
MODEL SIMULATION OF CONVECTIVELY LOFTED ICE CONTRIBUTION TO

STRATOSPHERIC WATER VAPOR

A Thesis

by

WANDI YU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Andrew Dessler
Committee Members, Kenneth Bowman

Ping Yang
Robert Hetland

Head of Department, Ping Yang

December 2017

Major Subject: Atmospheric Sciences

Copyright 2017 Wandi Yu



ABSTRACT

Changes in the amount of stratospheric water vapor can affect both the chemistry and

climate in the stratosphere and troposphere. Convectively lofted ice near and above the

tropopause can evaporate and contribute to stratospheric water vapor. Here we conduct

several experiments using a trajectory model driven by two chemistry-climate models

(CCMs) to study the contribution of lofted ice to stratospheric water vapor. We show

that the largest amount of evaporation of convectively lofted ice occurs in the Tropical

Tropopause Layer (TTL) and above the Lagrangian cold point, and we find two key re-

gions for lofted ice evaporation: the Asian monsoon region during JJA (June, July, and

August) and the tropical western Pacific during DJF (December, January, and February),

regions where convection frequently occurs and the evaporation rate of lofted ice is high.

The distribution of net contribution is mainly determined by the degree of subsaturation in

the TTL, and the net contribution of lofted ice is then transported to the rest of the strato-

sphere by the general circulation. Over the 21st century, an increase of subsaturation leads

both the lofted ice evaporation rate and the net contribution to increase. It explains part of

the increase of stratospheric water vapor over the 21st century.
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NOMENCLATURE

TTL Tropical tropopause layer

DJF December, January, and February

JJA June, July, and August

CCM Chemistry climate model

GEOSCCM Goddard Earth Observing System Chemistry Climate
Model

WACCM Whole Atmosphere Community Climate Model

traj_GEOSCCM Trajectory model result driven by GEOSCCM

traj_WACCM Trajectory model result driven by WACCM

RCP representative concentration pathways

ppmv part per million by volume

AS Asian monsoon region

TWP Tropical western Pacific
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1. INTRODUCTION

1.1 Stratospheric water vapor

1.1.1 Importance of stratospheric water vapor

Stratospheric water vapor is important to stratospheric chemistry; it is a primary source

of OH hydroxyl radicals, an important oxidizing agent that participates in the control of

ozone [Evans et al., 1998; Stenke and Grewe, 2005]. The chemical and radiative charac-

teristics of stratospheric water vapor also make it an important factor for Earth’s climate

[Forster and Shine, 2002; Solomon et al., 2010; Dessler et al., 2013]. Studies of the re-

sponse of stratospheric temperature, water vapor, and ozone showed that an increase of

stratospheric water vapor could lead to loss of ozone, and thus cause stratospheric cooling

[Ramaswamy et al., 1996; de F. Forster and Shine, 1999; Dvortsov and Solomon, 2001;

Smith et al., 2001]. Model simulations also showed that an increase of stratospheric wa-

ter vapor could have a warming effect on surface temperature [de F. Forster and Shine,

1999; Shindell, 2001]. Furthermore, the long-term trend of stratospheric water vapor can

then impact stratospheric temperature and wind, and also impact atmospheric circulation

[Maycock et al., 2013].

1.1.2 Sources of stratospheric water vapor

The transition between the troposphere and stratosphere over the tropics is referred to

as the tropical tropopause layer (TTL) [Sherwood and Dessler, 2000; Fueglistaler et al.,

2009], which is located between 355 K and 425 K potential temperature, corresponding to

pressures between 150 hPa and 70 hPa, and altitudes between approximately 14 km and

18.5 km. Significant convective detrainment happens in this layer [Dessler, 2002], which

strong effects its composition and structure.
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Brewer [1949] suggested that most air enters the stratosphere and is dehydrated around

the tropical tropopause; it is then transported to mid-and-high-latitudes and Polar Regions.

The most important factor determining the stratospheric water vapor budget is dehydration

that occurs while passing through the TTL, which is largely controlled by the coldest

temperatures found there [Mote et al., 1996; Randel et al., 2004; Fueglistaler and Haynes,

2005]. Large-scale variability, like that from the quasi-biennial oscillation (QBO) and El

Nino-Southern Oscillation (ENSO), can affect TTL temperature, thereby influencing the

interannual variability of stratospheric water vapor [Geller et al., 2002; Scaife et al., 2003

Bonazzola and Haynes, 2004; Randel et al., 2004; Dessler et al., 2013; Tao et al., 2015].

Another important contributor to stratospheric water vapor is oxidation of methane

[Bates and Nicolet, 1950] in the upper stratosphere. The best estimate is that oxidation of

each methane generates between 1.5 and 2.0 molecules of water vapor [Jones et al., 1986;

Le Texier et al., 1988; Hansen and Robinson, 1989; Gunson et al., 1990; Dessler et al.,

1994] and the approximation dH2O/dCH4 = 2 is widely accepted.

Finally, convective overshooting brings cloud ice into the TTL, where it can evaporate

and moisten the stratosphere [Grosvenor et al., 2007; Liu et al., 2010a]. Importantly, this

convection bypasses the cold point, disconnecting stratospheric water from TTL tempera-

tures.

1.2 Deep convective clouds

The aim of this thesis is to study and quantify the moistening impact of convectively

lofted ice on stratospheric water vapor in two chemistry-climate models (CCMs). Ob-

servations have shown that convective clouds are ubiquitous in the TTL. High resolution

global satellite imagery of cloud brightness temperatures showed that convection pene-

trates up to 1.5 km above the tropopause [Gettelman et al., 2002]. Observations from the

precipitation radar on the Tropical Rainfall Measuring Mission (TRMM) showed that 5%
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of the deep convection could reach beyond the tropopause [Alcala and Dessler, 2002]. A

different analysis of TRMM data showed that 1.3% of convection systems could reach 14

km (∼ 355 K potential temperature) and 0.1% could reach 16.5 km (∼ 380 K potential

temperature) [Liu and Zipser, 2005]. A study analyzing 22 years of infrared satellite data

[Rossow and Pearl, 2007] showed that large convective systems could penetrate into the

TTL and lower stratosphere. Furthermore, radar data from the Global Precipitation Mis-

sion (GPM) observations also showed that deep convection could reach the tropopause and

beyond [Liu and Liu, 2016]. Calculations of mass detraining in the TTL suggest that con-

vection is detraining significant amounts of mass as high as 380 K potential temperature

[Dessler, 2002].

It has long been speculated that convective clouds in the TTL play an important role

in the stratospheric water vapor budget. Some early work focused on the hypothesis that

these clouds dehydrated the stratosphere. Early work done by Danielsen [1982] suggested

that radiative cooling at convective anvil top could serve as an explanation of the low

stratosphere water vapor mixing ratio. Sherwood and Dessler [2000] also suggested that

convective overshoot and mixing of dry convective air could dehydrate the TTL.

