# PATTERNS IN LONGLINE REEF FISH CATCH AND FISHING GEAR ANALYSIS 

 IN THE GULF OF MEXICO USING NOAA FISHERY OBSERVER DATAA Dissertation<br>by

ALEXANDRIA ELIZABETH RIVARD

# Submitted to the Office of Graduate and Professional Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 

Chair of Committee, Co-Chair of Committee, Committee Members,<br>Wyndylyn von Zharen<br>Wesley Highfield<br>Jhenny Galan<br>Frances Gelwick<br>Interdisciplinary Faculty Chair, Anna Armitage

December 2017

Major Subject: Marine Biology


#### Abstract

The objectives of this study were to assess existing fishing practices (both spatial and gear use) employed by longline reef fish fishers in the Gulf of Mexico; to evaluate the gear and set parameters that contribute to catching larger individual fish of a target species; and to assess the gear and set parameters that contribute to successfully catching a fish of a target species. Data were collected by the Southeast Fisheries Science Center (SEFSC) Galveston Reef Fish Observer Program from 2006-2014. Explanatory variables included in the study were only those that could be manipulated directly by fishers: soak time, fishing depth, main line length, hooks deployed, gangion length, hook distance, and the temporal variables month and year.

Gear change assessments were conducted using analyses of variance for soak time, fishing depth, gangion length, hook distance, mainline length, and hook count across years. Significant differences were detected between years for all variables, however, there was no discernable trend over time. This suggests that fishing practices remained relatively stable from 2006-2014. Spatial analysis of catches was conducted for five species targeted during the study period (gag grouper, red grouper, scamp grouper, mutton snapper, and red snapper) using ArcGIS. However, no spatial trends were apparent given the uneven effort and coverage of the survey area.

To assess which fishing gear and set parameters contributed to catching the largest fish of a target species, ordinary least squares (OLS) linear models were used to predict


fish length as a function of the explanatory variables. Significant models were generated for blacknose shark, gag grouper, mutton snapper, red porgy, Atlantic sharpnose shark, and speckled hind.

Binomial regression models were constructed using backwards regression to predict target species catch success using the explanatory variables. Significant models were generated for speckled hind, red grouper, scamp, gag grouper, red snapper, mutton snapper, jolthead porgy, and red porgy. These models ultimately serve as guidelines for fishers to adjust fishing practices to improve the likelihood of successfully obtaining the targeted species, which may reduce bycatch mortality of non-target species and its resulting environmental impacts.

## DEDICATION

For Patrick, Batman Bear.

## ACKNOWLEDGEMENTS

Completing a Ph.D. is a strange experience; one that can be intensely isolating, but also relies heavily on the love and support of others. I have been fortunate to have that love and support in spades. First and foremost, I would like to thank my committee chair, Dr. Wyndylyn von Zharen: thank you for believing in me before I was ready to believe in myself. Thank you to my committee members, Dr. Wesley Highfield, Dr. Jhenny Galan, Dr. Frances Gelwick, and Dr. Elizabeth Scott-Denton. I am forever grateful for your time, guidance, and support. Thank you for pushing me to accomplish more than I would have ever dared to hope for. Special thanks to Dr. Scott-Denton, the National Marine Fisheries Service Southeast Fisheries Science Center, and countless fishery observers for entrusting your data to me. Without your efforts, this dissertation would not have been possible. Thank you as well to Ms. Grace Townsend, for tapping me to teach chemistry before I even set foot on campus as a master's student. Every single graduate student should have someone like you in their corner. Thank you for being my mentor, friend, and staunchest supporter.

Thank you to my wonderful friends who have stood with me through these last three years, through the lowest of lows, highest points, and the long stretches of tedium characteristic of the Ph.D. experience. I would not be where I am (nor who I am) today without your friendship. Mom and Dad, thank you for encouraging me to chase my dreams. I'm not sure whether you realized quite how serious I was when I told you I wanted to be a marine biologist as a child, but your faith in me has made all the
difference. Patrick: I will never know how I got so lucky. Thank you for always making me laugh even when I didn't feel like I could. We have been through so much together, and there is no one else I would rather have had on my team for all of it. I love you.

As I prepare to close this chapter in my life, I am tremendously grateful to each of you for being a part of this journey. I can't wait to see what's next. "So comes snow after fire, and even dragons have their endings." -J.R.R. Tolkien

## CONTRIBUTORS AND FUNDING SOURCES

This work was supported by a dissertation committee consisting of Dr. Wyndylyn von Zharen (chair), Dr. Wesley Highfield (co-chair), and Dr. Jhenny Galan, Department of Marine Sciences; Dr. Frances Gelwick, Department of Wildlife and Fisheries Sciences; and by special appointment, Dr. Elizabeth Scott-Denton (NOAA).

The data analyzed for this dissertation were provided by Dr. Elizabeth ScottDenton and the National Marine Fisheries Service Southeast Fisheries Science Center, and collected by fishery observers from 2006 to 2014. Special thanks to Dr. Blair SterbaBoatwright (TAMU-Corpus Christi) permitting the use of some scripts for use in statistical analysis.

All other work conducted for the dissertation was completed by the student independently. Graduate study was supported by a graduate teaching assistantship from the Department of Marine Sciences at Texas A\&M University at Galveston.

## TABLE OF CONTENTS

## Page

ABSTRACT ..... ii
DEDICATION ..... iv
ACKNOWLEDGEMENTS ..... v
CONTRIBUTORS AND FUNDING SOURCES ..... vii
TABLE OF CONTENTS ..... viii
LIST OF FIGURES .....  x
LIST OF TABLES ..... xiv

1. INTRODUCTION AND GENERAL FISHING PRACTICES ..... 1
1.1 General Introduction ..... 1
1.1.1 Principles in Fishery Management ..... 1
1.1.2 Federal Fishery Management ..... 6
1.1.3 Gulf of Mexico Fisheries ..... 8
1.1.4 Longline Fishing ..... 11
1.2 Fishing Gear Usage ..... 12
1.2.1 Data Source ..... 12
1.2.2 Gear Analysis Methods ..... 13
1.2.3 Gear Change Results ..... 14
1.3 Spatial Visualization ..... 18
1.3.1 Description of Dataset ..... 18
1.3.2 Spatial Distribution of Catches ..... 18
1.4 Gear Use and Spatial Distribution Conclusions ..... 26
2. FISH LENGTH AS A FUNCTION OF GEAR AND SET METHODOLOGY ..... 28
2.1 Introduction ..... 28
2.1.1 Bycatch in Longline Fisheries ..... 28
2.1.2 Focal Species ..... 29
2.1.3 Regulation of Target Species ..... 31
2.1.4 Prior Modeling of Catch Data ..... 34
2.2 Methods ..... 35
2.2.1 Data Collection ..... 35
2.2.2 Data Analysis ..... 35
2.3 Results ..... 38
2.3.1 Jolthead Porgy ..... 38
2.3.2 Blacknose Shark ..... 43
2.3.3 Speckled Hind ..... 48
2.3.4 Red Grouper ..... 52
2.3.5 Red Snapper ..... 57
2.3.6 Mutton Snapper ..... 62
2.3.7 Scamp ..... 66
2.3.8 Gag Grouper ..... 71
2.3.9 Red Porgy ..... 75
3.2.10 Leopard Toadfish ..... 80
3.2.11 Atlantic Sharpnose Shark ..... 85
2.4 Discussion ..... 91
2.4.1 General Trends ..... 91
2.4.2 Commercially Important Species ..... 94
2.4.3 Conclusions and Future Directions ..... 95
3. TARGET SPECIES SUCCESS AS A FUNCTION OF GEAR AND SET METHODOLOGY ..... 98
3.1 Introduction ..... 98
3.1.1 Bycatch Concerns ..... 98
3.1.2 Management of Species of Evaluated, 2006-2014 ..... 100
3.1.3 Bycatch Reduction Measures ..... 103
3.2 Methods ..... 105
3.3 Results ..... 107
3.3.1 Jolthead Porgy ..... 107
3.3.2 Speckled Hind ..... 109
3.3.3 Red Grouper ..... 111
3.3.4 Red Snapper ..... 113
3.3.5 Mutton Snapper ..... 115
3.3.6 Scamp ..... 117
3.3.7 Gag Grouper ..... 119
3.3.8 Red Porgy ..... 121
3.4 Discussion ..... 123
3.4.1 Porgys ..... 123
3.4.2 Snappers ..... 124
3.4.3 Groupers ..... 125
3.4.4 Conclusions and Future Directions ..... 128
4. IMPLICATIONS, CONCLUSIONS, AND FUTURE DIRECTIONS ..... 130
4.1 Research Implications ..... 130
4.2 Future Directions ..... 133
REFERENCES ..... 137

## LIST OF FIGURES

## Page

Figure 1. NMFS Southeast Region statistical zones. At least three companies must be active inside a statistical zone to release statistics for the zone. Zones 1-21 constitute the Gulf of Mexico. (Reprinted from National Marine Fisheries Service 2013.)

Figure 2. Gag grouper catches, 2006-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines.

Figure 3. Red grouper catches, 2006-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines

Figure 4. Scamp catches, 2007-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines.

Figure 5. Mutton snapper catches, 2006 and 2010-2014. Statistical zones not included are indicated with white hatched lines.24

Figure 6. Red snapper catches, 2006-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines.25

Figure 7. Diagnostic plots for the jolthead porgy linear model predicting length as a function of year, fishing depth, and their interactions. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points < 1 , confirming no influential points in the model. Finally, the normal Q-Q plot and density distribution show an approximately normal distribution.40

Figure 8. Diagnostic plots for the jolthead porgy OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points $<1$, confirming no influential points in the model. The normal Q-Q plot and density distribution show an approximately normal distribution.

Figure 9. Diagnostic plots for the blacknose shark linear model with interaction. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points $<1$, confirming no influential points in the dataset. Some skew in the distribution is apparent in the Q-Q plot and density distribution, however, the sample size is sufficient for analysis despite the skew.

Figure 10. Diagnostic plots for the blacknose shark OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points $<1$, confirming no influential points in the dataset. Some skew in the distribution is apparent in the Q-Q plot and density distribution, however, the sample size is sufficient to compensate for the skewed distribution.

Figure 11. Diagnostic plots for the speckled hind linear model predicting length as a function of hook count, fishing depth, and their interaction. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality though there is a long right-hand tail.

Figure 12. Diagnostic plots for the results of the speckled hind OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality though there is a long left-hand tail.

Figure 13. Diagnostic plots for the red grouper linear model predicting length as a function of fishing depth, year, and their interaction. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal QQ plot and density distribution suggest sufficient normality though there is a long left-hand tail.

Figure 14. Diagnostic plots for the results of the red grouper OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality though there is a long left-hand tail. .56

Figure 15. Diagnostic plots for the results of the red snapper interaction model. The residuals vs. fitted plot indicates the model is predicting length well across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality. ... 59

Figure 16. Diagnostic plots for the results of the red snapper ordinary least squares linear model. The residuals vs. fitted plot indicates the model is predicting length well across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality

Figure 17. Diagnostic plots for the top linear model with interaction by BIC for mutton snapper. The residuals vs. fitted plot indicates the model is predicting length well across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality

Figure 18. Diagnostic plots for the results of the mutton snapper ordinary least squares linear model. The residuals vs. fitted plot suggests the model is predicting length adequately across the model. There are no issues with Cook's distance, and the Q-Q plot and density distribution suggest sufficient normality.

Figure 19. Diagnostic plots for the top linear model with interaction by BIC for scamp. No issues are apparent with the model. The residuals vs. fitted plot indicates a good fit across the model and no influential points are apparent. The distribution has a long left-hand tail in the Q-Q plot and density distribution, but adequate normality.

Figure 20. Diagnostic plots for the results of the scamp ordinary least squares linear model. No issues are apparent with the model. The residuals vs. fitted plot indicates a good fit across the model and no influential points are apparent. The distribution has a long left-hand tail in the Q-Q plot and density distribution, but adequate normality.

Figure 21. Diagnostic plots for the top linear model with interaction by BIC for gag grouper. The residuals vs. fitted plot suggests that the model is underpredicting length slightly for large individuals. There are no issues with influential points in the Cook's distance plot and the distribution is sufficiently normal.

Figure 22. Diagnostic plots for the top gag grouper ordinary least squares model. The model is under-predicting for very gag grouper, but no other issues are apparent with influential points in the Cook's distance plot or normality in the Q-Q plot or distribution.

Figure 23. Diagnostic plots for the top linear model with interaction for red porgy. The distribution has a long right-hand tail, but overall fits the assumption of normality. The model is slightly over-predicting red porgy length for large individuals per the residuals vs. fitted plot. No influential points are apparent in the Cook's distance plot.77

Figure 24. Diagnostic plots for the top ordinary least squares linear model for red porgy by BIC. The long right tail is present, but the model is predicting red porgy length more precisely than the linear model with interaction and no influential points are apparent.

Figure 25. Diagnostic plots for the top linear model with interaction for leopard toadfish by BIC. The long right tail is present in the Q-Q plot and density distribution. The residuals vs. fitted plot suggests the model is underpredicting for large fish. No influential points are apparent.

Figure 26. Diagnostic plots for the top ordinary least squares linear model for leopard toadfish. The distribution has a long right-hand tail, but otherwise fits well across all lengths. No influential points are apparent.84

Figure 27. Diagnostic plots for the top linear model with interaction for Atlantic sharpnose shark. The distribution has long tails, but overall fits the assumption of normality and fits the data well across all lengths.87

Figure 28. The results of the top ordinary least squares model for Atlantic sharpnose shark by BIC. The distribution is long-tailed, but otherwise satisfies assumptions. The model fits the data well across all lengths, though the model is slightly under-predicting length for very large and very small individuals (data poor regions).

## LIST OF TABLES

## Page

## Table 1. Total number of gear sets documented by observers, 2006-2014.

Table 2. Results of Tukey HSD post-hoc test for soak time. Years marked with a * are significantly different from each other ( $p<0.1$ ). ..... 15
Table 3. Results of Tukey HSD post-hoc test for fishing depth. Years marked with a * are significantly different from each other $(p<0.1)$. ..... 16
Table 4. Results of Tukey HSD post-hoc test for gangion length. Years marked with a* are significantly different from each other ( $p<0.1$ ).16
Table 5. Results of Tukey HSD post-hoc test for hook distance. Years marked with a* are significantly different from each other ( $p<0.1$ ).17
Table 6. Results of Tukey HSD post-hoc test for mainline length. Years marked with$\mathrm{a} *$ are significantly different from each other $(p<0.1)$.17
Table 7. Results of Tukey HSD post-hoc test for hook count. Years marked with a * are significantly different from each other $(p<0.1)$. ..... 18
Table 8. Total catches documented in each statistical zone, 2006-2014. ..... 20
Table 9. The names and sample sizes for species ( $n>500$ ) for length analysis. ..... 37

Table 10. The results of the top linear model with interaction for jolthead porgy detected by the exhaustive search. $R^{2}{ }_{a d j}=0.081, p<0.01$39
Table 11. The results of the top ordinary least squares linear model for jolthead porgy.$R^{2}{ }_{a d j}=0.046, p<0.01$41
Table 12. The results of the top linear model for blacknose sharks detected by theexhaustive search. $R^{2}{ }_{a d j}=0.307, p<0.01$.43
Table 13. The results of the top ordinary least squares linear model for blacknoseshark. $R^{2}{ }_{a d j}=0.209, p<0.01$46
Table 14. The results of the top linear model with interaction for speckled hind byBIC. $R^{2}{ }_{a d j}=0.143, p<0.01$48
Table 15. The results of the top ordinary least squares linear model for speckled hind.$R^{2}{ }_{a d j}=0.114, p<0.01$.50

## Table 16. The results of the top linear model with interaction for red grouper by BIC.

 $R^{2}{ }_{a d j}=0.048, p<0.01$.Table 17. The results of the top ordinary least squares generalized linear model for red grouper. $R^{2}{ }_{a d j}=0.053, p<0.01$.55

Table 18. The results of the top linear model with interaction for red snapper by BIC. $R^{2}{ }_{a d j}=0.119, p<0.01$. Month:year interactions with no catches documented have been excluded from the table.57

Table 19. The results of the top ordinary least squares linear model for red snapper. $R^{2}{ }_{a d j}=0.111, p<0.01$.60

Table 20. The results of the top linear model with interaction for mutton snapper by BIC. $R^{2}{ }_{a d j}=0.183, p<0.01$.62

Table 21. The top ordinary least squares linear model by BIC for mutton snapper. $R^{2}{ }_{a d j}=0.152, p<0.01$.

Table 22. The results of the top linear model with interaction for scamp by BIC. $R^{2}{ }_{a d j}$ $=0.095, p<0.01$. Year:Month interactions with no observations have been removed.

Table 23. The top ordinary least squares linear model by BIC for scamp. $R^{2}{ }_{a d j}=$ $0.081, p<0.01$.69

Table 24. The results of the top linear model with interaction for gag grouper by BIC. $R^{2}{ }_{a d j}=0.164, p<0.01$

Table 25. The top ordinary least squares linear model by BIC for gag grouper. $R^{2}{ }_{a d j}=$ $0.155, p<0.01$.

Table 26. The results of the top linear model with interaction for red porgy by BIC. $R^{2}{ }_{a d j}=0.219, p<0.01$.

Table 27. The top ordinary least squares linear model by BIC for red porgy. $R^{2}{ }_{a d j}=$ $0.189, p<0.01$.78

Table 28. The top linear model with interaction by BIC for leopard toadfish. $R^{2}{ }_{a d j}=$
$0.074, p<0.01$ ..... 81
Table 29. The results of the top ordinary least squares linear model for leopard toadfish by BIC. $R^{2}{ }_{a d j}=0.059, p<0.01$. ..... 83

Table 30. The top linear model with interaction by BIC for Atlantic sharpnose shark. $R^{2}{ }_{a d j}=0.317, p<0.01$. Year:month interactions with no observations have been excluded.

Table 31. The results of the top ordinary least squares linear model for Atlantic sharpnose shark by BIC. $R^{2} a d j=0.317, p<0.01$.

Table 32. The species names and number of successful catches (coded by observers as kept for consumption).

Table 33. The results of the binomial regression model for jolthead porgy derived by backwards regression. $R^{2}{ }_{M c F}=0.124, p<0.01$

Table 34. The results of the binomial regression model for speckled hind derived by backwards regression. $R^{2}$ McF $=0.204, p<0.01$.

Table 35. The results of the binomial regression model for red grouper derived by backwards regression. $R^{2} M_{M C}=0.023, p<0.01$.

Table 36. The results of the binomial regression model for red snapper derived by backwards regression. $R^{2}{ }_{M c F}=0.059, p<0.01$. .114

Table 37. The results of the binomial regression model for mutton snapper derived by backwards regression. $R^{2}{ }_{M c F}=0.330, p<0.01$.

Table 38. The results of the binomial regression model for scamp derived by backwards regression. $R^{2}{ }_{M c F}=0.183, p<0.01$.

Table 39. The results of the binomial regression model for gag grouper derived by backwards regression. $R^{2}{ }_{M c F}=0.090, p<0.01$ 120

Table 40. The results of the binomial regression model for red porgy derived by backwards regression. $R^{2}{ }_{M c F}=0.120, p<0.01$. 122

## 1. INTRODUCTION AND GENERAL FISHING PRACTICES

### 1.1 General Introduction

### 1.1.1 Principles in Fishery Management

Fishery resources are a fundamental part of the global and domestic economy, providing critical nutrients and supporting a multibillion dollar industry in the United States. (Rodger and von Zharen 2011; Golden et al. 2016). Responsible exploitation of fishery resources is necessary to ensure the long-term sustainability of fishing practices. Using ecosystem based management strategies and abiding by the precautionary principle can provide useful guidance when determining how best to utilize these resources.

Ecosystem based management, while more complex than managing a population in isolation, is a more effective strategy for conservation. Managing fish stocks in isolation fails to consider that the health of the population is dependent not only on the stock's interactions with humans, but on its interactions with the environment (Link 2002). Robust ecosystems (those which can absorb, resist, and recover from disturbances and adapt to change while maintaining their essential functions) support healthy populations (Rodger and von Zharen 2011). An ecosystem based strategy must endeavor to avoid degradation of marine ecosystems, account for the requirements of other components of the ecosystem, consider human social and economic factors, and attempt to understand the consequences of human actions on the broader system (Pikitch et al. 2004). To best support productive fisheries, managers must tackle the increased complexity of an ecosystem based management strategy.

Avoiding degradation and accounting for other components of the ecosystem requires an understanding of interactions within the system. Disruptions to the ecosystem may be natural (e.g. increased rain lowering salinity) or anthropogenic (e.g. pollution resulting in nutrient enrichment). When disruption or degradation of the ecosystem occurs, critical ecosystem functions such as maintenance of water quality or resistance to pests and pathogens are reduced (Levin and Lubchenco 2008). Loss of these functions may threaten survival of the target species if, for example, water quality parameters are no longer sufficient to sustain life or invasion of parasites exerts pressure on stock survival. Thus, managers will need to understand potential sources of disruption and integrate management of these sources into the management plan.

Ecosystem based strategies must also consider the interactions of the target species with other parts of the environment: for instance, if the species forages on benthic invertebrates and dredging ship channels destroys this environment, the target species will not thrive. Managers must consider how species interact with their environment and maintain environmental health at all levels, rather than by focusing only on the management of the target species.

Ecosystem based management also considers humans as part of the marine ecosystem. Indeed, humans should be considered the direct top predator for many marine food webs (Darimont et al. 2015). An ecosystem based strategy should consider the direct impacts of human use of marine resources, e.g. fish as a source of food (Golden et al. 2016), as well as indirect effects, e.g. noise pollution from shipping. Human uses that induce stress on marine systems also include recreation, oil and gas
exploration and extraction, and transportation (Crowder and Norse 2008). An ecosystem based strategy should aim to protect the environment while maintaining access for human social and economic usage needs.

The precautionary approach is rooted in the idea that steps to minimize risk of harm should be taken even if the relationships have not been fully established scientifically (Kriebel et al. 2001). There are four major tenants of the precautionary approach per Kriebel et al. (2001): "...taking preventative action in the face of uncertainty; shifting the burden of proof to the proponents of an activity; exploring a wide range of alternatives to possibly harmful actions; and increasing public participation in decision making." The first principle requires that managers assume that the full extent of the risk to the environment posed by fishing is not known. Managers should assume that known levels of mortality in fishing represent a minimum rather than an absolute, and that the full extent of environmental damage and mortality to target and non-target species cannot be known. Thus, in setting allowable catch levels, managers should be conservative in their estimates to prevent potentially serious environmental damage. The second principle dictates that proponents of an activity should be responsible for proving its benefits. In the case of fishery management, proponents of increasing allowable catch, permitting the use of new gear, etc. should be responsible for demonstrating that their intended activity will not result in further environmental harm. This encourages the generation of scientific information on which managers can base their decisions. Third, the precautionary approach states that a range of alternatives to harmful actions should be explored. In practice in fisheries, this means that fishing
methodologies deemed harmful should be restricted or banned. For example, the United Nations enacted pelagic driftnet fishing bans in response to the damage they caused to their environments (Rodger and von Zharen 2011). Extensive scientific studies to quantify the detrimental effects of a practice are not required to restrict or prohibit a given harmful practice. Finally, the precautionary approach encourages public involvement with decision making. This tenant is already enforced in United States fishery management: a public comment period is mandated in the rulemaking process. This comment period encourages public involvement and provides an opportunity for dissention, reducing the possibility of poor unilateral decisions and allowing all stakeholders a voice.

