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ABSTRACT 

 

The most difficult challenge in genetic epidemiology is to characterize the gene 

interactions that affect a complex disease. DNA microarray has made it easier for 

engineers to study gene expression profiles of numerous genes by describing the complete 

genomic activity, but extraction of useful data without losing information poses a major 

challenge. Various clustering algorithms have been applied to these microarray profiles to 

identify the gene interactions based on various factors such as a stimuli or genes affecting 

a disease. However, only a few of them have been applied to find the interactions between 

the genes in the same cluster. Several methods have been used to predict complex gene 

networks, and they have been largely successful, but it cannot be inferred that the pair of 

genes interact every time. Gene interactions can be affected by various environmental 

factors, stimuli, or inactivating genes.  This thesis aims to address this challenge by 

proposing a method that provides a probabilistic analysis of the interaction between a pair 

of genes. The proposed method uses Support Vector Clustering to classify a pair of genes, 

and the clusters formed are used to analyze their interaction. The algorithm is tested using 

yeast microarray data. The results found are validated using biological literature surveys. 
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1. INTRODUCTION AND CURRENT STATE OF KNOWLEDGE 

 

1.1 Introduction 

DNA microarray technology has become a vital tool for engineers and biologists 

to analyze gene interactions. Its main purpose is that it can study many genes at the same 

time. The raw microarray is represented into matrices containing gene expressions and 

cell by cell samples. In the transformed data, columns represent various samples, 

conditions, stimuli, or sometimes environmental factors, and rows usually denote the 

genes. The uniqueness of these matrices is that rows consisting of genes are high 

dimensional, and columns with the samples have relatively low dimensions. The major 

challenge faced by the engineers is to extract useful information as efficiently and as 

rapidly as possible without any loss of data. Various critical information such as genetic 

mutations, pathways and environmental effects can be discovered from micro-array data. 

Gene interactions are also known as epistasis. Interaction between two genes is 

present when two mutations have a combined effect which is not exhibited by either 

mutation alone. The aim of studying gene interactions is to discover critical drug targets. 

The knowledge of the pair wise gene interactions is particularly important because these 

influence various human diseases, and many human genetic landscapes are still not 

characterized or are unknown. Thus, it is important to study the interactions between genes 

to uncover the underlying architecture behind complex diseases. 
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1.2 Current State of Knowledge 

As discussed in [1-3], gene expression data have been classified into different 

clusters using numerous clustering algorithms based on various criteria. Clustering can be 

done using the k-means method used in [4], or by using hierarchical algorithms by 

grouping data points according to some similarity criteria or distance measure. Various 

other methods such as graph theory [5], physically driven algorithms [6], and density 

estimation based methods [7] have also been used to cluster gene expression data. 

Various other clustering algorithms (e.g., Cluster Affinity Search Technique 

CAST [8], Minimum Spanning Tree MST [9], Highly Connected Subgraphs HCS [10]) 

have been able to successfully carry out molecular profiling of human diseases, especially 

cancer, by clustering gene expression data. These methods have been used to encode 

genetic information responsible for various cellular cycles, metabolism, and signal 

transduction pathways. However, these methods do not provide a probabilistic tool to 

analyze the interaction between a pair of genes. 

 Gene regulatory networks are also identified by using mining methods [11] and 

log-linear modeling [12]. Gene expressions are first discretized into categories such as 

under or over expressed depending on a control factor. If the expression level is 

comparatively higher or lower than this control it is categorized into different levels. After 

the data is categorized, log-linear or association rule methods are applied. A lot of 

information is lost while discretizing the data into categories. Moreover, it becomes 

inappropriate to use these models on the microarray data because of a high dimensionality 

of genes and a low dimensionality of samples. Association rule mining assumes the 
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amount of transactions to be far more than the items. Similarly, the log-linear modeling 

assumes the size of the samples should be very large as compared to the size of cells.  

Dougherty et al. [13] proposed a general statistical approach to finding gene 

interactions using the coefficient of determination method. 