More recently, the preponderance of evidence has suggested that these clouds hydrate

the TTL and lower stratosphere. Kley et al. [1982] analyzed aircraft data and concluded

that convective storms provide water to stratosphere. A field campaign that took place in

Bauru, Brazil showed that convective overshooting clouds could hydrate the lower strato-

sphere and the enhanced H2O mixing ratio reached as high as 10 ppmv [Nielsen et al.,

2007]. Observations by aircraft over San Paulo, Brazil and later simulations showed

that deep convective systems could penetrate the stratosphere and moisten the air up to

420 K potential temperature [Chaboureau et al., 2007; Corti et al., 2008]. During the

SCOUT-AMMA campaign over Africa, several cases of convective overshoot were de-

tected by soundings, and the water vapor mixing ratio was found to be enriched by 1-3

3



ppmv [Khaykin et al., 2009; Liu et al., 2010b]. Study of the isotopic composition of

stratospheric water vapor implies that convective lofting and evaporation of cloud ice is

necessary to explain the distribution of stratospheric HDO, a stable isotopologue of water

[Moyer et al., 1996; Keith, 2000; Dessler et al., 2007]. Meanwhile, model simulations

combining convection and cloud ice microphysics processes showed that moistening by

convectively lofted ice improves comparison with observations [Schoeberl et al., 2014;

Ueyama et al., 2015].

1.3 Motivation and previous study

Processes in the TTL primarily control stratospheric water vapor, and there are two

processes that we focus on: dehydration caused by low TTL temperatures, and hydration

from the evaporation of convectively lofted cloud ice.

Most air entering the stratosphere experiences its final dehydration in the TTL, so

the concentration of water vapor entering the stratosphere from the TTL will be referred

as H2Oentry. Previous work analyzing the evaporation of lofted ice and its impact on

long-term trends in H2Oentry in chemistry-climate model (CCM) simulations was done by

Dessler et al. [2016]. They found that lofting of ice into the lower stratosphere moistened

the lower stratosphere, playing a key role in the long-term trend over the 21st century.

Although most evidence suggests that the evaporation of convectively lofted ice can

moisten the stratosphere, the details of ice evaporation in the TTL have yet to be studied.

In this thesis, we will extend Dessler et al. [2016]’s analysis and look in detail at the time

and space scales of overshooting convection and convective hydration of the TTL using

two CCMs.
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2. MODEL AND METHOD

2.1 The trajectory model

In all of the experiments in this thesis, a Lagrangian domain-filling forward trajec-

tory model is used [Schoeberl and Dessler, 2011; Schoeberl et al., 2012; Schoeberl et al.,

2013] to simulate the evolution of water vapor in the TTL and stratosphere. This is a La-

grangian model: the trajectory of individual parcels, instead of flow at fixed positions, is

calculated using simulated from global chemistry climate models. The experiments uses

a domain filling strategy: parcels are initialized every day in the TTL, above the level

of zero radiative heating in the tropics, so parcels tend to ascend through the cold point

tropopause (minimum temperature) where they are dehydrated. The location where a par-

cel go through the coldest temperature along its trajectory is designated the Lagrangian

cold point for that parcel. As the model runs, the stratosphere fills with parcels, allowing

us to investigate the three-dimensional structure of tracer fields and the associated mass

transport.

Trajectories are computed using the TRAJ3D trajectory model [Bowman, 1993; Bow-

man and Carrie, 2002]. Vertical velocities in isentropic coordinates are computed from

6-hourly average diabatic heating rates. Horizontal velocities come from 6-hourly instan-

taneous two-dimensional horizontal wind fields.

We drive the trajectory model with meteorological fields from two chemistry-climate

models (CCMs). One is the Goddard Earth Observing System Chemistry Climate Model

(GEOSCCM), which couples the GEOS-5 general circulation model [Rienecker et al.,

2008; Molod et al., 2012], with a comprehensive stratospheric chemistry model. This

model has 72 vertical levels, with horizontal resolution 2◦latitude by 2.5◦longitude. In this

thesis, we use a simulation driven by the Representative Concentration Pathway (RCP) 6.0
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scenario for greenhouse gases [Van Vuuren et al., 2011], and the A1 scenario for ozone

depleting substances [World Meteorological Organization, 2011] from 1998 to 2099. The

trajectory experiments driven by GEOSCCM output will be referred as traj_GEOSCCM

runs.

We also drive the trajectory model with meteorological fields from the Whole Atmo-

sphere Community Climate Model (WACCM), a version of the Community Earth System

Model (CESM) [Hurrell et al., 2013; Marsh et al., 2013]. We use a specified chemistry

version of WACCM (SC-WACCM), which is a simplified version where ozone and other

constituents, as well as short wave radiation, are prescribed from earlier WACCM simula-

tions [Smith et al., 2014]. The resolution of SC-WACCM is 1.9◦latitude by 2.5◦longitude

on 66 vertical levels. In this thesis, we use a simulation driven by the RCP 8.5 greenhouse

gas scenario [Van Vuuren et al., 2011], from 1955 to 2100. The experiments driven by

WACCM output will be referred as traj_WACCM runs.

The experimental design is similar to that used by Dessler et al. [2016]: each day

1350 parcels are released at 370 K (∼16 km) on an equal area grid between 60◦N and

60◦S. Parcels are removed if they descend to altitudes below 250 hPa (∼10 km), or if they

ascend to altitudes above either 0.001 hPa or 5000 K. The time step of the trajectory model

is 45 minutes.

Each parcel is initialized with a water vapor mixing ratio of 200 parts per million by

volume (ppmv). The water vapor mixing ratio is conserved along the trajectory path un-

less the parcel exceeds a relative humidity (RH) threshold; when that happens, water vapor

is instantly removed to limit the parcel to that threshold RH. We set the RH threshold to

be consistent with the corresponding CCM’s RH threshold. In the GEOSCCM [Molod,

2012], condensation occurs below 100% RH, so in traj_GEOSCCM experiments, we set

the RH threshold to be 80% (referred to as s80 runs). In WACCM, condensation oc-

curs 100% RH [Neale et al., 2010; Marsh et al., 2013], so we set the RH threshold in
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traj_WACCM experiments to 100% (referred to as s100 runs).

The loss rate of methane comes from the photochemical loss rates in the Goddard two-

dimensional model [Fleming et al., 2007; Schoeberl and Dessler, 2011]. Water vapor from

methane oxidation is added to parcels every 6 hours; here we use the widely accepted ap-

proximation that each molecule of methane oxidized adds two molecules of H2O [Gunson

et al., 1990; Dessler et al., 1994].