Application of a precautionary approach in fishery management has many benefits. Managing a fishery inherently involves uncertainty in that the risks can be difficult to quantify and anticipate. Use of the principles described here will help managers to make conservative decisions. In environmental management, this is beneficial; harmful effects to the ecosystem are generally difficult, time-consuming, and expensive to correct. While avoiding environmental damage has its own costs associated with economic losses, reversing damage to the environment can prove impossible. Therefore, a precautionary approach that avoids inflicting harm is a useful tool in fishery management.

Commercial fishing is important to human social and economic needs. Fish are a critical source of micronutrients such as iron, zinc, other vitamins, and omega-3 fatty acids (Golden et al. 2016). Particularly in poorer countries, access to alternative
micronutrient sources can be challenging and expensive (Golden et al. 2016). Economically, commercial fishing represents a multibillion dollar industry and employs thousands in the United States alone, particularly when considering employees in supporting industries such as fish processing or ship construction (Rodger and von Zharen 2011). Many communities in the US and beyond are reliant on the economic success of fisheries; in fact, the US mandates that managers consider these communities when developing fishery management plans (National Standard 9, 50 CFR Ch. VI § 600.345). In addition to commercial fishing, recreational fishing supports several fishing-related tourism industries.

When managed appropriately, the negative impacts associated with commercial fishing can be mitigated. Control methods such as setting fishing seasons, limiting participation in the fishery, restricting gear, and setting total allowable catch can be combined to effectively limit the amount of fish removed and reduce collateral environmental damage (Rodger and von Zharen 2011). Several national and international laws enforce such restrictions (Rodger and von Zharen 2011). To effectively manage fish populations, managers should use an ecosystem based management strategy to determine how the fishing proposed (both scale and type) might impact the broader environment. Second, managers should use the precautionary principle as a guide. Management decisions regarding the use of natural resources should take preventative action when the impacts are uncertain, in an effort to minimize the negative impacts on the environment (Kriebel et al. 2001). With smart management on an appropriate scale, commercial fishing is sustainable and environmental damage can
be minimized, so that fishery resources can continue to be used for their valuable economic and social purposes.

### 1.1.2 Federal Fishery Management

The Gulf of Mexico Reef Fish Fishery Management Plan was implemented in November 1984 as a response to declining reef fish stocks (Gulf of Mexico Fishery Management Council 2010c). Fishery management plans (FMP) are held to ten national standards (NS) under NOAA Fisheries to ensure that fishery resources are used appropriately. These standards govern the design of the Gulf of Mexico Reef Fish FMP and all other FMPs across all regions in the United States.

The first three standards concern the determination of regulations put forth by the FMP. NS1 dictates that FMPs must endeavor to prevent overfishing while achieving the optimum yield (OY) on a continuing basis, where OY is defined as the amount of fish harvested which produces the greatest overall benefit to the nation with consideration of biological, ecological, social, and economic factors. FMPs must be based on the best scientific information available, again including biological, ecological, economic, and social factors, per NS2. Stock Assessment and Fishery Evaluation (SAFE) reports provide periodic summaries of the most current information. The scientific information used should be relevant, inclusive, objective, transparent, timely, validated and verified, and peer reviewed. NS3 dictates that, to the extent practicable, stocks should be managed as a unit, and interrelated stocks should be managed as a unit or in coordination with other fishery management councils. The management unit is defined as the fishery or portion thereof relevant to the FMP's objectives.

Standards four through seven concern the utilization of fishery resources. Discrimination among residents of different states through management and conservation measures is prohibited by NS4. Allocation must be deemed fair and equitable and calculated to promote conservation. Measures also exist to prevent any one entity from acquiring an excessive share of fishing privileges. NS5 states that conservation and management measures shall consider efficiency in the use of fishery resources, where ideal efficiency is a fishery that can harvest the OY with minimal use of labor, capital, fuel, and interest. This standard also prohibits the application of economic allocation as the sole purpose for any measure. Per NS6, FMPs must account for variations and contingencies in fisheries, fishery resources, and catches. FMPs can protect against uncertainty by: reducing OY; establishing a reserve that can be released or withheld later; adjusting management techniques; and highlighting habitat conditions. Contingencies are flexible management regimes that allow for a quick response to sudden changes without amending the FMP. Conservation and management measures should minimize costs and avoid unnecessary duplication per NS7; no regulation should be enacted without some benefit. To determine if an FMP is needed, managers should consider the importance of the fishery, condition of the stock, existing state-level management, competing interests, economic conditions, the needs of a developing fishery, and costs.

The remaining standards focus on human factors and bycatch concerns. NS8 states that conservation and management measures should consider the importance of a fishery to a community, and provide for sustained participation and minimize economic
impacts to fishery dependent communities. This does not, however, permit preferential treatment or allocation (which would violate NS4), and allows for sustained participation only as the resource permits. Under NS9, FMPs should include measures to minimize bycatch to the extent possible, and when unavoidable, minimize mortality of bycatch. Bycatch is defined as fish harvested but not kept for personal use or sold. FMPs should consider the population, ecosystem, marine mammals and birds, costs, practices, research, social costs, benefit distribution, and social effects of bycatch. Finally, NS10 dictates that FMPs shall address the safety of human life at sea. This includes avoiding the creation of derby fishing conditions, where fishers compete for catch within a limited window of time. Managers should consider avoiding hazardous weather, allowing for flexible seasons, permitting pre- or post-season fixed gear soak time, using smaller and lighter gear for smaller vessels, avoiding at-sea inspection when an alternative is equally sufficient, limiting participation in a fishery, spreading effort over time to reduce conflicts, and reducing the "race for fish" when designing FMPs.

### 1.1.3 Gulf of Mexico Fisheries

The Gulf of Mexico Large Marine Ecosystem (LME) covers an area of over 1.6 million square kilometers. The United States Exclusive Economic Zone (EEZ) extends 200 nautical miles from the area beyond and adjacent to its territorial sea, thus giving the U.S. sovereign rights to manage the northern Gulf of Mexico (National Ocean Service 2014). In the past four decades, the Gulf of Mexico has experienced significant increases in sea surface temperatures, which may influence the health and distribution of resident fish stocks (Karnauskas et al. 2013). The Gulf of Mexico is also vulnerable to effects of
hypoxia resulting from the outflow of the Mississippi River; the potential for hurricane activity that may disrupt the marine environment; and damaging oil spills from drilling and transport (Karnauskas et al. 2013).

Coastal communities in the Gulf of Mexico are particularly reliant on fishery resources. Commercial fishing in the Gulf of Mexico accounts for approximately 25 percent of national seafood landings, with Louisiana accounting for the majority of landings (Adams et al. 2004). Fishing vessels and the processing industry also play key roles in the economy of Gulf of Mexico states (Adams et al. 2004). Communities reliant on fishery resources are economically vulnerable to perturbations in marine ecosystems, and natural or anthropogenic disasters contribute special strain to these areas (Jacob et al. 2013). Managers must consider the impact of additional regulation to the social and economic stability of fishing communities in the Gulf of Mexico and their resiliency. The National Oceanic and Atmospheric Administration (2015) has achieved great success in fishery management through ecosystem-based strategies that address the marine environment as a complete system including biota, physical spaces, nutrients, and anthropogenic impacts. In 2014, United States' fisheries limited overfishing to the lowest extent since the initiation of monitoring, with just 26 stocks on the overfishing list (actively being over exploited) and 37 stocks on the overfished list (stocks depleted), representing an improvement from 28 and 40 stocks, respectively, listed in the previous assessment in 2013 (National Oceanic and Atmospheric Administration 2015). However, problems persist. In 2015, these figures declined to 28 species on the overfishing list and 38 on the overfished list (National Oceanic and Atmospheric Administration 2016). In
the Gulf of Mexico, three species remain on the overfished list as of 2015: greater amberjack (Seriola dumerili), gray triggerfish (Balistes capriscus), and red snapper (Lutjanus campechanus). Greater amberjack (Seriola dumerili), gray triggerfish (Balistes capriscus), and hogfish (Lachnolaimus maximus) were on the overfishing list for 2014, but were removed in 2015 (National Oceanic and Atmospheric Administration 2015, 2016). No species in the Gulf of Mexico were actively undergoing overfishing as of 2015 (National Oceanic and Atmospheric Administration 2016).

It should be noted that fishery landings are not necessarily indicative of the health of fish populations collectively. While a low mean trophic level for landings has been interpreted to indicate a decline in higher trophic level species, this is not the case in the Gulf of Mexico; lower trophic level species are often targeted in this region (de Mutsert et al. 2008). Catch data may be misleading, particularly in fisheries where aggregations form. Landing data should always be interpreted in the context of the relevant regulations and fishery effort (de Mutsert et al. 2008). Ideally, fisheryindependent data are preferable for drawing conclusions regarding the overall welfare of a population; however, these data are expensive to collect. Fishery-dependent data are useful when considering the success of a fishery, but caution is required that these results are not interpreted to represent the general population strength of a stock or stock complex. Consequently, no attempt will be made herein to extrapolate the results of catch models to the general welfare of Gulf of Mexico fisheries.

### 1.1.4 Longline Fishing

Longline fishing is permitted for a number of species in the Gulf of Mexico, including snapper, grouper, and other reef fish (Gulf of Mexico Fishery Management Council 2010a). Modern longline fishing methods originated in Japan in the $19^{\text {th }}$ century (Watson and Kerstetter 2006). This fishing gear consists of a long mainline attached to a series of floats to suspend the line at depth, and a gangion line (a moderate weight line bearing hooks) suspended from the main line, and a hook (typically J-style, ringed, or circle hooks) (Watson and Kerstetter 2006). Fishers may adjust the length and depth of the gear set and hook shape and size based on the desired species (Watson and Kerstetter 2006).

Pelagic longline fisheries necessitate a relatively moderate level of regulation as compared with methods such as bottom trawls and gillnets, which pose serious environmental threats and require more stringent regulation (Chuenpagdee et al. 2003). Possible ecological impacts of pelagic longlines include risk of entanglement and bycatch of non-target species including protected species (Chuenpagdee et al. 2003). Management of reef fish fisheries in the Gulf of Mexico has been overseen by the Gulf of Mexico Fishery Management Council (GMFMC) since the implementation of the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico in November 1984 (Waters 2001). The original plan, initiated in response to declining fish stocks, included gear prohibitions, minimum fish-size limits, and data reporting requirements (Gulf of Mexico Fishery Management Council 2010c).

### 1.2 Fishing Gear Usage

### 1.2.1 Data Source

The Southeast Fisheries Science Center (SEFSC) Galveston Reef Fish Observer Program provided data pertaining to the commercial bottom longline reef fishery in the Gulf of Mexico for fishing depths less than 328 feet. This program was initiated in July 2006 per Amendment 22 of the GMFMC Reef Fish FMP, and data collection is conducted by trained observers onboard commercial fishing vessels (Scott-Denton et al. 2011; National Marine Fisheries Service 2013).

The goals of the reef fish observer program include: characterization of finfish bycatch; estimation of finfish discard and mortality; and estimation of bycatch of protected species (Scott-Denton and Williams 2013). To that end, observers report: trip, vessel, environmental, and gear characteristics; fish and protected species composition and disposition; size of target species caught; and catch-per-unit effort (CPUE) trends (Scott-Denton and Williams 2013). The data collected by observers on bottom longline reef fish fishing vessels in the Gulf of Mexico (NMFS Southeast Region statistical zones 1-21) are the basis for this study (Figure 1, reprinted from NMFS 2013). Per NOAA Administrative Order 216-100 and a non-disclosure agreement with NMFS SEFSC, raw data are confidential.


Figure 1. NMFS Southeast Region statistical zones. At least three companies must be active inside a statistical zone to release statistics for the zone. Zones 1-21 constitute the Gulf of Mexico. (Reprinted from National Marine Fisheries Service 2013.)

### 1.2.2 Gear Analysis Methods

Between 2006 and 2014, fishery observers documented 5,983 fishing gear sets with complete gear information, with between 50 and 1,860 sets documented per year (Table 1). Separate analyses of variance (ANOVAs) were used to assess changes over time in soak time, fishing depth, gangion length, hook distance, mainline length, and hook count. Boxplots of gear usage and residuals were generated, and QQ-norm plots were generated for each year to assess normality across all years. The Tukey HSD post-
hoc test ( $p<0.1$ ) was used to detect significant differences across years, and results were plotted into a table to visualize differences. It should be noted, however, that results herein are representative only of fishing sets documented by NOAA observers and not necessarily of fishing practices collectively. While these results are informative and useful, they should not be construed to represent broad-scale usage of longline reef fish fishing practices at large, or even within the Gulf of Mexico.

Table 1. Total number of gear sets documented by observers, 2006-2014.

| Year | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sets | 196 | 163 | 50 | 322 | 1006 | 1860 | 400 | 1589 | 397 |

### 1.2.3 Gear Change Results

Total gear soak time differed significantly across years $\left(F_{8,5983}=88.515, p<\right.$ 0.01). Significant differences in soak time were detected amongst several years. No broad-scale patterns are detectable over time (Table 2).

Significant differences were detected in fishing depth between years $\left(F_{8,5983}=\right.$ 11.397, $p<0.01$ ). Later years and earlier years appear to differ more than years closer together, but again, there was no discernable pattern over time (Table 3).

Gangion length differed significantly between years $\left(F_{8,5983}=29.008, p<0.01\right)$.
Years closer together are generally more similar, but no detectible pattern emerged during the years tested (Table 4).

Hook distance varied significantly over time $\left(F_{8,5983}=17.809, p<0.01\right)$. While the differences appear more marked in later years, there is no discernable pattern to the differences observed (Table 5).

Mainline length differed significantly across years surveyed $\left(F_{8,5983}=139.34, p<\right.$ 0.01). Again, no pattern emerged over time (Table 6).

Hook count also differed significantly during the study period $\left(F_{8,5983}=32.419, p\right.$ < 0.01), but no trend in the differences was observed (Table 7).

Table 2. Results of Tukey HSD post-hoc test for soak time. Years marked with a * are significantly different from each other ( $p<0.1$ ).


Table 3. Results of Tukey HSD post-hoc test for fishing depth. Years marked with a * are significantly different from each other ( $p<0.1$ ).


Table 4. Results of Tukey HSD post-hoc test for gangion length. Years marked with a * are significantly different from each other ( $p<0.1$ ).


Table 5. Results of Tukey HSD post-hoc test for hook distance. Years marked with a * are significantly different from each other ( $p<0.1$ ).


Table 6. Results of Tukey HSD post-hoc test for mainline length. Years marked with a * are significantly different from each other ( $p<0.1$ ).


Table 7. Results of Tukey HSD post-hoc test for hook count. Years marked with a * are significantly different from each other ( $p<0.1$ ).


### 1.3 Spatial Visualization

### 1.3.1 Description of Dataset

From 2006-2014, a total of 352,089 individual fish (349,465 with complete gear and set information) were caught aboard commercial longline vessels and documented by fishery observers during 260 separate fishing trips. A total of 187 different species were recorded during fishery observation. Fishing gear and set configurations were defined by soak time, fishing depth, mainline length, hook count, gangion length, hook distance, month, and year.

### 1.3.2 Spatial Distribution of Catches

Per federal regulations, visual representation of catch data is permitted only when three or more separate fishing vessels have operated within a statistical zone during the
period of interest. Catches were documented in 13 statistical zones during the study period. Total catches in each statistical zone for 2006-2014 are given in Table 8.

Spatial plotting of data was conducted for all species targeted by commercial reef fish fishers with sufficient data during the study period (2006-2014). These species included gag grouper (Mycteroperca microlepis, Figure 2), red grouper (Epinephelus morio, Figure 3), scamp grouper (Mycteroperca phenax, Figure 4), mutton snapper (Lutjanus analis, Figure 5), and red snapper (Lutjanus capechanus, Figure 6). In all cases, data were sufficient for visual presentation only in statistical zones 2-6 and 8 off the western coast and panhandle of Florida. While catches occurred outside these areas for targeted species and other species, the coverage was insufficient for inclusion in the spatial analysis. It should be noted that in May 2009 on, an emergency rule prohibited bottom longline gear east of Cape San Blas, Florida shoreward of the 50-fathom contour (Scott-Denton et al. 2011). Subsequent modification prohibited gear June through August east of the 35 -fathom contour and limited the total hooks aboard to 1,000 of which only 750 could be set, as well as reducing vessel pressure through an endorsement system (Scott-Denton et al. 2011).

To determine the density of catches, data were analyzed in $R$ version 3.2.3
"Wooden Christmas-Tree" ${ }^{1}$ using the mapplots package ${ }^{1}$ (Gerritsen 2014). Catches were plotted within a $0.145^{\circ}$ latitude by $0.145^{\circ}$ longitude (approximately $15 \times 15 \mathrm{~km}$ ) grid.

[^0]These grids were visualized using ArcGIS for desktop version $10.2^{1}$ (Environmental Systems Research Institute (ESRI) 2014).

Table 8. Total catches documented in each statistical zone, 2006-2014.

| Statistical Zone | Catches |
| :---: | :---: |
| 2 | 7907 |
| 3 | 40493 |
| 4 | 95970 |
| 5 | 151605 |
| 6 | 43523 |
| 7 | 161 |
| 8 | 10452 |
| 11 | 283 |
| 13 | 70 |
| 14 | 434 |
| 15 | 250 |
| 18 | 30 |
| 21 | 911 |



Figure 2. Gag grouper catches, 2006-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines.


Figure 3. Red grouper catches, 2006-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines.


Figure 4. Scamp catches, 2007-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines.


Figure 5. Mutton snapper catches, 2006 and 2010-2014. Statistical zones not included are indicated with white hatched lines.


Figure 6. Red snapper catches, 2006-2014 (exclusive of 2008). Statistical zones not included are indicated with white hatched lines.

### 1.4 Gear Use and Spatial Distribution Conclusions

Inconsistencies in observer coverage (ranging from as few as 50 trips to as many as 1,860 trips in a year) and fishing effort render broad scale conclusions regarding changes in gear usage and fishing success difficult to draw. However, these findings are ultimately useful in the pursuit of broad-scale research questions regarding the efficacy of fishing methods. Because no general trend is apparent in changes in gear use over time, changes in catch success over time are more readily attributable to changes in fishing gear (though changes in fishery success should not be assumed to be indicative of a thriving or declining population). Additionally, because differences in gear usage between years do not follow a general trend, it is unlikely that confounding between gear and set methodology and time has occurred in models presented later in this dissertation. It should be noted, however, that the differences observed herein are not necessarily indicative of fishing methodology of all reef fish fishers collectively or even those based in the Gulf of Mexico. It is plausible that observation by NOAA observers may change the gear usage behaviors of fishers.

NOAA fishery observer coverage shows some inconsistency across species. Because only statistical zones with at least three or more separate trips may be used in spatial analyses, usable data is limited to the western coast of Florida. Per Scott-Denton and Williams (2013), observer coverage was determined by randomized selection and stratified by season, gear, and region and therefore focused more heavily on areas of fishing effort. While trips were observed outside of the statistical zones represented in chapter 1.3, these data were insufficient for inclusion in the spatial analysis. For the
longline fishery, this represents coverage of about five percent of the fishery for years 2010-2011 (Scott-Denton and Williams 2013). When funding and personnel allow, an effort should be made to expand observer coverage outside of the western Florida region as a considerable portion of fishing effort occurs on the coasts of the other Gulf states. Given the inconsistencies in observer effort over time, meaningful spatial statistical analysis is not possible with the existing dataset.

The observer program represents a crucial step towards obtaining a functional understanding of the longline reef fish fishery in the Gulf of Mexico. Significant shipping and oil drilling activity occurs in the Gulf of Mexico, making the region's fisheries vulnerable to anthropogenic disasters. Natural disturbances (e.g. hurricanes) are common in the region as well. Coastal communities in the Gulf of Mexico are particularly reliant on fishery resources. A thorough understanding of fishery dynamics is important to ensure the continued economic success of these communities, as well as to ensure adequate aid in the face of disasters. Collecting meaningful information regarding the distribution of catches in the Gulf of Mexico and the methods employed to catch fish represents an important precautionary step to safeguard a vital and dynamic ecosystem.

# 2. FISH LENGTH AS A FUNCTION OF GEAR AND SET METHODOLOGY <br> <br> 2.1 Introduction 

 <br> <br> 2.1 Introduction}

### 2.1.1 Bycatch in Longline Fisheries

Bycatch in longline fisheries is a priority for managers. Bycatch herein is defined per Alverson (1999) as, "...the capture of any species, size of species, or sex of species that is not the primary target(s) of a fishing activity." Species outside the fishery include marine mammals, turtles, and seabirds; other species of fish not targeted by fishers; and fish of the target species that fall outside of size and sex restrictions. Total mortality in a fishery can be quantified as the sum of intentional legal landing mortality, illegal landing mortality, unintentional discard mortality, catch stress and avoidance mortality, mortality in lost gear, mortality resulting from gear impacts on habitat, and mortality of individual stressed fish unable to avoid predation (Alverson 1999). Even in instances where fish do not sustain a physical injury, behavior impairment has been observed in some species (Davis 2005). While reported landing mortality is known, other sources of fishing mortality can be difficult or impossible to quantify and therefore are challenging to regulators. Bycatch of non-target fish and other organisms can contribute to discard mortality, mortality resulting from the stress of capture, and mortality to those unable to avoid predation as a result of this stress.

While completely eliminating bycatch is unrealistic, measures to reduce or minimize it have proven effective. For instance, a significant reduction in stingray catch in the Mediterranean Sea was noted for pelagic longliners using larger J-hooks or circle hooks (Piovano et al. 2010). Seabird entanglement may be reduced in the Mediterranean
by setting longlines at night (Belda and Sánchez 2001). Use of visible light deterrents may be effective at avoiding sea turtle bycatch, as turtles and pelagic fishes have dramatically different visual capabilities (Southwood et al. 2008). Such measures demonstrate that bycatch reduction is possible using simple changes to current fishing practices with only minimal cost and practice implications for fishers.

### 2.1.2 Focal Species

Grouper and snapper are the primary target species for bottom longliners in the Gulf of Mexico (Scott-Denton and Williams 2013). However, the frequency with which a species was targeted over the course of observation varied widely. From 2006 to 2014, observers documented 14 species targeted by fishers: general sharks (12 trips), yellowedge grouper (Epinephelus flavolimbatus, 2 trips), red grouper (Epinephelus morio, 5802 trips), Warsaw grouper (Epinephelus nigritus, 3 trips), snowy grouper (Ephinephelus niveatus, 3 trips), tilefish (Lopholatius chamaeleonticeps, 2 trips), mutton snapper (Lutjanus analis, 146 trips), blackfin snapper (Lutjanus buccanella, 9 trips), red snapper (Lutjanus campechanus, 203 trips), black grouper (Mycteroperca bonaci, 41 trips), gag grouper (Mycteroperca microlepis, 968 trips), scamp (Mycteroperca phenax, 891 trips), and vermilion snapper (Rhomboplites aurorubens, 1 trip).

