
ENHANCING GEO-SOCIAL SYSTEMS: PROFILING, RANKING AND

RECOMMENDATION

A Dissertation

by

WEI NIU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, James Caverlee
Committee Members, Frank Shipman

Krishna Narayanan
Yoonsuck Choe

Head of Department, Dilma Da Silva

December 2017

Major Subject: Computer Engineering

Copyright 2017 Wei Niu



ABSTRACT

The global sharing of fine-grained geo-spatial footprints – via smart mobile devices

and social media services (e.g., Facebook, Twitter, Flickr) – is leading to the creation of

a new class of geo-social systems. These systems promise new insights into the dynam-

ics of human behavior and new intelligent location-aware applications, enabled by both

geographic and social characteristics of their users. Yet, we are just beginning to under-

stand these nascent systems. Indeed, there is a significant research gap in understanding,

modeling, and leveraging geo-tagged user activities and in identifying the key factors that

influence the success of new geo-social systems.

Hence, this dissertation research seeks to enhance existing and future geo-social sys-

tems through a systematic study of the intrinsic mutual reinforcement relationship between

geography (geo) and user behaviors (social). In particular, we focus on three important

scenarios: geo-social profiling, ranking, and recommendation. In summary, this disserta-

tion makes three unique contributions:

• The first contribution of this dissertation research lies in frameworks for profiling both

users and locations in geo-social systems. We propose a framework to identify concep-

tual communities and a smoothing-based approach that collectively balances the infor-

mation from physical neighbors and conceptual community for estimating the hashtag

distribution at a particular location. We further propose a location-sensitive folkson-

omy construction framework and build high-quality tag profiles for users by identifying

candidate tags from these location-sensitive folksonomies, and then employ a learning-

to-rank approach for ordering these tags.

• The second contribution of this dissertation research is a framework for location-sensitive

topical expert identification and ranking in social media. Three of the key features

ii



of the proposed approach are: (i) a learning-based framework for integrating multiple

user-based, content-based, list-based, and crowd-based factors impacting local exper-

tise that leverages the fine-grained GPS coordinates of millions of social media users;

(ii) a location-sensitive random walk that propagates crowd knowledge of a candidate’s

expertise; and (iii) a comprehensive controlled study over AMT-labeled local experts on

eight topics and in four cities.

• In the third contribution, we create a new geo-social framework for effective person-

alized image recommendation as part of the effort toward enhancing geo-social sys-

tems. We propose Neural Personalized Ranking (NPR) – a personalized pairwise rank-

ing model over implicit feedback datasets – that is inspired by Bayesian Personalized

Ranking (BPR) and recent advances in neural networks. We further build an enhanced

model which significantly boosts performance by augmenting the basic NPR model

with multiple contextual preference clues derived from geographic features, user tags

and visual factors.
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1. INTRODUCTION

1.1 Motivation

In the past decade, we have witnessed tremendous growth of various social media and

their ubiquity in almost every aspect of modern life. For example, Facebook has over 2

billion monthly active users measured in June 2017 [1], followed by online video sharing

system Youtube which has 1.5 billion monthly active users [2]. Such popularity ensures

and is accompanied by the rapid growth of the sheer volume of data generated by social

media users. For example, 510,000 comments are posted, 293,000 statuses are updated,

and 136,000 photos are uploaded every minute on Facebook and more than 500 million

tweets are posted on Twitter per day. Increased interaction among user and content through

these platforms marks a shift in the way people connect and share information.

The success of social media together with the proliferation of location-aware devices,

such as smart phones and tablets, fosters a new form of media – geo-social systems – that

allow a large portion of user-generated content contributed through social media services

to be geolocated. This potentially bridges the gap between the physical world and on-

line social media. We have seen the rise of location sharing services (e.g., Foursquare,

Gowalla) that allow users to share their location with friends. For example, Foursquare

has 10 billion check-ins in total as of late 2016 [3]. Moreover, geo-social systems are

not confined to these location sharing services and exist more broadly, as sharing of loca-

tion data coupled with various content types is increasingly popularized in existing social

media. For example, geo-tagged Twitter posts, geo-tagged images on Flickr, geo-tagged

status updates on Facebook, and so on.

Through the sharing of fine-grained geo-spatial footprints via smart mobile devices and

social media services (e.g., Facebook, Twitter, Flickr), we are able to observe human activ-
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ities in scales and resolutions that were so far unavailable. This promises new insights into

the dynamics of human behavior and new intelligent location-aware applications. Massive

amounts of geo-tagged user activities – including user checkins, user-contributed multi-

media (like text, images, and videos), and user tagging of other users and resources – are

beginning to provide new insights and new capabilities for geo-social systems.

These new geo-social systems target a myriad of critical problem domains by lever-

aging these geo-spatial footprints: examples include personalized geo-aware recommen-

dation systems [4, 5], local authority discovery [6, 7, 8], intelligent disaster response

[9, 10], urban computing [11], targeted advertising [12], and traffic prediction [13, 14].

All of which offer the potential for improvements in decision-making and quality-of-life

for stakeholders of these systems. For example, in the emergency response scenario, there

is hope to understand and evaluate the damage of disasters like earthquakes and hurricanes

from what people have posted on social media, leading to improved response and recovery.

1.2 Challenges

However, we are just beginning to understand these nascent geo-social systems. In-

deed, there is a significant research gap in understanding, modeling, and leveraging geo-

tagged user activities and in identifying the key factors that influence the success of new

geo-social systems. A geo-social system does not only mean adding a location to an ex-

isting social network so that people in the social structure can share location-embedded

information, but also consists of new social structures made up of individuals connected

by the interdependency derived from their locations in the physical world. These inter-

dependencies, for example, include interest and behavior, as well as their location-tagged

media content, such as photos and texts [15]. Indeed, we face a number of key challenges

for extracting valuable knowledge from these systems and in facilitating new applications

built over these systems. In this section, we highlight three specific challenges: (i) under-
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standing locations via user activity and mobility; (ii) understanding users based upon their

locations; and (iii) understanding locations and users jointly, so as to facilitate application

such as event discovery, local expert identification and personalized recommendation.

• Understand locations via user activity and mobility. There is a lack of study for

understanding and characterizing locations from conceptual perspective according

to user-generated content or user mobility. Yet, there exists inherent sparsity, uncer-

tainty in social media data, which is more severe in the collected data samples. It is

challenging for us to accurately characterize location while coping with the sparsity

issues.

• Understand users based upon their locations. Few existing works aim to capture

spatial variation in user behavior or content they generated and how would such

variations inform us with more robust user modeling under sparsity.

• Understand locations and users jointly. Despite some recent work jointly uncover

geographical characteristics and user preference, for example in point-of-interest

recommendation, the rigorous way to model and leverage geo-tagging metadata in

a wide range of user-related application scenarios or tasks remains unclear and the

mutual reinforcement relation between location and user is open to exploration. Fur-

thermore, the potential for incorporating such geo info in impacting these applica-

tions is understudied.

1.3 Contributions

With these research challenges in mind, this dissertation research seeks to enhance

existing and future geo-social systems through a systematic study of these questions on

three important scenarios: geo-social profiling, ranking, and recommendation. Through

the development of new frameworks that naturally integrate location signals and social
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networks, we aim to enhance (i) user and location profiling; (ii) local topic expert discovery

and ranking; and (iii) personalized geo-social image recommendation. Concretely, toward

enhancing geo-social systems, this dissertation makes three contributions:

• The first contribution of this dissertation research lies in frameworks for profiling both

users and locations in geo-social systems. Estimating these profiles is critical for location-

based search and mining applications, but faces challenges in sparsity, uncertainty, and

diversity across locations and times. For location profiling, we investigate a large geo-

tagged tweets dataset with more than 2 billion tweets and 300 million hashtags. We pro-

pose a framework to identify conceptual communities – where locations share similar

interest and topics are grouped together rather then directly considering the geographical

proximity – through an investigation of location representation, distance measurement

between locations, and a clustering-based approach for finding the conceptual commu-

nities. We propose a smoothing based approach that collectively considers the infor-

mation from physical neighbors and conceptual community for estimating the hashtag

distribution at a particular location, in order overcome the sparsity of geo-tagged hash-

tag and missing information from sampling. For user profiling, we explore the impact

of spatial variation in social media on the construction of user profiles. This variation

– e.g., that energy in San Francisco is more associated with the green movement,

whereas in Houston it is more associated with oil and gas – is a valuable, but often

understudied aspect of user profiling. Concretely, we propose a location-sensitive folk-

sonomy construction framework that naturally integrates the geo-spatial scope of social

media tags via an optimization method that generalizes from previous folksonomy in-

duction approaches. We further build high-quality tag profiles for users by identifying

candidate tags from these location-sensitive folksonomies, and then employ a learning-

to-rank approach for ordering these tags.
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• The second contribution of this dissertation research is a framework for location-sensitive

topical expert identification and ranking in social media. Unlike general experts, local

experts have specialized knowledge focused around a particular location. Identifying

local experts can improve location-sensitive search, recommendation and create new

possibilities for people to connect with knowledgeable locals. The framework builds

on top of the state-of-the art learning to rank approach and an investigation of multiple

classes of features that impact local expertise including: (i) user-based features (e.g., the

number of users a candidate is following, the number of posts this candidate has made);

(ii) tweet content features (e.g., tweet-based entropy of a candidate, the TFIDF score

of a topic keyword in a candidate’s tweets); (iii) list-based features (e.g., the number of

lists the candidate is a member of, the number of lists the candidate has created); (iv)

local authority features (e.g., the distance between candidate and the query location, the

average distance from a candidate’s labelers to the candidate); and (v) features based

on a location-sensitive random walk that propagates crowd knowledge of a candidate’s

expertise. Through evaluation we find promising results and see that a compact set of

influential features can increase the efficiency of the model. We make an encouraging

discovery through experiments that a generalized model yields competitive performance

with uniquely trained model of each location and topic pair. This largely increases the

feasibility of developing an online local expert system based on our framework. Ana-

lytically, we provide a through discussion about the system design issues.

• Finally, in the third contribution, we create new geo-social models for effective personal-

ized image recommendation as part of the effort toward enhancing geo-social systems.

The prevalence of online image sharing services like Flickr, Pinterest, and Instagram

demonstrates the increasing preference for image-based social media. As images have

become more indispensable, a key challenge is in connecting users to the right images
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from a vast sea of candidate images. The key challenges we are facing include un-

covering the underlying dimensions, in particular geo-social factors, that describe the

properties of the item as well as users’ preferences toward them, extreme sparsity (and

its corollary cold-start problem) in user feedback and implicit nature where recommen-

dations rely on like “favorites" or “likes" instead of explicit ratings. We propose a new

model toward improving the quality of image recommendations in social sharing com-

munities. Concretely, we propose Neural Personalized Ranking (NPR) – a personalized

pairwise ranking model over implicit feedback datasets – that is inspired by Bayesian

Personalized Ranking (BPR) and recent advances in neural networks. We further build

an enhanced model by augmenting the basic NPR model with multiple contextual pref-

erence clues derived from metadata including user tags, geographic features, and visual

factors. In our experiments over the Flickr YFCC100M dataset, we demonstrate the

proposed NPR model is more effective than multiple baselines. Moreover, the contex-

tual enhanced NPR model significantly outperforms the base model by 16.6% and a

contextual enhanced BPR model by 4.5% in precision and recall. We also discuss the

different characteristics of the NPR and BPR based approaches with respect to varying

sizes of training data.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows:

• Chapter 2: Related Work. We begin with a comprehensive summarization of related

works corresponding to our three main contributions for enhancing geo-social systems

– location and user profiling, local topic-expert discovery and personalized image rec-

ommendation.

• Chapter 3: Profiling: Community-Based Geospatial Tag Estimation. In this chap-

ter, we tackle the geospatial tag estimation problem, which is of critical importance for
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location-based search, retrieval, and mining applications. However, tag estimation is

challenging due to massive sparsity, uncertainty in the tags actually used, as well as

diversity across locations and times. Toward overcoming these challenges, we propose

a community-based smoothing approach that seeks to uncover hidden conceptual com-

munities which link multiple related locations by their common interests in addition

to their proximity. Through extensive experiments over a sample of millions of geo-

tagged Twitter posts, we demonstrate the effectiveness of the smoothing approach and

validate the intuition that geo-locations have the tendency to share similar “ideas” in the

formation of conceptual communities.

• Chapter 4: Profiling: Location-sensitive User Profiling. User profiles typically pro-

vide insight into the interests and expertise of each user, and can lead to improved

personalization of search and recommender systems. And yet, the vast majority of

users have only partial user profiles; their interests are essentially hidden from impor-

tant applications. Hence in this chapter, we investigate the impact of spatial variation

on the construction of location-sensitive user profiles. Our proposed approach has three

unique contributions: first, it constructs a crowdsourced label similarity graph induced

from crowdsourced labels, where each labeler and labelee are annotated with a geo-

graphic coordinate; second, it transforms this similarity graph into a directed weighted

tree that imposes a hierarchical structure over these labels; third, it embeds this location-

sensitive folksonomy into a user profile ranking algorithm that outputs a ranked list of

candidate labels for a partially observed user profile. Through extensive experiments

over a Twitter list dataset, we demonstrate the effectiveness of this location-sensitive

user profiling.

• Chapter 5: Ranking: Local Expert Discovery. Local experts – who have specialized

knowledge focused around a particular location – are critical for many location-sensitive
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information needs. While existing search engines and question-answer systems may

provide partial coverage of some local information needs, local experts can provide

ongoing help for evolving and ill-specified needs, as well as personalized access to

knowledge and experience that only experts possess. In this chapter, we explore a geo-

spatial learning-to-rank framework for identifying local experts that leverages the fine-

grained GPS coordinates of millions of Twitter users. Two of the key features of the

proposed framework are: (i) a location-sensitive random walk that propagates crowd

knowledge of a candidate’s expertise; and (ii) a comprehensive study of the user-based,

list-based, and crowd-based factors impacting location expertise. Through a controlled

study over AMT, we find significant improvements of local expert finding versus two

state-of-the-art alternatives.

• Chapter 6: Recommendation: Personalized Image Recommendation. In this chap-

ter, we tackle the problem of personalized image recommendation in geo-social image

sharing communities like Pinterest, Flickr, and Instagram. Recommendations in these

communities often rely on implicit signals like “favorites” or “likes” instead of explicit

ratings. And yet, these implicit signals are often sparse, with many images receiving few

if any “likes” at all. We propose a new model toward improving the quality of image

recommendations in social sharing communities like Pinterest, Flickr, and Instagram.

Concretely, we propose Neural Personalized Ranking (NPR) – a new neural network

based personalized pairwise ranking model for implicit feedback, which incorporates

the idea of generalized matrix factorization. We further develop an enhanced model

which is generalizable for incorporating with multiple contextual preference clues in-

cluding user tags, geographic features, and visual factors to further boost performance.

• Chapter 7: We conclude with a summary of our thesis contributions and a discussion

of future research extensions to the results presented here.
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2. RELATED WORK

In this chapter, we highlight the related work for each of our thrusts to enhance geo-

social systems, including location and user profiling, local topic expert detection and geo-

social personalized image recommendation.

2.1 Location and User Profiling

Location Profiling. Recently, there has been a rise of research aimed at location-revealing

social networks like Facebook and Twitter [16]. Some works have represented locations

as a bag-of-tags of geo-tagged photos [17] or checkins and venue features [18]. Cranshaw

et al. present several methods for comparing cities as vectors of venue categories and

then using hierarchical clustering to find similar cities [19]. Spectral clustering is used

to detect geospatial neighborhood-like communities or similar locations based on user

activity patterns or venue features [20, 21]. In contrast, tour work uses tag distribution

information to represent locations for uncovering hidden conceptual communities [22].

That is, we do not require users to necessarily check-in in one place and then another;

instead, we aim to uncover locations that are tied by common topic interests at multiple

granularities and potentially across physical proximity boundaries.

User and Resource Profiling. User profiling is critical for enabling effective information

search and recommendation. Many efforts have been devoted to profiling a user’s topic

interest for applications in personalized search [23], targeted advertisement [24], and so-

cial media [25]. In a separate direction, studies have focused on expertise profiling in an

enterprise domain from evidence like CV and publications [26]. Many other research ef-

forts aim to reveal users’ demographic information like age and gender [27, 28, 29]. For

example, Li et al. [29] propose a co-profiling approach to profile attributes of a user like

employer, college, and circles of friends. Different from the previous research, we aim to
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discover the location-aware interests and expertise profile of users based on crowdsourced

labels [30].

Another research thread is aimed at studying resource profiling which aims to provide

rich context for the tagged object. Example tags include Flickr-like tags on images and

Twitter-style tags on text posts. Much effort has been devoted to recommending or ranking

tags to resources (like images or URLs), targeting the sparsity of collaborative tagging in

order to construct comprehensive and complete tag profiles [31, 32, 33, 34, 35]. Some

proposed approaches are based on topic models and contextual information [34, 36]. Hey-

mann et al. [37] use relations between tags discovered through association rule mining to

predict social tags. Later works construct hierarchical folksonomies to assist resource tag

prediction [38, 39]. Both of these approaches rank candidate tags by measuring how each

candidate tag relates to the whole set of visible tags, which often leads to the prediction

of general tags instead of specific tags. Moreover, they consider tags as a binary symbol

and neglect the frequencies of tags. In our work, we cast the profiling problem as a rank-

ing task, we leverage location-sensitive folksonomy for identifying candidate tags and a

learning to rank approach that automatically weighs a group of factors to minimize the

personalized ranking error.

In a similar direction, hashtags can be recommended to users to encourage additional

appropriate tagging; much of this work has focused on content similarity between user’s

tweets and an existing hashtag topic [40, 41]. In another direction, researchers have stud-

ied the overall temporal and geospatial distribution of hashtags as they diffuse [42]. For

example, there has been research aimed at predicting hashtag popularity from temporal

and geospatial perspectives [43]. The work presented here – where geographic patterns of

hashtag use uncover conceptual communities – could inform efforts on tag recommenda-

tion and geographic tag diffusion.
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Geographic Influence. The recent proliferation of location-based social networks has

driven increasing attention to geographic influence, e.g., [16, 44]. Additionally, there have

been studies of spatial variation over query logs and social media. For example, Back-

strom et al. model how spatial variation manifests in search engine query logs [45], while

Zhang et al. discovered tags with similar geographic and temporal patterns of use beyond

the contextual co-occurrence [46]. The geospatial variations and influence have been in-

corporated into many location-based applications, for example, user location prediction

[47], modeling video watching preferences [48] and Yelp ratings prediction [49]. Our

perception is that due to the geographic, cultural, and structural differences among loca-

tions, there could be corresponding difference in how people organize information in these

locations as revealed through crowdsourced labels.

Targeting Sparsity. There is also recent work on estimation to overcome sparse data in

social networks, such as social network user home location prediction [47, 50, 51]. To al-

leviate data sparsity [52], for example, researchers have proposed to use transfer learning

in collaborative filtering [53]. Another widely used approach in language modeling for

adjusting the maximum likelihood estimator to compensate for data sparseness is smooth-

ing [54, 55]. While in our study, we use the community distribution to smooth over the

target location, where the hashtag information is unknown, to deal with data sparsity and

to focus on the overall correctness of estimating the hashtag distribution.

2.2 Local Expert Detection

Expertise retrieval. Expertise retrieval has long been recognized as a key research chal-

lenge [56]. For example, for many years TREC’s Enterprise Search Track has included

a track for researchers to empirically assess methods for expert finding [57]. Methods

proposed can generally be grouped into two categories according to the source of ex-

pertise indicators used. First, content-based methods utilize textual content and related
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documents which contain terms semantically relevant to the candidates’ expertise areas.

Several works adopt content-based approaches to identify the most appropriate community

members for answering a given question in question-answering systems, e.g., [58, 59, 60].

Al-Kouz and et al. leverage user profile and post to match topic expertise on Facebook

[61]. Balog et al. proposed a candidate generative model which represent a candidate

directly by terms and a document model which first finds documents that are relevant

to the topic and then locates the experts associated with these documents [62]. Second,

graph-based methods rely on social link analysis so as to consider each expert candidate’s

importance or social influence, e.g., [63, 64, 65]. For example, Campbell and et al. utilize

the link between authors and receivers of emails to improve expert finding in an email-

based social network [66]. Moreover, there exist hybrid models considering both textual

content and social relationships in expert finding, e.g., [67, 68, 69].

Expertise retrieval in Twitter-like systems. Recently, effort has focused on expert find-

ing in Twitter-like systems. Weng et al. consider both tweet content and link structures

among users to find topic experts on Twitter [69]. Based on the list meta-data in Twitter,

Ghosh and et al. built the Cognos systems to help find experts on a specific topic [70].

They rank experts by taking into account the overall popularity of a candidate and topic

similarity. In the past year, a few efforts have begun to examine local aspects of expertise

finding [6, 71]. Li and et al. investigate expertise in terms of a user’s knowledge about a

place or a class of places [71]. Cheng and et al. identified several factors, including local

authority and topical authority, for assessing local expertise [6]. Note that the LocalRank

method in [6] – which considers topical authority and local authority – is similar in spirit to

[72], in which a rank scoring function is defined over a combination of document relevance

and physical distance. Experimentally we observe that LExL outperforms LocalRank, in-

dicating the importance of these additional models that build on what was proposed [6] and
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[72]. Compared to these works, we introduce the first learning-based method for ranking

local experts, introduce a new distance-biased random walk class of feature that models

distance and relevance jointly (rather than independently), and conduct the first compre-

hensive study of factors impacting local expert ranking. Alternatively, many commercial

systems provide search capabilities over regional content – e.g., Google+ Local, Yellow-

Pages.com, Craigslist – but not direct access to local experts, nor transparent models of

how (or even whether) user expertise is assessed.

Learning to rank.The method in our work builds on learning-to-rank [73], which has been

an active area of ranking that builds on results in machine learning. Generally, learning-to-

rank can be classified into three main types: pointwise methods, in which a single score is

predicted for each query document through solving a regression problem; pairwise meth-

ods, in which the relative quality of each document pair is judged in a binary classification

problem; and listwise methods, in which the evaluation metric is optimized as the direct

goal [74]. In the area of expert finding, Yang et al. [75] apply Ranking SVM to rank

candidate experts for ArnetMiner, an academic web resource. Moreira et al. explore the

use of learning-to-rank algorithms for expert search on DBLP [76].

2.3 Personalized Geo-social Image Recommendation

Research attention on recommendation has shifted towards the common scenario where

only implicit feedback is available, as is common in social imaging sharing communities.

One pioneer work terms such scenario as one-class collaborative filtering [77], where the

authors proposed to weight positive and unobserved feedback differently in fitting the ob-

jective function. This idea was further improved to introduce varying confidence levels

[78]. These approaches are mainly variations of pointwise approaches suitable for explicit

feedback. In contrast to pointwise methods that consider unobserved feedback as nega-

tive to some degree, pairwise methods assume positive feedback is more preferable than
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unobserved feedback. The idea is similar with pairwise learning to rank which tries to min-

imize the probability of incorrect pairwise orders. Pairwise learning for implicit feedback,

specifically Bayesian personalized ranking with matrix factorization (BPR-MF), outper-

forms pointwise learning counterparts under sparse conditions [79].

Image Recommendation. Many works have tackled the problem of image recommen-

dation, e.g., [80, 81, 82]. For example, Jing et al. use a weighted matrix factorization

model that combines image importance and local community user rating [81]. Sang et

al. measure the distance of an image and a personalized query language through a graph-

based topic-sensitive probabilistic model [83]. On a similar track, cross domain image

collection recommendation learns a query-specific distance metric for identifying simi-

lar Pinterest boards according to users’ click logs [84]. Later works begin incorporating

a variety of visual features, including high-level features from deep convolutional neural

networks. For example, Liu et al. introduce social embedding image distance learning that

learns image similarity based on social constraints and leverages Borda Count for recom-

mendation [85]. Liu et al. augment a weighted matrix factorization model with a focus on

modeling sparse latent visual topics [86]. Lei et al. propose a comparative deep learning

model that learns image and user representation jointly and identifies the nearest neighbor

images of each user for recommendation [87].

Location-aware and Context-aware Recommendation. To overcome ratings sparsity,

many recommenders have proposed to incorporate additional contextual information [88],

including but not limited to social connections [89, 90], content [91, 92], and so on. Visual

features have received much attention in recent work, with some methods using metrics

for visual similarity according to social behavior or activity pattern to identify compatible

items [85, 93]. In [94], the authors incorporate visual features to improve product recom-

mendation for clothing, where appearance is an important determining factor. With the
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rapid growth of location-based social networks and smart mobile devices, many applica-

tions take advantage of geographical information in modeling video watching preferences

[48], Yelp ratings prediction [49], and most commonly in point of interest recommenda-

tion, where representative work includes [95, 96, 97, 98, 99]. In our work, we derive and

integrate multiple categories of contextual features for image recommendation. We show

that our proposed method to model user’s preference is effective and adaptable to different

frameworks.