When a parcel goes through a convective cloud region, lofted ice will be added. We

use 6-hourly three-dimensional anvil ice data from GEOSCCM – which is ice only from

convective events – and 6-hourly three-dimensional cloud ice data from WACCM – which

includes both convective and in situ clouds – in our trajectory simulations. Using linear

interpolation in both time and space, the cloud ice field is interpolated to the parcel’s tra-

jectory each time step. The evaporation of lofted ice is complete, and the evaporated lofted

ice is immediately added to the parcel water vapor content, until the parcel encounters the

relative RH threshold. For comparison, we also perform several experiments with the same

settings, except that we do not add lofted ice in these experiments (referred to as no-ice

runs while the experiments of adding lofted ice is referred to as ice runs).

To quantify the contribution of lofted ice, we calculate the lofted ice evaporation rate

as the average difference between H2O before and after the ice evaporation step of the tra-

jectory model. Multiplying this by the number of steps per day, 32, yields the average ice

evaporation rate per day. We will also calculate the net contribution of lofted ice by sub-

tracting water vapor mixing ratio in the ice runs from the corresponding no-ice runs. The

ice evaporation rate is an instantaneous variable showing the source of evaporated lofted

ice, while the net contribution illustrates the total contribution from lofted ice to strato-

spheric water vapor. These quantities differ because some of the ice evaporate included in

the former statistic can be subsequently dehydrated out and won’t affect the latter.

We compare two time periods in our experiments: January 1 2000 through December
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31 2009, and January 1 2089 through December 31 2098. We drop the first year of each

model run to ensure that spin-up issues don’t affect our results.

2.2 Temperatures and lofted ice fields in the CCMs

The horizontal distribution of temperatures in the CCMs during 2000-2009 and the

difference between them at 85 hPa, a level near the top of the TTL, is shown in fig. 2.1.

In both CCM runs, the coldest temperatures are found over the tropical western Pacific

and South America during DJF (December, January and February) and the tropical cold

centers are over the Asian monsoon region and the western Pacific during JJA (June, July,

and August).
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Figure 2.1: Tropical temperature field at 85 hPa over 2000-2009 in (a-b) GEOSCCM, and
in (c-d) WACCM; (e-f) The difference between GEOSCCM and WACCM temperature
field. Left panels show JJA and right panels show DJF.
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The horizontal distribution of DJF anvil ice mixing ratio in GEOSCCM output in the

TTL is shown in fig. 2.2a, c and e. Anvil ice is mainly located within the tropics (30◦N to

30◦S), and has similar pattern on different levels. Centers of anvil ice are found above the

tropical western Pacific, South America, and South Africa.

The vertical distribution in fig. 2.2g shows that the amount of anvil ice decreases with

height, with almost no ice over 70 hPa. The distribution pattern of cloud ice in WACCM,

shown in fig. 2.2b, d, f, and h is similar to that in GEOSCCM, while the amount of cloud

ice is much higher, as a result of containing both lofted ice and ice formed in situ.
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Figure 2.2: (Left panels) GEOSCCM anvil ice mixing ratio, and (right panels) WACCM
cloud ice mixing ratio during DJF over 2000-2009, at (a,b) 85 hPa, (c,d) 100 hPa, (e,f) 118
hPa, and (g,h) global average vertical distribution by latitude and pressure.

Cloud ice in JJA is shown in fig. 2.3. Anvil ice during JJA in GEOSCCM output is also

found throughout the tropics, and mainly located over India, and the Indian Ocean (regions

around the Asian monsoon), and extending into the tropical western Pacific. Cloud ice

in WACCM output during JJA is mainly over the Asian monsoon region. The vertical

distribution of ice in GEOSCCM and WACCM, shown in fig. 2.3g and h, also decreases
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with height, and the majority of cloud ice is located within the tropical area and below 60

hPa. In general, the average cloud ice mixing ratio and cloud top altitude during JJA is

lower than during DJF.
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Figure 2.3: (Left panels) GEOSCCM anvil ice mixing ratio, and (right panels) WACCM
cloud ice mixing ratio during JJA over 2000-2009, at (a,b) 85 hPa, (c,d) 100 hPa, (e,f) 118
hPa, and (g,h) global average vertical distribution by latitude and pressure.

During both JJA and DJF, there are clouds in the polar regions in WACCM. These are
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clouds formed in situ due to very cold temperatures found there and may act to dehydrate

the polar regions if they sediment out. This process is not relevant to what we are studying

and does not influence our results.

The cloud ice data from both CCMs agrees well with satellite and radar observations.

Gettelman et al. [2002] showed that the amount of clouds from convective overshoots is

higher during DJF, especially over the central and western Pacific in February and over

the Asian Monsoon in August. Similar conclusions have been drawn by Rossow and Pearl

[2007], suggesting that convective penetrating clouds are concentrated over the eastern

Indian Ocean and western Pacific Oceans, over the western end of South Pacific Con-

vergence Zone, the eastern end of the Pacific Intertropical Convergence Zone, and over

South America and South Africa. Liu and Zipser [2005] suggested that most convective

overshooting events occur over land, especially over central Africa, Indonesia, and South

America.

2.3 Assumption of convective cloud top in traj_WACCM

Analysis of the traj_WACCM is more complicated than for traj_GEOSCCM because

its cloud ice fields include both convectively lofted ice as well as ice formed in situ in the

TTL. Clouds formed in situ condense local TTL water, so their subsequent evaporation is

not a net source of water. So allowing all of the cloud ice in the traj_WACCM to evaporate

may add too much water to the TTL. To account for this, we define a convective cloud top

and assume cloud ice below this level is convectively lofted cloud ice that evaporates and

hydrates the TTL, while ice above this level is formed in situ and whose evaporation does

not hydrate the TTL.

To determine the altitude of convective cloud top, several traj_WACCM experiments

have been done. In each one, we constrain ice evaporation below a particular pressure

level. Fig. 2.4a shows tropical average water vapor mixing ratio from WACCM and from
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various trajectory runs over the 2000-2009 period, indicating that allowing ice below 90

hPa to evaporate provides the closest match to the WACCM profile. Thus, in the following

experiments driven by WACCM output we only allow cloud ice to evaporate at altitudes

below 90 hPa. This threshold applies to runs over the period 2000-2009.
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Figure 2.4: Tropical average H2O mixing ratio in several traj_WACCM s100 run, and
tropical average H2O mixing ratio in WACCM output over 2000-2009 (a), and over 2089-
2098 (b). In these experiments, cloud ice is allowed to evaporate below a set level: 90 hPa,
80 hPa, 70 hPa, and 60 hPa.