Southeast Data, Assessment, and Review (SEDAR) is a joint management council composed of the Caribbean, Gulf of Mexico, and South Atlantic Regional Fishery Management Councils; National Marine Fisheries Services (NOAA Fisheries); and Gulf and Atlantic state management councils, with the intent of improving stock management in these regions (SEDAR 2013, 2014). Current assessments include, but are
not limited to, gag grouper, SEDAR 33 (SEDAR 2014); and red snapper, SEDAR 31 (SEDAR 2013). The historical landings of gag grouper in the Gulf of Mexico are difficult to quantify as they were categorized as "unclassified grouper" through 1962, and data are not available for all states for most years (SEDAR 2014). Gag grouper were removed from the overfishing and overfished lists and added to the rebuilt stock list in 2014 (National Oceanic and Atmospheric Administration 2015). The Southeast Area Monitoring and Assessment Program (SEAMAP) provides a fishery-independent evaluation of the gag grouper population. From 1980 to 2005, the total biomass of the gag grouper population increased, then declined sharply in 2006 following a 2005 red tide event, but recovered to an all-time high by 2012 (SEDAR 2014). While female biomass and mean age increased (except immediately following the red tide event), male overall length and mean age declined up to 2012 (SEDAR 2014).

No formal assessments of the red snapper population in the Gulf of Mexico were conducted prior to the institution of the GMFMC Reef Fish FMP in 1984 (SEDAR 2013). In 1999, a red snapper stock assessment using an age-structured model was conducted for the first time, and indicated that the stock was overfished; the stock remained on the overfished list for the next two and a half decades (SEDAR 2013). While red snapper in the Gulf of Mexico are no longer actively undergoing overfishing, they presently remain on the overfished list (National Oceanic and Atmospheric Administration 2015).

### 2.1.3 Regulation of Target Species

Fishery management in federal waters is overseen by eight fishery management councils established under the Fishery Conservation and Management Act of 1976 (Gulf of Mexico Fishery Management Council 2016). Proposed rules and rule changes are submitted by the Council to National Marine Fisheries Service, which reviews and approves the new rules before implementation by the Secretary of Commerce (Gulf of Mexico Fishery Management Council 2016). Fisheries may be regulated using minimum size limits, trip limits, quotas and closed seasons, or any combination of two or three control measures.

Reef Fish FMP Amendment 26, implemented in January 2007, introduced an individual fishing quota (IFQ) system for red snapper in an effort to reduce derby fishing conditions, wherein fishers attempt to catch as many fish as possible within an open season (Gulf of Mexico Fishery Management Council 2006). Amendment 29 to the Reef Fish FMP established an IFQ system for grouper and tilefish, effective 2010 (Gulf of Mexico Fishery Management Council 2010b; SEDAR 2014). IFQ programs seem to have changed the compliance rates in the fishery, by increasing violation reporting and minimizing other types of violations (Porter et al. 2013). However, noncompliance remains a problem, as enforcement officials are faced with regulating a large fishing fleet spread throughout the Gulf of Mexico, presenting a challenge for long-term regulation (Porter et al. 2013).

The IFQ program's success indicates that, at least in the short term, allocation management can improve productivity of the fishery and successfully protected the stock from further overfishing (National Oceanic and Atmospheric Administration 2015; Solís
et al. 2015). However, despite the initiation of the IFQ system, gag grouper remained overexploited and Amendment 30B was implemented in 2009 to define gag grouper stock size and optimum yield; and further restrictions in the shallow water grouper quota allowed the gag grouper stock to rebuild (Gulf of Mexico Fishery Management Council 2010b; SEDAR 2014). Moreover, Amendment 32 established 2012 and 2015 annual catch limits and annual catch targets for gag grouper (SEDAR 2014).

Amendment 40 separated the red snapper fishery into federal for-hire and private for-hire or recreational fishers with separate quotas (Gulf of Mexico Fishery Management Council 2010b). A new action is currently awaiting approval by the Secretary of Commerce that would set the 2015 red snapper quota at 14.30 million pounds ( 7.293 mp commercial, 7.007 mp recreational, 5.605 mp annual recreational catch target (ACT); 2016 at 13.96 mp ( 7.120 mp commercial, 6.840 mp recreational, 5.473 recreational ACT); and 2017 onward at 13.74 mp ( 7.007 mp commercial, 6.733 mp recreational, 5.386 recreational ACT) (Gulf of Mexico Fishery Management Council 2010c).

Both mutton and red snappers are managed under the Gulf of Mexico Fishery Management Council. Mutton snappers must be greater than 16 inches in total length, and no trip limits are imposed; the fishery is under the control of the Gulf Council as of 2008 (Gulf of Mexico Fishery Management Council 2016). Red snappers have a 13-inch total-length minimum, but are managed under an individual fishing quota (IFQ) up to a total of $6,768,000$ pounds gutted weight, including a $4.9 \%$ withholding allocation, which is reserved by managers to release to fishers at a later time in the season pending landings (Gulf of Mexico Fishery Management Council 2016).

Gag grouper, red grouper, speckled hind, and scamp are managed under an IFQ program and angling requires prior possession of an IFQ allocation (Gulf of Mexico Fishery Management Council 2016). Gag grouper must be a minimum of 22 inches in total length, and total catch per year is allocated as 0.939 million pounds gutted weight (GMFMC 2016). Red grouper must be at least 18 inches in total length, and 5.72 million pounds gutted weight is allocated per year (GMFMC 2016). Scamp must be 16 inches in total length and included in the 0.525 -million-pound annual quota for all shallow water grouper (including black, yellowfin, and yellowmouth) (GMFMC 2016). Scamp may be caught under a deep water grouper IFQ allocation once an account holder's shallow water grouper allocation has been fulfilled or transferred (GMFMC 2016). Speckled hind do not a have a minimum size limit, but are included in the shallow water grouper allocation (GMFMC 2016). The IFQ program has increased productivity for the fleet, indicating that, at least in the short term, allocation management can improve productivity of the fishery, and has successfully protected the stock from further overfishing (National Oceanic and Atmospheric Administration 2015; Solís et al. 2015). Amendment 32 established 2012 and 2015 annual catch limits and annual catch targets for gag grouper (SEDAR 2014).

Porgys, toadfishes, and shark suckers are not currently regulated under the GMFMC. Sharks, including Atlantic sharpnose and blacknose, are managed as Atlantic Highly Migratory Species (50 C. F. R. § 635.24). Non-blacknose sharks in the Gulf of Mexico are managed under an annual commercial quota in the Gulf of Mexico (50 C. F. R. § 635.24).

### 2.1.4 Prior Modeling of Catch Data

Multiple studies have previously attempted to quantify the selectivity of fishing gear with both respect to both fish size and species. For cod, larger-size bait caught fewer small fish, but no relationship with bait size was documented for emperor fish; bait size has proven statistically inconclusive in other studies (Løkkeborg and Bjordal 1992; Huse and Soldal 2000). Hook size selectivity has proven difficult to accurately quantify, as studies that demonstrated some relationship between hook size and fish size were confounded by bait size (Løkkeborg and Bjordal 1992; Erzini et al. 1996; Huse and Soldal 2000). A strong relationship between fishing depth and fish "catchability" has been documented for pelagic longline species, wherein catchability generally increases with depth (Ward and Myers 2005a). An increase in line sinking speed, which should move the line through shallow waters inhabited by smaller fish more quickly, contributed to reducing catch of undersized haddock in one instance, but this trend was inconsistent (Huse and Soldal 2000). Use of hooks with inedible plastic bodies reduced undersized catch, but also reduced overall catch (Huse and Soldal 2000).

The objective of this study is to quantify the size selectivity of bottom longline fishing gear for several species of reef fish. Prior research has not addressed seasonality to the month level, nor included hook placement parameters (e.g. gangion length, hook distance), which may be influential for some species based on their group behavior or avoidance of groups. Discard mortality (immediately after being caught or resulting from stress or injury from catch and handling) represents a portion of total fishery mortality that is often difficult to quantify (Alverson and Hughes 1996). Results from
this study should aid managers in setting fishing seasons, and fishers in determining the optimum gear and set configuration to obtain the largest individuals of the desired species. Such changes should minimize the number of undersized individuals caught and discarded that may not survive. Ultimately, changing fishing methods per the results of the models generated should aid in reducing bycatch mortality of undersized fish and allow catch of larger fish of greater commercial value with greater frequency.

### 2.2 Methods

### 2.2.1 Data Collection

Data were collected by the Southeast Fisheries Science Center (SEFSC) Galveston Reef Fish Observer Program as described in chapter 1. Per NOAA Administrative Order 216-100 and a non-disclosure agreement with NMFS SEFSC, raw data are confidential.

### 2.2.2 Data Analysis

The purpose of the models derived herein is to determine the effect of gear and set parameters on the length of individual fish in the catch. The Southeast Fisheries Science Center (SEFSC) Galveston Reef Fish Observer Program provided bottom longline reef fish fishery catch data from 2006-2014. All statistical analysis was conducted using R version 3.2.3 "Wooden Christmas-Tree" or later. ${ }^{2}$ The objective of this analysis is to assess the variance in fish length for each species explainable by

[^1]fishing gear and set parameters, with the intent of providing recommendations for fishing that will maximize the length of fish caught, thereby minimizing catch of undersized individuals. Fish length in millimeters was selected as the primary means of fish measurement, as fish weights are unavailable for a large portion of the dataset. Lengths were recorded by observers per the NOAA observer training manual prescribed measurement code and are consistent within the species. Lengths given are fork length, except for scamp, leopard toadfish, sharpnose sharks, and blacknose sharks which are given in total length.

Only variables that can be directly manipulated by fishers were included in the analysis, as these variables can be controlled and are therefore the useful for management purposes. Therefore, abiotic factors (e.g. salinity, water temperature) and biotic and population factors (e.g. prey availability, population size) were excluded. Year has been included to allow for the determination of how changes over time contribute to the variance. Excluded biotic and abiotic factors presumably contribute to the unexplained variance in the models. Years have been numbered from dummy year 1 (2006) to 9 (2014). The following explanatory variables were included in the analysis: soak time in hours; fishing depth in feet; main line length in miles; hooks deployed (actual when available, and approximate otherwise); gangion length in feet; hook distance in feet; and month of the year. The dependent variable was total fish length in millimeters. Coefficient significance for categorical variables was evaluated against a baseline level; year 1 for year and April for month. To account for the large number of explanatory variables in the analysis, only species with $n>500$ individuals after removal
of entries with missing data were analyzed (Table 9). Requiring a higher sample size and using $p<0.01$ as the standard for significance produced a more robust analysis.

Table 9. The names and sample sizes for species ( $n>500$ ) for length analysis.

| Common Name | Scientific Name | Total Sample Size ( $n$ ) |
| :--- | :---: | :---: |
| Jolthead Porgy | Calamus bajonado | 1183 |
| Blacknose Shark | Carcharhinus acronotus | 1265 |
| Speckled Hind | Epinephelus drummondhayi | 800 |
| Red Grouper | Epinephelus morio | 268764 |
| Red Snapper | Lutjanus campechanus | 15870 |
| Mutton Snapper | Lutjanus analis | 2126 |
| Scamp | Mycteroperca phenax | 6529 |
| Gag Grouper | Mycteroperca microlepis | 5404 |
| Red Porgy | Pagrus pagrus | 897 |
| Leopard Toadfish | Opsanus pardus | 562 |
| Atlantic Sharpnose Shark | Rhizoprionodon terraenovae | 5976 |

Prior to analysis, data entries with missing values were removed from the dataset as necessitated by the software package. Linear regression with interaction and ordinary least squares (OLS) models were used to predict fish length as a function of fishing variables. Linear regression models with interaction were determined using an exhaustive search of all combinations and comparing the best models determined by the search as determined by the corrected Bayesian Information Criterion (BIC). The best model by BIC was the model which best explains the data while penalizing complexity. This process was repeated for the OLS model. The best resulting OLS models and interaction models for each species were assessed for normality, presence of influential points, homoscedasticity, and multicollinearity using diagnostic tests. First, variance inflation factors (VIF) were calculated to assess whether problematic multicollinearity
existed in the model, where a VIF greater than five was considered problematic. If VIFs presented issues, backwards regression was used to assure that multicollinearity did not influence results. A residuals vs. fitted plot was used to assess the model fit across predicted values and check for homoscedasticity. Then, a Cook's distance plot was used to check for influential points where a resulting Cook's distance greater than one was considered influential. Finally, a normal Q-Q plot and density distribution were used to assess normality. The model's overall significance, significance of each coefficient, and variance explained ( $R^{2}{ }_{a d j}$ ) were determined. The best model for the species was determined by BIC.

### 2.3 Results

### 2.3.1 Jolthead Porgy

An exhaustive search of all linear models with interaction was performed and models were compared by BIC. The highest ranked resulting model included fishing depth, year, and their interaction. While the model was significant overall $(p<0.01)$ and the diagnostic plots do not indicate problems with the assumptions the model, the $R^{2}{ }_{\text {adj }}$ (0.08) indicates that the model explains only a small portion of the variance in jolthead porgy length (Table 10, Figure 7). Within the model, neither of the individual variables nor their interaction was significant (Table 10).

Table 10. The results of the top linear model with interaction for jolthead porgy detected by the exhaustive search. $R^{2}{ }_{a d j}=0.081, p<0.01$

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 541.316 | 234.450 | 0.021 |
| Fishing Depth | 0.106 | 1.216 | 0.930 |
| DummyYear2 | -63.308 | 316.081 | 0.841 |
| DummyYear3 | -139.624 | 681.485 | 0.838 |
| DummyYear4 | 4.962 | 238.112 | 0.983 |
| DummyYear5 | 127.544 | 241.226 | 0.597 |
| DummyYear6 | 94.070 | 235.826 | 0.690 |
| DummyYear7 | 40.226 | 239.217 | 0.867 |
| DummyYear8 | -33.298 | 235.370 | 0.888 |
| DummyYear9 | -40.009 | 235.771 | 0.865 |
| Fishing Depth:DummyYear2 | -0.071 | 1.585 | 0.964 |
| Fishing Depth:DummyYear3 | 1.214 | 4.220 | 0.774 |
| Fishing Depth:DummyYear4 | -0.366 | 1.244 | 0.769 |
| Fishing Depth:DummyYear5 | -0.907 | 1.239 | 0.465 |
| Fishing Depth:DummyYear6 | -0.845 | 1.221 | 0.489 |
| Fishing Depth:DummyYear7 | -0.560 | 1.241 | 0.652 |
| Fishing Depth:DummyYear8 | -0.187 | 1.219 | 0.878 |
| Fishing Depth:DummyYear9 | -0.198 | 1.222 | 0.871 |



Figure 7. Diagnostic plots for the jolthead porgy linear model predicting length as a function of year, fishing depth, and their interactions. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points $<1$, confirming no influential points in the model. Finally, the normal Q-Q plot and density distribution show an approximately normal distribution.

Next, a model average dredge of ordinary least squares linear models was conducted, and the top models were ranked by BIC. The strongest model from this process predicted length as a function of fishing depth, hooks, and mainline length (Table 11). Each of these variables are significant predictors of jolthead porgy length; the model is significant overall with no clear diagnostic issues (Figure 8). This model explains $4.6 \%$ of the variation in jolthead porgy length, and ranks above the linear model when compared directly by BIC.

Table 11. The results of the top ordinary least squares linear model for jolthead porgy. $R^{2}{ }_{a d j}=0.046, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 543.648 | 15.334 | 0.000 |
| Fishing Depth | -0.271 | 0.046 | 0.000 |
| Hooks | -0.033 | 0.012 | 0.007 |
| Mainline Length | 6.522 | 1.562 | 0.000 |



Figure 8. Diagnostic plots for the jolthead porgy OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points $<1$, confirming no influential points in the model. The normal Q-Q plot and density distribution show an approximately normal distribution.

### 2.3.2 Blacknose Shark

The highest ranked linear model by BIC included month, year, and their interaction. The model was significant overall ( $p<0.01$ ), and the $R^{2}{ }_{a d j}$ value ( 0.307 ) suggests a strong fit (Table 12). While the diagnostic plots indicate a skewed distribution, the large sample size is sufficient for analysis (Figure 9).

Month:DummyYear interactions where no catches were recorded have been removed from the results table.

Table 12. The results of the top linear model for blacknose sharks detected by the exhaustive search. $R^{2}$ adj $=0.307, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 624.494 | 64.827 | 0.000 |
| MonthAug | 628.840 | 103.064 | 0.000 |
| MonthDec | 36.818 | 48.617 | 0.449 |
| MonthFeb | 127.282 | 121.914 | 0.297 |
| MonthJan | 49.205 | 115.857 | 0.671 |
| MonthJul | -85.682 | 140.344 | 0.542 |
| MonthJun | 341.318 | 140.344 | 0.015 |
| MonthMar | 33.609 | 28.069 | 0.231 |
| MonthMay | -76.849 | 60.395 | 0.204 |
| MonthNov | -48.432 | 45.195 | 0.284 |
| MonthOct | 141.340 | 76.207 | 0.064 |
| MonthSep | 117.792 | 38.096 | 0.002 |
| DummyYear2 | 80.938 | 90.117 | 0.369 |
| DummyYear3 | 13.854 | 56.561 | 0.807 |
| DummyYear4 | 117.199 | 70.309 | 0.096 |
| DummyYear5 | 406.506 | 86.095 | 0.000 |
| DummyYear6 | 311.605 | 67.218 | 0.000 |
| DummyYear7 | 240.302 | 84.384 | 0.005 |
| DummyYear8 | 261.188 | 61.359 | 0.000 |
| DummyYear9 | 202.725 | 130.845 | 0.122 |
| MonthDec:DummyYear2 | 102.417 | 88.808 | 0.249 |

Table 12 continued.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| MonthJul:DummyYear2 | 260.813 | 157.539 | 0.098 |
| MonthJan:DummyYear4 | 183.960 | 119.689 | 0.125 |
| MonthMar:DummyYear4 | -87.125 | 51.589 | 0.092 |
| MonthMay:DummyYear4 | 220.510 | 69.206 | 0.002 |
| MonthNov:DummyYear4 | 149.522 | 60.172 | 0.013 |
| MonthDec:DummyYear5 | -221.238 | 78.706 | 0.005 |
| MonthFeb:DummyYear5 | -176.802 | 137.271 | 0.198 |
| MonthJan:DummyYear5 | -423.705 | 135.046 | 0.002 |
| MonthJul:DummyYear5 | 156.932 | 166.496 | 0.346 |
| MonthMar:DummyYear5 | -23.846 | 64.844 | 0.713 |
| MonthMay:DummyYear5 | 185.849 | 103.485 | 0.073 |
| MonthNov:DummyYear5 | -163.011 | 73.360 | 0.027 |
| MonthOct:DummyYear5 | -151.689 | 96.556 | 0.116 |
| MonthSep:DummyYear5 | -81.417 | 76.582 | 0.288 |
| MonthAug:DummyYear6 | -739.938 | 143.413 | 0.000 |
| MonthFeb:DummyYear6 | -150.496 | 125.007 | 0.229 |
| MonthJan:DummyYear6 | -121.250 | 121.458 | 0.318 |
| MonthJun:DummyYear6 | -268.917 | 172.167 | 0.119 |
| MonthMar:DummyYear6 | -57.958 | 45.459 | 0.203 |
| MonthMay:DummyYear6 | 107.950 | 76.740 | 0.160 |
| MonthOct:DummyYear6 | -249.317 | 80.345 | 0.002 |
| MonthSep:DummyYear6 | -270.668 | 62.505 | 0.000 |
| MonthDec:DummyYear7 | -49.114 | 122.110 | 0.688 |
| MonthFeb:DummyYear7 | -25.713 | 113.228 | 0.820 |
| MonthJul:DummyYear7 | 330.886 | 204.630 | 0.106 |
| MonthMar:DummyYear7 | -85.329 | 63.791 | 0.181 |
| MonthOct:DummyYear8 | -107.688 | 92.626 | 0.245 |



Figure 9. Diagnostic plots for the blacknose shark linear model with interaction. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points $<1$, confirming no influential points in the dataset. Some skew in the distribution is apparent in the Q-Q plot and density distribution, however, the sample size is sufficient for analysis despite the skew.

A model average dredge of ordinary least squares linear models was conducted, and the top models were ranked by BIC. The strongest model predicted length as a function of year, fishing depth, gangion length, hooks, mainline length, and month
(Table 13). This model explains $20.9 \%$ of the variation in blacknose shark length, but is inferior to the interaction model when compared directly by BIC. Diagnostics again indicate some minor problems with normality, but no influential points and a good fit across all lengths (Figure 10).

Table 13. The results of the top ordinary least squares linear model for blacknose shark. $R^{2}{ }_{a d j}=0.209, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | ---: | ---: | ---: |
| (Intercept) | 872.431 | 54.954 | 0.000 |
| DummyYear2 | -46.003 | 51.838 | 0.375 |
| DummyYear3 | -187.099 | 48.072 | 0.000 |
| DummyYear4 | -34.050 | 42.268 | 0.421 |
| DummyYear5 | 92.254 | 41.043 | 0.025 |
| DummyYear6 | 14.289 | 39.079 | 0.715 |
| DummyYear7 | 1.364 | 42.674 | 0.975 |
| DummyYear8 | 56.326 | 39.970 | 0.159 |
| DummyYear9 | 37.005 | 44.179 | 0.402 |
| Fishing Depth | 0.530 | 0.136 | 0.000 |
| Ganglion Length | -9.707 | 2.278 | 0.000 |
| Hooks | -0.165 | 0.025 | 0.000 |
| Mainline Length | 28.425 | 3.431 | 0.000 |
| MonthAug | 100.758 | 74.046 | 0.174 |
| MonthDec | -80.460 | 26.602 | 0.003 |
| MonthFeb | 40.740 | 21.235 | 0.055 |
| MonthJan | -42.663 | 22.237 | 0.055 |
| MonthJul | 56.752 | 43.317 | 0.190 |
| MonthJun | 135.508 | 87.306 | 0.121 |
| MonthMar | -15.858 | 17.895 | 0.376 |
| MonthMay | 47.962 | 23.861 | 0.045 |
| MonthNov | -140.252 | 19.182 | 0.000 |
| MonthOct | -23.380 | 19.400 | 0.228 |
| MonthSep | 22.405 | 25.739 | 0.384 |



Figure 10. Diagnostic plots for the blacknose shark OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes. The Cook's distance plot indicates all points $<1$, confirming no influential points in the dataset. Some skew in the distribution is apparent in the Q-Q plot and density distribution, however, the sample size is sufficient to compensate for the skewed distribution.