In this thesis, support vector approach based on [14] is used as the clustering 

algorithm. The algorithm computes contours by characterizing the support of a highly 

dimensional distribution as in [15]. These contours surround the data points, and act as 

cluster boundaries [16]. The algorithm was used on a known set of interacting genes from 

the yeast microarray data that are backed by solid biological explanations. 
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2. THE SUPPORT VECTOR CLUSTERING (SVC) ALGORITHM 

 

Our SVC algorithm uses a Gaussian kernel to map data points from data space to 

a feature space. In this highly dimensional feature space, we look for the smallest sphere 

that encloses the image of the data points from the data space. We map this sphere back 

to our data space, and it is found that contours are formed enclosing some data points. 

These contours act as the cluster boundaries. Data points inside a contour belong to the 

same cluster. The algorithm uses the width parameter of the Gaussian kernel to vary the 

cluster boundaries. A soft margin constant is introduced to deal with the outliers. Using 

the outliers, algorithm makes sure that all the points are not enclosed by the sphere in the 

feature space.  

 

2.1 Forming Cluster Boundaries 

We follow [16] to develop a support vector description of a data set, which acts as 

the basis of our clustering algorithm. Let {xi}   be a data set of N points, with   ℝ2, 

where ℝ2 is the data space. We use a non-linear transformation ϕ from  to some high 

dimensional feature space to look for a smallest sphere enclosing the points with center at 

a and radius R > 0. To obtain such sphere we minimize R2 by defining the error function: 

F(R, a) = R2                                                                                                                    (1) 

with the constraints: 

‖ϕ(xj) − a‖
2

 ≤  R2, j                                                                                        (2)                                             

where ‖ . ‖ is the Euclidean norm. 
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To allow the possibility of outliers in the training set, the distance between the 

center a and xj should not be made strictly smaller than R2, but it the larger distances 

should be penalized. To do so, slack variables 
j
 are incorporated as soft constraints. This 

changes the problem to: 

F(R, a) = R2 + C ∑ 
j
                                                                                              (3) 

with constraints that all objects are enclosed in the sphere given by: 

‖ϕ(xj) − a‖
2

 ≤  R2 + 
j
, j                                                                                  (4) 

with 
j
   0. The parameter C is the soft margin constant.  

The constraints in Eq. (4) can be integrated with Eq. (3) by introducing the 

Lagrangian multipliers: 

      L (R, a, 
j
, μj, j

) =  R2 − ∑ (R2 + 
j

− ‖ϕ(xj) − a‖
2

) 
jj − ∑ 

j
μj + C ∑ 

j
,            (5) 

where βj ≥ 0 and μj ≥ 0 are Lagrange multipliers, C is a constant, and C ∑ 
j
 is a penalty 

term. L should be minimized with respect to R, a and 
j
. Setting the partial derivatives of 

L with respect to R, a and 
j
 zero gives the following constraints: 

∂L

∂R
= 0:     ∑ βjj = 1                                                                      (6)                        

∂L

∂a
= 0:     a = ∑ βjj ϕ(xj)               (7) 

∂L

∂j

= 0:     βj = C − μj                                                                                                      (8) 

Using the Karush-Kuhn-Tucker (KKT) complementary conditions from Fletcher 

[17] result in: 
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
j
μj = 0,                        (9) 

(R2 + 
j

− ‖ϕ(xj) − a‖
2

) 
j

= 0.           (10) 

It is concluded from Eq. (10) that points with 
i

> 0 and βi > 0 lay outside the 

sphere in the feature space. From Eq. (9) we can infer that such a point has μi = 0 and 

from Eq. (8) we conclude that βi = C. This point is called the boundary support vector or 

BSV. Now, a point xi with 
i

= 0 will be mapped to the inside or to the surface of the 

sphere in the feature space. If for such a point 0 < βi < C, then from Eq. (10) it can be 

inferred that its image ϕ(xi) lies on the surface of the sphere. Such a point is called the 

support vector or SV. Therefore, when the points are mapped back to the data space the 

SVs lie on the boundary of clusters, BSVs lie outside the boundaries, and all other points 

are enclosed inside the boundary. It should also be noted that when C ≥ 1 there are no 

BSVs because of the constraint in Eq. (6). 