Deep recommendation with implicit feedback. Recently, we have seen increasing ef-

forts devoted to recommendation models based on deep learning [87, 100, 101, 102, 103,

104, 105, 106]; note that we neglect discussion of works that leverage deep learning for

deriving features then can be integrated into traditional recommendation models. Several

of these target the common scenario of implicit feedback [87, 100, 101]. For example, He

and et al. introduce a pointwise neural collaborative filtering framework which includes

an ensemble of multi-layer perceptron and generalized matrix factorization components

that jointly contribute to better performance [100]. The work that is most relevant to ours

is [101], where the authors propose a multi-layer feed forward neural network based pair-

wise ranking model which can be applied to personalized recommendation. Distinct from

previous works, we propose a pairwise ranking based recommendation model that incor-

porate the idea of generalized matrix factorization for implicit feedback [107]. We also

provide a framework for explicitly modeling user’s contextual preference for alleviating

sparsity issues.
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3. PROFILING: COMMUNITY-BASED GEOSPATIAL TAG ESTIMATION1

To accurately estimate the tag distribution for a particular place of interest from the

massive geo-tagged content is a critical challenge for search, retrieval, and mining appli-

cations. In this chapter we tackle the problem of geospatial tag distribution estimation for

locations.

3.1 Introduction

We have argued that the sharing of fine-grained geospatial footprints through smart-

phones and social media services (e.g., Facebook, Twitter) promises new insights into the

dynamics of human behavior and new intelligent location-aware applications. Already,

we have seen many research efforts aimed at enhancing web and social media search by

integrating location signals [108, 109] and identifying “living neighborhoods” [20, 18].

Many of these scenarios are driven by social media posts that include latitude-longitude

coordinates and a timestamp, often including a user-generated tag that provides additional

context (e.g,. #sunset, #beach, #happy).

A critical challenge for search, retrieval, and mining applications built on these geo-

tagged posts is accurate identification of popular tags and estimation of the tag distribution

for a particular place of interest. For example, a real-time local search system may want

to reflect what is currently “hot” in the area of interest (e.g., reaction to a political debate).

Similarly, a geo-enabled advertising system may place targeted social media ads based

on local interests (e.g., advertising jerseys during a football match). Unfortunately many

locations may have no (or little) evidence of tags due to the sparsity of geo-enabled social

media. Indeed, recent estimates suggest that only 1.5% of tweets have geo-coordinates

1 c©2016 IEEE. Reprinted, with permission, from W. Niu and et al., "Community-based geospatial tag
estimation", in Advances in Social Networks Analysis and Mining(ASONAM), 2016.
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[110]. And even for locations that are well-represented, there is inherent uncertainty

around using social media to capture the overall distribution of interests in a particular

location. Moreover, tags are diverse from location to location and can temporally fluctuate

in popularity.

Toward overcoming these challenges, this chapter tackles the geospatial tag distribu-

tion estimation problem for accurately estimating the tags in a particular location. The

main intuition of the proposed approach is to “smooth” a location’s tag distribution from

a larger “conceptual” community in which a particular location belongs to, as well as ge-

ographically contiguous neighbor locations. Evidence of homophily in social networks

[111] – wherein individuals tend to associate and bond with similar others – motivates

our hypothesis that geo-locations (as comprised by individuals) may also share a similar

tendency in the “ideas” (or hashtags) that are shared. Thus, it may be possible to rely on

the denser (and richer) information from a larger community to shed light on individual

locations, potentially alleviating the challenges of tag estimation. Concretely, we propose

a community discovery framework and an approach for estimating the tags in a particular

location. Through this framework, we investigate:

• The representation of locations for community discovery – both through the distri-

bution of hashtags adopted and by how rapidly they are adopted;

• Methods for measuring the conceptual distance between locations – by two content-

based methods and an adoption time metric, plus variations integrating physical

distance;

• Methods for estimating the unknown hashtag distribution – through a novel commu-

nity and neighbor-based smoothing method.

Through extensive experiments based on 100s of millions of geo-tagged Twitter posts,
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we demonstrate the effectiveness of conceptual community-based smoothing. We investi-

gate the impact on precision and recall of multiple estimators, examine the impact of the

number of communities on tag distribution estimation, and find an improvement of the

proposed approach versus a neighbor-based baseline. These findings are encouraging for

improving the quality and coverage of geospatial tag estimation, which is an important

step toward providing intelligent location-aware search and recommendation systems.

3.2 Geospatial Tag Distribution Estimation

We begin by assuming that we have a collection of social media posts that include

latitude-longitude coordinates, a timestamp and one or more tags (or hashtags; in the

following we shall use hashtags). We view a tag on a post as a tuple (hi, ti, gi), where hi ∈

H is the hashtag, ti is the timestamp, and gi is a latitude-longitude coordinate. We assume

there is a mapping function that converts latitude-longitude coordinates into locations. A

location here could correspond to a particular venue (e.g., a restaurant), a city block, equal

or variable-sized grid cells, or some other domain-specific collection of latitude-longitude

coordinates. We denote L as the set of all possible locations andH as the set of all distinct

hashtags. Hence, we finally view a tagging action as the hashtag text, the timestamp, and

its location: (hi, ti, li). In total, we call this collection of tuples P (for posts).

The hashtag distribution at a location l is the probability distribution of all the hashtag

occurrences at that location, which we denote as θl:

θl = {[h1, p(l, h1)], [h2, p(l, h2)], · · · , [hm, p(l, hm)]}

where p(l, hi) is the probability of a hashtag hi in location l. In many scenarios, this dis-

tribution is unknown or incomplete due to data sparsity, uncertainty, and other factors.

Hence, the hashtag distribution estimation problem is to find an estimated hashtag dis-

tribution θ̃l that matches the actual (but, unknown) distribution θl as closely as possible
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(where measures of closeness are defined in the experiments).

We propose to tackle the hashtag distribution estimation problem by considering mul-

tiple sources of evidence – the conceptual community which the location is associated

with and the contiguous neighboring areas around a location – and by smoothing a lo-

cation’s tag distribution by incorporating evidence of both the conceptual community in

which a particular location belongs to as well as neighboring locations. The key intuition

of community-based smoothing estimation is that if a hashtag appears in a community c,

which is a group of locations drawn from L, then it is likely to appear in each individual

location li, where li ∈ c.

In the following we address two key challenges to robust hashtag distribution estima-

tion: (1) How do we identify these conceptual communities in the first place? and (2)

Given a set of communities, how do we estimate the hashtag distribution for a particular

location?

3.2.1 Challenge 1: Finding Conceptual Communities

A conceptual community links multiple related locations by their common interests

rather than by their geographic proximity (that is, without the constraint of being geo-

graphically contiguous). We define the hidden conceptual community discovery problem

as: given a collection P of social media posts, identify the set of conceptual communi-

ties C = {c1, c2, · · · , ck}, where each community ci ∈ C is a group of locations drawn

from L. Toward discovering these conceptual communities, we investigate in this chapter

a clustering-based approach. In our preliminary research, we have tested several cluster-

ing algorithms – including spectral clustering [112], hierarchical clustering [113], Affinity

Propagation [114], etc. We find that while there are qualitative differences in the clusters

generated, that the k-means++ algorithm [115] provides a nice balance of efficiency and

cluster quality (as measured in the experiments section). Hence, we focus our discussion
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here on k-means++, which operates by finding partitions of n locations into k clusters

(corresponding to our hidden conceptual communities). It provides a way for choosing the

initial centers for k-means instead of random assignment which often lead to poor perfor-

mance. Some clustering approaches have an embedded method for determining k, while

in our case, we prefer a flexible k value since the number of communities is impacted by

the performance of tag distribution estimation.

In the following, we tackle two important questions – (i) what is the appropriate rep-

resentation for a location as a basic unit of community discovery? and (ii) how can we

compare two locations, to determine a meaningful notion of conceptual distance for use in

identifying related locations?

Representing a Location. We consider two methods for representing a location: by hash-

tag frequency and by hashtag adoption time.

By Hashtag Frequency. This approach captures the overall distribution of “ideas” asso-

ciated with each location by considering the relative frequency distribution of hashtags

observed at that location. Formally, we can represent each location l by its hashtag fre-

quency :

l = {[h1,F(l, h1)], [h2,F(l, h2)], · · · , [hn,F(l, hn)]}

where F(l, hn) represent the number of occurence, or we say frequency of hashtag hn at

location l.

By Hashtag Adoption Time. While the previous approach may meaningfully capture the

overall interests of the location, it ignores the timing information embedded in the times-

tamps of each hashtag. Hence, this approach intended to capture these differences by

considering the first occurrence time of each hashtag h at location l, τ(l, h) and a location
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can then be represented as:

l = {[h1, τ(l, h1)], [h2, τ(l, h2)], · · · , [hn, τ(l, hn)]}

Unlike hashtag frequency, the adoption time implicitly captures the influence of a loca-

tion, which is helpful for distinguishing between locations with similar topics but different

relative importance (as measured by adoption time of ideas).

Measuring Distance Between Locations. Most existing neighborhood finding approaches

require nearby (geographic-distance constrained) locations [18], so that the resulting re-

gions are spatially bounded in a single contiguous region. In many applications this is

a reasonable assumption, since contiguous regions provide the basis of many real-world

ways in which we organize space (e.g., state boundaries, congressional districts). Alterna-

tively, we explore in this section methods for linking locations based on the conceptual dis-

tance between them, so that related locations may be connected regardless of geographic

distance.

First we consider content similarity to characterize the location similarity. We apply

well-known Jaccard similarity SimJaccard and cosine similarity Simcos over each pair of

locations vectors represented with hashtag frequency. The corresponding distanceDJaccard

and Dcos is simply defined as the inverse of the similarity. Additionally, we propose tem-

poral distance, which based on the adoption time of hashtags at different locations. We

can measure the adoption time difference between two locations l1 and l2 as:

Ta =
1

‖H(l1) ∩H(l2)‖
∑

hi∈H(l1)∩H(l2)

τ l1i − τ
l2
i

which can be considered a measure of relative influence between a pair of locations.

τ li represent the first occurrence time of hashtag hi at location l. If we take absolute value
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over time difference τ l1i − τ
l2
i in the above formula, then it measures the average hashtag

adoption time between a pair of locations. We denote it as Dt. When Dt is small for two

locations, they are more closely related to each other, otherwise, we consider they are far

apart. Note however, the adoption time approach does have the drawback of only consid-

ering pairwise influence, and so it may miss cases in which a third location is influencing

the two locations of interest.

Integrating Geographical Distance. Finally, we augment each of the baseline distance

metrics with a geographic distance-based damping factor. The idea is that we can provide

a tunable parameter for biasing the conceptual distance between two locations by addi-

tionally considering the geographic distance between them. There are mainly two reasons.

First, our intuition is drawn from the first law of geography, which states that “Everything

is related to everything else, but near things are more related than distant things” [116].

Second, we aim to mitigate the impact of data sparsity on clustering. For example, if we

only collected one hashtag “sports” at a particular location, then this location by content

similarity, may be clustered with locations that have high frequency of “sports”. To avoid

degenerate clusters like that, we incorporate a factor damping with distance. We begin by

considering the Haversine distance between two locations – where the Haversine distance

DH [117] measures the shortest distance over the earth’s surface between two points. We

update each of the distance metrics by incorporating this Haversine distance, as shown in

Table 3.1. In each case, α is a user-defined distance decay coefficient. Larger values of

α will increase the distance between geographically far apart locations, making them less

likely to be grouped together.

3.2.2 Challenge 2: Hashtag Distribution Estimation

Given a community c and a target location l ∈ c, we further investigate how to esti-

mate the hashtag distribution for location l. In this section, we consider three approaches:
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Distance DJaccard
∗(l1, l2) Dcos

∗(l1, l2) Dt
∗(l1, l2)

1
SimJaccard

αDH(l1,l2) 1
Simcos

αDH(l1,l2) Dtα
DH(l1,l2)

Table 3.1: Distance metrics that integrate geographical distance

(i) the first considers the conceptual community (the idea-based neighborhood) around a

location; (ii) the second considers immediate geographic neighbors (ignoring the concep-

tual distance of these neighbors, as well as the potential conceptual closeness of more

distant neighbors); and (iii) a hybrid approach which seeks to balance both conceptual and

geographic distance.

Community-Based Estimation. In this first approach, we estimate the hashtag probabil-

ity at location l according to the hashtag probability at the conceptual community that l

belongs to:

p̃(l, h) = F(C, h)/
∑

i
F(C, hi)

where F(C, h) is the frequency of hashtag h in the community C that l belongs to. The

intuition is the hashtag distribution over the community tends to be coherent from location

to location. Thus it emphasizes the overall hashtag popularity in the community, resulting

in hashtags with high frequency being good candidates for the target location.

Neighbor-Based Estimation. In the second approach, we ignore the conceptual closeness

of distant communities in favor of considering neighboring locations as sources of similar

hashtag evidence. This method estimates the probability of a hashtag at location l accord-

ing to the aggregated hashtag distribution of neighboring locations that border with the

target location l. The expectation is that locations contiguous with target location share a

large portion of the hashtag as what people see and experience tend to be similar. That is,

we have:

p̃(l, h) = F(N , h)/
∑

i
F(N , hi)
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Where N represents the locations that border with l.

Hybrid Approach. Finally, we propose a smoothing approach that seeks to balance both

community-based and neighbor-based estimation. The intuition is that neither approach in

isolation is best for estimating the hashtags of a location; rather, we should adopt a more

flexible model to integrate both sources of evidence that can vary from location to location.

Building on the previous two estimations approaches, the hybrid approach is:

p̃(l, h) = β · p(lcommunity, h) + (1− β) · p(lneighbors, h)

where β is a weight equals to Nd(h)/Nmax. Nd(h) is the total number of distinct hashtags

of target location in the dataset used for community discovery – and Nmax – the maxi-

mum number of distinct hashtags one location has in the same dataset. When Nd(h) is

large, neighboring locations may only share part of the hashtags with the target location

due to the difference in hashtag density. Meanwhile, the hashtag in the target location is

more likely to be prevalent in the community, since we expect the community contains

some similar locations of the same scale. We can rely more on community distribution

as a source of supplementary and richer information for better estimation. For example,

for a location like New York City, the aggregated hashtag distribution of nearby locations

is not sufficient to represent the hashtag distribution of the urban area. Alternatively, the

community which also contains Boston and D.C. may provide more accurate hashtag in-

formation. When Nd(h) is small, the target location is less influential in the community

and meanwhile, it tends to be well represented by the neighboring locations. Thus more

weight should be placed on neighboring distributions. To conclude, we increase β when

Nd(h) is large and decrease β as Nd(h) is small.
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3.3 Experimental Evaluation

In this section, we present a set of experiments to show the discovered conceptual

communities over different granularities and investigate the strengths and weaknesses of

hashtag distribution estimation.

3.3.1 Dataset

All of our experiments are over a collection of geo-tagged social media posts sampled

from Twitter. We collected 324 million hashtags from tweets that were annotated with a

latitude-longitude coordinate over the course of two years (from February 2011 to March

2013). We crawled the dataset using the Twitter streaming API using a bounding box to

only gather tweets from particular parts of the world. We use the Universal Transverse

Mercator (UTM) [118] geographic coordinate system to grid the area of interest into ho-

molographic subareas, each of which corresponds to a location.

3.3.2 Evaluating Hashtag Distribution Estimation

To evaluate the quality of an estimated hashtag distribution, we consider weighted

versions of precision, recall, and Jensen-Shannon Divergence [119].

Weighted Precision. We consider a weighted version of precision which considers the

probability of a hashtag:

P@n =

∑
n r(hn)p̃(l, hn)∑

n p̃(l, hn)

where p̃(l, h) is the probability of occurrence of hashtag h in the estimated distribution,

and r(h) is an indicator variable that is 1 when the estimated distribution contains h, and 0

otherwise. P@n is the percentage of first n estimated hashtags that actually exist at target

location. These hashtags are weighted by their probability in the estimated distribution.

It is a measurement of relatedness of estimated hashtags. However, it only considers the

estimated distribution and ignores the actual distribution.
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Weighted Recall. The weighted recall is defined as:

R@n =

∑
n r(hn)p̃(l, hn)∑
m p̃(l, h∗m)

where h∗ represents all the hashtags in the actual distribution. R@n is the percentage of

the actual hashtags that is covered by the estimated distribution. Hashtags are weighted

by the probability in the estimated distribution. It is a measurement of how completely the

estimated hashtags match the actual hashtags.

We use P@n andR@n as preliminary performance metrics and for the real distribution

matching, we rely on Jensen-Shannon Divergence.

Jensen-Shannon Divergence (JSD): JSD measures the similarity between two distribu-

tions. The JSD between two hashtag distribution is defined as:

JSD(θm, θn) =
1

2

∑
i

ln(
p(m,hi)

p̄(hi)
) · p(m,hi)

+
1

2

∑
j

ln(
p(n, hj)

p̄(hj)
) · p(n, hj)

where p(m,h) represents the probability of hashtag h in distributionm and p̄(h) = 1
2
(p(m,h)+

p(n, h)). Smaller JSD values indicate the two distributions are more similar.

3.3.3 Conceptual Community Discovery

Here, we show some example patterns of the discovered communities. Since the com-

munity discovery is randomized, we present a typical output for each target area. We

postpone the discussion of picking the number of communities.

We considered four different geo-spatial granularity with respect to the different areas.

The detailed statistics are listed in Table 3.2, for example, at a global-scale, we have tested
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a location with an accuracy of 100 km which correspond to an area of approximately

104km2. The total number of hashtags being considered in this case is 324 million, and

the number of distinct hashtags is 298,000.

Target area World US NYC MHTN
Area (km2) 104 2500 1 10−2

No. of locations 2, 565 2,482 1,445 5, 529
Hashtag frequency 324m 29m 3m 0.8m
Distinct hashtags 298k 98k 45k 7k

Table 3.2: Four social media collections

Figure 3.1 shows us the 13 communities in the world using Dcos∗ . We observe a

language-based pattern: for example, Brazil and Portugal are in the same community due

to the common language. Overall, we observe that language (and culture) is the dominat-

ing factor for identifying communities based on content similarity.

Figure 3.1: World by Content Similarity (Cosine)
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Figure 3.2: US by Content Similarity (Cosine)

Moving to a more focused context, we next consider the communities discovered in the

continental US with Dcos∗ in Figure 3.2. The 60 communities closely match state con-

tours and metropolitan areas: we can see Chicago area, New York and New Jersey area,

Rocky Mountains and many more. In some cases, communities span borders: for exam-

ple, Arizona and part of New Mexico are in the same community. These results indicate

the strength of political boundaries on the “ideas” shared via social media, supporting the

argument that culture is strongly impacted by political organization.

We next examine New York City. Here, Figure 3.3a show the discovered 8 communi-

ties in New York City byDcos∗ . We see a clear delineation of boroughs and neighborhoods,

where the contour is consistent with the race and ethnicity map of NYC according to 2010

Census data2.

Finally, we turn to the most narrowly scoped target area: Manhattan. We again look at

2https://www.flickr.com/photos/walkingsf/5559914315/
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(a) NYC (b) Manhattan

Figure 3.3: NYC and Manhattan by Content Similarity(Cosine)

cosine-based approaches. Figures 3.3b show the 22 communities discovered in Manhattan.

In this figure, we can notice the neighborhood-level communities. As our data at this scale

is very sparse, we notice a more scattered community pattern. These community covers

blocks where people may hear the same news, see similar events, and share a similar

lifestyle.

In summary, we find that locations at different granularities can be grouped into co-

herent communities based on the approaches defined above. At the world level, language

is the dominating factor that influences community discovery. At country level, we see

that the communities we find are influenced mostly by the cultural identity, as well as ge-

ographic reasons. At more fine-grained levels, we attribute the different communities to

demographics and everyday activities. We see that Jaccard and cosine tend to discover
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similar communities, whereas adoption time provides a different flavor of finding commu-

nities. It is challenging to make a direct and fair comparison with existing neighborhood

detection work mentioned in Section II due to the feature and goal differences. Thus we

will further demonstrate the quality of these communities via the geo-spatial tag distribu-

tion estimation task in the following.

3.3.4 Evaluating the Community-based Approach

We now turn to investigating the quality of conceptual community-based tag estima-

tion, before turning in the following section to comparing the community-based estimator

versus a neighbor-based one and a hybrid method. We evaluate the quality of hashtag

distribution estimation over the 2,482 US locations based on three proposed community

discovery approaches – by Jaccard, by cosine, by temporal distance. As a baseline, we

consider a physical community that less than 200 miles in Haversine distance (HD) from

target location; that is, the communities are necessarily linked only by distance and not by

any tag-related information. For the conceptual community-based estimators, we find ini-

tial communities based on 50% of the dataset, then use the estimation methods to infer the

estimated distribution for each location with the rest of the data, which is then compared

with the actual distribution of the corresponding location for evaluation. This two-fold

cross validation for distribution estimation is different from classification, in that we try to

keep a balanced partition and avoid estimation data being too sparse, which won’t reflect

the true estimation performance. We consider all locations and report averages. In our

initial experiments we consider k = 90 communities and then test the impact of varying

k.

Interestingly, we see the precision and recall for the four approaches in Figure 3.4. The

x-axis in all cases corresponds to the number of hashtags being considered, ranked by de-

creasing occurrence probability. In all cases, we see that the two content-based community
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discovery methods – Jaccard and cosine – outperform the temporal distance. We see that

HD results in the best precision and recall, followed by cosine, then Jaccard, and finally

temporal distance. These results indicate the strong locality effects of hashtag adoption as

postulated by Tobler’s first law of geography – in that communities composed of nearby

locations may share more common “ideas” than those composed of distant locations. But

can the conceptual communities complement this strong locality impact?

Figure 3.4: Average Weighted Precision and Recall

Integrating Haversine Distance. Next, we consider the impact on hashtag distribution es-

timation when we integrate Haversine distance into the conceptual distance; does forcing

communities to be more compact improve the quality of hashtag estimation? Following

experimental results presented in [120], we adopt a distance decaying coefficient α = 1.01.

In Figure 3.5, we report the precision and recall when the communities are discovered

using the Haversine-integrated approach. We do see an improvement on the absolute per-

formance: for example, the increase in precision and recall are especially apparent for

Jaccard (Dj) and the temporal distance (Dt). Overall, we find using the Cosine+HD ap-

proach (D∗cos) yields the best precision and recall. So yes, integrating the strong locality of
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Figure 3.5: Average Weighted Precision and Recall (Integrate Haversine Distance)

nearby locations with more distant conceptual communities can positively impact hashtag

distribution estimation. These results confirm the importance of carefully identifying these

distant conceptual communities, and of integrating them into more naive distance-based

approaches.

Varying the Number of Communities. So far, we have considered a fixed number of

communities. But what impact does varying the number of communities have on the

hashtag estimation problem? Indeed, there are existing methods that aim to find a proper

number of clusters k for k-means [121]. But here, we would like to consider an appli-

cation driven strategy to decide the number of communities, i.e. by the performance of

estimation. Many small communities may favor precision in the hashtags that locations

share, but without the overall perspective (and the additional hashtags) that may be present

in a few larger communities that are composed of many locations. Conversely, when the

number of communities is small, the hashtags shared by its constituent locations may be

overly broad, resulting in poor estimation for a specific target location. Hence, in this

experiment we vary the number of communities from 30 up to 240 using the Cosine+HD

metric (D∗cos). Figure 3.6 presents the F1 score to characterize the performance: for ex-
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ample, in the 120 communities case, which has relatively smaller community size, the

precision and recall are better than the cases of 30 or 60 communities. So, more smaller

communities tend to result in better estimation. However, as the number of communities

increases (and the size of each community decreases), we see that the quality of estimation

actually degrades. For example, at 240 communities there is worse precision and recall

than in the 120 and 180 community case. As the community size shrinks, the hashtags

in each community becomes more fragmentary toward representing the target location,

thus dragging the precision and overall performance down. These results demonstrate the

importance of incorporating location (and domain) specific models of what constitutes a

community, so as to balance the finer granularity of small communities with the richness

inherent in larger ones.

We further measure the distributional similarity between the estimated hashtag distri-

bution and the actual distribution using Jensen-Shannon divergence in order to compare

various distance metrics used for community discovery. For each location l in the commu-

nity c, we compare the distribution of hashtag at l with the distribution of equal number of

hashtag suggested by the community distribution, and then we calculate the corresponding

JSD. Again in Table 3.3, we see that the Temporal+HD approach results in the highest di-

vergence (and so, worst performance in terms of estimating the actual distribution). In all

cases, we see that the Cosine+HD approach (D∗cos) results in the smallest divergence. This

result demonstrates that Cosine+HD is the most effective distance metric, again indicating

the strength of content-based similarity versus temporal-based similarity of locations.

3.3.5 Comparing Three Estimation Approaches

Next we compare the performance of the three proposed approaches for estimating

the hashtag distribution of the target location. For community-based (CB) estimation,

we adopt Cosine+HD combination as it was shown to give the best estimation in all
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Figure 3.6: Varying the Number of Communities

community-based variations. For the Neighbor-based (NB) approach, we consider two

alternatives: only contiguous neighbors of the target location and all locations that are

within 200 miles from the target location. For the hybrid approach, we also compare two

alternatives: a version which has constant β value and a version with varying β as we

defined previously. We report the average for locations that have more than 500 distinct

hashtags.