### 2.3.3 Speckled Hind

The highest ranked linear model by BIC included fishing depth, year, and their interaction. The model was significant overall ( $p<0.01$ ) and a moderate fit was achieved $\left(R^{2}{ }_{a d j}=0.143\right)$, though only fishing depth and one year are significant within the model (Table 14). Diagnostics indicate a strong model fit, though the distribution possesses a long right-hand tail (Figure 11).

Table 14. The results of the top linear model with interaction for speckled hind by BIC. $R^{2}{ }_{a d j}=0.143, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | ---: | ---: | ---: |
| (Intercept) | -90.603 | 180.407 | 0.616 |
| Fishing Depth | 2.105 | 0.773 | 0.007 |
| DummyYear2 | 272.659 | 293.410 | 0.353 |
| DummyYear4 | 584.568 | 213.643 | 0.006 |
| DummyYear5 | 231.807 | 190.037 | 0.223 |
| DummyYear6 | 236.273 | 189.720 | 0.213 |
| DummyYear7 | 212.207 | 211.931 | 0.317 |
| DummyYear8 | 256.979 | 188.166 | 0.172 |
| DummyYear9 | 237.902 | 201.675 | 0.239 |
| Fishing Depth:DummyYear2 | -1.176 | 1.080 | 0.277 |
| Fishing Depth:DummyYear4 | -2.080 | 0.883 | 0.019 |
| Fishing Depth:DummyYear5 | -0.811 | 0.808 | 0.316 |
| Fishing Depth:DummyYear6 | -0.837 | 0.808 | 0.300 |
| Fishing Depth:DummyYear7 | -0.485 | 0.911 | 0.595 |
| Fishing Depth:DummyYear8 | -0.830 | 0.801 | 0.300 |
| Fishing Depth:DummyYear9 | -0.592 | 0.875 | 0.499 |



Figure 11. Diagnostic plots for the speckled hind linear model predicting length as a function of hook count, fishing depth, and their interaction. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality though there is a long right-hand tail.

The strongest ordinary least squares linear model by BIC for speckled hind length included only fishing depth, which was significant within the model (Table 15). This model accounts for $11.4 \%$ of the variance in speckled hind length, and ranks above the linear model when compared directly by BIC. Diagnostics do not indicate any major issues and the model provides a fairly good fit across all lengths (Figure 12).

Table 15. The results of the top ordinary least squares linear model for speckled hind. $R^{2}{ }_{a d j}=0.114, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 198.172 | 27.044 | 0.000 |
| Fishing Depth | 1.091 | 0.107 | 0.000 |



Figure 12. Diagnostic plots for the results of the speckled hind OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality though there is a long left-hand tail.

### 2.3.4 Red Grouper

The highest ranked linear model with interaction by BIC for red grouper included fishing depth, year, and their interaction. The model was significant overall ( $p<0.01$ ) but the fit achieved was poor $\left(R_{a d j}^{2}=0.048\right)($ Table 16). Within the model, fishing depth, some years, and some interactions were significant predictors of red grouper length (Table 16). Diagnostics indicate a distribution slightly skewed towards smaller fish, but overall a good model fit (Figure 13).

Table 16. The results of the top linear model with interaction for red grouper by BIC. $R^{2}{ }_{a d j}=0.048, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 397.290 | 5.315 | 0.000 |
| Fishing Depth | 0.574 | 0.035 | 0.000 |
| DummyYear2 | -20.230 | 8.057 | 0.012 |
| DummyYear3 | 9.843 | 22.914 | 0.668 |
| DummyYear4 | -34.012 | 6.896 | 0.000 |
| DummyYear5 | 4.096 | 5.673 | 0.470 |
| DummyYear6 | 37.621 | 5.513 | 0.000 |
| DummyYear7 | -2.835 | 5.967 | 0.635 |
| DummyYear8 | 26.219 | 5.568 | 0.000 |
| DummyYear9 | 2.728 | 6.382 | 0.669 |
| Fishing Depth:DummyYear2 | 0.148 | 0.051 | 0.004 |
| Fishing Depth:DummyYear3 | -0.096 | 0.156 | 0.538 |
| Fishing Depth:DummyYear4 | 0.218 | 0.044 | 0.000 |
| Fishing Depth:DummyYear5 | -0.100 | 0.037 | 0.006 |
| Fishing Depth:DummyYear6 | -0.230 | 0.036 | 0.000 |
| Fishing Depth:DummyYear7 | 0.011 | 0.038 | 0.765 |
| Fishing Depth:DummyYear8 | -0.062 | 0.036 | 0.083 |
| Fishing Depth:DummyYear9 | 0.073 | 0.041 | 0.074 |



Figure 13. Diagnostic plots for the red grouper linear model predicting length as a function of fishing depth, year, and their interaction. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality though there is a long left-hand tail.

The strongest ordinary least squares linear model by BIC for red grouper explains length as a function of year, fishing depth, hook distance, mainline length, and month (Table 17). All variables with the exception of some levels of year and month were significant predictors of red grouper length (Table 17). While no diagnostic issues are readily apparent, the model explains only $5.3 \%$ of the variance in length, but is significant overall ( $p<0.01$ ) (Figure 14). The OLS model is superior to the interaction model.

Table 17. The results of the top ordinary least squares generalized linear model for red grouper. $R^{2}{ }_{a d j}=0.053, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 383.832 | 1.774 | 0.000 |
| Fishing Depth | 0.405 | 0.006 | 0.000 |
| Hook Distance | 0.160 | 0.019 | 0.000 |
| Mainline Length | 6.181 | 0.178 | 0.000 |
| MonthAug | 0.124 | 1.335 | 0.926 |
| MonthDec | 8.156 | 1.026 | 0.000 |
| MonthFeb | 5.805 | 0.806 | 0.000 |
| MonthJan | 0.960 | 1.012 | 0.343 |
| MonthJul | 12.461 | 1.309 | 0.000 |
| MonthJun | -1.776 | 1.216 | 0.144 |
| MonthMar | 6.855 | 0.740 | 0.000 |
| MonthMay | -3.872 | 0.894 | 0.000 |
| MonthNov | -0.177 | 0.962 | 0.854 |
| MonthOct | -4.623 | 0.852 | 0.000 |
| MonthSep | -4.138 | 0.766 | 0.000 |
| DummyYear2 | 2.623 | 1.781 | 0.141 |
| DummyYear3 | 4.753 | 2.677 | 0.076 |
| DummyYear4 | -1.727 | 1.555 | 0.267 |
| DummyYear5 | -4.157 | 1.313 | 0.002 |
| DummyYear6 | 7.031 | 1.303 | 0.000 |
| DummyYear7 | 8.111 | 1.414 | 0.000 |
| DummyYear8 | 25.658 | 1.284 | 0.000 |
| DummyYear9 | 21.594 | 1.547 | 0.000 |



Figure 14. Diagnostic plots for the results of the red grouper OLS model. The residuals vs. fitted plot indicates the model is predicting length sufficiently across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality though there is a long left-hand tail.

### 2.3.5 Red Snapper

The highest ranked linear model with interaction by BIC for red snapper explained length as a function of month, year, and their interaction. The model was significant overall ( $p<0.01$ ) and explained a moderate amount of the variance in length $\left(R^{2}{ }_{a d j}=0.119\right)($ Table 18). Diagnostics do not indicate any issues with normality (Figure 15).

Table 18. The results of the top linear model with interaction for red snapper by BIC. $R^{2}{ }_{a d j}=0.119, p<0.01$. Month:year interactions with no catches documented have been excluded from the table.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 506.216 | 13.585 | 0.000 |
| MonthAug | -14.645 | 34.755 | 0.674 |
| MonthDec | 184.784 | 61.370 | 0.003 |
| MonthFeb | 124.273 | 12.952 | 0.000 |
| MonthJan | 93.003 | 12.815 | 0.000 |
| MonthJul | 84.946 | 7.286 | 0.000 |
| MonthJun | 40.922 | 5.260 | 0.000 |
| MonthMar | 39.864 | 5.780 | 0.000 |
| MonthMay | 30.579 | 6.564 | 0.000 |
| MonthNov | 0.917 | 25.731 | 0.972 |
| MonthOct | -57.550 | 17.810 | 0.001 |
| MonthSep | 22.414 | 5.368 | 0.000 |
| DummyYear2 | 76.935 | 17.880 | 0.000 |
| DummyYear3 | 7.794 | 19.308 | 0.687 |
| DummyYear4 | 28.422 | 14.260 | 0.046 |
| DummyYear5 | 117.102 | 22.587 | 0.000 |
| DummyYear6 | 55.177 | 13.775 | 0.000 |
| DummyYear7 | 80.311 | 15.009 | 0.000 |
| DummyYear8 | 62.279 | 12.969 | 0.000 |
| DummyYear9 | -6.403 | 17.343 | 0.712 |
| MonthAug:DummyYear2 | -46.309 | 37.912 | 0.222 |
| MonthDec:DummyYear2 | -217.516 | 63.781 | 0.001 |
| MonthJul:DummyYear2 | -164.551 | 28.974 | 0.000 |

Table 18 continued.

|  | Estimate | Std. Error | $p$-value |
| :---: | :---: | :---: | :---: |
| MonthJun:DummyYear2 | -137.406 | 50.504 | 0.007 |
| MonthNov:DummyYear2 | -72.735 | 37.339 | 0.051 |
| MonthSep:DummyYear2 | -66.027 | 20.964 | 0.002 |
| MonthFeb:DummyYear3 | -62.480 | 21.241 | 0.003 |
| MonthFeb:DummyYear4 | -79.340 | 34.784 | 0.023 |
| MonthJan:DummyYear4 | -49.895 | 15.378 | 0.001 |
| MonthJun:DummyYear4 | -58.115 | 29.024 | 0.045 |
| MonthMar:DummyYear4 | -53.518 | 12.952 | 0.000 |
| MonthMay:DummyYear4 | -23.145 | 8.894 | 0.009 |
| MonthNov:DummyYear4 | 14.230 | 26.655 | 0.593 |
| MonthAug:DummyYear5 | -79.451 | 48.264 | 0.100 |
| MonthDec:DummyYear5 | -236.708 | 64.205 | 0.000 |
| MonthFeb:DummyYear5 | -181.005 | 22.902 | 0.000 |
| MonthJan:DummyYear5 | -246.564 | 22.693 | 0.000 |
| MonthJul:DummyYear5 | -142.833 | 20.579 | 0.000 |
| MonthJun:DummyYear5 | -87.240 | 86.699 | 0.314 |
| MonthMar:DummyYear5 | -106.029 | 19.954 | 0.000 |
| MonthMay:DummyYear5 | -103.807 | 19.989 | 0.000 |
| MonthNov:DummyYear5 | -72.825 | 31.602 | 0.021 |
| MonthOct:DummyYear5 | -12.380 | 25.646 | 0.629 |
| MonthSep:DummyYear5 | -93.055 | 19.544 | 0.000 |
| MonthAug:DummyYear6 | 18.539 | 35.691 | 0.604 |
| MonthFeb:DummyYear6 | -103.357 | 13.481 | 0.000 |
| MonthJan:DummyYear6 | -102.086 | 13.477 | 0.000 |
| MonthJul:DummyYear6 | -65.321 | 10.099 | 0.000 |
| MonthJun:DummyYear6 | -55.540 | 7.389 | 0.000 |
| MonthMar:DummyYear6 | -26.464 | 7.446 | 0.000 |
| MonthMay:DummyYear6 | -32.765 | 8.102 | 0.000 |
| MonthOct:DummyYear6 | 71.138 | 18.825 | 0.000 |
| MonthSep:DummyYear6 | -42.517 | 6.986 | 0.000 |
| MonthDec:DummyYear7 | -148.614 | 61.959 | 0.017 |
| MonthFeb:DummyYear7 | -138.804 | 15.981 | 0.000 |
| MonthJan:DummyYear7 | -76.781 | 33.546 | 0.022 |
| MonthJul:DummyYear7 | -63.863 | 12.574 | 0.000 |
| MonthMar:DummyYear7 | -12.051 | 10.567 | 0.254 |
| MonthNov:DummyYear7 | 10.081 | 27.281 | 0.712 |

## Table 18 continued.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| MonthOct:DummyYear7 | 92.522 | 62.767 | 0.141 |
| MonthAug:DummyYear8 | 88.538 | 35.031 | 0.012 |
| MonthDec:DummyYear8 | -157.456 | 61.343 | 0.010 |
| MonthJan:DummyYear8 | 19.501 | 85.506 | 0.820 |
| MonthNov:DummyYear8 | 15.202 | 25.753 | 0.555 |
| MonthOct:DummyYear8 | 93.287 | 18.140 | 0.000 |



Figure 15. Diagnostic plots for the results of the red snapper interaction model. The residuals vs. fitted plot indicates the model is predicting length well across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality.

The strongest ordinary least squares linear model by BIC for red snapper explains length as a function of soak time, year, fishing depth, gangion length, and month (Table 19). With the exception of some months, all variables were significant predictors of red snapper length (Table 19). No diagnostic issues are apparent and the model explains $11.1 \%$ of the variance in length, and is significant overall $(p<0.01)$ (Figure 16). The OLS model ranks higher than the interaction model by BIC.

Table 19. The results of the top ordinary least squares linear model for red snapper. $R^{2}{ }_{a d j}$ $=0.111$, $p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| Intercept) | 430.050 | 8.942 | 0.000 |
| Soak Time | 2.573 | 0.587 | 0.000 |
| Fishing Depth | 0.286 | 0.017 | 0.000 |
| Ganglion |  |  |  |
| Length | -3.362 | 0.261 | 0.000 |
| MonthAug | 21.349 | 4.770 | 0.000 |
| MonthDec | 17.877 | 3.424 | 0.000 |
| MonthFeb | 14.019 | 2.893 | 0.000 |
| MonthJan | -16.145 | 3.088 | 0.000 |
| MonthJul | 22.585 | 3.850 | 0.000 |
| MonthJun | 2.452 | 3.453 | 0.478 |
| MonthMar | 17.614 | 2.935 | 0.000 |
| MonthMay | 3.515 | 3.012 | 0.243 |
| MonthNov | 11.381 | 3.085 | 0.000 |
| MonthOct | 19.190 | 3.480 | 0.000 |
| MonthSep | 5.435 | 2.966 | 0.067 |
| DummyYear2 | 46.876 | 9.726 | 0.000 |
| DummyYear3 | 53.469 | 10.833 | 0.000 |
| DummyYear4 | 63.233 | 8.230 | 0.000 |
| DummyYear5 | 65.516 | 7.910 | 0.000 |
| DummyYear6 | 85.308 | 7.915 | 0.000 |
| DummyYear7 | 112.801 | 8.149 | 0.000 |
| DummyYear8 | 117.545 | 7.894 | 0.000 |
| DummyYear9 | 127.141 | 8.488 | 0.000 |



Figure 16. Diagnostic plots for the results of the red snapper ordinary least squares linear model. The residuals vs. fitted plot indicates the model is predicting length well across all sizes, and no influential points are present in the Cook's distance plot. The normal Q-Q plot and density distribution suggest sufficient normality.

### 2.3.6 Mutton Snapper

Gangion length, month, and their interaction were the best factors for predicting mutton snapper length. The model was significant overall ( $p<0.01$ ) and explained a large portion of the length variance $\left(R^{2} a d j=0.187\right)($ Table 20). Gangion length, some months, and some interactions were significant for predicting mutton snapper length (Table 20). Diagnostics do not indicate any issues with the model (Figure 17).

Table 20. The results of the top linear model with interaction for mutton snapper by BIC. $R^{2}{ }_{a d j}=0.183, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | ---: | ---: | :---: |
| (Intercept) | 720.055 | 29.524 | 0.000 |
| Ganglion Length | -13.383 | 3.741 | 0.000 |
| MonthAug | -32.137 | 84.197 | 0.703 |
| MonthDec | 27.959 | 16.627 | 0.093 |
| MonthFeb | -116.309 | 41.188 | 0.005 |
| MonthJan | 58.935 | 50.115 | 0.240 |
| MonthJul | -22.245 | 30.528 | 0.466 |
| MonthJun | -334.859 | 35.518 | 0.000 |
| MonthMar | 160.826 | 82.815 | 0.052 |
| MonthMay | -217.322 | 42.206 | 0.000 |
| MonthNov | -72.789 | 150.242 | 0.628 |
| MonthOct | -1713.555 | 533.292 | 0.001 |
| MonthSep | -184.075 | 60.492 | 0.002 |
| Ganglion Length:MonthAug | 8.804 | 10.844 | 0.417 |
| Ganglion Length:MonthFeb | 18.005 | 5.425 | 0.001 |
| Ganglion Length:MonthJan | -0.538 | 6.948 | 0.938 |
| Ganglion Length:MonthJul | 4.361 | 3.826 | 0.255 |
| Ganglion Length:MonthJun | 44.900 | 4.713 | 0.000 |
| Ganglion Length:MonthMar | -28.929 | 12.745 | 0.023 |
| Ganglion Length:MonthMay | 32.201 | 7.588 | 0.000 |
| Ganglion Length:MonthNov | 17.305 | 18.903 | 0.360 |
| Ganglion Length:MonthOct | 197.549 | 64.562 | 0.002 |
| Ganglion Length:MonthSep | 22.951 | 6.290 | 0.000 |



Figure 17. Diagnostic plots for the top linear model with interaction by BIC for mutton snapper. The residuals vs. fitted plot indicates the model is predicting length well across all sizes, and no influential points are present in the Cook's distance plot. The normal QQ plot and density distribution suggest sufficient normality.

The strongest ordinary least squares linear model by BIC for mutton snapper explains length using year, fishing depth, mainline length, and month (Table 21). Some years, some months, and mainline length were significant within the model (Table 21). No diagnostic issues are apparent, and the model explains $15.2 \%$ of the variance in length, and is significant overall ( $p<0.01$ ) (Figure 18). However, the OLS model ranks lower than the interaction model by BIC.

Table 21. The top ordinary least squares linear model by BIC for mutton snapper. $R^{2}{ }_{a d j}=$ $0.152, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 348.060 | 34.174 | 0.000 |
| DummyYear2 | 95.296 | 22.720 | 0.000 |
| DummyYear4 | 26.083 | 26.709 | 0.329 |
| DummyYear5 | 106.270 | 19.964 | 0.000 |
| DummyYear6 | 144.888 | 21.243 | 0.000 |
| DummyYear7 | 92.634 | 51.273 | 0.071 |
| DummyYear8 | 155.415 | 20.411 | 0.000 |
| DummyYear9 | 166.380 | 24.706 | 0.000 |
| Fishing Depth | 0.200 | 0.083 | 0.017 |
| Mainline Length | 18.965 | 2.295 | 0.000 |
| MonthAug | 8.549 | 15.543 | 0.582 |
| MonthDec | 145.772 | 23.400 | 0.000 |
| MonthFeb | 12.471 | 16.552 | 0.451 |
| MonthJan | 49.189 | 20.058 | 0.014 |
| MonthJul | -0.799 | 10.317 | 0.938 |
| MonthJun | -36.820 | 10.594 | 0.001 |
| MonthMar | -2.981 | 17.191 | 0.862 |
| MonthMay | -19.630 | 18.511 | 0.289 |
| MonthNov | 94.175 | 17.411 | 0.000 |
| MonthOct | -69.307 | 30.507 | 0.023 |
| MonthSep | 43.896 | 16.248 | 0.007 |



Figure 18. Diagnostic plots for the results of the mutton snapper ordinary least squares linear model. The residuals vs. fitted plot suggests the model is predicting length adequately across the model. There are no issues with Cook's distance, and the Q-Q plot and density distribution suggest sufficient normality.

### 2.3.7 Scamp

Month, year, and their interaction were the best factors for predicting scamp length. The model was significant overall ( $p<0.01$ ) but explained only a small portion of the length variance $\left(R^{2}{ }_{a d j}=0.095\right)$ (Table 22). Within the model, some years, some months, and some interactions were significant factors for explaining scamp length
(Table 22). Diagnostics do not indicate any issues with the model fit (Figure 19).

Table 22. The results of the top linear model with interaction for scamp by BIC. $R^{2}{ }_{a d j}=$ $0.095, p<0.01$. Year:Month interactions with no observations have been removed.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 570.706 | 27.665 | 0.000 |
| MonthAug | -57.311 | 8.905 | 0.000 |
| MonthDec | -30.432 | 10.629 | 0.004 |
| MonthFeb | 10.255 | 25.836 | 0.691 |
| MonthJan | 65.954 | 28.751 | 0.022 |
| MonthJul | -19.830 | 8.611 | 0.021 |
| MonthJun | -55.270 | 8.039 | 0.000 |
| MonthMar | 14.664 | 11.009 | 0.183 |
| MonthMay | -24.651 | 9.473 | 0.009 |
| MonthNov | 106.544 | 51.620 | 0.039 |
| MonthOct | -106.019 | 31.666 | 0.001 |
| MonthSep | -18.956 | 11.500 | 0.099 |
| DummyYear2 | 9.195 | 29.831 | 0.758 |
| DummyYear4 | 20.738 | 30.100 | 0.491 |
| DummyYear5 | 52.627 | 37.395 | 0.159 |
| DummyYear6 | -24.430 | 28.147 | 0.386 |
| DummyYear7 | 60.614 | 31.279 | 0.053 |
| DummyYear8 | 58.390 | 26.628 | 0.028 |
| DummyYear9 | 11.027 | 34.844 | 0.752 |
| MonthAug:DummyYear2 | -4.561 | 17.718 | 0.797 |
| MonthDec:DummyYear2 | -2.470 | 88.513 | 0.978 |
| MonthJul:DummyYear2 | -32.571 | 63.223 | 0.606 |
| MonthJun:DummyYear2 | 86.368 | 88.239 | 0.328 |

Table 22 continued.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| MonthSep:DummyYear2 | 19.721 | 27.627 | 0.475 |
| MonthFeb:DummyYear4 | -16.128 | 36.754 | 0.661 |
| MonthJan:DummyYear4 | -59.307 | 36.231 | 0.102 |
| MonthJun:DummyYear4 | 19.201 | 33.984 | 0.572 |
| MonthMar:DummyYear4 | -61.209 | 31.962 | 0.056 |
| MonthMay:DummyYear4 | 13.594 | 17.288 | 0.432 |
| MonthNov:DummyYear4 | -93.337 | 54.041 | 0.084 |
| MonthAug:DummyYear5 | -66.022 | 91.156 | 0.469 |
| MonthDec:DummyYear5 | 15.394 | 29.506 | 0.602 |
| MonthFeb:DummyYear5 | -53.357 | 36.443 | 0.143 |
| MonthJan:DummyYear5 | -132.062 | 38.584 | 0.001 |
| MonthJul:DummyYear5 | -7.514 | 28.170 | 0.790 |
| MonthMar:DummyYear5 | -62.401 | 28.064 | 0.026 |
| MonthMay:DummyYear5 | -86.827 | 27.695 | 0.002 |
| MonthNov:DummyYear5 | -124.175 | 58.574 | 0.034 |
| MonthOct:DummyYear5 | 80.616 | 41.167 | 0.050 |
| MonthSep:DummyYear5 | -2.217 | 28.931 | 0.939 |
| MonthAug:DummyYear6 | 71.492 | 17.980 | 0.000 |
| MonthFeb:DummyYear6 | 24.208 | 26.741 | 0.365 |
| MonthJan:DummyYear6 | -31.235 | 29.804 | 0.295 |
| MonthJul:DummyYear6 | 71.954 | 15.467 | 0.000 |
| MonthJun:DummyYear6 | 58.860 | 11.650 | 0.000 |
| MonthMar:DummyYear6 | 6.892 | 13.966 | 0.622 |
| MonthMay:DummyYear6 | 94.232 | 15.885 | 0.000 |
| MonthOct:DummyYear6 | 188.742 | 45.989 | 0.000 |
| MonthSep:DummyYear6 | 27.288 | 17.554 | 0.120 |
| MonthDec:DummyYear7 | -53.506 | 22.657 | 0.018 |
| MonthJul:DummyYear7 | 25.976 | 23.878 | 0.277 |
| MonthMar:DummyYear7 | -3.686 | 24.890 | 0.882 |
| MonthNov:DummyYear7 | -94.174 | 56.032 | 0.093 |
| MonthOct:DummyYear7 | 178.556 | 47.970 | 0.000 |
| MonthNov:DummyYear8 | -177.669 | 51.616 | 0.001 |
| MonthOct:DummyYear8 | 88.388 | 32.412 | 0.006 |
|  |  |  |  |



Figure 19. Diagnostic plots for the top linear model with interaction by BIC for scamp. No issues are apparent with the model. The residuals vs. fitted plot indicates a good fit across the model and no influential points are apparent. The distribution has a long lefthand tail in the Q-Q plot and density distribution, but adequate normality.