Using the constraints found in Eq. (6) - (8) and substituting them in Eq. (5) we get 

the following function with βj as the variable: 

W =  ∑ ϕ(xj)
2βjj −  ∑ βiβji,j ϕ(xi) . ϕ(xj).                                           (11) 

It can be noted found in the Eq. (11) that, ϕ(xi) appears in terms of inner products with 

another object ϕ(xj). As discussed in [18], dot products can be replaced by an appropriate 

kernel function. In our thesis, we are using the Gaussian Kernel: 

K(xi, xj) = exp (−q‖xi − xj‖
2

), q > 0,              (13) 

with width parameter q. Now using the kernel, the Lagrangian in Eq. (11) becomes: 

W =  ∑ K(xj, xj)βjj −  ∑ βiβji,j K(xi, xj).                                                                               (14) 
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We use the following to define the distance of the image of point x from the center a of 

the sphere in feature space: 

R2(x) = ‖ϕ(x) − a‖2.                                   (15) 

Using findings from Eq. (7) and the kernel definition we have: 

R2(x) = K(x, x) − 2 ∑ βjK(xj, x)j −  ∑ βiβji,j K(xi, xj).                    (16) 

with radius: 

R = {R(xi) | xi is a support vector}.                           (17) 

and contours defined by the set: 

{x | R(x) = R}.             (18) 

These clusters are interpreted as forming cluster boundaries. Eq. (17) is used to tag the 

points which act as SVs, BSVs, or the ones which are inside the clusters. 

 

2.2 Assigning Clusters 

A geometric approach involving the radius of the smallest sphere R(x) is used to 

differentiate between the points belonging to different clusters. If we have a pair of points 

belonging to two different clusters, we would find that a path connecting these two points 

should exit the sphere. This path must contain a segment of points z such that R(z) > R. 

We use this information to define the adjacency matrix Aij between pairs of points xiand xj 

with images in the feature space: 

Aij = {
1  if, for all z on the line segment connecting xi and xj, R(z) ≤ R

0 otherwise.                                                                                                 
       (19)    

We use A to define the clusters. 
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2.3 Shape of the Contours 

The shapes of the contours enclosing the data points in the data space are controlled 

by the following two parameters: q, the width parameter of the Gaussian kernel, and C, 

which is the soft margin constant.  

We can control the number of outliers by changing the values of C. When C = 1, 

outliers are not invoked thus clusters are separated without the outliers. It is found that as 

the scale parameter is increased the number of support vectors nsv increases. As a result, 

with the increase in the number of SVs the boundary fits data more strictly, and at some 

values of q, the contour breaks into an increasing number of clusters. 

From the constraints in Eq. (6, 12) it can be found that: 

nbsv <
1

C
,                 (20) 

where nbsv is the number of BSVs. Thus, it can be found that decreasing the value of C 

turns some of the SVs into BSVs.  

We use our SVC iteratively by starting with a minimal value of q and subsequently 

increasing its value. As the value of q increases the number of clusters also increases. This 

happens because with larger values of q, the Gaussian kernel describes the data with larger 

precision, but as the number of SVs increases and becomes excessive, several single 

clusters begin to form. At this point if we decrease the value of C, a few SVs are converted 

into BSVs, and its helps in the separation of contour. As C is decreased, it not only 

increases the number of BSVs, but also decreases their influence on the shape of cluster 

contours.  
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Thus, it is found that both q and C affect the number of SVs. For a fixed value of 

q, if the value of C is decreased, the number of SVs decreases since some of them are 

turned into BSVs and the cluster contours become smoother.  

 

2.4 Varying q and C 

As discussed in the previous section q and C affect the number of SVs. We would 

use the number of SVs as our criteria for finding clusters. In other words, q and C are 

systematically varied along a direction that guarantees a minimal number of SVs, and the 

number of SVs is used as an indication of a meaningful solution. 