The JSDs of the estimation methods are shown in Table 3.4. We observe two hy-

brid approaches, with JSD values 0.33 and 0.34, generally perform better than the strictly

community-based approach and the neighbor-based approach. On the one hand, neighbor-

34



Distance metrics 10% 20% 50% 100%
Cosine + HD 0.632 0.581 0.494 0.353
Jaccard + HD 0.670 0.632 0.551 0.380
Temporal + HD 0.676 0.648 0.589 0.453

Table 3.3: Average Jensen-Shannon Divergence @P% for Community-based Estimation

Distance metrics 10% 20% 50% 100%
CB 0.632 0.581 0.494 0.353
NB 0.628 0.583 0.489 0.386
NB (within 200 miles) 0.645 0.603 0.511 0.400
Hybrid (β = 0.5) 0.626 0.575 0.466 0.340
Hybrid 0.628 0.576 0.463 0.330

Table 3.4: Average Jensen-Shannon Divergence @P%

based estimation approach tends to identify hashtags that actually exist in a target location,

however the popularity of these hashtags is unclear: they might either be popular, or be

very local that only appear in a few locations. On the other hand, the community-based

approach tends to identify overall popular hashtags that are possibly popular in target lo-

cation as well. A combination of these two distributions effectively balances the hashtags

discovered – leading to an increase in the accuracy of the estimated distribution.

We also observe that varying β is better than a constant β, as we adjust the weight

according to how influential the target location is. For a location with a large number of

distinct hashtags, hashtags of neighbor locations tend to be sparse compared to the target

and thus is prone to be missing and incomplete in representing the target location. By

increasing the weight of the community distribution, we increase the probability of seeing

the popular hashtags in the community, which are also likely to be popular in the target

location. For a location with a small number of distinct hashtags, neighbor hashtags tend
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to be more precise than community hashtags, as the target location is not influential in the

community and may share limited number of hashtags with the community. Increasing the

weight to the neighbor distribution works better.

3.4 Summary

In this chapter, we have proposed and evaluated a community-based framework for

tackling the problem of geospatial tag distribution estimation, which is a key compo-

nent of many new location-augmented search, retrieval, and mining applications. We

have investigated two ways to represent locations. Additionally, we have compared three

approaches for capturing the hidden conceptual distance between locations, and evalu-

ated three smoothing strategies. Through experimental investigation, we found that geo-

locations have a tendency of sharing similar “ideas" and forming geo-spatial communities.

Meanwhile, we demonstrated how our community discovering approach and smoothing

strategy leads to high-quality hashtag distribution estimation. In our future work, we are

interested to study geospatial community formation in alternative social media platforms

(e.g., Pinterest) and to incorporate alternative signals of community formation, including

activity patterns, temporal changes of idea flow, and topic-sensitive signals (e.g., consid-

ering only political hashtags).
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4. PROFILING: LOCATION-SENSITIVE USER PROFILING1

In the previous chapter, we focused on location profiling based on user-generated hash-

tags, corresponding to our effort to understand locations based on user behaviors. In this

chapter, we aim to unveil its counterpart relation of understanding how geographic signals

help to characterize users. We develop a location-sensitive user profiling framework for

more accurate characterization of user expertise with location information.

4.1 Introduction

User profiles are a valuable component of many applications, including recommender

systems, search engines, question-answering systems, and online social networks. These

profiles provide insight into the interests and expertise of each user, and can lead to im-

proved personalization of the underlying system [69, 122, 123]. Many systems rely on an

explicit definition of a user profile – for example, by filling in an “About” section in a social

media profile or by directly selecting topics of interest on a question-answer system. Al-

ternatively, implicit user profiles can be uncovered through methods like query log mining,

running Latent Dirichlet Allocation (LDA) over a user’s posts, or by applying matrix fac-

torization approaches to identify hidden (or latent) topics of interest [124, 125, 126, 127].

In a complementary direction, recent years have seen the development of crowdsourced

methods to build user profiles, e.g., [6, 70, 128, 129]. In this approach, crowds of users ap-

ply descriptive labels on other users, so that in the aggregate these labels provide a crowd-

sourced user profile of the target user. For example, Twitter Lists and LinkedIn’s Skill

Tags provide a partial perspective on what users are known for by aggregating crowd la-

1Part of this chapter is reprinted with permission from "Location-Sensitive User Profiling Using Crowd-
sourced Labels" by Wei Niu, James Caverlee and Haokai Lu. 2018. The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18). Copyright 2018 by Association for the Advancement of Artificial
Intelligence.
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beling knowledge. However, the vast majority of users have no crowd labels; their interests

are essentially hidden from important applications such as personalized recommendation,

community detection, and expert mining.

Our goal is to extend the reach of these crowdsourced methods, so that we can construct

robust user profiles for the long-tail of users for whom we have incomplete labels. A

natural approach to extend the reach of these crowd-generated labels is to apply existing

tag recommendation methods [33, 34, 35, 37, 130]. Typically created for domains like

image sharing communities (where many users have tagged different photos) or social

bookmarking sites (where individuals have annotated a personal collection of URLs with a

set of keywords), tag recommendation seeks to uncover relationships like energy→ oil

and gas. However, many of these previous approaches have viewed tag relationships

without regard for the local variations that are inherent in real-world crowdsourced labels

of users. For example, we find in a sample of Twitter Lists that the label energy in

San Francisco is more associated with the green movement, whereas in Houston it is

more associated with oil and gas. These spatial variations are a critical component

of crowdsourced labels and require careful consideration: beyond just the presence of

different relationships across locations, there is often a variation in the strength of this

relationship from location to location. For example, stock and finance are more

closely related in New York City than in Portland. Further, there is even a potential for

varying location-specific senses of a tag (polysemy). For example, the tag rockets in

the Houston area may be associated with the local NBA team instead of other senses of

the word.

Hence, we explore the impact of spatial variation on the construction of location-

sensitive user profiles. Our main intuition is that spatial variation over crowdsourced labels

can be modeled in a location-sensitive folksonomy to provide a comprehensive and up-to-

date picture of location-aware topics, topic relations, and a fine-grained topic level view of
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the social media corpus, which may mitigate the sparsity inherent in the raw labels. Recent

studies [131, 132] have shown how hierarchical topic structures can improve ranking and

recommendation, indicating the importance of folksonomies. Hence, we aim to study the

impact of location-sensitive hierarchical structures of crowdsourced tags on user profiling.

Concretely, we first demonstrate evidence of spatial variation over a collection of Twit-

ter Lists, wherein we find that crowdsourced labels are constrained by distance, and that

labels themselves and relation between pair of labels are not uniformly distributed across

locations. These observations motivate our proposed approach for location-sensitive user

profiling as illustrated in Figure 4.1 to construct robust user profiles for the long-tail of

users for whom we have incomplete labels. First, we construct a crowdsourced label

similarity graph induced from crowdsourced labels, where each labeler and labelee are

annotated with a geographic coordinate; this similarity graph varies by location to capture

spatial variations of the kind identified above (e.g., the similarity graph for San Fran-

cisco will link energy with green movement). Second, we transform this similarity

graph into a directed weighted tree that imposes a hierarchical structure over these la-

bels, such that labels like sports are higher in the tree, whereas labels like rockets

are lower, thereby providing finer granularity for building user profiles. Finally, we em-

bed this location-sensitive folksonomy into a user profile ranking algorithm that outputs

a ranked list of candidate labels for a partially observed user profile. Through extensive

experiments over a Twitter list dataset, we demonstrate the effectiveness of this location-

sensitive user profile estimation.

4.2 Spatial Variation in Crowd-sourced Labels

We begin by examining the evidence of spatial variation in crowdsourced labels. We

have argued that there could be differences from location to location, e.g., the label energy

in San Francisco linking to the green movement, whereas in Houston it is more associ-
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Figure 4.1: Overall approach: constructing location-sensitive user profiles from crowd-
sourced labels

ated with oil and gas. But does this spatial variation actually manifest in how crowd-

sourced labels (or tags) are applied? In this section, we provide data-driven evidence from

a collection of Twitter lists (described more fully in Section 4.4.1). Twitter lists are one

form of crowdsourced tagging, whereby individual Twitter users can add other users to a

curated list annotated with a name. For example, a user could add a local blogger to a list

called “Bloggers”. In the aggregate these list names can be used to build user profiles as

in related works like [6, 70, 128, 129]. The dataset we use here includes geo-coordinates

for both the list labeler and the list labelee.

4.2.1 How does distance impact tagging?

We begin by investigating in Figure 4.2 the impact of distance on the probability that

a list labeler will include another user on a list. We observe that the probability of tag-

ging is exponentially decaying with distance, which indicates a user is less likely to be

tagged by a labeler as the distance between them increases. This spatial locality is a well-

known property of many off-line relationships and has been confirmed repeatedly even in

online scenarios where distance is not inherently a limiting factor. This locality of tagging

suggests that a method for user profile prediction that is induced from these crowd-based

tags should reflect local knowledge; that is, since tags are not uniformly applied across

distances, there may be local variations of interest.
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Figure 4.2: Probability of tagging as a function of distance between labeler and user.
Tags are not uniformly applied across distances indicating that there are local variations of
interest.

4.2.2 Are tags evenly distributed across locations?

We pair this first observation over users with a second investigation of the geographic

distribution of the tags themselves. To study the relationship between a tag and its geolo-

cation, we first define the location entropy as:

H(t) = −
∑
i

p(li, t) log(p(li, t))

where p(li, t) is the probability of a tag t appearing in a location li. Location entropy mea-

sures how each tag is distributed across different locations. Tags that are popular globally

will have a high entropy; tags that are more localized will appear in fewer locations and

have a lower entropy. In Figure 4.3 we present the tag entropy across all tags over nine
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Figure 4.3: Entropy of each tag across nine locations. Tags are not homogeneously dis-
tributed across all locations. Some global tags like news and sports have a very high
entropy, while local tags have low entropy.

locations in our dataset — New York, San Francisco, Seattle, London, Dallas, Houston,

Chicago, Miami, and Los Angeles. We observe from the figure that these tags are not

homogeneously distributed across all locations. Some global tags like news and sports

have a very high entropy (the top-right of the distribution). On the other hand, tags related

to specific sports team tend to have relatively low entropy, since fans mostly concentrate

in a single home location. Other tags like politics and movies, though quite popular,

have distributions that are not absolutely even. For example, we find many movie-related

tags around Los Angeles and politics-related tags around Washington, DC. These differ-

ences suggest that a folksonomy induced over these tags can potentially organize tags

according to their locality, with broadly popular tags like sports at higher positions in

the folksonomy and specific local tags (like for specific sports teams) at lower positions in

the folksonomy.
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4.2.3 Example location-sensitive relationships.

Finally, we consider the relationships between pairs of labels across different locations

in our dataset. Representing each tag as a location-specific vector (see the following sec-

tion for additional details), we show in Figure 4.4 the relationships of a group of tag pairs

at multiple locations using cosine similarity. The x-axis shows each tag pair and each color

bar represents the similarity at a location, where a missing bar means the similarity at that

location is less than 0.1. We observe that the magnitude of tag-pair relations varies across

different locations. For example, we find the similarity between general concepts like nba

and basketball tends to be relatively even across locations, with London having the

lowest value; finance and stock have highest confidence in New York while lowest

in Houston. Another typical example is the similarity between energy with green and

oil. Interestingly, we notice energy and oil have the strongest relationship in Dallas

and Houston, while energy and green bond closest in San Francisco. This fits our un-

derstanding of these locations, since Texas is a major oil and gas hub, while San Francisco

is a more eco-friendly community. These phenomena suggest that location-sensitive user

profiling has good potential to reflect the characteristics of these locations.

4.3 Location-Sensitive User Profiling

4.3.1 Problem Statement

Given these observations of the spatial variation of crowdsourced labels, we turn in

this section to building location-sensitive user profiles. Our overarching goal is to esti-

mate high-quality user profiles that respect this observed spatial variation. We assume

some partial coverage of users via existing crowdsourced tags (e.g., from Twitter Lists

or LinkedIn’s Skill Tags), but that many tags are unknown. That is, given a user u’s

full (but hidden) tag profile P (u), we have visibility only to some portion of this pro-

file Pk(u) where Pk(u) ⊂ P (u). The goal is to estimate the unseen tags ti of u where
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Figure 4.4: Example Tag Pairs Similarity. As an example, note that energy and oil
have the strongest relationship in Dallas and Houston, while energy and green are
closest in San Francisco.

ti ∈ P (u)− Pk(u).

4.3.2 Overview of Proposed Framework

Our intuition is that the spatial variation of how tags are applied can be carefully mod-

eled to create high-quality user profiles. Concretely, we propose a three-step framework

(as shown in Figure 4.1):

1. Crowdsourced Label Similarity Graph. We propose a location-sensitive dis-

tance weighting scheme that weights user influence according to distance, toward building

a crowdsourced label similarity graph that integrates location similarity. This similarity

graph varies by location to capture spatial variations of the kind identified above (e.g., the

similarity graph for San Francisco will link energy with green movement).

2. Location-Sensitive Folksonomy Construction. Building on this crowdsourced la-
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bel similarity graph, we propose a location-sensitive folksonomy construction framework

that naturally integrates the geo-spatial scope of crowdsourced labels. This approach gen-

eralizes from previous folksonomy induction approaches, providing the basis for building

user profiles.

3. Folksonomy-Informed Tag Prediction. Finally, we embed this location-sensitive

folksonomy into a user profile ranking algorithm – first, we identify candidate tags from

the location-sensitive folksonomy, and then we use a learning-to-rank approach to identify

high-quality user profile tags for augmenting a partially observed user profile.

Our goal of the first two steps is to build a location-sensitive folksonomy that cap-

tures the spatial variation across locations. Given a group of users U = {u1, u2, ..., un},

where each user u is associated with a geographic coordinate lu and a tag profile Pu which

contains a variable number of (tag, frequency) pairs {(t1, f1), (t2, t2), ...}. Our goal is to

induce a folksonomy bound to a target location l, which is represented as directed rooted

tree (arborescence) T = (V , E). The node set V contains all unique tags that U has been

labeled with, and edge set E contains subsumption relations of tag pairs. This implies

that the tag tree is connected and each tag has a unique parent. The abstractness of each

tag is controlled by its level in the tree. We can further assign weights to edges to cap-

ture the similarity between tag pairs. Note that we will build a different location-sensitive

folksonomy for each location of interest (e.g., one for Los Angeles, one for Chicago).

4.3.3 Crowdsourced Label Similarity Graph

To build this folksonomy, we begin by proposing a distance weighting scheme which

weights the profile tags of a user according to how far this user is from the target location.

Our intuition is a distant labeler is considered less knowledgeable about local users. We

adopt a model popularized in the GIS literature – the zone of indifference model – for

capturing this spatial influence. The key idea is to combine the inverse distance with a
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fixed distance band model. In this model, all users within the distance band are considered

equally important and once beyond the threshold distance, a user’s influence drops off

quickly following an exponential rate. We empirically set the distance band as 50 miles

for large cities, which defines a circle area centered at the target location. Hence, the

weight of a user w.r.t the target location lt is

wu(lt) =

 1 if d ≤50

(d−50
50

)−α else

where d is the distance from a user’s location lu to lt and α is a constant, set experimentally.

In this way we utilize the whole dataset for constructing the location-sensitive folksonomy

for each location. This avoids the sparsity issues that may arise (if we were to build a

location-sensitive folksonomy using only locally-available tags) and mitigating data im-

balances across locations (so a smaller city is not penalized in folksonomy creation relative

to a larger city). We represent each tag ti at target location lt as a tf-idf vector of the users

who are labeled with the tag, and each user is weighted by her corresponding influence

wu(lt): t
′

i = ti ·wi. Thus, the tag vectors vary in each location of interest according to

the change in users and weights.

With these tag vectors t
′

i, we can begin to construct a directed tag similarity graph.

We compare four similarity measures to calculate the similarity between tag pairs. Three

are symmetric measures including cosine, RBF kernel, and pointwise mutual information

(PMI). The fourth measure is imbalanced (meaning the strength of one tag to a second tag

is not necessarily the same as in the reverse situation) and based on a modified version of

the traditional association rules notion of confidence (what we term modified confidence,

or MConf).

Concretely, we calculate the tag similarity across crowd labels as follows:
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Cosine similarity. This is the standard approach popularized in the information retrieval

community, capturing the cosine of the angle between the vectors associated with two tags:

Cos(ti, tj) =
di · dj
|di||dj|

.

RBF kernel. It is defined as transformation of the squared Euclidean distance using a

gaussian function:

Kr(ti, tj) = exp(−‖di − dj‖
2

2σ2
)

We set the value of sigma as the average Euclidean distance by default.

Pointwise mutual information. This approach is based on an information theoretic com-

parison of the distributions of the two tags, defined as:

PMI(ti, tj) = log
p(ti, tj)

p(ti)p(tj)
= log

N(ti, tj)Nu

N(ti)N(tj)

where p(ti, tj) is the joint probability of tag ti and tj , Nu is the number of total user

considered, N(ti, tj) is the number of user that has both ti and tj . PMI is a measure

of how often two tags ti and tj occur, compared with what we would expect if they are

independent, where the value equals to 0.

Modified confidence. Finally, we adopt a common approach from association rule min-

ing which has been used for inferring subsumption relations between tags. Yet, it is not

directly suitable for constructing a hierarchical structure. First, this approach models co-

occurrence of tag as binary, i.e. it answers whether two tags show up together for a user or

not, however, failing to consider the relative closeness of the two tags. For example, user

ua has been labeled with sports 5 times, football 6 times and reading 1 time.

The contribution from ua to the relation of tag pairs (sports, football) and (sports, read-
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ing) are considered the same. However, these relations are actually in different magnitude

and should be measured more properly. Second, it neglects relative frequency difference.

Among the high confidence relations, many are actually resulting from an imbalance in

frequency between the tag pairs. For example we may find higher confidence for the rule

LA Lakers → sports instead of LA Lakers → nba as every time LA Lakers

occurs, sports may also occur thus leading to a confidence of 1. However, this is not

optimal for navigation and organization purpose. In terms of profiling, guiding by confi-

dence will make the prediction task meaningless. Since instead of predicting very general

tags, we would like to predict tags that are as specific as possible. Thus we propose a

modified confidence metric for a tag pair (ti ⇒ tj):

MConf(ti ⇒ tj) =
C(ti, tj)

F (ti)
· (1− |log(F (tj))− log(F (ti))|

log(maxF )
)

where C(ti, tj) = min(f1, f2) is the co-occurrence frequency of the pair, F (ti) =
∑
u

fi is

the overall frequency of ti in the corpus and maxF is the overall frequency of the most

used tag in the corpus. Here we use confidence as a criteria for ordering tags and we only

consider confidence for cases that conf(ti ⇒ tj) ≥ conf(tj ⇒ ti). The intuition of mul-

tiplying a weight is to avoid connecting tags with large frequency difference as mentioned

in the second drawback. Even if confidence is high, there might be some intermediate

nodes that fit between the nodes. As tag frequency versus number of tags follow a power

law distribution, we model frequency difference with damping factor which is a fraction

in log scale. When there is no frequency difference, the factor is 1, when there is large

frequency difference, the factor decays to 0.

4.3.4 Location-Sensitive Folksonomy Construction

Given these measures of tag similarity that capture both user and location influences,

we next turn to forming the directed weighted graph G, representing the hierarchical struc-
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ture organizing these tags. In order to define an order of abstractness for the tags, we

calculate the closeness centrality of each tag, defined as

Centrality(t) =
∑
j

sim(t, tj)

which sums up each tag’s similarity with all other tags. This definition forces general

tags to have high centrality. Since the modified confidence definition already assigns a

direction for a pair of tags, this step is exempted. Then we organize the tags and relations

into a directed weighted graph G. To do this, we initialize G with a ROOT node and add

an edge for the tag pair when the similarity is above a pre-defined threshold (when 50% of

tag-pairs are related) in Algorithm 1 line 1-5. The weight of the edge is set as the similarity

value. Then, we assign a direction for each tag pair from the high centrality node to the

low centrality node. As the graph is very likely not connected, we make the ROOT node

point to every other node, with edge weight equal to the pre-defined threshold to make the

graph weakly connected.

Now that we have the directed similarity graph, the goal is to find a tree such that our

ROOT node is the root of the tree. From a graph perspective, constructing such a location-

sensitive folksonomy is analogous to finding a spanning arborescence that satisfies some

criteria in the directed acyclic graph. In graph theory, an arborescence is a directed rooted

tree that has a root vertex and exactly one directed path from root to any other vertex; it is

the directed analog of the minimum spanning tree.

A straightforward criteria is to find a tree that maximizes the edge weights. In essence,

this follows a greedy strategy which was used previously by Heymann et al. [133]. They

proposed to iteratively add nodes in a decreasing centrality order to a tree which maximizes

similarity. From a graph point of view, we can apply Chu-Liu/Edmond’s algorithm [134]

over the similarity graph. The core procedure is finding the edge incoming to node t of
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highest weight (with ties broken arbitrarily) for each t other than the ROOT. Since the edge

order is pre-defined according to centrality, the graph is guaranteed to have no cycles and

we can simplify the algorithm to forgo this cycle check.

Generalized Cost Function Although different metrics are adopted for characterizing the

relation between a pair of tags, they share the similar greedy strategy of minimizing the

cost function

cost =
∑
e∈G

W (e)−
∑
t∈G

sim(t, tp)

where sim(t, tp) represents the similarity between a tag t and its parent. Here we in-

troduce a new minimum cost tree formation algorithm which builds upon the simplified

Chu-Liu/Edmond’s algorithm that generalizes the cost function. Concretely, the proposed

folksonomy generation algorithm can be formalized as Algorithm 1.

After constructing a directed weighted graph G, we next convert this graph to a tree

T with minimum cost, where the cost here characterizes the structural change to G. We

define the cost for deleting the edge as sim(ti, tj) · di,j , where di,j represent the shortest

path length from ti to tj in the graph which excludes the edge (ti, tj). After deleting an

edge, the two corresponding nodes are disconnected and we need to identify a new shortest

route that connect these two nodes. The intuition is we want to maintain the coherence of

the structure after deleting edges such that more similar tags tend to stay closer to each

other. To do so, in each iteration, we calculate the cost of deleting each remaining edge

in the graph G ′, and then find an edge with minimum cost which is not the last remaining

edge pointing to the corresponding child node (so the node is not isolated). The algorithm

stops when n− 1 edges are left, with each node having exactly one parent. Thus our goal

is to minimize the structure conservation cost function for converting G to a tree T :

cost =
∑

e∈G,e/∈T
sim(ti, tj) · di,j
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Algorithm 1: Mincost Tree Formation
Input: Tag vectors

1 Calculate similarity between each pair of node (ti, tj)
2 Initialize directed weighted graph G with ROOT node
3 Add an edge (ti, tj) when Sim(ti, tj) > threshold
4 Assign direction for edges following centrality order
5 Add an edge between ROOT and each node with weight = threshold
6 while n(edge)>n-1 do
7 for each edge (ti, tj) do
8 G’← remove edge (ti, tj) from graph G
9 Find shortest path from ti to tj in G’

10 Calculate cost of deleting edge(ti, tj)
11 end
12 i=0
13 while edge not removed do
14 edge=increasing_cost_sequence[i]
15 if the edge is not the last incoming edge to tj then remove edge from G and

break;
16 i+=1
17 end
18 end
19 return G
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.

However, this algorithm is computationally costly as whenever a new edge is deleted,

it is required to recompute the shortest path between each pair of nodes. This is an O(E2)

shortest path calculation. Hence, we provide an approximation for the calculation shown

in algorithm 2, where we only calculate the cost of deleting each edge in the original

graph. According to the cost from low to high, we iteratively delete the edges until there

is a unique parent for each node. Finally, the output is a location-sensitive folksonomy.

Algorithm 2: Approximation Algorithm
Input: Tag vectors

1 Constructing the Directed Weighed Graph G according to lines in Algorithm 1
2 for each edge (ti, tj) do
3 G’← remove edge (ti, tj) from graph G
4 Find shortest path from ti to tj in G’
5 Calculate cost of deleting edge(ti, tj)
6 end
7 while n(edge)>n-1 do
8 for each edge in increasing cost do
9 if the edge is not the last incoming edge to tj then Remove edge from G;

10 end
11 end
12 return G

4.3.5 Folksonomy-Informed Profiling

We turn in this section to apply the location-sensitive folksonomy for profile construc-

tion. We begin by finding candidate tags from this folksonomy, and then embedding these

candidates in a learning-to-rank framework for finding the best order of the tags. We con-

tinue to study how to acquire a set of candidate tags from location sensitive taxonomy.

Then we introduce a learning to rank based method that learns the optimal weight for
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features to rank the candidate tags for prediction.

Finding Candidate Tags. Given a user’s seen tag profile Ps(u), we first leverage the

location-sensitive folksonomy and select a set of candidate tags. To accomplish this, we

locate each seen tag in Ps(u) in the folksonomy and collect parent, children, and sibling

tags of this seen tag as candidate tags. The hierarchical structure acts as a good filter and

thus controls the number and quality of candidate tags. Then we order the candidate tags

according to different strategies for prediction. The formal definition for this problem is

given user u and a set of candidate tags Tc(u) = {t1, ..., tk}, we aim to find a scoring

function to rank tags in Tc(u) for u.