The strongest ordinary least squares linear model by BIC for scamp explains length as a function of year, fishing depth, gangion length, hook distance, and month (Table 23). All years, fishing depth, gangion length, hook distance, and some months were significant within the model (Table 23). No diagnostic issues are apparent and the model is significant overall (Figure 20, Table 23). However, the model explains only 8.1\% of the variance in length (Table 23). The OLS model ranks above the interaction model by BIC.

Table 23. The top ordinary least squares linear model by BIC for scamp. $R^{2}{ }_{a d j}=0.081, p$ <0.01.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 590.964 | 16.113 | 0.000 |
| Fishing Depth | -0.309 | 0.034 | 0.000 |
| Ganglion Length | -5.732 | 0.503 | 0.000 |
| Hook Distance | 0.741 | 0.114 | 0.000 |
| MonthAug | -24.188 | 6.019 | 0.000 |
| MonthDec | -21.513 | 6.645 | 0.001 |
| MonthFeb | 18.972 | 5.275 | 0.000 |
| MonthJan | 14.589 | 5.630 | 0.010 |
| MonthJul | 24.543 | 5.568 | 0.000 |
| MonthJun | -11.491 | 5.095 | 0.024 |
| MonthMar | 9.756 | 5.587 | 0.081 |
| MonthMay | -22.195 | 5.576 | 0.000 |
| MonthNov | -3.022 | 6.748 | 0.654 |
| MonthOct | 9.788 | 7.314 | 0.181 |
| MonthSep | 12.909 | 6.507 | 0.047 |
| DummyYear2 | 86.322 | 15.184 | 0.000 |
| DummyYear4 | 89.646 | 14.235 | 0.000 |
| DummyYear5 | 81.832 | 13.227 | 0.000 |
| DummyYear6 | 70.749 | 13.383 | 0.000 |
| DummyYear7 | 104.377 | 13.927 | 0.000 |
| DummyYear8 | 104.822 | 13.208 | 0.000 |
| DummyYear9 | 100.244 | 14.582 | 0.000 |



Figure 20. Diagnostic plots for the results of the scamp ordinary least squares linear model. No issues are apparent with the model. The residuals vs. fitted plot indicates a good fit across the model and no influential points are apparent. The distribution has a long left-hand tail in the Q-Q plot and density distribution, but adequate normality.

### 2.3.8 Gag Grouper

Year, fishing depth, and their interaction were used to generate a linear model for gag grouper that was significant overall $(p<0.01)$ and explained $16.4 \%$ of the length variance (Table 24). Within the model, fishing depth, some years, and some interactions were significant predictors of gag grouper length (Table 24). Diagnostics indicate a good model fit (Figure 21). The interaction model ranks above the OLS model, but only slightly (BIC difference < 2).

Table 24. The results of the top linear model with interaction for gag grouper by BIC. $R^{2}{ }_{a d j}=0.164, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 615.916 | 52.579 | 0.000 |
| Fishing Depth | 0.861 | 0.268 | 0.001 |
| DummyYear2 | 210.966 | 63.273 | 0.001 |
| DummyYear3 | 461.975 | 472.734 | 0.329 |
| DummyYear4 | -196.466 | 60.618 | 0.001 |
| DummyYear5 | -28.934 | 57.679 | 0.616 |
| DummyYear6 | -32.443 | 54.454 | 0.551 |
| DummyYear7 | -1.928 | 61.901 | 0.975 |
| DummyYear8 | 73.470 | 54.485 | 0.178 |
| DummyYear9 | 114.052 | 59.020 | 0.053 |
| Fishing Depth:DummyYear2 | -0.793 | 0.300 | 0.008 |
| Fishing Depth:DummyYear3 | -3.084 | 3.101 | 0.320 |
| Fishing Depth:DummyYear4 | 0.857 | 0.306 | 0.005 |
| Fishing Depth:DummyYear5 | 0.078 | 0.287 | 0.787 |
| Fishing Depth:DummyYear6 | -0.149 | 0.277 | 0.590 |
| Fishing Depth:DummyYear7 | -0.027 | 0.306 | 0.931 |
| Fishing Depth:DummyYear8 | -0.301 | 0.276 | 0.275 |
| Fishing Depth:DummyYear9 | -0.438 | 0.297 | 0.141 |



Figure 21. Diagnostic plots for the top linear model with interaction by BIC for gag grouper. The residuals vs. fitted plot suggests that the model is under-predicting length slightly for large individuals. There are no issues with influential points in the Cook's distance plot and the distribution is sufficiently normal.

The strongest ordinary least squares linear model by BIC for gag grouper explains length as a function of fishing depth, year, and mainline length (Table 25). Some years, fishing depth, and mainline length were significant within the model (Table 25). The model is significant overall ( $p<0.01$ ) and explains $15.5 \%$ of the variance in gag grouper length (Table 25). Diagnostics indicate that this model is slightly underpredicting length for very large gag grouper (Figure 22).

Table 25. The top ordinary least squares linear model by BIC for gag grouper. $R^{2}{ }_{a d j}=$ $0.155, p<0.01$.

|  | Estimate | Std. Error | $\operatorname{Pr}(>\|t\|)$ |
| :--- | :---: | :---: | :---: |
| (Intercept) | 617.575 | 18.335 | 0.000 |
| DummyYear2 | 11.725 | 18.351 | 0.523 |
| DummyYear3 | -2.748 | 53.049 | 0.959 |
| DummyYear4 | -30.328 | 17.565 | 0.084 |
| DummyYear5 | 4.449 | 16.646 | 0.789 |
| DummyYear6 | -51.514 | 16.346 | 0.002 |
| DummyYear7 | 9.685 | 17.549 | 0.581 |
| DummyYear8 | 21.583 | 16.311 | 0.186 |
| DummyYear9 | 37.306 | 17.558 | 0.034 |
| Fishing Depth | 0.651 | 0.037 | 0.000 |
| Mainline Length | 6.201 | 1.238 | 0.000 |



Figure 22. Diagnostic plots for the top gag grouper ordinary least squares model. The model is under-predicting for very gag grouper, but no other issues are apparent with influential points in the Cook's distance plot or normality in the Q-Q plot or distribution.

### 2.3.9 Red Porgy

Fishing depth, month, and their interaction were the strongest linear model with interaction by BIC for red porgy. The model was significant overall ( $p<0.01$ ) and explained a sizeable portion of the variance $\left(R^{2} a d j=0.219\right)$, but within the model only the month of June and interactions in January and June were significant predictors of red porgy length (Table 26). Diagnostics indicate that the model is slightly over-predicting length for large red porgy (Figure 23). The distribution has a long right tail, but otherwise adequately fits the assumption of normality (Figure 23).

Table 26. The results of the top linear model with interaction for red porgy by BIC. $R^{2}{ }_{a d j}$ $=0.219, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 296.687 | 30.348 | 0.000 |
| Fishing Depth | 0.151 | 0.132 | 0.256 |
| MonthAug | 50.861 | 65.393 | 0.437 |
| MonthDec | -85.437 | 104.708 | 0.415 |
| MonthFeb | -90.606 | 51.108 | 0.077 |
| MonthJan | 117.939 | 52.695 | 0.026 |
| MonthJul | -119.393 | 75.862 | 0.116 |
| MonthJun | -184.532 | 55.611 | 0.001 |
| MonthMar | 78.636 | 43.406 | 0.070 |
| MonthMay | 66.167 | 43.396 | 0.128 |
| MonthNov | -19.858 | 57.386 | 0.729 |
| MonthOct | 53.012 | 50.648 | 0.296 |
| MonthSep | 7.015 | 46.703 | 0.881 |
| Fishing Depth:MonthAug | 0.029 | 0.276 | 0.917 |
| Fishing Depth:MonthDec | 0.455 | 0.455 | 0.318 |
| Fishing Depth:MonthFeb | 0.519 | 0.208 | 0.013 |
| Fishing Depth:MonthJan | -0.624 | 0.234 | 0.008 |
| Fishing Depth:MonthJul | 0.543 | 0.311 | 0.081 |
| Fishing Depth:MonthJun | 0.890 | 0.229 | 0.000 |
| Fishing Depth:MonthMar | -0.141 | 0.189 | 0.456 |
| Fishing Depth:MonthMay | -0.350 | 0.202 | 0.084 |
| Fishing Depth:MonthNov | 0.215 | 0.258 | 0.406 |
| Fishing Depth:MonthOct | -0.114 | 0.247 | 0.645 |
| Fishing Depth:MonthSep | 0.250 | 0.213 | 0.241 |



Figure 23. Diagnostic plots for the top linear model with interaction for red porgy. The distribution has a long right-hand tail, but overall fits the assumption of normality. The model is slightly over-predicting red porgy length for large individuals per the residuals vs. fitted plot. No influential points are apparent in the Cook's distance plot.

The strongest ordinary least squares linear model by BIC for red porgy explains length as a function of fishing depth, hook distance, and month (Table 27). Within the model, fishing depth, hook distance, and some months were significant, and the model is significant overall ( $p<0.01$ ) (Table 27). The model explains $18.9 \%$ of the variance in red porgy length and ranks above the interaction model by BIC (Table 27). Diagnostics indicate that the model is predicting fish length more precisely though the distribution has a long right-hand tail (Figure 24).

Table 27. The top ordinary least squares linear model by BIC for red porgy. $R^{2}{ }_{a d j}=$ $0.189, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 291.672 | 13.482 | 0.000 |
| Fishing Depth | 0.248 | 0.054 | 0.000 |
| Hook Distance | -0.783 | 0.221 | 0.000 |
| MonthAug | 59.629 | 8.786 | 0.000 |
| MonthDec | 17.884 | 15.721 | 0.256 |
| MonthFeb | 41.833 | 7.898 | 0.000 |
| MonthJan | -16.209 | 8.470 | 0.056 |
| MonthJul | 9.713 | 7.725 | 0.209 |
| MonthJun | 33.881 | 6.812 | 0.000 |
| MonthMar | 43.205 | 7.565 | 0.000 |
| MonthMay | -1.843 | 7.206 | 0.798 |
| MonthNov | 25.405 | 10.653 | 0.017 |
| MonthOct | 37.181 | 9.698 | 0.000 |
| MonthSep | 58.634 | 10.343 | 0.000 |



Figure 24. Diagnostic plots for the top ordinary least squares linear model for red porgy by BIC. The long right tail is present, but the model is predicting red porgy length more precisely than the linear model with interaction and no influential points are apparent.

### 3.2.10 Leopard Toadfish

The strongest linear model for leopard toadfish predicted length as a function of mainline length, month, and their interaction (Table 28). The model was significant overall ( $p>0.01$ ), but the $R^{2}{ }_{a d j}$ value ( 0.074 ) indicates a weak overall performance from the strongest detected model. Within the model, no variables were significant.

Diagnostics indicate that the model is under-predicting length for large leopard toadfish and the distribution has a long right-hand tail but is otherwise adequately normal (Figure 25).

Table 28. The top linear model with interaction by BIC for leopard toadfish. $R^{2}{ }_{a d j}=$ $0.074, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 319.222 | 24.358 | 0.000 |
| MonthAug | 66.887 | 39.758 | 0.093 |
| MonthDec | 45.857 | 55.532 | 0.409 |
| MonthFeb | 26.284 | 35.343 | 0.457 |
| MonthJan | 29.471 | 78.403 | 0.707 |
| MonthJul | 63.192 | 62.612 | 0.313 |
| MonthJun | 87.027 | 52.393 | 0.097 |
| MonthMar | -70.060 | 40.147 | 0.082 |
| MonthMay | -15.877 | 30.316 | 0.601 |
| MonthNov | -86.388 | 46.354 | 0.063 |
| MonthOct | -68.261 | 67.170 | 0.310 |
| MonthSep | 17.470 | 39.377 | 0.658 |
| Mainline Length | 9.332 | 5.003 | 0.063 |
| MonthAug:Mainline Length | -16.864 | 7.329 | 0.022 |
| MonthDec:Mainline Length | -15.177 | 10.814 | 0.161 |
| MonthFeb:Mainline Length | -9.746 | 7.283 | 0.181 |
| MonthJan:Mainline Length | -2.134 | 16.079 | 0.895 |
| MonthJul:Mainline Length | -14.932 | 12.804 | 0.244 |
| MonthJun:Mainline Length | -20.479 | 10.436 | 0.050 |
| MonthMar:Mainline Length | 12.045 | 8.692 | 0.166 |
| MonthMay:Mainline Length | -1.516 | 5.684 | 0.790 |
| MonthNov:Mainline Length | 14.655 | 9.533 | 0.125 |
| MonthOct:Mainline Length | 5.068 | 13.427 | 0.706 |
| MonthSep:Mainline Length | -9.990 | 8.386 | 0.234 |



Figure 25. Diagnostic plots for the top linear model with interaction for leopard toadfish by BIC. The long right tail is present in the Q-Q plot and density distribution. The residuals vs. fitted plot suggests the model is under-predicting for large fish. No influential points are apparent.

The strongest ordinary least squares model predicts leopard toadfish length as a function of soak time, fishing depth, hook count, and mainline length. This model was significant overall ( $p<0.01$ ), but explained only $5.9 \%$ of the variance (Table 29). All variables within the model were significant predictors of leopard toadfish length (Table 29). The distribution has a long right-hand tail accounting for some non-normality, but the model fits well overall across all lengths (Figure 26). The OLS model ranks above the interaction model by BIC.

Table 29. The results of the top ordinary least squares linear model for leopard toadfish by BIC. $R^{2}{ }_{a d j}=0.059, p<0.01$.

|  | Estimate | Std. Error | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |
| :--- | :---: | :---: | :---: |
| (Intercept) | 332.921 | 13.793 | 0.000 |
| Soak Time | -5.656 | 2.060 | 0.006 |
| Fishing Depth | 0.177 | 0.045 | 0.000 |
| Hooks | -0.040 | 0.011 | 0.000 |
| Mainline Length | 7.397 | 1.758 | 0.000 |



Figure 26. Diagnostic plots for the top ordinary least squares linear model for leopard toadfish. The distribution has a long right-hand tail, but otherwise fits well across all lengths. No influential points are apparent.

### 3.2.11 Atlantic Sharpnose Shark

The strongest linear model with interaction for Atlantic sharpnose shark length by BIC included month, year, and their interaction. The model was significant overall ( $p$ < 0.01) and accounted for a sizeable portion of the variance $\left(R_{a d j}^{2}=0.317\right)($ Table 30).

Within the model, several months, years, and interactions were significant predictors of Atlantic sharpnose shark length (Table 30). Diagnostics indicate that the distribution has long tails, but otherwise satisfies assumptions (Figure 27).

Table 30. The top linear model with interaction by BIC for Atlantic sharpnose shark. $R^{2}{ }_{a d j}=0.317, p<0.01$. Year:month interactions with no observations have been excluded.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| Intercept) | 730.529 | 13.094 | 0.000 |
| MonthAug | 70.027 | 30.738 | 0.023 |
| MonthDec | -78.859 | 11.516 | 0.000 |
| MonthFeb | -17.771 | 13.980 | 0.204 |
| MonthJan | -48.570 | 11.054 | 0.000 |
| MonthJul | 48.113 | 20.082 | 0.017 |
| MonthJun | 74.065 | 13.221 | 0.000 |
| MonthMar | -19.130 | 6.316 | 0.003 |
| MonthMay | 14.946 | 9.140 | 0.102 |
| MonthNov | -31.167 | 7.524 | 0.000 |
| MonthOct | 87.548 | 20.956 | 0.000 |
| MonthSep | 53.790 | 8.400 | 0.000 |
| DummyYear2 | -109.612 | 27.836 | 0.000 |
| DummyYear3 | -36.593 | 13.196 | 0.006 |
| DummyYear4 | -13.007 | 14.652 | 0.375 |
| DummyYear5 | 168.360 | 30.738 | 0.000 |
| DummyYear6 | 75.258 | 13.904 | 0.000 |
| DummyYear7 | -49.773 | 27.086 | 0.066 |
| DummyYear8 | 142.247 | 12.443 | 0.000 |
| DummyYear9 | 173.412 | 15.350 | 0.000 |

Table 30 continued.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| MonthDec:DummyYear2 | 163.443 | 64.932 | 0.012 |
| MonthJul:DummyYear2 | 124.185 | 38.780 | 0.001 |
| MonthFeb:DummyYear3 | 51.596 | 21.386 | 0.016 |
| MonthFeb:DummyYear4 | 212.049 | 20.315 | 0.000 |
| MonthJan:DummyYear4 | 152.843 | 13.666 | 0.000 |
| MonthMar:DummyYear4 | -34.132 | 13.002 | 0.009 |
| MonthMay:DummyYear4 | 113.190 | 18.045 | 0.000 |
| MonthNov:DummyYear4 | 145.127 | 13.481 | 0.000 |
| MonthAug:DummyYear5 | -87.916 | 93.158 | 0.345 |
| MonthDec:DummyYear5 | -77.459 | 30.866 | 0.012 |
| MonthFeb:DummyYear5 | -14.779 | 32.109 | 0.645 |
| MonthJan:DummyYear5 | -72.372 | 32.844 | 0.028 |
| MonthJul:DummyYear5 | -9.202 | 50.683 | 0.856 |
| MonthMar:DummyYear5 | -70.974 | 29.096 | 0.015 |
| MonthMay:DummyYear5 | 96.666 | 65.856 | 0.142 |
| MonthNov:DummyYear5 | -127.039 | 29.018 | 0.000 |
| MonthOct:DummyYear5 | -136.910 | 35.587 | 0.000 |
| MonthSep:DummyYear5 | -76.335 | 29.491 | 0.010 |
| MonthAug:DummyYear6 | -93.413 | 48.567 | 0.055 |
| MonthFeb:DummyYear6 | -19.179 | 15.497 | 0.216 |
| MonthJan:DummyYear6 | 17.410 | 13.747 | 0.205 |
| MonthMar:DummyYear6 | -23.271 | 9.455 | 0.014 |
| MonthMay:DummyYear6 | 14.993 | 18.586 | 0.420 |
| MonthOct:DummyYear6 | -86.572 | 22.331 | 0.000 |
| MonthSep:DummyYear6 | -40.412 | 13.204 | 0.002 |
| MonthDec:DummyYear7 | 258.199 | 33.677 | 0.000 |
| MonthFeb:DummyYear7 | 172.780 | 31.498 | 0.000 |
| MonthJan:DummyYear7 | 256.815 | 55.789 | 0.000 |
| MonthJul:DummyYear7 | 204.132 | 89.631 | 0.023 |
| MonthMar:DummyYear7 | 132.431 | 27.370 | 0.000 |
| MonthNov:DummyYear7 | 138.803 | 32.083 | 0.000 |
| MonthAug:DummyYear8 | -21.886 | 38.836 | 0.573 |
| MonthOct:DummyYear8 | -123.863 | 21.979 | 0.000 |
|  |  |  |  |



Figure 27. Diagnostic plots for the top linear model with interaction for Atlantic sharpnose shark. The distribution has long tails, but overall fits the assumption of normality and fits the data well across all lengths.

The strongest ordinary least squares linear model by BIC for Atlantic sharpnose sharks explains length as a function of year, fishing depth, gangion length, hook count, mainline length, and month (Table 31). Within the model, some years, some months, fishing depth, gangion length, and hook count are significant predictors of Atlantic sharpnose shark length (Table 31) The model is significant overall ( $p<0.01$ ) and explains $30.7 \%$ of the variance in Atlantic sharpnose shark length (Table 31). Diagnostics indicate a long-tailed distribution, but a good model fit overall (Figure 28). The OLS model is superior to the interaction model by BIC.

Table 31. The results of the top ordinary least squares linear model for Atlantic sharpnose shark by BIC. $R^{2}{ }_{a d j}=0.317, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | 712.788 | 14.269 | 0.000 |
| DummyYear2 | -94.387 | 20.225 | 0.000 |
| DummyYear3 | -137.518 | 12.592 | 0.000 |
| DummyYear4 | -33.725 | 10.918 | 0.002 |
| DummyYear5 | -4.602 | 10.419 | 0.659 |
| DummyYear6 | -17.997 | 10.208 | 0.078 |
| DummyYear7 | 29.207 | 11.057 | 0.008 |
| DummyYear8 | 67.603 | 10.161 | 0.000 |
| DummyYear9 | 84.317 | 10.706 | 0.000 |
| Fishing Depth | 0.631 | 0.028 | 0.000 |
| Ganglion Length | 2.277 | 0.501 | 0.000 |
| Hooks | -0.058 | 0.006 | 0.000 |
| Mainline Length | 6.623 | 0.879 | 0.000 |
| MonthAug | -27.742 | 17.070 | 0.104 |
| MonthDec | -58.678 | 6.584 | 0.000 |
| MonthFeb | -15.479 | 4.866 | 0.002 |
| MonthJan | -34.055 | 5.019 | 0.000 |
| MonthJul | 49.474 | 15.502 | 0.001 |
| MonthJun | 36.082 | 13.197 | 0.006 |
| MonthMar | -27.259 | 3.982 | 0.000 |
| MonthMay | 26.324 | 7.186 | 0.000 |
| MonthNov | -55.635 | 4.578 | 0.000 |
| MonthOct | 11.295 | 5.084 | 0.026 |
| MonthSep | 63.068 | 4.963 | 0.000 |



Figure 28. The results of the top ordinary least squares model for Atlantic sharpnose shark by BIC. The distribution is long-tailed, but otherwise satisfies assumptions. The model fits the data well across all lengths, though the model is slightly under-predicting length for very large and very small individuals (data poor regions).

