         | 3.8                         | -4.6                                     | 5.3                         | 12.0                        | 0.7                         | -0.1                        | 12.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1                                                                | 0.0                          | 0.0                          | -0.1                         | -0.1                         |

Table 140. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.3                         | 2.8                         | -2.8                        | 3.1                         | -0.2                        | 0.2                         | -0.8         | 1.7                                                                | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         |
| 19.5  | 4.2                         | 4.0                         | -3.4                        | 3.6                         | 1.3                         | 0.4                         | 0.0          | 2.8                                                                | -0.2                         | -0.1                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.4                         |
| 29.3  | 4.4                         | 3.6                         | -3.6                        | 3.9                         | 2.3                         | 0.0                         | 0.5          | 3.2                                                                | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.4                         |
| 39.1  | 4.3                         | 3.8                         | -3.2                        | 3.8                         | 3.2                         | 0.1                         | 0.3          | 3.9                                                                | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 4.4                         | 3.4                         | -3.0                        | 3.7                         | 4.1                         | 0.2                         | 0.2          | 4.7                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | 4.3                         | 3.7                         | -3.6                        | 4.0                         | 4.9                         | 0.5                         | -0.3         | 5.7                                                                | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         |
| 68.4  | 4.6                         | 3.8                         | -3.3                        | 4.4                         | 5.9                         | 0.5                         | -0.2         | 6.5                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 78.1  | 4.6                         | 3.9                         | -3.1                        | 3.9                         | 6.9                         | 0.6                         | -0.3         | 7.5                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.2                         | -0.2                         |
| 87.9  | 4.6                         | 3.6                         | -3.1                        | 4.2                         | 8.0                         | 0.4                         | -0.1         | 7.8                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 4.8                         | 3.8                         | -3.2                        | 4.3                         | 9.1                         | 0.5                         | -0.1         | 8.9                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.1                         | 3.6                         | -3.2                        | 4.3                         | 9.9                         | 0.3                         | -0.4         | 9.6                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 5.2                         | 3.7                         | -3.1                        | 4.2                         | 11.0                        | 0.6                         | -0.8         | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 5.0                         | 3.5                         | -3.1                        | 4.0                         | 11.0                        | 0.6                         | -0.5         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 136.7 | 5.2                         | 3.2                         | -3.6                        | 4.3                         | 12.0                        | 0.9                         | -0.5         | 12.0                                                               | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 141. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.57,  $C_r$ =0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.1                         | 2.5                         | -3.1                        | 2.9                         | -0.7                        | 0.2                         | -0.2                                     | 1.4                         | -0.3                  | -0.2                         | -0.3                         | -0.5                         | -0.3                         | -0.3                         | -0.5                         | -0.4                         |
| 19.5  | 4.4                         | 3.7                         | -3.0                        | 2.8                         | 0.9                         | 0.6                         | 0.2                                      | 2.1                         | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         |
| 29.3  | 3.7                         | 4.1                         | -2.7                        | 3.1                         | 2.0                         | 0.7                         | -0.1                                     | 3.0                         | -0.3                  | -0.4                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.3                         | -0.3                         |
| 39.1  | 4.0                         | 3.7                         | -2.8                        | 3.3                         | 3.0                         | 0.2                         | 0.1                                      | 4.0                         | -0.1                  | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 4.0                         | 3.6                         | -2.6                        | 3.3                         | 4.1                         | 0.3                         | 0.3                                      | 5.6                         | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         |
| 58.6  | 4.5                         | 3.7                         | -2.8                        | 4.2                         | 4.9                         | 0.6                         | 0.1                                      | 6.3                         | -0.2                  | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         |
| 68.4  | 4.0                         | 3.5                         | -2.5                        | 3.5                         | 6.1                         | 0.6                         | -1.0                                     | 6.8                         | -0.1                  | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         |
| 78.1  | 3.9                         | 3.7                         | -2.9                        | 4.1                         | 7.2                         | 0.6                         | -0.7                                     | 7.7                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 87.9  | 3.9                         | 3.5                         | -2.7                        | 3.8                         | 8.2                         | 0.6                         | -0.1                                     | 8.3                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 97.7  | 4.1                         | 3.8                         | -3.4                        | 3.6                         | 9.1                         | 1.0                         | -0.3                                     | 9.0                         | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 4.5                         | 3.8                         | -2.6                        | 3.9                         | 10.0                        | 1.1                         | -0.5                                     | 10.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         |
| 117.2 | 4.7                         | 3.9                         | -2.6                        | 3.3                         | 11.0                        | 1.0                         | -1.1                                     | 11.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 4.8                         | 3.8                         | -3.0                        | 2.9                         | 11.0                        | 0.7                         | -0.6                                     | 12.0                        | -0.1                  | -0.1                         | -0.1                         | -0.4                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 136.7 | 4.8                         | 3.6                         | -3.4                        | 4.0                         | 13.0                        | 0.8                         | -0.9                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |

Table 142. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.57,  $C_r$ =0.188 mm, and inlet GVF=92%
| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.0                         | 2.0                         | -2.4                        | 6.9                         | 0.8                         | 0.1                         | 0.0                                      | 0.8                                                                | 0.0                           | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 19.5  | 7.2                         | 2.1                         | -2.2                        | 7.0                         | 1.5                         | 0.2                         | 0.0                                      | 1.4                                                                | 0.0                           | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 29.3  | 7.5                         | 2.1                         | -2.5                        | 7.1                         | 2.0                         | 0.2                         | -0.2                                     | 2.3                                                                | 0.0                           | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 7.4                         | 2.2                         | -2.4                        | 7.0                         | 2.7                         | 0.3                         | -0.2                                     | 2.9                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 48.8  | 7.2                         | 2.1                         | -2.5                        | 7.0                         | 3.4                         | 0.4                         | -0.1                                     | 3.4                                                                | 0.0                           | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 58.6  | 7.4                         | 2.4                         | -2.3                        | 7.0                         | 4.1                         | 0.4                         | -0.2                                     | 3.9                                                                | -0.1                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 7.3                         | 2.3                         | -2.4                        | 7.1                         | 4.9                         | 0.5                         | -0.3                                     | 4.5                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         |
| 78.1  | 7.5                         | 2.1                         | -2.4                        | 7.1                         | 5.3                         | 0.4                         | -0.3                                     | 5.2                                                                | -0.1                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 87.9  | 7.6                         | 2.1                         | -2.5                        | 7.1                         | 6.3                         | 0.3                         | -0.4                                     | 6.0                                                                | 0.0                           | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 7.4                         | 2.2                         | -2.6                        | 7.1                         | 6.8                         | 0.5                         | -0.3                                     | 6.6                                                                | 0.0                           | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 107.4 | 7.5                         | 2.4                         | -2.4                        | 7.0                         | 7.5                         | 0.4                         | -0.4                                     | 7.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 7.7                         | 2.2                         | -2.6                        | 7.2                         | 8.3                         | 0.2                         | -0.7                                     | 8.0                                                                | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 7.9                         | 2.2                         | -2.6                        | 7.2                         | 8.6                         | 0.3                         | -0.5                                     | 8.5                                                                | -0.1                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 7.9                         | 1.9                         | -2.8                        | 7.2                         | 9.1                         | 0.5                         | -0.3                                     | 9.2                                                                | -0.1                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |

Table 143. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.2                         | 5.7                         | -6.7                                     | 3.4                         | 0.7                         | -0.1                        | -0.1                                     | 0.8                                                                | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 19.5  | 5.1                         | 5.2                         | -6.6                                     | 4.3                         | 1.8                         | 0.0                         | -0.1                                     | 2.5                                                                | -0.1                  | -0.1                         | -0.3                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 29.3  | 5.2                         | 5.7                         | -6.3                                     | 4.6                         | 2.8                         | 0.1                         | 0.6                                      | 2.8                                                                | -0.1                  | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 5.2                         | 5.4                         | -6.7                                     | 4.6                         | 3.6                         | 0.3                         | 0.1                                      | 3.7                                                                | 0.0                   | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 48.8  | 5.2                         | 5.4                         | -6.3                                     | 4.6                         | 4.6                         | 0.5                         | 0.7                                      | 4.4                                                                | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 58.6  | 5.7                         | 5.6                         | -6.5                                     | 5.2                         | 5.4                         | 0.7                         | 0.3                                      | 5.2                                                                | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 5.8                         | 5.5                         | -6.5                                     | 5.1                         | 6.0                         | 0.6                         | 0.1                                      | 5.9                                                                | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 5.7                         | 5.9                         | -6.3                                     | 5.2                         | 6.9                         | 0.5                         | 0.2                                      | 6.8                                                                | 0.0                   | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 87.9  | 5.7                         | 5.9                         | -6.6                                     | 4.6                         | 7.8                         | 0.5                         | 0.2                                      | 7.7                                                                | 0.0                   | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.8                         | 6.0                         | -6.3                                     | 4.7                         | 8.8                         | 0.4                         | 0.4                                      | 8.5                                                                | 0.0                   | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 5.8                         | 6.0                         | -6.1                                     | 5.0                         | 9.7                         | 0.2                         | 0.3                                      | 9.4                                                                | 0.0                   | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 117.2 | 5.9                         | 5.9                         | -6.1                                     | 5.0                         | 11.0                        | 0.2                         | -0.1                                     | 10.0                                                               | 0.0                   | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | 5.9                         | 5.6                         | -6.1                                     | 5.2                         | 11.0                        | 0.0                         | 0.2                                      | 11.0                                                               | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 136.7 | 5.8                         | 5.3                         | -6.3                                     | 5.5                         | 12.0                        | 0.7                         | 0.1                                      | 12.0                                                               | 0.0                   | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 144. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.4                         | 4.6                         | -5.2                        | 3.4                         | -1.0                        | -1.0                        | -0.5                                     | 1.2                                                                | -0.6                          | -0.2                         | -0.5                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.5                         |
| 19.5  | 5.3                         | 5.3                         | -5.3                        | 4.5                         | 1.0                         | 0.0                         | 0.4                                      | 2.1                                                                | -0.2                          | -0.2                         | -0.3                         | -0.5                         | -0.1                         | -0.2                         | -0.2                         | -0.5                         |
| 29.3  | 4.8                         | 5.3                         | -4.7                        | 3.1                         | 2.1                         | 0.0                         | 0.6                                      | 3.1                                                                | -0.1                          | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.5                         |
| 39.1  | 5.3                         | 4.9                         | -4.4                        | 3.9                         | 3.2                         | 0.1                         | -0.2                                     | 3.9                                                                | 0.0                           | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         |
| 48.8  | 5.3                         | 4.8                         | -4.4                        | 3.9                         | 4.2                         | 0.4                         | 0.2                                      | 5.1                                                                | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         |
| 58.6  | 5.2                         | 5.0                         | -4.4                        | 4.3                         | 5.0                         | 0.3                         | -0.1                                     | 5.0                                                                | -0.1                          | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 68.4  | 5.0                         | 4.9                         | -4.5                        | 4.8                         | 5.9                         | 0.5                         | 0.2                                      | 5.9                                                                | -0.1                          | -0.2                         | -0.2                         | -0.5                         | -0.1                         | -0.3                         | -0.3                         | -0.7                         |
| 78.1  | 5.1                         | 5.2                         | -4.4                        | 4.5                         | 6.5                         | 0.6                         | -0.5                                     | 7.2                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 87.9  | 4.9                         | 5.1                         | -4.8                        | 4.3                         | 7.8                         | 0.6                         | -0.3                                     | 8.0                                                                | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 4.9                         | 5.4                         | -4.6                        | 4.3                         | 8.8                         | 0.7                         | -0.4                                     | 9.1                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.2                         | 5.4                         | -4.5                        | 4.5                         | 9.9                         | 0.7                         | -1.0                                     | 9.8                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 5.4                         | 5.3                         | -4.5                        | 4.2                         | 11.0                        | 0.6                         | -0.7                                     | 11.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 5.5                         | 5.1                         | -4.8                        | 4.5                         | 11.0                        | 0.7                         | -0.6                                     | 12.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | 5.8                         | 4.8                         | -4.9                        | 5.0                         | 12.0                        | 0.9                         | -0.5                                     | 12.0                                                               | 0.0                           | -0.1                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 145. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.57,  $C_r$ =0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.4                         | 3.7                         | -4.9                                     | 2.6                         | 0.2                         | 0.0                         | -0.6                                     | 1.8                         | -0.4                  | -0.4                         | -0.6                         | -0.4                         | -0.4                         | -0.4                         | -0.3                         | -0.6                         |
| 19.5  | 5.4                         | 5.4                         | -4.9                                     | 2.6                         | 0.9                         | 0.1                         | -0.3                                     | 2.2                         | -0.2                  | -0.1                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 29.3  | 4.2                         | 5.1                         | -4.7                                     | 3.3                         | 1.9                         | 0.5                         | 1.0                                      | 3.0                         | -0.1                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         |
| 39.1  | 4.8                         | 5.0                         | -4.5                                     | 2.6                         | 3.3                         | 0.1                         | 1.0                                      | 4.1                         | -0.2                  | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 48.8  | 4.7                         | 5.0                         | -3.8                                     | 2.8                         | 4.4                         | 0.3                         | 0.5                                      | 4.9                         | -0.3                  | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.3                         | -0.3                         |
| 58.6  | 5.0                         | 5.0                         | -3.6                                     | 3.2                         | 5.2                         | 0.1                         | -0.3                                     | 5.9                         | -0.1                  | -0.2                         | -0.2                         | -0.5                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         |
| 68.4  | 4.6                         | 4.5                         | -4.2                                     | 3.9                         | 5.8                         | 0.4                         | -0.2                                     | 7.0                         | -0.2                  | -0.5                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 4.6                         | 4.5                         | -4.0                                     | 3.7                         | 6.6                         | 0.5                         | -0.4                                     | 7.6                         | -0.3                  | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | 4.5                         | 4.6                         | -4.3                                     | 3.3                         | 7.8                         | 0.8                         | -0.5                                     | 8.3                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 4.6                         | 4.6                         | -4.4                                     | 3.6                         | 8.8                         | 1.1                         | -0.3                                     | 9.4                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 107.4 | 4.7                         | 4.9                         | -4.0                                     | 3.7                         | 9.8                         | 0.6                         | -1.1                                     | 10.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 117.2 | 5.3                         | 4.9                         | -4.2                                     | 3.5                         | 11.0                        | 0.8                         | -1.1                                     | 11.0                        | -0.2                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 5.2                         | 5.0                         | -4.0                                     | 3.6                         | 11.0                        | 1.2                         | -0.6                                     | 11.0                        | -0.1                  | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 136.7 | 5.1                         | 4.9                         | -4.9                                     | 3.7                         | 12.0                        | 1.0                         | -1.1                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |

Table 146. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.57, C<sub>r</sub>=0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.4                         | 1.0                         | -0.5                                     | 5.9                         | 0.7                         | 0.0                         | -0.1                                     | 0.6                                                                | -0.1                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 6.5                         | 1.1                         | -0.7                                     | 5.9                         | 1.4                         | 0.1                         | -0.2                                     | 1.3                                                                | -0.1                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 29.3  | 6.4                         | 1.0                         | -0.9                                     | 6.3                         | 2.1                         | -0.2                        | -0.1                                     | 2.2                                                                | 0.0                           | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 6.3                         | 1.2                         | -0.7                                     | 5.9                         | 2.9                         | 0.2                         | -0.1                                     | 3.2                                                                | 0.0                           | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 48.8  | 6.3                         | 1.1                         | -0.8                                     | 6.0                         | 3.5                         | 0.0                         | 0.1                                      | 3.8                                                                | 0.0                           | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 6.4                         | 1.2                         | -0.7                                     | 6.1                         | 4.5                         | 0.2                         | -0.1                                     | 4.4                                                                | -0.1                          | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.3                         | 1.3                         | -0.8                                     | 6.0                         | 5.3                         | -0.1                        | -0.2                                     | 5.3                                                                | -0.1                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         |
| 78.1  | 6.4                         | 1.2                         | -0.8                                     | 6.0                         | 6.0                         | 0.0                         | -0.2                                     | 5.8                                                                | -0.1                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 6.5                         | 1.1                         | -0.9                                     | 6.1                         | 7.0                         | 0.1                         | -0.1                                     | 6.8                                                                | -0.1                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 6.4                         | 1.0                         | -0.9                                     | 6.2                         | 7.6                         | 0.1                         | -0.1                                     | 7.5                                                                | 0.0                           | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 107.4 | 6.5                         | 1.2                         | -0.8                                     | 6.3                         | 8.6                         | 0.1                         | -0.2                                     | 8.2                                                                | -0.1                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 117.2 | 6.7                         | 1.0                         | -0.9                                     | 6.3                         | 9.2                         | 0.0                         | -0.4                                     | 9.1                                                                | -0.1                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 6.9                         | 0.9                         | -1.0                                     | 6.5                         | 9.7                         | 0.1                         | -0.3                                     | 9.8                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.2                         |
| 136.7 | 7.0                         | 0.9                         | -1.2                                     | 6.5                         | 10.0                        | 0.1                         | -0.2                                     | 11.0                                                               | 0.0                           | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 147. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.1                         | 2.5                         | -2.3                        | 4.0                         | 0.4                         | 0.3                         | 0.0                                      | 1.1                         | -0.2                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 19.5  | 4.2                         | 2.9                         | -2.6                        | 4.3                         | 2.2                         | 0.1                         | 0.2                                      | 2.1                         | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 4.5                         | 2.9                         | -2.4                        | 4.5                         | 3.4                         | 0.2                         | 0.4                                      | 3.1                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 4.7                         | 2.8                         | -2.4                        | 4.7                         | 4.0                         | 0.1                         | 0.2                                      | 4.0                         | -0.1                  | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.9                         | 2.6                         | -2.5                        | 4.6                         | 5.1                         | 0.3                         | 0.3                                      | 4.9                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 5.1                         | 2.8                         | -2.4                        | 4.7                         | 5.7                         | 0.5                         | 0.2                                      | 5.9                         | 0.0                   | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 68.4  | 5.1                         | 2.8                         | -2.3                        | 4.8                         | 6.7                         | 0.4                         | 0.0                                      | 6.8                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 5.3                         | 3.0                         | -2.2                        | 5.0                         | 7.4                         | 0.3                         | 0.0                                      | 7.3                         | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 5.2                         | 2.8                         | -2.6                        | 4.9                         | 8.5                         | 0.5                         | 0.1                                      | 8.4                         | 0.0                   | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 5.4                         | 2.9                         | -2.8                        | 5.1                         | 9.4                         | 0.6                         | 0.3                                      | 9.5                         | 0.0                   | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 5.4                         | 2.9                         | -2.4                        | 5.2                         | 10.0                        | 0.4                         | 0.1                                      | 9.9                         | 0.0                   | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 117.2 | 5.5                         | 2.9                         | -2.5                        | 5.3                         | 11.0                        | 0.5                         | -0.2                                     | 11.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.4                         | 3.0                         | -2.5                        | 5.4                         | 12.0                        | 0.6                         | 0.2                                      | 12.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 5.5                         | 2.9                         | -2.7                        | 5.8                         | 13.0                        | 0.7                         | 0.3                                      | 12.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |

Table 148. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.7                         | 2.4                         | -2.9                                     | 2.4                         | -0.6                        | 0.9                         | 0.1                                      | 1.2                                                                | -0.3                          | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         |
| 19.5  | 3.6                         | 2.7                         | -2.6                                     | 3.2                         | 1.5                         | 0.3                         | 1.2                                      | 2.3                                                                | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 3.8                         | 2.4                         | -2.3                                     | 3.9                         | 2.8                         | 0.7                         | 0.2                                      | 3.7                                                                | -0.1                          | -0.1                         | -0.2                         | -0.5                         | -0.1                         | -0.1                         | -0.3                         | -0.4                         |
| 39.1  | 4.1                         | 2.7                         | -2.0                                     | 3.1                         | 3.9                         | 0.6                         | 0.2                                      | 4.6                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | 0.0                          | -0.1                         | -0.2                         | -0.3                         |
| 48.8  | 3.9                         | 2.7                         | -2.5                                     | 3.4                         | 5.0                         | 0.8                         | 0.4                                      | 5.5                                                                | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 58.6  | 4.4                         | 2.8                         | -2.3                                     | 3.8                         | 5.6                         | 1.0                         | 0.1                                      | 6.1                                                                | -0.2                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 4.3                         | 3.2                         | -2.5                                     | 4.5                         | 6.6                         | 0.0                         | 0.0                                      | 6.4                                                                | -0.2                          | -0.3                         | -0.1                         | -0.5                         | -0.1                         | -0.2                         | -0.1                         | -0.5                         |
| 78.1  | 4.6                         | 3.3                         | -2.3                                     | 4.3                         | 7.7                         | 0.3                         | -0.2                                     | 7.6                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 87.9  | 4.4                         | 2.6                         | -2.8                                     | 4.0                         | 9.2                         | 0.5                         | 0.3                                      | 8.7                                                                | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.0                         | 2.9                         | -2.6                                     | 4.1                         | 10.0                        | 0.6                         | 0.0                                      | 9.8                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 4.8                         | 3.1                         | -2.3                                     | 4.2                         | 11.0                        | 0.4                         | -0.1                                     | 10.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 5.0                         | 2.8                         | -2.4                                     | 3.8                         | 12.0                        | 0.4                         | 0.0                                      | 11.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.0                         | 2.8                         | -2.7                                     | 4.1                         | 12.0                        | 0.7                         | 0.1                                      | 12.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | 5.1                         | 2.7                         | -3.1                                     | 4.4                         | 13.0                        | 0.7                         | 0.0                                      | 13.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 149. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.0                         | 0.8                         | -3.2                                     | 1.8                         | -1.5                        | 1.9                         | 1.3                         | -0.3                                                               | -0.3                  | -0.2                         | -0.4                         | -0.6     | -0.3                         | -0.3                         | -0.6                         | -0.2                         |
| 19.5  | 3.5                         | 2.2                         | -2.3                                     | 1.5                         | 0.7                         | 1.8                         | 0.6                         | 2.5                                                                | -0.2                  | -0.1                         | -0.3                         | -0.3     | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 29.3  | 3.3                         | 2.8                         | -1.7                                     | 2.7                         | 2.1                         | 1.0                         | 0.7                         | 3.7                                                                | -0.2                  | -0.3                         | -0.2                         | -0.2     | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 39.1  | 3.5                         | 3.0                         | -1.7                                     | 2.6                         | 3.7                         | 0.7                         | 0.7                         | 4.7                                                                | -0.1                  | -0.1                         | -0.1                         | -0.3     | -0.1                         | 0.0                          | -0.3                         | 0.0                          |
| 48.8  | 3.9                         | 2.9                         | -2.2                                     | 2.7                         | 5.4                         | 0.6                         | 0.2                         | 5.7                                                                | -0.2                  | -0.2                         | -0.1                         | -0.2     | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 4.1                         | 2.8                         | -2.3                                     | 3.0                         | 5.8                         | 0.8                         | 0.7                         | 6.6                                                                | -0.2                  | -0.2                         | -0.2                         | -0.3     | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 68.4  | 4.0                         | 3.1                         | -1.9                                     | 2.8                         | 6.7                         | 0.4                         | 0.0                         | 7.5                                                                | -0.2                  | -0.2                         | -0.2                         | -0.4     | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 78.1  | 4.3                         | 2.8                         | -2.2                                     | 3.1                         | 7.9                         | 0.6                         | -0.4                        | 8.3                                                                | -0.2                  | -0.2                         | -0.2                         | -0.3     | -0.1                         | -0.3                         | -0.2                         | -0.5                         |
| 87.9  | 4.2                         | 2.9                         | -2.3                                     | 3.0                         | 8.9                         | 0.6                         | 0.2                         | 8.8                                                                | -0.2                  | -0.2                         | -0.1                         | -0.3     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 4.3                         | 3.0                         | -2.6                                     | 3.1                         | 10.0                        | 0.3                         | -0.1                        | 9.8                                                                | -0.1                  | -0.1                         | -0.2                         | -0.2     | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 107.4 | 4.6                         | 3.0                         | -2.0                                     | 3.0                         | 11.0                        | 0.5                         | 0.0                         | 11.0                                                               | -0.1                  | -0.1                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 117.2 | 4.8                         | 2.9                         | -2.3                                     | 2.7                         | 12.0                        | 0.3                         | -0.1                        | 12.0                                                               | -0.1                  | -0.1                         | -0.2                         | -0.2     | 0.0                          | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 4.7                         | 2.7                         | -2.3                                     | 3.1                         | 12.0                        | 0.3                         | 0.1                         | 13.0                                                               | -0.1                  | -0.2                         | -0.2                         | -0.2     | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 136.7 | 4.6                         | 2.4                         | -3.0                                     | 2.8                         | 14.0                        | 0.8                         | -0.1                        | 15.0                                                               | -0.1                  | -0.2                         | -0.2                         | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 150. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.1                         | 1.6                         | -1.3                                     | 5.7                         | 0.8                         | 0.0                         | 0.0                                      | 0.8                                                                | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 6.1                         | 1.8                         | -1.5                                     | 5.6                         | 1.5                         | 0.2                         | -0.2                                     | 1.5                                                                | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 29.3  | 6.4                         | 1.9                         | -1.7                                     | 5.8                         | 2.1                         | 0.2                         | 0.0                                      | 2.6                                                                | 0.0                          | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 6.2                         | 1.7                         | -1.6                                     | 5.8                         | 2.9                         | 0.1                         | -0.2                                     | 3.2                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 48.8  | 6.4                         | 1.9                         | -1.6                                     | 5.9                         | 3.8                         | 0.1                         | -0.1                                     | 3.7                                                                | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 58.6  | 6.3                         | 1.9                         | -1.5                                     | 5.9                         | 4.4                         | 0.2                         | -0.2                                     | 4.5                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 68.4  | 6.1                         | 1.8                         | -1.7                                     | 5.9                         | 5.7                         | 0.4                         | -0.6                                     | 5.0                                                                | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.4                         | -0.1                         | -0.2                         |
| 78.1  | 6.3                         | 1.8                         | -1.7                                     | 5.7                         | 6.0                         | 0.2                         | -0.3                                     | 6.0                                                                | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 87.9  | 6.4                         | 1.8                         | -1.7                                     | 5.8                         | 6.9                         | 0.2                         | -0.2                                     | 6.8                                                                | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 6.3                         | 1.8                         | -1.7                                     | 5.9                         | 7.7                         | 0.0                         | -0.1                                     | 7.5                                                                | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 107.4 | 6.6                         | 1.8                         | -1.6                                     | 5.9                         | 8.4                         | 0.1                         | -0.3                                     | 8.1                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 117.2 | 6.7                         | 1.8                         | -1.6                                     | 6.1                         | 9.3                         | 0.0                         | -0.6                                     | 9.0                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 6.9                         | 1.7                         | -1.8                                     | 6.4                         | 9.6                         | 0.1                         | -0.3                                     | 9.8                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 6.9                         | 1.5                         | -2.0                                     | 6.4                         | 10.0                        | 0.1                         | -0.2                                     | 10.0                                                               | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |

Table 151. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.1                         | 3.9                         | -4.2                        | 3.5                         | 0.3                         | 0.0                         | 0.0                                      | 1.2                         | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         |
| 19.5  | 3.8                         | 4.0                         | -4.2                        | 3.9                         | 1.6                         | -0.1                        | 0.0                                      | 1.9                         | -0.2                  | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 3.9                         | 3.9                         | -4.3                        | 4.2                         | 2.8                         | 0.3                         | 0.1                                      | 3.4                         | -0.2                  | -0.2                         | -0.2                         | -0.5                         | -0.2                         | -0.4                         | -0.1                         | -0.4                         |
| 39.1  | 4.4                         | 3.8                         | -4.3                        | 3.8                         | 4.1                         | -0.2                        | 0.1                                      | 3.6                         | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 4.4                         | 3.7                         | -4.5                        | 4.3                         | 4.9                         | 0.2                         | 0.3                                      | 4.6                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 58.6  | 4.7                         | 4.0                         | -4.1                        | 4.6                         | 5.7                         | 0.4                         | 0.3                                      | 5.6                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 4.9                         | 3.8                         | -4.0                        | 4.7                         | 6.6                         | 0.2                         | 0.0                                      | 6.4                         | -0.2                  | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 78.1  | 4.9                         | 3.9                         | -4.2                        | 4.5                         | 7.5                         | 0.2                         | 0.0                                      | 7.3                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | 0.0                          |
| 87.9  | 4.9                         | 4.0                         | -4.4                        | 4.6                         | 8.5                         | 0.4                         | 0.2                                      | 8.3                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.0                         | 4.1                         | -4.3                        | 4.7                         | 9.6                         | 0.5                         | 0.5                                      | 9.4                         | 0.0                   | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.2                         | 4.2                         | -3.8                        | 5.0                         | 10.0                        | 0.2                         | 0.5                                      | 10.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 5.2                         | 4.0                         | -4.3                        | 5.0                         | 11.0                        | 0.3                         | -0.3                                     | 11.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | 5.5                         | 4.1                         | -4.4                        | 5.5                         | 12.0                        | 0.5                         | 0.4                                      | 12.0                        | -0.1                  | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 5.7                         | 3.9                         | -4.4                        | 5.5                         | 13.0                        | 0.5                         | 0.4                                      | 13.0                        | -0.1                  | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 152. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.7                         | 3.6                         | -3.7                        | 2.7                         | -0.3                        | 0.4                         | -0.9         | 0.8                                                                | -0.3                         | -0.5                         | -0.4                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.5                         |
| 19.5  | 3.8                         | 4.3                         | -4.0                        | 2.7                         | 1.3                         | 0.1                         | 0.2          | 1.8                                                                | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 29.3  | 3.3                         | 4.3                         | -4.0                        | 2.1                         | 2.2                         | 0.8                         | 1.0          | 3.5                                                                | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.2                         | -0.4                         |
| 39.1  | 3.7                         | 4.0                         | -3.3                        | 3.1                         | 3.5                         | 0.1                         | -0.1         | 4.1                                                                | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 48.8  | 3.7                         | 4.2                         | -3.4                        | 3.4                         | 4.6                         | 0.3                         | 0.2          | 5.1                                                                | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 58.6  | 3.5                         | 4.5                         | -3.3                        | 3.5                         | 5.4                         | 0.3                         | -0.2         | 6.3                                                                | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 68.4  | 3.7                         | 3.8                         | -3.4                        | 3.4                         | 6.6                         | 0.3                         | -0.1         | 6.9                                                                | -0.2                         | -0.1                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 78.1  | 3.6                         | 3.8                         | -3.9                        | 3.2                         | 7.4                         | 0.5                         | -0.5         | 7.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 87.9  | 3.8                         | 4.4                         | -3.7                        | 3.7                         | 8.7                         | 0.1                         | -0.3         | 8.6                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 97.7  | 4.1                         | 4.1                         | -3.6                        | 3.6                         | 9.8                         | 0.6                         | 0.0          | 10.0                                                               | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 107.4 | 4.5                         | 4.2                         | -3.5                        | 3.7                         | 11.0                        | 0.3                         | -0.5         | 10.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 4.7                         | 4.2                         | -3.5                        | 3.6                         | 12.0                        | 0.0                         | -0.6         | 11.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 4.9                         | 3.9                         | -3.8                        | 4.1                         | 12.0                        | 0.0                         | 0.0          | 13.0                                                               | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.4                         |
| 136.7 | 4.9                         | 3.9                         | -4.0                        | 3.9                         | 13.0                        | 0.4                         | -0.5         | 14.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |

Table 153. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.2                         | 3.8                         | -3.4                                     | 1.7                         | 0.2                         | 0.3                         | 0.5                                      | 1.6                         | -0.5                  | -0.4                         | -0.4                         | -0.3                         | -0.6                         | -0.2                         | -0.7                         | -0.7                         |
| 19.5  | 3.4                         | 4.1                         | -3.9                                     | 1.9                         | 0.3                         | 1.1                         | 0.4                                      | 2.4                         | -0.2                  | -0.2                         | -0.3                         | -0.6                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         |
| 29.3  | 3.1                         | 3.7                         | -3.4                                     | 2.5                         | 2.0                         | 0.0                         | 0.6                                      | 3.2                         | -0.4                  | -0.7                         | -0.5                         | -1.2                         | -0.2                         | -0.2                         | -0.3                         | -0.9                         |
| 39.1  | 3.0                         | 3.5                         | -3.7                                     | 1.9                         | 3.5                         | -0.2                        | 0.6                                      | 4.9                         | -0.1                  | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         |
| 48.8  | 2.9                         | 3.3                         | -3.0                                     | 2.2                         | 4.7                         | 0.2                         | 0.6                                      | 5.7                         | -0.2                  | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         |
| 58.6  | 2.8                         | 3.7                         | -2.9                                     | 2.7                         | 5.7                         | 0.8                         | -0.1                                     | 7.4                         | -0.2                  | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.3                         |
| 68.4  | 3.3                         | 3.8                         | -3.1                                     | 3.5                         | 6.8                         | 0.9                         | -0.5                                     | 6.9                         | -0.2                  | -0.5                         | -0.3                         | -0.5                         | -0.3                         | -0.7                         | -0.1                         | -0.3                         |
| 78.1  | 3.3                         | 3.7                         | -2.6                                     | 3.3                         | 8.0                         | 0.3                         | -0.3                                     | 8.2                         | -0.1                  | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.4                         |
| 87.9  | 3.4                         | 3.6                         | -3.3                                     | 2.6                         | 9.0                         | 0.8                         | -0.2                                     | 9.6                         | -0.1                  | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 4.0                         | 3.6                         | -3.1                                     | 3.3                         | 10.0                        | 0.6                         | -0.3                                     | 9.8                         | -0.1                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 4.1                         | 3.7                         | -2.5                                     | 2.8                         | 11.0                        | 0.6                         | -0.5                                     | 11.0                        | -0.2                  | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 117.2 | 4.4                         | 3.9                         | -3.4                                     | 3.0                         | 12.0                        | 0.4                         | -0.7                                     | 12.0                        | -0.2                  | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         |
| 127.0 | 4.6                         | 3.9                         | -3.5                                     | 3.3                         | 13.0                        | 0.6                         | -0.5                                     | 13.0                        | -0.1                  | -0.4                         | -0.1                         | -0.6                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 136.7 | 4.6                         | 4.1                         | -3.9                                     | 2.7                         | 14.0                        | 0.9                         | -0.6                                     | 15.0                        | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.3                         |

Table 154. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.7                         | 2.5                         | -2.4                        | 5.3                         | 0.8                         | 0.0                         | 0.0          | 0.8                                                                | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 19.5  | 5.6                         | 2.6                         | -2.3                        | 5.5                         | 1.6                         | 0.1                         | 0.0          | 1.7                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 29.3  | 5.8                         | 2.6                         | -2.5                        | 5.5                         | 2.1                         | 0.4                         | 0.0          | 2.2                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 5.9                         | 2.7                         | -2.4                        | 5.7                         | 3.0                         | 0.0                         | -0.2         | 3.1                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 48.8  | 5.9                         | 2.7                         | -2.5                        | 5.4                         | 3.8                         | 0.0                         | -0.3         | 3.9                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 58.6  | 5.8                         | 2.7                         | -2.5                        | 5.4                         | 4.4                         | 0.2                         | -0.3         | 4.3                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 5.9                         | 2.7                         | -2.6                        | 5.7                         | 5.5                         | 0.2                         | -0.3         | 5.1                                                                | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 5.9                         | 2.5                         | -2.4                        | 5.5                         | 5.9                         | 0.1                         | -0.4         | 5.9                                                                | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 87.9  | 6.1                         | 2.5                         | -2.8                        | 5.6                         | 7.0                         | 0.1                         | -0.3         | 6.8                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | 5.9                         | 2.7                         | -2.7                        | 5.4                         | 7.7                         | 0.2                         | -0.2         | 7.5                                                                | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 6.2                         | 2.7                         | -2.4                        | 5.7                         | 8.5                         | 0.1                         | -0.3         | 8.1                                                                | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 117.2 | 6.4                         | 2.6                         | -2.6                        | 5.7                         | 9.3                         | 0.1                         | -0.6         | 9.0                                                                | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 6.6                         | 2.4                         | -2.7                        | 5.7                         | 9.5                         | 0.2                         | -0.3         | 9.6                                                                | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 136.7 | 6.6                         | 2.1                         | -2.9                        | 5.9                         | 10.0                        | 0.2                         | -0.2         | 10.0                                                               | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 155. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.3                         | 6.3                         | -6.4                        | 4.3                         | 0.8                         | -0.4                        | -0.4                                     | 0.7                         | -0.2                  | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 5.1                         | 6.1                         | -7.0                        | 3.7                         | 1.9                         | 0.0                         | -0.1                                     | 2.1                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 29.3  | 5.0                         | 6.3                         | -6.8                        | 4.6                         | 3.2                         | 0.0                         | 0.5                                      | 2.9                         | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 39.1  | 5.2                         | 6.0                         | -6.8                        | 4.5                         | 4.1                         | 0.0                         | 0.4                                      | 3.8                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         |
| 48.8  | 5.1                         | 6.0                         | -6.7                        | 4.5                         | 5.2                         | 0.3                         | 0.6                                      | 4.8                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 5.4                         | 6.3                         | -6.7                        | 4.9                         | 5.8                         | 0.6                         | 0.3                                      | 5.5                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 5.6                         | 6.4                         | -6.7                        | 5.2                         | 6.9                         | 0.4                         | 0.1                                      | 7.1                         | -0.1                  | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | 5.6                         | 6.6                         | -6.6                        | 4.8                         | 7.6                         | 0.4                         | 0.3                                      | 7.5                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 5.8                         | 6.4                         | -7.0                        | 4.5                         | 8.8                         | 0.3                         | 0.6                                      | 8.5                         | -0.1                  | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | 5.8                         | 6.4                         | -7.0                        | 4.8                         | 9.6                         | 0.3                         | 0.7                                      | 9.7                         | 0.0                   | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 5.9                         | 6.6                         | -6.4                        | 5.1                         | 11.0                        | 0.0                         | 0.5                                      | 10.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 6.1                         | 6.5                         | -6.4                        | 5.1                         | 11.0                        | 0.0                         | 0.3                                      | 11.0                        | 0.0                   | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 6.0                         | 6.5                         | -6.5                        | 5.1                         | 12.0                        | -0.1                        | 0.5                                      | 12.0                        | 0.0                   | -0.1                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 6.2                         | 6.0                         | -6.5                        | 5.8                         | 13.0                        | 0.2                         | 0.5                                      | 13.0                        | 0.0                   | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         |

Table 156. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.5                         | 5.2                         | -5.0                                     | 3.2                         | -0.8                        | -0.1                        | -0.7         | 1.4                                                                | -0.3                          | -0.3                         | -0.5                         | -0.5                         | -0.2                         | -0.4                         | -0.4                         | -0.3                         |
| 19.5  | 5.0                         | 5.8                         | -4.8                                     | 3.3                         | 1.2                         | 0.1                         | 0.4          | 2.3                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 29.3  | 4.6                         | 6.0                         | -4.6                                     | 2.9                         | 2.5                         | -0.1                        | 0.5          | 2.6                                                                | -0.3                          | -0.1                         | -0.4                         | -0.4                         | -0.2                         | -0.4                         | -0.3                         | -0.6                         |
| 39.1  | 4.6                         | 5.4                         | -4.8                                     | 3.5                         | 3.6                         | -0.3                        | 1.0          | 3.8                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.2                         | 0.0                          | -0.2                         | -0.2                         |
| 48.8  | 4.9                         | 5.4                         | -4.6                                     | 3.8                         | 4.4                         | 0.2                         | 0.6          | 5.4                                                                | -0.1                          | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 58.6  | 5.2                         | 5.2                         | -4.7                                     | 3.8                         | 5.5                         | 0.4                         | -0.1         | 5.9                                                                | -0.2                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 68.4  | 5.1                         | 5.2                         | -4.3                                     | 3.8                         | 6.1                         | -0.2                        | 0.0          | 7.0                                                                | -0.1                          | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.7                         |
| 78.1  | 5.2                         | 5.3                         | -4.2                                     | 4.1                         | 7.4                         | 0.3                         | -0.4         | 7.8                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 87.9  | 4.9                         | 5.6                         | -4.8                                     | 4.1                         | 8.4                         | 0.5                         | 0.4          | 8.9                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 97.7  | 5.1                         | 5.5                         | -4.9                                     | 4.4                         | 9.5                         | 0.5                         | 0.2          | 9.8                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.2                         |
| 107.4 | 5.4                         | 5.8                         | -4.1                                     | 4.4                         | 10.0                        | 0.3                         | -0.6         | 10.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 5.2                         | 5.9                         | -4.6                                     | 4.2                         | 11.0                        | 0.3                         | -0.7         | 11.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 127.0 | 5.4                         | 5.9                         | -4.3                                     | 4.1                         | 12.0                        | 0.3                         | -0.4         | 12.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | 5.8                         | 5.5                         | -5.1                                     | 4.7                         | 13.0                        | 0.6                         | -0.6         | 13.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.2                         |

Table 157. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5,  $C_r$ =0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.0                         | 4.3                         | -4.4                                     | 2.6                                                                | -0.5                        | 0.1                         | -0.4                                     | 1.1                         | -0.3                  | -0.4                         | -0.4                         | -0.3                         | -0.6                         | -0.4                         | -0.4                         | -0.4                         |
| 19.5  | 5.1                         | 5.5                         | -4.6                                     | 2.5                                                                | 0.3                         | 0.1                         | 1.0                                      | 2.2                         | -0.3                  | -0.1                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.4                         |
| 29.3  | 4.4                         | 5.4                         | -3.5                                     | 1.7                                                                | 2.0                         | 0.1                         | 0.2                                      | 2.6                         | -0.1                  | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.6                         |
| 39.1  | 4.3                         | 5.7                         | -4.3                                     | 2.5                                                                | 3.6                         | -0.1                        | 0.4                                      | 4.7                         | -0.2                  | -0.2                         | -0.4                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.6                         |
| 48.8  | 4.7                         | 5.5                         | -3.5                                     | 2.6                                                                | 4.8                         | 0.1                         | 0.6                                      | 5.3                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 4.6                         | 5.5                         | -3.8                                     | 3.3                                                                | 5.6                         | 0.3                         | 0.1                                      | 6.7                         | -0.2                  | -0.3                         | -0.4                         | -0.3                         | -0.1                         | -0.1                         | -0.4                         | -0.3                         |
| 68.4  | 5.1                         | 5.4                         | -4.1                                     | 3.4                                                                | 6.4                         | -0.2                        | -0.5                                     | 7.1                         | -0.1                  | -0.4                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         |
| 78.1  | 4.6                         | 5.5                         | -3.7                                     | 3.0                                                                | 7.3                         | 0.5                         | -0.8                                     | 8.4                         | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 87.9  | 4.5                         | 5.0                         | -3.7                                     | 3.6                                                                | 8.4                         | 0.3                         | -0.5                                     | 9.2                         | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 97.7  | 4.9                         | 4.9                         | -4.1                                     | 3.5                                                                | 10.0                        | 0.5                         | -0.6                                     | 10.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         |
| 107.4 | 5.0                         | 5.2                         | -4.1                                     | 3.4                                                                | 11.0                        | 0.5                         | -0.8                                     | 11.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 5.2                         | 5.5                         | -4.1                                     | 3.7                                                                | 12.0                        | 1.0                         | -0.9                                     | 12.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 5.1                         | 5.4                         | -4.5                                     | 3.6                                                                | 12.0                        | 1.3                         | -0.9                                     | 13.0                        | -0.1                  | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.4                         |
| 136.7 | 5.5                         | 5.7                         | -4.8                                     | 3.7                                                                | 14.0                        | 1.1                         | -0.7                                     | 14.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |

Table 158. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5, C<sub>r</sub>=0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.4                         | 1.5                         | -1.5                        | 2.8                         | 0.8                         | -0.1                        | 0.0          | 1.0                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 3.2                         | 1.7                         | -1.5                        | 2.9                         | 2.1                         | 0.0                         | 0.1          | 1.8                                                                | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 3.3                         | 1.5                         | -1.7                        | 2.9                         | 2.6                         | 0.2                         | 0.0          | 2.7                                                                | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 39.1  | 3.4                         | 1.5                         | -1.5                        | 2.8                         | 3.5                         | 0.0                         | 0.1          | 3.5                                                                | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 48.8  | 3.4                         | 1.5                         | -1.6                        | 3.3                         | 4.5                         | 0.1                         | 0.0          | 4.5                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 3.4                         | 2.0                         | -1.7                        | 3.1                         | 5.4                         | 0.0                         | 0.2          | 5.7                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 3.5                         | 1.5                         | -1.7                        | 3.0                         | 6.2                         | 0.1                         | 0.0          | 6.5                                                                | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 3.6                         | 1.9                         | -1.7                        | 3.1                         | 6.9                         | -0.1                        | 0.0          | 7.1                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 87.9  | 3.5                         | 1.7                         | -1.7                        | 3.1                         | 8.0                         | 0.0                         | 0.0          | 8.2                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | 3.7                         | 1.6                         | -1.7                        | 3.2                         | 8.9                         | -0.1                        | 0.0          | 9.0                                                                | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 3.8                         | 1.7                         | -1.4                        | 3.4                         | 10.0                        | 0.0                         | 0.2          | 9.8                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 117.2 | 4.0                         | 1.6                         | -1.5                        | 3.5                         | 11.0                        | -0.1                        | -0.2         | 11.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 127.0 | 4.1                         | 1.9                         | -2.0                        | 4.0                         | 11.0                        | -0.1                        | -0.1         | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | 0.0                          | -0.2                         |
| 136.7 | 4.3                         | 1.3                         | -2.4                        | 3.8                         | 12.0                        | 0.1                         | -0.2         | 12.0                                                               | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 159. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43,  $C_r$ =0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(\boldsymbol{eH}_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                                      | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.9                         | 3.2                         | -3.2                        | 3.0                         | 0.7                         | 0.5                         | 0.4                         | 1.7                         | -0.1                  | -0.2                         | -0.2                                      | -0.2     | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | 3.0                         | 3.0                         | -3.1                        | 3.1                         | 2.3                         | 0.3                         | 0.4                         | 2.5                         | -0.1                  | -0.1                         | -0.1                                      | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 3.2                         | 3.2                         | -2.9                        | 3.7                         | 3.3                         | 0.2                         | 0.0                         | 3.7                         | -0.1                  | -0.1                         | -0.2                                      | -0.3     | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 39.1  | 3.6                         | 3.2                         | -2.8                        | 3.6                         | 4.5                         | 0.1                         | 0.2                         | 4.3                         | -0.1                  | 0.0                          | -0.1                                      | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 3.8                         | 3.3                         | -2.6                        | 3.8                         | 5.6                         | 0.3                         | 0.5                         | 5.2                         | -0.1                  | 0.0                          | -0.2                                      | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 3.8                         | 3.3                         | -2.7                        | 3.6                         | 6.4                         | 0.5                         | 0.4                         | 6.2                         | -0.1                  | -0.1                         | -0.1                                      | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 4.0                         | 3.2                         | -2.7                        | 3.8                         | 7.2                         | 0.3                         | -0.1                        | 7.3                         | 0.0                   | -0.1                         | -0.1                                      | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 4.2                         | 3.4                         | -2.5                        | 3.9                         | 8.1                         | 0.4                         | -0.1                        | 8.2                         | 0.0                   | 0.0                          | -0.1                                      | 0.0      | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 4.2                         | 3.3                         | -3.0                        | 3.8                         | 9.5                         | 0.4                         | 0.5                         | 9.3                         | -0.1                  | -0.1                         | -0.1                                      | -0.1     | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 97.7  | 4.2                         | 3.3                         | -3.0                        | 4.0                         | 10.0                        | 0.4                         | 0.2                         | 10.0                        | 0.0                   | 0.0                          | 0.0                                       | 0.0      | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 4.4                         | 3.3                         | -2.8                        | 4.1                         | 11.0                        | 0.2                         | 0.3                         | 11.0                        | 0.0                   | 0.0                          | -0.1                                      | 0.0      | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 4.4                         | 3.5                         | -3.0                        | 4.3                         | 12.0                        | 0.2                         | 0.1                         | 12.0                        | -0.1                  | 0.0                          | 0.0                                       | 0.0      | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 4.4                         | 3.5                         | -2.8                        | 4.7                         | 13.0                        | 0.4                         | 0.5                         | 13.0                        | 0.0                   | -0.1                         | -0.1                                      | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 4.6                         | 3.2                         | -3.1                        | 4.7                         | 14.0                        | 0.6                         | 0.4                         | 14.0                        | 0.0                   | 0.0                          | 0.0                                       | 0.0      | 0.0                          | 0.0                          | -0.1                         | -0.1                         |

Table 160. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.0                         | 2.1                         | -3.0                                     | 1.8                         | -1.2                        | 1.2                         | 0.6                                      | 0.9                                                                | -0.3                          | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         | -0.4                         |
| 19.5  | 2.2                         | 2.9                         | -2.3                                     | 1.8                         | 1.1                         | 0.7                         | 0.6                                      | 2.0                                                                | -0.1                          | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 29.3  | 1.9                         | 3.5                         | -2.1                                     | 1.5                         | 2.5                         | 1.1                         | 0.8                                      | 3.4                                                                | -0.1                          | -0.2                         | -0.1                         | -0.4                         | 0.0                          | -0.2                         | -0.2                         | -0.4                         |
| 39.1  | 2.4                         | 3.0                         | -2.2                                     | 1.8                         | 3.6                         | 0.5                         | 0.0                                      | 4.7                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 2.4                         | 3.3                         | -2.2                                     | 2.1                         | 5.5                         | 0.3                         | 0.0                                      | 5.7                                                                | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         |
| 58.6  | 2.5                         | 3.6                         | -2.1                                     | 2.4                         | 5.9                         | 0.8                         | 0.2                                      | 6.7                                                                | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         |
| 68.4  | 3.0                         | 3.6                         | -1.9                                     | 3.1                         | 7.4                         | -0.2                        | 0.3                                      | 7.0                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         |
| 78.1  | 2.8                         | 3.1                         | -2.1                                     | 2.2                         | 8.2                         | 0.3                         | 0.0                                      | 8.4                                                                | -0.1                          | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 87.9  | 2.8                         | 3.4                         | -2.3                                     | 2.5                         | 9.5                         | 0.2                         | -0.3                                     | 9.1                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.3                         | 3.7                         | -2.5                                     | 2.5                         | 11.0                        | 0.2                         | 0.1                                      | 11.0                                                               | -0.2                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 3.8                         | 3.6                         | -2.0                                     | 2.7                         | 12.0                        | 0.0                         | 0.2                                      | 11.0                                                               | -0.1                          | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 3.7                         | 3.3                         | -2.1                                     | 2.2                         | 13.0                        | 0.0                         | -0.3                                     | 12.0                                                               | -0.1                          | -0.1                         | -0.2                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 3.8                         | 3.3                         | -2.7                                     | 2.6                         | 13.0                        | 0.0                         | 0.3                                      | 14.0                                                               | 0.0                           | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | 3.9                         | 3.1                         | -2.7                                     | 2.9                         | 14.0                        | -0.1                        | 0.1                                      | 15.0                                                               | 0.0                           | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 161. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43,  $C_r$ =0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.7                         | 1.5                         | -1.6                                     | 0.8                                                                | -2.2                        | 0.6                         | 0.9                                      | 0.0                                                                | -0.2                  | -0.3                         | -0.5                         | -0.2                         | -0.5                         | -0.4                         | -0.1                         | -0.3                         |
| 19.5  | 2.3                         | 2.9                         | -2.2                                     | 0.4                                                                | 0.5                         | 1.6                         | 1.0                                      | 3.1                                                                | -0.1                  | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 29.3  | 2.0                         | 2.8                         | -1.8                                     | 0.6                                                                | 2.4                         | 1.2                         | 0.9                                      | 3.7                                                                | -0.1                  | -0.3                         | -0.2                         | -0.5                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         |
| 39.1  | 2.1                         | 3.3                         | -2.1                                     | 1.3                                                                | 3.8                         | 0.3                         | 0.7                                      | 5.0                                                                | -0.1                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 48.8  | 2.6                         | 3.0                         | -2.4                                     | 1.2                                                                | 5.0                         | 1.1                         | 0.3                                      | 6.5                                                                | -0.1                  | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 2.7                         | 3.2                         | -1.9                                     | 1.7                                                                | 6.1                         | 0.5                         | 0.4                                      | 7.7                                                                | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 68.4  | 2.3                         | 3.2                         | -2.1                                     | 2.1                                                                | 7.4                         | 0.6                         | 0.4                                      | 8.0                                                                | -0.1                  | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.5                         |
| 78.1  | 2.7                         | 3.3                         | -2.4                                     | 2.1                                                                | 8.7                         | 0.6                         | 0.0                                      | 8.9                                                                | -0.2                  | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 87.9  | 3.0                         | 3.1                         | -2.0                                     | 1.7                                                                | 10.0                        | 0.4                         | 0.0                                      | 9.8                                                                | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 2.8                         | 3.1                         | -2.6                                     | 1.8                                                                | 11.0                        | 0.3                         | 0.3                                      | 11.0                                                               | -0.2                  | -0.1                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | 3.3                         | 3.5                         | -2.7                                     | 2.0                                                                | 12.0                        | 0.4                         | 0.2                                      | 12.0                                                               | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 3.7                         | 3.2                         | -1.7                                     | 1.6                                                                | 13.0                        | 0.2                         | -0.4                                     | 13.0                                                               | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 3.5                         | 3.5                         | -2.5                                     | 1.9                                                                | 13.0                        | 0.5                         | 0.3                                      | 14.0                                                               | -0.1                  | -0.3                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 136.7 | 3.6                         | 2.6                         | -2.8                                     | 2.2                                                                | 15.0                        | 0.3                         | 0.3                                      | 15.0                                                               | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |

Table 162. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43, C<sub>r</sub>=0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.2                         | 2.3                         | -2.2                        | 2.5                         | 1.0                         | 0.0                         | -0.1         | 1.0                                                                | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 3.1                         | 2.4                         | -2.2                        | 2.7                         | 1.7                         | 0.1                         | -0.1         | 1.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 29.3  | 3.4                         | 2.2                         | -2.5                        | 2.9                         | 2.6                         | 0.3                         | 0.0          | 2.7                                                                | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 3.4                         | 2.3                         | -2.4                        | 2.6                         | 3.8                         | 0.0                         | 0.0          | 3.7                                                                | 0.0                          | -0.2                         | -0.1                         | -0.2                         | 0.0                          | -0.2                         | -0.1                         | -0.2                         |
| 48.8  | 3.4                         | 2.4                         | -2.4                        | 3.0                         | 4.3                         | 0.0                         | 0.0          | 4.7                                                                | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 3.6                         | 2.6                         | -2.3                        | 3.1                         | 5.2                         | -0.1                        | -0.1         | 5.6                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 3.6                         | 2.6                         | -2.3                        | 2.6                         | 6.2                         | -0.2                        | -0.1         | 6.4                                                                | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         |
| 78.1  | 3.5                         | 2.6                         | -2.4                        | 3.1                         | 7.0                         | 0.2                         | -0.2         | 7.2                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 3.5                         | 2.2                         | -2.5                        | 3.0                         | 8.2                         | -0.2                        | -0.1         | 8.2                                                                | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.7                         | 2.2                         | -2.4                        | 3.2                         | 9.0                         | -0.1                        | 0.0          | 8.9                                                                | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 3.8                         | 2.2                         | -2.4                        | 3.2                         | 9.8                         | 0.0                         | -0.1         | 10.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 117.2 | 4.0                         | 2.1                         | -2.5                        | 3.2                         | 11.0                        | -0.2                        | -0.4         | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.2                         | 2.1                         | -2.7                        | 3.4                         | 11.0                        | 0.0                         | -0.2         | 12.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | 4.4                         | 1.8                         | -3.2                        | 4.0                         | 12.0                        | -0.1                        | -0.1         | 12.0                                                               | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 163. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43, C<sub>r</sub>=0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.4                         | 5.3                         | -4.6                        | 3.1                         | 0.9                         | 0.5                         | 0.0                         | 1.6                         | -0.1                  | -0.2                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 19.5  | 3.7                         | 5.4                         | -5.0                        | 3.3                         | 2.4                         | 0.0                         | 0.4                         | 2.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 3.9                         | 5.0                         | -4.9                        | 3.3                         | 3.7                         | -0.3                        | 0.1                         | 3.8                         | -0.1                  | -0.2                         | -0.2                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 39.1  | 4.3                         | 5.1                         | -4.8                        | 3.8                         | 4.6                         | -0.2                        | 0.1                         | 4.7                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.6                         | 5.0                         | -4.9                        | 3.7                         | 5.8                         | 0.1                         | 0.3                         | 5.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 4.7                         | 5.3                         | -5.1                        | 3.8                         | 6.5                         | 0.3                         | 0.1                         | 6.5                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 4.7                         | 5.2                         | -4.6                        | 3.7                         | 7.6                         | 0.0                         | -0.1                        | 7.4                         | 0.0                   | -0.1                         | -0.1                         | -0.3     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 4.9                         | 5.3                         | -4.7                        | 3.8                         | 8.4                         | 0.0                         | 0.0                         | 8.3                         | 0.0                   | -0.1                         | -0.1                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 5.0                         | 5.3                         | -5.3                        | 4.1                         | 9.6                         | 0.0                         | 0.5                         | 9.6                         | 0.0                   | 0.0                          | -0.1                         | 0.0      | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 97.7  | 5.0                         | 5.2                         | -5.3                        | 4.2                         | 11.0                        | 0.1                         | 0.4                         | 11.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1     | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 5.2                         | 5.3                         | -4.9                        | 4.6                         | 12.0                        | -0.1                        | 0.4                         | 12.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 5.3                         | 5.4                         | -4.9                        | 4.5                         | 13.0                        | 0.0                         | 0.2                         | 13.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1     | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 127.0 | 5.3                         | 5.3                         | -4.9                        | 5.0                         | 13.0                        | 0.2                         | 0.5                         | 13.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 5.6                         | 5.0                         | -5.1                        | 5.1                         | 14.0                        | 0.2                         | 0.5                         | 14.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | 0.0                          | -0.1                         | 0.0                          |

Table 164. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.1                         | 4.5                         | -2.9                                     | 1.7                         | -0.7                        | 0.8                         | 0.5                                      | 1.8                                                                | -0.3                          | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         |
| 19.5  | 2.9                         | 4.8                         | -3.8                                     | 1.6                         | 1.2                         | 0.2                         | 0.5                                      | 2.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 29.3  | 2.6                         | 5.0                         | -3.0                                     | 1.0                         | 2.0                         | 0.7                         | 0.8                                      | 3.4                                                                | -0.1                          | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         |
| 39.1  | 2.7                         | 4.5                         | -3.1                                     | 1.7                         | 3.7                         | -0.2                        | 0.6                                      | 4.0                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         |
| 48.8  | 3.0                         | 4.5                         | -3.4                                     | 2.0                         | 5.0                         | 0.0                         | 0.5                                      | 5.2                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 58.6  | 2.8                         | 4.8                         | -3.1                                     | 2.3                         | 6.0                         | 0.5                         | 0.1                                      | 7.1                                                                | -0.1                          | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 68.4  | 2.8                         | 4.4                         | -3.5                                     | 2.4                         | 7.2                         | -0.2                        | 0.1                                      | 7.4                                                                | -0.2                          | -0.3                         | -0.3                         | -0.6                         | -0.1                         | -0.4                         | -0.2                         | -0.3                         |
| 78.1  | 2.7                         | 4.8                         | -3.8                                     | 2.4                         | 8.1                         | 0.5                         | -0.1                                     | 8.9                                                                | -0.2                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 87.9  | 3.0                         | 4.8                         | -3.3                                     | 2.3                         | 9.4                         | -0.1                        | -0.2                                     | 9.3                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.3                         | 4.9                         | -3.0                                     | 2.5                         | 11.0                        | 0.0                         | 0.3                                      | 10.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 3.7                         | 5.0                         | -3.3                                     | 2.6                         | 12.0                        | 0.0                         | 0.0                                      | 11.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 3.9                         | 4.7                         | -3.1                                     | 2.4                         | 13.0                        | -0.2                        | -0.5                                     | 12.0                                                               | -0.1                          | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.0                         | 4.3                         | -3.6                                     | 2.8                         | 13.0                        | 0.2                         | -0.1                                     | 14.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 136.7 | 3.9                         | 4.5                         | -3.9                                     | 2.9                         | 14.0                        | 0.2                         | -0.2                                     | 15.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 165. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43,  $C_r$ =0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.4                         | 3.2                         | -4.7                                     | 0.5                                                                | -1.4                        | 1.1                         | -0.2                                     | 2.4                         | -0.2                  | -0.2                         | -0.4                         | -0.4                         | -0.8                         | -0.3                         | -0.4                         | -0.2                         |
| 19.5  | 3.1                         | 4.7                         | -3.0                                     | 1.1                                                                | 0.3                         | 0.6                         | 0.4                                      | 2.4                         | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         |
| 29.3  | 2.8                         | 4.8                         | -3.4                                     | 1.4                                                                | 2.4                         | 0.2                         | 1.1                                      | 3.6                         | -0.3                  | -0.3                         | -0.2                         | -0.6                         | -0.2                         | -0.1                         | -0.2                         | -0.4                         |
| 39.1  | 2.5                         | 5.1                         | -3.2                                     | 1.0                                                                | 3.8                         | 0.1                         | 0.1                                      | 5.1                         | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 48.8  | 2.9                         | 4.7                         | -3.0                                     | 0.8                                                                | 5.1                         | 0.1                         | 0.4                                      | 6.7                         | -0.1                  | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 3.0                         | 4.5                         | -3.3                                     | 1.6                                                                | 6.1                         | 0.6                         | 0.5                                      | 7.6                         | -0.1                  | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.4                         | -0.1                         |
| 68.4  | 3.2                         | 4.2                         | -2.8                                     | 1.4                                                                | 7.4                         | 0.4                         | -0.2                                     | 8.2                         | -0.1                  | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.4                         |
| 78.1  | 3.2                         | 4.8                         | -2.7                                     | 2.0                                                                | 8.5                         | 0.9                         | -0.3                                     | 8.9                         | -0.3                  | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 87.9  | 3.2                         | 4.8                         | -3.2                                     | 2.1                                                                | 10.0                        | 0.3                         | 0.0                                      | 10.0                        | -0.2                  | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 97.7  | 3.3                         | 4.7                         | -3.2                                     | 2.5                                                                | 11.0                        | 0.3                         | -0.1                                     | 11.0                        | -0.1                  | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |
| 107.4 | 4.1                         | 5.0                         | -3.3                                     | 2.1                                                                | 12.0                        | 0.3                         | -0.2                                     | 12.0                        | -0.1                  | -0.2                         | -0.4                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 4.2                         | 4.7                         | -3.2                                     | 1.7                                                                | 13.0                        | 0.5                         | -0.6                                     | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.3                         | 0.0                          | -0.1                         | -0.2                         | -0.3                         |
| 127.0 | 4.1                         | 5.1                         | -3.3                                     | 1.9                                                                | 13.0                        | 1.0                         | -0.3                                     | 15.0                        | -0.2                  | -0.2                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.4                         |
| 136.7 | 4.3                         | 4.6                         | -3.6                                     | 1.9                                                                | 15.0                        | 0.5                         | -0.6                                     | 16.0                        | -0.1                  | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 166. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43, C<sub>r</sub>=0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.6                         | 3.5                         | -3.6                        | 2.2                         | 0.9                         | -0.1                        | -0.1                                     | 0.8                                                                | -0.1                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 2.6                         | 3.3                         | -3.6                        | 2.2                         | 1.9                         | -0.2                        | -0.1                                     | 2.1                                                                | -0.2                          | -0.1                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 29.3  | 2.7                         | 3.5                         | -3.5                        | 2.2                         | 2.8                         | 0.0                         | -0.1                                     | 2.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 39.1  | 2.6                         | 3.5                         | -3.5                        | 2.2                         | 3.4                         | 0.3                         | -0.2                                     | 3.3                                                                | -0.1                          | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 48.8  | 2.6                         | 3.2                         | -3.6                        | 2.3                         | 4.8                         | -0.1                        | -0.1                                     | 4.5                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 2.9                         | 3.3                         | -3.8                        | 2.3                         | 5.3                         | 0.0                         | 0.0                                      | 5.3                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 68.4  | 3.2                         | 2.5                         | -3.7                        | 3.1                         | 6.3                         | -0.3                        | -0.1                                     | 6.7                                                                | -0.1                          | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 78.1  | 3.1                         | 3.2                         | -3.9                        | 2.2                         | 7.0                         | 0.1                         | -0.1                                     | 7.3                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 3.1                         | 3.4                         | -3.9                        | 2.3                         | 8.1                         | 0.0                         | -0.2                                     | 8.0                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.1                         | 3.1                         | -3.9                        | 2.7                         | 9.1                         | -0.1                        | 0.0                                      | 9.6                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 3.6                         | 3.0                         | -3.7                        | 2.6                         | 9.8                         | -0.2                        | -0.3                                     | 10.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 117.2 | 3.5                         | 3.3                         | -3.7                        | 2.7                         | 11.0                        | -0.2                        | -0.2                                     | 11.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 3.7                         | 3.2                         | -4.3                        | 3.0                         | 11.0                        | 0.1                         | 0.1                                      | 12.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | 4.0                         | 2.7                         | -4.5                        | 3.3                         | 12.0                        | -0.1                        | -0.1                                     | 13.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 167. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43,  $C_r$ =0.188 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.3                         | 6.9                         | -7.5                        | 3.0                         | 1.1                         | -0.3                        | -0.5                        | 2.2                         | -0.3                  | -0.2                         | -0.2                         | -0.2     | -0.3                         | -0.2                         | -0.6                         | -0.3                         |
| 19.5  | 4.3                         | 6.9                         | -7.6                        | 3.6                         | 2.1                         | 0.0                         | -0.1                        | 2.4                         | -0.1                  | -0.2                         | -0.3                         | -0.3     | -0.1                         | -0.1                         | -0.2                         | -0.4                         |
| 29.3  | 4.4                         | 6.9                         | -7.5                        | 3.6                         | 3.0                         | 0.1                         | 0.0                         | 3.9                         | -0.1                  | -0.1                         | -0.2                         | -0.1     | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 39.1  | 4.2                         | 7.0                         | -7.5                        | 3.8                         | 4.4                         | 0.0                         | 0.5                         | 4.3                         | -0.1                  | -0.1                         | -0.1                         | -0.2     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.7                         | 6.9                         | -7.3                        | 3.9                         | 5.5                         | 0.2                         | 0.4                         | 5.5                         | -0.1                  | -0.1                         | -0.1                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 58.6  | 4.8                         | 7.2                         | -7.4                        | 4.0                         | 6.5                         | 0.4                         | 0.3                         | 6.3                         | 0.0                   | 0.0                          | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 5.0                         | 7.2                         | -7.0                        | 4.5                         | 7.5                         | 0.1                         | 0.4                         | 7.1                         | -0.1                  | -0.1                         | -0.1                         | -0.2     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 4.9                         | 7.5                         | -7.0                        | 4.3                         | 8.4                         | 0.0                         | 0.5                         | 8.0                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 5.3                         | 7.4                         | -7.8                        | 3.9                         | 9.4                         | 0.0                         | 0.6                         | 9.5                         | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 97.7  | 5.2                         | 7.4                         | -7.6                        | 4.4                         | 11.0                        | -0.1                        | 0.9                         | 11.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 5.4                         | 7.4                         | -6.9                        | 4.6                         | 11.0                        | -0.2                        | 0.7                         | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1     | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 5.6                         | 7.3                         | -7.0                        | 4.6                         | 12.0                        | -0.3                        | 0.5                         | 12.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.6                         | 7.2                         | -7.0                        | 4.9                         | 13.0                        | -0.3                        | 0.8                         | 13.0                        | -0.1                  | 0.0                          | -0.1                         | -0.2     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 5.8                         | 6.9                         | -7.1                        | 5.2                         | 14.0                        | -0.1                        | 0.8                         | 14.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | 0.0                          | -0.1                         | -0.1                         |