We use SVC as a divisive clustering algorithm which can be found in [1], starting 

from a small value of q and increasing it. We can choose q as: 

q =
1

max
i,j

‖xi−xj‖
2                         (21) 

At this value of q, we get a sizeable kernel value with a single cluster. We start with C =

1, so that there are no outliers, and then vary the values of q and C as necessary based on 

data points.                                                  
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3. IMPLEMENTATION 

 

3.1 Kernel  

As discussed in the previous sections we are using the Gaussian kernel for our 

SVC algorithm. Our main aim from this thesis is to implement the SVC algorithm to find 

probabilistic interaction between a pair of genes. A pair of genes are said to be interacting 

or positively regulated if, when one gene is up-regulated then the other gene is also up-

regulated. In other words, if one gene is expressed then the other gene is also expressed. 

Similarly, we can also say that a pair of genes do not interact or have no correlation 

between them if, when one gene is expressed the other gene is not expressed or vice versa. 

We can infer from the above discussion that when the expression data of a pair of 

gene is plotted, then for an interacting gene pair data points should be along the x = y axis. 

We also conclude that for the noninteracting pairs, most of the data points should lie either 

on a line parallel to x axis or on a line parallel to y axis based on the gene expression 

profiles. 

Thus, we propose to use a Gaussian kernel with its orientation along the x = y axis. 

The chosen Gaussian kernel has a diagonal spread which is captured by its covariance 

values in the covariance matrix in the multivariate normal distribution. Figure 1 shows the 

Gaussian kernel used in the algorithm. It can be found in the figure that the Gaussian 

kernel has a strict diagonal spread which acts as an important similarity metric in 

clustering various interacting and noninteracting pair of genes. 
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Figure 1: Gaussian Kernel used in the SVC Algorithm 
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3.2 Yeast Microarray Data 

We use our SVC algorithm and the selected kernel on the yeast microarray data 

[19]. We selected two pairs each of correlated and non-correlated genes. Figure 2 and 3 

show the gene expression data plot between genes having positive correlation. We can 

conclude from these plots that data points are aligned along the x = y axis for interacting 

genes. Figure 4 and 5 show the gene expression data plot between genes having no 

correlation. It can be found from these plots that gene expression values are parallel to one 

of the axes. 

 

 
 

Figure 2: Gene Expression Data for the Pair YMR095C - YMR096W 
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Figure 3: Gene Expression Data for the Pair YMR094W - YMR096W 

 

 

Figure 4: Gene Expression Data for the Pair YMR029C - YMR096W 
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Figure 5: Gene Expression Data for the Pair YMR029C - YMR095C 
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4. RESULTS 

 

In this section we show the performance of the SVC algorithm on the genes 

selected from the microarray data. Based on the values of the number of SVs, BSVs, and 

number of points lying inside the clusters we study the interaction between the genes. 

We begin by taking the gene pair YMR095C and YMR096W. As mentioned in the 

algorithm we begin with minimal value of q and C = 1. This is demonstrated in Figure 6. 

We start with the value of q = 0.05, and then increase its value keeping C constant at 1. It 

can be inferred that with C = 1 there are no outliers, but when the value of q is increased, 

the number of support vectors increases making the contour more precise and forming 

small clusters (Figure 6c and 6d). SVs are shown using small circles on the contour, and 

data points are shown using cross symbols.  

Now we start decreasing the value of C to introduce outliers, and study the 

interaction between the gene pair YMR095C - YMR096W as shown in Figure 7. We by 

varied the values of q and decreasing C according to the algorithm and found the minimal 

number of SVs by converting the excess SVs into outliers or BSVs. Figure 7 clearly 

demonstrates the clustering of the gene pair into two clusters. One of the clusters includes 

the interacting data points, and the other cluster includes the outliers which represent the 

noninteracting data points.  
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(a)                                                                  (b) 

 

  
(c)                                                                   (d) 

 

Figure 6: Clustering of Gene Pair YMR095C - YMR096W with C = 1. SVs are 

designated by small circles on the contour and other data points are shown by crosses.        

(a): q=0.5 (b): q=2 (c): q=2.5 (d): q=3. 

 

We have used similar approach to study interaction between the gene pair 

YMR094W - YMR096W. Figure 8 demonstrates that they are positively correlated genes. 