### 2.4 Discussion

### 2.4.1 General Trends

These results indicate that fishing gear may explain a significant, albeit small, portion of the variance in length for some Gulf of Mexico reef fish species. While previous research has focused on gear fish size selectivity at a fishery level (Løkkeborg and Bjordal 1992; Erzini et al. 1996; Løkkeborg and Pina 1997; Huse and Soldal 2000), the results of this study suggest that size selectivity of longline gear may function at a species level instead. Evaluating gear selectivity at only fishery level may fail to capture trends that exist within each individual species. Additionally, this study indicates that previously unassessed parameters, such as those pertaining to hook placement (e.g. gangion length, hook distance), may play a role in size selectivity for some species.

Fishing depth was a factor in ordinary least squares models in explaining length for all but one species (jolthead porgy), and resulted in a significant positive increase in length for every species except mutton snapper (not significant) and scamp (negative). The trend of increasing fish length with depth has been well documented across several reef fish species and regions, and holds for most of the reef fish species analyzed here (Bell 1983; Macpherson and Duarte 1991; Wraith 2007; Jaxion-Harm and Szedlmayer 2015). For all species except scamp, fish length increased with increasing depth. Scamp are territorial and prefer complex structure (Gilmore and Jones 1992). Because the data analyzed are only for hooked fish, it is possible that fishers are unable to drop gear safely close enough to the complex structure preferred by the larger, more territorial fish and
therefore the relationship between fish size and depth for the catch data does not reflect biological reality. For speckled hind, fishing depth was the only variable in the OLS model. Little is known about speckled hind life history, but the relationship between speckled hind length and depth has been previously established (Ross 1988), and is confirmed here. Further studies that do not rely on catch data (e.g. Wraith 2007) may elucidate the relationship between fish length and depth.

Temporal variables (month and year) were included in a number of models. Month was a significant explanatory variable in the OLS models for blacknose shark, red grouper, red snapper, mutton snapper, scamp, and red porgy. The months during which fish are largest varied across species, suggesting that there are optimal times during the year to catch large fish depending on the species targeted. Using this information to set seasons for fishing for each target species may help minimize undersize bycatch. For species that are not desired, avoiding seasons where the fish were largest, if practicable, may allow the largest individuals of the species to continue breeding so as to not disrupt the ecosystem. Year was included in the OLS models for blacknose shark, red grouper, red snapper, mutton snapper, scamp, gag grouper, and sharpnose shark. Year was relatively neutral in the blacknose shark and gag grouper models, with only one year showing significantly smaller catches. For red grouper, red snapper, mutton snapper, scamp, and sharpnose sharks, however, an overall trend towards larger fishes in later years is observed. While initially this might be attributed to legislation increasing legal size limits, the only legislation pertaining to size limit for these species after 2006 is Gulf of Mexico Reef Fish Fishery Management Plan

Amendment 27, which reduces red snapper minimum length. This suggests that several reef fish species in the Gulf of Mexico are attaining larger sizes before being caught, and other species are remaining at constant lengths. Such a result suggests that fishery management in the Gulf of Mexico in the past decade has been highly effective.

While prior studies have focused on the effects of the type and size of hook used on selectivity (Millar 1992; Piovano et al. 2010), the placement of hooks relative to each other was a significant factor for explaining length in several species. Gangion length and hook distance were significant in explaining the length of blacknose sharks, red grouper, red snapper, scamp, red porgy, and sharpnose sharks. Of these species, red snapper and red porgy generally school (Rodger and von Zharen 2011), while the remainder are solitary (Rodger and von Zharen 2011; Bacheler and Shertzer 2015; Florida Museum of Natural History 2016). For the schooling species, hook distance and gangion length had a significant negative impact on length, suggesting that placing hooks closer together is beneficial for catching the largest possible individuals, which should be part of the school. Hook distance was a significant positive predictor of length for blacknose shark, red grouper, and scamp, which are solitary and may avoid the fishing area if other fish are already present. Gangion length had a negative impact on blacknose and scamp length, both solitary species that may be larger when gangions allow for more space between hooks; a positive effect was documented for sharpnose, which did not follow the trend observed (Rodger and von Zharen 2011; Bacheler and Shertzer 2015; Florida Museum of Natural History 2016). While further research is necessary to confirm, this may be because the sharks are competing directly for prey.

Long gangions may drift toward each other during fishing, effectively putting the hooks closer together and contributing to avoidance of the area by other fish. Further research is necessary to clarify the influence and importance of hook placement parameters on fish length.

### 2.4.2 Commercially Important Species

Of the species analyzed, the following were targeted or captures by fishers between 2006-2014: general sharks (e.g. sharpnose, blacknose), red grouper, mutton snapper, red snapper, gag grouper, and scamp. Using the models derived herein to guide fishing practices may increase the mean length of fish caught, while also minimizing undersized bycatch of target species. Special attention should be focused on these species so as to guide future decision making.

Blacknose and sharpnose sharks were included in the general sharks category. Blacknose sharks caught during the month of January were 42.6 mm smaller; those in November, 140.2 mm smaller; and in December, 80.5 mm smaller than those caught in April (the baseline). Blacknose sharks caught in 2007 (year 3) were significantly smaller, but the size stabilized after this year. For sharpnose, smaller sharks were caught during years 2-4, but larger sharks during years 7-9. Particularly in the case of blacknose, fishing during the summer months may contribute to catching the largest possible fish and avoiding the smaller individuals in the winter season. While blacknose shark size seems to have stabilized, sharpnose sharks appear to be getting larger.

The grouper complex consists of red, scamp, and gag grouper. A strong seasonal effect was apparent for red grouper and scamp; month was not included in the gag
grouper model. In general, scamp and red grouper were smallest during the late summer and into the fall, and largest during the winter months. For red grouper, fishing in deep water using long main lines and hooks spaced far apart appears to be the most effective combination for catching large fish. Fishing for gag grouper using long mainlines in deep water may contribute to catching larger fish. Scamp can be best targeted by fishing in shallower water using shorter gangions and hooks spaced further apart; such a configuration may allow the hooks to get closer to the complex structure favored by this species.

Red and mutton snapper were both included in the analysis. No consistent seasonal trend exists for these two species. Red snappers were smallest in January, and larger in the spring and fall into winter. Mutton snapper were largest in September and December but smaller in June. Using long mainlines for mutton snapper appears to be the most effective strategy, while red snapper fishers should increase soak time and fishing depth, and decrease gangion length.

These models are of considerable use for commercially targeted species. While this particular set of models accounts for size (and not species) selectivity, altering fishing gear to best target the largest individuals of the desired species may ultimately prove financially beneficial to fishers, and beneficial to managers working to minimize discard mortality.

### 2.4.3 Conclusions and Future Directions

Altering fishing practices to better suit the desired target species may contribute to catching larger individuals. Reduction of bycatch of undersized fish may allow more
fish to survive to reproductive maturity. For managers, minimizing catch of undersized fish is also desirable. Fishing regulations must account for the potential mortality of undersized fish after being discarded. Changing fishing practices in accordance with the models here may minimize this uncertainty and allow populations to continue to grow, and eventually increase the population's maximum sustainable yield.

This study is the first to account for the influences of hook placement and proximity on size selectivity. While previous studies have evaluated the influences of hook size, the results have been inconclusive (Løkkeborg and Bjordal 1992; Erzini et al. 1996; Huse and Soldal 2000). Hook placement parameters (gangion length and/or hook distance) were significant predictors of fish length for six of 12 species analyzed here, indicating that hook placement may be an important factor in size selectivity of bottom longline gear. Future research in other areas should consider including these parameters, to determine whether the relationship between fish behavior and hook placement is consistent in other regions.

Further study is necessary to fully capture the size selectivity of longline gear and develop best fishing practices. Monitoring of reef fish catches will continue through the Southeast Fisheries Science Center (SEFSC) Galveston Reef Fish Observer Program, and these models should be tested against new data as it becomes available, and continually updated to best reflect the status of the fishery. The results of this study may also be provided to fishers as suggestions for modifying fishing practices, and the catches of fishers who choose to update their methods can be compared against those that have retained previous fishing practices. If considerable changes are observed, new
gear regulations may be considered to minimize undersized bycatch. Further assessment of hook size and bait size may also prove beneficial in assessing size selectivity.

Ultimately, the results of this study suggest that manipulations in gear and set parameters may have a major influence on the size of the fish caught on longline gear. In the interest of maintaining a thriving longline reef fishery in the Gulf of Mexico, fishers should implement the recommendations provided here as soon as possible. Undersized bycatch cannot be avoided completely, but mitigating its impacts may have broad implications for both angling success and the strength of the fishery as a whole. While these recommendations are not a formula for catching only large fish (and should not be approached as such), minimizing undersized bycatch may be possible using the models derived.

# 3. TARGET SPECIES SUCCESS AS A FUNCTION OF GEAR AND SET METHODOLOGY* 

### 3.1 Introduction

### 3.1.1 Bycatch Concerns

In the past few decades, fishery management has begun to adopt a holistic, ecosystem-based focus in favor of the traditional species-by-species management approach. This management style requires consideration of prey and predator species, environmental impacts, and interactions of these components (Kennelly and Broadhurst 2002; Pikitch et al. 2004). Once managers have identified the extent to which these considerations factor into their ecosystem of interest, managers must attempt to integrate these components into a cohesive management plan. While longline fishing imposes less environmental damage than more invasive methods like dredging, managers must still be aware of potential risks including disruption of trophic interactions (Chuenpagdee et al. 2003). While catches of target species are closely regulated, catches of non-target species may have unexpected impacts. The intent of this study is to assess gear configurations that contribute to increased probability of successfully catching the intended species.

Bycatch of non-target species is a concern in longline fishery management.
Herein, bycatch is defined per Alverson (1999) as "...the capture of any species, size of

[^2]species, or sex of species that is not the primary target(s) of a fishing activity." A significant portion of the literature focuses on avoiding bycatch of species outside the fishery (e.g. turtles, marine mammals, and seabirds) (Belda and Sánchez 2001; Southwood et al. 2008; Piovano et al. 2010). Incidental capture of these species has contributed to population declines in several instances, and requires further study (Lewison et al. 2004). However, bycatch of fishes that are not retained also carries significant negative consequences and serves as the major concern of this research. Discarded fish may experience physical injury or stress contributing to later negative impacts to the individual, lowering their fitness and potentially resulting in mortality (Alverson 1999; Davis 2005). While measures can be taken to minimize the adverse effects of catching and handling fish, configuring gear to minimize the potential for nontarget fish catch may ultimately prevent stress or injury prior to its occurrence.

NOAA Fisheries (2016) aims to, "promote productive and sustainable fisheries and improve the recovery and conservation of protected resources," through an ecosystem-based management approach to its national bycatch reduction strategy. While several federal laws mandate bycatch prevention (e.g. Magnuson-Stevens Fishery Conservation and Management Act, Marine Mammal Protection Act, Endangered Species Act), each quantifies and manages bycatch differently. The national bycatch reduction strategy aims to unify these approaches through strengthening monitoring efforts, clarifying research needs, improving discard and take estimates, improving management measures, strengthening the effectiveness of law enforcement, and improving communication within NOAA Fisheries and with stakeholders (NOAA

Fisheries 2016). One strategy identified for improving management measures to reduce bycatch is to develop and implement species-specific bycatch reduction measures (NOAA Fisheries 2016). Through evaluating the most effective means of catching target species in the longline fishery, this research may ultimately provide the basis for speciesspecific bycatch reduction through altering fishing techniques.

### 3.1.2 Management of Species of Evaluated, 2006-2014

Fishing success must be considered in the context of the relevant management regulations. The Gulf of Mexico Fishery Management Council is responsible for preparing fishery management plans for federal waters. The federal commercial fishing regulations for several species studied herein mandate minimum length limits and catch quotas which may influence fishing success.

Two porgy species, two snapper species, and four grouper species were included in this study. Of the species studied, red porgy and jolthead porgy are not included in the Gulf of Mexico Reef Fish Fishery Management Plan (GMRFFMP) (Gulf of Mexico Fishery Management Council 2015). Mutton snapper have been managed simply, under a 12-inch total length minimum (GMRFFMP amendment 5) through the duration of the study period, with no trip catch limits or quotas. While these species may be managed at the state level, federal regulations have not been in effect during the study period. However, both snapper species (mutton and red) and all four grouper species (red, scamp, gag, and speckled hind) have been regulated for the duration of the study period.

Red snappers have been managed by total length limits and catch quotas throughout the study period. In 2006 and 2007, a class 1 or class 2 license allowed trip
limit catches of 2,000 pounds for the former or 200 pounds for the latter, with a 15 -inch minimum length. The fishery was closed in January, and opened from noon on the $1^{\text {st }}$ to noon on the $10^{\text {th }}$ of each month until the sub-quota of 3.06 million pounds (mp) was filled (via a March 1997 regulatory amendment). The remainder of the total 4.65-million-pound quota was released starting in October, following the same pattern until December $31^{\text {st }}$. In 2008, the fishery transitioned to an individual fishing quota (IFQ) system, with a 13 -inch total length limit and a total quota of 2.55 mp (GMRFFMP amendment 27). These regulations remained in effect in 2009. In 2010, 2012, and 2013, the quotas were increased to 3.542 mp ( 2010 regulatory amendment for red snapper), 3.664 mp (2011 regulatory amendment for red snapper), and 4.121 mp for 2012 and 4.257 mp for 2013 (both via 2012 regulatory amendment for red snapper) with the 13inch length limit retained throughout.

Gag grouper are also managed under length and catch limits. From 2006-2008, gag groupers were subjected to a 24 -inch total length limit, and managed under the shallow water grouper overall quota of 8.80 mp gw , with seasonal closures from February 15 to March 15 annually (Secretarial Amendment 1, 2004). A separate gag grouper quota (included under the total shallow water grouper quota) was instated at 1.32 mp for 2009, 1.41 mp for 2010, and 1.49 mp for 2011 (GMRFFMP amendment 30B). In 2011, an emergency interim rule restricted the gag grouper quota to 430,000 pounds of the net quota. The quota was lowered to 0.567 mp in $2012,0.708 \mathrm{mp}$ in 2013 , 0.835 mp in 2014 (GMRFFMP amendment 32). Amendment 32 also lowered the total length minimum to 22 inches.

Scamp have been managed under an IFQ program with composite grouper quotas for the duration of the study period, with a 16 -inch total length restriction throughout. From 2006-2008, scamp were included in the shallow water grouper quota of 8.80 mp gw (Secretarial Amendment 1, 2004). The shallow water grouper quota was set to 7.48 mp for $2009,7.57 \mathrm{mp}$ for 2010 , and 7.65 mp in 2011 on (GMRFFMP amendment 30B). In all years, scamp caught after filling the shallow water grouper IFQ can be counted towards the deep-water grouper IFQ.

Red groupers were regulated under a separate quota throughout the study period. Minimum length was set at 20 inches but the length was lowered to 18 inches for the remaining years (Amendment 30B). Seasonal closures from February 15 to March 15 were in effect for 2006-2008 (November 2005 regulatory amendment, removed by amendment 30B). The catch quota was set to 5.31 mp gw for 2006-2008, and subsequently raised to 5.75 mp gw for 2009 (GMRFFMP amendment 30B). A 2010 regulatory amendment lowered the quota to 4.32 mp . From 2012 on, the red grouper quota was set at 6.03 mp (GMRFFMP amendment 32)

Speckled hinds have not been regulated by a minimum size at any point during the study period. From 2006-2009, a trip limit of 6,000 pounds was in effect for groupers, and speckled hinds were managed under the 1.02 mp gw deep water grouper quota (Secretarial Amendment 1, 2004). In 2010 and 2011, speckled hinds were moved into the shallow water grouper quota (GMRFFMP amendment 30B).

### 3.1.3 Bycatch Reduction Measures

Fishing technology developed with the intent of catching as many fish as possible. Bycatch and discard of fish has been documented as early as biblical times, and legal prohibition of bycatch dates back to the $14^{\text {th }}$ century (Kennelly and Broadhurst 2002). However, the technological advances made during the $20^{\text {th }}$ century allowed humans to extract fish at a rate faster than the population could replace them, ultimately leading to declines in several economically valuable fish stocks (Kennelly and Broadhurst 2002). Management and regulation of fisheries in the United States began in earnest with the institution of the Magnuson Act of 1976, and intensified with stricter laws and management plans through the 1980s (Kennelly and Broadhurst 2002). As public pressure to improve fishery management practices has increased over the last several decades, bycatch reduction strategies have become a focus for managers and industry.

A number of bycatch mitigation methods have been employed in the bottom longline fishery. Altering hook shape and size has proven useful in reducing bycatch of stingrays, and setting lines deeper or at night can reduce seabird hooking and entanglement (Hall et al. 2000; Belda and Sánchez 2001; Piovano et al. 2010). However, hook size selectivity appears to vary between species, with some bycatch reduction for certain species and no apparent effect for others (Erzini et al. 1996). Bait size, though potentially confounded with hook size, did not appear to affect the species and size selectivity of Portuguese red sea breams (Erzini et al. 1998). However, in the Norwegian haddock fishery, increasing bait size successfully reduced bycatch of undersized
individuals (Huse and Soldal 2000). Shortening gear soak times may contribute to a decline in shark bycatch, without reducing catches of red grouper or red snapper (Mitchell 2014). Similarly, bycatch of elasmobranch species in the Portuguese artisanal hake fishery was significantly reduced following the removal of hooks set at deeper depths, with only minor reduction of target species catch (Coelho et al. 2003).

While bycatch reduction is a worthwhile goal, fishery managers must be conscientious of bycatch reduction techniques that may negatively impact target catch. For instance, utilizing hooks with inedible plastic bodies successfully reduced bycatch of undersized haddock, but reduced overall catch (Huse and Soldal 2000). Bycatch reduction technologies that negatively impact catch success of the target species are unlikely to be adopted voluntarily by the fishing industry, and will have a negative financial impact on fishers if mandated. Ultimately, bycatch reduction methods should aim to improve selectivity without reducing the catch of the target species.

The objective of this study is to identify fishing gear and set characteristics that favor successfully catching the target species. Prior research has not addressed month-tomonth changes in catch success, and has not included hook placement parameters. For the intent of this study, fish that were not legally retained for commercial purposes were considered bycatch. Presumably, fishers are not targeting a species after the required quotas have been filled. Therefore, quota restrictions should have only limited impact on fishing success. However, factors contributing to the lowering of the quota (e.g. population declines) may influence fishing success. For species with length restrictions, success may improve or decline if length restrictions are lowered or raised, and therefore
these factors will be considered in addressing the results. Ultimately, the intent of this study is to identify the best fishing practices for each target species. These models will contribute to reducing bycatch (and thereby improve the fishery system), and reduce the economic investment of time and capital which will strengthen the fishing community.

### 3.2 Methods

Data were collected as described in section 1.2 by observers from the SEFSC Galveston Reef Fish Observer Program between 2006-2014. All statistical analysis was conducted using R version 3.2.3 "Wooden Christmas-Tree" or later. ${ }^{4}$ The purpose of the models derived in this chapter is to predict the success of obtaining a given target species as opposed to any other reef fish species. For the purpose of this study, a "success" was considered a fish of the target species of interest that was coded as "kept for consumption purposes" by the fishery observers. A "failure" was considered catch of any other reef fish species or an individual of the target species that was not kept; bycatch of protected species was not included, nor were empty hooks. Only species with more than 500 catches of individuals were considered. Blacknose sharks (7 individuals kept), sharpnose sharks (11 individuals kept), and leopard toadfish (3 individuals kept) were excluded from the analysis due to the limited number of successes. Prior to analysis, data entries with missing values were removed from the dataset as necessitated by the software package. The total number of catches included in the sample after

[^3]removing entries with missing information was 339,179 . The species analyzed and the number of successes are given in Table 32.

As in chapter 2, only variables fishers can manipulate were considered as explanatory variables: soak time in hours; fishing depth in feet; main line length in miles; hooks deployed (actual when available, and approximate otherwise); gangion length in feet; hook distance in feet; and month of the year. Year was included as a measurement of changes over time. Years are numbered from 1 (2006) to 9 (2014).

Table 32. The species names and number of successful catches (coded by observers as kept for consumption).

| Common Name | Scientific Name | Number of Successes |
| :--- | :---: | :---: |
| Jolthead Porgy | Calamus bajonado | 1162 |
| Speckled Hind | Epinephelus drummondhayi | 468 |
| Red Grouper | Epinephelus morio | 187171 |
| Red Snapper | Lutjanus campechanus | 5316 |
| Mutton Snapper | Lutjanus analis | 2147 |
| Scamp | Mycteroperca phenax | 6446 |
| Gag Grouper | Mycteroperca microlepis | 3593 |
| Red Porgy | Pagrus pagrus | 587 |

Binomial regression models were constructed in R using the complementary log$\log$ link function for all species (except red grouper) to account for the low number of successes out of the total dataset. For red grouper, the log odds link function was used as the success rate was very high. The final model was determined using backwards regression. Variables were tested for significance using the "drop1" command in R, which computes the significance of all single terms in the model. The least significant variable was removed at each step until all variables remaining were significant at $p \leq$
0.01. Models were compared using the Bayesian information criterion (BIC) to verify that the final model was indeed the most suitable for the data. An ANOVA was used to assess the significance of the final model when compared with the null (intercept-only) model.

McFadden's $R^{2}\left(R^{2}{ }_{M c F}\right)$ was calculated to determine the proportional reduction in error variance using the equation below, where $L_{M}$ is the log-likelihood of the final model, and $L o$, the log-likelihood of the null (intercept only) model (Allison 2014):

$$
R_{M C F}^{2}=1-\frac{\ln L_{M}}{\ln L_{0}}
$$

A Cook's distance plot was evaluated for the presence of influential points. For the red grouper log odds model, the coefficients represent the change in the log odds of success associated with the variable of interest, when all other variables are held constant. For all other models, the coefficients represent a change in the complementary log-log odds.

### 3.3 Results

### 3.3.1 Jolthead Porgy

The final model for jolthead porgy predicts fishing success as a function of fishing depth, gangion length, hook distance, hook count, month, and year (Table 33). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<0.01$ ). All months except January and October were significant improvements as compared with the April baseline, and all years except year 2 were significant against year 1 (Table 33). Fishing depth, gangion length, and mainline length increases contributed to increased probability of catching jolthead porgy,
while increases in hook distance and hook count contributed to declines (Table 33). The model represents an approximately $12.4 \%$ improvement over the null model $\left(R^{2} M_{C F}=\right.$ $0.124)$.