Table 168. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43, C<sub>r</sub>=0.188 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.5                         | 6.1                         | -4.7                                     | 1.3                         | 0.1                         | 0.4                         | 0.0          | 1.4                                                                | -0.4                          | -0.3                         | -0.5                         | -0.6                         | -0.4                         | -0.4                         | -0.8                         | -0.7                         |
| 19.5  | 3.2                         | 6.4                         | -5.9                                     | 1.2                         | 1.0                         | 0.2                         | 0.7          | 2.7                                                                | -0.3                          | -0.1                         | -0.4                         | -0.3                         | -0.1                         | -0.2                         | -0.4                         | -0.4                         |
| 29.3  | 2.8                         | 6.5                         | -4.8                                     | 1.0                         | 2.2                         | -0.1                        | 0.7          | 2.5                                                                | -0.2                          | -0.1                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 39.1  | 2.9                         | 6.4                         | -4.9                                     | 1.0                         | 3.6                         | -0.2                        | 0.6          | 4.7                                                                | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 48.8  | 2.9                         | 5.9                         | -4.8                                     | 1.8                         | 4.9                         | -0.5                        | 0.5          | 5.9                                                                | -0.2                          | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 3.0                         | 6.3                         | -4.5                                     | 2.1                         | 6.0                         | -0.2                        | 0.1          | 7.4                                                                | -0.2                          | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 68.4  | 3.4                         | 5.8                         | -4.7                                     | 2.6                         | 6.8                         | 0.2                         | -0.5         | 8.3                                                                | -0.1                          | -0.3                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 78.1  | 2.9                         | 6.1                         | -4.8                                     | 2.0                         | 8.1                         | 0.0                         | 0.1          | 8.7                                                                | -0.1                          | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 87.9  | 3.3                         | 6.2                         | -5.2                                     | 2.0                         | 9.4                         | 0.2                         | -0.1         | 9.8                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 3.6                         | 6.5                         | -4.6                                     | 2.2                         | 11.0                        | 0.0                         | -0.2         | 11.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | 3.5                         | 6.4                         | -4.6                                     | 2.2                         | 12.0                        | 0.0                         | 0.0          | 11.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 3.8                         | 6.4                         | -4.7                                     | 2.1                         | 12.0                        | -0.2                        | -0.5         | 13.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 3.8                         | 6.1                         | -4.6                                     | 1.8                         | 13.0                        | 0.1                         | -0.4         | 14.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.4                         |
| 136.7 | 4.2                         | 6.1                         | -4.8                                     | 2.7                         | 14.0                        | -0.1                        | -0.1         | 15.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |

Table 169. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43,  $C_r$ =0.188 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.2                         | 5.6                         | -4.5                                     | 0.8                                                                | -0.4                        | -0.2                        | -0.7                                     | 1.0                         | -0.3                  | -0.6                         | -0.5                         | -0.4                         | -0.6                         | -0.2                         | -0.3                         | -0.6                         |
| 19.5  | 3.0                         | 6.2                         | -5.2                                     | 0.9                                                                | 0.5                         | 0.4                         | 0.2                                      | 2.3                         | -0.1                  | -0.2                         | -0.3                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.3                         |
| 29.3  | 2.3                         | 6.7                         | -4.3                                     | 0.4                                                                | 2.2                         | 0.3                         | 0.5                                      | 3.3                         | -0.2                  | -0.2                         | -0.2                         | -0.5                         | -0.1                         | -0.4                         | -0.3                         | -0.6                         |
| 39.1  | 3.0                         | 5.9                         | -4.8                                     | 0.6                                                                | 3.7                         | -0.2                        | 0.2                                      | 4.6                         | -0.3                  | -0.2                         | -0.4                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         |
| 48.8  | 3.4                         | 5.8                         | -4.6                                     | 0.6                                                                | 4.9                         | -0.3                        | 0.1                                      | 6.4                         | -0.1                  | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 2.9                         | 5.9                         | -5.0                                     | 1.3                                                                | 6.0                         | -0.2                        | -0.5                                     | 8.1                         | -0.1                  | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.3                         |
| 68.4  | 3.0                         | 7.0                         | -4.3                                     | 1.1                                                                | 7.2                         | 0.0                         | -1.1                                     | 8.7                         | -0.2                  | -0.3                         | -0.3                         | -0.6                         | -0.2                         | -0.4                         | -0.3                         | -0.2                         |
| 78.1  | 3.5                         | 6.1                         | -4.0                                     | 1.3                                                                | 8.1                         | 0.0                         | -0.1                                     | 9.2                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 87.9  | 3.0                         | 5.8                         | -4.4                                     | 2.0                                                                | 9.7                         | -0.1                        | 0.1                                      | 10.0                        | -0.2                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 97.7  | 3.1                         | 5.8                         | -4.2                                     | 2.0                                                                | 11.0                        | 0.6                         | 0.0                                      | 11.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 3.2                         | 5.9                         | -4.2                                     | 2.3                                                                | 12.0                        | 0.4                         | -0.4                                     | 13.0                        | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.4                         | -0.3                         |
| 117.2 | 3.3                         | 6.2                         | -4.7                                     | 1.7                                                                | 13.0                        | 0.3                         | -1.3                                     | 13.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 3.8                         | 6.9                         | -4.7                                     | 1.2                                                                | 14.0                        | 0.6                         | -0.9                                     | 16.0                        | -0.1                  | -0.2                         | -0.2                         | -0.6                         | -0.2                         | -0.5                         | -0.2                         | -0.3                         |
| 136.7 | 4.1                         | 6.7                         | -5.3                                     | 2.0                                                                | 15.0                        | 0.3                         | -0.5                                     | 16.0                        | -0.1                  | -0.1                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |

Table 170. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43,  $C_r$ =0.188 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.4                         | 2.2                         | -1.0                                     | 8.2                         | 0.7                         | 0.0                         | 0.0          | 0.7                                                                | -0.1                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 19.5  | 9.2                         | 2.2                         | -1.2                                     | 8.4                         | 1.6                         | 0.1                         | -0.1         | 1.7                                                                | 0.0                           | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 8.9                         | 2.9                         | -0.6                                     | 7.5                         | 1.4                         | 1.4                         | 1.1          | 0.8                                                                | -0.1                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 39.1  | 9.3                         | 2.5                         | -1.3                                     | 8.4                         | 3.2                         | 0.1                         | -0.2         | 3.3                                                                | -0.1                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 48.8  | 9.1                         | 2.2                         | -1.4                                     | 8.3                         | 4.0                         | 0.2                         | -0.1         | 4.2                                                                | -0.1                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 58.6  | 9.2                         | 2.4                         | -1.3                                     | 8.4                         | 5.1                         | 0.2                         | -0.1         | 4.9                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 9.3                         | 2.3                         | -1.3                                     | 8.4                         | 5.9                         | 0.2                         | -0.1         | 5.8                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 9.4                         | 2.3                         | -1.2                                     | 8.3                         | 7.0                         | 0.0                         | -0.1         | 6.7                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 87.9  | 9.3                         | 2.1                         | -1.4                                     | 8.5                         | 7.6                         | 0.1                         | -0.2         | 7.6                                                                | 0.0                           | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 9.1                         | 2.2                         | -1.3                                     | 8.4                         | 8.5                         | 0.2                         | -0.2         | 8.3                                                                | 0.0                           | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 107.4 | 9.2                         | 2.3                         | -1.2                                     | 8.4                         | 9.5                         | 0.1                         | -0.1         | 9.2                                                                | 0.0                           | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 117.2 | 9.3                         | 2.2                         | -1.1                                     | 8.5                         | 10.0                        | 0.4                         | -0.3         | 10.0                                                               | 0.0                           | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 9.4                         | 2.1                         | -1.2                                     | 8.5                         | 11.0                        | 0.3                         | -0.4         | 11.0                                                               | 0.0                           | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 136.7 | 9.3                         | 2.2                         | -1.3                                     | 8.6                         | 12.0                        | 0.3                         | -0.3         | 12.0                                                               | 0.0                           | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 171. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.57, C<sub>r</sub>=0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.2                         | 3.4                         | -2.2                        | 7.8                         | 0.8                         | 0.2                         | 0.0                         | 0.7                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 9.3                         | 3.3                         | -2.4                        | 7.9                         | 1.7                         | 0.3                         | -0.2                        | 1.7                         | -0.1                  | 0.0                          | -0.1                         | 0.0      | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 9.0                         | 4.2                         | -2.0                        | 7.2                         | 1.1                         | 1.8                         | 1.3                         | 0.8                         | -0.1                  | 0.0                          | -0.1                         | 0.0      | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 39.1  | 9.4                         | 3.5                         | -2.6                        | 8.0                         | 3.3                         | 0.2                         | -0.1                        | 3.4                         | -0.1                  | 0.0                          | -0.1                         | 0.0      | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 48.8  | 9.3                         | 3.5                         | -2.7                        | 8.0                         | 4.1                         | 0.2                         | -0.2                        | 4.2                         | 0.0                   | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 58.6  | 9.4                         | 3.7                         | -2.5                        | 7.9                         | 5.1                         | 0.3                         | 0.0                         | 5.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 9.3                         | 3.7                         | -2.5                        | 8.1                         | 5.9                         | 0.2                         | -0.2                        | 5.9                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 78.1  | 9.3                         | 3.5                         | -2.6                        | 8.1                         | 6.7                         | 0.2                         | -0.1                        | 6.7                         | -0.1                  | 0.0                          | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 9.5                         | 3.6                         | -2.8                        | 8.1                         | 7.7                         | 0.3                         | -0.3                        | 7.4                         | 0.0                   | -0.1                         | 0.0                          | -0.1     | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 9.2                         | 3.4                         | -2.7                        | 8.0                         | 8.4                         | 0.1                         | -0.1                        | 8.2                         | -0.1                  | 0.0                          | 0.0                          | 0.0      | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 107.4 | 9.4                         | 3.6                         | -2.4                        | 8.0                         | 9.4                         | 0.2                         | 0.0                         | 9.2                         | -0.1                  | 0.0                          | -0.1                         | 0.0      | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 117.2 | 9.3                         | 3.3                         | -2.5                        | 8.2                         | 10.0                        | 0.3                         | -0.3                        | 10.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0      | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 9.3                         | 3.3                         | -2.5                        | 8.0                         | 11.0                        | 0.4                         | -0.4                        | 11.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0      | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 136.7 | 9.3                         | 3.3                         | -2.5                        | 8.2                         | 12.0                        | 0.4                         | -0.4                        | 12.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0      | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 172. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.57, C<sub>r</sub>=0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.0                         | 4.9                         | -3.9                                     | 7.5                         | 0.8                         | 0.2                         | 0.0                                      | 0.8                                                                | -0.1                          | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 19.5  | 9.0                         | 4.9                         | -3.9                                     | 7.5                         | 1.6                         | 0.2                         | -0.1                                     | 1.7                                                                | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 8.6                         | 5.6                         | -3.5                                     | 6.6                         | 1.5                         | 1.6                         | 1.1                                      | 0.9                                                                | -0.1                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 9.3                         | 5.0                         | -4.2                                     | 7.5                         | 3.3                         | 0.1                         | -0.1                                     | 3.4                                                                | -0.1                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 48.8  | 9.1                         | 4.8                         | -4.1                                     | 7.5                         | 4.2                         | 0.1                         | -0.2                                     | 4.2                                                                | -0.1                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 9.3                         | 5.0                         | -4.0                                     | 7.6                         | 5.2                         | 0.1                         | -0.2                                     | 5.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 68.4  | 9.2                         | 4.8                         | -4.1                                     | 7.6                         | 6.0                         | 0.2                         | -0.4                                     | 5.9                                                                | 0.0                           | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 9.3                         | 5.0                         | -4.0                                     | 7.7                         | 6.8                         | 0.1                         | -0.4                                     | 6.6                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 9.2                         | 4.8                         | -4.3                                     | 7.7                         | 7.5                         | 0.2                         | -0.3                                     | 7.4                                                                | -0.1                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 9.2                         | 4.7                         | -4.2                                     | 7.6                         | 8.5                         | 0.2                         | -0.2                                     | 8.2                                                                | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 107.4 | 9.2                         | 5.1                         | -4.0                                     | 7.8                         | 9.5                         | 0.2                         | 0.1                                      | 9.5                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 117.2 | 9.2                         | 4.8                         | -4.0                                     | 7.8                         | 11.0                        | 0.2                         | -0.5                                     | 9.9                                                                | -0.1                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 9.4                         | 4.7                         | -4.1                                     | 7.7                         | 11.0                        | 0.2                         | -0.6                                     | 11.0                                                               | -0.1                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 136.7 | 9.2                         | 4.6                         | -4.0                                     | 7.8                         | 12.0                        | 0.4                         | -0.5                                     | 12.0                                                               | 0.0                           | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 173. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.57, C<sub>r</sub>=0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 8.2                         | 2.6                         | -1.0                                     | 7.2                         | 0.8                         | 0.1                         | -0.1                        | 0.8                         | -0.1                  | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 8.3                         | 2.5                         | -1.0                                     | 7.3                         | 1.8                         | 0.1                         | 0.0                         | 1.8                         | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 8.0                         | 3.3                         | -0.5                                     | 6.4                         | 1.8                         | 1.4                         | 1.1                         | 1.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 39.1  | 8.5                         | 2.7                         | -1.0                                     | 7.2                         | 3.7                         | 0.2                         | 0.0                         | 3.6                         | -0.1                  | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 48.8  | 8.2                         | 2.6                         | -1.2                                     | 7.2                         | 4.7                         | 0.2                         | -0.1                        | 4.6                         | -0.1                  | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 58.6  | 8.4                         | 2.8                         | -1.1                                     | 7.3                         | 5.7                         | 0.2                         | -0.2                        | 5.7                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 8.5                         | 2.8                         | -1.3                                     | 7.3                         | 6.7                         | -0.1                        | -0.1                        | 6.5                         | -0.1                  | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 78.1  | 8.5                         | 2.6                         | -1.2                                     | 7.4                         | 7.5                         | 0.0                         | -0.2                        | 7.3                         | -0.1                  | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 8.4                         | 2.6                         | -1.3                                     | 7.4                         | 8.3                         | 0.0                         | -0.2                        | 8.3                         | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 97.7  | 8.6                         | 2.5                         | -1.3                                     | 7.4                         | 9.4                         | 0.0                         | -0.1                        | 9.2                         | -0.1                  | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 107.4 | 8.7                         | 2.7                         | -1.0                                     | 7.6                         | 10.0                        | 0.2                         | 0.0                         | 10.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 117.2 | 8.6                         | 2.6                         | -1.3                                     | 7.6                         | 11.0                        | 0.2                         | -0.2                        | 11.0                        | 0.0                   | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 8.7                         | 2.5                         | -1.2                                     | 7.6                         | 12.0                        | 0.2                         | -0.3                        | 12.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 136.7 | 8.7                         | 2.5                         | -1.2                                     | 7.7                         | 13.0                        | 0.1                         | -0.2                        | 13.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 174. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.9                         | 4.5                         | -4.5                        | 2.5                         | 0.4                         | 0.4                         | 0.2          | 1.3                                                                | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.3                         |
| 19.5  | 4.1                         | 5.0                         | -3.8                        | 3.3                         | 3.3                         | 0.5                         | 0.4          | 2.9                                                                | -0.2                         | 0.0                          | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         |
| 29.3  | 5.0                         | 4.8                         | -4.6                        | 3.4                         | 4.7                         | 0.4                         | -0.3         | 4.0                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 4.6                         | 5.1                         | -4.2                        | 3.2                         | 5.6                         | 0.2                         | 0.3          | 4.9                                                                | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 48.8  | 5.1                         | 5.4                         | -4.2                        | 3.7                         | 6.9                         | 0.3                         | 0.5          | 6.3                                                                | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 5.1                         | 5.6                         | -4.1                        | 3.6                         | 7.8                         | 0.2                         | 0.2          | 7.8                                                                | -0.1                         | 0.0                          | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 68.4  | 5.3                         | 5.4                         | -4.3                        | 4.0                         | 9.1                         | 0.0                         | 0.4          | 8.9                                                                | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 5.6                         | 5.4                         | -4.0                        | 3.8                         | 10.0                        | 0.2                         | 0.4          | 10.0                                                               | -0.2                         | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | 5.6                         | 5.2                         | -4.2                        | 4.1                         | 11.0                        | -0.1                        | 0.4          | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.6                         | 5.4                         | -4.1                        | 4.4                         | 12.0                        | 0.0                         | 0.4          | 12.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.8                         | 5.4                         | -3.8                        | 4.6                         | 14.0                        | -0.1                        | 0.1          | 14.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.2                         | -0.1                         |
| 117.2 | 5.8                         | 5.4                         | -3.9                        | 4.8                         | 15.0                        | 0.1                         | 0.0          | 15.0                                                               | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 6.0                         | 5.3                         | -3.8                        | 4.9                         | 16.0                        | 0.0                         | -0.1         | 16.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 6.1                         | 5.2                         | -3.9                        | 5.3                         | 17.0                        | 0.0                         | 0.0          | 16.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |

Table 175. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.163 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.8                         | 4.2                         | -3.2                        | 2.0                         | -0.5                        | 0.5                         | -1.6                        | 1.6                         | -0.2                  | -0.2                         | -0.4                         | -0.4                         | -0.3                         | -0.2                         | -0.4                         | -0.5                         |
| 19.5  | 2.9                         | 4.6                         | -3.5                        | 2.1                         | 2.0                         | 0.4                         | 0.5                         | 2.6                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 29.3  | 4.3                         | 3.3                         | -4.9                        | 3.7                         | 3.5                         | 0.1                         | -0.2                        | 3.8                         | -0.3                  | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         |
| 39.1  | 3.0                         | 4.6                         | -3.2                        | 2.0                         | 4.9                         | 0.3                         | 0.6                         | 5.2                         | -0.2                  | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 48.8  | 3.2                         | 4.4                         | -3.2                        | 2.5                         | 6.4                         | 0.6                         | 0.6                         | 6.7                         | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 3.1                         | 5.0                         | -4.0                        | 3.1                         | 7.7                         | 0.7                         | 0.1                         | 8.0                         | -0.1                  | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         | -0.3                         |
| 68.4  | 4.0                         | 5.2                         | -3.3                        | 3.3                         | 8.9                         | 0.5                         | -0.4                        | 8.9                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.3                         |
| 78.1  | 4.2                         | 4.7                         | -2.9                        | 3.1                         | 9.8                         | 0.0                         | 0.1                         | 9.6                         | -0.2                  | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 3.8                         | 4.7                         | -3.6                        | 3.1                         | 11.0                        | 0.5                         | -0.1                        | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 97.7  | 4.4                         | 4.9                         | -3.3                        | 3.4                         | 12.0                        | 0.4                         | 0.1                         | 13.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 4.7                         | 4.9                         | -2.9                        | 3.3                         | 13.0                        | 0.0                         | -0.5                        | 14.0                        | 0.0                   | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         |
| 117.2 | 4.4                         | 5.0                         | -3.5                        | 3.6                         | 15.0                        | 0.0                         | -0.1                        | 15.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         |
| 127.0 | 4.6                         | 4.6                         | -3.5                        | 3.9                         | 16.0                        | 0.1                         | -0.1                        | 16.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.2                         | 0.0                          | -0.2                         | -0.1                         |
| 136.7 | 4.6                         | 5.1                         | -3.3                        | 3.8                         | 17.0                        | -0.1                        | 0.0                         | 17.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 176. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.163 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.9                         | 3.2                         | -4.2                        | 1.2                         | -0.7                        | 0.5                         | 0.2                                      | 1.7                                                                | -0.5                         | -0.5                         | -0.5                         | -0.4                         | -0.4                         | -0.3                         | -0.2                         | -0.3                         |
| 19.5  | 2.1                         | 4.2                         | -3.3                        | 1.3                         | 1.4                         | 0.8                         | 1.0                                      | 2.8                                                                | -0.3                         | -0.2                         | -0.2                         | -0.4                         | -0.1                         | -0.2                         | -0.4                         | -0.2                         |
| 29.3  | 4.4                         | 2.8                         | -4.4                        | 3.6                         | 3.4                         | 1.4                         | 1.0                                      | 3.9                                                                | -0.2                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.5                         | -0.6                         |
| 39.1  | 3.0                         | 4.5                         | -1.9                        | 1.6                         | 4.9                         | 0.5                         | 0.7                                      | 6.0                                                                | -0.3                         | -0.1                         | -0.4                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 48.8  | 2.5                         | 4.8                         | -2.5                        | 1.9                         | 6.3                         | 0.6                         | -0.1                                     | 7.7                                                                | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.1                         | -0.3                         | -0.3                         | -0.3                         |
| 58.6  | 3.1                         | 4.3                         | -3.1                        | 2.8                         | 7.9                         | 0.4                         | -0.3                                     | 8.3                                                                | -0.2                         | -0.3                         | -0.3                         | -0.4                         | -0.4                         | -0.2                         | -0.4                         | -0.5                         |
| 68.4  | 3.3                         | 4.1                         | -2.8                        | 2.8                         | 8.9                         | 0.1                         | 0.2                                      | 9.1                                                                | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         | -0.4                         | -0.5                         | -0.4                         |
| 78.1  | 4.3                         | 4.3                         | -2.5                        | 2.7                         | 10.0                        | -0.1                        | 0.3                                      | 9.9                                                                | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.4                         |
| 87.9  | 3.5                         | 4.6                         | -2.7                        | 2.3                         | 11.0                        | 0.6                         | -0.2                                     | 11.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         |
| 97.7  | 3.8                         | 4.8                         | -2.3                        | 2.6                         | 13.0                        | 0.5                         | -0.2                                     | 12.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 107.4 | 3.8                         | 4.5                         | -3.6                        | 2.2                         | 14.0                        | 0.5                         | -0.2                                     | 15.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.4                         | -0.2                         |
| 117.2 | 4.2                         | 4.9                         | -3.0                        | 2.4                         | 15.0                        | 0.2                         | -0.4                                     | 16.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         |
| 127.0 | 4.3                         | 4.8                         | -2.9                        | 2.7                         | 16.0                        | 0.5                         | -0.4                                     | 17.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 136.7 | 3.9                         | 5.4                         | -2.9                        | 3.1                         | 17.0                        | -0.2                        | -0.7                                     | 18.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | 0.0                          | -0.1                         | -0.2                         |

Table 177. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5,  $C_r$ =0.163 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.9                         | 3.7                         | -2.3                                     | 6.6                         | 0.9                         | 0.2                         | 0.0                         | 0.7                                                                | -0.1                  | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 7.9                         | 3.8                         | -2.4                                     | 6.5                         | 2.0                         | 0.0                         | -0.3                        | 1.9                                                                | -0.1                  | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 7.4                         | 4.5                         | -1.8                                     | 5.7                         | 1.8                         | 1.5                         | 1.0                         | 1.3                                                                | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 8.0                         | 4.0                         | -2.5                                     | 6.6                         | 3.9                         | 0.1                         | -0.1                        | 3.8                                                                | 0.0                   | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 48.8  | 8.0                         | 4.0                         | -2.7                                     | 6.6                         | 4.5                         | 0.2                         | -0.1                        | 4.6                                                                | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 58.6  | 8.0                         | 4.0                         | -2.5                                     | 6.7                         | 5.6                         | 0.0                         | -0.1                        | 5.6                                                                | 0.0                   | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 8.3                         | 3.9                         | -2.6                                     | 6.8                         | 6.7                         | 0.0                         | -0.4                        | 6.3                                                                | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 8.3                         | 3.9                         | -2.4                                     | 6.8                         | 7.4                         | 0.0                         | -0.2                        | 7.5                                                                | 0.0                   | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 8.3                         | 3.9                         | -2.7                                     | 6.8                         | 8.3                         | -0.1                        | -0.2                        | 8.2                                                                | 0.0                   | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 8.1                         | 3.8                         | -2.5                                     | 6.8                         | 9.2                         | 0.0                         | 0.0                         | 9.2                                                                | 0.0                   | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 8.3                         | 3.9                         | -2.4                                     | 6.8                         | 10.0                        | -0.1                        | -0.1                        | 10.0                                                               | -0.1                  | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 8.1                         | 3.7                         | -2.4                                     | 7.0                         | 11.0                        | 0.2                         | -0.2                        | 11.0                                                               | -0.1                  | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 127.0 | 8.4                         | 3.8                         | -2.4                                     | 7.1                         | 12.0                        | 0.0                         | -0.4                        | 12.0                                                               | 0.0                   | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 136.7 | 8.3                         | 3.6                         | -2.5                                     | 7.2                         | 13.0                        | 0.0                         | -0.3                        | 13.0                                                               | 0.0                   | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 178. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5, C<sub>r</sub>=0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.7                         | 7.0                         | -7.4                                     | 2.3                         | 0.3                         | -0.1                        | -0.1         | 1.3                                                                | -0.2                          | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 19.5  | 3.9                         | 7.6                         | -7.4                                     | 3.3                         | 2.9                         | 0.5                         | 0.8          | 2.9                                                                | -0.2                          | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 29.3  | 4.7                         | 7.1                         | -7.1                                     | 3.2                         | 4.5                         | 0.1                         | 0.7          | 3.9                                                                | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 39.1  | 4.8                         | 7.3                         | -6.4                                     | 3.2                         | 5.4                         | 0.1                         | 0.8          | 5.0                                                                | -0.1                          | 0.0                          | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.1                         |
| 48.8  | 5.1                         | 7.2                         | -6.7                                     | 3.2                         | 6.5                         | 0.1                         | 0.6          | 6.3                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         | -0.2                         |
| 58.6  | 5.2                         | 7.6                         | -6.4                                     | 3.5                         | 7.7                         | 0.0                         | 1.1          | 7.4                                                                | -0.1                          | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 68.4  | 5.4                         | 7.3                         | -6.5                                     | 3.6                         | 8.7                         | 0.0                         | 0.6          | 8.6                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 78.1  | 5.5                         | 7.5                         | -6.4                                     | 3.8                         | 9.3                         | 0.0                         | 1.1          | 9.8                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 87.9  | 5.4                         | 7.6                         | -6.6                                     | 3.7                         | 11.0                        | -0.2                        | 0.8          | 11.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 97.7  | 5.4                         | 7.6                         | -6.5                                     | 3.9                         | 12.0                        | -0.1                        | 1.2          | 12.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 5.6                         | 7.6                         | -5.9                                     | 3.9                         | 13.0                        | -0.5                        | 0.9          | 13.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 5.7                         | 7.5                         | -5.8                                     | 4.2                         | 14.0                        | -0.4                        | 0.4          | 14.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 5.6                         | 7.3                         | -5.9                                     | 4.3                         | 15.0                        | -0.3                        | 0.6          | 16.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 136.7 | 5.6                         | 7.3                         | -5.9                                     | 4.7                         | 17.0                        | -0.2                        | 0.6          | 17.0                                                               | 0.0                           | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 179. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5,  $C_r$ =0.163 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.2                         | 6.1                         | -4.4                                     | 2.4                         | 0.4                         | 0.4                         | -0.5                        | 1.6                                                                | -0.4                  | -0.2                         | -0.6                         | -0.2                         | -0.4                         | -0.4                         | -0.6                         | -0.5                         |
| 19.5  | 3.2                         | 6.5                         | -6.4                                     | 2.9                         | 1.3                         | 0.5                         | 0.5                         | 2.4                                                                | -0.1                  | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 29.3  | 5.6                         | 4.7                         | -7.6                                     | 4.1                         | 3.4                         | 0.2                         | 0.2                         | 4.2                                                                | -0.2                  | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.4                         |
| 39.1  | 3.7                         | 6.2                         | -4.6                                     | 2.6                         | 4.7                         | 0.0                         | 0.3                         | 5.0                                                                | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | 3.7                         | 6.3                         | -4.9                                     | 3.1                         | 5.7                         | 0.0                         | 0.3                         | 6.4                                                                | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 3.8                         | 6.3                         | -4.9                                     | 2.4                         | 7.2                         | 0.0                         | 0.5                         | 7.9                                                                | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 68.4  | 3.9                         | 6.2                         | -5.0                                     | 3.2                         | 8.6                         | 0.1                         | 0.7                         | 9.0                                                                | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 78.1  | 3.8                         | 6.7                         | -4.5                                     | 3.3                         | 9.2                         | 0.0                         | 0.2                         | 9.9                                                                | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 87.9  | 3.7                         | 6.7                         | -4.5                                     | 3.2                         | 10.0                        | 0.2                         | 0.2                         | 11.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 3.9                         | 6.7                         | -4.3                                     | 3.3                         | 12.0                        | 0.3                         | 0.3                         | 12.0                                                               | -0.2                  | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 4.4                         | 6.6                         | -4.1                                     | 3.5                         | 13.0                        | 0.2                         | 0.1                         | 13.0                                                               | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 4.6                         | 6.6                         | -4.7                                     | 3.5                         | 14.0                        | 0.0                         | -0.6                        | 15.0                                                               | -0.1                  | 0.0                          | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 4.5                         | 6.7                         | -4.4                                     | 3.7                         | 15.0                        | 0.1                         | -0.4                        | 16.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 136.7 | 4.4                         | 7.1                         | -4.2                                     | 4.2                         | 17.0                        | -0.5                        | -0.5                        | 17.0                                                               | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 180. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5, C<sub>r</sub>=0.163 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.5                         | 5.0                         | -5.0                        | 2.6                         | -0.6                        | 0.3                         | -0.8         | 1.5                                                                | -0.6                         | -0.3                         | -0.6                         | -0.6                         | -0.5                         | -0.5                         | -0.5                         | -0.2                         |
| 19.5  | 4.0                         | 6.4                         | -4.5                        | 2.0                         | 1.0                         | 0.5                         | -0.4         | 2.6                                                                | -0.3                         | -0.4                         | -0.4                         | -0.3                         | -0.5                         | -0.3                         | -0.6                         | -0.3                         |
| 29.3  | 5.2                         | 5.1                         | -6.8                        | 3.5                         | 2.9                         | 0.8                         | 1.2          | 3.7                                                                | -0.3                         | -0.2                         | -0.4                         | -0.3                         | -0.2                         | -0.3                         | -0.5                         | -0.3                         |
| 39.1  | 3.0                         | 6.0                         | -4.9                        | 1.6                         | 4.7                         | -0.3                        | 0.5          | 5.9                                                                | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.3                         |
| 48.8  | 3.6                         | 6.0                         | -4.5                        | 2.1                         | 5.9                         | -0.6                        | 0.4          | 6.7                                                                | -0.3                         | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         |
| 58.6  | 3.7                         | 6.4                         | -4.6                        | 3.3                         | 7.0                         | -0.3                        | 0.2          | 7.7                                                                | -0.2                         | -0.5                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.4                         |
| 68.4  | 3.7                         | 6.1                         | -4.0                        | 2.7                         | 7.9                         | -0.4                        | -0.1         | 8.6                                                                | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.2                         |
| 78.1  | 3.8                         | 5.2                         | -4.2                        | 3.3                         | 9.4                         | 0.3                         | 0.2          | 10.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         |
| 87.9  | 3.3                         | 5.9                         | -4.2                        | 3.0                         | 11.0                        | 0.6                         | -0.4         | 12.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 3.6                         | 6.2                         | -4.2                        | 3.4                         | 12.0                        | 0.4                         | -0.4         | 13.0                                                               | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 107.4 | 4.5                         | 6.1                         | -4.0                        | 3.3                         | 14.0                        | 0.2                         | -0.5         | 14.0                                                               | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 117.2 | 4.6                         | 6.3                         | -4.8                        | 3.4                         | 14.0                        | 0.2                         | -0.6         | 15.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.4                         | -0.1                         |
| 127.0 | 4.4                         | 6.4                         | -4.6                        | 3.4                         | 16.0                        | 0.5                         | -1.0         | 17.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         |
| 136.7 | 4.5                         | 6.5                         | -4.6                        | 3.6                         | 17.0                        | -0.6                        | -1.0         | 18.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |

Table 181. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5,  $C_r$ =0.163 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(\boldsymbol{eH}_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                                      | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 7.4                         | 5.2                         | -3.8                        | 5.9                         | 1.0                         | 0.1                         | -0.1                        | 1.0                         | -0.1                  | -0.1                         | 0.0                                       | 0.0      | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 7.6                         | 5.3                         | -3.9                        | 6.0                         | 1.9                         | 0.2                         | -0.1                        | 1.8                         | -0.1                  | 0.0                          | -0.1                                      | 0.0      | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 7.2                         | 5.9                         | -3.4                        | 4.9                         | 1.8                         | 1.2                         | 0.7                         | 1.6                         | -0.1                  | -0.1                         | -0.1                                      | -0.1     | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 39.1  | 7.9                         | 5.4                         | -4.1                        | 5.9                         | 3.9                         | 0.0                         | 0.0                         | 3.7                         | -0.1                  | -0.1                         | 0.0                                       | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 7.7                         | 5.3                         | -4.1                        | 5.9                         | 4.7                         | 0.0                         | -0.1                        | 4.8                         | -0.1                  | -0.1                         | 0.0                                       | 0.0      | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 7.8                         | 5.5                         | -3.8                        | 6.3                         | 5.5                         | 0.0                         | -0.2                        | 5.5                         | -0.1                  | -0.1                         | -0.1                                      | -0.1     | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 68.4  | 7.7                         | 5.3                         | -4.1                        | 6.1                         | 6.6                         | -0.2                        | -0.3                        | 6.5                         | -0.1                  | 0.0                          | -0.1                                      | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 7.9                         | 5.5                         | -4.1                        | 6.2                         | 7.3                         | 0.0                         | -0.2                        | 7.4                         | 0.0                   | -0.1                         | 0.0                                       | -0.1     | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 7.9                         | 5.4                         | -4.4                        | 6.3                         | 8.4                         | 0.0                         | -0.3                        | 8.3                         | 0.0                   | -0.1                         | 0.0                                       | 0.0      | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 97.7  | 8.0                         | 5.2                         | -4.3                        | 6.2                         | 9.4                         | 0.0                         | -0.2                        | 9.2                         | -0.1                  | -0.1                         | 0.0                                       | -0.1     | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 107.4 | 7.9                         | 5.5                         | -3.9                        | 6.4                         | 10.0                        | -0.1                        | 0.1                         | 10.0                        | -0.1                  | -0.1                         | 0.0                                       | 0.0      | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 8.1                         | 5.3                         | -4.0                        | 6.5                         | 11.0                        | -0.1                        | -0.4                        | 11.0                        | -0.1                  | 0.0                          | -0.1                                      | 0.0      | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 8.1                         | 5.3                         | -4.0                        | 6.4                         | 12.0                        | 0.0                         | -0.3                        | 12.0                        | 0.0                   | -0.1                         | 0.0                                       | 0.0      | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 136.7 | 8.0                         | 5.1                         | -4.1                        | 6.6                         | 13.0                        | 0.1                         | -0.3                        | 13.0                        | 0.0                   | -0.1                         | -0.1                                      | 0.0      | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 182. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5,  $C_r$ =0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.7                         | 9.5                         | -10.0                                    | 2.4                         | 0.3                         | 0.9                         | -0.2         | 1.5                                                                | -0.5                         | -0.3                         | -0.5                         | -0.3                         | -0.5                         | -0.3                         | -0.6                         | -0.2                         |
| 19.5  | 4.8                         | 9.9                         | -9.9                                     | 2.8                         | 2.1                         | 0.4                         | 0.1          | 2.8                                                                | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.4                         | -0.4                         |
| 29.3  | 5.8                         | 9.3                         | -11.0                                    | 3.8                         | 4.1                         | 0.4                         | 0.6          | 4.0                                                                | -0.1                         | -0.1                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 39.1  | 5.2                         | 10.0                        | -10.0                                    | 2.9                         | 4.5                         | 0.0                         | 0.7          | 5.2                                                                | 0.0                          | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 5.0                         | 10.0                        | -9.8                                     | 3.4                         | 6.1                         | 0.4                         | 1.1          | 6.6                                                                | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 5.3                         | 10.0                        | -9.8                                     | 3.8                         | 7.3                         | 0.2                         | 1.0          | 7.9                                                                | -0.1                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 68.4  | 5.4                         | 10.0                        | -9.4                                     | 4.0                         | 8.5                         | 0.0                         | 0.7          | 8.5                                                                | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 78.1  | 5.6                         | 10.0                        | -8.7                                     | 3.9                         | 9.4                         | 0.0                         | 1.1          | 9.3                                                                | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | 5.4                         | 10.0                        | -9.6                                     | 3.8                         | 10.0                        | 0.0                         | 1.0          | 10.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.8                         | 10.0                        | -9.3                                     | 4.1                         | 12.0                        | -0.2                        | 1.3          | 12.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.8                         | 10.0                        | -8.7                                     | 3.9                         | 13.0                        | -0.3                        | 1.3          | 13.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 5.9                         | 10.0                        | -9.0                                     | 4.1                         | 14.0                        | -0.3                        | 0.9          | 14.0                                                               | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.7                         | 10.0                        | -9.0                                     | 4.4                         | 15.0                        | -0.3                        | 1.0          | 15.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 5.7                         | 10.0                        | -8.5                                     | 4.3                         | 17.0                        | -0.4                        | 0.8          | 16.0                                                               | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 183. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5,  $C_r$ =0.163 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.4                         | 7.8                         | -8.3                        | 4.2                         | -0.9                        | 0.6                         | 1.1                         | 1.3                         | -0.6                  | -0.2                         | -0.8                         | -0.4                         | -0.6                         | -0.3                         | -0.6                         | -0.4                         |
| 19.5  | 4.1                         | 8.9                         | -7.6                        | 2.4                         | 1.2                         | 0.0                         | 0.9                         | 1.6                         | -0.2                  | -0.1                         | -0.3                         | -0.4                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         |
| 29.3  | 5.8                         | 6.8                         | -9.8                        | 4.8                         | 2.9                         | 0.4                         | 1.5                         | 3.5                         | -0.3                  | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 39.1  | 3.7                         | 8.6                         | -7.0                        | 2.4                         | 4.0                         | 0.0                         | 0.4                         | 5.0                         | -0.1                  | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         |
| 48.8  | 3.8                         | 8.5                         | -6.8                        | 2.9                         | 5.2                         | 0.5                         | 1.3                         | 5.9                         | -0.2                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 4.2                         | 8.9                         | -7.2                        | 2.6                         | 6.6                         | -0.1                        | 0.7                         | 7.7                         | -0.2                  | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 68.4  | 4.2                         | 8.3                         | -6.4                        | 2.6                         | 7.5                         | 0.2                         | -0.1                        | 8.3                         | -0.1                  | 0.0                          | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | 4.4                         | 8.9                         | -6.2                        | 3.2                         | 8.8                         | 0.0                         | 0.7                         | 9.7                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 87.9  | 4.0                         | 8.8                         | -6.2                        | 3.1                         | 9.9                         | 0.1                         | 0.2                         | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 4.4                         | 9.1                         | -6.2                        | 3.3                         | 12.0                        | -0.1                        | 0.4                         | 12.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 107.4 | 4.5                         | 9.0                         | -5.7                        | 3.3                         | 13.0                        | 0.0                         | 0.4                         | 13.0                        | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 4.6                         | 8.9                         | -6.4                        | 3.5                         | 14.0                        | -0.3                        | -0.4                        | 14.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 4.6                         | 8.8                         | -6.0                        | 4.0                         | 15.0                        | -0.2                        | 0.1                         | 15.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | 4.2                         | 8.9                         | -6.1                        | 3.5                         | 16.0                        | -0.5                        | -0.6                        | 17.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |

Table 184. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5, C<sub>r</sub>=0.163 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.9                         | 8.5                         | -7.3                                     | 2.7                         | 0.1                         | -0.6                        | 0.7                                      | 1.1                                                                | -1.0                          | -0.5                         | -1.0                         | -0.7                         | -0.6                         | -0.3                         | -0.8                         | -0.5                         |
| 19.5  | 5.7                         | 8.6                         | -7.5                                     | 2.8                         | 0.6                         | -0.8                        | 1.2                                      | 2.4                                                                | -0.6                          | -0.2                         | -0.5                         | -0.3                         | -0.2                         | -0.2                         | -0.9                         | -0.7                         |
| 29.3  | 5.9                         | 7.7                         | -9.1                                     | 4.2                         | 2.2                         | 0.9                         | 1.7                                      | 2.9                                                                | -0.3                          | -0.4                         | -0.4                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.5                         |
| 39.1  | 4.2                         | 8.8                         | -5.9                                     | 2.9                         | 4.2                         | -0.5                        | 0.6                                      | 5.3                                                                | -0.3                          | -0.3                         | -0.5                         | -0.3                         | -0.2                         | -0.1                         | -0.4                         | -0.2                         |
| 48.8  | 4.6                         | 8.6                         | -6.5                                     | 2.9                         | 5.6                         | -1.1                        | 1.2                                      | 6.6                                                                | -0.2                          | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.4                         | -0.3                         |
| 58.6  | 4.9                         | 7.4                         | -6.5                                     | 3.0                         | 6.7                         | -1.2                        | -0.2                                     | 7.5                                                                | -0.4                          | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.4                         | -0.3                         | -0.4                         |
| 68.4  | 4.7                         | 7.8                         | -6.2                                     | 3.8                         | 7.9                         | -0.8                        | 0.2                                      | 8.7                                                                | -0.4                          | -0.5                         | -0.5                         | -0.4                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |
| 78.1  | 4.4                         | 7.4                         | -5.6                                     | 3.6                         | 8.9                         | -0.7                        | -0.1                                     | 11.0                                                               | -0.2                          | -0.4                         | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.1                         |
| 87.9  | 3.9                         | 7.5                         | -6.3                                     | 3.9                         | 10.0                        | 0.3                         | -0.3                                     | 11.0                                                               | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 4.6                         | 8.0                         | -6.0                                     | 3.8                         | 12.0                        | 0.1                         | 0.3                                      | 13.0                                                               | -0.1                          | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 107.4 | 5.2                         | 8.2                         | -5.5                                     | 3.8                         | 13.0                        | 0.5                         | 0.1                                      | 13.0                                                               | -0.2                          | -0.1                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 117.2 | 4.6                         | 8.2                         | -5.8                                     | 4.0                         | 15.0                        | 0.4                         | -0.9                                     | 15.0                                                               | -0.3                          | -0.1                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         |
| 127.0 | 5.1                         | 8.6                         | -6.0                                     | 3.5                         | 16.0                        | 0.2                         | -0.6                                     | 16.0                                                               | -0.2                          | -0.3                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 136.7 | 5.1                         | 8.6                         | -5.4                                     | 4.8                         | 17.0                        | -0.6                        | -0.6                                     | 18.0                                                               | -0.2                          | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |

Table 185. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5,  $C_r$ =0.163 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | Re(eHyy) | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m     | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.2                         | 2.9                         | -0.8                        | 4.1                         | 0.8                         | 0.0                         | -0.1                        | 0.9                         | -0.1                  | 0.0                          | -0.1                         | 0.0      | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 19.5  | 5.2                         | 2.9                         | -1.1                        | 4.1                         | 2.1                         | 0.1                         | -0.2                        | 2.0                         | 0.0                   | -0.1                         | 0.0                          | 0.0      | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 29.3  | 4.7                         | 3.6                         | -0.6                        | 3.2                         | 2.2                         | 0.9                         | 0.9                         | 1.9                         | 0.0                   | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 5.3                         | 3.0                         | -1.1                        | 4.1                         | 4.0                         | 0.0                         | -0.1                        | 4.0                         | 0.0                   | 0.0                          | -0.1                         | 0.0      | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 48.8  | 5.2                         | 3.1                         | -1.2                        | 4.0                         | 5.2                         | 0.0                         | -0.1                        | 5.0                         | -0.1                  | 0.0                          | -0.1                         | -0.1     | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 5.3                         | 3.2                         | -1.2                        | 4.3                         | 6.2                         | -0.1                        | -0.3                        | 6.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1     | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 68.4  | 5.4                         | 3.1                         | -1.2                        | 4.2                         | 7.3                         | 0.0                         | -0.2                        | 7.3                         | -0.1                  | 0.0                          | -0.1                         | 0.0      | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 5.4                         | 3.1                         | -1.1                        | 4.3                         | 8.1                         | 0.0                         | -0.2                        | 8.1                         | 0.0                   | -0.1                         | -0.1                         | 0.0      | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 87.9  | 5.4                         | 2.9                         | -1.4                        | 4.2                         | 9.2                         | -0.2                        | -0.2                        | 9.3                         | 0.0                   | 0.0                          | 0.0                          | 0.0      | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 97.7  | 5.4                         | 2.9                         | -1.4                        | 4.3                         | 10.0                        | -0.1                        | -0.1                        | 10.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 5.6                         | 3.1                         | -1.1                        | 4.5                         | 11.0                        | -0.2                        | 0.0                         | 11.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1     | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 117.2 | 5.5                         | 2.9                         | -1.3                        | 4.4                         | 13.0                        | -0.1                        | -0.3                        | 13.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0      | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | 5.7                         | 2.8                         | -1.2                        | 4.6                         | 14.0                        | -0.1                        | -0.3                        | 14.0                        | 0.0                   | 0.0                          | -0.1                         | -0.1     | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 136.7 | 5.6                         | 2.8                         | -1.2                        | 5.0                         | 15.0                        | -0.2                        | -0.1                        | 15.0                        | -0.1                  | -0.1                         | -0.1                         | 0.0      | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 186. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43, C<sub>r</sub>=0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.0                         | 5.0                         | -4.5                                     | 1.9                         | 0.9                         | 0.2                         | 0.2          | 1.8                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         |
| 19.5  | 2.3                         | 5.5                         | -4.9                                     | 2.2                         | 3.6                         | 0.5                         | 0.4          | 3.6                                                                | -0.1                          | -0.1                         | -0.3                         | -0.3                         | -0.1                         | 0.0                          | -0.3                         | -0.1                         |
| 29.3  | 3.9                         | 4.9                         | -5.2                                     | 2.7                         | 5.1                         | 0.4                         | 0.4          | 4.3                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 39.1  | 3.7                         | 5.7                         | -4.7                                     | 2.4                         | 6.2                         | 0.3                         | 0.2          | 5.7                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 48.8  | 4.0                         | 5.6                         | -4.9                                     | 2.4                         | 7.5                         | 0.5                         | 0.6          | 7.3                                                                | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 4.2                         | 6.1                         | -4.8                                     | 2.7                         | 8.7                         | 0.3                         | 0.4          | 8.5                                                                | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 68.4  | 4.4                         | 6.0                         | -4.4                                     | 3.0                         | 10.0                        | -0.2                        | 0.7          | 9.2                                                                | -0.1                          | 0.0                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 4.8                         | 5.8                         | -4.1                                     | 3.2                         | 11.0                        | -0.1                        | 0.5          | 11.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 4.7                         | 5.9                         | -4.6                                     | 3.0                         | 12.0                        | -0.1                        | 0.5          | 12.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 4.9                         | 5.9                         | -4.5                                     | 3.5                         | 14.0                        | -0.2                        | 0.7          | 13.0                                                               | 0.0                           | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.2                         | 5.9                         | -4.1                                     | 3.8                         | 15.0                        | -0.3                        | 0.8          | 15.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 5.1                         | 5.9                         | -4.3                                     | 4.0                         | 16.0                        | -0.1                        | 0.4          | 16.0                                                               | -0.1                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 127.0 | 5.3                         | 5.9                         | -4.3                                     | 4.1                         | 17.0                        | -0.3                        | 0.2          | 17.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 5.3                         | 5.9                         | -4.3                                     | 4.5                         | 19.0                        | -0.3                        | 0.4          | 18.0                                                               | 0.0                           | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 187. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43,  $C_r$ =0.163 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 1.8                         | 4.3                         | -5.1                                     | 0.7                         | 0.1                         | 0.6                         | 0.8                         | 1.6                                                                | -0.2                  | -0.1                         | -0.4                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.2                         |
| 19.5  | 0.9                         | 5.1                         | -4.1                                     | 1.2                         | 2.8                         | 0.4                         | 0.9                         | 3.2                                                                | -0.2                  | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         | -0.3                         | -0.3                         |
| 29.3  | 3.0                         | 3.4                         | -4.7                                     | 2.0                         | 4.0                         | 0.7                         | 0.6                         | 3.7                                                                | -0.3                  | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         |
| 39.1  | 1.3                         | 4.9                         | -3.0                                     | 0.7                         | 5.8                         | 0.0                         | 0.3                         | 5.6                                                                | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 48.8  | 1.7                         | 5.0                         | -3.3                                     | 1.1                         | 7.2                         | 0.1                         | 0.5                         | 7.2                                                                | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         |
| 58.6  | 2.0                         | 5.2                         | -3.3                                     | 1.4                         | 8.4                         | 0.1                         | 0.2                         | 8.6                                                                | -0.1                  | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 68.4  | 2.4                         | 5.8                         | -3.5                                     | 2.3                         | 10.0                        | 0.3                         | 0.5                         | 9.5                                                                | -0.1                  | -0.1                         | -0.3                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 2.8                         | 5.4                         | -3.0                                     | 2.2                         | 11.0                        | -0.1                        | -0.1                        | 11.0                                                               | -0.1                  | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 87.9  | 2.5                         | 5.2                         | -3.6                                     | 2.5                         | 12.0                        | -0.1                        | 0.4                         | 12.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 3.0                         | 5.2                         | -3.2                                     | 2.5                         | 13.0                        | 0.1                         | 0.4                         | 14.0                                                               | -0.2                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 107.4 | 3.1                         | 5.2                         | -3.5                                     | 2.2                         | 14.0                        | 0.0                         | 0.2                         | 15.0                                                               | -0.1                  | 0.0                          | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 117.2 | 3.1                         | 5.3                         | -3.4                                     | 2.4                         | 16.0                        | -0.1                        | 0.0                         | 16.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | 0.0                          | -0.2                         | -0.1                         |
| 127.0 | 3.0                         | 5.6                         | -3.6                                     | 2.7                         | 17.0                        | 0.0                         | 0.4                         | 18.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         |
| 136.7 | 2.8                         | 5.5                         | -3.5                                     | 2.8                         | 19.0                        | -0.4                        | 0.1                         | 19.0                                                               | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |

Table 188. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43, C<sub>r</sub>=0.163 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.0                         | 3.3                         | -3.4                        | -0.2                        | -1.2                        | 1.6                         | 0.2          | 2.2                                                                | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.3                         |
| 19.5  | 1.1                         | 4.8                         | -3.4                        | 0.4                         | 1.7                         | -0.1                        | 1.0          | 3.2                                                                | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 29.3  | 2.9                         | 2.9                         | -4.6                        | 2.0                         | 3.3                         | 1.2                         | 1.3          | 3.7                                                                | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         |
| 39.1  | 1.3                         | 5.5                         | -2.9                        | 1.0                         | 5.7                         | 0.4                         | 0.5          | 6.7                                                                | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         | -0.4                         | -0.2                         |
| 48.8  | 1.4                         | 4.7                         | -2.3                        | 0.7                         | 7.0                         | 0.3                         | 0.3          | 8.0                                                                | -0.2                         | -0.2                         | -0.1                         | -0.4                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 58.6  | 1.9                         | 5.1                         | -3.5                        | 1.7                         | 8.5                         | 0.0                         | -0.3         | 8.8                                                                | -0.2                         | -0.2                         | -0.3                         | -0.4                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         |
| 68.4  | 2.4                         | 4.3                         | -3.5                        | 2.4                         | 9.9                         | -0.5                        | 0.0          | 10.0                                                               | -0.3                         | -0.1                         | -0.3                         | -0.3                         | -0.1                         | -0.2                         | -0.5                         | -0.3                         |
| 78.1  | 2.8                         | 5.2                         | -2.4                        | 2.3                         | 11.0                        | 0.1                         | -0.3         | 11.0                                                               | -0.2                         | -0.2                         | -0.4                         | -0.4                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         |
| 87.9  | 2.2                         | 4.4                         | -2.7                        | 1.7                         | 12.0                        | 0.4                         | -0.3         | 12.0                                                               | 0.0                          | -0.2                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 97.7  | 2.7                         | 4.7                         | -2.9                        | 1.3                         | 14.0                        | 0.5                         | 0.4          | 14.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 107.4 | 3.5                         | 5.5                         | -2.3                        | 1.6                         | 15.0                        | 0.2                         | 0.2          | 15.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.5                         | -0.2                         |
| 117.2 | 3.1                         | 5.3                         | -3.4                        | 1.8                         | 16.0                        | 0.0                         | -0.3         | 17.0                                                               | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 127.0 | 3.1                         | 5.5                         | -3.4                        | 2.0                         | 17.0                        | -0.3                        | -0.5         | 19.0                                                               | -0.2                         | -0.2                         | -0.4                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 136.7 | 2.9                         | 5.4                         | -3.0                        | 2.1                         | 19.0                        | -0.9                        | -0.6         | 20.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |

Table 189. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43,  $C_r$ =0.163 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.8                         | 4.3                         | -2.3                                     | 3.4                         | 1.0                         | 0.1                         | 0.0                                      | 1.0                         | -0.1                  | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 19.5  | 4.9                         | 4.3                         | -2.4                                     | 3.4                         | 2.0                         | 0.1                         | -0.1                                     | 2.1                         | -0.1                  | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 4.5                         | 5.1                         | -2.1                                     | 2.6                         | 2.4                         | 1.3                         | 0.8                                      | 2.0                         | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.2                         |
| 39.1  | 5.0                         | 4.5                         | -2.6                                     | 3.4                         | 4.2                         | -0.1                        | -0.1                                     | 4.2                         | -0.1                  | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 48.8  | 5.0                         | 4.4                         | -2.6                                     | 3.4                         | 5.1                         | 0.0                         | 0.0                                      | 5.1                         | 0.0                   | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 5.2                         | 4.5                         | -2.4                                     | 3.9                         | 6.2                         | -0.1                        | -0.1                                     | 6.2                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 5.1                         | 4.5                         | -2.6                                     | 3.7                         | 7.2                         | -0.1                        | -0.2                                     | 7.2                         | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 5.1                         | 4.4                         | -2.5                                     | 3.7                         | 8.1                         | -0.3                        | -0.1                                     | 8.3                         | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 87.9  | 5.2                         | 4.4                         | -2.8                                     | 3.8                         | 9.1                         | -0.2                        | -0.2                                     | 9.3                         | -0.1                  | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          |
| 97.7  | 5.2                         | 4.3                         | -2.7                                     | 3.7                         | 10.0                        | -0.4                        | 0.0                                      | 10.0                        | 0.0                   | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 5.4                         | 4.4                         | -2.6                                     | 3.9                         | 11.0                        | -0.3                        | 0.0                                      | 11.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          |
| 117.2 | 5.3                         | 4.3                         | -2.5                                     | 3.9                         | 12.0                        | -0.3                        | -0.3                                     | 12.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | 5.4                         | 4.3                         | -2.6                                     | 4.1                         | 13.0                        | -0.4                        | -0.3                                     | 14.0                        | 0.0                   | -0.1                         | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 136.7 | 5.4                         | 4.0                         | -2.7                                     | 4.3                         | 14.0                        | -0.3                        | -0.3                                     | 14.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 190. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43, C<sub>r</sub>=0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.1                         | 7.4                         | -7.9                                     | 1.9                         | 0.6                         | 0.2                         | -0.2                                     | 1.9                                                                | -0.3                          | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.1                         |
| 19.5  | 2.9                         | 8.2                         | -7.8                                     | 2.2                         | 3.2                         | 0.3                         | 0.7                                      | 3.0                                                                | -0.2                          | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         |
| 29.3  | 4.6                         | 7.5                         | -8.4                                     | 3.8                         | 4.7                         | 0.6                         | 0.7                                      | 3.8                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 39.1  | 4.2                         | 8.1                         | -7.4                                     | 2.6                         | 5.9                         | 0.1                         | 0.9                                      | 5.6                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.5                         | 8.5                         | -7.6                                     | 2.6                         | 7.2                         | 0.1                         | 0.8                                      | 6.8                                                                | -0.1                          | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 4.5                         | 8.7                         | -7.0                                     | 3.1                         | 8.5                         | 0.0                         | 1.0                                      | 8.0                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 5.0                         | 8.5                         | -7.2                                     | 3.0                         | 9.5                         | -0.2                        | 0.7                                      | 9.4                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 5.1                         | 8.6                         | -6.7                                     | 3.3                         | 11.0                        | -0.4                        | 0.9                                      | 11.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 5.3                         | 8.5                         | -7.1                                     | 3.3                         | 12.0                        | -0.5                        | 1.1                                      | 12.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 97.7  | 5.3                         | 8.5                         | -6.9                                     | 3.5                         | 13.0                        | -0.5                        | 1.1                                      | 13.0                                                               | -0.2                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 107.4 | 5.5                         | 8.5                         | -6.4                                     | 3.6                         | 14.0                        | -0.6                        | 1.0                                      | 14.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 5.7                         | 8.3                         | -6.3                                     | 3.9                         | 16.0                        | -0.6                        | 0.8                                      | 16.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.6                         | 8.4                         | -6.4                                     | 4.4                         | 17.0                        | -0.5                        | 0.9                                      | 17.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 136.7 | 5.6                         | 8.3                         | -6.1                                     | 4.4                         | 18.0                        | -0.6                        | 0.6                                      | 18.0                                                               | -0.1                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |

Table 191. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43, C<sub>r</sub>=0.163 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.4                         | 6.6                         | -4.7                        | 1.2                         | 0.5                         | 0.6                         | 0.0                                      | 1.7                         | -0.3                  | -0.1                         | -0.5                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         |
| 19.5  | 1.9                         | 7.2                         | -6.2                        | 0.7                         | 2.1                         | -0.1                        | 0.5                                      | 2.7                         | -0.3                  | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         |
| 29.3  | 3.8                         | 5.6                         | -7.7                        | 2.7                         | 3.7                         | 0.6                         | 0.8                                      | 3.1                         | -0.3                  | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 39.1  | 2.1                         | 7.0                         | -5.2                        | 0.4                         | 5.0                         | -0.3                        | 0.5                                      | 5.7                         | -0.2                  | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.1                         |
| 48.8  | 2.1                         | 7.1                         | -4.7                        | 0.9                         | 6.7                         | 0.0                         | 0.7                                      | 7.3                         | -0.2                  | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         |
| 58.6  | 2.3                         | 7.8                         | -4.6                        | 1.3                         | 8.3                         | 0.1                         | 0.9                                      | 8.4                         | -0.1                  | -0.2                         | -0.2                         | -0.4                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         |
| 68.4  | 2.8                         | 7.1                         | -5.1                        | 1.9                         | 9.0                         | -0.4                        | 0.5                                      | 9.3                         | -0.2                  | -0.1                         | -0.4                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.3                         |
| 78.1  | 2.9                         | 7.5                         | -4.6                        | 1.4                         | 10.0                        | -0.3                        | 0.1                                      | 11.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 87.9  | 2.6                         | 7.6                         | -4.8                        | 1.5                         | 12.0                        | -0.3                        | 0.3                                      | 12.0                        | -0.1                  | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 3.1                         | 7.7                         | -4.3                        | 2.1                         | 13.0                        | -0.2                        | 0.4                                      | 13.0                        | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 107.4 | 3.2                         | 7.3                         | -4.4                        | 2.1                         | 14.0                        | -0.2                        | -0.2                                     | 15.0                        | -0.1                  | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 117.2 | 3.3                         | 7.2                         | -4.9                        | 2.2                         | 16.0                        | -0.1                        | -0.5                                     | 16.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 127.0 | 3.5                         | 7.4                         | -4.7                        | 2.3                         | 17.0                        | -0.5                        | -0.3                                     | 17.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | 3.5                         | 7.6                         | -4.3                        | 2.1                         | 18.0                        | -0.6                        | -0.6                                     | 18.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 192. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43, C<sub>r</sub>=0.163 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.8                         | 5.9                         | -5.2                                     | 0.9                         | 0.1                         | 0.7                         | -0.9         | 2.2                                                                | -0.5                          | -0.2                         | -0.7                         | -0.3                         | -0.5                         | -0.2                         | -0.5                         | -0.5                         |
| 19.5  | 2.1                         | 7.0                         | -5.2                                     | 1.1                         | 1.1                         | 0.6                         | -0.1         | 3.2                                                                | -0.3                          | -0.2                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.4                         | -0.1                         |
| 29.3  | 3.8                         | 4.9                         | -7.0                                     | 2.3                         | 2.7                         | 0.6                         | 1.2          | 3.5                                                                | -0.3                          | -0.3                         | -0.4                         | -0.2                         | -0.4                         | -0.3                         | -0.4                         | -0.3                         |
| 39.1  | 2.3                         | 7.0                         | -4.1                                     | 0.6                         | 5.0                         | -0.4                        | 0.4          | 5.9                                                                | -0.3                          | -0.2                         | -0.4                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         |
| 48.8  | 2.1                         | 6.5                         | -3.9                                     | 1.1                         | 6.1                         | -0.3                        | 0.4          | 7.0                                                                | -0.2                          | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         |
| 58.6  | 1.9                         | 5.8                         | -4.3                                     | 0.7                         | 7.9                         | -0.3                        | -0.5         | 8.4                                                                | -0.1                          | -0.1                         | -0.3                         | -0.3                         | -0.3                         | -0.1                         | -0.4                         | -0.1                         |
| 68.4  | 3.1                         | 6.0                         | -5.0                                     | 1.2                         | 8.5                         | -0.7                        | -0.3         | 10.0                                                               | -0.4                          | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         |
| 78.1  | 2.6                         | 6.4                         | -4.2                                     | 1.6                         | 11.0                        | -0.5                        | -0.4         | 11.0                                                               | -0.3                          | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.4                         | -0.3                         | -0.5                         |
| 87.9  | 2.5                         | 6.4                         | -4.2                                     | 1.9                         | 12.0                        | 0.0                         | -0.1         | 13.0                                                               | -0.1                          | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         |
| 97.7  | 2.3                         | 6.8                         | -4.1                                     | 1.6                         | 14.0                        | 0.2                         | -0.4         | 14.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 107.4 | 3.4                         | 6.7                         | -4.3                                     | 2.2                         | 15.0                        | 0.1                         | -0.2         | 15.0                                                               | -0.3                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |
| 117.2 | 3.1                         | 7.0                         | -4.7                                     | 2.3                         | 16.0                        | -0.2                        | -0.6         | 17.0                                                               | -0.3                          | 0.0                          | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.5                         | -0.3                         |
| 127.0 | 3.2                         | 7.0                         | -3.8                                     | 2.5                         | 17.0                        | -0.3                        | -0.9         | 18.0                                                               | -0.2                          | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 136.7 | 3.2                         | 7.0                         | -4.2                                     | 2.6                         | 18.0                        | -1.1                        | -1.4         | 20.0                                                               | -0.1                          | -0.2                         | -0.3                         | -0.3                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |

Table 193. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43,  $C_r$ =0.163 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.4                         | 5.8                         | -4.1                                     | 2.9                         | 0.9                         | 0.1                         | 0.2                                      | 1.0                         | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 19.5  | 4.5                         | 5.9                         | -4.2                                     | 2.8                         | 2.0                         | 0.1                         | 0.0                                      | 2.2                         | 0.0                   | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 29.3  | 4.0                         | 6.6                         | -3.7                                     | 2.0                         | 2.6                         | 0.8                         | 0.6                                      | 2.4                         | 0.0                   | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 39.1  | 4.7                         | 6.1                         | -4.3                                     | 2.8                         | 4.3                         | -0.1                        | -0.1                                     | 4.3                         | 0.0                   | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.8                         | 5.9                         | -4.3                                     | 3.1                         | 5.1                         | -0.1                        | 0.0                                      | 5.4                         | -0.1                  | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 58.6  | 4.8                         | 6.0                         | -4.3                                     | 3.1                         | 6.1                         | -0.4                        | -0.2                                     | 6.1                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 68.4  | 4.8                         | 5.8                         | -4.4                                     | 3.2                         | 7.2                         | -0.2                        | -0.1                                     | 7.2                         | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 78.1  | 4.9                         | 6.0                         | -4.3                                     | 3.4                         | 8.1                         | -0.4                        | -0.1                                     | 8.3                         | 0.0                   | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 87.9  | 4.8                         | 5.8                         | -4.5                                     | 3.4                         | 9.1                         | -0.2                        | -0.1                                     | 9.2                         | 0.0                   | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 4.9                         | 5.9                         | -4.4                                     | 3.3                         | 10.0                        | -0.3                        | 0.0                                      | 10.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 5.2                         | 6.0                         | -4.3                                     | 3.4                         | 11.0                        | -0.4                        | 0.0                                      | 11.0                        | -0.1                  | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 5.3                         | 5.9                         | -4.3                                     | 3.5                         | 12.0                        | -0.5                        | -0.3                                     | 13.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          |
| 127.0 | 5.2                         | 5.9                         | -4.4                                     | 3.8                         | 13.0                        | -0.4                        | -0.1                                     | 13.0                        | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 136.7 | 5.3                         | 5.5                         | -4.3                                     | 3.9                         | 14.0                        | -0.4                        | -0.2                                     | 15.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          |

Table 194. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43,  $C_r$ =0.163 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 4.1                         | 11.0                        | -11.0                                    | 2.6                         | 1.0                         | 0.3                         | 0.1                                      | 2.0                                                                | -0.3                          | -0.2                         | -0.5                         | -0.4                         | -0.6                         | -0.4                         | -0.6                         | -0.4                         |
| 19.5  | 4.0                         | 11.0                        | -12.0                                    | 2.7                         | 2.5                         | 0.5                         | 0.6                                      | 2.5                                                                | -0.2                          | -0.1                         | -0.4                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 29.3  | 5.3                         | 10.0                        | -13.0                                    | 3.3                         | 4.3                         | 0.2                         | 0.1                                      | 4.5                                                                | -0.1                          | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 39.1  | 4.6                         | 11.0                        | -12.0                                    | 2.7                         | 5.1                         | 0.0                         | 0.6                                      | 5.4                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 48.8  | 4.4                         | 12.0                        | -11.0                                    | 3.1                         | 6.6                         | 0.1                         | 1.1                                      | 7.0                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 58.6  | 4.7                         | 11.0                        | -11.0                                    | 3.5                         | 7.8                         | -0.1                        | 0.9                                      | 8.4                                                                | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 68.4  | 4.9                         | 11.0                        | -11.0                                    | 3.3                         | 9.2                         | -0.5                        | 1.0                                      | 9.4                                                                | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 5.0                         | 12.0                        | -11.0                                    | 3.8                         | 10.0                        | -0.3                        | 1.3                                      | 10.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 5.1                         | 12.0                        | -11.0                                    | 3.9                         | 12.0                        | -0.5                        | 1.4                                      | 12.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 5.3                         | 12.0                        | -11.0                                    | 3.9                         | 13.0                        | -0.8                        | 1.4                                      | 13.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 5.4                         | 11.0                        | -10.0                                    | 4.3                         | 14.0                        | -0.9                        | 1.7                                      | 14.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 5.5                         | 11.0                        | -11.0                                    | 4.4                         | 16.0                        | -0.9                        | 1.4                                      | 15.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 5.7                         | 12.0                        | -11.0                                    | 4.1                         | 17.0                        | -1.1                        | 1.2                                      | 17.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 5.8                         | 11.0                        | -10.0                                    | 4.8                         | 18.0                        | -1.1                        | 1.3                                      | 18.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 195. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43,  $C_r$ =0.163 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.2                         | 9.6                         | -7.8                                     | 2.7                                                                | 0.3                         | 0.4                         | 2.1                                      | 1.0                         | -0.4                  | -0.4                         | -1.0                         | -1.1                         | -0.6                         | -0.4                         | -1.0                         | -0.5                         |
| 19.5  | 3.8                         | 9.6                         | -9.0                                     | 2.8                                                                | 1.6                         | 0.0                         | 1.1                                      | 3.2                         | -0.2                  | -0.2                         | -0.6                         | -0.4                         | -0.3                         | -0.3                         | -0.3                         | -0.6                         |
| 29.3  | 4.5                         | 8.3                         | -11.0                                    | 3.9                                                                | 3.6                         | 0.2                         | 1.0                                      | 3.3                         | -0.3                  | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.3                         | -0.4                         | -0.4                         |
| 39.1  | 2.9                         | 9.8                         | -8.0                                     | 2.0                                                                | 4.6                         | -0.1                        | 1.1                                      | 5.1                         | -0.3                  | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.3                         |
| 48.8  | 3.3                         | 9.3                         | -8.1                                     | 1.5                                                                | 6.0                         | -0.2                        | 0.7                                      | 7.1                         | -0.1                  | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 58.6  | 3.5                         | 9.8                         | -8.4                                     | 2.2                                                                | 7.5                         | -0.5                        | 0.5                                      | 8.4                         | -0.1                  | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 68.4  | 3.6                         | 9.7                         | -7.9                                     | 2.5                                                                | 8.4                         | -0.4                        | 0.7                                      | 9.1                         | -0.2                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.3                         | -0.2                         |
| 78.1  | 3.5                         | 9.9                         | -7.0                                     | 2.7                                                                | 9.7                         | -0.3                        | 0.8                                      | 9.9                         | -0.1                  | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 87.9  | 3.3                         | 10.0                        | -7.9                                     | 2.6                                                                | 12.0                        | -0.4                        | 1.0                                      | 12.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 97.7  | 3.6                         | 9.9                         | -7.7                                     | 2.9                                                                | 13.0                        | -0.4                        | 0.8                                      | 14.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 107.4 | 4.3                         | 10.0                        | -7.6                                     | 3.1                                                                | 14.0                        | -0.8                        | 1.1                                      | 15.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 4.5                         | 10.0                        | -7.4                                     | 2.9                                                                | 15.0                        | -1.0                        | -0.3                                     | 16.0                        | -0.1                  | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 127.0 | 4.4                         | 10.0                        | -7.6                                     | 3.5                                                                | 16.0                        | -1.0                        | 0.1                                      | 17.0                        | -0.1                  | -0.2                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.3                         |
| 136.7 | 4.4                         | 9.7                         | -7.5                                     | 3.5                                                                | 18.0                        | -1.2                        | -0.2                                     | 19.0                        | -0.1                  | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 196. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43,  $C_r$ =0.163 mm, and inlet GVF=95%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.3                         | 9.0                         | -6.7                        | 0.5                         | -1.2                        | -0.7                        | -0.1         | 0.9                                                                | -0.6                         | -0.3                         | -0.9                         | -0.4                         | -0.6                         | -0.5                         | -1.0                         | -0.7                         |
| 19.5  | 4.8                         | 9.5                         | -7.5                        | 0.9                         | 1.0                         | -0.5                        | 0.1          | 3.0                                                                | -0.3                         | -0.4                         | -0.3                         | -0.2                         | -0.6                         | -0.2                         | -0.3                         | -0.4                         |
| 29.3  | 5.2                         | 7.1                         | -9.8                        | 3.9                         | 1.9                         | 0.2                         | 2.4          | 3.4                                                                | -0.3                         | -0.3                         | -0.7                         | -0.4                         | -0.4                         | -0.2                         | -0.3                         | -0.5                         |
| 39.1  | 2.5                         | 9.3                         | -5.3                        | 0.7                         | 4.7                         | -0.8                        | 0.8          | 5.7                                                                | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.4                         | -0.2                         | -0.4                         | -0.4                         |
| 48.8  | 3.4                         | 8.9                         | -5.6                        | 1.3                         | 6.1                         | -1.1                        | 1.4          | 7.0                                                                | -0.2                         | -0.3                         | -0.3                         | -0.3                         | -0.6                         | -0.3                         | -0.2                         | -0.3                         |
| 58.6  | 3.5                         | 8.1                         | -6.2                        | 1.9                         | 6.7                         | -1.3                        | 0.5          | 9.3                                                                | -0.2                         | -0.3                         | -0.5                         | -0.5                         | -0.3                         | -0.2                         | -0.4                         | -0.2                         |
| 68.4  | 3.4                         | 7.8                         | -5.5                        | 1.9                         | 8.6                         | -1.5                        | 0.3          | 10.0                                                               | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.5                         | -0.3                         |
| 78.1  | 3.8                         | 7.6                         | -5.6                        | 2.3                         | 9.2                         | -1.3                        | -0.5         | 11.0                                                               | -0.2                         | -0.4                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         | -0.3                         |
| 87.9  | 2.6                         | 8.3                         | -5.9                        | 2.5                         | 12.0                        | -0.4                        | -0.3         | 13.0                                                               | -0.1                         | -0.3                         | -0.3                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 97.7  | 3.1                         | 7.8                         | -5.2                        | 2.7                         | 13.0                        | 0.2                         | 0.2          | 14.0                                                               | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.5                         | -0.1                         | -0.6                         | -0.2                         |
| 107.4 | 3.2                         | 8.3                         | -5.7                        | 2.3                         | 14.0                        | 0.4                         | -0.7         | 15.0                                                               | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         | -0.2                         | -0.4                         | -0.3                         |
| 117.2 | 3.7                         | 8.5                         | -5.2                        | 2.9                         | 15.0                        | 0.0                         | -0.5         | 16.0                                                               | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.1                         |
| 127.0 | 3.9                         | 8.8                         | -5.6                        | 3.0                         | 16.0                        | -0.5                        | -1.0         | 18.0                                                               | -0.3                         | -0.1                         | -0.2                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         |
| 136.7 | 3.9                         | 8.9                         | -4.9                        | 2.7                         | 18.0                        | -1.2                        | -1.2         | 19.0                                                               | -0.1                         | -0.1                         | -0.4                         | -0.2                         | -0.2                         | -0.1                         | -0.3                         | -0.2                         |

Table 197. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43,  $C_r$ =0.163 mm, and inlet GVF=92%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.7                         | 3.6                         | -3.6                        | 8.6                         | 1.2                         | 0.2                         | 0.2                                      | 1.2                         | -0.1                  | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 19.5  | 9.8                         | 3.7                         | -3.6                        | 8.5                         | 2.3                         | 0.1                         | 0.0                                      | 2.3                         | -0.1                  | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 29.3  | 10.0                        | 3.3                         | -4.0                        | 9.2                         | 3.7                         | -0.3                        | -0.1                                     | 3.9                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 39.1  | 10.0                        | 3.8                         | -3.7                        | 8.8                         | 4.7                         | 0.1                         | 0.2                                      | 4.5                         | -0.1                  | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 48.8  | 9.9                         | 3.4                         | -3.7                        | 8.7                         | 5.9                         | 0.0                         | 0.2                                      | 5.6                         | -0.2                  | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 58.6  | 10.0                        | 3.6                         | -3.8                        | 8.7                         | 7.2                         | 0.0                         | 0.3                                      | 6.6                         | 0.0                   | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 68.4  | 10.0                        | 3.6                         | -3.7                        | 8.8                         | 8.3                         | -0.2                        | 0.3                                      | 7.7                         | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 78.1  | 10.0                        | 3.7                         | -3.7                        | 8.9                         | 9.5                         | 0.0                         | 0.2                                      | 8.7                         | -0.1                  | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 87.9  | 10.0                        | 3.5                         | -3.9                        | 8.9                         | 11.0                        | 0.2                         | 0.3                                      | 10.0                        | 0.0                   | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 10.0                        | 3.5                         | -3.7                        | 8.8                         | 12.0                        | 0.2                         | 0.2                                      | 11.0                        | 0.0                   | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 107.4 | 10.0                        | 3.5                         | -3.6                        | 9.2                         | 13.0                        | 0.1                         | 0.4                                      | 12.0                        | -0.1                  | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 11.0                        | 3.3                         | -3.7                        | 9.1                         | 15.0                        | 0.0                         | 0.0                                      | 13.0                        | -0.1                  | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          |
| 127.0 | 11.0                        | 3.3                         | -4.1                        | 9.3                         | 16.0                        | 0.2                         | 0.1                                      | 14.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.2                         |
| 136.7 | 11.0                        | 3.1                         | -4.3                        | 9.3                         | 17.0                        | 0.1                         | 0.2                                      | 16.0                        | 0.0                   | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |

Table 198. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5, C<sub>r</sub>=0.140 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 2.7                         | 8.3                         | -8.4                                     | 1.5                         | 0.6                         | -0.2                        | -0.2                                     | 1.6                                                                | -0.2                          | -0.4                         | -0.4                         | -0.4                         | -0.4                         | -0.4                         | -0.2                         | -0.2                         |
| 19.5  | 2.5                         | 8.2                         | -8.8                                     | 1.6                         | 4.8                         | -0.5                        | 0.4                                      | 3.6                                                                | -0.2                          | -0.1                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.2                         |
| 29.3  | 3.3                         | 8.3                         | -8.6                                     | 1.8                         | 6.0                         | -0.1                        | 0.8                                      | 4.7                                                                | -0.3                          | -0.5                         | -0.2                         | -0.5                         | -0.4                         | -0.9                         | -0.4                         | -0.6                         |
| 39.1  | 4.2                         | 8.3                         | -8.3                                     | 2.6                         | 7.8                         | 0.5                         | 0.6                                      | 6.7                                                                | -0.2                          | -0.4                         | -0.4                         | -0.5                         | -0.1                         | -0.3                         | -0.4                         | -0.4                         |
| 48.8  | 4.6                         | 8.5                         | -8.6                                     | 3.6                         | 9.6                         | 0.0                         | 1.6                                      | 8.3                                                                | -0.2                          | -0.3                         | -0.3                         | -0.5                         | -0.2                         | -0.3                         | -0.2                         | -0.3                         |
| 58.6  | 4.5                         | 7.8                         | -8.3                                     | 2.6                         | 10.0                        | 0.3                         | 1.2                                      | 10.0                                                               | -0.2                          | -0.2                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         | -0.4                         |
| 68.4  | 5.4                         | 7.4                         | -8.2                                     | 2.1                         | 12.0                        | -0.3                        | 0.4                                      | 13.0                                                               | -0.3                          | -0.7                         | -0.2                         | -0.7                         | -0.3                         | -0.6                         | -0.4                         | -0.8                         |
| 78.1  | 5.4                         | 8.0                         | -7.7                                     | 2.8                         | 13.0                        | -0.5                        | 0.9                                      | 13.0                                                               | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         | -0.3                         |
| 87.9  | 5.6                         | 7.8                         | -8.1                                     | 3.2                         | 16.0                        | -0.4                        | 1.2                                      | 14.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 97.7  | 5.8                         | 8.2                         | -7.9                                     | 3.4                         | 17.0                        | -0.4                        | 1.0                                      | 16.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 107.4 | 6.0                         | 7.7                         | -7.7                                     | 3.8                         | 19.0                        | -0.3                        | 1.5                                      | 17.0                                                               | -0.2                          | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         |
| 117.2 | 6.2                         | 7.7                         | -7.9                                     | 4.0                         | 20.0                        | -0.2                        | 0.7                                      | 18.0                                                               | -0.2                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 7.3                         | 7.7                         | -7.8                                     | 3.9                         | 22.0                        | -0.2                        | 1.0                                      | 19.0                                                               | -0.1                          | -0.2                         | -0.2                         | -0.4                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 136.7 | 7.6                         | 6.9                         | -8.6                                     | 5.0                         | 23.0                        | -0.4                        | 1.2                                      | 21.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |

Table 199. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.5,  $C_r$ =0.140 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                                                               | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 10.0                        | 5.6                         | -6.2                                     | 8.1                         | 1.1                         | 0.0                         | 0.3                         | 1.3                                                                | -0.1                  | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 10.0                        | 5.6                         | -6.2                                     | 7.9                         | 2.3                         | -0.1                        | 0.0                         | 2.5                                                                | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 29.3  | 10.0                        | 5.4                         | -6.7                                     | 8.1                         | 3.4                         | 0.1                         | 0.1                         | 3.7                                                                | -0.1                  | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.3                         | 0.0                          | -0.1                         |
| 39.1  | 10.0                        | 5.7                         | -6.5                                     | 8.4                         | 4.7                         | -0.1                        | 0.2                         | 4.7                                                                | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |
| 48.8  | 10.0                        | 5.7                         | -6.3                                     | 8.3                         | 5.7                         | -0.1                        | 0.4                         | 5.8                                                                | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 10.0                        | 5.6                         | -6.5                                     | 8.5                         | 7.2                         | 0.2                         | 0.2                         | 6.6                                                                | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 10.0                        | 5.4                         | -6.5                                     | 8.4                         | 8.2                         | -0.1                        | 0.2                         | 8.1                                                                | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 78.1  | 10.0                        | 5.5                         | -6.5                                     | 8.6                         | 9.4                         | -0.2                        | 0.2                         | 9.0                                                                | -0.1                  | -0.1                         | 0.0                          | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         |
| 87.9  | 11.0                        | 5.6                         | -6.8                                     | 8.4                         | 11.0                        | -0.1                        | 0.2                         | 10.0                                                               | 0.0                   | -0.1                         | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          | 0.0                          |
| 97.7  | 11.0                        | 5.4                         | -6.8                                     | 8.6                         | 12.0                        | -0.2                        | 0.5                         | 11.0                                                               | -0.1                  | 0.0                          | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | 0.0                          |
| 107.4 | 11.0                        | 5.4                         | -6.4                                     | 8.7                         | 13.0                        | 0.0                         | 0.6                         | 12.0                                                               | -0.1                  | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 11.0                        | 5.1                         | -6.6                                     | 8.9                         | 15.0                        | 0.2                         | 0.2                         | 13.0                                                               | 0.0                   | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 127.0 | 11.0                        | 4.8                         | -7.1                                     | 8.8                         | 15.0                        | 0.2                         | 0.3                         | 14.0                                                               | 0.0                   | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 12.0                        | 4.5                         | -7.3                                     | 9.2                         | 16.0                        | 0.3                         | 0.6                         | 16.0                                                               | -0.1                  | -0.1                         | 0.0                          | 0.0                          | 0.0                          | -0.1                         | 0.0                          | -0.1                         |