Ranking Candidate Tags. We propose to apply a learning to rank approach for ranking

the candidate tags for a user. The advantage is that it automatically chooses the optimum

weight for each feature, which leads to a high quality order. We apply a pairwise learning

algorithm RankSVM [135]. Here we consider each user as a query and we assign each

candidate tag an integer ranking score in the range of 3 to 1 according to the actual number

of tag in the user’s unseen profile. RankSVM first generates a set of pairwise constraints

and then transform the problem to a two-class classification problem according to those

constrains and an SVM model is learned. Finally, in the ranking phase, rank scores are

calculated according to the margin value. Note that we train the ranking model with the

training set and an L2 norm regularization term is added to prevent overfitting.

Here we introduce a set of features that we rely on to generate a preference order of the

candidate tags for prediction in Table 4.1. A total of 13 features are used for training the

model include features introduced above. Features can be grouped into three categories:

user specific features, tag features, and folksonomy structure features. User specific fea-

tures include fu(s), fu(t), Hsim, Sumsim, Hfsim, Sw1mv, S
w2
mv. These features are retrieved

from a user’s seen profile, which represents characteristics of the user. Tag features in-
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Features Descriptions
f(s) log scale overall frequency(freq) of the seed tag
f(t) log scale overall freq of the tag
fu(s) log scale unique user freq of the seed tag
fu(t) log scale unique user freq of the tag
Ssim similarity with seed tag
Hsim highest similarity with existing tags
Hfsim Hsim weighted by freq
Sumsim sum of similarity with all seen tags

Sw1mv
sum of similarity with existing seed
tags weighted by f(s)

Sw2mv
sum of similarity with existing seed
tags weighted by fu(s)

pcnt freq of the candidate tag being a parent
scnt freq of the candidate tag being a sibling
ccnt freq of the candidate tag being a child

Table 4.1: Features for ranking candidate tags from the location-sensitive folksonomy.

cludes f(s), f(t), and Ssim. These features only provide intrinsic properties of candidate

tags. And folksonomy structure features include pcnt, ccnt, scnt, which are uniquely de-

fined by the folksonomy to provide extra clues for making good predictions. The intuition

here is that predicting a parent tag is more likely to be correct than a sibling or child, as

parent tags are more general, having the largest overlap with the candidate. For exam-

ple, inferring football to parent sports is more likely to be correct than to sibling

volleyball and child football player.

4.4 Experiments

In this section, we conduct a set of experiments to evaluate the location-sensitive user

profile prediction. Specifically, we first introduce the data preparation workflow and basic

experimental setup. Then, we begin by comparing the learning to rank based tag ranking

with baselines, followed by a comparison of location-sensitive folksonomy with general

folksonomy. Finally, we study the effectiveness of folksonomy-informed approach by
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comparing with collaborative filtering and BPR-MF for implicit feedback baselines.

4.4.1 Setup

Data Preparation. We rely on a Twitter list dataset containing 15 million list relationships

in which the geo-coordinates of the labelers and users are known. In our experiments, the

tags we included in the folksonomy are extracted from each list name, and users in the list

will be endowed with the tags in their profile. These tags contain multifaceted opinions

of actual labelers, which means they can be complex and noisy. Hence, we apply text

processing techniques such as case folding, stopword removal, and noun singularization.

We also separate the string pattern like ‘FoodDrink’ into two words ‘food’ and ‘drink’.

We use language identification package [136] to filter out non-English tags. To guarantee

the informativeness and quality of the tags, we filter out infrequent tags with fewer than 5

labelers and 10 users. Twitter has a 25-character length limit for list names, and empiri-

cally we find nearly all list names do not exceed three words. Many single words may lose

the theme of the list – for example, machine learning will provide tags machine

and learning for the users in the list, which loses its original meaning. We thus include

bigrams that have a frequency above another threshold. Meanwhile, we remove unigrams

that always exist in such bigrams. Finally, we fixed the size of the tagset at 10,489.

Profile Prediction Setup. For each of nine selected locations, a random sample of local

users is held out. We construct a location-sensitive folksonomy given the location based on

the rest of whole dataset. Following that we predict the user profiles for users in the hold-

out data.For each user, the seen tag set Pk(u) is a random 25% of his profile P (u). Then

we try to predict tags in the rest 75% unseen tags.2 The result reported for every profiling

experiment in this chapter, including baselines, are based on four-fold cross validation and

averaged over the nine locations.

2We only consider users with overall more than 10 tags.
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Threshold for Subsumption. To decide the threshold for subsumption for different sim-

ilarity measures, we recruit two human judges to manually label 100 tag pairs within

different similarity range. They are asked to decide whether there is recognizable similar-

ity between two tags. We repeat the process for each of the similarity measure. We use

Cohen’s kappa to measure the inter-rater agreement, and a value of 0.64 is reached, thus

we conclude the judgments are consistent. Finally we pick a threshold that at least 50% of

the relations are related. For example, the final threshold for cosine is 0.3.

Baselines. We consider two approaches based on collaborative filtering and Bayesian

personalized ranking as baselines.

Collaborative Filtering-K nearest neighbor(CF-KNN). In CF-based prediction approach,

we first identify the top-k local users that share the most similar tags with the target user.

To maintain consistency with other approaches, we assume each user profile only contains

1/4 of the tags). Here, we apply cosine similarity to measure user similarity. Then, we

aggregate the tags of the 50 nearest neighboring users weighted by their similarity and

make predictions based on decreasing tag frequency in the collective neighbor profile.

Bayesian Personalized Ranking-Matrix Factorization(BPR-MF). We consider these tags

as implicit feedback and our goal is identifying an optimal preference ranking of tags for

each user. We thus experiment with two variations of state-of-the-art Bayesian person-

alized ranking criteria [79], where the goal is to choose parameters that maximize the

posterior probability. In the first setting, we train a unique model for each location by only

considering its local users, denoted as “LBPR-MF". We model a user i’s affinity to tag j

as rij = piqj + bj , where pi and qj represent latent factor of user and tag, respectively. bj

represents the overall preference of the tag j. In the second setting, we train with whole

dataset and explicitly model location-aware preferences, denoted as “LABPR-MF". We

define a user i’s affinity to tag j as as rij = piqj + gl(i)j + bj , where latent factor gl(i)j
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represents the regional popularity of tag j at the user i’s home location [5]. For repro-

ducibility, the number of negative samples is set as 200, number of iterations is set as 100,

number of latent factors of user and tag are set to 20, and the regularization weights are

set as 0.02.

Evaluation Metrics. The evaluation metrics we use are Precision@k (P@K) and Actual

Frequency@k (AF@k). P@k measures how reliable predictions can be made. A high P@k

value implies users have been labeled with the predicted tag, while high AF@k represents

that users have been labeled many times with the predicted tags. Both measurements

reported later are averaged over the test data. We consider the quality of prediction for the

1st tag as well as top-5 tags. AF@k is defined as:

AF@k =
∑

k
fu(tk)/k

where tk is the kth predicted tag.

When comparing across the similarity measures in folksonomy-informed approaches,

WE CONSIDER another metric, the average number of candidates selected from user pro-

file: this metric is an efficiency indicator. A larger value means the tag candidate set is

large, which requires more computation.

NumC =
∑

i
(p(oi) + c(oi) + s(oi))/n

where oi represent the ith observed tag in the user’s profile. p, c, s represent the number

of parent, children and sibling of the observed tag.

We now turn to the task of user profile construction based on location-sensitive folk-

sonomies. We first compare the performance based on different ranking strategies, fol-

lowed by profiling performance across different folksonomy generation approaches and

57



Methods P@1 P@5 AF@1 AF@5
Highest similarity 0.333† 0.285† 4.82† 4.24†
Frequency & similarity 0.507† 0.360† 14.6† 6.87†
Overall popularity 0.607† 0.501† 25.9 15.1†
Sumsimilarity 0.651† 0.552† 25.3† 18.5
Learning to rank 0.763 0.677 26.5 19.2

Table 4.2: Comparing Tag Ranking Approaches. We observe that the LTR based approach
results in the best precision, and also identifies the tags used most often (AF). ’†’ marks
statistical significant difference with LTR according to paired t-test at significance level
0.05.

local and general versions. Finally, we compare location-sensitive folksonomy informed

profiling with the other baselines.

4.4.2 Comparing Ranking Strategies

Given the candidate tags identified from the folksonomy, our goal is to generate a

personalized ranking over these tags so that the actual tags rank top. Here we compare

the learning-to-rank (LTR) based approach with several baselines in Table 4.2, 1.ranking

the candidate tags according to the decreasing order of similarity with the seen tag which

subsumes the candidate tag. 2.ranking with a hierarchical criteria, primarily according

to the frequency of corresponding seen tag associated with the user and secondarily by

decreasing order of similarity with the corresponding seen tag. 3.ranking by overall tag

popularity. 4.ranking according to the aggregated similarity with the seen tag set.

We observe the LTR based approach outperforms all baselines in terms of precision,

indicating high rank tags are more likely to be actual tags. Moreover, we find a similar

trend in terms of AF@5, which represents the actual number of predicted tags that a user

possesses. All these results imply the effectiveness of proposed features and feature weight

scheme. Among the baselines, we find the “overall popularity" and “Sumsimilarity" are

relatively strong predictors.
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4.4.3 Location Sensitive vs General Folksonomy

Methods LS Folksonomy LS Folksonomy
P@1 P@5 AF@1 AF@5 NumC

MaxSim-MC 0.754 0.663 26.0 19.2 71.4
StrCon-MC 0.763 0.677 26.5 19.2 70.9

MaxSim-COS 0.751 0.6561 25.3 16.4 12.1
StrCon-COS 0.756 0.663 26.4 18.1 11.7
MaxSim-PMI 0.389 0.349 2.33 1.24 5.28
StrCon-PMI 0.402 0.362 2.42 1.21 5.11

MaxSim-RBF 0.566 0.413 15.8 9.94 7.87
StrCon-RBF 0.581 0.430 14.3 10.1 8.20

Methods General Folksonomy General Folksonomy
P@1 P@5 AF@1 AF@5 NumC

MaxSim-MC 0.653 0.571 23.3 15.2 162
StrCon-MC 0.656 0.571 23.2 15.4 166

MaxSim-COS 0.662 0.521 19.1 11.9 10.0
StrCon-COS 0.662 0.531 19.2 12.8 9.57
MaxSim-PMI 0.352 0.320 1.85 1.53 13.2
StrCon-PMI 0.363 0.332 2.01 1.62 13.5

MaxSim-RBF 0.471 0.422 12.1 8.22 10.5
StrCon-RBF 0.465 0.410 14.0 12.0 12.3

Table 4.3: Comparing Location-Sensitive Folksonomy and General Folksonomy in Profile
Tag Prediction. All location-sensitive versions are statistical significantly different with
general version according to paired t-test at significance level 0.05.

In Table 4.3, we compare the location-sensitive folksonomy versus the general folk-

sonomy over all design choices for the application of profile construction. For each design

choice, we generate a location-sensitive version for each of the 9 locations mentioned in

Table 4.4, where the shown result for location-sensitive folksonomy is averaged across

locations, as well as general folksonomy-informed version which is constructed using the

whole dataset excluding distance and location factors. We observe that overall, location-

sensitive versions always beat its general counterpart in terms of precision@k and AF@k,
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regardless of design choice. The priority in terms of P@5 is around 0.1 and AF@5 is

above by 20%. This result justifies the location-sensitive folksonomy since it better cap-

tures the local knowledge structures. It also demonstrates the effectiveness of how we

model distance influence. We also find that the performance is consistent across locations.

We next compare the four similarity metrics used for constructing the tag similarity

graph at the heart of location-sensitive folksonomy construction. Design choices with

modified confidence (MC) perform best in terms of P@k, and AF@k, with the folksonomy

built on top of cosine similarity slightly lower. RBF kernel ranks the third and PMI last.

We also notice that for the average candidate tag considered, the MC is much higher than

other approaches. The reason is that the folksonomy generated with MC is shallower

compared with the folksonomy generated using cosine and RBF kernel, meanwhile the

number of sibling and children node for each tag are more. These factors lead to more

candidate tags for ranking which explains why the performance is higher in terms of P@k

and AF@k. The lesson here is a trade-off between efficiency and performance. Next we

discuss the extremely low performance for PMI, which indicates it may not be suitable

for this scenario. After inspecting the folksonomy, we observe many of the hierarchical

relations are incorrect or meaningless. PMI only considers co-occurrence of tags without

taking the relative frequency difference into account. In our experiment design, as we

don’t set a minimum tag occurrence for each user to avoid sparsity, thus many tags only

show up once on a user, which meanwhile, creates noise for an approach like PMI.

Last but not least, we evaluate the proposed structure conservation cost function (Str-

Con) and compare with its maximum similarity cost function (MaxSim) baseline. The

structure conservation cost function aims to construct a folksonomy that makes the small-

est change to the similarity graph. We observe in Table 4.3 that applying StrCon leads to

an incremental change in profile construction. For example, in the cosine case, we notice

the P@5 and AF@5 are slightly better for StrCon. We notice about 9.5% of the relations
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Methods P@1 P@5 AF@1 AF@5 TFIDF@5
CF-KNN 0.656† 0.542† 25.6 18.0† 36.1†
LBPR-MF 0.731† 0.650† 22.6† 12.3† 30.2†
LABPR-MF 0.771 0.673 24.1† 16.2† 34.6†
LS Folk. 0.763 0.677 26.5 19.2 42.6

Table 4.4: Comparing Tag Prediction Approaches. The BPR-MF improves upon the more
naive CF-KNN approach. Location-sensitive folksonomy informed approach achieves
comparable precision with LABPR-MF.’†’ marks statistical significant difference with
location-sensitive folksonomy according to paired t-test at significance level 0.05.

are different among folksonomy generated using the two cost functions, meaning that the

StrCon approach made some structure adjustments with some sacrifice in connecting most

similar first strategy. Considering the limited difference in the two folksonomies, this

increase in performance can be attributed to a better macro-structure.

4.4.4 Evaluate User Profiling

Finally, we compare location-sensitive folksonomy-informed user profiling with the

CF-KNN and BPR-MF baselines. As we observe in Table 4.4, the proposed approach

outperforms the CF-KNN and locally trained BPR-MF in both P@k and AF@k and ex-

hibits similar performance compared with the location-aware BPR-MF approach. All three

baselines yield better results than many aforementioned folksonomy-informed approaches

with simple ranking strategy. For example LBPR-MF reaches 0.65 for P@5, higher than

all other alternatives of folksonomy-informed method. Even though BPR-MF does not

consider frequency which is also important, the latent factors effectively capture user pref-

erences over tags and location-based preference for tags. However, BPR-MF is computa-

tionally costly as the dimension of user and tag increase. The CF-KNN approach is not

robust in sparse condition, for example, when there are few similar users, the prediction

made by CF-KNN could be very inaccurate.
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We leverage average TFIDF score for top five predicted tags as a metric to reflect how

important and informative the predicted tag is to a user in the actual tag collection. The

score is averaged for users and locations. We notice the proposed LS-Folk yield the highest

TFIDF@5, showing the capability of identifying uniquely important tag for the user.

We notice that CF-KNN and BPR-MF based approach have a strong tendency to pre-

dict general high frequency tags. For CF-KNN, highly general tags are very likely to rank

top in the sequence. For BPR-MF, the implicit feedback formulation neglects the differ-

ence in importance of the seen tags and has a tendency to predict tags that are seen on many

users. These tags are often on a high abstraction level and thus provide only vague insight

to a user. For example, if the predicted tag is peep which is short for “people”, there is

little new information contributed to the target user. In order to precisely profile a user, we

expect to have concrete and specific tags, additionally, we wish to have a diverse tag space.

In contrast, we observe that the location-sensitive folksonomy based approach performs

much better in predicting diverse specific tags. For example, we find tech-news instead

of only news in other methods.

4.5 Summary

In this chapter, we introduced a framework based location-sensitive folksonomy and

tag ranking towards the goal of improved user profiling. Our key motivating intuition

is that spatial variation of user tagging manifests in how users organize and apply tags,

and is critical for building more robust folksonomies. Concretely, we have formulated

the folksonomy generation problem as identifying a certain spanning arborescence from

a directed acyclic graph. We have integrated location information through a weighting

scheme that decrease the user’s influence according to distance. We have presented a new

cost function generalized over the Chu-Liu/Edmond’s algorithm for finding a folksonomy

that maximumly preserves the structure of the graph. Through extensive experiments, we
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have demonstrated the impact of such a location-sensitive folksonomy on finding relevant

tags for user profiling. We have seen that the location-sensitive folksonomy-informed user

profiling is more effective in finding relevant tags, and learning to rank strategy is helpful

for optimizing weights of each feature and leads to high quality user profile tags. In our

future work, we plan to investigate how the location-sensitive folksonomy can enhance

other local search applications.
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5. RANKING: LOCAL EXPERT DISCOVERY1

In chapter 3 and chapter 4, we focused on the location and user profiling problems and

we investigated how we can improve the characterization of locations and users within a

geo-social system. In this chapter, we investigate how we can jointly model both locations

and users towards tackling the problem of local expert discovery.

5.1 Introduction

Identifying experts is a critical component for many important tasks, including search

and recommendation systems, question-answer platforms, social media ranking, and enter-

prise knowledge discovery. Indeed, there has been a sustained research effort to develop al-

gorithms and frameworks to uncover experts, e.g., [62, 65, 66, 69, 70, 137, 138, 139, 140].

These efforts have typically sought to identify general topic experts – like the best Java

programmer on github – often by mining information sharing platforms like blogs, email

networks, or social media. However, there is a research gap in our understanding of local

experts. Local experts, in contrast to general topic experts, have specialized knowledge fo-

cused around a particular location. To illustrate, consider the following two local experts:

• A “health and nutrition” local expert in San Francisco is someone who may be

knowledgeable about San Francisco-based pharmacies, local health providers, local

health insurance options, and markets offering specialized nutritional supplements

or restricted diet options (e.g., for gluten allergies or strictly vegan diets).

1Part of this chapter is reprinted with permission from "On Local Expert Discovery via Geo-Located
Crowds, Queries, and Candidates" by Wei Niu, Zhijiao Liu and James Caverlee. 2016. ACM Trans-
action on Spatial Algorithms and Systems. 2, 4, Article 14 (November 2016), 24 pages. DOI:
https://10.1145/2994599. Copyright 2016 by Association for Computing Machinery (ACM). Part of this
chapter is reprinted with permission from "LExL: A Learning Approach for Local Expert Discovery on
Twitter." Ferro N. et al.(eds) Advances in Information Retrieval. ECIR 2016. Copyright 2016 by Springer
International Publishing Switzerland.
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• A “techie” local expert in Seattle is someone who is knowledgeable about the lo-

cal tech scene, and may be able to answer local information needs like: who are

knowledgeable local entrepreneurs, what are the tech-oriented neighborhood hang-

outs, and who are the top local talent (e.g., do you know any experienced, available

web developers?).

Identifying local experts can improve location-based search and recommendation, and

create the foundation for new crowd-powered systems that connect people to knowledge-

able locals. Furthermore, after these local experts have been detected, their knowledge can

provide the foundation for many new location-centric information applications. Examples

include: (i) local query answering, whereby complex information needs that cannot be sat-

isfied by traditional search engines could be routed to knowledgeable locals; (ii) curated

social streams, whereby Facebook and Twitter-like social streams can be re-organized to

focus on locally significant events and topics (for example, to ameliorate panic during dis-

ease outbreaks by alerting residents of facts from local health experts, rather than on global

reports – in the recent panic surrounding ebola, Dallas residents could be made aware of

local precautions rather than focusing on nation-wide news summaries); (iii) location-

based recommendations, whereby entities of interest to local experts can be recommended

to newcomers (for example, to recommend good venues for meeting local entreprenuers);

and on and on. A critical first step in all these cases is in the identification of local experts.

Compared to general topic expert finding, there has been little research in uncovering

who are these local experts. Most existing expert finding approaches have typically fo-

cused on either small-scale, difficult-to-scale curation of experts (e.g., a magazine’s list of

the “Top 100 Lawyers in Houston”) or on automated methods that can mine large-scale

information sharing platforms, e.g., [62, 65, 66, 69, 70, 137, 138, 139, 140]. These ap-

proaches, however, have typically focused on finding general topic experts, rather than
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local experts. And yet there is growing evidence of the importance of location-centered

services: according to a recent Pew Research study: “Location tagging on social media is

up: 30% of social media users now tag their posts with their location. For mobile location

services, 74% of smartphone owners get directions or other information based on their

current location, and 12% use a geo-social service such as Foursquare to “check in” to

locations or share their whereabouts with friends.” [141].

Hence, our focus in this chapter is in developing robust models of local expertise that

opportunistically leverage this recent rise of location as a central organizing theme of how

users engage with online information services and with each other. Concretely, we propose

and evaluate a geo-spatial learning-to-rank framework called LExL for identifying local

experts that leverages the fine-grained GPS coordinates of millions of Twitter users and

their relationships in Twitter lists, a form of crowd-sourced knowledge. The framework

investigates multiple classes of features that impact local expertise including: (i) user-

based features (e.g., the number of users a candidate is following, the number of posts this

candidate has made); (ii) tweet content features (e.g., tweet-based entropy of a candidate,

the TFIDF score of a topic keyword in a candidate’s tweets); (iii) list-based features (e.g.,

the number of lists the candidate is a member of, the number of lists the candidate has

created); (iv) local authority features (e.g., the distance between candidate and the query

location, the average distance from a candidate’s labelers to the candidate); and (v) fea-

tures based on a location-sensitive random walk that propagates crowd knowledge of a

candidate’s expertise.

Through a controlled study over Amazon Mechanical Turk, we find that the proposed

local expert learning approach results in a large and significant improvement in Preci-

sion@10, NDCG@10, and in the average quality of local experts discovered versus two

state-of-the-art alternatives. We additionally investigate the relative impact of different

classes of features, and examine the generalizability of the approach in terms of reusing
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the learned model in different topics. Our findings indicate that careful consideration of

the relationships between the location of the query, the location of the crowd, and the loca-

tions of expert candidates can lead to powerful indicators of local expertise. We also find

that high-quality local expert models can be built with fairly compact features, meaning

these models can be potentially adapted to more constrained scenarios (e.g., in domains

with only partial features). Finally, we find that the proposed local expertise models are

generalizable: in many scenarios, local experts can be discovered on new topics and in

new locations, which is important for uncovering previously unknown experts in emerg-

ing areas or in nascent communities.

5.2 Learning Approach to Local Expert Finding

In this section, we introduce the learning approach framework for finding local experts

– LExL: Local Expert Learning. Given a query, composed of a topic and a location, the

goal of LExL is to identify high-quality local experts.

5.2.1 Problem Statement

We assume there is a pool of local expert candidates V = {v1, v2, ..., vn}, each candi-

date is described by a matrix of topic-location expertise scores (e.g., column i is College

Station, while row j is “web development”), and that each matrix element indicates to

what extent the candidate is an expert on the corresponding topic in the corresponding

location. Given a query q that includes both a topic t and a location l, our goal is to find

the set of k candidates with the highest local expertise in query topic t and location l. For

example, find the top experts on tq = “web development” in lq = College Station, TX. Note

that the query location l can be represented at multiple granularities – e.g., a city name, a

latitude-longitude coordinate. This location indicates the region of interest for the query

issuer, and so is not constrained to the home location or current position of this query

issuer; for example, a user in San Francisco may issue a local expert query for Houston
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before visiting on a business trip.

5.2.2 Overview of Approach

To tackle the local expert finding problem, we propose a geo-spatial approach that

integrates geo-crowd knowledge about each candidate with a learning-to-rank framework.

Concretely, we exploit the crowd wisdom embedded in millions of geo-located Twitter

lists, coupled with a learning framework to isolate the critical features that are correlated

with local expertise.

Geo-Located Twitter Lists. A Twitter list allows an individual on Twitter to organize

who she follows into logical lists. For example, Figure 5.1 shows one list named “Food!”

which contains 14 Twitter accounts including Alton Brown, Mind of a Chef, and Amer-

ica’s Test Kitchen. Collectively, Twitter lists are a form of crowd-sourced knowledge,

whereby aggregating the individual lists constructed by distinct users can reveal the crowd

perspective on how a Twitter user is perceived [70]. In this chapter, we exploit the geo-

social information of 13 million lists – provided to us by the authors of [6] – in which

we have the fine-grained location information of both the list creator (or labeler) and the

member of the list (or labelee). In total, there are 86 million user occurrences on these

lists, of which we have 15 million geo-tagged list relationships. So, we know for exam-

ple that Alice from Houston has labeled Bob from College Station with the label Foodie.

Thus, the aggregate list information may reveal not just the general crowd perspective on

each user, but the local crowd’s perspective. High-level statistics of the dataset are listed in

Table 5.1. Further details of the dataset collection method can be found in [6]. In addition

to this list information, we also crawl the content associated with these users for the period

of May 2015 to September 2015.
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Figure 5.1: Twitter List Example

Data Type Total # of Records
Lists 12,882,292
User List Occurrences 85,988,377
Geo-Tagged List Relationships 14,763,767

Table 5.1: Geo-tagged Twitter list data

5.2.3 Learning Approach

A previous approach by [6] focused on the local expert ranking problem using a linear

combination of topical authority and local authority. In that work, topical authority was

designed to capture the candidate’s expertise on a topic area, e.g., how much does this

candidate know about web development? They adopted a language modeling approach

[62] adapted to Twitter lists, where each candidate was described by a language model

based on the Twitter list labels that the crowd has applied to them.

