
 

 

 

 

ASSESSMENT AND IMPROVEMENT OF NITROGEN CYCLING IN SWAT 

 

A Dissertation 

by 

ELIZABETH BROOKE HANEY  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Raghavan Srinivasan 
Committee Members, Scott Allen Senseman 
 Jay Angerer 
 Jaehak Jeong 
Head of Department, Kathleen Kavanagh 

 

December 2017 

 

Major Subject: Ecosystem Science and Management 

 

Copyright 2017 Elizabeth Brooke Haney



 

ii 

 

ABSTRACT 

 

The Soil and Water Assessment Tool (SWAT) has been successfully used to 

predict alterations in streamflow, evapotranspiration and soil water.  Previous research 

suggests that while the hydrologic balance in each watershed is accurately simulated 

with SWAT, the SWAT model over- or under-predicts crop yield relative to fertilizer 

inputs. The SWAT model previously contained three N simulation submodels: (1) basic; 

(2) N routines derived from the CENTURY model (SWAT-C); and (3) a one-pool C and 

N model (SWAT-One).  We used the measurement of microbial activity coupled with 

the measurement of water-extractable N and C to add a flush of N after rainfall events to 

create a fourth N cycling option in SWAT (SWAT-flush). SWAT-flush was compared to 

soil-biological properties and the natural difference vegetative index on a wheat field in 

Temple, TX, to examine the sensitivity of SWAT-flush to field conditions and found it 

improved over basic SWAT. 

Crop yields from a long-term experiment in Lahoma, OK, managed by 

Oklahoma State University were compared to wheat yield predicted by the four sub-

models. Weather data obtained from the Lahoma research station were used to analyze 

the impact of precipitation and temperature on simulated and actual yields.   Nitrogen 

use efficiency was analyzed as well as gains in yield relative to fertilizer applications for 

simulated and actual yields.   

Actual crop yields were not significantly different from year to year nor for 

fertilizer treatments above 22.4 kg N ha-1.  Field crop response to fertilizer additions 
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from year to year was highly variable.  SWAT-C simulated average yields were closer 

than other N sub-models to average actual yield. Annually there was a stronger 

correlation between SWAT-flush and actual yields than the other submodels.  None of 

the N-cycling routines could accurately predict annual variability in yield at any 

fertilizer rate.  I found that SWAT-C and SWAT-flush are the most viable choices for 

accurately simulating long-term average wheat yields, although annual variability in 

yield prediction should be taken into consideration. Further research is needed to 

determine the effectiveness of SWAT-C and SWAT-flush in determining average and 

annual yield in various farming regions and with numerous agronomic crops. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Globally, through the production and use of N fertilizer, we have altered the 

Earth’s N cycle affecting issues that range from global climate change to oceanic 

hypoxic zones. Nitrogen use in the world is so significant that the Haber-Bosch synthesis 

of ammonia from atmospheric N is responsible for nearly 2% of global energy 

consumption (European Commission, 2013). The production of N fertilizer has allowed 

for a drastic increase in yields, providing food for a growing human population that 

doubled to 6 billion in 50 years (Steffen et al., 2007).   

As of 2011, when the latest National Land Cover Dataset (NLCD) was made, 

1,252,997 km2 of land in the conterminous US was classified as cropland (USGS, 2011). 

In many parts of the United States, N and P inputs to these agricultural lands are said to 

the be the primary nonpoint sources of pollution, including the Upper Mississippi River 

Basin (Jha et al., 2013). For lawmakers, environmental decision makers and scientists to 

identify and mitigate nonpoint source additions of N and P, one must be able to 

accurately predict N cycling in the environment and, in turn, accurately predict crop 

yield in response to mitigation efforts. 

The Soil and Water Assessment Tool (SWAT) is a watershed scale model that 

was developed to predict the impact of land management practices on water, sediment 

and agricultural chemical yields in large complex watersheds with varying soils, land 

use, and management conditions over extended periods of time (Arnold et al., 2012). 
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The origins of the SWAT model trace back to the Chemicals, Runoff, and Erosion from 

Agricultural Management Systems (CREAMS) model, the Groundwater Loading Effects 

on Agricultural Management Systems (GLEAMS) model, and the Erosion Productivity 

Impact Calculator (EPIC) model, which were created by the USDA-ARS (Gassman et 

al., 2007). SWAT incorporates specific information about weather, soil properties, 

topography, vegetation, and land management practices occurring in the watershed 

(Neitsch et al., 2009), making it particularly suitable for assessing the effect of 

agricultural practices on crop production. 

The minimum data required to run SWAT are commonly available from 

government agencies.  The physical processes associated with land use, hydrology 

(water balance), erosion, plant growth, nutrient fate and cycling, carbon balance, flood 

routing, etc. are directly modeled by SWAT using this input data.  Simulation of very 

large basins or a variety of management strategies under fluctuating climatic conditions 

can be performed without excessive investment of time or money because SWAT is 

computationally efficient.  SWAT enables users to study long-term impacts, such as 

anthropogenic changes to the landscape and nutrient cycling that may beneficially or 

adversely affect an ecosystem.  For example, SWAT has been used to model climate 

change and nutrient loading in the United States, Germany, the Czech Republic, and 

Canada (Jha et al., 2013; Kyrsanova et al., 2005; Martinkov et al., 2011; Shrestha et al., 

2011; Ye and Grimm, 2013).  The impact of climate change on crop growth and yield 

has recently been studied using SWAT in the Black Sea, Iran, India, China, and regions 

of the United States (Bar et al., 2014; Bhuvaneswari et al., 2013; Vaghefi et al., 2013; 
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Vaghefi et al., 2014; Wang et al., 2011; Xie et al., 2008). The SWAT model allows for 

crop growth simulation under nutrient limited scenarios, accounts for variations in soil 

properties, and allows flexibility in user inputs such as planting and harvest dates, and 

conservation practices. For example, the Conservation Effects Assessment Project 

(CEAP), which the SWAT model supports, has been utilized to determine the 

environmental impact of conservation practices in major watersheds throughout the 

conterminous US.  

While SWAT has been successfully used to predict watershed processes, it was 

not clear how effective or accurate SWAT is at predicting crop growth or N cycling in 

the soil.  Many N mineralization models, including EPIC, on which the N-cycling in 

SWAT is based, are founded on the PAPRAN (Production of arid Pastures limited by 

RAinfall and Nitrogen) model (Lauenroth et al., 1983; Neitsch et al., 2009, Matthews 

and Stephens, 2002; Seligman and van Keulen, 1981; Williams et al., 1995).  The 

PAPRAN model was developed for high input agricultural systems and was not 

structured for no-till or conservation tillage systems where residue is not incorporated 

into the system (Matthews and Stephens, 2002). The PAPRAN model considers two 

sources of mineralization, fresh organic N associated with crop residue and microbial 

biomass and the stable organic N associated with the soil humic fraction. In general, 

these mineralization processes consider the C:N ratio of the soil, temperature, soil water 

content and sometimes soil C:P ratios.  Mineralization is estimated as a function of 

organic N weight, soil water, and temperature.   
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Three major forms of N in soils are organic N associated with humus and the 

microbial biomass, mineral forms of N held by soil colloids, and N in solution.  Nitrogen 

is added to the soil by fertilizer, rain, manure, residue, mineralization by the microbial 

biomass and fixation by bacteria.  It is removed from the soil by leaching, plant uptake, 

volatilization, denitrification, and erosion.  The main N pools represented in various 

models can consist of any combination of fresh or residue pools and stable and active 

organic nitrogen pools which feed into the inorganic nitrogen fraction. The SWAT 

model consists of three organic N pools (active, stable and residue or fresh) and two 

inorganic N pools (NO3
- and NH4

+).  The amount of N initially placed in each pool can 

be based on theoretical soil C and N relationships rather than requiring confirmatory 

data. These theoretical associations consist of general relationships, which may or may 

not be reflective of soil and management conditions. 

Organic N numbers are assigned assuming that the C:N ratio for humic materials 

is 14:1. The concentration of humic organic nitrogen is determined based on the SOC 

values for the soil from soil survey data. Then, the SWAT model determines the amount 

of organic nitrogen in the soil that should be designated to the active and stable nitrogen 

pools by assigning 20% of the organic N to the active pool and 80% of the organic N to 

the stable pool (Neitsch et al., 2009).  After initialization, the residue pool is determined 

based on simulated management practices. The N resulting from decomposition and 

mineralization of the residue during simulation is added to the active organic and plant-

available pools, respectively.  Decomposition and mineralization in SWAT are 

dependent upon the decay rate of the plant, the C:N ratio of the residue in the soil layer, 
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and soil temperature and water factors.  SWAT arbitrarily assumes that 20% of the 

residue decomposed will be added to the active or humic N pool and the remaining 80% 

is considered mineralized and added to the NO3
- pool.   

In the field, immobilization and mineralization are controlled by microbial 

activity in the soil.  Bacteria decompose organic material to obtain energy.  Plant residue 

is broken into glucose to be used for protein synthesis, which requires N.  If the residue 

containing the glucose contains enough N to meet the demand for protein synthesis the 

bacteria will use N from the organic material, resulting in mineralization of N.  If there is 

not enough N to meet bacterial demand, the bacteria will use inorganic N from soil 

solution to meet the needs for protein synthesis, resulting in immobilization.  If the N 

content of organic matter exceeds the needs for bacterial demand, mineralization occurs.  

The decomposition and mineralization routines in SWAT do not account for the effect of 

the fungal and bacterial population in the soil which controls these processes and is 

estimated to account for 250 to 900 kg C/ha depending upon the soil (Doran, 1987). We 

must attempt to replicate the influence the microbial biomass has on N cycling since it is 

the main driver of N cycling and soil fertility, ultimately influencing crop yield. 

Nitrification and volatilization involve the conversion of NH4
+ to either NO3

- or 

NH3, respectively. SWAT simulates both processes simultaneously then partitions the 

values between the two processes (Nietsch et al., 2009).  The nitrification process in 

SWAT depends solely on the soil water and temperature factors.  While temperature and 

moisture are critical forcing factors on the nitrification process, SWAT does not account 

for soil microbial activity, the pH of the soil, nor the water-extractable C or N content of 
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the soil, which is the food source for the microbial population.  Volatilization simulation 

in SWAT is dependent upon soil temperature and depth and includes a default cation 

exchange factor.  In the field, volatilization is also strongly pH dependent and is affected 

by wind conditions and soil clay content and type.  Currently, wind is not simulated in 

SWAT.  

In recent years the technological base has increased to where we now have the 

power to observe microbiological processes in the soil, such as mineralization, on more 

localized physical and temporal scales. Microbes exist in soil in great abundance and 

their composition, adaptability, and structure are a result of the environment they inhabit. 

Microbes have adapted to the temperature, moisture levels, soil structure, crop and 

management inputs, as well as soil nutrient content. Since soil microbes are driven by 

their need to reproduce and by their need for acquiring C, N, and P in a ratio of 100: 10: 

1 (C: N: P), it is safe to assume that soil microbes are a dependable indicator of N-

cycling in the soil (Franzluebbers et al., 1996).  It is well established that C is drives the 

soil nutrient-microbial recycling system (Paul and Juma, 1981; Tate, 1955; Bengtston et 

al., 2003) and the consistent need for C and N sets the stage for a standardized, universal 

measurement of soil microbial activity. Since soil microbes take in oxygen and release 

CO2, we can couple this mechanism to their activity. It follows that soil microbial 

activity is a response to the level of soil quality/fertility in which they find themselves.   

In addition to the usual standard components of mineralization and 

immobilization processes accounted for in modeling (C:N ratio, soil water and 

temperature), we can now also assess a real-time snapshot of the active microbial 
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population using a measurement of microbial respiration. The measurement of microbial 

activity, coupled with the measurement of their food source, water-extractable N and C, 

which are broken down by soil microbes and released to the soil in plant available 

inorganic N forms, provide the initial N values and the mineralization rate necessary to 

model N cycle. 

Haney et al. (2012) found that soil microbial activity measured as the flush of 1-d 

CO2 following rewetting of dried soil was significantly correlated to water-extractable 

organic C (WEOC) and water-extractable organic N (WEON). Short-term C respiration 

from soil after drying and rewetting is also highly correlated with soil microbial biomass 

C and 24-d N mineralization (Haney et al., 2012).  The laboratory drying and rewetting 

(D/R) process mimics the natural processes in the field that occur with rainfall events, 

the extent of which depends upon climatic and soil conditions. The mineralization of C 

and N following drying/rewetting can be used to quantify the portion of the soil 

microbial biomass that is most responsive to rainfall events, which can have a strong 

impact on nutrient availability (Franzluebbers et al., 2000). Specifically, every time it 

rains and the soil gets wet to a certain degree of field capacity, microbes activate, 

reproduce, eat long-chain organic molecules containing C, N and P, and in the process, 

convert organic N to plant available N.  Given that soil microbes drive N mineralization, 

1-day CO2 evolution after D/R may be used to simulate the soil’s ability to supply N 

(Haney and Haney, 2010). It is important to simulate a complete D/R cycle in order to 

mimic the natural D/R in the field. During a succession of drying and rewetting events in 

the lab, a uniform pattern of CO2 evolution was exhibited, simulation which occurred 
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under field conditions (Birch, 1958). Birch (1959) postulated that the common feature 

between the evolution of CO2 and N mineralization after drying/rewetting soil was 

microbial death and subsequent mineralization. These studies suggest that physical 

alteration of the soil was not a primary factor for the mineralization of C and N. Much of 

the mineralization of C and N after rewetting dried soil is likely due to the death of heat 

susceptible microbes, death from water induced osmotic shock, and further renewal of 

the microbial population, and consumption of the organic C and N source. 

Schimel and Bennett (2004) make a compelling case for rethinking our approach 

to estimating N mineralization by also considering the contribution of N from the water-

soluble organic N pool. The model considers the basic C:N relationship that exists in 

organic matter and simulated the WEON pool as being accessed directly by the microbes 

and in proportion to microbially active C (MAC).  For example, if microbes release 25% 

of the C through respiration, 25% of the WEON pool will be released as well.  

Soil moisture is a determining factor in microbial activity and the corresponding 

release of nutrients. By using the field capacity of the soil as a gauge for microbial 

activity we are accounting for the spatial variability in the physical attributes of the soil.  