Table 200. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5, C<sub>r</sub>=0.140 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 1.3                         | 11.0                        | -12.0                                    | -0.6                        | 0.9                         | 0.0                         | -1.3                                     | 2.3                                                                | -0.6                          | -0.5                         | -0.4                         | -0.3                         | -0.5                         | -0.4                         | -0.6                         | -0.8                         |
| 19.5  | 2.9                         | 11.0                        | -12.0                                    | 1.2                         | 4.9                         | -0.3                        | 1.0                                      | 2.6                                                                | -0.4                          | -0.8                         | -0.4                         | -0.5                         | -0.4                         | -0.4                         | -0.3                         | -0.5                         |
| 29.3  | 3.7                         | 11.0                        | -14.0                                    | 3.4                         | 5.1                         | 0.5                         | 0.3                                      | 6.9                                                                | -0.3                          | -0.6                         | -0.5                         | -0.6                         | -0.5                         | -0.7                         | -0.5                         | -0.9                         |
| 39.1  | 3.5                         | 12.0                        | -12.0                                    | 1.6                         | 7.5                         | 0.1                         | 0.3                                      | 6.7                                                                | -0.2                          | -0.3                         | -0.4                         | -0.4                         | -0.2                         | -0.2                         | -0.4                         | -0.7                         |
| 48.8  | 3.6                         | 11.0                        | -12.0                                    | 3.0                         | 9.0                         | 0.2                         | 1.7                                      | 7.9                                                                | -0.3                          | -0.3                         | -0.2                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 58.6  | 3.9                         | 12.0                        | -13.0                                    | 2.6                         | 10.0                        | 0.7                         | 0.6                                      | 11.0                                                               | -0.2                          | -0.4                         | -0.6                         | -0.9                         | -0.3                         | -0.5                         | -0.4                         | -0.6                         |
| 68.4  | 5.1                         | 11.0                        | -12.0                                    | 2.4                         | 12.0                        | -0.6                        | 0.9                                      | 10.0                                                               | -0.4                          | -0.5                         | -0.4                         | -0.9                         | -0.1                         | -0.5                         | -0.7                         | -1.0                         |
| 78.1  | 4.7                         | 11.0                        | -12.0                                    | 2.2                         | 13.0                        | -0.6                        | 1.4                                      | 12.0                                                               | -0.2                          | -0.3                         | -0.3                         | -0.5                         | -0.2                         | -0.2                         | -0.2                         | -0.2                         |
| 87.9  | 5.0                         | 11.0                        | -12.0                                    | 3.0                         | 15.0                        | -0.7                        | 1.8                                      | 14.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.5                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         |
| 97.7  | 5.3                         | 11.0                        | -12.0                                    | 3.6                         | 17.0                        | -0.8                        | 2.1                                      | 15.0                                                               | -0.2                          | -0.3                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.4                         |
| 107.4 | 5.7                         | 11.0                        | -12.0                                    | 3.0                         | 18.0                        | -0.9                        | 1.6                                      | 17.0                                                               | -0.1                          | -0.1                         | -0.2                         | -0.4                         | -0.2                         | -0.1                         | -0.3                         | -0.3                         |
| 117.2 | 5.9                         | 11.0                        | -12.0                                    | 3.4                         | 20.0                        | -0.9                        | 1.5                                      | 17.0                                                               | -0.2                          | -0.2                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 127.0 | 6.5                         | 11.0                        | -12.0                                    | 4.5                         | 21.0                        | -0.9                        | 2.0                                      | 19.0                                                               | -0.1                          | -0.1                         | -0.4                         | -0.8                         | -0.1                         | -0.2                         | -0.4                         | -0.6                         |
| 136.7 | 7.0                         | 9.8                         | -13.0                                    | 3.7                         | 22.0                        | -1.1                        | 1.8                                      | 20.0                                                               | -0.2                          | -0.2                         | -0.2                         | -0.3                         | -0.1                         | -0.2                         | -0.2                         | -0.4                         |

Table 201. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.5,  $C_r$ =0.140 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 9.8                         | 8.1                         | -9.2                        | 7.5                         | 1.1                         | 0.1                         | 0.2                                      | 1.5                         | -0.1                  | -0.2                         | -0.2                         | -0.2                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 19.5  | 9.8                         | 8.2                         | -9.3                        | 7.4                         | 2.4                         | -0.1                        | 0.2                                      | 2.5                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 11.0                        | 7.0                         | -9.8                        | 7.3                         | 3.4                         | -0.4                        | 0.1                                      | 4.2                         | -0.2                  | -0.4                         | -0.2                         | -0.4                         | -0.2                         | -0.5                         | -0.1                         | -0.3                         |
| 39.1  | 10.0                        | 7.9                         | -9.5                        | 7.4                         | 4.6                         | -0.2                        | 0.3                                      | 4.5                         | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 9.8                         | 7.9                         | -9.4                        | 7.6                         | 5.7                         | 0.0                         | 0.6                                      | 5.9                         | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 58.6  | 10.0                        | 8.2                         | -9.5                        | 7.6                         | 7.0                         | -0.1                        | 0.3                                      | 6.6                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 68.4  | 9.9                         | 8.1                         | -9.5                        | 8.5                         | 8.3                         | -0.1                        | 0.4                                      | 7.6                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 78.1  | 10.0                        | 7.8                         | -9.3                        | 7.7                         | 9.2                         | -0.3                        | 0.2                                      | 8.9                         | 0.0                   | -0.1                         | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 87.9  | 10.0                        | 7.9                         | -9.8                        | 7.6                         | 11.0                        | -0.2                        | 0.2                                      | 10.0                        | 0.0                   | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 10.0                        | 7.8                         | -9.8                        | 7.7                         | 12.0                        | -0.1                        | 0.5                                      | 11.0                        | -0.1                  | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 10.0                        | 7.9                         | -9.5                        | 8.0                         | 13.0                        | -0.3                        | 0.5                                      | 12.0                        | 0.0                   | 0.0                          | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 10.0                        | 7.9                         | -9.8                        | 7.6                         | 15.0                        | 0.2                         | -0.1                                     | 14.0                        | -0.2                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         |
| 127.0 | 11.0                        | 8.0                         | -9.9                        | 8.4                         | 16.0                        | -0.1                        | 0.6                                      | 14.0                        | -0.1                  | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 11.0                        | 7.2                         | -10.0                       | 8.5                         | 16.0                        | -0.2                        | 0.7                                      | 16.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |

Table 202. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5, C<sub>r</sub>=0.140 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $Im(H_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Re}(eH_{XX})$ | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--------------|--------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m                        | MN/m         | MN/m                                                               | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 3.9                         | 13.0                        | -15.0                       | 1.4                         | 1.2                         | 0.3                         | -1.0         | 1.5                                                                | -0.5                         | -0.5                         | -0.6                         | -0.7                         | -0.6                         | -0.6                         | -0.6                         | -0.6                         |
| 19.5  | 3.7                         | 14.0                        | -16.0                       | 1.9                         | 3.4                         | -0.3                        | -0.9         | 3.1                                                                | -0.5                         | -0.5                         | -0.6                         | -0.6                         | -0.3                         | -0.3                         | -0.6                         | -0.7                         |
| 29.3  | 4.1                         | 14.0                        | -16.0                       | 1.3                         | 5.4                         | -0.8                        | -0.7         | 5.1                                                                | -0.7                         | -0.8                         | -0.6                         | -0.6                         | -0.5                         | -0.6                         | -0.6                         | -0.8                         |
| 39.1  | 4.0                         | 14.0                        | -17.0                       | 2.0                         | 5.8                         | -0.2                        | 0.5          | 6.5                                                                | -0.2                         | -0.1                         | -0.3                         | -0.4                         | -0.2                         | -0.2                         | -0.3                         | -0.3                         |
| 48.8  | 4.4                         | 14.0                        | -17.0                       | 3.2                         | 7.9                         | -0.4                        | 1.2          | 7.7                                                                | -0.2                         | -0.4                         | -0.3                         | -0.5                         | -0.3                         | -0.4                         | -0.3                         | -0.2                         |
| 58.6  | 5.0                         | 13.0                        | -17.0                       | 2.7                         | 9.3                         | -0.7                        | 0.6          | 9.2                                                                | -0.2                         | -0.3                         | -0.4                         | -0.6                         | -0.2                         | -0.2                         | -0.3                         | -0.4                         |
| 68.4  | 5.4                         | 13.0                        | -17.0                       | 3.4                         | 11.0                        | -1.3                        | 1.4          | 10.0                                                               | -0.7                         | -0.8                         | -0.4                         | -0.5                         | -0.6                         | -1.0                         | -0.5                         | -0.7                         |
| 78.1  | 5.1                         | 14.0                        | -16.0                       | 3.3                         | 12.0                        | -0.4                        | 1.7          | 11.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.3                         | -0.3                         |
| 87.9  | 5.2                         | 14.0                        | -17.0                       | 3.0                         | 14.0                        | -0.4                        | 1.3          | 13.0                                                               | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.2                         |
| 97.7  | 5.6                         | 14.0                        | -16.0                       | 2.7                         | 15.0                        | -0.4                        | 1.4          | 14.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 107.4 | 5.9                         | 14.0                        | -16.0                       | 3.2                         | 17.0                        | -0.7                        | 1.6          | 15.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.1                         | -0.2                         | -0.3                         |
| 117.2 | 5.5                         | 14.0                        | -17.0                       | 2.9                         | 18.0                        | -0.4                        | 1.6          | 17.0                                                               | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.2                         |
| 127.0 | 5.9                         | 14.0                        | -17.0                       | 3.1                         | 19.0                        | -0.4                        | 2.0          | 18.0                                                               | -0.2                         | -0.1                         | -0.2                         | -0.3                         | -0.1                         | -0.3                         | -0.2                         | -0.2                         |
| 136.7 | 6.4                         | 13.0                        | -17.0                       | 4.4                         | 20.0                        | -0.7                        | 2.9          | 20.0                                                               | -0.2                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         | -0.2                         | -0.1                         | -0.2                         |

Table 203. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.5,  $C_r$ =0.140 mm, and inlet GVF=98%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(\boldsymbol{eH}_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|-------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                                      | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 6.0                         | 4.0                         | -3.2                                     | 5.0                                                                | 1.3                         | 0.1                         | 0.1                                      | 1.3                         | 0.0                   | -0.1                         | 0.0                                       | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 19.5  | 6.0                         | 4.1                         | -3.2                                     | 5.0                                                                | 2.4                         | 0.2                         | 0.2                                      | 2.5                         | 0.0                   | -0.1                         | 0.0                                       | 0.0                          | 0.0                          | 0.0                          | -0.1                         | -0.1                         |
| 29.3  | 6.1                         | 4.3                         | -3.5                                     | 4.9                                                                | 3.8                         | -0.2                        | 0.2                                      | 4.1                         | -0.1                  | -0.1                         | -0.1                                      | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 39.1  | 6.2                         | 4.1                         | -3.4                                     | 4.9                                                                | 5.1                         | -0.4                        | -0.1                                     | 4.8                         | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 48.8  | 6.0                         | 4.0                         | -3.5                                     | 5.1                                                                | 6.4                         | -0.2                        | 0.1                                      | 6.0                         | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 6.3                         | 3.9                         | -3.4                                     | 5.2                                                                | 7.6                         | -0.1                        | 0.2                                      | 7.2                         | -0.1                  | -0.2                         | -0.1                                      | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 6.2                         | 4.2                         | -3.3                                     | 5.2                                                                | 9.0                         | -0.3                        | 0.2                                      | 8.5                         | -0.1                  | -0.2                         | -0.2                                      | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 78.1  | 6.4                         | 4.0                         | -3.4                                     | 5.4                                                                | 9.9                         | -0.1                        | 0.1                                      | 9.4                         | -0.1                  | -0.1                         | -0.1                                      | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 6.4                         | 4.1                         | -3.6                                     | 5.4                                                                | 11.0                        | -0.2                        | 0.2                                      | 11.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 97.7  | 6.5                         | 3.9                         | -3.6                                     | 5.5                                                                | 13.0                        | -0.2                        | 0.3                                      | 12.0                        | 0.0                   | -0.1                         | 0.0                                       | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 107.4 | 6.6                         | 4.1                         | -3.3                                     | 5.6                                                                | 14.0                        | -0.5                        | 0.1                                      | 13.0                        | -0.1                  | -0.1                         | -0.1                                      | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 7.0                         | 3.9                         | -3.4                                     | 5.8                                                                | 16.0                        | -0.4                        | -0.2                                     | 15.0                        | 0.0                   | -0.1                         | 0.0                                       | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         |
| 127.0 | 7.4                         | 3.8                         | -3.6                                     | 6.0                                                                | 16.0                        | -0.3                        | 0.0                                      | 16.0                        | 0.0                   | -0.1                         | 0.0                                       | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 136.7 | 7.4                         | 3.5                         | -3.9                                     | 6.1                                                                | 18.0                        | -0.4                        | 0.1                                      | 17.0                        | 0.0                   | 0.0                          | 0.0                                       | -0.2                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |

Table 204. Raw data for the test seal at  $\omega$ =10 krpm, PR=0.43, C<sub>r</sub>=0.140 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(\boldsymbol{H}_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(\boldsymbol{H}_{\boldsymbol{Y}\boldsymbol{Y}})$ | Re( <i>eH</i> <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------------------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                        | MN/m                        | MN/m                                     | MN/m                        | MN/m                        | MN/m                        | MN/m                                     | MN/m                                                               | MN/m                          | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.6                         | 6.2                         | -5.9                                     | 4.5                         | 1.3                         | 0.0                         | 0.1                                      | 1.4                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 19.5  | 5.6                         | 6.1                         | -5.9                                     | 4.2                         | 2.8                         | -0.2                        | 0.1                                      | 2.6                                                                | 0.0                           | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 29.3  | 6.0                         | 5.9                         | -6.3                                     | 4.8                         | 3.7                         | -0.2                        | 0.0                                      | 4.0                                                                | -0.1                          | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 39.1  | 5.9                         | 6.3                         | -6.1                                     | 4.4                         | 5.1                         | -0.3                        | 0.1                                      | 5.0                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 48.8  | 6.1                         | 6.1                         | -6.0                                     | 4.5                         | 6.3                         | -0.2                        | 0.2                                      | 6.2                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 58.6  | 6.0                         | 6.3                         | -6.1                                     | 4.6                         | 7.6                         | -0.3                        | 0.2                                      | 7.4                                                                | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 68.4  | 5.9                         | 6.0                         | -6.0                                     | 5.0                         | 8.8                         | -0.2                        | 0.3                                      | 8.8                                                                | -0.1                          | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         | -0.1                         | -0.4                         |
| 78.1  | 6.1                         | 6.2                         | -6.0                                     | 4.6                         | 9.9                         | -0.5                        | 0.1                                      | 9.7                                                                | 0.0                           | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         |
| 87.9  | 6.3                         | 6.1                         | -6.2                                     | 4.7                         | 12.0                        | -0.3                        | 0.3                                      | 11.0                                                               | 0.0                           | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          |
| 97.7  | 6.4                         | 5.8                         | -6.2                                     | 5.0                         | 13.0                        | -0.4                        | 0.4                                      | 12.0                                                               | 0.0                           | -0.1                         | 0.0                          | -0.1                         | -0.1                         | 0.0                          | 0.0                          | -0.1                         |
| 107.4 | 6.4                         | 6.0                         | -5.9                                     | 5.2                         | 14.0                        | -0.5                        | 0.5                                      | 13.0                                                               | -0.1                          | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 117.2 | 6.8                         | 5.7                         | -6.0                                     | 5.3                         | 15.0                        | -0.5                        | 0.1                                      | 15.0                                                               | 0.0                           | -0.1                         | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 127.0 | 7.2                         | 5.9                         | -6.2                                     | 5.3                         | 16.0                        | -0.2                        | 0.3                                      | 16.0                                                               | -0.1                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          | -0.1                         |
| 136.7 | 7.4                         | 5.3                         | -6.6                                     | 5.8                         | 17.0                        | -0.5                        | 0.4                                      | 17.0                                                               | -0.1                          | -0.1                         | 0.0                          | -0.2                         | 0.0                          | -0.1                         | 0.0                          | -0.1                         |

Table 205. Raw data for the test seal at  $\omega$ =15 krpm, PR=0.43,  $C_r$ =0.140 mm, and inlet GVF=100%

| Freq. | $\operatorname{Re}(H_{XX})$ | $\operatorname{Re}(H_{XY})$ | $\operatorname{Re}(H_{YX})$ | $\operatorname{Re}(H_{YY})$ | $\operatorname{Im}(H_{XX})$ | $\operatorname{Im}(H_{XY})$ | $\operatorname{Im}(\boldsymbol{H}_{YX})$ | $\operatorname{Im}(H_{YY})$ | Re(eH <sub>XX</sub> ) | $\operatorname{Re}(eH_{XY})$ | $\operatorname{Re}(eH_{YX})$ | $\operatorname{Re}(eH_{YY})$ | $\operatorname{Im}(eH_{XX})$ | $\operatorname{Im}(eH_{XY})$ | $\operatorname{Im}(eH_{YX})$ | $\operatorname{Im}(eH_{YY})$ |
|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Hz    | MN/m                                     | MN/m                        | MN/m                  | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         | MN/m                         |
| 9.8   | 5.2                         | 8.5                         | -9.0                        | 3.8                         | 1.4                         | -0.3                        | 0.4                                      | 1.4                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 19.5  | 5.4                         | 8.5                         | -8.8                        | 3.3                         | 2.4                         | 0.0                         | 0.1                                      | 2.9                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 29.3  | 5.7                         | 8.6                         | -9.3                        | 3.9                         | 3.6                         | 0.2                         | 0.4                                      | 3.7                         | -0.1                  | -0.3                         | -0.2                         | -0.5                         | -0.1                         | -0.3                         | -0.2                         | -0.3                         |
| 39.1  | 5.5                         | 8.3                         | -9.0                        | 3.7                         | 5.2                         | -0.4                        | 0.3                                      | 5.3                         | 0.0                   | -0.1                         | -0.1                         | -0.3                         | -0.1                         | -0.2                         | -0.1                         | -0.3                         |
| 48.8  | 5.5                         | 8.8                         | -9.1                        | 4.4                         | 6.3                         | -0.1                        | 0.4                                      | 6.6                         | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 58.6  | 5.7                         | 8.7                         | -8.8                        | 3.9                         | 7.3                         | -0.1                        | 0.4                                      | 7.1                         | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         |
| 68.4  | 5.7                         | 8.5                         | -9.0                        | 4.0                         | 8.8                         | -0.2                        | 0.4                                      | 8.7                         | -0.1                  | -0.3                         | -0.1                         | -0.3                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 78.1  | 5.8                         | 8.6                         | -8.9                        | 4.4                         | 9.8                         | -0.6                        | 0.4                                      | 9.8                         | -0.1                  | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.2                         |
| 87.9  | 6.0                         | 8.6                         | -9.2                        | 4.1                         | 11.0                        | -0.7                        | 0.5                                      | 11.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |
| 97.7  | 6.0                         | 8.6                         | -9.2                        | 4.3                         | 13.0                        | -0.5                        | 0.7                                      | 12.0                        | -0.1                  | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 107.4 | 6.0                         | 8.7                         | -8.8                        | 4.5                         | 14.0                        | -0.7                        | 0.7                                      | 13.0                        | -0.1                  | -0.1                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | 0.0                          |
| 117.2 | 6.5                         | 8.3                         | -9.0                        | 4.6                         | 15.0                        | -0.7                        | 0.3                                      | 15.0                        | -0.1                  | 0.0                          | -0.1                         | 0.0                          | 0.0                          | -0.2                         | -0.1                         | -0.1                         |
| 127.0 | 6.7                         | 8.2                         | -9.0                        | 4.7                         | 16.0                        | -0.6                        | 0.6                                      | 15.0                        | -0.1                  | -0.2                         | -0.1                         | -0.2                         | -0.1                         | -0.1                         | -0.1                         | -0.2                         |
| 136.7 | 6.9                         | 7.8                         | -9.5                        | 5.3                         | 17.0                        | -0.8                        | 0.8                                      | 17.0                        | 0.0                   | -0.1                         | 0.0                          | -0.1                         | -0.1                         | -0.1                         | -0.1                         | -0.1                         |

Table 206. Raw data for the test seal at  $\omega$ =20 krpm, PR=0.43, C<sub>r</sub>=0.140 mm, and inlet GVF=100%