Local authority was designed to capture a candidate’s authority with respect to a loca-

tion, e.g., how well does the local community recognize this candidate’s expertise? Several

approaches were suggested, including one which measured the average distance spread of

list labelers to a candidate, with respect to a query location – so that candidates who were

listed by many people in an area of interest (e.g,. Joe has been labeled by 100 people from
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College Station) would be considered locally authoritative (e.g., Joe is well-recognized in

College Station). These two aspects of local expertise – topical authority and local author-

ity – were combined in a linear fashion to arrive at an overall score for each candidate.

More generally and in the presence of ground truth training data (see the evaluation

setting in Section 5.4.2), we propose to transform the local expert ranking problem from

an unsupervised linear combination of local authority and topical authority into a super-

vised learning-to-rank framework that can combine any number of local expertise features,

using a tool such as LambdaMART [142, 143]. While we experiment with four different

learning to rank algorithms in the experiments, we focus our discussion here on Lamb-

daMART, as a representative learning-to-rank framework (which we find experimentally

has the best performance). LambdaMART is an instance of Multiple Additive Regression

Tree (MART), which is based on the idea of boosting. It trains an ensemble of weak re-

gression tree models and then linearly combines the prediction of each one of them into

a final model which is stronger and more accurate. In ranking tasks, the measures that

are typically optimized include NDCG, MAP, or MRR. Unfortunately, gradient boosting

is not suitable if we directly consider these metrics as loss functions since they are not

differentiable at all points. Hence, LambdaMART tunes the parameters of the regression

trees using a variable λ, indicating whether the documents should be moved up or down in

the rank list, as the gradient of parameters based on the evaluation metric used, such that

the evaluation metric is optimized directly while learning. In our experiments, we adopt

NDCG as the evaluation metric.

5.3 Features for Local Expertise

In this section, we describe five classes of features that potentially contribute to local

topic expertise of a user: user-based features, tweet content features, list-based features,

local authority features and distance-biased random walk features. The user-based, list-
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User-based Features
1 Nfollower The number of followers this candidate has.
2 Nfriend The number of users this candidate is following.
3 Nfav The number of tweets this candidate has favorited in the account’s lifetime.
4 Nstatus The number of tweets (including retweets) posted by the candidate.
5 Tcreate The UTC datetime that the user account was created on Twitter.

Tweet Content Features
6 twPc Avg. number of tweets that a candidate c posted in one week.
7 twH Avg. tweet Entropy of a candidate c.
8-15 twBt Topic bayesian scores of a candidate c in 8 topics, t.
16-19 twBl Location bayesian scores of a candidate c in 4 topics, l.

List-based Features
20 Nlisted The number of lists that this candidate appears on.
21 Tlisted The number of on-topic lists that this candidate appears on.
22 Nlist The number of lists this candidate has created.
23 Tlist The number of on-topic lists this candidate has created.
24 list_scorec The average quality of the lists that the candidate is a member of.

Local Authority Features
25 dc Avg. distance from candidate c to all the users who appear on c’s lists.
26 dct Avg. distance from candidate c to all the users who appear on c’s on-topic lists.
27 du Avg. distance from candidate c to all the labelers of c.
28 dut Avg. distance from candidate c to all the labelers whose on-topic list has c.
39 duq Avg. distance from query location to labelers whose on-topic list has c.
30 dcq Distance between candidate c and the query location lq.
31 Proxc Candidate Proximity, as defined in Section 5.3.4.
32 Proxspread Spread-based Proximity, as defined in Section 5.3.4.

Distance-Biased Random Walk Features
33 ha0 An(c) = p ·

∑
ui
Hn−1(ui) · 1

O(ui) +
1−p
N

Hn(u) = p ·
∑

ci
An−1(ci) · 1

I(ci) +
1−p
N

34 ha1 An(c) = p ·
∑

ui
Hn−1(ui) · P1(ui, c) +

1−p
N

Hn(u) = p ·
∑

ci
A(ci) · 1

I(ci) +
1−p
N

35 ha2 An(c) = p ·
∑

ui
Hn−1(ui) · 1

O(ui) +
1−p
N

Hn(u) = p ·
∑

ci
An−1(ci) · P ′1(u, ci) +

1−p
N

36 ha3 An(c) = p ·
∑

ui
Hn−1(ui) · P2(ui, c, lq) +

1−p
N

Hn(u) = p ·
∑

ci
An−1(ci) · 1

I(ci) +
1−p
N

37 ha4 An(c) = p ·
∑

ui
Hn−1(ui) · 1

O(ui) +
1−p
N

Hn(u) = p ·
∑

ci
An−1(ci) · P3(u, ci, lq) +

1−p
N

38 ha5 An(c) = p ·
∑

ui
Hn−1(ui) · P2(ui, c, lq) +

1−p
N

Hn(u) = p ·
∑

ci
An−1(ci) · P3(u, ci, lq)

1−p
N

39 ha6 An(c) = p ·
∑

ui
Hn−1(ui) · P4(ui, c, lq) +

1−p
N

Hn(u) = p ·
∑

ci
An−1(ci) · P ′4(u, ci, lq) +

1−p
N

Table 5.2: List of features used for ranking local expert candidates
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based, and local authority features capture key characteristics of users and locations of

interest, toward assessing local topic expertise of our candidates. Compared to previous

work that has only used direct keyword match to find relevant users (e.g., a query for

“sports” matches a user who has been labeled with “sports”), we propose to integrate

richer topical information from content that users have actually posted (the tweet content

features). The last class of features – distance-biased random walk – is especially im-

portant as they naturally integrate expertise propagation into a framework that models the

query location, candidate location, and the location of list labelers. Compared to previous

works, these distance-biased random walk features model candidates through two perspec-

tives – both as labelers and as labelees – and directly embed distance into the transition

probabilities to more robustly model location preferences of users and candidates. In this

work, we focus on 39 features, summarized in Table 5.2.

5.3.1 User-Based Features

The first group of features captures user-oriented aspects that are independent of the

query topic and query location. These features are simple measures of the popularity, ac-

tivity, and longevity of each candidate, and can be seen as crude first steps toward capturing

how knowledgeable each user is:

• User Network (Nfollower, Nfriend): The first two features measure the number of fol-

lowers that a candidate has, as well as the number of friends that this candidate has,

where friends represent users that is both following and followed by the candidate.

• User Activity (Nfav, Nstatus): These two features are crude measures of a user’s

activity-level on Twitter, where Nfav capturing the number of favorite tweets the

user marked and Nstatus is the number of tweets posted by the user.

• Longevity (Tcreate): The final user feature is simply the UTC datetime that an account
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was created. In this way, the longevity (or freshness) of the user can be integrated

into the ranking model.

5.3.2 Tweet Content Features

Naturally, a more significant contributor to a candidate’s perceived expertise is the

content that user actually contributes to the community. Hence, we next consider a group

of features that seek to summarize a candidate’s content. Note that since tweets are in-

herently limited in size, we aggregate a candidate’s posts over each week into a larger

pseudo-document.

• Posting Frequency (twPc): The average number of tweets that the candidate c posted

in one week.

• Tweet Entropy (twH): The average entropy of a candidate’s tweets in each week.

This feature shows how informative the candidate’s tweets are.

twH = −
ndocument∑

j=1

nterm∑
i=1

p(tij) · logp(tij)

where p(tij) is the probability of a term ti shows up in documentj .

• Topic Bayesian Scores (twBt): The posterior probability P (topicj|c), which repre-

sents the probability of topicj given candidate c. Here we apply naive bayes method

to get the posterior probability. We assume equal prior for topics. The observation

P (ti|topicj), probability that term ti appears in topicj , is learnt from a corpus of

topic relevant pages crawled from Wikipedia.

• Location Bayesian Scores (twBl): Similar to Topic Bayesian Scores. The observa-

tion P (ti|lj), probability that term ti appears in location lj , is trained from Wikipedia

pages relevant to the location lj .
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5.3.3 List-Based Features

The third group of features extract expertise evidence directly from the Twitter list

evidence, but ignoring the geo-spatial features of the lists (those aspects are part of the

following two groups of features). Twitter lists have been recognized as a strong feature

of expertise in previous work [70]. In particular, lists can shed light on a candidate from

two perspectives:

• Appearing on Lists (Nlisted, Tlisted): On one hand, lists that a candidate appears on

will reflect how that candidate is perceived by others. The aggregated information

from all lists indicates how well the candidate is recognized.

• Maintaining Lists (Nlist, Tlist): On the other hand, lists the candidate creates (if

any), reflect the candidate’s personal interest, which may reflect his expertise. For

example, a candidate with a list about food may himself be a foodie.

For these features, we consider all lists as well as a more focused group of on-topic

lists (e.g., if the query is for “entrepreneurs”, we only consider entrepreneur-related lists;

these lists are selected by keywords matching). Moreover, we define a new feature to

characterize the quality of a candidate’s on-topic lists. This new feature – list_scorec – is

defined as:

list_scorec =
∑Non_topic(c)

i=1 Qlist(i)

Non_topic(c)
, where Qlist =

1

k

k∑
j=1

Non_topic(j)

Qlist(i) is the quality of i’s list andNon_topic(c) is the number of on-topic lists the candidate

is in. Here, Qlist represents the average number of times each user in the list has been

labeled with the topic of interest and k is the number of users in the list.
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5.3.4 Local Authority Features

The fourth set of features focus on the local authority of a candidate, as revealed

through the geo-located Twitter lists. The main idea is to capture the “localness” of these

lists. Intuitively, a candidate who is well-recognized near a query location is considered

more locally authoritative. We measure the local authority of a candidate in multiple ways:

• Candidate-List Distance (dc, dct): The first two features measure the average dis-

tance from candidate c to all the users who appear on c’s lists. The main idea here is

that a candidate is considered a local expert if she is closer to the people on the lists

she maintains. We consider one version that captures all of the lists (dc) and one that

only considers on-topic lists (dct).

• Candidate-Labeler Distance (du, dut): The next two features measure the average

distance from a candidate c to all of the labelers of c, capturing the localness of the

people who have listed the candidate. Again, we consider one version with all lists

(du) and one with on-topic lists (dut).

• Candidate-Query Distance (duq, dcq): These two features measure distance from the

query location. The first (duq) is the average distance from a candidate’s labelers

to the query location; labelers who are closer to the query location are considered

more authoritative. The second (dcq) is the distance from a candidate to the query

location; candidates closer to the query location (regardless of whether they have

been labeled by locals) are considered more authoritative.

In all cases, we measure distance using the Haversine distance, which gives the great-

circle distance around the earth’s surface. Apart from these six basic distance features, we

also adopt two features used in a previous study of local experts [6]: Candidate Proximity

Proxc and Spread-Based Proximity Proxspread.
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Proxc(c, lq) =

(
dmin

d(c, lq) + dmin

)α
where d(c, lq) denotes the Haversine distance between the candidate c’s location and the

query location lq, and we set dmin = 100 miles. In this case α = 1.01, indicates how fast

the local authority of candidate c for query location lq diminishes as the candidate moves

farther away from the query location.

The Spread-Based Proximity captures the average “spread” of a candidate’s labelers

with respect to a query location:

Proxspread(Uc, lq) =
∑
u∈Uc

Proxc(u, lq)/ | Uc |

where u denotes one of the labelers Uc of candidate c. The “spread” measure considers

how far an “audience” u is from the query location lq on average. If the “core audience”

is close to a query location on average, the candidate gets a high score of Proxspread.

5.3.5 Distance-Biased Random Walk Features

While the previous local authority features consider relationships between a labeler

and a candidate, they only consider direct evidence. That is, only the one-hop distance

is ever considered. We introduce in this section a set of features that incorporate addi-

tional network context beyond these one-hop relationships. Concretely, we explore fea-

tures based on a random walk model that directly incorporates the location of interest (the

query location), the location of a candidate expert, and the location of external evidence

of a candidate’s expertise (e.g., in the case of the Twitter lists, the location of the list la-

beler). The main intuition is to bias a random walker according to the distances between

these different components (the query location, the labeler, the candidate) for propagating

local expertise scores. In this way, each candidate can be enriched by the network formed
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(a) Candidates, labelers, and query location:
random walk

(b) Candidate-Labeler Bias

(c) Candidate-Query Location Bias (d) Labeler-Query Location Bias

Figure 5.2: Three Distance Biases Defined over Random Walk in Twitter List Network

around them via Twitter lists.

5.3.5.1 Baseline Random Walk over Twitter Lists

We begin by modeling a graph based on Twitter lists, which contains the set of users

and labeler-candidate relations on topic t, as a directed graph G = (V,Et). The nodes

V = {v1, v2, ..., vn} correspond to users. A directed edge e = (v1, v2)t, where e ∈ Et,

indicates the presence of a labeler-candidate relation (which we will use listing for short)

from user v1 to user v2 on topic t ∈ T . Here Et = {e1, e2, ..., em} represents the set of

listings on topic t and T = {t1, t2, ..., tp} is the set of topics. Further, each user vi has an

associated location l(vi).

Over this graph, we can define a transition probability for a random walker to move

from one user to the next, either by following forward links or by following backward
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links. As a baseline, consider a simple random walker model akin to Kleinberg’s Hubs

and Authorities [144]. In Figure 5.2a, suppose the walker starts from a user v1, selects a

particular topic t, and then randomly selects a member v2 in the list to follow the outgoing

link (or we say forward link). The random walker further checks the topic t lists of which

v2 is member and reversely follows an incoming link (or we say backward link) to user

v3 who has labeled v2 in a topic t list. The random walker alternatively follows a forward

link and a backward link in a strict manner and continues this process forever. We further

incorporate additional randomness: at each step the walker can either follow the links or

jump to a random user vm ∈ U . In summary, we can assign each candidate a local expertise

authority score An(c) (reflecting local expertise) and each labeler a local expertise hub

score Hn(u) (reflecting how well this labeler is a conduit to other local experts):

An(c) = p ·
∑

ui
Hn−1(ui) ·

1

O(ui)
+

1− p
N

and

Hn(u) = p ·
∑

ci
An−1(ci) ·

1

I(ci)
+

1− p
N

where p is the probability of following a link and 1 − p is the probability of teleporting.

O(u) is the outdegree of a labeler and I(c) is the indegree of a candidate.

5.3.5.2 Integrating Local Bias

The above random walk is defined for capturing overall authoritative (and hub-like)

candidates, without regard for localness. Hence, we propose three approaches for directly

integrating distance bias:

Candidate-Labeler Bias: The first approach is to increase the likelihood of following a

link to closer candidates (or conversely, to decrease the likelihood of following links to
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distant candidates). The intuition here is that a labeler may tend to have stronger knowl-

edge of candidates who are closer, reflecting their local connection. For example, in Fig-

ure 5.2b, the probability of transitioning from a labeler to a candidate is higher for closer

nodes (represented here by a thicker arrow). The transition probability is lower for more

distant nodes (represented by a thinner arrow). Formally, we define these probabilities in

the following way: Let d(u, c) be the Haversine distance between labeler and candidate,

D1 is a non-linear mapping in the form of Candidate Proximity discussed in Section 5.3.4,

which maps d(u, c) to a real value in [0,1]. Other mappings are possible, but we find good

results using this approach. The probability of following a forward link from u to c is

defined as:

P1(u, c) =
D1(d(u, c))∑

cj :u→cj D1(d(u, cj))

The probability of following a backward link from c to u is defined as:

P ′1(u, c) =
D1(d(u, c))∑

uj :c→uj D1(d(uj, c))

Candidate-Query Location Bias: The second approach is to increase the likelihood of

following a forward link to a candidate who is closer to query location (and conversely,

to decrease the likelihood of following links to candidates who are distant to the query

location). The intuition is that a candidate who is closer to query location is more likely

to be knowledgeable about the topic at the query location. For example, in Figure 5.2c,

we see that the probability of transitioning to the candidate close to the query location

is larger (represented by the thicker arrow), versus the probability of transitioning to the

other candidate (represented by the thinner arrow). Formally, let d(c, lq) be the Haversine

distance between the location of candidate and query location, D2 maps d(c, lq) to a real

value to a real value in [0,1], where D2 is a mapping similar to D1. The probability of
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following a forward link from u to c is defined as:

P2(u, c, lq) =
D2(d(c, lq))∑

cj :u→cj D2(d(cj, lq))

Labeler-Query Location Bias: The third approach is to increase the likelihood of fol-

lowing a backward link to a labeler who is closer to the query location (and conversely,

to decrease the likelihood of following a backward link to a labeler who is distant to the

query location). The intuition is that a labeler who is closer to query location is more likely

to label high quality local expert candidates at the query location. For example, we can see

in Figure 5.2d that the labeler who is closer to the query location has a higher probability

associated with that edge (as represented by the thick arrow). Otherwise, the probability

is small (as represented by the thin arrow). Formally, let d(u, lq) be the Haversine distance

between labeler and query location, D3 maps d(u, lq) to a real value in [0,1], where D3

is a mapping similar to D1. The probability of following a backward link from c to u is

defined as:

P3(u, c, lq) =
D3(d(u, lq))∑

uj :c→uj D3(d(uj, lq))

Combining Bias Factors: Finally, we can combine the different bias factors in various

ways. For illustration, assume we want to combine all three bias factors: {d(c, lq), d(u, lq),

d(u, c)}. We can define the probability to follow a forward link as:

P4(u, c, lq) =
D1(d(u, c)) ·D2(d(c, lq))∑

cj :u→cj D1(d(u, cj)) ·D2(d(cj, lq))

and in the same fashion, we can get the probability P ′4, which characterizes the probability

of following a backward link.

Finally, we can embed these different distance-bias factors into the local expertise au-

thority score An(c) described above to generate a series of new features. Specifically, we

80



generate seven new features based on the distance-biased random walk (as shown in Ta-

ble 5.2). ha0 uses the original setting with no distance influence. ha1 and ha2 takes the

distance between labeler and candidate into account (P1(u, c) and P ′1(u, c)). ha3 consid-

ers the distance between the location of a candidate and the query location (P2(u, c, lq)).

ha4 considers the distance between the labeler and the query location (P3(u, c, lq)). ha5

considers how distant a candidate (P2(u, c, lq)) and the labelers (P3(u, c, lq)) are from the

query location. Finally, h6 considers the distance between each pair of the three entities

(P4(u, c, lq)).

5.4 Evaluation

In this section, we present the experimental setup, including the collection of ground

truth data via AMT, alternative local expert ranking methods, and metrics for comparing

these methods. We then report on a series of experiments designed to answer the following

questions: How does the learning-based local expert ranking approach compare to existing

methods? How stable are the results across different topics and locations? What features

are most important for identifying local experts? Can a local expert model trained on one

topic generalize to other topics?

5.4.1 Experimental Setup

Our experiments rely on the dataset described in Section 5.2.2, totaling 15 million

geo-tagged list relationships.

Queries. We adopt a collection of eight topics and four locations that reflect real informa-

tion needs. The topics are divided into broader local expertise topics – “food”, “sports”,

“business”, and “health” – and into more specialized local expertise topics which corre-

spond to each of the broader topics – “chefs”, “football”, “entrepreneurs”, and “health-

care”. The locations are New York City, San Francisco, Houston and Chicago, which all

have relatively dense coverage in the dataset for testing purposes.
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Retrieving Candidates. For each method tested below, we retrieve a set of candidates

for ranking based on topics derived from list names. For each list name, we apply tok-

enization, case folding, stopword removal, and noun singularization. We separate string

patterns like “FoodDrink” into two tokens “food” and “drink”. We consider each of the

remaining keywords as a topic. Finally, each candidate is associated with all topics derived

from this process, resulting in a set of potential candidates to be ranked.

Proposed Method: Local Expert Learning (LExL). There are a wide variety of learning-

to-rank approaches possible; in this chapter we evaluate four popular learning-to-rank

strategies: Ranknet, MART, Random Forest and LambdaMART. We use an open source

implementation of these methods in the RankLib toolkit. While we previously introduced

LambdaMART, here we briefly introduce these three other variations of LExL. Ranknet

is a pairwise learning to rank method, where each pair of the candidates is considered

together to form a positive or a negative instance. The cost function of Ranknet aims to

minimize the number of inversions in ranking. MART is based on the idea of boosting and

it uses gradient boosted decision trees for prediction tasks. The prediction model is a linear

combination of the outputs of a set of regression trees. Random Forest is an application

of bagging, which can substantially improve the quality of probability estimates in almost

all domains [145]. However bagging has two disadvantages – greater computation cost

and loss of comprehensibility. Note that LambdaMART is a specific instance of MART

that evolved out of a combination of Ranknet and MART. For each topic, we randomly

partition the collected candidates together with their five categories of features into four

equal-sized groups for training and testing. We use four-fold cross validation for reporting

the results. We compare our proposed approach with two state of the art approaches for

finding local experts:

• Cognos+ [70]. The first baseline method is the Cognos expert ranking scheme.
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Cognos was originally designed for identifying general topic experts, so the ranked

lists from Cognos are independent of query location. Hence, we modify Cognos by

incorporating a distance factor when calculating cover density ranking [146], where

each label is weighted by a distance factor range in [0,1] in a similar way as in

Candidate Proximity discussed in Section 5.3.4. We refer to this location-sensitive

version of Cognos as Cognos+.

• LocalRank [6]. The second baseline method is the LocalRank framework proposed

in [6]. This framework ranks candidates by a linear combination of local authority

and topical authority. We choose the best performing combination reported in that

paper – spatial proximity plus direct labeled expertise (SP+DLE) – as the baseline

to compare against.

Note that both of these alternative methods are unsupervised, whereas the learning-

based approach proposed here integrates labeled training data to bootstrap the ranker.

Naturally, we would expect the supervised approach to perform well; our goal here is

to measure this improvement as well as investigate the key factors for this improvement.

5.4.2 Gathering Ground Truth

Since there is no publicly-available data that directly specifies a user’s local exper-

tise given a query (location + topic), we rely on an evaluation based on ground truth by

employing human raters (turkers) on Amazon Mechanical Turk to rate the level of local

expertise for candidates via human intelligent tasks (HITs).

5.4.3 Pooling Strategy

It is too expensive to manually label the local expertise for every candidate with each

query pair (location + topic). Moreover, many candidates are irrelevant to the query lo-

cation and do not possess expertise on the topic of interest. Hence, a pooling strategy is
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adopted to improve the effectiveness of obtaining relevance judgments by reducing the

number of irrelevant candidates presented to turkers to improve the effective utilization

of turkers [147]. In order to build the pool of local expert candidates, the candidate set

is sampled for each query pair, which only considers the candidates who appear at least

one on on-topic list. 100 candidates are selected for each query pair, and then they are

randomly assigned to different HITs.

5.4.4 HIT Design

Each HIT includes instructions and examples of local expertise along with twelve can-

didates to judge. Turkers can access the information about the query pair and a link to a

candidate’s Twitter page including account profile, recent tweets, lists and home location.

Turkers are then asked to rate each candidate’s local expertise on a five-point scale, cor-

responding to no local expertise (0), difficult to tell (1), a little local expertise (2), some

local expertise (3), and extensive local expertise (4). The topic and location are kept the

same within a single HIT, so the turkers can get familiar with the style of HITs with the

task and make more consistent judgments. Several evaluation criteria [147] are adopted in

order to collect high accuracy and reliable ground truth judgments. First, two out of the

twelve candidate’s are set as trap questions, where we have already judged the candidates

as either clearly local experts (4) or obviously having no local expertise (0). These trap

candidates are chosen to identify turkers who give random judgments or make judgments

only by the candidate’s home location (e.g., quickly assigning high scores to candidates

whose locations are Houston in the map instead of looking at their Twitter information

for a task seeking local experts on Houston healthcare). We also maintain a turker qual-

ification type in AMT which only allows turkers whose results are consistently in good

quality to continue working on our HITs. For each candidate, we collect five judgments

from distinct turkers and the majority judgment is taken as the final local expertise rating;
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Topic Accuracy κ value
food 0.6845 0.5320
sport 0.7889 0.4903
business 0.7119 0.4596
health 0.7639 0.4461
chef 0.6640 0.4679
football 0.7758 0.3834
entrepreneur 0.7128 0.2868
healthcare 0.7675 0.5952
Average 0.7337 0.4576

Table 5.3: Turker agreement for topics

if there is a tie in the vote, the ceiling of the average is taken as the final rating.

5.4.5 Turker Agreement

After run the HITs experiments, 16k judgments were collected in total across the eight

topics and four locations based on the above settings. But are these assessments of local

expertise reliable? To answer this, the accuracy and the kappa statistic [148] are calculated

to explore the validity of turker judgments. The accuracy for a candidate c given a query

pair q is defined as

Accuracy(c, q) =
No. of majority judgments

No. of judgments

Accuracy ranges from 0 to 1, with 0 meaning every judgment for the candidate is unique

and agrees with no other judgment, and 1 meaning all raters give a consistent judgment for

the candidate. The kappa statistic also measures inter-rater reliability, ranging from 0 to 1,

with larger values indicating more consistency in the judgments. In Table 5.3, we show the

accuracy and kappa values for each topic, where we treat local expertise scores of 2, 3, and

4 as relevant, and scores of 0 and 1 as irrelevant. The average accuracy across all topics is

0.74, which indicates that around 3 out of 4 raters agree on whether one candidate is a local
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expert. The accuracy is higher in some topics (e.g., football), indicating that assessing local

expertise may be inherently easier in some cases. For kappa, an average of 0.46 means

“moderate agreement.” As in the case of accuracy, there is variability in the scores, with

the topic entrepreneur being the most controversial topic to judge and healthcare being the

easiest.