Our thesis also concerns the changes of evaporation rate and net contribution of lofted

ice over the 21st century. Almost all models predict that, over the 21st century, the tropo-

sphere gets warmer and the stratosphere gets colder, accompanied by a warmer and high

cold point tropopause [Santer et al., 2003; Gettelman et al., 2010]. Because of this, the

cutoff altitude where we assume ice changes from convective to in situ should increase

over the 21st century, and we need to define a second convective cloud top for the end of
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the century. Fig. 2.4b shows that over 2089-2098, the closest match to the WACCM is the

experiment that allows lofted ice to evaporate below 80 hPa, so this is the convective cloud

top we assume in the traj_WACCM runs covering the 2089-2098 period.

2.4 Convective contrast in trajectory no-ice experiments

The evaporation of convectively lofted ice needs a subsaturated environment, while the

degree of subsaturation is connected to the TTL temperatures. This means that the amount

of subsaturation is a bridge that connects temperature and the evaporation of lofted ice, and

we need to know more precisely how much evaporated ice can be added. To better quantify

the degree of subsaturation, we define the convective contrast before adding evaporated

lofted ice as:

Convective contrast = MRs
H2O

∗RHthresh −MRH2O (2.1)

Here MRs
H2O

is the saturated H2O mixing ratio and MRH2O is the H2O mixing ra-

tio in the no-ice trajectory experiments; RHthresh is the RH threshold we use, 80% in

traj_GEOSCCM and 100% in traj_WACCM. Dessler and Sherwood [2004] presented this

concept, suggesting that the contrast between the abundance of H2O and the local satura-

tion H2O mixing ratio is important in determining the amount of convective moistening

in mid-latitude summer. We will test this conclusion in the trajectory model to evalu-

ate whether it helps us understand the model’s behavior. The convective contrast at 85

hPa is shown in fig. 2.5a-d. Although temperatures in WACCM are much lower than in

GEOSCCM, the values of convective contrast in the models are similar. The distribution

of convective contrast is consistent with the temperature field in CCMs: cold regions are

nearly saturated and have low convective contrast, and warm regions are dry and have high

convective contrast. The correspondence between temperature and convective contrast is

not linear but exponential, so a warm area can have an extremely large convective contrast.
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The areas we are interested in are the convective cloud centers in each season: the

Asian monsoon region (10◦N-30◦N, 50◦E -100◦E) during JJA, and the tropical western

Pacific (10◦S-10◦N, 100◦E -160◦W) during DJF. We notice that they are also regions with

low convective contrast (fig. 2.5). The convective contrast over the Asian monsoon dur-

ing JJA is 2.89 (in traj_WACCM)-3.84 (in traj_GEOSCCM) ppmv. This is much higher

than the convective contrast over the tropical western Pacific during DJF, which is 1.52 (in

traj_WACCM)-1.65 (in traj_GEOSCCM) ppmv. During JJA, the TTL has larger moisten-

ing potential from the evaporation of convectively lofted ice than during DJF.
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Figure 2.5: Convective contrast at 85 hPa over 2000-2009 in (a, b) traj_GEOSCCM, and
in (c, d) traj_WACCM; (e-f) The difference between traj_GEOSCCM and traj_WACCM
convective contrast. Left panels show JJA and right panels show DJF.

Comparing the convective contrast between traj_GEOSCCM and traj_WACCM, we

find that although the convective contrast in traj_GEOSCCM is lower than that in

traj_WACCM over some tropical regions, it is higher over these two key regions (the Asian
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monsoon region during JJA, and the tropical western pacific during DJF). This means that

the evaporation of lofted ice in traj_GEOSCCM has a greater potential to moisten the

stratosphere.
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3. LOFTED ICE EVAPORATION AND CONTRIBUTION

We now quantify the impact of lofted ice on lower stratospheric water vapor. To begin,

we define H2Oentry, the humidity of air entering the stratosphere, as the tropical (30◦N

to 30◦S) average water vapor mixing ratio at 85 hPa, a level near the top of the TTL,

so both dehydration and evaporation of lofted ice above this level will have a relatively

small impact on water vapor. Dessler et al. [2016] showed that adding lofted ice into the

trajectory model can improve the simulation of both the average of H2Oentry over the 21st

century and the change in H2Oentry over 21st century.

In this thesis, our focus is on the monthly variability of water vapor, not the absolute

value, so we subtract the average seasonal cycle from monthly mean H2Oentry to get the

monthly anomaly, ∆H2Oentry. Fig. 3.1 shows time series of ∆H2Oentry from the trajec-

tory models and from the CCMs, indicating that ∆H2Oentry in the CCMs is well simu-

lated by both the trajectory runs with and without ice and for both traj_GEOSCCM and

traj_WACCM experiments. The correlation coefficients between trajectory ∆H2Oentry

and CCM ∆H2Oentry are shown in Table 3.1. All the four correlation coefficients pass a

significance test at the 0.95 level.
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Figure 3.1: ∆H2Oentry from 2001 to 2009 in the trajectory model no-ice runs and ice runs
results, and CCMs. Monthly anomaly ∆H2Oentry is calculated by subtracting monthly cli-
matology from monthly mean H2Oentry, and H2Oentry is the tropical average H2O mixing
ratio at 85 hPa. (a) shows traj_GEOSCCM s80 and GEOSCCM, (b) shows traj_WACCM
s100 and WACCM. ∆H2Oentry is monthly anomaly of the tropical average water vapor
mixing ratio at 85 hPa.

Table 3.1: Correlation coefficients (r) and root mean square errors (rms error) between
trajectory model ∆H2Oentry and CCM ∆H2Oentry over 2001-2009. ∆H2Oentry is the
monthly anomaly of the tropical average water vapor mixing ratio at 85 hPa.

traj_GEOSCCM s80 traj_WACCM s100

r rms error r rms error

no-ice run 0.918 0.095 0.827 0.122

ice run 0.930 0.136 0.864 0.177

In the no-ice runs, the only factor that determines ∆H2Oentry is temperature. The

agreement between the CCMs and the no-ice runs shows that temperature explains most
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of the variance of ∆H2Oentry, a result in agreement with previous analyses [Brewer, 1949;

Mote et al., 1996; Randel et al., 2004; Fueglistaler and Haynes, 2005; Schoeberl and

Dessler, 2011; Dessler et al., 2014]. In the ice runs, evaporation of convectively lofted

ice also influences ∆H2Oentry. Ice runs have slightly higher correlation coefficients with

CCM than no-ice runs have with CCM. The differences between the no-ice and the ice

runs are small, suggesting that evaporation of convectively lofted ice plays a small role

on interannual time scales. Dessler et al. [2016] reached this same conclusion, but also

showed that on centennial time scales lofted ice plays a much more important role. The

RMS errors in the ice runs are higher than in the no-ice runs, as a result of overestimat-

ing the peak-to-peak variation. A possible reason for the overestimate is that we do not

consider microphysical process and allow the lofted ice to evaporate immediately.

RMS errors in traj_GEOSCCM runs are lower, and the correlation coefficients higher,

than in traj_WACCM runs, indicating that the trajectory model does a better job simulating

the GEOSCCM field than it does for WACCM.