The movement of water in soil is dependent on the combined effects of porosity, gravity, 

mass flow, and capillary action. Soil porosity is influenced by texture, structure (e.g., 

degree of aggregation), and organic-matter content. For example, coarse-textured soils 

have larger pores than fine-grained soils, which allow for more water flow. Organic 

matter greatly increases the water-holding capacity of a soil. Capillary action is the 

natural movement of water using adhesion (attraction to solids) and cohesion forces 
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(attraction between water molecules) and is counterbalanced by the effects of gravity 

and air pockets. Haney et al. (2008) indicated that microbial activity studies that involve 

D/R soils use gravimetric water content, soil matric potential, or percentage of water-

filled pore space (WFPS) to achieve sufficient moisture content for peak microbial 

activity. Furthermore, Haney et al. (2008) indicate that a range of 30 to 70% WFPS is 

sufficient for peak microbial activity, which represents roughly 50% of field capacity 

(Haney et al., 2004).  

      The specific objectives of this study are to (1) develop a model to incorporate 

the flush of N after rainfall events into the SWAT model utilizing field soil-test data and 

examine its ability to detect variations in soil and plant conditions compared to the basic 

SWAT model; (2) determine if soil organic C can be used as a proxy for actual soil test 

data in SWAT with the addition of the N flush after rainfall events (SWAT-flush); (3) 

examine controlling factors determining actual and simulated winter wheat yields from a 

long-term wheat study; and (4) assess the ability of various N cycling sub-routines 

within SWAT to predict yield at a long-term fertilizer study in Oklahoma. 
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CHAPTER II  

SPATIAL ANALYSIS AND MODELING OF N AT THE FIELD SCALE USING THE 

N FLUSH AFTER RAINFALL EVENTS IN SWAT* 

 

Introduction 

All the major components of environmental modeling have spatial distributions 

and these distributions affect biogeochemical processes.  A geographic information 

system (GIS) is a valuable tool in describing the spatial characteristics of the 

environment, while environmental modeling simulates the environmental processes 

affected by the spatial distribution (Rao et al., 2000).  Models can be used on a large 

scale to shape policy, like the Conservation Effects Assessment Program (CEAP) 

Hydrologic Unit Model for the United States/Soil Water Assessment Tool 

(HUMUS/SWAT) model. The HUMUS system improves on existing technologies for 

making national and regional water resource assessment considering both current and 

projected management conditions. The HUMUS system is conducted at the watershed 

scale using a Geographic Information System (GIS) to collect, manage, analyze and 

display the spatial and temporal inputs and outputs, and relational databases for 

managing the non-spatial data (Arnold et al., 2010). Other models, such as CENTURY, 

were developed to analyze long-term changes in N and C in soil in various ecosystems 

                                                 

* Reprinted with permission from “Spatial analysis and modeling the nitrogen flush after rainfall events at 
the field scale in SWAT” by Haney, E.B., R.L. Haney, J.G. Arnold, M.J. White, R. Srinivasan, and S.A. 
Senseman (2016), DOI: 10.3844/ajessp.2016.131.139, Copyright 2016 by 2016 Elizabeth Brooke Haney, 
Richard Lee Haney, Jeffrey George Arnold, Michael James White, Raghavan Srinivasan and Scott Allen 
Senseman under a Creative Commons Attribution (CC-BY) 3.0 license.  
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on a farm or regional scale (Metherell et al., 1993).  On a field, farm or small watershed 

scale, the Agricultural Policy/Environmental Extender Model (APEX) simulates N 

dynamics with varying land management strategies, such as different nutrient 

management practices, tillage operations, and alternative cropping systems. 

Many nitrogen mineralization models, including the Environmental Policy 

Integrated Climate Model (EPIC), on which the N cycling in SWAT is based on, are 

based on the PAPRAN (Production of Arid Pastures limited by RAinfall and Nitrogen) 

model (Lauenroth et al., 1983; Neitsch et al., 2009; Matthews and Stephens, 2002; 

Seligman and van Keulen, 1981; Williams, 1995).  The PAPRAN model considers two 

sources of mineralization, fresh organic N associated with crop residue and microbial 

biomass and the stable organic N associated with the soil humic fraction. In general, 

these mineralization processes consider the C:N ratio of the soil, temperature, soil water 

content and sometimes soil C:P ratios.  Mineralization is estimated as a function of 

organic N weight, soil water, and temperature.  The incorporated PAPRAN model does 

not account for the contribution of the microbial population to the plant available N pool, 

resulting in an under-estimation of yield and possible over- or under-estimation of N 

runoff from natural systems and agricultural landscapes that are not conventionally 

tilled. We must accurately assess the microbial biomass and their activity since they are 

the main drivers of N cycling and soil fertility in general (Figure 1). 



 

12 

 

 

Figure 1.  Soil microbes acting on soil organic matter to release N. 
 

 

Over the years our technological capabilities have increased and now we can 

observe microbiological processes in the soil on more localized physical and temporal 

scales. Microbes exist in soil in great abundance and their composition, adaptability, and 

structure are a result of the environment they inhabit. Microbes have adapted to 

temperature and moisture levels, soil structure, crop and management inputs, as well as 

soil nutrient content. Since soil microbes are driven by their need to reproduce and by 

their need for acquiring C, N, and P in a ratio of 100: 10: 1 (C: N: P), it is safe to assume 

that soil microbes are a dependable indicator of N cycling in the soil (Franzluebbers et 

al., 1996). It is well established that C is the driver of the soil nutrient-microbial 

recycling system (Paul and Juma, 1981; Tate, 1995; Bengtston et al., 2003). The 

consistent need for C and N sets the stage for a standardized, universal measurement of 
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soil microbial activity. Since soil microbes take in oxygen and release CO2, we can 

couple this mechanism to their activity. It follows that soil microbial activity is a 

response to the level of soil quality/fertility in which they find themselves and we can 

now also assess a real-time snapshot of the active microbial population using a 

measurement of microbial respiration. 

The measurement of microbial activity, coupled with the measurement of their 

food source, water-extractable N and C, which are broken down by soil microbes and 

released to the soil in plant available inorganic N forms, provide the initial N values and 

the mineralization rate necessary to modify N cycling routines.  Using soil test data and 

spatial analysis N mineralization values are determined based on the relationships 

between water-extractable N and C as well as microbial activity.   

The objective of this study was to: (1) quantify spatial variation of water-

extractable organic and inorganic N, soil inorganic N, and microbial activity using 

updated soil-testing methods; (2) develop a field scale model to determine N 

mineralization for integration into the SWAT model; (3) use GIS to collect and analyze 

spatial and temporal inputs and outputs; and (4) predict wheat yield based on objectives 

1, 2, and 3.   

 

Materials and Methods 

Research was conducted at a research field at the United States Department of 

Agriculture, Agricultural Research Service (USDA/ARS) Facility in Temple, Bell 

County, TX (31° 09' 09 '', -97° 24' 28'', elevation: 205 m) in the Texas Blackland Prairies 
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ecoregion.  The climate is humid subtropical with a mean annual temperature of 19oC 

and mean annual precipitation of 886 mm. Rainfall occurs year-round with hot summers 

and moderate seasonality. The field where the study was conducted consists of 33.6 ha 

that has been in consecutive cover/cash crop rotation for 5 years. Cash crop rotations 

consist of wheat and sorghum.  Cover crops consist of a mixture of legumes and forbs.   

Soils consist of Austin Silty Clay 1 to 5% slopes and Houston Black Clay 1 to 3% slopes 

(Figure 2). At the time of sampling, the entire field had been planted in cover crops 

consisting of a mixture of legumes and forbs.  The cover crop had not fully emerged, 

leaving sizable portions of the field that were either bare or covered with residue.  The 

last three crops grown on the field were wheat in winter of 2011 and sorghum in the 

summers of 2012 and 2013.     

All GIS analyses were conducted using ArcGIS 10.0. (ESRI, 2011). Information 

extraction and spatial analyses were performed using ArcGIS 10.0.  Daily weather data 

were obtained from the weather station located at the USDA-ARS, Grassland, Soil and 

Water Research Laboratory in Temple, TX 

(www.ars.usda.gov/Research/docs.htm?docid=9697).  Data include maximum and 

minimum air temperature, and total precipitation.  Daily weather data were utilized to 

perform model runs on a daily time step to determine yield from the field of study from 

1980 to 2004.  The model was validated using weather data from 2011 and 2012. 

Weather data are used in the model to predict the daily fluxes of N as well as plant 

growth for yield simulation.    
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Figure 2.  Soils within field of study. 
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The digital elevation model used for analyses is from the National Aeronautics 

and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM) and was 

obtained from United States Geological Survey (USGS) Earth Explorer 

(earthexplorer.usgs.gov). Elevation models were arranged into tiles covering a degree 

latitude and longitude with an arcsecond or 30 m resolution.  The data used are void 

filled using primarily Advanced Spaceborne Thermal Emission and Reflection 

Radiometer Global Digital Elevation Model version 2 (ASTER GDEM2) and secondly 

the USGS National Elevation Dataset. The SRTM digital elevation model (DEM) was 

used to develop 2 m elevation contours for determining soil samples locations.  Contours 

were constructed using the Contour toolset in ArcGIS 10, ArcToolbox.   

Soil sample points at least 100 m apart were randomly chosen based on 2m 

elevation contours as the constraining feature class (create random points) resulting in 21 

points for the entire field.  Soil samples from the top 15 cm of the upper soil profile were 

obtained at each sample point.  The top 15 cm of soil were chosen since the majority of 

N cycling occurs at this depth.  Each soil sample was dried at 50o C, ground to pass a 2-

mm sieve and weighed into two 50-ml centrifuge tubes (4 g each) and one 50-ml plastic 

beakers (40 g each) that was perforated to allow water to be lifted by the soil. Soil 

samples are naturally able to reach field capacity through capillary action (Haney and 

Haney, 2010).  One 4-g sample was extracted with 40 ml of DI water and the other with 

H3A extractant (Haney et al, 2010). The samples were shaken for 10 minutes, 

centrifuged for 5 min, and filtered through Whatman 2V (185 mm, 8 µm) filter paper. 

The water and H3A extracts were analyzed on a Seal Analytical rapid flow analyzer for 
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NO3-N and NH4-N. The water extract was also analyzed on a Teledyne-Tekmar Apollo 

9000 C: N analyzer for water-extractable organic C and total water-extractable N 

(WEN). Water-extractable organic N (WEON) was determined from the difference of 

total water-extractable N and water-extractable NO3-N and NH4-N. 

One-day CO2 evolution was determined using the Solvita Gel System (Haney et 

al., 2008).  The Solvita Gel System quantifies the relative differences in CO2 respiration 

after drying and rewetting using a pH-sensitive gel paddle and digital color reader that 

incorporates diode array detection technology that selects the intensity of red, blue, and 

green emission. Samples were weighed (40 g) and wetted to field capacity using 

capillary action.  Wetted samples were placed into 237 ml jars with lids accompanied by 

a Solvita gel paddle.  The samples were incubated at 25oC for 1 day.  After 1 day, the 

paddles were removed and placed in the Solvita digital reader for analysis of CO2 

concentration. The resulting data were used for the spatial analysis of N values 

throughout the field for ultimate use in the N cycling model. 

Satellite imagery was obtained from the National Agriculture Imagery Program 

(NAIP) through the Texas Natural Resource Information System (TNRIS, 

www.tnris.org).  The 1-m digital ortho rectified image was taken on June 28, 2012, 

during the summer growing season. Imagery during the winter wheat growing season 

was unavailable at the resolution necessary to perform analysis on the field of study; 

however, mixed cover crops were growing on the entire field at the time the imagery 

was obtained. The NAIP imagery contains 4 bands (red, green, blue and infrared).  The 

aerial photograph was utilized to delineate the field, which was ground referenced by 
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walking the delineated line while running the ArcGIS mobile application on an iPhone 

5S.  In addition, the aerial photo taken in 2012 was used to calculate the Normalized 

Difference Vegetation Index (NDVI) in ArcGIS 10.0.  The final NDVI image was used 

to assess the validity of the output of the model simulations. The aerial photo was used 

to calculate the Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1973) in 

ArcGIS 10.0 as follows: 

NDVI = ((IR - R) / (IR + R)) * 100 + 100 

where IR is the infrared band and R is the red band.  The output values range from 0 to 

200, with 200 indicating the greenest and most healthy vegetation and 0 representing 

dead vegetation or bare soil.  The NDVI is preferred for vegetation monitoring as it 

naturally compensates for changing illumination conditions, surface slope, aspect, and 

other extraneous factors (Lillesand et al., 2004).  The final NDVI image was used to 

validate the output of the model simulations. 

Descriptive statistical analyses, correlations and regressions were performed 

using SigmaPlot Version 12.5 for Windows (Systat Software, Inc., 2012) and 

CurveExpert Profession v2.0.4 (Hyams, 2013).  Kriging was used in ArcGIS 10.0 

(ESRI, 2011) for spatial interpolation of values at unsampled locations based on sample 

data and their spatial structure determined using Moran’s I analysis. Pearson product-

moment correlation coefficients were determined between soil yield results using the 

modified N model, yield results from the SWAT model and NDVI using PASSaGE 2 

(Rosenberg and Anderson, 2011). Because spatial autocorrelation in the model output 

variables affects does not meet the assumptions of classical tests of significance of 
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correlation and regression coefficients, the statistical significance of these relationships 

was determined by Dutilleul’s modified t-test (Legendre et al., 2002) which accounts for 

the effects of spatial autocorrelation. Dutilleul’s modified t-tests were conducted using 

PASSaGE 2 (Rosenberg and Anderson, 2011). 

 

Model Theory 

The basic model structure was developed using the measured water-extractable 

organic C (WEOC) and N (WEON), and 1-d CO2 analysis, as well as scientific 

knowledge regarding the interactions between soil microbes and water-extractable C and 

N in the soil.  The interactions between the biology of the soil and the inorganic 

components of the soil are predictable and can be easily modeled using the soil test data 

that were obtained.   

Haney et al. (2012) found that soil microbial activity measured as the flush of 1-d 

CO2 following rewetting of dried soil was significantly correlated to WEOC and WEON. 

Figure 3 depicts the relationships between 1-d CO2, WEOC, and WEON values for 

various soils throughout the contiguous United States (data from USDA-ARS). Short-

term C respiration from soil after drying and rewetting is also highly correlated with soil 

microbial biomass C and 24-d N mineralization (Haney et al., 2012).  The laboratory 

drying and rewetting (D/R) process mimics the natural processes in the field that occur 

with rainfall events, the extent of which depends upon climatic and soil conditions. The 

mineralization of C and N following drying/rewetting can be used to quantify the portion 

of the soil microbial biomass that is most responsive to rainfall events, which can have a 
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strong impact on nutrient availability (Franzluebbers et al., 2000). Specifically, every 

time it rains and the soil gets wet to a certain degree of field capacity, microbes activate, 

reproduce, degrade long-chain organic molecules containing C, N and P, and in the 

process, convert organic N to plant available N.  The pulse of C, N, and P can be 10 to 

100 times the background level of turnover following rainfall after a dry period 

(Franzluebbers et al., 2000).  Given that soil microbes drive N mineralization, 1-day CO2 

evolution after D/R may be used to simulate the soil’s ability to supply N (Haney and 

Haney, 2010).  