From the Figures 7 and 8, we find that for interacting gene pairs our kernel is clustering 

the interacting data points along the x = y axis, and the outliers are not included. 
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For non-interacting gene pairs, we have selected the gene pairs YMR029C -  

YMR096W and YMR029C - YMR095C. Clustering of these pairs is shown in the Figures 

9 and 10. Figure 9a and 9b shows the interaction between YMR029C and YMR096W for 

q=10 C=0.009 and q=15 C=0.009. Similar clustering behavior is found in Figure 10a and 

10b which show interaction between YMR029C and YMR095C for q=11 C=0.009 and 

q=14 C=0.009 respectively.  

Figure 9 and 10 demonstrate that the gene pairs are noninteracting as there are very 

few data points inside cluster on the x = y axis, and many outliers are found. It is also 

inferred that the selection of the Gaussian kernel with diagonal spread is important for the 

algorithm. If we hadn’t selected this kernel then SVC algorithm would not have formed 

clusters along the x = y axis for noninteracting genes with most of the points aligned 

parallel to x axis. 

Now we study the importance of our SVC algorithm in analyzing the probability 

with which the selected pair of genes are interacting. Table 1 shows the number of SVs, 

BSVs, and points inside the clusters formed after the application of SVC on the data points. 

Based on the chosen Gaussian kernel, the cluster with contour along the x = y axis 

represents the interacting data points, and the outliers represent the noninteracting data 

points. We use the number of data points lying inside the cluster along the x = y axis, and 

calculate the probability with respect to the total number of data points i.e. 300.  
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(a) 

 
(b) 

 

Figure 7: Clustering of Gene Pair YMR095C - YMR096W with varying q and C. Small 

circles represent the SVs, dots represent the outliers or BSVs and crosses represent the 

points lying inside the contour. (a): q=3.0 C=0.1 (b): q=3.4 C=0.09 
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(a) 

 
(b) 

 

Figure 8: Clustering of Gene Pair YMR094W - YMR096W with varying q and C. Small 

circles represent the SVs, dots represent the outliers or BSVs and crosses represent the 

points lying inside the contour. (a): q=3.2 C=0.08 (b): q=3.3 C=0.1 
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(a) 

 
(b) 

 

Figure 9: Clustering of Gene Pair YMR029C - YMR096W with varying q and C. Small 

circles represent the SVs, dots represent the outliers or BSVs and crosses represent the 

points lying inside the contour. (a): q=10 C=0.009 (b): q=15 C=0.009 
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(a) 

 
(b) 

 

Figure 10: Clustering of Gene Pair YMR029C - YMR095C with varying q and C. Small 

circles represent the SVs, dots represent the outliers or BSVs and crosses represent the 

points lying inside the contour. (a): q=11 C=0.009 (b): q=14 C=0.009 

 

 

 



 

22 

 

 

 

Gene Pair 

 

 

q 

 

 

C 

 

Number 

of SVs 

Number 

of BSVs 

Data Points 

Inside the 

Cluster 

Probability 

of 

Interaction 

YMR095C - 

YMR096W  

3 0.1 19 31 269 0.90 

 
3.4 0.09 14 36 264 0.88 

YMR094W - 

YMR096W 

3.2 0.08 8 29 271 0.90 

 
3.3 0.1 10 26 274 0.91 

YMR029C - 

YMR096W  

10 0.009 3 235 65 0.22 

 
15 0.009 3 260 40 0.13 

YMR029C - 

YMR095C 

11 0.009 5 243 57 0.19 

 
14 0.009 5 255 45 0.15 

 

Table 1: Probabilistic Analysis of Gene Pairs 

 

Table 1 shows the probability of interaction of the gene pairs. The probability is 

calculated taking in to account the number of data points inside the cluster. As shown in 

the table, the interacting gene pairs YMR095C - YMR096W and YMR094W - 

YMR096W have probability of interaction around 0.9. Thus, we can infer that even though 

we know they are interacting pairs they interact only 90 percent of the times.  