3.1 Lofted ice evaporation rate

Previous studies showed that the evaporation of lofted ice contributes to the strato-

spheric water vapor mixing ratio [Kley et al., 1982; Chaboureau et al., 2007; Corti et al.,

2008; Khaykin et al., 2009; Liu et al., 2010b; Schoeberl et al., 2014; Ueyama et al., 2015;

Dessler et al., 2016]. Studying the distribution of lofted ice evaporation rate could help

us understand where the contributions come from. In this section, we are interested in the

lofted ice evaporation rate at 85 hPa (an average of evaporation events between 93 hPa and

79 hPa), a level near the top of the TTL, and at 100 hPa (an average of evaporation events

between 93 hPa and 109 hPa ), a level near the cold point tropopause (level of minimum

temperature), to have a thorough understanding of lofted ice evaporation.

Fig. 3.2 shows that the distribution of the traj_GEOSCCM lofted ice evaporation rate
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in the TTL is similar to the lofted ice field in the GEOSCCM (see also fig. 2.2 and 2.3).

Overall, the horizontal distribution of the evaporation rate is similar at the 85 hPa and

100 hPa levels, with the evaporation rate decreasing with altitude, as expected. Lofted ice

evaporates throughout the tropics, and the highest evaporation rate is located in the mon-

soon region over Asia during JJA, and over tropical western Pacific and South America

during DJF, which are exactly the regions where the lofted ice is abundant. The vertical

distribution of lofted ice and the evaporation rate also have some similarities: they are

concentrated within the tropics below 60 hPa, and they decrease with latitude and height;

the summer hemispheres in both seasons have larger amounts of lofted ice, and a greater

evaporation rate (Fig. 3.2 e and f).
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Figure 3.2: Our estimate of lofted ice evaporation rate (ppmv/day) in the traj_GEOSCCM
s80 experiment over (a, c and e) 2000-2009 JJA, and (b, d and f) 2000-2009 DJF. (a) and
(b) show horizontal distribution at 85 hPa, (c) and (d) show horizontal distribution at 100
hPa, and (e) and (f) show vertical distribution by latitude and pressure. Contours show
cloud ice mixing ratio in the GEOSCCM (ppmv).

The rate of evaporation is determined by the amount of ice available to evaporate, but

it is also constrained by the convective contrast, which could be revealed by the contrast of

lofted ice evaporation rates between different seasons. As we mentioned in chapter 2, the

lofted ice mixing ratio is high during DJF (0.007 ppmv, tropical average at 85 hPa) than

during JJA (0.005 ppmv, tropical average at 85 hPa), but the convective contrast, especially

the convective contrast over the tropical western Pacific (which is the DJF lofted ice center)

is extremely low (Fig. 2.5b). As a result, evaporation of convectively lofted ice over this

region is limited, and the evaporation rate during DJF (0.058 ppmv/day, tropical average
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at 85 hPa) is lower than during JJA (0.069 ppmv/day, tropical average at 85 hPa).

Fig. 3.3 shows that the distribution of the traj_WACCM lofted ice evaporation rate in

the TTL is also similar to the lofted ice field in WACCM. The evaporation rate at different

levels looks roughly similar, although the magnitude decreases with altitude. We find high

evaporation rate areas over the Asian monsoon region during JJA, and over a large area

around the tropical western Pacific during DJF. Due to the convective cloud top limit, the

lofted ice evaporation rate is zero above 90 hPa. Despite this fact, the vertical distribution

of lofted ice mixing ratio and its evaporation rate are also consistent. Also, evaporation

over the polar regions is probably not a real addition of water from convection – it results

from our classification of all clouds at altitudes below 90 hPa being of convective origin.
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Figure 3.3: Our estimate of lofted ice evaporation rate (ppmv/day) in the traj_WACCM
s80 experiments in (a, c and e) JJA 2000-2009, and in (b, d and f) DJF 2000-2009. (a)
and (b) show the horizontal distribution at 85 hPa, (c) and (d) show horizontal distribution
at 100 hPa, and (e) and (f) show vertical distribution by latitude and pressure. Contours
represent cloud ice mixing ratio in WACCM, because of the convective cloud top we set,
90 hPa-cloud is shown in 85 hPa plots.

As with the traj_GEOSCCM, since the lofted ice is mainly over the Asian monsoon

regions during JJA, and over the tropical western Pacific during DJF, the convective con-

trast over these two regions controls the amount of ice evaporation. Although the lofted

ice mixing ratio in WACCM during DJF (0.19 ppmv, tropical average at 85 hPa) is much

higher than during JJA (0.07 ppmv, tropical average at 85 hPa), the lofted ice evapora-

tion rates are similar during the two seasons (0.078 ppmv/day, tropical average at 85 hPa

in DJF, and 0.079 ppmv/day, tropical average at 85 hPa in JJA) because the convective

contrast is low during DJF (section 2.4) and this constrains the evaporation of lofted ice.
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Furthermore, Our assumptions in section 2.4 is validated, that since the convective contrast

over key regions is higher in traj_GEOSCCM, the evaporation rate in traj_GEOSCCM is

higher than in traj_WACCM.

To validate the importance of convective contrast to the evaporation rate, we also

performed experiments to judge whether the evaporation is ’temperature limited’, which

means that the value of the evaporation rate is limited by convective contrast, or ’ice lim-

ited’, which means that the evaporation rate is limited by the amount of lofted ice. We

doubled the amount of lofted ice, and we find that in most part of the TTL around the

lofted ice centers, the value of evaporation rate of lofted ice changes little with the in-

crease of lofted ice mixing ratio, indicating that the evaporation rate is mainly temperature

limited. In the edge of TTL near mid-latitudes, including the northern part of the Asian

monsoon regions in the traj_GEOSCCM, the convective contrast is high, and the lofted ice

evaporation rate is ’ice limited’.

3.2 Lofted ice net contribution to stratospheric water vapor

As parcels ascend through the TTL, lofted ice can evaporate into the air and increase

the water vapor mixing ratio. At the same time, the moister air has a higher chance of

saturating and undergoing additional dehydration. So, the rate of evaporation does not

tell us how much of that water eventually makes it into the stratosphere. Rather, the net

contribution of lofted ice to stratospheric water vapor is also determined by the temperature

history of the parcel after its encounter with convection.

We estimate the net contribution of lofted ice as the difference between the H2O mix-

ing ratio in the run with lofted ice evaporation and the run without. Since parcels enter the

stratosphere in the tropics and the evaporation of lofted ice mainly happens in the TTL,

we focus first on the net contribution of lofted ice in the tropics. In the traj_GEOSCCM

experiments, runs with ice are moister everywhere through the tropics (Fig. 3.4). During
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JJA, lofted ice primarily affects water vapor over the Indian Ocean and northern India,

regions where both the lofted ice mixing ratio (Fig. 3.4a, contours) and the convective

contrast (Fig. 2.5a) are relatively high. During DJF, the center of high net contribution

is over Indonesia, a region of both high convective contrast (Fig. 2.5b) and high lofted

ice (Fig. 3.4b, contours), and the Indian Ocean, a region of high convective contrast (Fig.