In the model, we used 1-d CO2 values and WEOC concentrations to determine 

the microbially active C (MAC) pool using the following equation: 

MAC = 1-d CO2 / WEOC 

where WEOC is the measurable pool of water-extractable organic C that is the food 

source for microbial activity measured as 1-d CO2.  The quantity of available substrate 

(C and N) available for mineralization is measured using the MAC ratio.   
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Figure 3. Relationships between 1-d CO2-C and water-extractable N and C. 
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Schimel and Bennett (2004) suggest we rethink our approach to estimating N 

mineralization by also considering the contribution of N from the water-soluble organic 

N pool. The model considers the basic C:N relationship that exists in organic matter and 

simulated the WEON pool as being accessed directly by the microbes and in proportion 

to MAC.  For example, if microbes release 25% of the C through respiration, 25% of the 

WEON pool will be released as well. The portion of N that is released from the WEON 

is therefore calculated as follows: 

MAC_WEON = WEON x MAC 

Because the release of N is triggered by rainfall in nature, in the model, rainfall 

events trigger the release of MAC_WEON as follows: 

 

where precipday is the amount of rainfall accumulated on each day (mm), sol_st(k,j) is 

the soil moisture for the layer based on the percent of field capacity in the field, where k 

is the layer identifier and j is the field or hydrologic resource unit identifier.  

sol_sumfc(j) is the field capacity of the soil in the field.  sol_weon(k,j) is the WEON for 

the soil layer in the field, sol_wen(k,j) is the total water-extractable N in the field, 

sol_win(k,j) is the water-extractable inorganic N in the field.  sol_macweon(k,j) is the 

If (precipday >= 13 .and. sol_st(k,j) <= .25 * sol_sumfc(j)  

     &       .and. k <= 2) then 

           sol_weon(k,j) = sol_wen(k,j) - sol_win(k,j) 

           sol_macweon(k,j) = sol_weon(k,j) * (sol_oneday(k,j) /  

     &       sol_weoc(k,j)) 

End If 
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combination of Eqs. 6 and 7.  The computed MAC_WEON is then added to the nitrate 

pool for the soil layer in the field (sol_no3(k,j)) using the following equation: 

sol_no3(k,j) = sol_no3(k,j) + sol_macweon(k,j) 

The precipitation trigger was set equal to 13 mm, which is just enough to wet the 

soil and activate the microbes based on soil physical properties.  In the field, significant 

pulses of NOx emissions from rewetted dried soils have been seen from soils receiving 

as little as 12 mm rainfall (Franzluebbers et al., 2000) indicating that 13 mm is an 

appropriate rainfall level to observe a N flush.  The soil moisture trigger is associated 

with a percent of field capacity to limit the N mineralization events.  For example, if an 

appreciable rainfall event occurs on day 125 of the year and again on day 126 the soil 

will not have had sufficient time to complete a D/R cycle between those days and we do 

not want to simulate an additional release of N on day 126.  It is important to simulate a 

complete D/R cycle to mimic the natural D/R in the field. During a succession of drying 

and rewetting events in the lab, a uniform pattern of CO2 evolution was exhibited, which 

also occurred under field conditions (Birch, 1958). Birch (1959) postulated that the 

common feature between the evolution of CO2 and N mineralization after 

drying/rewetting soil was microbial death and subsequent mineralization. These studies 

suggest that physical alteration of the soil was not a primary factor for the mineralization 

of C and N. Most of the mineralization of C and N after rewetting dried soil is likely due 

to the death of heat susceptible microbes, death from water induced osmotic shock, and 

further renewal of the microbial population, and consumption of the organic C and N 

source. 
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Nitrogen mineralization is not triggered unless the soil water is less than 25% of 

field capacity.  By using the field capacity of the soil as a gauge we are accounting for 

the spatial variability in the physical attributes of the soil.  The movement of water in 

soil is dependent on the combined effects of porosity, gravity, mass flow, and capillary 

action. Soil porosity is influenced by texture, structure (e.g., degree of aggregation), and 

organic-matter content. For example, coarse-textured soils have larger pores than fine-

grained soils, which allow for more water flow. Organic matter greatly increases the 

water-holding capacity of a soil. Capillary action is the natural movement of water using 

adhesion (attraction to solids) and cohesion forces (attraction between water molecules) 

and is counterbalanced by the effects of gravity and air pockets. Haney and Haney 

(2010) indicate that microbial activity studies that involve D/R soils use gravimetric 

water content, soil matric potential, or percentage of water-filled pore space (WFPS) to 

achieve sufficient moisture content for peak microbial activity.  Furthermore, Haney et 

al. (2008) indicate that a range of 30 to 70% WFPS is sufficient for peak microbial 

activity, which represents roughly 50% of field capacity (Haney et al., 2004). We used a 

value of 25% after calibrating the simulations with known fertilizer to known yield 

values from our study area.   

The model was initialized using the initial inorganic N, WEN, WEOC, and 1-d 

CO2 values obtained from the soil analysis of the 21 fields. Weather data for 1980 to 

2004 and slope and elevation values for each soil sample were used as input parameters.  

We treated each soil sample site as its own hydrologic resource unit for simulation 

purposes. For each soil sample and the corresponding soil values, we conducted 
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simulations of wheat yield by varying fertilizer rates (67.2, 44.8, 33.6, 22.4, and 0 kg N 

ha-1).  In addition, one sample dataset was chosen to simulate a fertilizer response curve 

for 9 different fertilizer rates (335.6, 223.9, 167.9, 111.9, 67.2, 44.8, 33.6, 22.4, and 0 kg 

N ha-1).  The model was partially validated using 2 simulations, one for wheat in 2011 

and the other for sorghum in 2012.  The actual field received no fertilizer, so fertilization 

was not conducted during the simulations. 

Modified model results were compared to the traditional SWAT model 

simulations using the same parameters described above.  The SWAT model currently 

does not have parameters for WEOC, WEON, or 1-d CO2 results; however, initial soil-

test N and P values were utilized.  A complete description of the theory and equations 

used in the SWAT model can be found at swat.tamu.edu.   

 
Results 

Soil Data 

The mean initial inorganic N and P concentrations were 3.95 mg kg-1 and 3.96 

mg kg-1, respectively.  Total WEN (organic plus inorganic N) ranged from 16.00 to 

26.09 mg kg-1, with a mean value of 20.99 mg kg-1. Water-extractable inorganic N 

values were similar to H3A extractable N values with a mean N concentration of 4.11 

mg kg-1, with all values ranging between 1.11 and 6.72 mg kg-1. One-day CO2 values 

ranges from 12.27 to 34.26 mg kg-1 with a mean value of 22.34 mg kg-1.  Water-

extractable organic C values range from 208.91 mg kg-1 to 343.65 mg kg-1 with a mean 

concentration of 246.01 mg kg-1. The mean, standard deviation, standard error, 
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minimum, maximum and median values are reported in Table 1. Water-extractable 

organic N was determined by subtracting water-extractable inorganic N from WEN. 

 

Table 1. Soil-test analyses results. 

Soil Attribute* 
Mean 

mg kg-1 
Std. 
Dev 

Std. 
Error 

Max 
mg kg-1 

Min 
mg kg-1 

Median 
mg kg-1 

Initial inorganic N 3.95 1.31 0.29 7.03 1.06 3.79 
Phosphate 3.96 1.04 0.23 5.65 1.80 4.07 
Water-extractable N 20.99 2.76 0.60 26.09 16.00 21.12 
Water-extractable 
inorganic N 

4.11 1.37 0.30 6.72 1.11 3.92 

One-day CO2-C 22.34 5.72 1.25 34.26 12.27 21.66 
Water-extractable 
organic C 

246.01 27.65 6.03 343.65 208.91 242.86 

 
 

 

To visualize the spatial variability of the soil test data, kriging was performed. 

The data were first assessed for normality using histograms and Normal Quantile-

Quantile Plots were used to determine their suitability for spatial interpolation. The 

results indicate that the data were mostly normal, excepting water-extractable organic 

carbon, which appeared more normal after a log transformation.  The data were also 

analyzed for normality using the Shapiro-Wilk test for normality.  Results from 1-day 

CO2 analysis were normal according to the Shapiro-Wilk test (W-Statistic = 0.986, p = 

0.987, Passed).  Water-extractable total N and inorganic N data were also normal 

according to the Shapiro-Wilk test (W-Statistic = 0.954, p = 0.412, Passed and W-

Statistic = 0.975, p = 0.846, Passed, respectively).  Water-extractable organic C data 

were also normal according to the Shapiro-Wilk test, when one extreme outlier was 
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taken out of consideration (W-Statistic = 0.971, p = 0.780, Passed).  A test that passes 

indicates that the data matches the pattern expected if the data was drawn from a 

population with a normal distribution. Interpolation results are best when the data are 

normally distributed for kriging and co-kriging. Wang et al. (2013) found that N values 

interpolated by ordinary kriging perform well. The drawback to ordinary kriging is that 

it causes smoothing effects and has some difficulty dealing with co-variables. The 

authors further indicated that ordinary kriging has advantages over other interpolation 

methods when the study region is relatively flat and uniform, like our field in this study.  

Kriging is a form of linear least squares estimation and assumes a constant but unknown 

mean.  Kriging weights the surrounding measured values as a measure of distance for 

prediction of an unmeasured location.  The general formula is as follows: 

𝑍(𝑠 ) = 𝜆 𝑍(𝑠 ) 

where 𝑍(𝑠 ) is the measure value at the ith location, 𝜆  is an unknown weight for the 

measured value at the ith location, 𝑠  is the prediction location, and N is the number of 

measured values. The weights are dependent upon the distance between measured points 

and the prediction location, as well as the overall spatial arrangement of the measured 

points.  For kriging to be valid, spatial autocorrelation must exist.  In ordinary kriging, 

the weight depends on a fitted model to the measured points, the distance to the 

prediction location, and the spatial relationships among the measured values (ESRI, 

2011).   
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Kriging was used in ArcGIS for spatial interpolation of values at unsampled 

locations based on sample data and their spatial structure analyzed using semivariogram 

analysis.  Semivariogram analysis was performed for WEN, 1-d CO2, and WEOC using 

ArcGIS 10.0 (ESRI, 2011).  Nugget variance, range, structure variance and sill were 

used to evaluate spatial structure.  The nugget is the variance at lag distance zero and is 

caused by measurement error or variation at scales smaller than the sampling unit.  The 

sill is the lag distance that defines the range of spatial continuity.  Beyond the range, the 

values are considered spatially unrelated.  The difference between the sill and the nugget 

contains the spatial variance. The range of the model varied from 213 to 504 m, beyond 

which no spatial autocorrelation exists.  The strength of the spatial structure at the 

sampling scale is determined using the following equation: 

% strength of spatial structure = (Sill-nugget)/sill 

Using this relationship, we determined that the strength of the spatial structure 

for WEN is 100%, because the nugget value is 0.  The strength of the spatial structures 

for 1-d CO2 and WEOC are less than zero and 21% indicating that the spatial 

autocorrelation was not strong.  It is possible that a different model would be more 

suited for analyzing the spatial structure of 1-d CO2 and WEOC or additional samples 

are needed.   

Ordinary kriging based on the variogram analysis provided estimates of WEN, 1-

d CO2 and WEOC (Figures 4 through 6) values for the 15-cm depth increment at 

location which had not been sampled.  This enables us to develop a map of these values 

across the study area.  When the kriged maps are compared visually with the DEM and 
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aerial photograph of the area, it is apparent the soil values vary with the elevation of the 

field.  WEOC values appear to decrease in a northerly direction, corresponding to a 

decrease in elevation. WEN and 1-d CO2 values appear to increase at the lower elevation 

in the northern section of the field and decrease in an outwardly direction from the 

lowest elevation.  An anomalous high WEOC value was present at the lower elevation, 

which was removed for kriging purposed because it skewed the normality of the data.  It 

is possible that the WEOC values are higher in this location, but that this area was not 

adequately sampled.  It makes sense that WEN and 1-d CO2 values would increase with 

a dip in the elevation as the soil health would be greater in this location due to increased 

available moisture. 

Model Simulation Results 

Initial validation results using actual yield and weather data for 2011 and 2012 

indicate that the yield results from the modified N model were 2.4 and 3.8 Mg ha-1, 

respectively, while actual yield results were 3.0 and 3.5 Mg ha-1. These results are closer 

to the actual values than the yield predicted with the SWAT model, which were 1.5 and 

0.8 Mg ha-1 for 2011 and 2012, respectively.  More actual yield data are needed to 

determine the validity of these results. 
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Figure 4. Kriging results for water-extractable organic C (WEOC, mg kg-1) 
throughout the study area. 
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Figure 5. Kriging results for 1-d CO2 (mg kg-1) analysis throughout the study area. 
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Figure 6. Kriging results for water-extractable N (WEN, mg kg-1) throughout the 
study area. 
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End users of the SWAT model report they receive little to no yield results when 

no fertilizer is applied during simulation. I found that over 27 years of simulation wheat 

yield ranged from 0.05 to 3.4 Mg ha-1, with one sample site consistently having higher 

yields than the others.  It is unclear why this site had increased yield over the other sites. 

The median yield value is near 1.3 Mg ha-1, which is low considering the natural fertility 

of the soil.  Fertilizer has not been applied to the field in many years and wheat yields 

average around 2.0 Mg ha-1.  Yield results from wheat rotations with no fertilizer using 

the modified model ranged from about 1.0 to almost 6.0 Mg ha-1 with an average value 

around 2.0 Mg ha-1.  The modified N routine increased the range of predicted yield and 

the median yield.  In fact, the range in yield values for all fertilizer treatments increased 

when using the modified model as compared to the SWAT model.  Yield results for each 

of the 27 years simulated are strongly correlated to N fertilizer input when using the 

SWAT model (r2 = 0.80), and show only a weak correlation when using the modified N 

model (r2 = 0.38).  Multiple linear regression analysis indicates that a linear combination 

of precipitation, fertilizer application, and N mineralization from the water soluble 

organic C and N pool contributes to predicting yield (p < 0.05). The relationship can be 

explained by the following equation:  

Yield = 30.604 + (0.139 x Precipitation) + (0.175 * fertilizer N) + (0.290 * N 

mineralized)  

Use of the multiple linear regression greatly improves the strength of the correlation 

between yield and determining process values (r2 = 0.77, Table 2). 
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We used the CurveExpert software to fit yield results for varying fertilizer rates 

from 0 to 335.6 kg N ha-1, which resulted in a best-fit model using a Rational Model 

(Figures 7 and 8).  The Rational Model follows the equation:  

𝑦 =  
𝑎 + 𝑏𝑥

1 + 𝑐𝑥 + 𝑑𝑥
 

The SWAT model yield results had a stronger correlation with fertilizer application (r2 = 

0.93) than the modified N model (r2 = 0.79) when using the Rational Model.   