Table 33. The results of the binomial regression model for jolthead porgy derived by backwards regression. $R^{2} M c F=0.124, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | -11.267 | 0.478 | 0.000 |
| Fishing Depth | 0.015 | 0.001 | 0.000 |
| Ganglion Length | 0.037 | 0.013 | 0.005 |
| Hook Distance | -0.022 | 0.003 | 0.000 |
| Mainline Length | 0.183 | 0.025 | 0.000 |
| Hooks | -0.001 | 0.000 | 0.000 |
| MonthAug | 1.133 | 0.185 | 0.000 |
| MonthDec | 0.811 | 0.209 | 0.000 |
| MonthFeb | 0.585 | 0.164 | 0.000 |
| MonthJan | 0.200 | 0.185 | 0.281 |
| MonthJul | 1.235 | 0.163 | 0.000 |
| MonthJun | 1.956 | 0.143 | 0.000 |
| MonthMar | 0.890 | 0.154 | 0.000 |
| MonthMay | 0.504 | 0.176 | 0.004 |
| MonthNov | 1.626 | 0.169 | 0.000 |
| MonthOct | 0.067 | 0.265 | 0.801 |
| MonthSep | -0.981 | 0.315 | 0.002 |
| DummyYear2 | 0.277 | 0.546 | 0.612 |
| DummyYear3 | 1.201 | 0.724 | 0.097 |
| DummyYear4 | 2.049 | 0.434 | 0.000 |
| DummyYear5 | 1.214 | 0.433 | 0.005 |
| DummyYear6 | 1.841 | 0.426 | 0.000 |
| DummyYear7 | 1.217 | 0.442 | 0.006 |
| DummyYear8 | 2.020 | 0.421 | 0.000 |
| DummyYear9 | 2.608 | 0.446 | 0.000 |
|  |  |  |  |

### 3.3.2 Speckled Hind

The resulting binomial regression model for speckled hind included fishing depth, hook count, month, and year (Table 34). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<$ 0.01). Increased fishing depth and hook count contributed positively to successfully catching speckled hind (Table 34). The months of March and October significantly increased the complementary log-log likelihood of catching speckled hind when compared with the April baseline (Table 34). While year was significant within the model, no individual years represented a significant deviation from the year 1 baseline. The model constitutes a $20.4 \%$ improvement over the null model $\left(R^{2}{ }_{M c F}=0.204\right)$.

Table 34. The results of the binomial regression model for speckled hind derived by backwards regression. $R^{2}{ }_{M c F}=0.204, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | -17.648 | 1.111 | 0.000 |
| Fishing Depth | 0.036 | 0.001 | 0.000 |
| Hooks | 0.001 | 0.000 | 0.001 |
| MonthAug | 0.849 | 0.242 | 0.001 |
| MonthDec | 0.164 | 0.330 | 0.619 |
| MonthFeb | 0.298 | 0.224 | 0.184 |
| MonthJan | 0.569 | 0.261 | 0.029 |
| MonthJul | 0.501 | 0.237 | 0.035 |
| MonthJun | 0.529 | 0.221 | 0.017 |
| MonthMar | 1.010 | 0.219 | 0.000 |
| MonthMay | 0.319 | 0.270 | 0.237 |
| MonthNov | 0.792 | 0.303 | 0.009 |
| MonthOct | 1.250 | 0.273 | 0.000 |
| MonthSep | -0.939 | 0.486 | 0.053 |
| DummyYear2 | 1.440 | 1.066 | 0.177 |
| DummyYear3 | -10.825 | 162.671 | 0.947 |
| DummyYear4 | 2.223 | 1.026 | 0.030 |
| DummyYear5 | 2.587 | 1.013 | 0.011 |
| DummyYear6 | 1.808 | 1.017 | 0.075 |
| DummyYear7 | 1.357 | 1.033 | 0.189 |
| DummyYear8 | 2.208 | 1.014 | 0.029 |
| DummyYear9 | -0.621 | 1.109 | 0.576 |

### 3.3.3 Red Grouper

Because of the high number of red grouper catches in the dataset ( $n=152,008$ ), the log odds link function was used for the binomial regression model. The final model for red grouper included soak time, gangion length, hook distance, mainline length, hook count, month, and year (Table 35). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<0.01$ ). Increased mainline length and hook count significantly improved catch success of red grouper, whereas soak time, gangion length, and hook distance contributed to decreased success (Table 35). All months except May represented significant changes from the April baseline, with increased success in January, February, September, October, and December, and decreases in March, June, July, August, and November (Table 35). While the model was significantly better than the null model, the final model represents only a $2.3 \%$ improvement $\left(R^{2} M c F=0.023\right)$.

Table 35. The results of the binomial regression model for red grouper derived by backwards regression. $R^{2}{ }_{M c F}=0.023, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | -0.892 | 0.028 | 0.000 |
| Soak Time | -0.030 | 0.003 | 0.000 |
| Ganglion Length | -0.021 | 0.001 | 0.000 |
| Hook Distance | -0.002 | 0.000 | 0.000 |
| Mainline Length | 0.061 | 0.003 | 0.000 |
| Hooks | 0.000 | 0.000 | 0.000 |
| MonthAug | -0.101 | 0.018 | 0.000 |
| MonthDec | 0.163 | 0.014 | 0.000 |
| MonthFeb | 0.186 | 0.011 | 0.000 |
| MonthJan | 0.070 | 0.014 | 0.000 |
| MonthJul | -0.046 | 0.016 | 0.005 |
| MonthJun | -0.065 | 0.015 | 0.000 |
| MonthMar | -0.029 | 0.010 | 0.006 |
| MonthMay | -0.024 | 0.013 | 0.053 |
| MonthNov | -0.049 | 0.014 | 0.000 |
| MonthOct | 0.041 | 0.012 | 0.001 |
| MonthSep | 0.069 | 0.011 | 0.000 |
| DummyYear2 | 0.345 | 0.028 | 0.000 |
| DummyYear3 | 0.191 | 0.041 | 0.000 |
| DummyYear4 | 0.296 | 0.025 | 0.000 |
| DummyYear5 | 0.379 | 0.021 | 0.000 |
| DummyYear6 | 0.696 | 0.021 | 0.000 |
| DummyYear7 | 0.714 | 0.022 | 0.000 |
| DummyYear8 | 0.941 | 0.021 | 0.000 |
| DummyYear9 | 0.893 | 0.023 | 0.000 |

### 3.3.4 Red Snapper

The final model for red snapper predicts fishing success using fishing depth, gangion length, mainline length, hook count, month, and year (Table 36). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<0.01$ ). All months were significantly different from the April baseline, with decreased success in June, July, and August, and increased success in other months (Table 36). While year 2 represented a decline in success and year 7 was not significant, all other years represent a significant increase in catch success (Table 36). Maineline length contributed to a decline in catch success, but fishing depth, gangion length, and hook count were all significantly positive (Table 36). The model represents $5.9 \%$ improvement over the null model $\left(R^{2} M_{C F}=0.059\right)$.

Table 36. The results of the binomial regression model for red snapper derived by backwards regression. $R^{2}{ }_{M c F}=0.059, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| Intercept) | -7.632 | 0.173 | 0.000 |
| Fishing Depth | 0.011 | 0.000 | 0.000 |
| Ganglion Length | 0.059 | 0.005 | 0.000 |
| Mainline Length | -0.101 | 0.013 | 0.000 |
| Hooks | 0.000 | 0.000 | 0.000 |
| MonthAug | -0.935 | 0.132 | 0.000 |
| MonthDec | 1.108 | 0.064 | 0.000 |
| MonthFeb | 0.433 | 0.057 | 0.000 |
| MonthJan | 0.512 | 0.064 | 0.000 |
| MonthJul | -0.697 | 0.098 | 0.000 |
| MonthJun | -1.402 | 0.110 | 0.000 |
| MonthMar | 0.279 | 0.060 | 0.000 |
| MonthMay | 0.223 | 0.068 | 0.001 |
| MonthNov | 0.713 | 0.066 | 0.000 |
| MonthOct | 0.198 | 0.075 | 0.008 |
| MonthSep | 0.238 | 0.063 | 0.000 |
| DummyYear2 | -1.228 | 0.321 | 0.000 |
| DummyYear3 | 2.001 | 0.177 | 0.000 |
| DummyYear4 | 0.799 | 0.156 | 0.000 |
| DummyYear5 | 0.947 | 0.144 | 0.000 |
| DummyYear6 | 0.764 | 0.145 | 0.000 |
| DummyYear7 | 0.041 | 0.155 | 0.792 |
| DummyYear8 | 0.984 | 0.143 | 0.000 |
| DummyYear9 | 0.740 | 0.154 | 0.000 |

### 3.3.5 Mutton Snapper

The final model for mutton snapper predicts catch success using soak time, fishing depth, gangion length, hook distance, month, and year (Table 37). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<0.01$ ). Months February, March, and November were not significant when compared to the April baseline (Table 37). January, May, June, August, September, October, November, and December had a negative impact on catch success, while June and July were positive contributors (Table 37). Year 3 was not significant, but all other years represented decreased catch success (Table 37). Soak time, fishing depth, gangion length, and hook distance all contributed positively to catch success (Table 37). The model represents a strong $33 \%$ improvement over the null model ( $R^{2}{ }_{M c F}$ $=0.330)$.

Table 37. The results of the binomial regression model for mutton snapper derived by backwards regression. $R^{2}{ }_{M c F}=0.330, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | -6.789 | 0.244 | 0.000 |
| Soak Time | 0.170 | 0.012 | 0.000 |
| Fishing Depth | 0.008 | 0.001 | 0.000 |
| Ganglion Length | 0.130 | 0.012 | 0.000 |
| Hook Distance | 0.017 | 0.003 | 0.000 |
| MonthAug | -1.306 | 0.217 | 0.000 |
| MonthDec | -0.791 | 0.212 | 0.000 |
| MonthFeb | -0.386 | 0.195 | 0.048 |
| MonthJan | -0.867 | 0.209 | 0.000 |
| MonthJul | 3.005 | 0.130 | 0.000 |
| MonthJun | 2.057 | 0.133 | 0.000 |
| MonthMar | -0.442 | 0.192 | 0.022 |
| MonthMay | -0.717 | 0.220 | 0.001 |
| MonthNov | -0.046 | 0.169 | 0.786 |
| MonthOct | -2.660 | 0.380 | 0.000 |
| MonthSep | -1.063 | 0.202 | 0.000 |
| DummyYear2 | -3.314 | 0.212 | 0.000 |
| DummyYear3 | -13.838 | 122.987 | 0.910 |
| DummyYear4 | -3.689 | 0.254 | 0.000 |
| DummyYear5 | -1.984 | 0.132 | 0.000 |
| DummyYear6 | -3.819 | 0.149 | 0.000 |
| DummyYear7 | -6.699 | 0.592 | 0.000 |
| DummyYear8 | -2.354 | 0.130 | 0.000 |
| DummyYear9 | -1.794 | 0.205 | 0.000 |

### 3.3.6 Scamp

The final model for scamp predicts catch success with soak time, fishing depth, gangion length, month, and year (Table 38). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<$ 0.01). All months represented a significant increase in success over the April baseline except for September and November, which were not significant (Table 38). Years 3, 6, and 9 were not significantly different from year 1 , but years $2,4,5,8$, and 9 all represented a significant improvement in catch success (Table 38). Fishing depth and gangion length contributed positively, but soak time significantly decreased catch success (Table 38). The model represents an $18.3 \%$ improvement over the null model $\left(R^{2}{ }_{M c F}=0.183\right)$.

Table 38. The results of the binomial regression model for scamp derived by backwards regression. $R^{2}{ }_{M c F}=0.183, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | -10.172 | 0.185 | 0.000 |
| Soak Time | -0.098 | 0.012 | 0.000 |
| Fishing Depth | 0.024 | 0.000 | 0.000 |
| Ganglion Length | 0.099 | 0.006 | 0.000 |
| MonthAug | 0.327 | 0.068 | 0.000 |
| MonthDec | 0.394 | 0.073 | 0.000 |
| MonthFeb | 0.295 | 0.060 | 0.000 |
| MonthJan | 0.527 | 0.065 | 0.000 |
| MonthJul | 0.216 | 0.063 | 0.001 |
| MonthJun | 0.335 | 0.058 | 0.000 |
| MonthMar | 0.285 | 0.063 | 0.000 |
| MonthMay | 0.696 | 0.063 | 0.000 |
| MonthNov | 0.180 | 0.076 | 0.018 |
| MonthOct | 0.244 | 0.083 | 0.003 |
| MonthSep | 0.019 | 0.075 | 0.801 |
| DummyYear2 | 0.736 | 0.176 | 0.000 |
| DummyYear3 | -12.591 | 67.275 | 0.852 |
| DummyYear4 | 0.568 | 0.166 | 0.001 |
| DummyYear5 | 0.897 | 0.159 | 0.000 |
| DummyYear6 | 0.096 | 0.159 | 0.547 |
| DummyYear7 | 0.508 | 0.164 | 0.002 |
| DummyYear8 | 1.039 | 0.157 | 0.000 |
| DummyYear9 | -0.141 | 0.171 | 0.410 |

### 3.3.7 Gag Grouper

The model for gag grouper predicts catch success with soak time, fishing depth, gangion length, hook count, month, and year (Table 39). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<0.01$ ). Fishing depth, gangion length, and hook count increased success, and soak time decreased catch success (Table 39). All months were significant improvements over the April baseline (Table 39). Years 3, 6, and 7 were not significant, but all other years represent an increase in fishing success. The model was a $9 \%$ improvement over the null model $\left(R^{2}{ }_{M c F}=0.090\right)$.

Table 39. The results of the binomial regression model for gag grouper derived by backwards regression. $R^{2}{ }_{M c F}=0.090, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | -8.939 | 0.192 | 0.000 |
| Soak Time | -0.097 | 0.016 | 0.000 |
| Fishing Depth | 0.015 | 0.000 | 0.000 |
| Ganglion Length | 0.054 | 0.007 | 0.000 |
| Hooks | 0.000 | 0.000 | 0.000 |
| MonthAug | 0.750 | 0.093 | 0.000 |
| MonthDec | 0.918 | 0.089 | 0.000 |
| MonthFeb | 0.432 | 0.091 | 0.000 |
| MonthJan | 0.533 | 0.102 | 0.000 |
| MonthJul | 0.142 | 0.099 | 0.153 |
| MonthJun | 0.326 | 0.087 | 0.000 |
| MonthMar | 0.562 | 0.086 | 0.000 |
| MonthMay | 1.134 | 0.083 | 0.000 |
| MonthNov | 0.413 | 0.098 | 0.000 |
| MonthOct | 0.688 | 0.098 | 0.000 |
| MonthSep | 0.730 | 0.087 | 0.000 |
| DummyYear2 | 1.481 | 0.169 | 0.000 |
| DummyYear3 | -0.942 | 0.474 | 0.047 |
| DummyYear4 | 0.885 | 0.167 | 0.000 |
| DummyYear5 | 0.846 | 0.157 | 0.000 |
| DummyYear6 | -0.333 | 0.161 | 0.038 |
| DummyYear7 | 0.116 | 0.169 | 0.494 |
| DummyYear8 | 0.956 | 0.154 | 0.000 |
| DummyYear9 | 0.499 | 0.174 | 0.004 |

### 3.3.8 Red Porgy

The final model for red porgy predicts success as a function of fishing depth, gangion length, hook distance, mainline length, month, and year (Table 40). No issues with VIF or influential points were identified, and the model was a significant improvement from the null model ( $p<0.01$ ). Fishing depth and gangion length increases resulted in increased red porgy catch success, whereas hook distance and mainline length were negative contributors (Table 40). Months August, January, November, and September were not significantly different from the April baseline; February and December saw decreased catch success, whereas March, May, June, July, and October resulted in catch success improvement. The model represents an $12 \%$ improvement over the null model $\left(R_{M c F}^{2}=0.120\right)$.

Table 40. The results of the binomial regression model for red porgy derived by backwards regression. $R^{2}{ }_{M c F}=0.120, p<0.01$.

|  | Estimate | Std. Error | $p$-value |
| :--- | :---: | :---: | :---: |
| (Intercept) | -9.420 | 0.385 | 0.000 |
| Fishing Depth | 0.022 | 0.001 | 0.000 |
| Ganglion Length | 0.124 | 0.019 | 0.000 |
| Hook Distance | -0.025 | 0.005 | 0.000 |
| Mainline Length | -0.131 | 0.036 | 0.000 |
| MonthAug | 0.424 | 0.233 | 0.069 |
| MonthDec | -1.143 | 0.368 | 0.002 |
| MonthFeb | -1.198 | 0.249 | 0.000 |
| MonthJan | -0.105 | 0.215 | 0.624 |
| MonthJul | 0.536 | 0.200 | 0.007 |
| MonthJun | 1.195 | 0.166 | 0.000 |
| MonthMar | 0.507 | 0.187 | 0.007 |
| MonthMay | 0.568 | 0.206 | 0.006 |
| MonthNov | -0.305 | 0.303 | 0.315 |
| MonthOct | 0.939 | 0.228 | 0.000 |
| MonthSep | -0.287 | 0.247 | 0.245 |
| DummyYear2 | -2.033 | 0.485 | 0.000 |
| DummyYear3 | -12.895 | 195.088 | 0.947 |
| DummyYear4 | -0.721 | 0.296 | 0.015 |
| DummyYear5 | -1.172 | 0.250 | 0.000 |
| DummyYear6 | -1.385 | 0.243 | 0.000 |
| DummyYear7 | -1.006 | 0.280 | 0.000 |
| DummyYear8 | -1.808 | 0.244 | 0.000 |
| DummyYear9 | -0.599 | 0.322 | 0.063 |

### 3.4 Discussion

### 3.4.1 Porgys

Neither red nor jolthead porgys have been federally regulated with catch or total length limits during the study period. Jolthead porgy catch success was increased with increasing fishing depth, gangion length, mainline length, and hook count. While mainline length had a similar effect on jolthead porgy length (chapter 2), hook count increased the probability of catch success but decreased jolthead porgy length. Soak time, which contributed to decreased jolthead porgy length, was not included in the catch success model. This suggests that fishers may need to balance hook count depending on whether larger fish or more frequent successes are the priority. Neither month nor year were significant in the length model, but both contributed in the catch success model. The months of June, July, and August had significantly reduced catch success when compared to the April baseline, whereas all other months saw significantly greater catch success than April. This result suggests that fishing for jolthead porgys is most successful from September to May, and lower in the summer months. A slight decline in catch success occurred in year 2 (2007), but all other years except year 7 (2012) saw significantly greater catch success than the year 1 (2006) baseline.

Red porgy catch success increased significantly with gangion length and fishing depth, but declined with hook distance and mainline length. Hook distance and fishing depth were also included in the overall length model (chapter 2), and contributed to catch success in the same fashion. Catch success was significantly lower in December and February, and significantly higher in the spring and summer (March, May, June,

July, and October). The length model followed a similar trend, except for February where fish were larger although catch success was lower. Year was not a factor in the length model, but the catch success model suggests an overall decline in red porgy catch success, with only years 3 and 9 (2008 and 2014) not significantly lower than year 1. The results of this model suggest that increasing fishing depth and decreasing hook distance are the most important for catching red porgys, as these factors contributed to both overall catch success and length. Spring and summer are the best times to catch large and retainable red porgys. However, the overall decline in catch success from year 1 indicates that either fishers are keeping fewer red porgys, or that overall catch success is declining. Further study is necessary to assess whether a population decline is occurring, and whether federal regulation has become necessary.

### 3.4.2 Snappers

Throughout the study period, mutton snappers have been regulated with a 16inch total length minimum but no quotas or trip limits. Fishing depth, soak time, gangion length, and hook distance all contributed to increased catch success. In the length model (chapter 2), fishing depth was included but not significant, and mainline length alone significantly contributed to increased length. August, September, October, December, January, and March, and May saw significantly lower catch success than the April baseline. June and July appear to be the best times for fishing, as these months were the only months with positive coefficients. However, in the length model, fish caught in June were significantly smaller, and the largest fish were caught in the winter months. This suggests that fishers must balance the risks of catching more, smaller fish, or fewer,
larger individuals. Additionally, while the annual trend shows an increase in mutton snapper length, the catch success model suggests an overall decline in kept mutton snapper. Further research is necessary to determine whether this is due to fisher selection, or a population decline requiring management intervention.

Red snapper catch success was significantly improved with increasing fishing depth, gangion length, and hook count, and declined with mainline length. In the length model (chapter 2), fishing depth increased length, but gangion length decreased fish length. Soak time was significant in the length model but did not affect catch success. June, July, and August had significantly lower catch success, but all other months were significantly higher than the April baseline. While the smallest fish were caught in January in the length model, in general the largest fish were caught in the fall through spring months. Red snapper have seen significant regulatory change over time, with the initiation of the IFQ system in 2008 and quota increases in 2010, 2012, and 2013, and a decrease in the total length requirement from 15 inches to 13 inches in 2008. While year 2 (2007) had significantly lower catch success, all other years except year 7 (2012) had significantly increased catch success when compared with year 1. In the length model, all years saw significantly increased length. These results suggest that the IFQ system has been extremely effective in regulating red snapper.

### 3.4.3 Groupers

Speckled hind catch success improved significantly with fishing depth and hook count; fishing depth also contributed significantly in the speckled hind length model (chapter 2). Neither month nor year were included in the length model, but both were
significant in the catch success model. The greatest speckled hind success compared with the April baseline was recorded in the months of October, November, and March, indicating that the winter months may be the best time for catching speckled hind. While year was significant within the model, no individual year deviated significantly from the year 1 baseline. Interestingly, speckled hind management has changed dramatically over the study period, with the species being moved from the deep-water grouper to shallowwater grouper quota in 2010, and the quota lowered in 2012. Despite these regulatory changes, catch success of speckled hind has not changed between 2006 and 2014.

Red grouper catch success improved significantly with mainline length and hook count, but declined with fishing depth, gangion length, and hook distance. Mainline length had a positive effect in the length model (chapter 2), but hook distance and fishing depth contributed to larger fish but had a negative impact on catch success. Again, fishers must prioritize fish size or catch success. Seasonality plays an important role in red grouper catch success, with significantly lower success in March, June, July, August, and November, and significantly higher success in September, October, December, January, and February when compared with the April baseline. In the length model, fish were significantly smaller in the summer months, suggesting that red grouper fishing will be most successful in the late fall and winter months. The red grouper catch quota was raised in 2009, and lowered in 2012, with the total length minimum raised in 2008. Despite these changes, all years showed significantly greater catch success when compared with the year 1 baseline, with greater gains in later years.

Scamp catch success improved with fishing depth and gangion length and declined with soak time. Interestingly, scamp length declined with fishing depth and gangion length, indicating that fishers may need to assess whether it is more beneficial to catch more, smaller fish, or fewer, larger fish. Increased hook distance increased scamp length, but did not impact catch success. All months except September and November had significantly higher catch success than the April baseline. In the length model, fish were significantly smaller in May, August, and September, and significantly larger in January, February, and July. Fishing success for scamp may be best in the late winter and early spring. The catch quota for scamp was lowered in 2009, raised in 2010, and lowered again in 2012. Significant increases in catch success when compared with the year 1 baseline were recorded in years 2 (2007), 4 (2009), 5 (2010), 7 (2012), and 8 (2013). This indicates that quota changes did not negatively impact fishing success, as increases were documented in the periods surrounding the quota lowering.