5.4.6 Evaluation Metrics

To evaluate the quality of local expertise approaches, three metrics are adopted across

all experiments: Rating@k, Precision@k and NDCG@k.

Rating@k measures the average local expertise rating for a query pair to output the top-k

experts for each approach, defined as:

Rating@k =
k∑
i=1

rating(ci, q)/k

where c is candidate and q is the query pair. In our scenario, k=10. The Rating@10 here

ranges from 0 to 4, where a value of 4 says the majority of the raters believe everyone

of the top 10 experts found by the local expertise method has extensive local expertise.

Since Recall will calculate the fraction of relevant ratings that are retrieved based on all

Turkers’ judgements across query topics and locations, the value of Recall won’t change

for different learning methods and different sets of features. Thus we utilize Rating@k

instead of Recall.

Precision@k measures the percentage of the top-k suggested local experts that are actu-

ally local experts. Here, candidates with a rating 3 or 4 are considered as relevant; all

others are irrelevant. Note that this is a more conservative approach than the one for inter-

judge reliability; we want more distinguishing power deployed between approaches for
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comparing local expertise methods.

Precision@k =
k∑
i=1

ri/k

where ri =

 1 if rating(ci,q) ≥ 3

0 else

NDCG@k compares how close each method’s top-k ranking order of local experts is to

the ideal top-k ranking order.

NDCG@10 =
DCG@10

IDCG@10

DCG@10 =
10∑
i=1

2ratingi−1
log2(i+1)

and IDCG@10 =
10∑
i=1

2rating
′
i−1

log2(i+1)
. ratingi represents the ac-

tual rating of the candidate in position i, rating′i represents the rating of the candidate

in position i given the ideal decreasing ranking order of all candidates. DCG@10 is

the discounted cumulative gain (DCG) of the learned ranking order until position 10 and

IDCG@10 is the maximum possible DCG up to position 10.

5.4.7 Results

5.4.7.1 Comparison versus Baselines

We begin by comparing the proposed learning method (LExL) versus the two base-

lines. Figure 5.3 shows the Precision@10, Recall@10, and NDCG@10 of each method

averaged over all queries.2 We consider the LambdaMART version of LExL, in addition

to methods using Ranknet, MART and Random Forest. First, we observe that three ver-

sions of LExL clearly outperform all alternatives, resulting in a Precision@10 of more

2Note that the results reported here for LocalRank differ from the results in [6] as the experimental
setups are different. First, our rating has 5 scales, which is intended to capture more detailed expertise
level. Second, [6] only considers ideal ranking order for the top 10 results from LocalRank when calculating
IDCG@10, while we consider a much larger corpus.
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Figure 5.3: Evaluating the proposed learning-based local expertise approach versus two
alternatives. ’+’ marks statistical significant difference with LExL [LambdaMART] ac-
cording to paired t-test at significance level 0.05.

than 0.76, an average Rating@10 of around 3.1, and an NDCG of around 0.84.

Cognos has been shown to be effective at identifying general topic experts. However,

we see here that even a modified version to include a distance factor is not compatible with

local expert finding. For example, Cognos may identify a group of “healthcare” experts

known nationwide, but it has difficulty uncovering local experts.

LocalRank has a much better Precision@10 of around 0.5 compared to Cognos+,

which indicates that 50 percent of the candidates it identifies have at least “some local

expertise” for the query. The average Rating@10 is 2.49, which means the candidates

are generally rated between “a little expertise” and “some expertise”. Since LocalRank

explicitly builds on both topical and local signals (by exploiting the distance between a

candidate’s labelers and the query location), it performs much better than Cognos+. How-

ever, LocalRank is only a linear combination of these two factors, and so does not exploit

either additional factors (like the random walk presented in this chapter) nor take advan-

tage of a learning approach for optimizing the weighting of these factors.

For the four LExL approaches, Ranknet performs comparably to LocalRank, but the
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remaining three all result in significantly better performance, with both Random Forest and

LambaMART achieving comparably good results. These two methods have a Rating@10

of around 3.1, indicating that the local experts discovered have from “some local exper-

tise” to “extensive local expertise”. The Precision@10 and NDCG@10 also support the

conclusion that these learning-based methods result in high-quality local experts. Since

LambdaMART is significantly less computationally expensive (∼1/6 of the computing

time of Random Forest), we adopt it for the remainder of the chapter.

5.4.7.2 Effectiveness Across Topics and Locations

Given the good performance of LExL with LambaMART, we next turn to comparing

the effectiveness of this approach across the four general topics and four narrower topics,

before turning to a location comparison in the following discussion. Is the effectiveness

of local expert finding consistent across topics? And does it vary by the specificity of the

topic?

We observe in Table 5.4 that NDCG@10 is consistently high for the four general top-

ics, with an average value of 0.8212. Precision@10 and Rating@10 are also consistent

for general topics except for the topic of “health” which has relatively low values. We at-

tribute this poor showing due to data sparsity: (i) First, through manual inspection we find

that there are inherently only a limited number of candidates with high local expertise for

the “health” topic in the training and testing datasets. (ii) Second, since we only consider

candidates with “some local expertise” and “extensive local expertise” as good matches

for a query, this additionally reduces the number of possible local experts. However, since

the learning framework is effective at identifying even those few local experts in “health”

we see a high NDCG@10.

We observe comparable results for the four narrower topics. The Precision@10 is

lower than for the general topics (0.75 versus 0.81), but the NDCG@10 is higher (0.88
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Topics Precision@10 Rating@10 NDCG@10
food 0.8250 3.125 0.7442
sports 0.9152 3.225 0.9054
business 0.9237 3.368 0.8506
health 0.5873 3.059 0.7847
chefs 0.8233 3.163 0.9044
football 0.7283 2.933 0.9002
entrepreneurs 0.7377 3.040 0.7489
healthcare 0.7100 3.166 0.9673
General topic AVG 0.8128 3.193 0.8212
Subtopic AVG 0.7498 3.075 0.8802

Table 5.4: Quality of local expert rankings across topics

Locations P@10 R@10 NDCG@10
Houston 0.7214 2.917 0.8473
Chicago 0.7788 3.244 0.8486
New York 0.7875 3.294 0.8501
San Francisco 0.7563 3.081 0.8580

Table 5.5: Quality of local expert ranking in different locations

versus 0.82). Part of the higher NDCG results may be attributed to the decrease in the

denominator of NDCG for these narrower topics (the Ideal DCG), so the ranking method

need only identify some of a pool of moderate local experts rather than identify a few

superstar local experts.

In a similar fashion, we evaluate the quality of LExL across the four query locations,

as shown in Table 5.5. For the most part, the Precision@10, Rating@10, and NDCG@10

show good consistency across these four locations, as Chicago, Houston, New York and

San Francisco, suggesting the potential of a learning-based method to identify factors

associated with each location for uncovering local experts.
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Features Precision@10 Rating@10 NDCG@10
User-based 0.6714† 2.748† 0.6955†

Tweet Content 0.6804† 2.730† 0.6973†

List-based 0.6839† 2.807† 0.6824†

Local Authority 0.7386† 3.002† 0.7662†

DistBRW 0.7431† 2.995† 0.7734†

All Features 0.7813 3.134 0.8507

Table 5.6: Quality of local expert ranking using different sets of features. ’†’ marks statis-
tical significant difference with LExL[LambdaMART] according to paired t-test at signif-
icance level 0.05.

5.4.8 Evaluating Feature Importance

Given the strong performance of the learning approach for local experts, what is the

significance of the different kinds of features used for learning? Recall that the learning

model is built upon five kinds of features – user-based, tweet content, list-based, local

authority, and distance-biased random walk (DistBRW) features. To assess the importance

of these different features, we train four different LExL models, one for each feature type.

For example, the model is trained only using user-based features and then evaluate the

quality of local experts identified.

We can see from Table 5.6, the five feature classes result in varying levels of local

expert quality. The user-based, list-based and tweet content features perform relatively

well (especially when compared to LocalRank), though not as well as the local authority

and DistBRW features. These results suggest that intelligent combinations of many fea-

tures via a learning method can outperform a simple combination of two carefully selected

features (as in LocalRank). The DistBRW features achieve the highest Precision@10 and

NDCG@10 among all five kinds of features. We attribute the results to DistBRW inte-

grating expertise propagationas well as distance bias factors into capturing local expertise.

We can observe that the combination of all features performs the best of all. One more
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interesting finding is that Tweet Content features didn’t perform as well as we expected.

This can be explained by that the keywords related to topic and location in tweet content

didn’t appear very often. For example, an NFL quarterback may share his feelings about

life more often than his expertise topics of football. Thus, we can conclude that tweet

content is not the determining factor of finding local experts.

But which specific features are most informative, regardless of feature category? Here,

we adopt two different feature selection methods to identify the most informative features

for local expert ranking.

• Recursive Feature Elimination (RFE). In this approach, a linear regression model

is trained and weight is assigned to each feature. Then features with the smallest

absolute weight are eliminated. For each topic, we keep eliminating the unimportant

features until only required number of features are left.

• Tree-Based Feature Selection. In this approach, a number of randomized decision

trees are built on various sub-samples of the dataset. The importance of a feature

is determined by Gini importance or Mean Decrease Impurity, which is defined as

the total decrease in node impurity of all trees in the ensemble [149]. Features that

attach to a node with higher Gini importance are more informative in the model.

Table 5.7 shows the accumulated number of times that each feature is selected by the

two different feature selection methods. For 39 features, most of the top features are from

local authority features and DistBRW features.

The results is aggregated across all queries (topics + locations), and reported in Ta-

ble 5.8 the top features for each feature importance method. There are seven common top

features across both methods, which is highly consistent. Recall that dcq and dut capture

the distance from candidate to query location and the average distance form candidate

to all on-topic labelers, respectively. Proxc shows the distance between the location of
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Feature REF Tree-based Feature REF Tree-based
Nfollower 0 2 Nlisted 1 2
Nfriend 1 0 Tlisted 4 2
Nfav 0 0 Nlist 3 0
Nstatus 0 0 Tlist 5 1
Tcreate 2 0 list_scorec 1 6

dc 1 0
twPc 0 0 dct 3 0
twH 0 0 du 3 1
twBbusiness 1 0 dut 4 7
twBentrepreneur 0 0 duq 2 1
twBfood 1 1 dcq 8 8
twBchef 0 0 Proxc 7 8
twBsport 0 0 Proxspread 6 6
twBfood 1 1 ha0 2 5
twBhealth 0 0 ha1 5 4
twBhealthcare 0 0 ha2 2 4
twBchi 0 0 ha3 2 2
twBhou 0 0 ha4 7 6
twBny 0 0 ha5 2 6
twBsf 0 0 ha6 8 7

Table 5.7: Accumulated Times of Features Selected by Different Methods
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Table 5.8: Individual feature importance

Method Top-10 Features
RFE dcq, ha6, Proxc, ha4, Proxspread, Tlist, ha1, Tlisted, dut, Nlist

Tree-based dcq, Proxc, ha6, dut, ha4, Proxspread, ha5, list_scorec, ha0, ha1

Method Precision@10 Rating@10 NDCG@10
RFE 0.7612 3.059 0.8357
Tree-based 0.7753 3.078 0.8444
All Features 0.7813 3.143 0.8507

Table 5.9: Performance using selected features

candidate and query location and ha6 is the steady state local expertise authority score of

candidate incorporating all three distance influences. Based on the selection results, we

can say comparing to the tweet content, a candidate’s list and location-related features are

more decisive for finding local experts.

Ultimately, how explanatory are these features? We further train two additional LExL

models – one using the top-10 features from the RFE feature importance method and one

using the top-10 features using the tree-based method. Table 5.9 shows the evaluation

metrics for these two approaches versus the full blown LExL model with all features. We

can observe the difference of Precision@10 and Rating@10 is about 0.02 and NDCG@10

is about 0.1 for both methods compared to All Features case. Moreover, the difference

between the value of three evaluation metrics and those of the All Features’ case is not

statistically significant. These results confirm the importance of the local authority features

and the DistBRW features and further show that high-quality local expert models may be

built using fairly compact features.
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5.4.9 Generalizability of Local Expert Models

Finally, can a learnt model be reused to rank other topics? The generalizability of the

local expert models is explored in this section. In many cases, we can imagine building

a local expert model that is optimized for one type of topic (e.g., healthcare) but then we

want to apply the model to a different topic (e.g., finance), for example in cases where

training data is unavailable or expensive to collect. Are the models of local expertise

generalizable enough to support high-quality local expert finding in these new topic areas?

Or do the key features and feature weightings vary from topic to topic, so that a specialized

model must be built for each topic?

The first experimental setup here is to train a model on each of four topics and then to

apply this model to a different topic. Concretely, we train over the four general topics –

health, food, business, and sports – and then rank candidates in each of the four narrower

topics – healthcare, chefs, entrepreneurs, and football. Intuitively, a model trained over a

related topic is expected to perform better than a model trained over a less similar topic

(e.g., a health-based local expert model should do better for healthcare, but worse for

football). But does this hold? And how well do the less related models perform?

The results of this experiment are shown in Table 5.10. For each of the four narrower

topics, that indeed, the model corresponding to the most related general topic produces the

best results. Perhaps surprisingly, these models perform on par with the models trained

over the individual topics as in Table 5.4, or even better in Precision@10 and Rating@10.

Since the general topic models build a more broader measure to define a local expert than

the individual models of narrower topic, it can rank the more related candidates higher,

which leads to high Precision@10 and Rating@10.

Even for models built on very different topics, we do see encouraging results. For

example, the sports-based model for ranking chefs results in Precision@10 of 0.86, Rat-
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Topic Model Precision@10 Rating@10 NDCG@10

chefs

health 0.8312 3.094 0.7363
food 0.8738 3.152 0.8012

business 0.8250 3.131 0.6644
sports 0.8687 3.075 0.7963

general 0.8633 3.125 0.8112
original 0.8233 3.163 0.9044

football

health 0.6987 2.781 0.7910
food 0.6125 2.618 0.5718

business 0.6437 2.731 0.5934
sports 0.7083 2.875 0.8026

general 0.7014 2.925 0.8473
original 0.7283 2.933 0.9002

entrepreneurs

health 0.7033 2.816 0.6247
food 0.7166 2.825 0.6018

business 0.7511 2.950 0.7144
sports 0.7433 2.841 0.6432

general 0.7866 2.966 0.6906
original 0.7377 3.040 0.7489

healthcare

health 0.7037 3.118 0.8844
food 0.6687 2.975 0.6443

business 0.6875 3.002 0.7570
sports 0.6650 3.090 0.8229

general 0.6833 3.050 0.8847
original 0.7100 3.166 0.9673

Table 5.10: Applying a model learned on one topic to rank local experts on a different
topic.
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ing@10 of 3.1, and NDCG@10 of 0.80 and the health-based model for ranking football

results in Precision@10 of 0.69, Rating@10 of 2.8, and NDCG@10 of 0.79. These results

indicate the potential of learning models that can be extended to new local expert topics.

In the second experiment, instead of having a model for each general topic, we train a

single model for four general topics altogether, and then test this model on each subtopic.

In Table 5.10 that the general model performs no worse than each individual model. This

is attributed to more training data and avoidance of overfitting to one topic. It indicates we

may find a common local expert model that is applicable regardless of the specific topic.

5.5 LExL System Design

We conclude with a discussion of issues impacting the deployment of LExL. The dis-

covered local experts can be integrated into a variety of systems – including (i) recom-

mender systems that can be biased to prefer the opinions and rating of the discovered local

experts; (ii) local question-answer systems where local queries are routed to local experts;

and (iii) locally-flavored information streams like the Facebook newsfeed and the Twitter

stream, where posts can be re-ranked based on the local expertise scores of who is post-

ing, among many other possible application scenarios. In the following, we raise some

key points that can impact the success of deploying LExL into these scenarios, including

efficiency, incentives, and some domain-specific concerns.

5.5.1 Efficiency

First, the complexity of learning a ranking model using the LambdaMART algorithm

is O(m ·N2), where N is the number of training samples and m is the number of trees. As

we have seen through experiments, a generalized ranking model can be built that performs

competitively for other query locations and query topics, meaning that one strategy would

be to build the models entirely offline. In this way, we could perform rigorous offline

optimization (including identifying key sets of powerful features), such that the real-time
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assessment of new candidates would require only the generation of features for that can-

didate and then ranking the candidates according to the model given features. For each

query topic, we should keep track of query relevant users, together with their list features.

To update the system with new expert candidates, we can collect users together with their

features at regular time intervals to refresh the candidates. Most of the features can be

acquired in constant time, as they can be pre-computed offline, for example, user-based

features, the majority of the local authority features, and tweet content features. For the

distance-biased random walk features, all seven of them can be updated simultaneously

and we empirically set the number of iteration to a constant c that less than 100, for the

algorithm to converge. Hence, the complexity for feature construction is thus c · O(n),

where n represent the number of candidates. The ranking itself takes O(n · logn). Overall,

the complexity is O(n · logn).

For application scenarios that require real-time local expert discovery, there are many

ways to further decrease the response time required. For example, we could selectively

lower the location accuracy, and report results for nearby cities. Separately, we could

cache results for some frequent query locations so that query issuers can get immediate

responses. Additionally, we can set a distance threshold such that distant candidates are

not considered to decrease the computation cost for feature collection and ranking.

5.5.2 Incentives

A second key concern is incentives. In some application scenarios – for example re-

ranking an information stream or recommending based on local experts – we can mine

evidence of local experts without directly engaging with them. In other scenarios – for

example, a local expert powered question-answer system – incentivizing local experts to

participate is critical. Indeed, we have seen a wide variety of efforts that target incentive

schemes in crowdsourcing systems. For example, some systems are built around tasks
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that are inherently fun – like the ESP game and peekaboom – to encourage participation.

Some sites like Quora, Stackoverflow and Wikipedia can attract and retain participants for

several reasons: First, the inherent inclination towards human interactions, and community

work on similar thing create emotional bonds. Second, on the one hand, users have a sense

of accomplishment as their knowledge and experience are of immediate use and value to

the individual participants and on the other hand, by supporting the system for others, the

system will likely return the favor in an area that users need. Thirdly, the motivation for

sites like Wikipedia mainly comes from one’s academic interest and charity, and some

people ask for no returns and simply for the sake of its success. Of course, the most

direct and effective approach is offering rewards. For example, some systems provide a

badging system or similar accumulation of reputation points that can serve to incentivize

participation. Money is a great motivator for prominent crowdsourcing platforms like

Amazon Mechanical Turk and Crowdflower.

In our continuing work, we are interested to combine several of these features for

encouraging local experts to participate in a prototype question-answer system. Con-

cretely, we are interested to make answering a combination of reward motivated and self-

motivated. When people have some instant information needs, they are willing to pay

some money and get precise and informative response quickly. Also the award money

will encourage experts to answer. Meanwhile, we are also expecting to see a more natural

eco-system where users are eager to help each other and seek and contribute knowledge.

5.5.3 Question-Answer Issues

For a local expert question-answer system, we will require additional system design.

For example, how do we properly match the question with the appropriate level of exper-

tise? How do we match similar questions so that previously answered questions can be re-

used to save system resources? Do the features we have identified – including list-based
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and distance-biased random walk features – degrade as we consider ever more granular

questions? We anticipate building on the large body of related work in general question-

answer systems [150, 151, 152, 153] to explore the factors impacting local expert powered

question-answer systems.

Query routing. For example, to avoid forwarding all questions to the top-ranked expert,

we can use a round robin strategy or some other traffic scheduling scheme to divide the user

queries to different experts. We can also add features that characterize the time required

for each expert to reply and incorporating this urgency of the question into how the query

is routed.

Rare queries. In some cases, a rare query may not match any local expert at all. In

these cases, we can default to a broader set of local experts by leveraging a user-generated

knowledge base (e.g., a folksonomy built over local experts). For example, if there are few

experts for expert in “leveraged buyouts”, we can relax the query to a broader category of

“finance”.

5.6 Summary

In this chapter, we have proposed and evaluated a geo-spatial learning-to-rank frame-

work for identifying local experts that leverages the fine-grained GPS coordinates of mil-

lions of Twitter user and carefully curated Twitter list data. We introduced five categories

of features for learning model, including a group of location-sensitive graph random walk

features that captures both the dynamics of expertise propagation and physical distances.

Through extensive experimental investigation, we find the proposed learning framework

which intelligently assigns feature weights can produce significant improvement compared

to previous methods. By investigating the features, we found high-quality local expert

models can be built with fairly compact features. Additionally, we observed promising

results for the reusability of learned models. In our future work, we seek to combine data
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from different social media platforms to better deal with sparsity. Furthermore, we are in-

terested in investigating what new features may provide complementary evidence of local

expertise.
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6. RECOMMENDATION: GEO-SOCIAL IMAGE RECOMMENDATION1

In this chapter we turn from location-sensitive retrieval to its flipside: location-sensitive

recommendation. We seek to model and leverage geo-social characteristics in the broad

category of multimedia recommendation by capturing individual user preferences. In par-

ticular, we tackle the problem of personalized image recommendation in geo-social sys-

tems.

6.1 Introduction

One of the foundations of many web and app-based communities is image sharing. For

example, Pinterest, Facebook, Twitter, Flickr, Instagram, and Snapchat all enable commu-

nities to share, favorite, re-post, and curate images. And yet, these social actions are far

outnumbered by the total number of images in the system; that is, there may be many

valuable images undiscovered by each user. Hence, considerable research has focused on

the challenge of image recommendation in these communities, e.g,. [80, 81, 82, 83, 84,

85, 86].

However, many of these works mainly leverage user profile and behavior patterns.

Due to the extreme sparsity of users feedback in image sharing communities and a lack

of proper representation, traditional recommendation including collaborative filtering and

content-based methods face challenges. In contrast, Bayesian Personalized Ranking (BPR)

has shown state-of-the-art performance for recommendation in implicit feedback datasets

[79]. Yet, there exists some limitations: (i) First, user preferences in BPR are calculated as

the inner product of user latent vector and image latent vector, which assigns equal weight

1Part of this chapter is reprinted with permission from "Neural Personalized Ranking for Image Recom-
mendation" by Wei Niu, James Caverlee and Haokai Lu. 2018. The 11th ACM International Conference on
Web Search and Data Mining (ACM WSDM ’18). DOI: https://10.1145/3159652.3159728. Copyright 2018
by Association for Computing Machinery (ACM).
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to each dimension of the latent feature space, meaning the variability of user preferences

may not be adequately captured; (ii) Second, the matrix factorization component of BPR

is linear in nature, which has limited expressiveness when compared to nonlinear methods;

and (iii) existing effort for distributed BPR typically uses partially shared memory which

may limit its scalability.

Recently, deep neural network based approaches have shown tremendous success in

vision related problems and NLP problems, and we begin to see new advances apply-

ing deep neural network models for recommendation, yet most of the work focuses on

modeling side information [154, 155] or building pointwise learning models by directly

modeling user ratings [100, 102]. As far as we know, none has considered modeling

pairwise ranking incorporating generalized matrix factorization. Additionally, contextual

information are proven to be helpful for improving the performance of recommendation

tasks. However, there is a research gap in understanding how users’ preference to images

are reflected on geo, topic and visual contextual information and how to incorporate such

clues, if any, into a neural network based pairwise ranking model.

To overcome these challenges, we propose Neural Personalized Ranking (NPR) – a

new neural network based personalized pairwise ranking model for implicit feedback,

which incorporates the idea of generalized matrix factorization. Neural models promise

potentially more flexibility in model design, added nonlinearity through activations, and

ease of parallelization. While recent work in neural methods for recommendation has fo-

cused on modeling side information [154, 155] or building pointwise learning model by

directly modeling user rating [100], a key feature of NPR is its careful modeling of users’

implicit feedback via a relaxed assumption about unobserved item using pairwise ranking

that builds on top of neural network based generalized matrix factorization components.

Further, to alleviate the sparsity of user feedback and improve the quality of recommen-

dation, we propose to leverage multiple categories of contextual information. We further
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build an enhanced model by augmenting the baseline NPR model with multiple contextual

preference clues and derive corresponding features for deriving Contextual Neural Person-

alized Ranking (C-NPR) to better uncover user preferences. In particular, these preference

clues include user tags, geographic features, and visual factors.

In our experiments over the Flickr YFCC100M dataset, we demonstrate the proposed

NPR model’s effectiveness in comparison to several state-of-the-art approaches. More-

over, the contextual enhanced NPR model significantly outperforms the baseline model by

16.6% and a contextual-BPR model by 4.5% in precision and recall. We find that NPR is

far more effective than BPR when there is only limited training data, as is often the case

in real-world scenarios.

6.2 Preliminaries

Our goal is to provide personalized image recommendation, such that each user is

recommended a personalized list of images.