 

 

Table 2. Multiple linear regression results for yield, precipitation, N mineralization, 
and fertilizer application values from the new N model simulation. 

Coefficient 
Std. 

Error t p 
Constant 30.60 0.51 59.17 <0.001 
Precipitation 0.14 0.01 10.92 <0.001 
Fertilizer N 0.18 0.01 25.09 <0.001 
N Mineralization 0.29 0.00 64.39 <0.001 

Analysis of Variance: 
DF SS MS F p 

Regression 3.00 336369.46 112123.15 2880.38 <0.001 
Residual 2621.00 102026.40 38.93 
Total 2624.00 438395.86 167.07 

SSIncr SSMarg 
Precipitation 10186.58 4644.46 
Fertilizer N 64808.62 24502.27 
N Mineralization 161374.27 161374.27 

p 
Precipitation <0.001 
Fertilizer N <0.001 
N Mineralization <0.001 
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Figure 7. Rational Model describing the relationship of yield simulation values 

using the SWAT model with increasing fertilizer application (r2 = 0.93). 
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Figure 8. Relationship between increasing fertilizer application and yield simulated 
using the modified N model (r2 = 0.79). 
 

 

The yield values obtained varied temporally when using either the SWAT or the 

modified N model (Figure 9).  Yearly yield values and variability were consistantly 

higher from the modified N model than from the SWAT model.  The yield values 

obtained from the modified N model were also consistantly higher for each soil sample 

as would be expected with the additon of N mineralization resulting from microbial 

activity (Figure 10).  The spatial relationships between yield values from the SWAT 

model and the modified N model are depicted in the xyz contour plot in Figure 11.  

SWAT simulated yield values indicate that the yield is greater in the southern portion of 
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the field, while simulated yield values using the modified N model are greater in the 

northern portion of the field. Analysis using Moran’s I for spatial autocorrelation 

detected significant spatial variability in yield from both models.  For the yield data 

resulting from both the modified and the SWAT model simulations, given the z-score of 

85.3 and 85.2, there is less than 1% likelihood that the resulting clustered patterns could 

be the result of random chance.   
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Figure 9. Wheat yield results by year averaged over all fertilizer treatment 
simulations using SWAT with the added flush of N and unmodified SWAT. 
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Figure 10. Average wheat yield results from 27 years of simulations by soil sample 
using SWAT with the added flush of N and unmodified SWAT. 
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Figure 11. Wheat yield values (kg/ha) using the modified N model (a) and the 
SWAT model (b). 
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Because we do not have actual yearly yield data for all 27 years of simulation 

available for validation, NDVI is being used as a proxy for average yield data for the 

years 1980 through 2004 to determine if the modified model is predicting yield 

accurately. NDVI greenness factors were compared to kriged yield results from both 

models. If the model is predicting yield properly, the yield should correspond to 

greenness in the field.  The greenness is an indicator of soil health and viability of plant 

growth.  It follows that if the models are properly simulating N cycling in the soil, the 

yield should correspond to the greenness index from the NDVI.  The NDVI data for the 

field indicate that plant growth is greatest in the northern portion of the field at the lower 

elevations.  The simulation model yield results using the modified N model appear to 

correspond with the NDVI greenness factor, while the results from the SWAT model do 

not (Figure 12).  The modified t-test for correlation (Table 3) indicate that both the 

modified N and SWAT model yield results are correlated with NDVI values (P < 0.005), 

however, the modified model has a significantly stronger correlation (P < 0.001).   
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Table 3. Modified t-test for correlation between yield results and Normalized 
Difference Vegetation Index values. 

Variable 
1 

Variable 
2 Covariance P(Cov)  Correlation 

Corrected 
P (Cor)  

Effective 
Sample 

Size 
Modified 
N routine 

SWAT -4.04 0.00005 -0.51 0.00002 62.7 

Modified 
N routine 

NDVI 
value 

3.81 0.00014 0.38 0.00009 100.3 

SWAT 
NDVI 
value 

-3.21 0.00135 -0.32 0.00115 103.1 
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Figure 12. Kriged yield results from the modified N model (A) and the SWAT model (C) as compared to Normalized 
Difference Vegetation Index analysis (B) derived from an aerial photograph of the area. 
 



 

43 

 

Discussion 

Soil properties are heterogeneous in nature and consist of continuous variables 

that change over spatial and temporal ranges.  Early models describing the processes of 

N cycling use simple chemically and spatially lumped models (Manzoni and Porporato, 

2009). Some biogeochemical models use a discrete representation of soil layers with 

different chemical and physical features or a continuous description of nutrient dynamics 

along the soil profile.  What these models fail to do; however, is explicitly describe the 

spatial dynamics of water, organic matter or nutrients at a horizontally continuous spatial 

scale over a daily variable time step.  The purpose of this study was to develop a N 

model that can capture the spatially explicit scale of N cycling over a large temporal 

range.   

The continuous nature of the soil properties being used in the N cycling model 

(WEOC, WEON, and 1-day CO2) allow for spatial interpolation over the field of 

interest. Because 1-day CO2 analysis is a measure of microbial activity and microbial 

biomass is the driver of soil C and N cycling (Manzoni and Porporato, 2009) we would 

expect to see a strong correlation between the soil properties of interest throughout the 

field.  Because the variables are spatially autocorrelated a normal linear regression 

analysis is inappropriate to examine the relationships between them.  Semivariogram 

analysis of the spatially interpolated soil test results was used examine the spatial 

structure of the driving factors for N mineralization.  The analysis results indicate that 

the spatial structures of 1-d CO2 and WEOC values were weak as compared to the 

spatial structure for WEN.  It’s possible that a stronger spatial structure may have been 
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obtained by modifying the kriging and semivariogram models used to evaluate the 

spatial structures of 1-d CO2 and WEOC.  Additional soil samples may also have been 

necessary to accurately capture the spatial variability of these parameters.  In addition, 

the ordinary kriging method used did not account for the possible anisotropic nature of 

the soil values.  Visual assessment of the kriging results indicates that at least some of 

the spatial variability was related to elevation changes from the north to south; however, 

this variation was not accounted for in the semivariogram analysis. Topography could 

potentially impact water-extractable soil C values and microbial activity as assessed 

using 1-d CO2 analysis, which can regulate N cycling. Further spatial statistical analyses 

should include co-kriging analysis with elevation and possibly with vegetation 

parameters derived from NDVI analysis.  Correlation analysis may be useful in further 

understanding the relationships between soil properties, elevation, and vegetation 

parameters. 

Statistical evaluation indicates that the modified N model is useful in detecting 

the natural N mineralization power of the soil. Initial validation results using actual yield 

and weather data for 2011 and 2012 indicate that the yields were a little high for the zero 

fertilizer application simulations so some adjustment to the model is needed.  The 

modified N model does appear to account for spatial variation in soil properties and 

temporal variation in climate factors.  More data are needed over a wider spatial range 

(regional or larger) to determine how well the modified N model behaves under various 

climatic and soil conditions. 
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Conclusions 

The objective of this study was to quantify the spatial variation of soil 

biogeochemical factors that affect N cycling in the soil and use these data to develop a 

field scale model to determine N mineralization for integration into the SWAT model.  

Due to the spatial nature of soil factors, it was essential to use a GIS to collect and 

analyze spatial and temporal inputs and outputs.   

Statistical results showing a strong correlation between yield and fertilizer inputs 

resulting from simulation with the SWAT model is problematic and indicates that the 

SWAT model is not properly accounting for the natural N cycling processes in the soil.  

The relationship between yield, rainfall, N mineralization, and fertilizer when using the 

modified N model is a definite improvement over the current N routines in SWAT as 

yield is more closely reflecting the complexity of the processes involved in plant growth, 

when all other aspects are held equal.  When the Rational Model is used to describe the 

relationship between fertilization rate and yield, yield values increased accordingly with 

fertilizer application, eventually leveling off as fertilizer use exceeded needs of the plant.   

This relationship is expected as the benefits of fertilizer application will cease as plant 

nutrient stress is completely eliminated by excess available nutrients. 

Results from the simulations indicate that yearly yield values and the variability 

of these yield values were consistantly greater from the modified N model than from the 

SWAT model.  The yield values obtained from the modified N model were also 

consistantly higher for each soil sample as would be expected with the additon of N 
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mineralization resulting from microbial activity.  The spatial variability in yield results 

by sample increased with the modified N model as compared to the SWAT model.   

In SWAT, soil properties are determined using the soil characteristics obtained 

from soil survey data.  SWAT model output was not sensitive to the changes in the 

default soil properties associated with the soil series descriptions or elevation changes.  

In addition, because the N model in SWAT is based on the very large pools of soil 

organic C and N, which are 40 times larger than the active pool of N and C that the 

microbes utilize to cycle N, it is less sensitive to spatial variation of N mineralization.  

For example, spatial analyses of soil properties indicate that healthier soil is located at 

the north end of the field, which corresponds to the lower elevations within the study 

area.  The SWAT model predicts that this area has the lowest yield, when in the field, it 

has the highest yield.  This is because yields predicted by the SWAT model are almost 

solely based on fertilizer input and exclude the natural N pools that we are accounting 

for in the modified model.   

The yield data resulting from the modified model simulation were sensitive to 

soil changes as well as elevation changes. The modified N model naturally considers the 

spatial variability of soils over geographic areas because as the C:N ratio of a soil varies, 

the MAC_WEON calculation will vary accordingly. In addition, the MAC_WEON 

calculation used in the modified N model reflects the variation in soil health spatially by 

into account the viability of the microbial population. Temporal and climatic variability 

is accounted for by including the precipitation trigger in the SWAT simulated plant 

growth cycle. The equations used to model the complex biogeochemical N cycling 
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relationships are elegant in their simplicity, yet capture the spatial complexity associated 

with their processes.  

Future studies will need to include long-term yield data for varying soils, crops 

and management practices in varying climates. Research may also include variations in 

the approach to data attainment and management for larger projects at the watershed 

scale.  Data acquisition may be challenging for large scale projects as it will not be 

practical to soil test large areas.  Satellite imagery may play a critical role in further 

development for large-scale simulations. In addition to the impracticality of large-scale 

soil sampling, only a few laboratories throughout the United States offer the soil tests 

that the modified N model is based upon. It will be important to test the use of default 

values for soil test results and may be necessary to find a proxy for soil test data, 

possibly using NDVI analysis.   

The modified N model incorporated into SWAT may be useful to regulators to 

help with the simulation of new conservation practices that include the effect of lower 

fertilizer inputs on nutrient runoff and pollution.  Not only did this study result in an 

improved N model, it also succeeded in demonstrating the use of spatial analyses to 

determine the validity of model input data and output results.  
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CHAPTER III 

SWAT AND SWAT-FLUSH SIMULATED VS. ACTUAL WHEAT YIELD IN 

LONG-TERM TRIALS 

 

Introduction 

Through the production and use of nitrogen (N) fertilizer, we have altered the 

Earth’s N cycle affecting issues that range from global climate change to oceanic 

hypoxic zones. Nitrogen use in the world is so significant that the Haber-Bosch synthesis 

of ammonia from atmospheric N is responsible for nearly 2% of global energy 

consumption (European Commission, 2013).  As of 2011, when the latest National Land 

Cover Dataset (NLCD) was made, 1,253,000 km2 of land in the conterminous US was 

classified as cropland (USGS, 2011). In many parts of the United States, N and 

phosphorus (P) inputs to these agricultural lands are considered to be the primary 

nonpoint sources of pollution, including the Upper Mississippi River Basin (Jha et al., 

2013). For lawmakers, environmental decision makers and scientists to identify and 

mitigate nonpoint source nutrient pollution, we must be able to accurately predict N 

cycling in in response to fertilization and resulting crop yields at both the field and 

watershed scales. 

The Soil and Water Assessment Tool (SWAT) is an environmental process-based 

model that performs at a daily time step and has been used to predict crop yield at 

various temporal and spatial scales (Arnold et al., 2012). SWAT utilizes information 

about weather, soil properties, topography, vegetation, and land management practices 
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occurring in the watershed (Neitsch et al., 2009), making it suitable for assessing the 

effect of management practices on agricultural production. In SWAT, crop yield is 

predicted by simulating complex processes including the hydrologic, soil and water 

nutrient, and plant-growth cycles. 

The origins of the SWAT model trace back to the Chemicals, Runoff, and 

Erosion from Agricultural Management Systems (CREAMS) model, the Groundwater 

Loading Effects on Agricultural Management Systems (GLEAMS) model, and EPIC 

model, which were created by the USDA-ARS (Gassman et al., 2007).  The SWAT 

model allows for crop growth simulation under nutrient limited scenarios and accounts 

for variations in soil properties. The many and varied uses of SWAT are discussed in 

detail in Gassman et al. (2007) and range from N and P loss studies to large-scale 

watershed hydrologic assessments throughout the world.  Nitrogen cycling in SWAT 

originates from the Environmental Policy Integrated Climate Model (EPIC), which is 

based on the PAPRAN (Production of Arid Pastures limited by RAinfall and Nitrogen) 

model (Lauenroth et al., 1983, Neitsch et al., 2009, Matthews and Stephens, 2002, 

Seligman and van Keulen, 1981, Williams, 1995).  The N cycling model in SWAT has 

been supplemented with a fast-acting microbial flush of N that mimics crop green up 

after rainfall events (SWAT-flush, Haney et al., 2016).   

Haney et al. (2012) found that soil microbial activity measured as the flush of CO2 in 

24 hr. (1-d CO2) following rewetting of dried soil was significantly correlated to water-

extractable organic C (WEOC) and water-extractable organic N (WEON). Short-term C 

respiration from soil after drying and rewetting is also highly correlated with soil 
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microbial biomass C and 24-d N mineralization (Haney et al., 2012).  The laboratory 

drying and rewetting (D/R) process mimics the natural processes in the field that occur 

with rainfall events, the extent of which depends upon climatic and soil conditions. The 

mineralization of C and N following drying/rewetting (D/R) has been used to quantify 

the portion of the soil microbial biomass that is most responsive to rainfall events, which 

can have a strong impact on nutrient availability (Franzluebbers et al., 2000). 