2.5b), but not obvious lofted ice (Fig. 3.4b, contours).
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Figure 3.4: The traj_GEOSCCM s80 run result of average net contribution of lofted ice
over (a, c) 2000-2009 JJA and (b, d) 2000-2009 DJF. Net contribution of lofted ice is the
H2O mixing ratio difference between the trajectory ice run and the no-ice run. (a) and
(b) show horizontal distribution at 85hPa, and (c) and (d) show the vertical distribution by
latitude and pressure. Contours show cloud ice mixing ratio in the GEOSCCM.

In traj_WACCM experiments, the runs with ice also moisten everywhere throughout

the tropics (Fig. 3.5). During JJA, the net contribution of lofted ice occurs mainly over the

Indian Ocean and the northern Pacific, which are the regions of relatively high lofted ice

mixing ratio and relatively high convective contrast. During DJF, the net contribution is
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also distributed throughout the tropics, except over western Pacific, sharing a distribution

similar to the convective contrast (Fig. 2.5) but substantially different from the lofted ice

mixing ratio (Figs. 2.2 and 2.3).
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Figure 3.5: The traj_WACCM s100 run result of average net contribution of lofted ice
over (a, b) 2000-2009 JJA and (c, d) 2000-2009 DJF. Net contribution of lofted ice is the
H2O mixing ratio difference between the trajectory ice run and the no-ice run. (a) and (b)
show horizontal distribution at 85 hPa, and (c) and (d) show the vertical distribution by
latitude and pressure. Contours show cloud ice mixing ratio in the WACCM, because of
the convective cloud top we set, 90 hPa-cloud is shown in 85 hPa plots.

The horizontal distribution of net contribution looks ’better-mixed’ than the evapora-

tion events, and shares more similarities with the distribution of convective contrast rather

than lofted ice mixing ratio. The horizontal air motion near the two key regions of lofted

ice evaporation is rapid [Fueglistaler et al., 2009], and the large scale anticyclones over

the Asian monsoon region and the tropical western Pacific transport air to other part of the

TTL [Hatsushika and Yamazaki, 2003; Garny and Randel, 2016]. Parcels moistened by
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lofted ice over key regions are advected throughout the TTL.

To have a better understanding of the horizontal transport of the net effect of

lofted ice, we performed several regional evaporation tests where evaporation of

lofted ice is allowed only in key regions: the Asian monsoon region (referred to as

traj_GEOSCCM_AS runs and traj_WACCM_AS runs) or the tropical western Pacific (re-

ferred to as traj_GEOSCCM_TWP runs and traj_WACCM_TWP runs). The net contri-

bution of these regional evaporation tests is shown in Fig. 3.6. The evaporated lofted ice

over both the Asian monsoon region and the tropical western Pacific can be transported

throughout the tropics. During JJA, the evaporated lofted ice increases water vapor in the

northern hemisphere. It is then transported eastward through the Middle East and North

Africa and reaches the Atlantic Ocean. During DJF, the entire tropics is influenced by

lofted ice evaporation above the tropical western Pacific, especially the Indian Ocean. In

conclusion, the evaporated lofted ice can contribute to water vapor mixing ratio globally,

but most of the contributions are near the evaporation key regions, only small amount of

evaporated lofted ice is transported to regions far away.
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Figure 3.6: The net contribution of lofted ice in four regional evaporation tests at 85
hPa. (a) traj_GEOSCCM_AS s80 run, during JJA; (b) shows in traj_GEOSCCM_TWP
s80 run, during DJF; (c) shows in traj_WACCM_AS s100 run, during JJA; (d) shows in
traj_WACCM_TWP s100 run, during DJF. Magenta contours indicate the regions where
lofted ice is allowed to evaporate in each panel.

Experiments that double the amount of lofted ice prove that the net contribution of

lofted ice is also temperature limited in most regions of the TTL in both traj_GEOSCCM

and traj_WACCM. Regions with low convective contrast have air that is near saturated,

and remote ice evaporation transported to that region can seldom increase water vapor; re-

gions with high convective contrast has less saturated air, and can be moistened by remote

evaporated air transported here. The Indian Ocean region during both boreal summer and

winter, and the northern Pacific during JJA, are temperature limited regions with both high

lofted ice abundance and high convective contrast, so lofted ice can moisten these regions

most. In addition, few regions far from the lofted ice centers experience less frequent

convection and are ice limited.

Double lofted ice experiments also show that net contribution during DJF is more tem-

perature limited than during JJA, because of the TTL temperature during DJF is lower than
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during JJA. Doubling the lofted ice mixing ratio, TTL average net contribution increases

by 3.9% (in traj_GEOSCCM) or 1.8% (in traj_WACCM) of its original value during JJA,

and increases 2.2% (in traj_GEOSCCM) or 1.2% (in traj_WACCM) of its original value

during DJF.

Although convection and cloud ice evaporation mainly occurs in the TTL, their impact

can be transported throughout the stratosphere and mid-latitudes by the general circula-

tion (fig. 3.4c and d, fig. 3.5c and d). The net contribution of lofted ice in the TTL is

larger during JJA than during DJF, and the seasonal variability of the net contribution on

TTL water vapor from lofted ice is imprinted in the stratosphere, like the canonical tape

recorder. This is why the vertical distribution of the net contribution of lofted ice shown in

fig. 3.4c and d and fig. 3.5c and d shows vertical layering of low and high contribution. As

a result of the general circulation, the net contribution of lofted ice in mid-latitudes also

shows a layered structure. This layered structure extends through the Arctic during both

DJF and JJA. In Antarctica, low temperature cause local dehydration, which is primarily

responsible for the structure of the water vapor distribution there.

3.3 Comparison of lofted ice contribution from different layers

To better quantify the altitude where evaporation of lofted ice has the largest contribu-

tion, we divide the TTL into four isentropic layers: between 370 K and 380 K, between

380 K and 390 K, between 390 K and 400 K, and above 400 K. As the lowest layer we

choose 370 K to 380 K because parcels are initiated at 370 K in our experiments, so our

model does not tell us anything about convection at lower altitudes. In addition, it is un-

likely that lower altitude convection will have a big impact on stratospheric water vapor

[Dessler et al., 2007].

We run four level-dependent evaporation experiments where we only allow lofted ice

to evaporate in one of these layers. The runs are named for the layers where ice is allowed
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to evaporate; for example, the runs where lofted ice can only evaporate when parcels are

between the 370 K and 380 K isentrope are called the evap_370_380 runs.