Problem Statement. Formally, we assume a set of M users U={u1, u2,..., uM} and a set

of N images I={i1, i2, ..., iN}. We further assume some users have explicitly expressed

their interest for a subset of the images in I. This preference may be in the form of a “like”

or similar social sharing function. We aim to recommend for each user a personalized list

of images from the set I.

6.2.1 Matrix Factorization

Toward tackling the problem of personalized image recommendation, we begin with a

straightforward adaptation of latent factor matrix factorization (MF) [156]. The standard

formulation is: the preference rui of a user u towards an image i is predicted as:

rui = pTuqi + bu + bi + α (6.1)
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where pu and qi are the K-dimensional latent factors of user preference and image char-

acteristics, respectively. The inner product pTuqi of the user latent vector and image latent

vector represents a user’s preference towards an image; it measures how well the user pref-

erences align with the properties of the image. bu and bi correspond to user and image bias

term while α is a global offset.

6.2.2 Bayesian Personalized Ranking

Since users only provide sparse one-class positive feedback (the “likes”), there is am-

biguity in the interpretation of non-positive images since the negative examples and un-

labeled positive examples are mixed together [77]. In this implicit feedback scenario,

we may only assume users prefer the liked images to those that are not acted upon. To

estimate the latent factors, instead of trying to model the matrix of “likes" directly in a

pointwise setting with a least square regression formulation, we can construct the learning

objective based on pairwise ranking between images. This idea is key to Bayesian Person-

alized Ranking [79], such that observed likes should be ranked higher than the unobserved

ones. The model then tries to find latent factors that can be used to predict the expected

preference of a user for an item.

Formally, we can adapt BPR to the personalized image recommendation task as fol-

lows. Suppose we have a user uh and a pair of images ij and ik. User uh’s feedback for

ij is positive, and feedback for ik is unobserved: we denote this relation as j >h k. BPR

aims to maximize the posterior probability p(Θ|j >h k), where Θ is the set of parameters

we try to estimate. According to Bayes’ rule:

p(Θ|j >h k) ∝ p(j >h k|Θ)P (Θ) (6.2)

and the likelihood function is defined as:
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p(j >h k|Θ) = δ(rhj − rhk) (6.3)

where δ(·) is the sigmoid function. To simplify notation, We will use the index of a user

and an image. We assume a Gaussian prior Θ ∼ N(0, λΘI), where λΘ is a set of model-

specific parameters and I is the identity matrix. The prior provides regularization for the

parameters to prevent overfitting.

Our objective is to findΘ that maximizes the log-likelihood for all users and all images:

arg max
Θ

∑
uh∈U ,ij(∈Ph,ik∈Nh

(
ln
(
δ(rhj − rhk)

)
− λΘ‖Θhjk‖2

)
(6.4)

where Ph is the set of images for which uh has provided positive feedback, and Nh is

the set of images for which uh’s feedback is unobserved. Θ is {pu, qi, bi} for all users

and images. With this pairwise setting, the user bias and global offset in equation 6.1 are

canceled out.

6.3 Neural Personalized Ranking

In this section, we seek to complement existing matrix factorization and BPR-based

approaches to personalized image recommendation through the exploration of a new neu-

ral network based personalized pairwise ranking model. Neural recommendation models

promise some exciting characteristics in comparison with BPR: (i) First, user preferences

in BPR are calculated as the inner product of user latent vector and image latent vector,

which assigns equal weight to each dimension of the latent feature space. In contrast,

neural methods may be able to capture the variability of user preferences by relaxing this

equal weight requirement. (ii) Second, the matrix factorization component of BPR is lin-

ear in nature, which has limited expressiveness. In contrast, neural methods offer more

flexibility by adding nonlinearity through activations. (iii) Finally, many neural methods
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may be easily parallelized for scalable computation, whereas existing work on distributed

BPR typically uses partially shared memory which may limit its scalability. In summary,

neural models promise potentially more flexibility in model design, added nonlinearity

through activations, and ease of parallelization.

6.3.1 Model Architecture

The NPR model structure is shown in Figure 6.1. There are three inputs to the model,

the user and a pair of images, represented as tuple of index (h, j, k). Then user and image

indexes are one-hot encoded as tuple of vectors (uh, ij, ik). Since there are M users and

N images, the dimensions of uh, ij, ik are M , N , and N respectively. The output of the

proposed model is the ground truth value which we train the model against:

y(h, j, k) =

 1 for j >h k

−1 for j <h k
(6.5)

where j >h k denotes that user uh prefers image ij to ik. This definition transforms

the ranking problem into a binary classification problem, which aims to check whether the

pairwise preference relation holds. Following the input layer, each input is fully connected

to the corresponding embedding layer for the sake of learning a compact representation of

the users and images. The embedding dimension for both users and images are the same.

We denote the embeddings as ph, qj , qk. Formally,

ph = Wuuh, qj = Wiij, qk = W ′
i ik. (6.6)

where Wu,Wi, W ′
i are embedding matrices for users and images. As the model architec-

ture is vertically symmetric, let’s focus on the substructure marked inside the dotted trian-

gle (see Figure 6.1). In the merge layer, user and image embedding vectors are multiplied

element-wise, such that each dimension of the user preference vector and corresponding
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image properties are in line. This step is analogous to the traditional matrix factorization.

The resulting vector has the same dimension as the embeddings. More precisely:

mhj = ph ◦ qj (6.7)

where ◦ denotes the element-wise product. The merge layer is then connected to a sin-

gle neuron dense layer, which computes the weighted sum of all dimensions and passes it

through a ReLU nonlinear activation. Compared to traditional matrix factorization, such

design allows each latent dimension to vary in importance and supports additional ex-

pressiveness through non-linearity. We adopt ReLU here based on our exploratory exper-

iments, where we find that alternative activation functions like sigmoid and tanh suffer

from saturation, which leads to overfitting. The output is preference score rhj:

rhj = a(wTmhj + b1) (6.8)

where a(·) is the activation function, w is the weight vector and b1 is the bias term. This

output rhj characterizes the preference of uh to ij . We denote preference score from the

mirror structure in Figure6.1 as r′hk. Ultimately, the model prediction is rhj − r′hk.

6.3.2 Objective Function

We define the objective function to maximize as:

1

n

∑
h∈U ,(ij∈Ph,ik∈Nh|ij∈Nh,ik∈Ph)

ln
(
δ
(
(rhj − r′hk) · y(h, j, k)

))
− λΘ‖Θ‖2 (6.9)

where n is the number of training samples, δ(·) is the sigmoid function, and y(h, j, k) is

the ground truth value. Since we only focus on whether the sign of the output is the same
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Figure 6.1: Neural Personalized Ranking (NPR) Structure

as y(h, j, k), we employ the product between predicted value rhj − r′hk and ground truth

p(h, j, k) as an indicator for how the predicted value is aligned with ground truth. A larger

value is acquired if their signs are same. The regularization term is slightly different from

that defined in the BPR-based model. We impose the L2-norm to the whole embedding

matrix, instead of on each training sample for simpler implementation. If training samples

are balanced for each user and image, such regularization will have the same effect as that

mentioned in the BPR model.

6.3.3 Model Training and Inference

We initialize the weight matrices with random values uniformly distributed in [0,1].

To train the network, we transform the objective to equivalent minimization dual problem

and adopt mini-batch gradient descent (MB-GD), which is a compromise between gradient

descent (GD) and stochastic gradient descent (SGD). MB-GD converges faster than GD

as it has frequent gradient updates while convergence is more stable than SGD. Besides,

MB-GD allows utilization of vectorized operations from deep learning libraries, which

typically results in a computational performance gain over SGD. Before each epoch, we
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shuffle the training dataset. Then in each step, a batch of training tuples is served to the

network. The error gradient is back propagated from output to input and parameters in

each layer are updated. The batch size we used in experiments is 1,024. The optimization

algorithm used for gradient update is Adam’s[157]. The loss generally converges within

20 epochs given the amount of training data.

Given a user u, for every image i ∈ Nu, her preference score rui is predicted from

the neural network. In order to obtain the preference score, we feed the tuple (u, i, i) to

the neural network, and get two values rui and r′ui from the parallel branches. The final

preference score is calculated as rui = 1
2
(rui+r

′
ui). Then the set of images with unobserved

feedback are sorted according to descending predicted preference score. We pick the top

ranking images for recommendation.

6.3.4 Implementation Details

Neural network models can easily overfit. Thus we take a few measures to prevent

overfitting. First, we apply dropout to the embedding weights during training. The dropout

rate is fine-tuned for each dataset. Second, early stopping is adopted to terminate train-

ing if there is no decrease on validation loss for 3 epochs. Additionally, we impose L2-

regularization to the user contextual preference vectors, such that the preference score is

not overwhelmed by large contextual feature values. If validation loss does not decrease,

we reduce the learning rate to 20% of its current value, allowing for finer adjustment to

gradient update. Furthermore, we tune the regularization coefficients through grid search

to optimal.

6.4 Contextual NPR

Although the neural personalized ranking model is promising, it faces two key chal-

lenges. The first is sparsity – very few images have been liked, so it is difficult to make rec-

ommendations for users who have little feedback as well as to recommend newly posted
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images. The second is preference complexity – images are diverse and there are many

reasons for a user to like an image. Hence, we propose to improve NPR with an en-

hanced model – contextual neural personalized ranking (C-NPR) – by leveraging multiple

categories of auxiliary information that may help overcome the sparsity issue while also

providing clues to user preferences.

In this section, we begin by showing evidence about user’s preference reflected through

contextual domains, then we formally define the contextual NPR model and explain how

this model is capable of modeling multiple categories of contextual preference jointly.

Finally, we shed light on how we derive each category of image contextual feature vector.

6.4.1 Geo, Topical, Visual Preference

Based on the Flickr YFCC100M dataset [158] (see Section 6.7.1), we begin here by

highlighting evidence for the impact of three sources of contextual information on image

preference, before formally defining the contextual NPR model.

Evidence of Spatial Preference. Figure 6.2 shows the percentage distribution of “liked”

image in decreasing order across the regions where these images were taken. Here we

aggregate each user’s top-10 regions where their liked image comes from. The kth boxplot

is generated from all users who have liked images from at least k regions. We observe that

the median percentage of liked images from the top region is above 33%; that is, at least

half of all users have 33% of their liked images come from a single region (though not

necessarily the same region for each user). Suppose a user has no preference of regions, a

single region would at most contain 9% of her liked images (as the largest region contains

9% of the images). Thus we conclude there is a strong tendency for a user to favor images

from certain regions, especially from a few of them as the percentage decrease sharply as

the region number increases.

Evidence of Topic Preference. We consider each unique user tag as a potential topic.
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Figure 6.2: Geo preferences: Users tend to “like” images from only a few regions.

Figure 6.3 shows users’ liked image distribution over the tags that have been applied to

those images. We list the results for top-10 tags of each user (not necessarily the same set

of tags for each user). The kth boxplot summarizes users that have more than k tags labeled

to the set of liked images. We observe that ∼75% of users have at least one common tag

shared among more than ∼35% of their liked images. Even the median ratio for the 10th

tag attached to liked images is much higher than the percentage of most frequent tags in

the whole dataset. Thus we conclude that users have topic preferences for the images they

like. As the percentage decreases slowly with k, we ascribe this to user may have multiple

favorable tags.

Evidence of Visual Preference. Finally, we explore clues for user’s visual preference

by comparing image similarity across three sampled sets, with each containing 100,000
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Figure 6.3: Topic preferences: Users tend to “like” images with similar tags.

image pairs. The sets are constructed in the following manner: (i) Randomly sample

image pairs; (ii) Randomly sample a user, then sample a pair of image from her liked

images; and (iii) For each image, pick its most socially alike images2. Next, we calculate

the cosine similarity of aforementioned image pairs based on their visual feature vectors.

The similarity distribution for three sets are shown in Figure 6.4. We observe that image

pairs liked by a user tend to be more similar in visual appearance than randomly picked

image pairs, with a median similarity around 0.25 vs.0.20. For image pairs that are liked

by similar groups of users, the pairwise visual similarity is even higher, reaching 0.30. All

three findings are statistically significant with p-value less than 1e-8. Hence, we conclude

2We represent each image as a vector of user’s who like it, then identify similar images with high cosine
similarity score.
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Figure 6.4: Visual preferences: Pairs of “liked” images tend to be more visually alike than
random pairs.

that users have visual preference for images that they like, and that there exists group of

users that share similar preferences.

Evidence of Social Preference. We compare the preference similarity among socially

close user samples and random user samples, with each containing 100,000 user pairs.

The samples are constructed as follows:

1. Randomly sample user pairs.

2. For each user, pick top users that are socially close by considering both user contacts

and group information.

Figure 6.5 shows the preference similarity distribution for each set of user pairs. Again
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we adopt cosine similarity. We observe most user pairs in these two sets have zero similar-

ity, due to the sparse nature of the dataset. However, we notice the socially close user pairs

are denser for similarity greater than 0, with the 75 percentile equals to 0.03. We further

verify the distribution difference through two sampled t-test, which rejects the hypotheses

that two samples are drawn from the same distribution. Thus we conclude socially close

users are prone to have similar preference than random users.

Figure 6.5: Compare Socially Close and Random Users

6.4.2 Modeling Geo, Topical, and Visual and Social

Given the evidence of user preferences, we turn here to model these features for inte-

gration into the basic NPR model.
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Deriving Spatial Feature. We noticed that each users’ preference for an image is not

evenly distributed across regions. A user may prefer images from certain locations or

multiple locations. Thus it might be worthy to take into account geo-preferences in rec-

ommendation because it not only help to understand how to recommend in the presence of

geo-information but helps to explain why modeling spatial clustering may cope with the

sparsity issue and boost overall performance. To this end, we propose a new model for

jointly modeling geographical preference in image recommendation.

We assume the area is geographically partitioned into K regions and each image is

taken from one of the regions. Instead of griding into blocks of equal area which has been

used previously [97, 159], we propose to partition area into regions according to the im-

age density, where the shape and size of region doesn’t have to be consistent and could

be irregular. The reason is images are not distributed homogeneously across the continent

(generally, dense around cities and tourist attractions and sparse elsewhere). Focusing on

density helps to reduce the irrelevant areas and the size of each region we drill down into,

which allows for more precise modeling. We apply mean shift clustering algorithm, which

builds upon the concept of kernel density estimation (KDE), to identify geographical clus-

ters of images. It works by placing a Gaussian kernel on each image coordinate in the

dataset. Then by iteratively shifting each point in the data set until they reach the top of

their nearest KDE surface peak. The only parameter to set is the bandwidth, with which

it attempts to generate a reasonable number of clusters based on the density. The cluster

result is shown in Figure 6.7, where each dot represents an image and the cluster of points

represents a region. In total, there are 217 regions with bandwidth of 100km.

We assume the probability that a user likes an image in one region is influenced by her

likes status in other regions. If a user has liked images from region p, then she has a larger

probability of favoring an image in a region closer to p. Previous work in POI recommen-

dation assumes the influence distance of a POI is fixed according to a normal distribution
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Figure 6.6: Image Heatmap

N (0, σ2) [97]. However, it is commonly perceived that influence for regions of the same

size should be different, not to mention the diverse shape and size in our scenario. Thus

we assume each region p has an influence according to a normal distribution N (0, σ2
p),

where σp is the standard deviation of distance from each image coordinate to the cluster

center. To this end, the influence from pi to pj is defined as:

fij =
1

σpi
K(

d(i, j)

σpi
)

, where pi and pj are the regions that image i and j belong to and the relation between

image and region is many to one. d(·) is the Haversine distance between the center of

two regions, K(·) is the standard normal distribution and σpi is the standard deviation

which we adopt as the bandwidth of kernel function. Thus the influence from each region

to all other regions is represented as a row vector. The advantage is it encodes the idea
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Figure 6.7: Geographic Regions by Meanshift Clustering

of kernel density estimation where the estimated geographical density of u’s liked image

distribution at pj is:

dju =
∑

pi∈Pu

ni
σpi |Pu|

K(
d(i, j)

σpi
)

, where ni is u’s number of likes within pi, Pu is the set of regions that u has likes. It can

be written as the dot product of two vectors. However, different from the kernel density

estimation, a user’s preference vector is learned.

Deriving Topic Features. Text based search is mainstream nowadays and is indispensable

channel for user to discover image. Tags not only act as summarization of concrete things

like recognizable objects, scene, and weather, but also shed light on abstract and hidden

knowledge about the image like emotion and background theme, which supplements the

visual appearance. Each user has her own flavor and interest. Thus it is important that

the topic preference of the user is aligned with the topic of the image when making rec-

ommendation. Thus it is meaningful to research on how to incorporate social tags, as an
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indicator of topical interest, into image recommendation, because it helps understanding

how to boost recommendation and cope with sparsity issue with the presence of topic in-

formation. each image has a topic feature vector ti, representing topic properties of the

image.

To extract the topical theme associated with each image, we aggregate the user-generated

tags, title, and description (if any) for each image. This text not only acts as a descriptor

of concrete objects, scene, and weather, but also sheds light on abstract and hidden knowl-

edge about the images like emotion and background theme, which supplements the visual

appearance. We ignore tags which have occurred fewer than d times in the dataset and

apply dimensionality reduction over 58k unique tags. PCA and topic modeling method

Latent Dirichlet Allocation (LDA) are compared for carrying out this task. The detailed

comparison is shown in the experiments section.

Deriving Visual Features. Recently, high-level visual features extracted from deep con-

volutional neural networks have revolutionized the state-of-the-art performance in image

recognition [160] and image captioning [161]. Here, the output of fc6 layer of the Places

Hybrid-CNN is adopted as the image feature [162], which contains 4,096 dimensions. This

CNN was trained on 1,183 categories which includes 205 scene categories from Places

Databases and 978 object categories from ImageNet (ILSVRC2012) images. Dimension

reduction is further applied for reducing computation complexity. The existing approach

for visual BPR [94], which learns an embedding kernel for visual dimension reduction

while training the recommendation model, turns out to be less efficient than directly uti-

lizing the full set of 4,096 features. Hence, we propose to reduce visual feature dimension

separately from model training. We compare the performance of using principle com-

ponent analysis (PCA) and stacked auto-encoder for image feature dimension reduction

with harnessing the whole set of features in training the model. For PCA, we retain the

first vd components in decreasing order of explained variance as new visual features. The
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stacked auto-encoder has 3-layer encoding network and 3-layer decoding network which

the structure is mirror of each other. The AE is trained in layer-wise fashion.

Figure 6.8 shows the structure of stacked auto-encoder we use, the vd dimensional

output of the encoder network is treated as new visual features. To train the stacked auto-

encoder, we adopt layer-wise training strategy. First, we train an auto-encoder with one

hidden layer, by applying original visual feature as both input and output. Next, We feed

the images to this encoder network and use the output of hidden layer (or we say encoder

network) as input and output for training the second auto-encoder, so on and so forth.

Finally, we can acquire the feature vector.

Figure 6.8: Auto-encoder

Modeling Social Influence. Social closeness has been proven to contribute to the effec-

tiveness of various prediction and recommendation tasks [89, 90]. Apart from modeling

visual, topic and geo preference, we are also interested to explore how we will be informed
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by preference of socially similar user. We crawled each user’s contact and groups through

Flickr API. We consider group and contact as two forms of social connection. Addition-

ally, we assume images that are liked by same group of users to be more similar than

otherwise.

User-user relation derived from group. When two user have similar membership of the

groups, we assume their preference for images are more alike than those who are not.

Similarly, if two users have similar contact friends, we consider their preferences to be

more similar than those who are not. Since groups and contacts are all unique for each

user, we adopt Jaccard similarity to measure the user closeness where users are represented

as a vector of groups that she joined or the contacts she has, respectively. And the user

similarity is defined as the sum of similarity based on group simg and similarity based on

contact simc:

sim(ui, uj) = simg(ui, uj) + simc(ui, uj)

We incorporate these relations as a regularization term to objective function:

N∑
i=1

∑
l∈U i

social

sim(ui, ul)‖pi − pl‖
2

(6.10)

pi, pl are the latent user factor, and U i
social is the set of her similar users. When two

users are socially similar, the regularization forces the difference between the latent factor

of two users to be closer. We use the 25 closest neighbors for computational efficiency.

Image-image relationship. When two images are favored by the same group of users, we

assume these images are more similar than those that are not. With this assumption, we
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have the following regularization term to objective function:

N∑
j=1

∑
l∈Ijsim

sim(ij, il)‖qj − ql‖
2

(6.11)

where we use Jaccard similarity for image similarity sim(·). When sim(ij, il) is large, the

difference between latent image factor qj and ql is forced to be small. We further denote

the sum of equation 6.10 and Equation 6.11 as S.

6.5 From NPR to C-NPR

This evidence of clear variation in user preference motivates our need to augment NPR.

Formally, with the contextual feature vector f̄i for image i, we then seek to uncover user’s

preference latent vector fu to f̄i such that the vector product fu ◦ f̄i captures how user

preference is aligned with the image’s contextual features. Concretely, we explore the

impact of three features – geo-location, topics, and visual features – on these preferences.

We modify the neural network structure of each branch in Figure 6.1 to accommodate for

Figure 6.9: NPR with Contextual Information

modeling contextual preference. The new architecture for a branch incorporating visual,
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geo, and topic contextual features and preferences is shown in Figure 6.9. Aside from the

user and image input, each category of contextual features of image v̄i, t̄i, ḡi is served as

an extra input. Each corresponding contextual preference hidden layer is fully connected

above user input and to be learned. Then the user’s preference to the contextual feature is

calculated with element-wise product to measure how feature and preference are aligned.

Specifically, visual topic, geo latent vector of user uh are calculated as

vh = Wvuh, th = Wtuh, gh = Wguh (6.12)

where Wv, Wt, Wg are the weight matrices. The visual, topic, geo preference of user uh

to image ij are

evhj = vh ◦ v̄j

ethj = th ◦ t̄j

eghj = gh ◦ ḡj

(6.13)

Then the general preference mhj and contextual preferences are concatenated in the merge

layer. Formally:

m′
hj =

[
mhj evhj ethj eghj

]T (6.14)

Finally, the merge layer is further connect to a single neuron dense layer as before. The

updated preference score is

rhj = a(W ′m′
hj + b1) (6.15)

Additional contextual information about image can be incorporated following the same

step as stated above. In summary, each new feature vector is served as an extra input

to the neural network, and a corresponding preference embedding layer is augmented on

top of user input. Then element-wise product is adopted to model consistency between
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preference and intrinsic property, followed by concatenation of all preference components

and weighted sum.

6.6 From BPR to C-BPR

In addition to updating NPR with contextual information, we can also integrate these

new factors into BPR. Indeed, a visual preference-enhanced version of BPR has been pre-

viously introduced by He et al.[94], where the basic matrix factorization model in equation

6.1 is extended to a visual-enhanced model:

rui = pTuqi + vTu v̄i + bi (6.16)

where vu is user’s visual preference latent vector, and v̄i is the visual feature of the image.

The inner product vTu v̄i indicates how user’s visual preference align with the visual ap-

pearance of the image. If the two components align well, the resulting rating score would

be higher, and vice versa.

Similarly, we can define a topic-enhanced model as:

rui = pTuqi + tTu t̄i + bi (6.17)

where we assume each user has topic preference latent vector tu where each dimension

represents the preference to some topic keywords, and each image has a topic feature

vector t̄i, representing topic properties of the image. The inner product tTu t̄i captures the

coherence between topic interest of user and topic theme of the image. The topic enhanced

model put emphasize on topic matching.

We can define a geo-enhanced model as:

rui = pTuqi + gTu ḡi + bi (6.18)
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where gu is a user’s latent geographic preference vector with each element corresponding

to u’s preference for a region, and ḡi is the geographic characteristic vector of pi, encoding

the influence from other locations to pi. To note, all images from the same region as i share

the same ḡi. The geo-enhanced model use the inner product gTu ḡi to account for the user’s

preference for image belonging to a region. In this way we can recommend more images

from unpopular regions which alleviates sparsity.

In total, we additionally integrate topic and geo factors describing user u’s preference

for image i as:

rui = pTuqi︸︷︷︸
general

+vTu v̄i︸︷︷︸
visual

+ tTu t̄i︸︷︷︸
topical

+ gTu ḡi︸︷︷︸
geo

+ bi︸︷︷︸
bias

(6.19)

One reason for such explicit modeling of the three side information is there exists

no evidence to show that they are included in the basic latent space. It guarantees more

diverse recommendation by incorporating visually, geographically, and topically related

images even though they are potentially appealing, thus providing an offset to the effect of

sparsity.

6.6.1 Learning the Model

The objective function L to maximize is:

∑
uh∈U ,ij∈Ph,ik∈Nh

(
ln
(
δ(rhj − rhk)

)
− λΘ‖Θhjk‖2 − λsShjk

)
(6.20)

The set of parameter Θ to be learned is {pu, qi, vu, tu, gu, bi} for all users and images.