Specifically, every time it rains and soil moisture increases, microbes activate, 

reproduce, eat long-chain organic molecules containing C, N and P, and in the process, 

convert organic N to plant available N.  Given that soil microbes drive N mineralization, 

1-day CO2 evolution after D/R may be used to simulate the soil’s ability to supply N 

(Haney and Haney, 2010). It is important to simulate a complete D/R cycle to mimic the 

natural D/R in the field. During a succession of drying and rewetting events in the lab, a 

uniform pattern of CO2 evolution was exhibited, simulation which occurred under field 

conditions (Birch, 1958).  Birch (1959) postulated that the common feature between the 

evolution of CO2 and N mineralization after (D/R) soil was microbial death and 

subsequent mineralization. Much of the mineralization of C and N after rewetting dried 

soil is likely due to the death of heat susceptible microbes, death from water induced 

osmotic shock, and further renewal of the microbial population, and consumption of the 

organic C and N source. 

The SWAT N subroutine with the flush of N contains the same pools as the basic 

SWAT N model, with added pulses of NO3
- after a significant rainfall event on a 

sufficiently dry soil.  Previously, the modified N model was tested at the field level using 
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actual soil-test data measured against the satellite derived Normalized Difference 

Vegetative Index (NDVI).  Haney et al. (2016) found that when using the modified N 

model, SWAT was better able to predict spatial variations in NDVI in the field as well as 

soil properties indicative of soil health (soil organic N and C, for example).   The 

modified N model uses WEOC, total water-extractable N (WEN), WEON, and o1-d CO2 

to replicate N flushes after rainfall events (Haney et al., 2012).  

In this study, we compared wheat yields predicted by SWAT-flush to yields from 

long-term wheat studies in Oklahoma.  The objectives of this paper are to determine if 

SOC can be used as a proxy for actual soil test data in SWAT-flush and to examine the 

controlling factors determining actual and simulated winter wheat yields. 

 

Materials and Methods 

We previously conducted research using biogeochemical soil-test data at the field 

scale to simulate the N flush that occurs in soil after D/R with the SWAT model (Haney 

et al. 2016).  This replicated flush (SWAT-flush) represents the increase in microbial 

activity and subsequent release of N that occurs after a rainfall event as described in 

Birch (1958, 1959), Franzluebbers et al. (2000), Haney and Haney (2010), and Haney et 

al. (2004, 2012). The amount of NO3
- (mg kg-1) released after a rainfall event was based 

on the water soluble organic C and N (WSOC and WSON, mg kg-1) and microbial 

activity determined using 1-day CO2 (mg C/kg soil) evolution, as follows:  

𝐹𝑙𝑢𝑠ℎ 𝑜𝑓 𝑁𝑂  =  𝑊𝑆𝑂𝑁 × (1 𝑑𝑎𝑦 𝐶𝑂 ÷ 𝑊𝑆𝑂𝐶) 



 

52 

 

The flush of N was reproduced in the top 10 mm of soil to mimic rapid changes 

in soil moisture, temperature and N cycling at the soil surface. After a rainfall event 

greater than 26 mm occurs on sufficiently dry soil (based on soil matric potential), a 

flush of N is added to the NO3
- pool.  All the remaining N processes were unaltered from 

the basic SWAT N cycling model. Haney et al. (2016) found that wheat yields predicted 

by SWAT-flush were more spatially correlated with NDVI than the original SWAT 

model, indicating better representation of actual field growing conditions.  SWAT-flush 

performed significantly better than SWAT at low levels of fertilizer application. In 

addition, wheat yields predicted when using the SWAT-flush were more spatially 

representative of tested field and soil conditions than when simulated using the basic 

SWAT model. 

As opposed to the SWAT-flush simulations at field level studies (Haney et al. 

2016), actual WSOC, WSON, and 1-day CO2 values were not available for this study. 

To use the SWAT-flush subroutines, SOC values were used as a proxy to set initial 

model values for WSOC, WSON, and 1-day CO2.  The link between SOC and 1-d CO2, 

WSOC and WSON in soils from Idaho, Georgia, Maine, Mississippi, Oklahoma, Texas 

and Wyoming under various management conditions has been described by Haney et al. 

(2012).  Analyses results from 116 soil samples from throughout the US were used to 

develop regression equations between SOC, WSOC, WSON, and 1-day CO2.  Sixty-six 

of the samples were from the North American Proficiency Testing Program (NAPT) 

without location specific information and the remaining are from samples obtained in 

Oklahoma, Texas, Idaho, Georgia, and Wyoming. The soils have a wide range of SOC 
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and total N values.  The soils studied also vary in texture, pH and come from areas under 

various management scenarios.  Soil organic C and total N (TN) values for the NAPT 

soils are provided with the samples upon procurement, while the remaining SOC and TN 

values were determined on 2-g subsamples using dry combustion (Elementar; Hanau, 

Germany).  

Each soil sample was dried at 50o C, ground to pass a 2-mm sieve and weighed 

into two 50-ml centrifuge tubes (4 g each) and one 50-ml plastic beaker (40 g each) that 

was perforated to allow water to be lifted by the soil. Soil samples are naturally able to 

reach field capacity through capillary action (Haney and Haney, 2010).  One 4-g sample 

was extracted with 40 ml of DI water and the other with H3A extractant (Haney et al., 

2010). The water and H3A extracts were analyzed on a Seal Analytical rapid flow 

analyzer for NO3-N and NH4-N. The water extract was analyzed on a Teledyne-Tekmar 

Apollo 9000 C: N analyzer for WSOC and water-extractable N (WEN). Water-

extractable organic N (WSON) was determined from the difference of total WEN and 

water-extractable NO3-N and NH4-N.  One-day CO2 evolution was determined using the 

Solvita Gel System (Haney et al., 2008).  Soil data were analyzed using linear regression 

analysis to determine the relationships between the various soil properties using 

SigmaPlot Version 12.5 for Windows (Systat, 2012).   

Soil organic C (SOC) was correlated with WSOC (r2 = 0.57) in the soils tested. 

The weak correlation was expected since the WSOC pool is roughly 80 times smaller 

than the total SOC pool (% Organic Matter) in the soil. The percent of SOC reflects the 

total amount of C present in the soil, while WSOC reflects the quality of organic C and 
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is the readily available energy source for soil microbes (Haney et al., 2012).  WSOC was 

significantly correlated with soil respiration and WSON (r2 = 0.76 and r2 = 0.84, 

respectively). These data correspond to previous research showing that microbial 

activity, as measured using 1-day CO2, is correlated to WSOC and WSON (Haney et al., 

2012).    The WSON pool can be easily broken down by soil microbes and released to 

the soil in inorganic N forms that are plant available (Haney et al., 2008, 2012). The 

results suggest that SOC values may be used to estimate 1-d CO2, WSOC and WSON in 

SWAT-flush.  Regression lines were passed through the origin for use in SWAT-flush to 

prevent the occurrence of negative C and N values (Figure 13). The resulting regression 

equations were incorporated in to the SWAT-flush code.  SOC values for the Grant silt 

loam were included in the soil input file in SWAT and converted to WSON, 1-d CO2 and 

WSOC during the model run.  
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Figure 13. Relationship between water soluble organic C (WSOC) and Soil Organic 
C (SOC) and relationships between WSOC and one-day CO2 (1-d CO2) and water 
soluble organic N (WSON).  Regression lines were forced through the origin to 
prevent the occurrence of negative C and N values in the model. 
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Yield from simulations using SWAT-flush were compared to yield data obtained 

from long-term wheat yield experiments managed by Oklahoma State University (OSU, 

http://nue.okstate.edu/Long_Term_Experiments/E502.htm).  The research station is 

located at the North Central Agricultural Research Station near Lahoma, OK (36.42o N, 

97.87o W) in Garfield county (Raun et al, 2000).  Average annual rainfall in at the 

experiment site is approximately 800 mm (Schroder et al., 2011) and the mean annual 

temperature is 15.6 oC (Raun et al., 1998). The pH of the soil averages 5.7 in the top 30 

cm (Raun et al., 1998).  Experiment 502 was established in 1970 to study the response of 

wheat grain yield to varying rates of long-term N, P, and K fertilizer application.  The 

randomized complete block (4 replications) designed experiment is conducted on 

continuous winter wheat grown on a Grant silt loam (fine-silty, mixed, thermic Udic 

Argiustoll).  OSU applied Urea N (46-0-0) pre-plant at rates of 0, 22.4, 44.8, 67.3, 89.7, 

112.1 kg N ha-1 and triple superphosphate (0-46-0) at the rates of 9.9, 19.7, 29.6, 39.5 kg 

P/ha between early August and early October annually.  Planting was conducted between 

late September to late October and harvest followed between early June to early July 

depending upon weather conditions.   

SWAT input files were developed using local weather and soils data in the Texas 

Best Management Practice Evaluation Tool (TBET, White et al., 2012).  TBET serves as 

an interface for SWAT for evaluation of management practices effects on annual runoff, 

sediment, N and P losses from agricultural fields.  The interface gave us a simplified 

way to develop SWAT input files for management conditions replicating those used in 
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Experiment 502. Weather data were obtained from the National Oceanic and 

Atmospheric Administration (NOAA) National Weather Service Cooperative Observer 

Program, Lahoma Research Station (USD00344950) weather station (Latitude: 36.3894, 

Longitude: -98.1061, Elevation: 388.6m).  

Soils data were obtained from SSURGO (USDA-NRCS, 1995) and were used to 

determine the initial 1-d CO2, WSOC and WSON values. The SSURGO database was 

developed by the USDA-NRCS and includes organic matter data for 18,000 soil series in 

the U.S.  SSURGO data is available at a scale of 1:24,000 and can be used for county, 

farm and ranch and landowner planning.  Zhang et al. (2014) found that SSURGO 

performed well at the county-scale when determining crop yields and Net Ecosystem 

Production (NEP).  Further modifications to the SWAT-flush model from the Haney et 

al. (2016) study include the addition of a 15-cm layer to the top of soil profile where the 

N flush occurs (formerly just in top 10 cm) to more accurately simulate microbial 

activity in the soil.   

 Yield simulations using SWAT and SWAT-flush ran for 27 years (1985 to 

2012), with 1985 and 1986 serving as warm up years.  Management data included actual 

planting and harvest dates from 1985 to 2013.  An average planting date of October 21 

and harvest date of June 13 were used in the 6 cases where dates were unavailable. Urea 

and P application rates corresponded to the 12 combinations of N and P rates used in 

Experiment 502.  

Simulated yield data were compared to average and yearly actual yield.  The 

relationship between yield and annual, growing season and spring precipitation and 
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temperature values were analyzed using linear regression, analysis of variance 

(ANOVA). Yield data were also analyzed using Percent Bias (PBIAS), which is 

calculated as: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑓 − 𝑦 )

∑ (𝑦 )
× 100 

where 𝑓  is the simulated yield value at time 𝑡, and 𝑦  is the actual yield at time 𝑡. PBIAS 

statistically measures the average tendency of simulated data to be greater or less than 

observed values (Srinivasan et al., 2010).  Negative PBIAS values indicate model under-

estimation, while positive values indicate model over--estimation bias (Gupta et al., 

1999). PBIAS values less than 15% are considered acceptable.  

Nitrogen Use Efficiency (NUE) was calculated by taking the average yield at the 

22.4, 44.8, 67.3, 89.7 and 112.1 kg N ha-1 fertilizer application rates, subtracting the 

control (0 kg N ha-1) yield and dividing by the fertilizer application rate.   Average and 

yearly fertilizer response curves were generated for simulated and actual yields by 

subtracting the control yield from yield from each fertilizer treatment and plotting 

against fertilizer treatment. 

 

Results and Discussion 

Yields predicted by SWAT and SWAT-flush were highly correlated with actual 

average yields and with increasing fertilizer treatments. These data agree with Haney et 

al. (2016) who found that SWAT simulated yields are highly dependent upon fertilizer 

N, with unrealistically low yields at 0 kg N ha-1 applied and increasing yields at higher 
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fertilizer rates.  SWAT under-predicts yield at all fertilizer levels (PBIAS = -59).  These 

data contradict research showing that SWAT tends to over-estimate yield when adequate 

fertilization is simulated with reported average PBIAS values of 8 for corn and soybean 

crops in the Upper Mississippi River Basin (Srinivasan et al., 2010).  SWAT-flush yields 

are closer to the 1:1 relationship between actual and simulated yield than SWAT and 

most closely predicts average yield (PBIAS = -3, Figure 14).  The correlation between 

simulated and actual average yield agrees with Mittelstet et al. (2015) who also found 

that average small grain and row crop yields simulated with SWAT over a 50-year 

period in western Oklahoma correlated with National Agricultural Statistics Service 

(NASS) average yield data.   

 The slope of the regressions in Figure 14 may be explained by erroneous 

estimates of NUE, which reflect on inaccurate modeling methods.  SWAT and SWAT-

flush appear to over-estimate NUE values at higher fertilizer rates, (20% simulated NUE 

versus 14% actual NUE at 112.1 kg N ha-1 applied) causing yields to increase 

unrealistically with additional N applied.  All calculated NUE values were lower than 

reported NUE values, which range from 23% to 50% (average 33%) in winter wheat 

cropping systems (Raun et al., 1998, Raun and Johnson, 1999; Thomason et al., 2000).  

SWAT and SWAT-flush NUE values were not significantly different (p = 0.05) for any 

year simulated, indicating that estimated N uptake did not vary with annual temperature 

or precipitation values. In contrast, there is a statistically significant difference (p < 

0.001) between annual field NUE values, as would be expected with varying annual 

growing conditions and stresses.     
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Figure 14. Relationship between actual wheat yields averaged over 26 years and 
yields predicted by SWAT and SWAT-flush.  Simulated yields were all strongly 
correlated with actual yields (r2 = 0.99); however, the regression between SWAT-
flush and actual yields was closest to the 1:1 relationship. 

 

 

Actual average yields from the 44.8, 67.3, 89.7, and 112.1 kg N ha-1 treatments 

were not significantly different from each other (p = <0.001, Figure 15).  These data 

correspond with research by Arnall et al. (2009) that indicates wheat grain yields do not 

always vary with differing N application rates.  Raun et al. (2010) also found that grain 
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yield did not correlate with fertilizer treatments at the same research site as well as at 

other sites in Oklahoma and Nebraska. Similarly, in long-term corn and wheat N-

fertilizer experiments from Iowa, Oklahoma, Nebraska, and Wisconsin, increased N 

fertilization did not result in increased yield over moderate N fertilization rates (Arnall et 

al., 2013).  The data indicating that there is no significant difference between actual 

yields at higher fertilization rates (> 22.4 kg N ha-1) is important when attempting to 

simulate yield with environmental models as we would expect N fertilization to greatly 

affect plant-growth processes.   In fact, the differences in the mean yields from each 

fertilizer treatment simulated by SWAT and SWAT-flush are greater than would be 

expected by chance and there is a statistically significant difference (p = <0.001) 

indicating that these models are not accurately representing field conditions. 