The tropical average lofted ice mixing ratio in the four layers and the ratio of their

mass fraction to total lofted ice in the GEOSCCM is shown in Table 3.2. As shown in figs.

2.2 and 2.3, the amount of cloud ice decreases with potential temperature: ∼85% of lofted

ice is between 370 K and 380 K, and only a few clouds penetrate above 400 K.

The tropical average lofted ice mixing ratios in the four layers and their proportions

to total lofted ice in WACCM are also shown in Table 3.2. Values are only estimates

for the WACCM given that we assume any ice at altitudes below 90 hPa originates from

convection and any ice above is formed in situ. This is why the amount of lofted ice above

390 K is nearly zero. Because of this, the lofted ice between 370 K and 380 K accounts

for ∼99% of total lofted ice, with lofted ice between 380 K and 390 K accounting for the

rest.

Table 3.2: Tropical average lofted cloud ice mixing ratio and the mass fraction of total
lofted ice between 370 K and 400 K in CCMs in that layer averaged over 2000 to 2009:
370 K to 380 K, 380 K to 390 K, 390 K to 400 K, and above 400 K (ppmv). As previously
discussed, convective clouds in WACCM are assumed to be zero above 90 hPa.

GEOSCCM WACCM

mixing ratio (ppmv) fraction mixing ratio (ppmv) fraction

370-380 0.0189 85.57% 0.1974 98.23%

380-390 0.0025 11.34% 0.0036 1.77%

390-400 0.0006 2.53% <1e-6 ∼0

400+ 0.0001 0.56% <1e-14 ∼0

Fig. 3.7a shows the tropical average net contribution of lofted ice in the four
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traj_GEOSCCM level-dependent evaporation runs and in the ice run where ice in all levels

is allowed to evaporate. The spatial patterns of the net contribution in all level-dependent

evaporation experiments are similar as shown in section 3.2. In the level-dependent evapo-

ration runs, above the evaporation layer the net contribution decreases with height, because

parcels are being exposed to cold temperatures and some are being dehydrated. The annual

average of the net contribution above 70 hPa is similar for all layers, because convective

cloud can not penetrate into that altitude, and because temperature here is high and the

already evaporated lofted ice would not dehydrate away above 70 hPa. As a result, the

net contribution on a certain level above 70 hPa can represent the total net contribution to

stratospheric water vapor in a certain experiment.
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Figure 3.7: Tropical net contribution of lofted ice in four level-dependent evaporation runs
and in the ice run from 2000 to 2009. Level-dependent evaporation experiments contain:
the evap_370_380 run, the evap_380_390 run, the evap_390_400 run, the evap_400+ run.
(a) shows traj_GEOSCCM result, (b) shows traj_WACCM result.
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Table 3.3 shows the net contribution of lofted ice on 52-hPa water vapor. Table 3.3 also

contains the proportion of net contribution in each level-dependent experiment to total net

contribution of four level-dependent evaporation experiments. The sum of lofted ice net

contribution of individual layers is 29.74% (in traj_GEOSCCM) or 47.62% larger than in

the run that allows lofted ice evaporating in all layers, indicating that same air is less likely

rehydrated in the run that allow lofted ice evaporating in all layers.

Table 3.3: Tropical net contribution of lofted ice in several trajectory runs over 2000-2009
at 52 hPa (ppmv) and their proportion to total net contribution. Here total net contribution
is the sum of net contribution in four level-dependent evaporation experiments.

traj_GEOSCCM s80 traj_WACCM s100

∆H2O (ppmv) fraction ∆H2O (ppmv) fraction

evap_370_380 run 0.365 20.74% 0.365 35.88%

evap_380_390 run 0.512 29.09% 0.580 57.07%

evap_390_400 run 0.460 26.11% 0.070 6.90%

evap_400+ run 0.423 24.03% 0.002 0.14%

ice run 1.359 77.08% 0.681 67.74%

Adding lofted ice in these four layers moistens the stratosphere by ∼0.4–0.5 ppmv.

This means that although the amount of lofted ice and the degree of subsaturation differs

between the layers, the net contribution from each layer is similar. Evaporated cloud ice

from below the cold point tropopause (in the evap_370_380 run), contributes 20.74% of

the total net contribution to stratospheric water vapor, which is the least among four level-

dependent evaporation experiments, because parcels tend to experience further dehydra-

tion and lose water vapor. The tropical average H2O mixing ratio of the evap_380_390 run
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result is highest among these 4 experiments by contributing 29.09% of net contribution,

indicating that the layer just above the tropopause, makes the greatest contribution. This

is also consistent with the result of Dessler et al. [2007].

Since there is almost no lofted ice above 390 K, the net contributions in traj_WACCM

evap_390_400 and evap_400+ experiments are near zero, and do not have a clear distri-

bution pattern. The pattern of the net contribution of lofted ice in other traj_WACCM

level-dependent evaporation runs is consistent with the ice run shown in section 3.2. Fig.

3.7b shows that in the TTL, hydration from lofted ice and dehydration when crossing the

cold region cause the net contribution of lofted ice in all traj_WACCM experiments to first

increase and then decrease with height. The net contribution is consistent in all levels,

above 70 hPa in the stratosphere.

In the traj_WACCM, evaporated cloud ice from the 370K to 380K layer has a limited

impact on stratospheric water vapor and only moistens the stratosphere by 0.365 ppmv,

35.88% of the total net contribution. The contribution from lofted ice between 380 K and

390 K, is largest in traj_WACCM, 57.07%, because lofted ice evaporating here encoun-

ters less subsequent dehydration and therefore makes a larger contribution to stratospheric

water vapor. The result of the traj_WACCM runs also shows that, although the amount of

lofted ice below the cold point tropopause accounts for a great proportion to total lofted

ice, the lofted ice above the cold point tropopause is what acts to moisten the stratosphere.

Generally, although convectively lofted clouds penetrate the tropopause infrequently,

the small amount of lofted ice above the cold point tropopause plays a key role in deter-

mining the stratospheric H2O mixing ratio, and the most important layer is the layer right

above the cold point tropopause due to its abundant lofted ice. Convectively lofted ice

below the tropopause makes a smaller contribution.
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3.4 Lofted ice impact on final dehydration location density

Parcels may dehydrate several times as they cross the TTL, but it is the final dehydra-

tion event that determines the parcel’s final water vapor concentration. We define a de-

hydration event to be the final dehydration event if no further dehydration happens within

the following year (365 days). Schoeberl and Dessler [2011] showed that most of the final

dehydration events in a model without convective ice lofting are distributed near the cold

point tropopause and mostly occur above the tropical western Pacific and South America.