We can find the probability of interaction to be 0.22 and 0.13 for the gene pair 

YMR029C - YMR096W for q = 10 and q = 15 respective for C = 0.009. Similarly, the 

gene pair YMR029C - YMR095C has the probability of interaction to be 0.19 and 0.15 

for q = 11 and q = 14 respectively for C = 0.009. This low value of probability suggests 

that the gene pairs are noninteracting even though sometimes they show positive 

correlation in some sample but in majority of the samples they are noninteracting. 
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These results are backed by some strong biological explanations. YMR096W 

(SNZ1) belongs to a three-membered gene family SNZI-3, whereas YMR095C (SNO1) 

belongs to another three-member gene families SNO-3. The relative positions and DNA 

sequences of these genes have been phylogenetically conserved. As mentioned in 

Mittenhuber [20], SNO-SNZ gene pairs are coregulated under various conditions. 

Furthermore, Padilla [21] supports the hypothesis that the SNZ1-SNO1 genes are part of 

an ancient response to nutrient limitation. Furthermore, Rodríguez‐Navarro [22] analyzed 

that both genes are required for yeast to grow in pyridoxine (vitamin B6) lacking media, 

which indicates that they are a part of pyridoxine metabolism. 

Our results show that the genes YMR094W (CTF13) and YMR096W (SNZ1) are 

highly interacting with probability around 0.9. Similar results have been reported by Wu 

[12, 23]. CTF13 and SNZ1, located adjacent to each other, are situated proximal to the 

centromere on the right arm of chromosome XIII. It is projected that conformation changes 

during activation can be reason behind interaction between these genes. 

 Table 1 also suggests that YMR029C (FAR8) does not interact with the genes 

YMR096W (SNZ1) and YMR095C (SNO1). Chang [24] and Kemp [25] describe FAR8 

as the protein necessary in recovery from arrest in response to pheromone, and do not 

suggest any coregulation between the genes SNZ1 and SNO1. 
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5. SUMMARY AND CONCLUSIONS 

 

In this thesis, we addressed a different approach to analyze the interaction between 

a pair of genes.  Instead of using the knowledge of interaction between a pair wise gene to 

form regulatory networks, we used this information to analyze the probability of 

interaction between a pair of genes. We used SVC based algorithm with a diagonally 

spread Gaussian kernel to cluster a pair of interacting and noninteracting genes. Data 

points inside the cluster formed along the x = y axis represent the interacting gene 

expressions, and outliers represent noninteracting gene expressions. We use this data to 

measure the probability of interaction. 

A gene does not always interact with another gene even though they have 

biological explanations of being interacting. The gene pair used as one of the examples in 

our work SNZ1-SNO1 have been proven to be interacting, and our results also showed 

they interact 90 percent of the times but main aim of our probabilistic analysis is to 

emphasize on the fact that the genes did not interact 10 percent of the times. Cellular 

processes and interactions are affected by numerous factors, so even if we know that a 

gene is a drug target, developing drugs to regulate that gene may not always work. Our 

approach can be used to investigate the gene pair with the highest probability of 

interaction, and develop drugs for those networks rather than for pairs with low probability 

of interaction.    



 

25 

 

REFERENCES 

 

[1] Jain, A. K., & Dubes, R. C. (1988). Algorithms for Clustering Data. Upper 

Saddle River, NJ, USA: Prentice-Hall, Inc. 

[2] Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (2nd ed.). San 

Diego, CA, USA: Academic Press Professional, Inc. 

[3] Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (2nd ed.). 

Wiley. 

[4] MacQueen, J. B. (1967). Some Methods for Classification and Analysis of 

Multivariate Observations. Proc. of the Fifth Berkeley Symposium on 

Mathematical Statistics and Probability, 1, 281-297. 

[5] Shamir, R., & Sharan, R. (2001). Algorithmic Approaches to Clustering Gene 

Expression Data, MIT Press. 

[6] Blatt, M., Wiseman, S., & Domany, E. (1997). Data Clustering using a Model 

Granular Magnet. Neural Computation, 9(8), 1805-1842.  

[7] Roberts, S. J. (1997). Parametric and Non-Parametric Unsupervised Cluster 

Analysis. Pattern Recognition, 30(2), 261-272.  

[8] Ben-Dor, A., Shamir, R., & Yakhini, Z. (1999). Clustering Gene Expression 

Patterns. Journal of Computational Biology, 6(3-4), 281-297.  