Because there was a significant difference in NUE values for the field data, but 

not a significant difference between yields from fertilizer treatments above 22.4 kg N ha-

1, we examined actual fertilizer response curves for each year during the study.  Annual 

gains in yield and fertilizer response curves for actual and simulated yields were 

generated by subtracting the control (0 kg N ha-1) yield from the fertilizer plot yields.   
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Figure 15. Analysis of variance of actual yields and yield simulated by SWAT and 
SWAT-flush by fertilizer treatment averaged over the period of study. The symbol 
indicates a significant difference between treatments. 
 

 

While the annual fertilizer response curves were overall strongly correlated with the gain 

in yield, individual yearly fertilizer response curves were highly variable (Figures 16 and 

17).  In 1987, 1988, 1990, 1992, 1993, 2000, and 2001, actual yield decreased at the 

highest fertilization rate (112 kg N ha-1) as compared to the 67.3 kg N ha-1 treatment.  

During several years (1987, 1991, 2001, 2002, 2006, and 2007) there was a loss in gain 

or negligible gain in yield with increasing fertilizer application rates.  Similarly, the 

fertilizer response curves for simulated yields were highly variable (data not shown).  
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Most notably, in 2001 and 2012 there was no response to simulated fertilizer additions. 

Variability in gains in yield increase as the fertilizer rate increases for simulated and 

actual yield (Figure 18). The mean gain in actual yield was greatest for the 89.7 kg N ha-

1 fertilizer treatment and actual gains were more variable than simulated gains in yield.  

These data agree with findings by Mohammed et al. (2013) which indicate that in wheat 

grain yield, the highest rates of N fertilization do not result in the highest yielding plots.  

Although we did find a correlation between the yearly increase in yield and increasing 

fertilizer application, the observed variation in fertilizer response from year to year at the 

experiment site indicate that on annual basis, yield response to N cannot be predicted.  

These data are supported by Raun et al. (2010) who indicate that N response and yield 

measurements were independent in long term studies in Oklahoma and Nebraska. While 

plant growth relative to fertilizer application is expected to vary with changing 

environmental conditions, we were surprised to find the drastic differences in response 

curves from year to year. 
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Figure 16. Yearly fertilizer response curves for the field experiment years 1987 
through 1998. 
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Figure 17. Yearly fertilizer response curves for the field experiment years 1999 
through 2012. 
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Figure 18. Variability in the gain in yield for fertilized plots over the control plot (0 
kg N ha-1) for actual, SWAT simulated, and SWAT-flush simulated yield data. 
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Only actual annual yields from 2003 and 2008 were significantly different from 

the remaining years in the study, as well as 1988 vs. 2001 and 2010, and 2010 vs. 2012 

(p =< 0.001) also being significantly different from each other. In the years with high 

yields (especially 2003 and 2008) NUE values exceeded 100% indicating that gains in 

yield were not attributed to fertilizer application alone and N was obtained from 

mineralization or residual N in the soil.  Similarly, there was no significant difference in 

SWAT simulated yields from year to year (p = 0.145).  In contrast, SWAT-flush 

simulated yields had greater variability, with several years being significantly different 

from each other according to ANOVA analysis (p =< 0.001).  These data contrast with 

results reported by Mittelstet et al. (2015) who indicate that while yields varied from 

year to year over a 50-year period, simulated yields were not significantly different.  

Ultimately, crop yield is dependent upon the aboveground biomass growth as regulated 

by temperature, N and water stress as well as a predetermined harvest index, which is the 

fraction of biomass removed as dry economic yield (i.e. the grain portion of wheat).  

Detecting inter-annual variability and the source of variability is important when 

simulating processes that may or may not control yield in the field and in the model.  

However; because the variability in actual yields was limited mainly to 2003 and 2008 

and yields from each fertilizer treatment were not significantly different from each other, 

it may be difficult for us to determine the forcing factors affecting annual yield.   

Simulated annual yields, averaged for all fertilizer treatments, do no correlate 

with actual annual yields averaged over all fertilizer treatments (SWAT, r2 = 0.01; 

SWAT-flush, r2 = 0.10; Figure 19).  Actual annual yields for each fertilizer treatment 
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also do not correlate with simulated yields for the corresponding fertilizer treatment 

(SWAT, r2 < 0.05; SWAT-flush, r2 < 0.23).   
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Figure 19. Average simulated and actual yields by year.  There was no correlation 
between annual simulated and actual annual yields when yields were averaged 
across all fertilizer treatments (SWAT, r2 = 0.01; SWAT-flush, r2 = 0.10). 
 

 

These data correspond to findings by Kiniry et al. (1995) and Srinivasan et al. 

(2010) who indicate that the EPIC plant growth model sometimes does not accurately 
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replicate annual variations in crop yields well.  Srinivasan et al. (2010) attribute the 

inability of SWAT to predict annual yields consistently to a lack of site specific soils and 

management data at the scale of their study; however, soils information, planting and 

harvesting dates, and tillage practices were well documented at the Lahoma, OK study 

site and closely followed in the SWAT management input files.  Therefore, in this case 

the lack of management data was not the source of inter-annual discrepancies.  The lack 

of a relationship between actual and simulated yield is supported a study by Wang et al. 

(2016), who found that the SWAT model did not simulate annual corn yield well when 

soil moisture values were not used in calibration.   

Actual and simulated yields were not correlated with annual (r2 <, 0.18), growing 

season (actual, r2 < 0.02; SWAT, r2 < 0.24; SWAT-flush, r2 < 0.28) or spring (February 

to June) precipitation (actual, r2 < 0.03; SWAT, r2 < 0.30; SWAT-flush, r2 < 0.31) for 

any fertilizer treatment.  Actual and simulated yields tend to increase or peak the year 

following a wet year; however, that was not always the case (Figure 20).  The two 

highest yielding years in the field, 2003 and 2008, followed years with higher than 

average total and growing season rainfalls; however, many years following higher than 

average rainfalls did not experience greater than average yields.   Actual and simulated 

yields were also not correlated with total, growing season or spring average temperatures 

or any combination of rainfall and temperature independent variables (r2 < 0.02) 

agreeing with data from Girma et al. (2007) who found that actual wheat yield for the 

same field study could not be predicted by fertilizer treatment or cumulative 

precipitation.   
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Figure 20. Average annual yields compared to growing season, spring, and total 
precipitation. 
 

 

In SWAT, potential plant growth under ideal growing conditions is calculated 

daily.  This growth is tempered by water, temperature or nutrient stress by comparing 

optimal and actual levels for each type of plant.  Stress is calculated non-linearly 

between 0 and 1, with 0 being optimal temperature, moisture or nutrient levels and 1 

being the highest stress level for each factor.  Optimal biomass growth is multiplied by 

the highest stress factor for each day to determine actual growth.  In our simulations 

temperature stress occurred more often than any other stressors; however, estimated 
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yield was not correlated with cumulative temperature, water or phosphorus stress days.  

SWAT (r2 = 0.78) and SWAT-flush (r2 = 0.75) simulated yields could be best predicted 

with a linear combination of N fertilizer (kg N ha-1), N mineralized (kg N ha-1) and the 

number of N stress days. 

 

Conclusions 

There was no significant difference between actual yields at fertilization rates 

greater than 22.4 kg N ha-1 or a significant correlation between actual yields and 

precipitation or temperature.  These data are important as the model assumptions, as well 

as agricultural producer expectations, are that N fertilization and weather greatly affect 

annual grain yield.   This information should not only be alarming to the modeling 

community, but also to agricultural producers and economists, as our traditions may be 

based on falsely held beliefs.  While gains in actual yields on a yearly basis were 

correlated with increasing fertilizer applications in most years, the response to fertilizer 

was highly variable from year to year.  The data indicate that from year to year at this 

study site there was no predictable wheat yield or economic gain to be had from 

fertilizing at high rates, regardless of the commonly held misperception that the more N 

inputs, the greater the yield.  While it may be true that an increase in yield will be 

observed by the application of 112.1 kg N ha-1 versus a control plot, the data in 

presented in this paper indicate that fertilization rates exceeding 44.8 kg N ha-1 have no 

significant effect on wheat yield. NUE values were considerably low in the field which 

may be a contributing factor to N nonpoint pollution.  These data are noteworthy as 
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agricultural producers are not only losing money by applying fertilizer at rates that do 

not significantly affect yield, but also that N losses from the over-application of fertilizer 

are potentially threatening our environment.  

While actual and simulated yields over the 26-year study period were highly 

correlated, SWAT under-predicted yield. SWAT-flush yield estimations were improved 

over basic SWAT and average yields were closer to the 1:1 relationship between average 

predicted and actual yield.   Neither model accurately predicted annual variability in 

yields.  These data indicate that N modeling in SWAT may not be effective in simulating 

soil processes sensitive to changing environments, such as soil moisture and temperature 

resulting in erroneous yield prediction.   

Further research needs to be conducted to increase the accuracy of annual yield 

prediction.  In the model, basing annual yield on an arbitrary yield potential tempered by 

N, temperature, and moisture stress is problematic as is seen in the discrepancy between 

simulated yield and actual yields. Moreover, our ill-conceived concept of yield potential 

and N response is mirrored in the field as evidenced by low NUE values, lack of 

fertilizer response, and lack of correlation between environmental factors and yield.  

Clearly, there is a dearth of knowledge regarding the complex soil/plant/environmental 

interactions in the field that must be further considered and examined.  In the meantime, 

SWAT-flush should be utilized to more closely predict wheat crop yields when averaged 

over a longer study period. 
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CHAPTER IV 

COMPARISON OF WHEAT YIELD SIMULATED USING THREE N CYCLING 

OPTIONS IN SWAT 

 

Introduction 

The Soil and Water Assessment Tool (SWAT) model has been successfully used 

to predict streamflow, evapotranspiration and soil water.  The crop growth model in 

SWAT was adapted from the EPIC model (Williams et al., 1995) and is similar in 

concept to the crop growth models in Agricultural Policy/Environmental Extender 

Model (APEX, Gassman et al., 2010), ALMANAC, and WEPP, which have undergone 

significant crop yield validation.  SWAT crop yields have been validated for several 

grain crops (Gassman et al., 2010).   

Preliminary data suggest that while the hydrologic balance in each watershed 

may be accurately simulated with SWAT, the SWAT model tends to over- or under-

predict wheat yield responses to N-fertilizer application. For example, Haney et al. 

(2016) found that simulated wheat yield increased strongly with N-fertilizer additions 

(r2=0.80), yields at higher N fertilizer rates were over-estimated and at lower N fertilizer 

rates were under-estimated.  In addition, when N fertilizer was not applied during 

simulation, predicted yields were close to 0 Mg ha-1. These results indicate that SWAT is 

not properly accounting for soil N cycling processes.  Yield under-estimates at low 

fertilization rates could occur if modelled N - mineralization rates are under-estimated, 

causing under-prediction of plant N availability and over-estimates of N limitation. 
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Under-estimates of plant N availability can compound yield errors by suppressing yield 

responses to simulated soil water variation. Many current N cycle models, including 

SWAT, tend to neglect the contribution of the soil microbial population to the plant-

available N pool, resulting in an under-estimation of yield and possible over- or under-

estimation of N runoff from natural and agricultural landscapes.  

The SWAT model now has three different N simulation options, SWAT-flush 

(Haney et al., under review), N routines derived from the CENTURY model (Zhang et 

al., 2013), and a one-pool C and N model option (Kemanian et al. 2011).  SWAT-flush 

cycles N through three organic N pools (fresh residue, stable and active organic) and two 

inorganic N (NO3
- and NH4

+) pools with an added flush of N after significant rainfall 

events (greater than 26 mm).  The variation of the CENTURY model is more complex 

than SWAT-flush, simulating microbial, slow and passive soil organic N, surface 

microbial N, above and below ground structural and metabolic N, and mineral N (Zhang 

et al., 2013).  On the other hand, the one-pool C model merges C, N, and P soil organic 

matter (SOM) pools within each soil layer, as well as separate residue and manure pools 

in the topsoil and subsoil.   

In this study, measured wheat yield from a long-term fertilizer study research 

plot in north-central OK, were compared to simulated wheat yield values from SWAT-

flush, SWAT-C, and SWAT-One. The objective of this study is to assess the ability of 

various N cycling sub-routines within SWAT to predict yield at a long-term fertilizer 

study in Oklahoma.   
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Materials and Methods 

SWAT-flush utilizes three organic N pools (fresh, stable and active organic) and 

two inorganic N pools (NO3
- and NH4

+) and an added flush of NO3
- after rainfall events 

greater than 26 mm (Figure 21).  The SWAT-flush model algorithms were derived from 

the PAPRAN (Production of Arid Pastures limited by RAinfall and Nitrogen) model 

(Seligman and van Keulen, 1981).  Mineralization, decay, and immobilization equations 

are first order kinetics, which are based on the substrate amount, determined by a model 

“warm up” period of several years prior to the years of interest.  

The sizes of the organic N pools are assigned assuming that the C:N ratio for 

humic materials is 14:1. The concentration of humic organic nitrogen is determined 

based on the soil organic C (SOC) values from soil data contained in SWAT input files. 

The soil data must be entered by the user and can either be obtained from soil sampling 

or publicly available data sets such as the Soil Survey Geographic Data Base (SSURGO, 

USDA-NRCS, 1995).   
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Figure 21. The N cycle as defined in the SWAT-flush model (Haney et al., 2016; 
Neitsch et al., 2009). 

 

 

SWAT-flush then assigns 20% of the organic N to the active pool and 80% of the 

organic N to the stable pool (Neitsch et al., 2009).  The initial residue (fresh) pool is 

assigned to the top 10 mm of the soil profile and is set to 15% of the initial amount of 

residue on the soil surface, and does not include root biomass.  After initialization, the 

fresh pool is determined based on simulated management practices. The simulated N 
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resulting from decomposition and mineralization of the fresh pool is partitioned as 20% 

to the active organic and 80% to the NO3
- pool.  Decomposition and mineralization in 

SWAT-flush depend on the residue decomposition rate, the C:N and C:P ratios of the 

residue in the soil layer, and soil temperature and water content.  N cycling processes are 

calculated for each soil layer within the profile.  