Gag grouper catch success increased significantly with fishing depth, gangion length, and hook count, and declined with soak time. Fishing depth also positively influenced gag grouper length, as did mainline length. Month was not significant within the gag grouper length model, but all months except July had significantly greater catch success than the April baseline. This suggests that while the summer months may be slightly worse for catching gag grouper, in general fishing year-round is successful. The gag grouper total length requirement was lowered in 2013. Gag were given a separate quota in year 4 (2009), which was lowered in 2010. In 2011 an emergency rule limited the total catch to less than half a million pounds, and the quota was lowered dramatically
in 2012. Year was significant in the length model, but only year 6 (2011) deviated significantly lower than year 1 . Significant increases in catch success were documented in year 2 (2007), 4 (2009), 5 (2010), 8 (2013), and 9 (2014). These increases in catch success in later years indicate that the quota changes effectively improved catch success, though further research is required to assess whether this improvement occurred at the population level or resulted from reduced fishing effort.

### 3.4.4 Conclusions and Future Directions

The results of this study indicate that altering fishing practices can influence the success of obtaining the target species. Changing fishing practices to reflect the outcome of these models may reduce bycatch of non-target species or individuals of the target species which are not legally retainable. Combining the results of these models with the results of the length maximization models (chapter 2) may ultimately contribute to bycatch reduction and greater fishing success. Through the utilization of these results, fishers can maximize their catch, reducing the time and capital spent to obtain fish. Bycatch reduction may have long term positive environmental impacts.

This study represents the first to include hook placement and proximity influences on species selectivity. Gangion length, hook distance, hook count, or a combination of these factors were included in every size selectivity model derived herein. Future research in longline fishing selectivity should address these factors, as they quantify the spatial proximity of the fish to each other during fishing. Whether species are solitary or schooling, interactions with other fish (caused by hooks located
close together, on short gangions, or because of the number of hooks set) may influence species selectivity.

Further study is necessary to quantify whether the changes over time that have been recorded are a result of improved population strength or a function of increased fishing success. However, in general, most species saw an improvement in catch success over time. Two species, red porgy and mutton snapper, saw declines over the study period. Interestingly, these two species have not been federally regulated by catch quotas and only mutton snapper have a total length limit in place. While some state regulations are in place, these declines suggest that federal management intervention may be appropriate to prevent further catch success declines in the future.

The results of this study ultimately indicate that manipulating gear and set parameters and seasonality may have an influence on the ability of fishers to successfully obtain the targeted species. Fishers should consider implementing the gear configuration recommendations contained herein to improve their catch success and reduce the resources spent to catch the desired amount of fish. When considered in tandem with the length maximization models in chapter 2, fishers can make informed decisions regarding the best fishing practices. Although these studies do not guarantee that fishers will always obtain the desired species, using these recommendations as a guide may ultimately contribute to reduced bycatch and improved fishing success.

## 4. IMPLICATIONS, CONCLUSIONS, AND FUTURE DIRECTIONS

### 4.1 Research Implications

The best scientific information, without meaningful application, does not actively benefit society. In this instance, the results of this study may be directly applied to fishery management. Indeed, scientific information is required for fishery management plan development. In the United States, such research is federally mandated; all fishery management plans (FMPs) must be based on "the best scientific information available," per National Standard 2 (50 CFR Ch. VI § 600.315). This includes biological, ecological, economic, and social information, and requires thorough analysis by managers before implementing any regulations. However, I suggest that the factors addressed in this mandate are incomplete, and an analysis of existing fishing methods and suggestions for best practices should be included if the fishery is actively being exploited. The results contained herein will enhance the management of Gulf of Mexico longline reef fish fisheries through addressing best fishing practices at a species-specific level. Best fishing practices have been previously understudied and represent an opportunity to enhance management.

There is a distinct lack of understanding regarding the effects of gear on fishing success. Multiple studies have attempted to quantify the effects of hook size and bait size or the fishing conditions (Løkkeborg and Bjordal 1992; Erzini et al. 1996; Huse and Soldal 2000; Ward and Myers 2005a; Watson and Kerstetter 2006), but these studies have failed to address fishing gear and setup methodology in a holistic manner. While studies have focused on individual components of fishing gear (such as hook size or bait
type), fishing gear variables do not work independently. Using modeling to assess a range of variables in unison ultimately captures a more complete picture of fishing success.

The results of this research can be used to address how configuration of gear can influence fish size, and may provide recommendations for configuring gear in order to catch the largest individual fish on a species-by-species basis. Modeling allows for consideration of several factors that can be controlled by fishers simultaneously, rather than considering factors in isolation as previous studies have done. Minimizing bycatch of non-target species is also a concern for managers, as discard mortality may negatively impact a population and can be difficult to quantify (Alverson and Hughes 1996). While previous studies have focused on reducing bycatch of specific non-target species (such as sharks, rays, seabirds, and turtles) (Shepherd and Myers 2005; Ward and Myers 2005a, b; Watson et al. 2005; Piovano et al. 2010), there is no information available on how to improve the probability of catching the target species. Finally, while some information on catch-per-unit effort is available for the fishery (Scott-Denton et al. 2011), questions regarding catch distribution over time and space have not been previously addressed. The questions presented in each component of this dissertation advance the understanding of Gulf of Mexico longline reef fish fisheries by addressing factors previously not given sufficient attention.

This study represents a unique opportunity for managers to enhance the education of Gulf fishers, while also increasing engagement with fishery-dependent communities. At first glance, fishers and managers appear to be on opposing sides of a
complex problem: fishers want to remove as many fish as possible, and managers want to limit removal. However, healthy and productive fish populations are in the best interest of both groups over the long term. By using the information in this study, fishers should be able to obtain larger individuals (of legal size to retain) of the target species, improving fishing trip efficiency by reducing capital spent to obtain catch. Managers benefit from the minimization of non-target and undersized bycatch, which minimizes uncertainty in setting total allowable catch. This increase in total allowable catch also benefits fishers, who may be able to harvest more fish in future seasons without adversely impacting the population.

Within the fisher population, managers must pay special attention to communities economically dependent on fisheries. Per National Standard 9 (50 CFR Ch. VI § 600.345), FMP management measures must consider the importance of fisheries to communities, and in so far as possible, sustain their participation in the fishery and minimize adverse economic impacts. Through implementing best fishing practices in reef fish fisheries and the anticipated improvements in population health resulting through bycatch reduction, communities dependent on the success of reef fish fisheries should increase their prosperity.

The benefits of this study to society are direct and tangible. National Standard 1 (50 CFR Ch. VI § 600.310) mandates that all FMPs must establish the optimum yield (OY) of a fishery, where the OY is the amount of fish removed that provides the greatest overall benefit to the nation with respect to biological, ecological, economic, and social factors. A large, thriving fishery is in the best interest of stakeholders who are involved
directly in the fishery as a fisher, processor or consumer. Through reductions in bycatch, fish stocks may grow and allow for an increase in OY, resulting in even greater economic success in the fishery. Improved fishing success also generates an economic benefit and improved efficiency through reductions in labor and capital required to harvest fish at the current OY. Such economic benefits can bolster fishing communities and the overall economy of the nation. The broader impacts of the research proposed herein are considerable, with benefits to the fishery, fishery communities, and management sectors.

### 4.2 Future Directions

Broad dissemination of these results to fishers, managers, and the scientific community via publication of scientific papers and fishing guidelines will enhance the understanding of those with a vested interest in Gulf of Mexico longline reef fisheries. Through this study, communication between managers and fishers may be improved as the industry works together with managers to develop the most efficient fishing practices. Educating fishers on best practices for their particular target species will not only benefit fishers economically, but reduce the impact of undesirable impacts on the fishery. Managers interpreting these results and educating fishers on best practices broadens the impact of the study.

Sharing the methods employed with other fishery management councils nationwide should be a priority. This may encourage the development of similar studies for other fisheries and in other regions, and help to enhance the network of fishery management in the United States. If an observer program has not already been
implemented, establishing one should be a priority, particularly for economically important and high bycatch risk fisheries. Commercial fishery landings in the United States were worth over $\$ 5$ billion as of 2015, and investing in enhancing fishing success may increase this total by catching more valuable (e.g. larger) fish and reducing lost capital (e.g. bait lost to non-target catches). Eventually, should such studies prove useful, including a best fishing practices section in fishery management plans for species that are already exploited, may become a common practice. While this dissertation focuses on longline gear for reef fishing, the methods employed can be readily adapted to other gear types.

Testing the gear configuration and set parameter models derived herein is best done through field testing. Because these results have been generated based on government data, it is vital to address the ethical concerns that may arise from preferred field testing methods. Clearly, fishing success has direct and potentially serious consequences to the financial success of fishers. Using government-collected data and providing the results to only a select portion of fishers poses a serious conflict of interest. Thus, distributing the results to only a portion of the fisher population or requesting that fishers alter their fishing methodology for testing purposes is unethical. Fish populations and fishing conditions, however, may vary widely from year to year and are challenging to both predict and describe. To avoid these ethical pitfalls but still produce a valid analysis, a set of recommendations for targeting each species (e.g. shortening soak times, placing hooks closer together, and using longer gangions) could be provided. As compliance with these recommendations would be entirely voluntary,
the fishing success results from those who chose to implement the recommendations could be compared against both their documented fishing success in previous years, and against the fishing success of those who made no changes to their fishing practices. This should generate a valid analysis without the ethical challenges presented in a true control and test group analysis.

Long-term, gear regulation may prove useful in bycatch reduction. Once the recommendations have been vetted in the field, fishery managers may opt to require certain gear configurations and fishing parameters such as soak time limits or fishing depth ranges. While changing gear setups requires negligible time and labor, these changes can generally be made at little cost (for instance, moving hook distances or replacing gangions with longer or shorter lines as they become worn). Increasing soak times or using shallower fishing depths has no associated cost. Fishing lines must be replaced over time, so changing mainline or gangion lengths as replacement becomes necessary would not incur any additional cost. These parameters have been largely ignored in existing literature. Though enforcement of gear regulation would prove difficult in some cases, if presented as a means of improving overall catch success, compliance with these standards should be high. Ultimately, should the recommended fishing practices reduce bycatch levels successfully, it may be possible to raise catch quotas - a tangible benefit for compliance with gear guidelines.

This shift in focus from the biotic and abiotic factors in the environment to variables controllable by fishers represents an important step in fishery management. While the study of the environmental variables that contribute to fish population health
is critical and should be ongoing, very little can be changed directly to generate conditions favorable for thriving populations. Fishing gear and set configurations, however, can be manipulated with minimal cost or effort. Given the significant commercial fisheries landings value in the United States noted above, even small improvements may have broad reaching economic impacts. Coupled with the ecological benefits of bycatch reduction, the study of best fishing practices is a valuable tool for progressing fishery management in the United States and beyond.

## REFERENCES

Adams, C. M., E. Hernandez, and J. C. Cato. 2004. The economic significance of the Gulf of Mexico related to population, income, employment, minerals, fisheries and shipping. Ocean \& Coastal Management 47: 565-580.

Allison, P. D. 2014. Measures of Fit for Logistic Regression. SAS Global Forum, Washington, DC.

Alverson, D. L. 1999. Some observations on the science of bycatch. Marine Technology Society. Marine Technology Society Journal 33: 6.

Alverson, D. L., and S. E. Hughes. 1996. Bycatch: from emotion to effective natural resource management. Reviews in Fish Biology and Fisheries 6: 443-462.

Bacheler, N. M., and K. W. Shertzer. 2015. Estimating relative abundance and species richness from video surveys of reef fishes. FIshery Bulletin 113: 15-27.

Belda, E. J., and A. Sánchez. 2001. Seabird mortality on longline fisheries in the western Mediterranean: factors affecting bycatch and proposed mitigating measures. Biological Conservation 98: 357-363.

Bell, J. D. 1983. Effects of depth and marine reserve fishing restrictions on the structure of a rocky reef fish assemblage in the north-western Mediterranean Sea. Journal of applied ecology: 357-369.

Chuenpagdee, R., L. E. Morgan, S. M. Maxwell, E. A. Norse, and D. Pauly. 2003. Shifting gears: assessing collateral impacts of fishing methods in US waters. Frontiers in Ecology and the Environment 1:517-524.

Coelho, R. et al. 2003. Reduction of elasmobranch by-catch in the hake semipelagicnearbottom longline fishery in the Algarve (Southern Portugal). Fisheries Science 69: 293-299.

Crowder, L., and E. Norse. 2008. Essential ecological insights for marine ecosystembased management and marine spatial planning. Marine Policy 32: 772-778.

Darimont, C. T., C. H. Fox, H. M. Bryan, and T. E. Reimchen. 2015. The unique ecology of human predators. Science 349: 858-860.

Davis, M. W. 2005. Behavior impairment in captured and released sablefish: ecological consequences and possible substitute measures for delayed discard mortality. Journal of Fish Biology 66: 254-265.
de Mutsert, K., J. H. Cowan, T. E. Essington, and R. Hilborn. 2008. Reanalyses of Gulf of Mexico fisheries data: landings can be misleading in assessments of fisheries and fisheries ecosystems. Proceedings of the National Academy of Sciences 105: 2740-2744.

Environmental Systems Research Institute (ESRI). 2014. ArcGIS Version 10.2 Geostatistical Analyst.

Erzini, K., L. Bentes, P. G. Lino, and J. Ribeiro. 1998. Species and size selectivity in a 'red' sea bream longline 'métier 'in the Algarve (southern Portugal). Aquatic Living Resources 11: 1-11.

Erzini, K., J. M. Gonçalves, L. Bentes, P. G. Lino, and J. Cruz. 1996. Species and size selectivity in a Portuguese multispecies artisanal long-line fishery. ICES Journal of Marine Science: Journal du Conseil 53: 811-819.

Florida Museum of Natural History. 2016. Ichthyology. https://www.flmnh.ufl.edu/index.php/fish/home/.

Gerritsen, H. 2014. mapplots: Data Visualization on Maps. R package version 1.5. https://CRAN.R-project.org/package=mapplots.

Gilmore, G. R., and R. S. Jones. 1992. Color variation and associated behavior in the epinepheline groupers, Mycteroperca microlepis (Goode and Bean) and M. phenax Jordan and Swain. Bulletin of Marine Science 51: 83-103.

Golden, C. et al. 2016. Nutrition: Fall in fish catch threatens human health. Nature 534: 317.

Gulf of Mexico Fishery Management Council. 2006. Final Amendment 26 to the Gulf of Mexico Reef Fish Fishery Management Plan to Establish a Red Snapper Individual Fishing Quota Program, National Oceanic and Atmospheric Administration, Tampa, Florida.

Gulf of Mexico Fishery Management Council. 2010a. Allowable Fishing Gear in Federal Waters of the Gulf of Mexico. http://gulfcouncil.org/fishing_regulations/allowable_gear.php Accessed 21 September 2016.

Gulf of Mexico Fishery Management Council. 2010b. Reef Fish Management Plans. http://gulfcouncil.org/fishery_management_plans/reef_fish_management.php.

Gulf of Mexico Fishery Management Council. 2010c. Reef Fish Management Plans Archives. http://www.gulfcouncil.org/fishery_management_plans/reef_fish_management_a rchives.php.

Gulf of Mexico Fishery Management Council. 2015. Species listed in the fishery management plans of the Gulf of Mexico Fishery Management Council. http://gulfcouncil.org/Beta/GMFMCWeb/downloads/species\ managed.pdf.

Gulf of Mexico Fishery Management Council. 2016. Commercial Fishing Regulations for Gulf of Mexico Federal Waters For Species Managed by the Gulf of Mexico Fishery Management Council, Tampa, Florida

Hall, M. A., D. L. Alverson, and K. I. Metuzals. 2000. By-catch: problems and solutions. Marine pollution bulletin 41: 204-219.

Huse, I., and A. V. Soldal. 2000. An attempt to improve size selection in pelagic longline fisheries for haddock. Fisheries Research 48: 43-54.

Jacob, S., P. Weeks, B. Blount, and M. Jepson. 2013. Development and evaluation of social indicators of vulnerability and resiliency for fishing communities in the Gulf of Mexico. Marine Policy 37: 86-95.

Jaxion-Harm, J., and S. Szedlmayer. 2015. Depth and artificial reef type effects on size and distribution of Red Snapper in the northern Gulf of Mexico. North American Journal of Fisheries Management 35: 86-96.

Karnauskas, M., M. J. Schirripa, C. R. Kelble, G. S. Cook, and J. K. Craig (eds.). 2013. Ecosystem status report for the Gulf of Mexico. NOAA Technical Memorandum NMFS-SEFSC-653, 52 p.

Kennelly, S. J., and M. K. Broadhurst. 2002. By-catch begone: changes in the philosophy of fishing technology. Fish and Fisheries 3: 340-355.

Kriebel, D. et al. 2001. The precautionary principle in environmental science. Environmental health perspectives 109: 871.

Levin, S. A., and J. Lubchenco. 2008. Resilience, robustness, and marine ecosystembased management. Bioscience 58: 27-32.

Lewison, R. L., L. B. Crowder, A. J. Read, and S. A. Freeman. 2004. Understanding impacts of fisheries bycatch on marine megafauna. Trends in Ecology \& Evolution 19: 598-604.

Link, J. S. 2002. What does ecosystem-based fisheries management mean. Fisheries 27: 18-21.

Løkkeborg, S., and Å. Bjordal. 1992. Species and size selectivity in longline fishing: a review. Fisheries Research 13: 311-322.

Løkkeborg, S., and T. Pina. 1997. Effects of setting time, setting direction and soak time on longline catch rates. Fisheries Research 32: 213-222.

Macpherson, E., and C. M. Duarte. 1991. Bathymetric trends in demersal fish size: is there a general relationship?

Millar, R. B. 1992. Estimating the size-selectivity of fishing gear by conditioning on the total catch. Journal of the American Statistical Association 87: 962-968.

Mitchell, J. 2014. Southeast U.S. Fisheries Bycatch Reduction Technology. In: Marine Resource Education Program Southeast Science Workshop, St. Petersburg, Florida

National Marine Fisheries Service. 2013. Characterization of the US Gulf of Mexico and Southeastern Atlantic Otter Trawl and Bottom Reef Fish Fisheries Observer Training Manual, National Oceanic and Atmospheric Administration, Southeast Fisheries Science Center Galveston Laboratory, 181 pgs.

National Ocean Service. 2014. What is the EEZ? National Oceanic and Atmospheric Administration. http://oceanservice.noaa.gov/facts/eez.html.

National Oceanic and Atmospheric Administration. 2015. Status of Stocks 2014: Annual Report to Congress on the Status of U.S. Fisheries, U.S. Department of Commerce, 8 pgs.

National Oceanic and Atmospheric Administration. 2016. Status of Stocks 2015: Annual Report to Congress on the Status of U.S. Fisheries, U.S. Department of Commerce, 7 pgs.

NOAA Fisheries. 2016. Draft National Bycatch Reduction Strategy. p 9. National Oceanic and Atmospheric Administration.

Pikitch, E. K. et al. 2004. Ecosystem-Based Fishery Management. Science 305: 346-347.

Piovano, S., S. Clò, and C. Giacoma. 2010. Reducing longline bycatch: The larger the hook, the fewer the stingrays. Biological Conservation 143: 261-264.

Porter, R. D., Z. Jylkka, and G. Swanson. 2013. Enforcement and compliance trends under IFQ management in the Gulf of Mexico commercial reef fish fishery. Marine Policy 38: 45-53.

Rodger, R. W. A., and W. M. von Zharen. 2011. The Commercial Fisheries of the United States and Canada, Illustrated 2012 Edition Canadian Marine Publications, Halifax, Nova Scotia, Canada.

Ross, S. W. 1988. Xanthic Coloration as the Normal Color Pattern of Juvenile Speckled Hind, Epinephelus drummondhayi (Pisces: Serranidae). Copeia 1988: 780-784.

Scott-Denton, E. et al. 2011. Descriptions of the US Gulf of Mexico reef fish bottom longline and vertical line fisheries based on observer data. Marine Fisheries Review 73: 1-26.

Scott-Denton, E., and J. A. Williams. 2013. Observer Coverage of the 2010-2011 Gulf of Mexico Reef Fish Fishery, NOAA Technical Memorandum NMFS-SEFSC646.

SEDAR. 2013. SEDAR 31 - Gulf of Mexico Red Snapper Stock Assessment Report. SEDAR, North Charleston SC. 1103 pgs. Available online at: http://www.sefsc.noaa.gov/sedar/Sedar_Workshops.jsp?WorkshopNum=31.

SEDAR. 2014. SEDAR 33 - Gulf of Mexico Gag Stock Assessment Report. SEDAR, North Charleston SC. 609 pgs. Available online at: http://www.sefsc.noaa.gov/sedar/Sedar_Workshops.jsp?WorkshopNum=33.

Shepherd, T., and R. A. Myers. 2005. Direct and indirect fishery effects on coastal elasmobranchs in the Gulf of Mexico. Ecology Letters 8: 1095-1104.

Solís, D., J. J. Agar, and J. del Corral. 2015. IFQs and total factor productivity changes: The case of the Gulf of Mexico red snapper fishery. Marine Policy http://dx.doi.org/10.1016/j.marpol.2015.06.001.

Southwood, A., K. Fritsches, R. Brill, and Y. Swimmer. 2008. Sound, chemical, and light detection in sea turtles and pelagic fishes: sensory-based approaches to bycatch reduction in longline fisheries. Endangered Species Research 5: 225-238.

Ward, P., and R. A. Myers. 2005a. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Canadian Journal of Fisheries and Aquatic Sciences 62: 1130-1142.

Ward, P., and R. A. Myers. 2005b. Shifts in open-ocean fish communities coinciding with the commencement of commercial fishing. Ecology 86: 835-847.

Waters, J. R. 2001. Quota management in the commercial red snapper fishery. Marine Resource Economics 16: 65-78.

Watson, J. W., S. P. Epperly, A. K. Shah, and D. G. Foster. 2005. Fishing methods to reduce sea turtle mortality associated with pelagic longlines. Canadian Journal of Fisheries and Aquatic Sciences 62: 965-981.

Watson, J. W., and D. W. Kerstetter. 2006. Pelagic longline fishing gear: A brief history and review of research efforts to improve selectivity. Marine Technology Society Journal 40: 6-11.

Wraith, J. A. 2007. Assessing reef fish assemblages in a temperate marine park using baited remote underwater video, MSc Thesis, School of Biological Sciences, University of Wollongong


[^0]:    ${ }^{1}$ Mention of trade names or commercial companies is for identification purposes only and does not imply endorsement by the National Marine Fisheries Service, NOAA.

[^1]:    ${ }^{2}$ Mention of trade names or commercial companies is for identification purposes only and does not imply endorsement by the National Marine Fisheries Service, NOAA.

[^2]:    *Reprinted with permission from "Fishing gear and set methodology models for target species fishing success in Gulf of Mexico longline reef fishing" by Alexandria Rivard and Wyndylyn von Zharen (in press). Athens Journal of Sciences.

[^3]:    ${ }^{4}$ Mention of trade names or commercial companies is for identification purposes only and does not imply endorsement by the National Marine Fisheries Service, NOAA.