We apply stochastic gradient ascent for maximizing the objective. In each iteration, for

every tuple (uh, ij, ik) in training dataset, we update each parameter by taking a step along

the ascending gradient direction in the following fashion:

Θt+1 = Θt + η
∂Lhjk
∂Θ
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where Lhjk is the component in L corresponding to (uh, ij, ik). In more details, we list

partial derivative for each parameters:

as
∂ ln(δ(x))

∂x
=

1

1 + ex
, let ϕ =

1

1 + erhj−rhk

Update for user latent factor ph

∂Lhjk
∂ph

= ϕ(qj − qk) + λuph + λs
∑

l∈Uh
social

sim(uh − ul)(ph − pl)

Update for image latent factors qj and qk

∂Lhjk
∂qj

= ϕph + λiqj + λs
∑
l∈Ijsim

sim(ij − il)(qj − ql)

qk is updated similarly.

Update for visual, topic and geo preference latent factors vu, tu, gu

∂Lhjk
∂vj

= ϕ(vj − vk) + λvvj

tu and gu are updated similarly, with regularization coefficient λt and λg.

Update for image bias term bj and bk

∂Lhjk
∂bj

= ϕ− λbbj

bk is updated similarity.
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6.7 Experiments

In this section, we conduct a set of experiments to evaluate neural personalized image

recommendation. Specifically, we first introduce the data preparation workflow and basic

experimental setup. Then we compare NPR with baseline models, followed by reporting

performance of contextual enhanced models. We drill down to discover the impact of each

category of contextual information. We further look into the performance of the proposed

model in the typical cold start scenario. Finally, we discuss the characteristics of NPR and

BPR in terms of amount of training data required and convergence rate.

6.7.1 Data

The dataset we use for evaluation is based on the Flickr YFCC100M dataset [158].

We select images with geo-coordinates and that are located in the US mainland. We then

circumscribe the image with machine tags outdoor, nature, landscape, art. We further

crawl the image “likes” from the Flickr API and we select images with greater than 30

likes overall and users with more than 10 liked images. We also crawled social information

includes groups and contacts for each user.

The resulting datasets for experiments are listed in Table 6.1, where the sparsity for the

small dataset and large dataset is 0.96% and 0.16%, respectively, which means only 0.96%

and 0.16% of the possible user-image relation is available. These two datasets represent

two different levels of feedback scarcity. And effective sparsity for training data is half

of the reported value after train/test split. The geographical heatmap of the large dataset

is shown in Figure 6.6; we notice the majority of images come from populated areas or

famous tourist sites, as shown in red.
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Dataset #Users #Images #Feedback Sparsity
Small 1,891 2,013 36,827 0.96%
Large 27,782 21,720 961,506 0.16%

Table 6.1: Post-processed Datasets Statistics

6.7.2 Experimental Setup

All experiments of BPR-based models were performed on a desktop machine with

60GB memory and 8 core Intel i7-4820k3.7GHz. NPR-based models are trained using

Nvidia GeForce GTX Titan X GPU with 12 GB memory and 3,072 cores.

Constructing the Training Set. We randomly partition the liked images of each user into

50% for training and validation and 50% for testing. The validation set split ratio is 0.3.

The loss on validation set is used for tracking training progress. The training set consists of

tuples (h, j, k) where h, j, k correspond to user index, positive image index, and negative

image index, respectively. Including every pair of positive and negative combination for

each user in training would be costly. Yet practically, evaluation metrics saturate even

with a much smaller set of training tuples. Thus we propose to use a sampling method for

generating training tuples.

To generate each training tuple, we first randomly select a user u from user set U ,

then randomly select a positive image ij from Pu, and finally randomly select k negative

image ik from Nu to pair with the ij . We will discuss the influence of k on performance

below. We repeat this process until generating the expected number of training data tuples.

All reported results are based on training over a set that sampling users to 5 times of the

number of positive feedbacks, with 10 negative images to pair for each positive sample.

Although it is very likely that we end up leaving part of the positive samples unused,

the model based on this sampling strategy exhibits better overall performance and requires

less training data to converge compared with sampling negatives for each positive sample.
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The model is trained in a balanced way among every user and not biased towards users

that have more likes.

Evaluation Metrics. We adopt precision@k, recall@k and F1-score@k for evaluating

personalized ranking. Precision measures the fraction of correctly predicted images among

the retrieved images. Recall measures the fraction of relevant images that have been picked

over the total relevant images. F1@k is a weighed average of Prec@k and Rec@k. All

measures are averaged across all users.

Prec@k =
1

N

N∑
i=1

|GT (ui) ∩ Pred(ui)@k|
k

where GT (ui) is the ground truth liked image for ui in test data, and Pred(ui)@k is the

top k recommended images for ui.

Rec@k =
1

N

N∑
i=1

|GT (ui) ∩ Pred(ui)@k|
|GT (ui)|

F1@k =
2 · Prec@k ·Rec@k
Prec@k +Rec@k

Baselines.

• NCF. Neural collaborative filtering is a pointwise model that composed of multi-layer

perceptron and generalized matrix factorization components [100]. All the configura-

tion adopted is similar according to original paper including 4 hidden layer, 64 hidden

unit and pre-training. We sample 5 negative for each positive which shows to be optimal

in the paper.

• Multi-layer perceptron based pairwise ranking model. A personalized pairwise ranking

model based on multi-layer perceptron was introduced [101]. We adopt a setting with 3
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hidden layers, with each layer containing 200,100,100 units, respectively.

• BPR and its variants. We consider the basic pairwise ranking for matrix factorization

model shown in Equation (6.1). In addition, we can also integrate the contextual factors

into traditional BPR. Indeed, a visual preference-enhanced version of BPR model has

been previously introduced by He et al.[94]. Hence, we also consider a visual (VBPR),

topic (TBPR), geo (GBPR), and combined version of BPR (C-BPR).

• NPR. This is the neural network based model for personalized pairwise ranking as

shown in Figure 6.1.

• NPR-noact. This is the NPR model without nonlinear activation.

• Contextual NPR. This includes NPR considering only visual (VNPR), topic (TNPR),

and geo (GNPR) contextual information.

Reproducibility. For all models, the user and image latent factor dimension are set to 100

empirically for a trade-off between performance and computation complexity as well as

for fair comparison. The number of visual feature dimensions is 128, the number of topic

dimensions is 100 and 500 for small dataset and large dataset respectively, the number of

geographic dimensions is the same as the number of geo clusters which is 155 and 217 for

small and large dataset respectively.

For the NPR-based approach, we adopt mini-batch gradient descent where the batch

size is set to 1,024. The dropout rate for small dataset was set to 0.6 and for large dataset

was set to 0.45. The regularization parameters are fine-tuned. For example, on large

dataset λu=λi=1e−7, λv=λg=1e−6, and λt=1e−5. For BPR-based approaches, we initial-

ize the learning rate to 0.02 and decrease it to 97% its current value in each consecutive

iteration, which has been shown to be effective to help convergence in fewer iterations

[49]. And generally, training converges within 80 iterations. The regularization parameters
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are fine-tuned and shared among all BPR baselines, concretely, λu=λi=λb=0.02, λv=λg=

λs=0.01 and λt=0.1.

6.7.3 NPR vs. Alternatives

We begin by investigating the quality of NPR versus each of the baselines for per-

sonalized recommendation without contextual information. We report the average pre-

cision@k, recall@k for k at 5, 10, 15 in Figure 6.10 for small dataset and 6.11 for large

dataset. We observe that NPR and BPR are neck and neck, with BPR slightly superior (less

than 1%) in precision and recall. This indicates BPR-MF is a strong baseline. Although

MF component is linear, the logistic objective function brings in nonlinearity. Both ap-

proaches consistently substantially outperform other baseline approaches in precision and

recall. Moreover, the pairwise method generally yields better results. For example, NPR

improves the precision and recall over the pointwise model NCF by 50% for the large

dataset and improves the precision and recall. This illustrates the relaxed assumption for

unobserved samples helps to reduce the recommendation bias. The nonlinear activation

function lead to an average of 3.8% increase in precision and 3.3% increase in recall on

small dataset, and even larger 11.5% and 12.5% increase in precision and recall on the

large dataset. By bringing in nonlinearity, the representativeness of the model is enriched.

We observe the performance metrics are generally lower on the large dataset; the reason

is that recommendation becomes more difficult given more images and increasing spar-

sity. However, the performance gap between approaches expands with increasing sparsity,

indicating the great opportunity for the proposed approach when feedback is lacking.

6.7.4 Comparing Contextual Enhanced Models

To evaluate the effect for incorporating each category of contextual information in rec-

ommendation, we present precision and recall at k for each contextual enhanced NPR and
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Figure 6.10: Average Precision and Recall for Base Models on Small Dataset

Figure 6.11: Average Precision and Recall for Base Models on Large Dataset

Method p@5 p@10 avg ∆ r@5 r@10 avg ∆
NPR 0.1280 0.1137 - 0.0531 0.0909 -
VNPR 0.1354 0.1177 +4.6% 0.0563 0.0952 +5.4%
TNPR 0.1411 0.1250 +10.1% 0.0599 0.1021 +12.6%
GNPR 0.1326 0.1178 +3.6% 0.0564 0.0953 +5.5%
C-NPR 0.1504 0.1317 +16.6% 0.0644 0.1081 +16.6%

Table 6.2: Integrate Contextual Information in NPR
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Method p@5 p@10 avg ∆ r@5 r@10 avg ∆
BPR 0.1302 0.1148 - 0.0544 0.0920 -
VBPR 0.1366 0.1188 +4.2% 0.0577 0.0961 +5.3%
TBPR 0.1384 0.1217 +8.5% 0.0588 0.0992 +8.0%
GBPR 0.1331 0.1171 +2.1% 0.0562 0.0950 +3.3%
C-BPR 0.1445 0.1255 +10.2% 0.0619 0.1034 +13.1%

Table 6.3: Integrate Contextual Information in BPR

BPR models over large dataset in Table 6.2 and 6.3 3. We observe that modeling additional

contextual factors improves over the basic NPR and BPR method. Concretely, TNPR gives

an average improvement of 10.1% in precision and 12.6% in recall over NPR baseline on

the large dataset. This indicates that rich textual side knowledge acts as an effective filter

for sifting relevant images. VNPR performs slightly better than NPR, with an improve-

ment of 4.6% and 5.4% in precision and recall. The lesson here is learning personal visual

preference does help to connect users with images that have appearance agreement. Fur-

thermore, GNPR gives an average of 3.6% percent and 5.5% percent increase in precision

and recall. This implies modeling user’s geographical region which is consistent with our

observation in Section 6.4.1, where we notice the user’s strong geographical preference.

While on social related image sharing sites, users do have connections focusing around

their home location and places they are familiar with. Images in these regions may be

more likely to be related with the user. Finally, we observe that C-NPR experiences an

average of more than 16% increase in precision and recall. This implies that the proposed

model is effective in integrating various categories of contextual information jointly to

make better recommendation. We observe similar trends in C-BPR models.

For social enhanced model, we incorporated user group and user contact social in-

formation to the model as regularization for user latent factor. Social information been

3We delay reporting and discussing in here for models incorporating social signal due to its imperceptible
contribution.
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proven to contribute to the effectiveness of various prediction and recommendation tasks

[89, 90]. However, we observe from Table 6.4 that, for example in BPR based models, it

only slightly improves over the base model by an average of 0.22% in precision and 0.87%

in recall. And for the overall model, incorporating social only has 0.2% and 0.3% average

improvement over its counterpart in precision and recall. However, the computation cost

for incorporating social information is very high. From our experience in actual experi-

ment, it almost tripled the time cost of training the model without social incorporated. We

thus omit discussion of social enhanced models further in this scenario and we attribute

such behavior to that the social ties in Flickr are weak.

Method p@5 p@10 avg ∆ r@5 r@10 avg ∆
BPR 0.1302 0.1148 - 0.0544 0.0920 -
SBPR 0.1302 0.1153 +0.22% 0.0547 0.0931 +0.87%
TVGBPR 0.1445 0.1255 +10.2% 0.0619 0.1034 +13.1%
TVGSBPR 0.1450 0.1256 +10.4% 0.0623 0.1034 +13.4%

Table 6.4: Integrate Social Information in BPR

6.7.5 NPR and BPR with Contextual Information

First, even though the NPR base model performs similarly with BPR, we observe that

C-NPR leads by an average of ∼4.5% higher precision and recall over C-BPR on the

large dataset and ∼1.5% increase on the small dataset. We ascribe this improvement to

the neural network based model flexibly adjusting weights for each feature dimension and

nonlinear activation enriching the expressiveness. Second, the higher increase for the large

dataset indicates the C-NPR model could be more beneficial than the C-BPR model for

recommendation under the real-world scenario of extreme feedback sparsity.
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Method p@5 p@10 r@15 r@5 r@10 r@15
C-NPR(S) 0.2987 0.2371 0.1977 0.1866 0.2842 0.3471
C-BPR(S) 0.3034 0.2335 0.1945 0.1874 0.2801 0.3419
C-NPR(L) 0.1504 0.1317 0.1192 0.0644 0.1081 0.1430
C-BPR(L) 0.1445 0.1255 0.1141 0.0619 0.1034 0.1363

Table 6.5: Compare Contextual NPR and Contextual BPR

6.7.6 Cold Start

In this experiment, we focus on the cold-start scenario which is commonly encountered

in recommendation where we have a limited number of positive user feedbacks for training

the model. Here we select users who have fewer than seven liked images to examine the

performance of the proposed model on large dataset in cold-start setting. Interestingly we

observe in Table 6.6 that the proposed C-NPR model outperforms base NPR model by

average ∼21% in precision and recall. Additionally, each of contextual models exhibit

better performance than the NPR baseline, with TNPR taking the lead showing an average

improvement of∼13% in precision and recall. This implies these contextual factors help to

alleviate the sparsity in the cold-start setting. Moreover, the lager improvement compared

with ordinary setting again validates our claim that the contextual information is especially

helpful when feedback is rare.

Method p@5 p@10 p@15 r@5 r@10 r@15
NPR 0.0723 0.0598 0.0518 0.0643 0.1063 0.1381
VNPR 0.0775 0.0628 0.0554 0.0683 0.1131 0.1455
TNPR 0.0820 0.0678 0.0584 0.0731 0.1206 0.1558
GNPR 0.0775 0.0644 0.0563 0.0685 0.1120 0.1455
C-NPR 0.0893 0.0721 0.0626 0.0769 0.1282 0.1668

Table 6.6: NPR Cold-start Performance
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Similarly, for BPR based alternatives, we notice an average of 16% increase in pre-

cision@10 and recall@10 by incorporating contextual information in Table 6.7. Topic

information contribute most to base model with an average improvement of 8.5% in pre-

cision and 6.7% in recall.

Method p@5 p@10 p@15 r@5 r@10 r@15
BPR 0.0741 0.0602 0.0552 0.0659 0.1069 0.1392
VBPR 0.0800 0.0635 0.0548 0.0712 0.1129 0.1460
TBPR 0.0832 0.0653 0.0562 0.0731 0.1141 0.1468
GBPR 0.0779 0.0630 0.0544 0.0786 0.1043 0.1449
TVGBPR 0.0863 0.0696 0.0591 0.0768 0.1240 0.1577

Table 6.7: BPR Cold-start Performance

6.7.7 Number of training samples

In this section, we explore how performance of different models is influenced by the

amount of training data used as well as by the number of negative samples for each posi-

tive. As mentioned in Section 6.7.2, the training data generation procedure is as follows:

for NPR-1 and BPR-1, we first randomly sample a user, then sample one positive (liked)

image for the user and followed by one negative (unobserved/ disliked) image of the user.

For NPR-10 and BPR-10 instead, we randomly sample ten negative image for each pos-

itive image while keeping other steps the same. The total number of training tuples gen-

erated is measured in terms of the number of positive feedbacks in original dataset. In

Figure 6.12, the horizontal axis represents the number of times (of positive feedback) to

sample and the vertical axis is the F-1 score@10. We observe that BPR-1 and NPR-1

achieve increasing F-1 score with gradual increase in training data. However, the per-

formance of NPR-1 and BPR-1 models have disparate properties. First, the increase for
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NPR-based model is relatively gentle, while steeper for BPR based model. Furthermore,

the NPR model performs much better, for example, it gains 0.23 for F-1 score@10 at

5 times of sampling while the BPR-based model only reaches 0.17. The difference in

performance is more severe when training data is lacking. Interestingly, we also notice

that neural network based model generally achieves better performance with inadequate

training data. We attribute this to linear model has less powerful expressiveness, hence in-

curring overfitting more easily and vice versa for nonlinear models. The performance gap

doesn’t decrease even after we adjust the regularization parameters to their optimal setting.

To note, the same phenomenon was observed on the large dataset. After we decoupled the

negative samples sampled for training, we notice better F1 score for both approaches, yet

the performance curve gradually saturates as we continue serving more training data. This

indicates the models would stop improving as size of training data is no longer the bot-

tleneck. To note, all aforementioned results are based on training by sampling 5 times of

positive samples and 10 negative samples per positive. To our knowledge, this is the first

effort to compare such differences in behavior of these two categories of models, and we

hope this finding will provide some reference for further research.

6.7.8 Feature Dimension Reduction

We compare PCA and stacked AE for visual dimension reduction, which are further

compared to the model trained with the original 4,096 features. To note, all results reported

in this section are based on the BPR-based approach. From Table 6.8, we observe that

PCA and the auto-encoder perform competitively to each other, with PCA slightly better

on the large dataset and AE better on the small dataset. This implies that the nonlinear

nature of AE doesn’t make a big difference with linear nature of PCA in this scenario

as the original features are already generated with nonlinear CNN. An important finding

is that adopting the 128 dimension visual vector achieves remarkably good performance
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Figure 6.12: Performance w.r.t Training Sample Size

as compared with directly using the 4,096 dimension visual features, although the 128

dimensions only account for 53% of the variance according to PCA.

Approach Dataset F-1@5 F-1@10 F-1@15

PCA 128
Large 0.0812 0.1063 0.1171
Small 0.2281 0.2508 0.2439

Auto Encoder 128
Large 0.0808 0.1062 0.1166
Small 0.2290 0.2501 0.2441

Original CNN 4096
Large 0.8410 0.1064 0.1173
Small 0.2279 0.2497 0.2438

Table 6.8: Visual Dimension Reduction
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Similarly, we compare LDA[163] and PCA as a form for reducing the dimensionality

of tags. LDA discovers latent topic composition of tag set associated with each image.

Each identified topic is considered as a new dimension in the new feature space. Table 6.9

shows the results. We observe that feature generated by PCA helps the model performs

better on both the large and small datasets. Specifically, we consider 100 dimensions for

the small dataset since there are fewer distinct user tags, while we compare 200 and 500

dimensions for the large dataset since tag set is more diverse. We observe LDA generates

sparse feature vectors, and the topics it identifies sometimes overlap or difficult to interpret.

The reason could be it’s challenging to set a proper number of topics and the tag set is

noisy. Additionally, we notice with different dimensions of feature vectors generated from

PCA, the corresponding model yields different results. For example, the 500 dimensions

feature helps reach 0.1193 for F-1@10, better than the 0.1075 achieved by the model using

200 dimensions feature. This is dissimilar to the case for visual features, where reducing

the dimension doesn’t harm performance much. The reason could be the number of tags

are far more than the dimension of visual features, and tags are unorganized and stochastic.

Dataset Approach F-1@5 F-1@10 F-1@15

Small
PCA 100 0.2271 0.2543 0.2477
LDA 100 0.2280 0.2514 0.2426

Large

PCA 200 0.8070 0.1075 0.1148
LDA 200 0.0767 0.1023 0.1130
PCA 500 0.0825 0.1093 0.1198
LDA 500 0.0798 0.1069 0.1172

Table 6.9: Topic Dimension Reduction
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6.8 Summary

In this chapter, we tackle the problem of personalized image recommendation. We

propose Neural Personalized Ranking (NPR) – a new neural network based personalized

pairwise ranking model for implicit feedback, which incorporates the idea of generalized

matrix factorization. We further build an enhanced model by augmenting the basic NPR

model with users’ multiple contextual preference clues and derive corresponding features

that can be incorporated into both the NPR and BPR frameworks to better uncover user

preferences. Through extensive experimental validation, we demonstrate the proposed

NPR model significantly outperforms several state-of-the-art approaches. Moreover, we

observe the superiority of contextual enhanced NPR model over the baseline model.
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7. SUMMARY AND FUTURE WORK

In this section, we present a summary of this dissertation and potential future research

directions.

7.1 Summary

In this dissertation research, we have focused on the emerging class of geo-social sys-

tems, that are fundamentally shaped by the intrinsic mutual reinforcement relationship

between geography (geo) and user behaviors (social). These systems are noted for their

massive amounts of geo-tagged user activities – including user checkins, user-contributed

multimedia (like text, images, and videos), and user tagging of other users and resources.

While the capabilities of these geo-social systems are beginning to grow, there is signif-

icant research gap in understanding, modeling and leveraging geo-tagged user activities

and in identifying the key factors that influence the success of new geo-social systems.

Hence, this dissertation has explored three key scenarios – user profiling, ranking and

recommendation. In summary, this dissertation has made three unique contributions:

• First, we proposed two frameworks for profiling location and user in geo-social system.

Specifically, we proposed and evaluated a community-based framework for tackling the

problem of geospatial tag distribution estimation, which is a key component of many

new location-augmented search, retrieval, and mining applications. Through experi-

mental investigation, we found that geo-locations have a tendency of sharing similar

“ideas" and forming geo-spatial communities. Meanwhile, we demonstrated how our

community discovery approach and smoothing strategy leads to high-quality hashtag

distribution estimation. Additionally, we introduced a location-sensitive folksonomy

generation framework toward the goal of improved user profile estimation. Our key

motivating intuition is that spatial variation of user tagging manifests in how users or-

141



ganize and apply tags, and is critical for building more robust folksonomies. Through

extensive experiments, we have demonstrated the impact of such a location-sensitive

folksonomy on finding relevant tags for user profiling. We have seen that the location-

sensitive folksonomy-informed user profiling is more effective in finding relevant tags,

and learning to rank strategy is helpful for optimizing weights of each feature and leads

to high quality user profile tags.

• Second, we have proposed and evaluated a geo-spatial learning-to-rank framework for

identifying local experts that leverages the fine-grained GPS coordinates of millions of

Twitter user and carefully curated Twitter list data. We introduced five categories of

features for the proposed learning model, including user-based features, local authority

features, tweet content features, list-based features and a group of location-sensitive

graph random walk features that capture both the dynamics of expertise propagation

and physical distances. We adapt these features into the state-of-the-art learning to

rank approach LambdaMart. Through extensive experimental investigation, we find the

proposed learning framework which intelligently assigns feature weights can produce

significant improvement compared to previous methods. By investigating the features,

we found high-quality local expert models can be built with fairly compact features.

Additionally, we observed promising results for the reusability of learned models.

• Third, we tackled the problem of personalized image recommendation in geo-social

system like Flickr and Instgram as part of our effort toward enhancing geo-social sys-

tems. We proposed Neural Personalized Ranking (NPR) – a new neural network based

personalized pairwise ranking model for implicit feedback, which incorporates the idea

of generalized matrix factorization. We further build an enhanced model by augmenting

the basic NPR model with users’ multiple contextual preference clues and derive cor-

responding features. These contextual signals – including geographical features, user
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tags, and high level image features – can be incorporated into both the NPR and al-

ternative frameworks, such as Bayesian Personalized Ranking, to better uncover user

preferences. Through extensive experimental validation, we demonstrated the proposed

NPR model significantly outperforms several state-of-the-art approaches. Moreover, we

observe the superiority of contextual enhanced NPR model over the base model.

7.2 Further Study

• profiling, ranking and recommendation. In chapters 3, 4, 5 and 6, we discussed

frameworks for location-aware profiling, ranking and recommendation. There we focus

on a single domain, each with an inherently focused source of features for simplicity

and compactness of modeling. Future research can look into incorporating alternative

source of information into the current frameworks. First, for location profiling, we can

study geo-spatial crowds or community formation in alternative social media platforms

(e.g., Pinterest) and to incorporate alternative signals of community formation, includ-

ing activity patterns, temporal changes of idea flow, and topic-sensitive signals (e.g.,

considering only political hashtags). Second, future work can combine data from dif-

ferent social media platforms to better deal with sparsity in user profiling and expertise

retrieval. For example, now there are increasing number of services that accept au-

thorized login with a Twitter account, providing an opportunity for acquiring diverse

cross-domain information about each user and complementary evidence of local exper-

tise. Third, we believe recommendation performance will be improved, especially for

new users, by incorporating user demographic information (e.g., age, education) and

behavior patterns (e.g., views, shares and comments). Additionally, we would like to

extend the current model with additional contextual information, for example, model-

ing the temporal evolution of preferences by revising certain model components with

LSTMs.
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• Other location-aware applications. In this dissertation research, we look at enhancing

geo-social systems from three important use cases. Aside from these efforts, there ex-

ist many impactful application scenarios where we can potentially leverage the unique

characteristics of geo-social systems to further enhance over their existing functional-

ity. For example, real-time location-sensitive emergency detection and response. For

example, during Hurricane Harvey, many victims post their locations and images on

social media in hope to be rescued. It will be very helpful if we can synthesize some

of the key information from these multi-modal data including time, location, text, and

image or video and the geo-crowd formation and their behavior to evaluate the extent

of such destruction from the overwhelming noise in real-time systems, providing guide-

line for rescue coordination and organization. This will require algorithms that combine

both social media stream analysis capabilities with models of the dynamics of crowd

behavior.
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