Initial NO3
- concentration is an exponential function of soil depth.  The NH4

+ 

pool is initially set to zero and only contributes to the NO3 pool when urea fertilizer is 

added to the soil.  Nitrification and volatilization describe the conversion of NH4
+ to 

either NO3
- or NH3, respectively. SWAT-flush simulates both processes simultaneously 

then partitions the calculated values between the two processes (Nietsch et al., 2009).  

The nitrification process in SWAT-flush depends solely on the soil water and 

temperature.  While temperature and soil moisture are critical forcing factors on the 

nitrification process, SWAT-flush does not specifically account for soil microbial 

activity, soil pH, or the water-extractable soil C or N content, which form the C and N 

source for the microbial population.  Volatilization simulation in SWAT-flush depends 

on soil temperature and depth and includes a default cation exchange factor.  

Volatilization is also strongly affected by soil pH, wind conditions, and soil clay content 

and type (Coyne, 1999).   

SWAT-flush incorporates an addition of NO3
- to the NO3

- pool after a rainfall 

event was based on the water soluble organic C and N (WSOC and WSON) and 

microbial activity determined using 1-d CO2 evolution.  

𝐹𝑙𝑢𝑠ℎ 𝑜𝑓 𝑁𝑂  =  𝑊𝑆𝑂𝑁 × (1 − 𝑑 𝐶𝑂 ÷ 𝑊𝑆𝑂𝐶) 
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The flush of N is added to the top 10 mm of soil to simulate rapid changes in soil 

moisture, temperature and N cycling at the soil surface. After a significant rainfall event 

(greater than 26 mm) occurs on sufficiently dry soil (based on soil matric potential), a 

flush of N is added to the NO3
- pool.   

The CENTURY-based N simulation option was first incorporated into the 

Environmental Policy Integrated Climate (EPIC) model (Williams, 1995), and was then 

incorporated into SWAT for testing at the watershed scale and referred to hereafter as 

SWAT-C (Zhang et al., 2013). The CENTURY option is a multi-pool model whose 

strength lies in the linkage between organic C and N dynamics.  The CENTURY option 

in SWAT (SWAT-C) includes a residue pool consisting of lignin, non-lignin, and 

metabolic residue, each having its own decomposition rates (Figure 22). Residue 

dynamics occur at the surface of the soil and in the top 10-mm layer of soil.  SOM is 

simulated as microbial, slow, and passive pools, each with their own turnover rates.  The 

microbial pool occurs in all soil layers, while the slow and passive pools exist in all soil 

layers except the top 10 mm.  Decomposition of residue and mineralization of SOM 

depends upon lignin content of the residue, soil temperature, texture and moisture, tillage 

effects, and O2 content.  Depth profiles of O2 in SWAT-C differ from both those of 

CENTURY model and SWAT-flush.  Residue composition and lignin content are 

calculated based on plant age. All mineralization and decomposition processes result in 

the simultaneous transformation of C and N and ultimate release of CO2 (Zhang et al., 

2013).   
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Figure 22. Carbon and N cycling in the SWAT-C subroutine in SWAT (Reprinted 
from Zhang, X., R.C. Izaurralde, J.G. Arnold, J.R. Williams, and R. Srinivasan, 
Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: 
Model development and initial evaluation, Page 812, 2013, with permission of 
Elsevier).   



 

80 

 

 

As with other models where N dynamics are based on first-order kinetics (basic 

SWAT), C and N flows in the SWAT-C are controlled by the size of the pools.  It is 

therefore critical that the various organic pools are initialized and tracked correctly.  It 

has been reported the CENTURY model successfully simulates daily CO2 fluxes except 

during rewetting periods, which is when important N mineralization fluxes occur (Luo 

and Zhou, 2010). SWAT-C was tested by Zhang et al. (2013) by comparing simulated 

results to corn and soybean crop yields on lands across the U.S. Midwest.  They found 

that SWAT-C performed well in its simulations of annual crop yield for sites where 

detailed management data was known.  On the site where management data was not 

available or sparse, model performance was reduced.  In general, Zhang et al. (2013) 

found that long-term average crop production (corn and soybean) was predicted well 

using SWAT-C. 

The third N cycling option is SWAT-One, a one-pool C, N, and P model 

(Kemanian et al., 2011). SWAT-One simulates decomposition of a lumped C, N, and P 

soil organic matter (SOM) pool within each soil layer, as well as residue and manure 

pools in the topsoil and subsoil (Figure 23).  Decomposition of residue and manure 

follows first order kinetics and results in either mineralization or immobilization 

depending upon the humification rate and C:N and C:P ratios of the residue, the manure 

and the SOM.  Manure and residue C is either incorporated into the soil C pool or 

respired as CO2, and their decomposition rates are functions of soil temperature and 

moisture.  Maximum formation of humus from residue is 0.18 g/g, and the manure 
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maximum humification rate is 1.6 times higher. N mineralized is transferred to the soil 

NH4
+ pool.  The C:N and C:P ratios of newly formed SOM vary throughout simulation 

depending upon available mineral N and residue or manure C:N ratios. If there is not 

enough organic N to supply the microbial N needed for decomposition with a 

continuously changing soil C:N ratio, mineral N is immobilized.  SOM decomposes 

depending upon a tillage factor and soil moisture.  Mineralized N from the SOM is 

transferred to the NH4
+ pool and is always positive. Testing of the SWAT-One option 

has been minimal to date. 

 

 

 

Figure 23. The one-pool C, N, and P submodel (SWAT-One) within SWAT 
((Reprinted from Kemanian, A.R., S. Julich, V.S. Manoranjan, and J.R. Arnold, 
Integrating soil carbon cycling with that of nitrogen and phosphorus in the 
watershed model SWAT: Theory and model testing, Page 1915, 2011, with 
permission of Elsevier). 

 

 

The various SWAT simulations were compared to data obtained from Oklahoma 

State University’s long-term wheat yield study (Experiment 502) in Lahoma, OK.  The 

Experiment 502 plot research is conducted 
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(http://nue.okstate.edu/Long_Term_Experiments/E502.htm) at the North Central 

Agricultural Research Station near Lahoma, OK (36.42o N, 97.87o W) in Garfield county 

(Raun et al, 2000).  The OSU study was established in 1970 to study the response of 

wheat grain yield to varying rates of long-term N, P, and K fertilizer application.  The 

randomized complete block (4 replications) designed experiment is conducted on 

continuous winter wheat grown under conventional tillage on a Grant silt loam (fine-

silty, mixed, thermic Udic Argiustoll). The soil has an average pH of 5.7 in the top 30 

cm (Raun et al., 1998).  Soil depth, texture, slope, albedo and SOC content were 

obtained from SSURGO (USDA-NRCS, 1995). Mean average temperature at the 

research site is 15.6 oC (Raun et al., 1998) with an average annual rainfall of 

approximately 800 mm (Schroder et al., 2011).  Nitrogen was applied as Urea (46-0-0) at 

pre-plant rates of 0, 22.4, 44.8, 67.3, 89.7, 112.1 kg N ha-1 annually. Phosphorus was 

applied as triple superphosphate (0-46-0) at the rates of 9.9, 19.7, 29.6, 39.5 kg P/ha 

annually.  Fertilizer application occurred between early August and early October and 

planting followed from late September to late October.  The wheat seeding rate varied 

between 0.07 and 0.08 Mg ha-1.  Grain was harvested from early June to early July, 

depending upon weather conditions.   

Yield simulations were performed by constructing a set of SWAT input files 

using local weather and soils data in the Texas Best Management Practice Evaluation 

Tool (TBET, White et al., 2012).  Weather data were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) National Weather Service 

Cooperative Observer Program, Lahoma Research Station (USD00344950) weather 
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station (Latitude: 36.3894, Longitude: -98.1061, Elevation: 388.6m). Simulations were 

run for 28 years from 1981 to 2012, for which yield data and most actual planting and 

harvest dates were available. 1985 and 1986 served as warm up years, to allow initial 

fractions of SOC and other variables to stabilize prior to simulation of the period of 

study.   When dates were unavailable, an average October 21 planting date and June 13 

harvest date was used (6 cases where one was missing). Simulations included 12 

combinations of N and P rates and forms that correspond with the fertilizer rates used in 

Experiment 502.  

Simulations were performed with uncalibrated SWAT models.  Previous research 

has indicated that the SWAT model can successfully predict crop yield without 

calibration (Srinivasan et al., 2010).  In addition, we were interested in seeing the raw 

results from an uncalibrated model for comparison to actual field data.  Yield data 

obtained from each N modeling option in SWAT (SWAT-flush, SWAT-C, and SWAT-

One) were compared to historical yield data using linear regression analysis, descriptive 

statistical analyses, percent bias (PBIAS), Nash-Sutcliffe efficiency (NSE) and nitrogen 

use efficiency (NUE) analysis, Pearson Correlation Coefficients and Analysis of 

Variance (ANOVA, Systat, 2012).  

Nitrogen Use Efficiency was calculated by taking the average yield at the 22, 45, 

67, 90 and 112 kg N ha-1 fertilizer application rates, subtracting the control (0 kg N ha-1) 

yield and dividing by the fertilizer application rate.   NUE is chiefly regulated in all 

SWAT model N variations using attributes listed in the plant growth database (crop.dat).  

This database includes plant classification (i.e., warm-season annual), radiation-use 
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efficiency, harvest index, maximum potential leaf area index (LAI), optimal and base 

temperature for plant growth, maximum rooting depth and canopy height, the fraction of 

N in the harvested portion of the biomass, and potential heat unit information at various 

stages of growth (Kiniry et al., 1995).  The optimal N that should be in plant biomass on 

a given day is calculated by first determining the fraction of N in the plant as a function 

of growth stage under optimal growing conditions.  Specifically, the fraction of N in a 

plant on a given day is determined based on the fraction of heat units accumulated on 

that day and the fraction of N at emergence, maturity, and midseason which were 

determined experimentally for winter wheat by The University of Saskatchewan (Kiniry 

et al., 1995).  Optimal biomass N for the day is the product of the fraction of N in the 

plant on a given day and the biomass on the same day:  

biofrbio NoptN ,  

where bioN,opt is the optimal mass of nitrogen stored in plant material for the current 

growth stage (kg N ha-1), frN is the optimal fraction of nitrogen in the plant biomass for 

the current growth stage, and bio is the total plant biomass on a given day (kg ha-1).  

Potential N uptake is subsequently determined using the following equation: 
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where Nup is the potential nitrogen uptake (kg N ha-1), bioN,opt is the optimal mass of 

nitrogen stored in plant material for the current growth stage (kg N ha-1), bioN is the 

actual mass of nitrogen stored in plant material (kg N ha-1), frN,3 is the normal fraction of 
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nitrogen in the plant biomass at maturity, and bio is the potential increase in total plant 

biomass on a given day (Neitsch et al., 2009).  Daily control of N uptake depends upon 

biomass growth each day and the amount of available N in the soil.  The amount of 

available N is determined by initial N in the soil, fertilizer applications, leaching and 

surface N runoff. 

The Nash-Sutcliffe efficiency (NSE) was calculated for simulated versus actual 

yields for each year, averaged over all fertilizer treatments, to determine how well the 

observed values versus simulated values fit the 1:1 regression line.  NSE is calculated as 

follows: 

𝑁𝑆𝐸 = 1 −  
(𝑦 − 𝑓 )

∑ (𝑦 − 𝑦)
 

where 𝑓  is the simulated yield value at time 𝑡, 𝑦  is the actual yield at time 𝑡,  and 𝑦 is 

the mean of the observed data values for the entire evaluation period.  NSE values range 

from -∞ to 1 and the larger the NSE values, the better the model performance 

(Srinivasan et al., 2010). Percent bias (PBIAS) was used to statistically measure the 

average propensity of simulated data to be larger or smaller than observed values 

(Srinivasan et al., 2010).  Percent bias is calculated as: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑓 − 𝑦 )

∑ (𝑦 )
× 100 

where 𝑓  is the simulated yield value at time 𝑡, and 𝑦  is the actual yield at time 𝑡. 

Smaller PBIAS values are desired.  Negative PBIAS values indicate model under-



 

86 

 

estimation, while positive values indicate model over-estimation bias (Gupta et al., 

1999). PBIAS values less than 15% are considered acceptable. 

 

Results and Discussion 

Actual and simulated yields averaged over 28 years were positively correlated 

with N fertilizer additions (r2 > 0.96) except SWAT-One (r2 = 0.33, Figure 24). When no 

fertilizer was applied, actual wheat yields averaged 1.71 Mg ha-1.  SWAT-C average 

simulated yield was 1.97 Mg ha-1 at 0 kg N ha-1 applied and was closest among the 

submodels to simulating actual yield at this fertilizer rate (PBIAS, 13%).  SWAT-C most 

closely simulated the effect of fertilizer on average actual wheat yield over a 28-year 

period according to regression and PBIAS analysis (PBIAS, 2%; Table 4).  SWAT flush 

had an improved average NSE value (NSE, -0.05) over SWAT-C (NSE, -0.52).  SWAT-

One over-estimated yield across simulated fertilizer application (PBIAS, 61%).  SWAT-

flush under-estimated yield below the 67.3 kg N ha-1 fertilizer treatment, but over-

estimated at higher fertilization levels (PBIAS -19% at 0 kg N ha-1 and 9% at 112.1 kg N 

ha-1). Srinivasan et al. (2010) found that PBIAS values of simulated yield varied from 

region to region depending upon the soil data used by SWAT to simulate soil processes.  

The data in this study; however, indicate that the PBIAS of simulated yield can also vary 

drastically depending upon the way that N cycling is treated in the model.  The yield 

under-estimates from SWAT-flush at lower levels of N fertilization suggest that his 

submodel under-estimates plant N availability (or over-estimates N losses) and would 

lead to over-estimates of the N-fertilizer inputs needed to achieve a given yield.  
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Figure 24. Relationship between N fertilizer additions and simulated and actual 
yield averaged over 28 years. 

 

 

Table 4. Percent bias (PBIAS) Nash-Sutcliffe efficiency (NSE) and values of model 
simulated values at 0 kg N ha-1, 112 kg N ha-1, and the average of all fertilizer 
treatments. 

0 kg N ha-1 112 kg N ha-1 

Avg. All 
Fertilizer 

Treatments 
  PBIAS NSE PBIAS NSE PBIAS NSE 
SWAT-flush -19 -1.03 9 0.17 -3 -0.05 
SWAT-One 182 -36.02 27 -0.97 61 -5.84 
SWAT-C 13 -1.46 4 -0.06 2 -0.52 
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Yield under- or over-estimates result in erroneous estimates of percent NUE. 