 

26 

 

[9] Xu, Y., Olman, V., & Xu, D. (2002). Clustering Gene Expression Data using a 

Graph-Theoretic Approach: An Application of Minimum Spanning Trees. 

Bioinformatics (Oxford, England), 18(4), 536-545. 

[10] Hartuv, E., & Shamir, R. (2000). A Clustering Algorithm based on Graph 

Connectivity. Inf. Process. Lett., 76(4-6), 175-181.  

[11] Creighton, C., & Hanash, S. (2003). Mining Gene Expression Databases for 

Association Rules. Bioinformatics (Oxford, England), 19(1), 79-86. 

[12] Wu, X., Barbará, D., Zhang, L., & Ye, Y. (Aug, 2003). Gene Interaction 

Analysis using K-Way Interaction Loglinear Model: A Case Study on Yeast 

Data. 38-45. 

[13] Kim, S., Dougherty, E. R., Bittner, M. L., Chen, Y., Sivakumar, K., Meltzer, P., & 

Trent, J. M. (2000). General Nonlinear Framework for the Analysis of Gene 

Interaction via Multivariate Expression Arrays. Journal of Biomedical 

Optics, 5(4), 411-424.  

[14] Schölkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J., & Williamson, R. 

C. (2001). Estimating the Support of a High-Dimensional Distribution. Neural 

Computation, 13(7), 1443-1471.  

[15] Ben-Hur, A., Horn, D., Siegelmann, H. T., & Vapnik, V. (2002). Support Vector 

Clustering. The Journal of Machine Learning Research, 2, 125-137.  

[16] Tax, D. M. J., & Duin, R. P. W. (1999). Support Vector Domain Description. 

Pattern Recognition Letters, 20(11), 1191-1199.  



 

27 

 

[17] Fletcher, R. (2000). Practical Methods of Optimization, 2. ed., Wiley. 

[18] Vapnik, V. N. (1998). Statistical Learning Theory, Wiley. 

[19] Hughes, T. R., Marton, M. J., Jones, A. R., Roberts, C. J., Stoughton, R., Armour, 

C. D., . . . Friend, S. H. (2000). Functional Discovery via a Compendium of 

Expression Profiles. Cell, 102(1), 109-126. 

[20] Mittenhuber, G. (2001). Phylogenetic Analyses and Comparative Genomics of 

Vitamin B6 (Pyridoxine) and Pyridoxal Phosphate Biosynthesis 

Pathways. Journal of Molecular Microbiology and Biotechnology, 3(1), 1-20. 

[21] Padilla, P. A., Fuge, E. K., Crawford, M. E., Errett, A., & Werner-Washburne, M. 

(1998). The Highly Conserved, Coregulated SNO and SNZ Gene Families in 

Saccharomyces Cerevisiae Respond to Nutrient Limitation. Journal of 

Bacteriology, 180(21), 5718-5726. 

[22] Rodríguez-Navarro, S., Llorente, B., Rodríguez-Manzaneque, M. T., Ramne, A., 

Uber, G., Marchesan, D., . . . Pérez-Ortín, J. E. (2002). Functional Analysis of 

Yeast Gene Families Involved in Metabolism of Vitamins B1 and B6. Yeast 

(Chichester, England), 19(14), 1261-1276.  

[23] Wu, X., Ye, Y., & Subramanian, K. R. (2003). Interactive Analysis of Gene 

Interactions using Graphical Gaussian Model. Proceedings of the 3rd International 

Conference on Data Mining in Bioinformatics, 63–69. 



 

28 

 

[24] Chang, F., & Herskowitz, I. (1990). Identification of a Gene Necessary for Cell 

Cycle Arrest by a Negative Growth Factor of Yeast: FAR1 is an Inhibitor of a G1 

Cyclin, CLN2. Cell, 63(5), 999-1011. 

[25] Kemp, H. A., & Sprague, George F. J. (2003). Far3 and Five Interacting Proteins 

Prevent Premature Recovery from Pheromone Arrest in the Budding Yeast 

Saccharomyces Cerevisiae. Molecular and Cellular Biology, 23(5), 1750-1763.  