NUE ranges from 23 - 50% in winter wheat cropping systems (Raun et al., 1998, 

Thomason et al., 2000).  Oklahoma State University reports that NUE for Experiment 

502 averages 32% (Raun et al., 1998), although we calculated the average actual NUE 

values at less than 25%, decreasing with increasing fertilizer applications to 14% at 

112.1 kg N ha-1 treatment.  Simulated NUE values for the submodels also decreased with 

increasing amounts of N fertilizer (25 to 20% for SWAT-flush, 15% to 14% for SWAT 

C, and all negative NUE values for SWAT One).  The percent of N removed in grain 

relative to N uptake was 66% for SWAT-C and 70% and SWAT-flush.  This value was 

37% for SWAT-One, partially explaining the negative NUE values for SWAT-One. 

SWAT-flush most accurately represented field NUE values.  Nitrogen use efficiency can 

be an important indicator of N dynamics in the soil and is reflective of nitrification, 

management, weather and plant growth (Thomason et al., 2000).  Factors affecting low 

NUE in the field include losses of N from volatilization, which can be as great as 50% 

when urea or urea-containing products are applied (Macnack et al. 2013). In addition, N 

runoff losses range between 1% and 13% (Raun and Johnson, 1999).  Certainly, biomass 

growth, pest, weed, temperature, and moisture stress also affects NUE in the field.   

Deviations between simulated and actual yields and NUE values can be partly 

explained by variations in the way each model handled specific nitrogen pools and 

transformations (Figure 25).  Volatilization varied among the sub-models.  On average 

81% of fertilizer applied was lost to volatilization with SWAT-One versus a 37% loss 

with SWAT-flush and SWAT-C. All sub-routines utilize the same volatilization and 
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nitrification subroutines; however, SWAT-One may have simulated higher volatilization 

compared to SWAT-flush because all N mineralized is added to the NH4
+ pool, instead 

of the NO3
- pool.  SWAT-flush does not simulate volatilization unless an NH4

+ based 

fertilizer is used.  We expected SWAT-C to have greater volatilization, but the average 

values were similar to those from SWAT-flush.   
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Figure 25. Simulated N cycling values for each of the three N-cycling subroutines.  
Mineralization values were not available for the SWAT-One model. 
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Simulated nitrification also varied among the N sub-routines. SWAT-One 

simulated the greatest amount of nitrification, followed by SWAT-C and SWAT-flush.  

The fact that SWAT does not account for pH of the soil (average pH 5.7) in any N 

subroutine complicates replication of the N cycle and plant growth operations, which 

could influence yield prediction capabilities. Nitrification at pH 5.7 should be low as 

rates fall distinctly below pH 6 and nitrification should be almost non-existent below pH 

5.0 (Coyne, 1960). SWAT-flush nitrification values were equal to that of the NH4
+ 

fertilizer added minus the NH4
+ volatilized.  SWAT-one and SWAT-C will continually 

have significantly higher volatilization and nitrification values than SWAT-flush 

because they simulate the transformation of organic N to NH4
+. It may be beneficial to 

add a pH control to these processes because the volatilization and nitrification values 

were unrealistically high given the actual pH of the soil simulated.  Furthermore, 

SWAT-flush may benefit from converting mineralized N into NH4
+ versus NO3

- to more 

realistically simulate field N transformations. 

Denitrification did not occur in any of the simulations, and therefore did not 

contribute to simulated yield estimates.  Denitrification occurs in the absence of O2, and 

varies depending upon soil moisture, temperature, organic matter content, C and NO3
- 

concentration (Coyne, 1999).  SWAT usually only simulates denitrification under 

flooded conditions, although it is well documented that this process occurs in small 

pockets of the soil profile where anaerobic conditions can take place, regardless of the 

level of the soil water table or complete saturation of the soil.  
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Simulation of NH4-N or NO3-N pools is also critical to accurate yield estimates. 

N fertilizer applied in excess of plant uptake should increase soil N pools (Raun et al., 

1998).  During simulations, total soil N (organic N + NO3
--N) was only increased when 

yield was simulated using SWAT-One.  SWAT-One simulated a marked increase in 

organic N and NO3
--N in the soil.  SWAT-C simulated an overall decrease in organic N.  

NO3
--N values decreased when using SWAT-flush, but increased when using SWAT-

One, and SWAT-C.  Because this is a conventional till, wheat-fallow cropping system, 

we would expect that organic N values would decrease over time because of long-term 

losses in SOC (Doran et al., 1997).  Because of the soil texture, we would expect NO3
- 

values in the soil to decrease on average.  Surprisingly, excess N was not lost to leaching 

using any of the sub-models even though the soil is a silt-loam and should drain well. 

Based on these data, it appears that none of the N subroutines are adequately simulating 

N cycling processes in the soil.    

There was a significant correlation between SWAT-flush (r2 = 0.34, p < 0.001) 

and SWAT-C (r2 = 0.20, p < 0.001) predicted and actual annual yields (Figure 26).  

Although the trend is significant, the variability around the regression line indicates that 

neither model is precise in its predication of annual wheat yield.  SWAT-One annual 

predicted yields were not correlated with actual annual yield.  These data suggest that the 

N-cycling models may be ineffective at simulating mineralization, decomposition or the 

conversion of urea.    
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Figure 26. Regression between yearly SWAT-flush and SWAT-C predicted and 
actual yield for all fertilizer treatments. 
 

 

As it is in nature, plant growth is moderated in the SWAT model due to water, 

nutrient, and temperature stress.  SWAT calculates the amount of stress for water, 

temperature, N and P stress daily and reduces plant growth as a percentage of optimal 

growth when the plant is not dormant. Potential biomass production for each day is 

calculated as the potential increase in total plant biomass on a given day multiplied by 

the plant growth factor (Neitsch, 2009): 

 pstrsnstrststrswstrsreg ,,,max1   

where reg is the plant growth factor (0.0-1.0), wstrs is the water stress for a given day, 

tstrs is the temperature stress for a given day expressed as a fraction of optimal plant 

growth, nstrs is the nitrogen stress for a given day, and pstrs is the phosphorus stress for 
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a given day.  Potential leaf area added on a given day is also adjusted daily for plant 

stress in the same manner.   

All three N cycling options utilize the one maximum stressor for each day.  For 

example, if temperature stress is at 30% and water stress is at 20% for the day, the 30% 

temperature stress is used to regulate plant growth on that day.  Annually, the wheat 

plants in all simulations were under stress (below optimal conditions for plant growth) 

between 126 and 177 days per year (Table 5).  Phosphorus stress (not shown) was 

negligible and therefore not reported.  Overall, SWAT-One had the least amount of 

stress days (especially N), which corresponds to its consistent over-prediction of yield.  

SWAT-flush had the highest N stress days, most likely due to under-prediction of N 

mineralization at low N fertilization rates. Temperature stress was the same throughout 

the three N submodels.  It appears that water stress was low for all N subroutines and 

was overshadowed by temperature or N stress on most days.   

 

Table 5. Average annual water, temperature, N, and P stress days for each N 
cycling routine for the 28-year run. 
 SWAT-

flush 
SWAT-
One 

SWAT-C 

 Water stress days  24 15 11 
 Temperature stress days  109 108 108 
 N stress days  44 3 35 
Total stress days 177 126 154 

 

 

These results indicate that, except under extreme wet or dry conditions, 

temperature and N have a stronger influence over simulated yield on a yearly basis than 
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soil moisture.   Simulated yields did not differ significantly regardless of yearly 

precipitation, which indicates that rainfall is not the significant controlling factor in 

predicted yield.  In fact, this research has shown that annual precipitation, spring 

precipitation, and growing season precipitation were not directly correlated to predicted 

or actual crop behavior.  Lobell et al. (2004) found that in the field soil variability is 

greater than variability in weather when water availability is not a limiting factor.  Based 

on the results shown in Table 5, it appears that the SWAT model may be overly sensitive 

to temperature stress, thereby reducing the importance of both N and water stress.   

 

Conclusions 

I found that although multi-year average simulated crop yields were well 

correlated with actual average yields, SWAT-flush under-estimates yield at low N 

fertilizer levels then over-estimates at higher N fertilization.  SWAT-flush most 

accurately represented field NUE values.  On average, SWAT-One was unsuccessful at 

predicting yields.  SWAT-C most closely estimates average yield according to calculated 

PBIAS values, while NSE calculations indicate that SWAT-flush is more capable of 

predicting average yield.  The N removed in yield relative to N uptake and N 

volatilization were surprisingly similar between SWAT-C and SWAT-flush; however, 

nitrification, final NO3
- in soil, and the amount of water and N stress varied between the 

two models.  Annually, SWAT-flush and SWAT-C yields were correlated with actual 

yield, but showed a high degree of variability indicating that these submodels may not be 

reliable for predicting annual wheat yield at sites similar to the study area. 
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Overall, this research indicates that SWAT-C or SWAT-flush provide the most 

accurate prediction of average wheat yield and can be used for wheat cropland yield 

assessment.  However; none of the N-cycling routines included in the SWAT model 

predict annual variations in wheat yield with great certainty.  Further research is needed 

to determine the effectiveness of SWAT-C and SWAT-flush in determining average and 

annual yield in various farming regions and with numerous agronomic crops. 
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CHAPTER V 

CONCLUSIONS 

 

A N cycling routine simulating the flush of N after significant rainfall events 

using the measurement of microbial activity and water-extractable N and C was added to 

the SWAT model (SWAT-flush).  SWAT-flush and SWAT predicted wheat yields were 

first compared to compared to field soil analyses and NDVI greenness in Texas.  Yields 

predicted by SWAT were strongly correlated with fertilizer inputs and yields were 

insignificant at simulated low fertilization rates.   SWAT predicted wheat yields in Texas 

were not sensitive to changes in the default soil properties associated with soil series 

descriptions or elevation changes.  These results indicate that the SWAT N model is 

under-predicting N mineralization processes in the soil.  In addition, because the N 

model in SWAT is based on the very large pools of soil organic C and N, which are 40 

times larger than the active pool of N and C that the microbes utilize to cycle N, it is less 

sensitive to spatial variation of N mineralization.   

The robust correlation between wheat yield, rainfall, N mineralization, and 

fertilizer when using the SWAT-flush shows improved simulation of field N 

mineralization processes.  SWAT-flush yields were consistantly higher for each Texas 

field soil sample as would be expected with the additon of N mineralization resulting 

from microbial activity.  Furthermore, annual yield values, inter-annual variability, and 

spatial variability were consistantly greater from the SWAT-flush than from the SWAT 

model.  SWAT-flush naturally considers the spatial variability of soils over geographic 
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areas when using field soil data because as the C:N ratio of a soil varies, the 

MAC_WEON calculation will vary accordingly.  For example, spatial analyses of soil 

properties indicate that healthier soil is located at the north end of the field, which 

corresponds to lower elevations where the soil holds more moisture and microbial 

activity is increased.  The SWAT model predicts that this area has the lowest yield, when 

historically it has the highest yield.   

To better under-stand forcing factors controlling yields in the field, actual yields 

from the long-term experiment in OK were compared to precipitation, temperature, and 

varying fertilizer application rates.  There was no significant difference between actual 

yields at higher fertilization rates (> 22.4 kg N ha-1) or a significant correlation between 

yield and precipitation or temperature.  While gains in actual yields on a yearly basis 

were correlated with increasing fertilizer applications in most years, the response to 

fertilizer was highly variable from year to year.  The data indicate that fertilization rates 

exceeding 44.8 kg N ha-1 have no significant effect on wheat yield, signifying that, 

annually, there is no predictable yield or economic gain from fertilizing at high rates.  

Furthermore, NUE values were considerably low in the field which may be a 

contributing factor to N nonpoint pollution.  These data are noteworthy as model 

assumptions, as well as agronomist expectations, are that N fertilization and weather 

greatly affect annual grain yield.  The agricultural producers are not only losing money 

by applying fertilizer at rates that do not significantly affect yield, but also potentially 

threatening our environment.  
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Soil organic C values were used as a proxy for microbial activity and WEOC and 

WEON for the long-term wheat study in Lahoma, OK.  SWAT, SWAT-flush, SWAT-

One, and SWAT-C predicted yields were compared to actual yields.  SWAT-One did not 

predict average annual or yearly yield effectively.  Average annual actual from the long-

term study in OK and computed yields from SWAT, SWAT-flush, and SWAT-C were 

strongly correlated.  SWAT consistently under-predicted yield.  SWAT-flush and 

SWAT-C yield estimations were improved over basic SWAT and were closer to the 1:1 

relationship between average predicted and actual yield.   SWAT-C most closely 

estimates average yield according to calculated PBIAS values, while NSE calculations 

indicate that SWAT-flush is more capable of predicting average yield.  SWAT-flush 

tends to under-estimate yield at low N fertilizer levels and over-estimate yield at higher 

N fertilization.  SWAT-flush most accurately represented field NUE values.  The N 

removed in yield relative to N uptake and N volatilization were similar between SWAT-

C and SWAT-flush; however, nitrification, final NO3
- in soil, and the amount of water 

and N stress varied between the two models.   

None of the N cycling models were precise in detecting inter-annual variability 

in actual yields.  Annually, SWAT-flush and SWAT-C yields were correlated with 

actual yield, but showed a high degree of variability indicating that these submodels may 

not be reliable for predicting annual yield. 

Overall, this research indicates that SWAT-C or SWAT-flush provide the most 

accurate prediction of average wheat yield and can be used for wheat cropland yield 

assessment.  The equations used to model the complex biogeochemical N cycling 
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relationships in SWAT-flush are elegant in their simplicity, yet capture the spatial 

complexity associated with their processes and improved yield prediction by SWAT 

significantly. SWAT-C is substantially more complex than SWAT and SWAT-flush and 

may be preferred if yield simulation and C cycling output is desired.  However; none of 

the N-cycling routines included in the SWAT model predict annual variations in wheat 

yield with great certainty. 

Future studies will need to include long-term yield data for varying soils, crops 

and management practices in varying climates. Research may also include variations in 

the approach to data attainment and management for larger projects at the watershed 

scale.  While this study indicates that SWAT-C and SWAT-flush correctly predict 

average annual yield, inter-annual variability in yields may be better calculated by 

obtaining more detailed soils information.  Data acquisition may be challenging for large 

scale projects as it will not be practical to soil test large areas.  In addition to the 

impracticality of large-scale soil sampling, only a few laboratories throughout the United 

States offer the soil tests that the modified N model is based upon. Satellite imagery may 

play a critical role in further development for large-scale simulations. 
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