In this section, the problem we are interested in is how the evaporation of lofted ice

influences the final dehydration location density. Fig. 3.8a shows the final dehydration lo-

cation density horizontal distribution difference between the 2000-2009 traj_GEOSCCM

ice run and no-ice run, and fig. 3.8c shows the vertical distribution difference. Adding

evaporated lofted ice to the model, the location of final dehydration migrates from the

tropical western Pacific, and South America, the cold centers and low convective contrast

areas, to the Indian Ocean and East Africa, areas with lofted ice evaporation and with high

convective contrast. The final dehydration location density tends to decrease at 100 hPa,

and increase at 80 hPa.
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Figure 3.8: Final dehydration location density difference between the trajectory lofted ice
runs and no-ice runs in traj_GEOSCCM s80 (a, c) and traj_WACCM s100 (b, d) over
2000-2009. (a, b) shows the horizontal distribution of total final dehydration location
density difference, and (c, d) shows the change in the vertical distribution. We calculate the
final dehydration location density by binning the final dehydration locations into latitude-
longitude and latitude-pressure grids, and normalize every experiment by the total final
dehydrated parcel numbers.

Similar conclusions could also be drawn from the traj_WACCM results (fig. 3.8b and

d): after adding lofted ice, the location of final dehydration migrates from near the cold

point tropopause to above the cold point tropopause, and from low convective contrast ar-

eas (tropical western Pacific) to high convective contrast areas (Indian Ocean, East Africa,

and South America).

The location of the Lagrangian cold point in parcels’ trajectories are the final dehy-

dration locations in the no-ice runs, and parcels will enter the stratosphere carrying the

temperature information of the Lagrangian cold point. The migration of the final density

locations in ice runs indicates that if the evaporated lofted ice is added after crossing the
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Lagrangian cold point, it may encounter further dehydration and carry the temperature in-

formation of warmer regions rather than of the Lagrangian cold point, and thus moisten

the stratosphere.
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4. CHANGES IN LOFTED ICE IMPACT DURING THE 21ST CENTURY

Almost all models predict that H2Oentry will increase through 21st century [Gettelman

et al., 2010; Kim et al., 2013], which will tend to increase stratospheric water vapor. An

increase in lofted ice evaporation above the cold point tropopause is one of the factors

that are responsible for the increase of H2Oentry [Dessler et al., 2016]; the other factor is

warming temperatures of the TTL. Using the trajectory model to show where the increase

occurs, due to the change of lofted ice evaporation, is another aim of this thesis.

In both GEOSCCM and WACCM, the amount of convectively lofted ice increases

over the 21st century. Fig. 4.1a and b show the difference of the lofted ice mixing ratio

between 2089-2098 and 2000-2009 at 85 hPa in CCMs (as introduced in section 2, anvil

ice in GEOSCCM, lofted ice and ice formed in situ in WACCM). The increase in lofted ice

mixing ratio over the 21st century follows the pattern of ice in the first decade, indicating

that places with lofted ice get more, while places without it continue to have little. The

key regions of high lofted ice concentration are still the Asian monsoon region and tropical

western Pacific.

The evaporation rate increases over the 21st century (Fig. 4.1c and d). In Section 3.1,

we showed that the distribution of the lofted ice evaporation rate follows the distribution of

the lofted ice in CCMs, so it is not surprising that the increase of lofted ice evaporation rate

also follows the previous distribution pattern. The Asian monsoon region during JJA, and

the tropical western Pacific region during DJF, remain key regions of lofted ice evaporation

over the last decade in 21st century, and will contribute more water to the TTL.
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Figure 4.1: (a, b) The difference of average cloud ice mixing ratio between the first decade
and last decade of 21st century at 85 hPa in (a) GEOSCCM output and (b) WACCM output.
(c, d) The difference of lofted ice evaporation rate in trajectory experiments between 2000-
2009 and 2089-2098 at 85 hPa in: (c) traj_GEOSCCM s80 run and (d) traj_WACCM s100
run. 100 hPa plots look the same.

Except for the increase of lofted ice mixing ratio, the increase in convective contrast

also explains part of the increase of lofted ice evaporation rate over 21st century, since the

amount of evaporation is temperature limited over the lofted ice key regions. Almost all

models [Santer et al., 2003; Gettelman et al., 2010], including GEOSCCM and WACCM,

show a warmer troposphere, warmer cold point tropopause, and colder stratosphere in the

last decade of the 21st century. As is introduced in chapter 2, the convective contrast is the

difference between water vapor mixing ratio and the saturated water vapor mixing ratio

in a no-ice run. The saturated water vapor mixing ratio is determined by the temperature

at a given position, and water vapor mixing ratio is determined by temperature at the La-

grangian cold point. The saturated water vapor mixing ratio increases exponentially with

temperature, in other word, the same increase at high temperatures causes larger change of
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saturated water vapor mixing ratio than at low temperatures. As a result, warming around

the cold point tropopause leads to an increase of both water vapor mixing ratio and satu-

rated water vapor mixing ratio, but the increase of saturated water vapor mixing ratio is

larger, thus increasing the convective contrast (Fig. 4.2).
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Figure 4.2: The difference of convective contrast in traj_GEOSCCM s80 and
traj_WACCM s100, between over 2089-2098 and over 2000-2009.

The increase of the lofted ice mixing ratio and convective contrast over the 21st century

below 80 hPa also causes the net contribution in traj_GEOSCCM to increases relatively

uniformly over the whole tropics (Fig. 4.3a and b), and the degree of increase is distributed

evenly over the previous lofted ice net contribution from 2000-2009. The same conclusion

39



can also be drawn for the traj_WACCM (Fig. 4.3c and d): the net contribution increases

evenly over previous distribution. Because change of convective contrast during DJF in

traj_WACCM at 85 hPa is larger than during JJA and in traj_GEOSCCM, net contribution

increases greatly during DJF over 21st century in traj_WACCM.
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Figure 4.3: The difference of lofted ice net contribution in trajectory experiments be-
tween 2000-2009 and 2089-2098 at 85 hPa in: (a, b) traj_GEOSCCM s80, and (c, d)
traj_WACCM s100. Left panels show during JJA, and right panels show during DJF. 100
hPa plots look the same.

To conclude, comparing 2089-2098 to 2000-2009, the TTL average temperature in-

creases by about 1K, and the convective contrast increases by 1-2 ppmv correspondingly.

On the other hand, lofted ice mixing ratio also increases by 135% (in WACCM) to 140%

(in GEOSCCM) of its original value. Since the lofted ice evaporation rate and its net con-

tribution are temperature limited in most regions of the TTL and ice limited in others, the

increase of both factors leads to an increase in two variable. The evaporation of lofted

ice still occurs over the tropical western Pacific during DJF, and over the Asian monsoon
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region during JJA, so the net contribution of evaporation of lofted ice also is largest over

the regions around these key regions where the convective contrast is high.
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5. CONCLUSIONS

This thesis analyzes the impact of convectively lofted ice on stratospheric water vapor

using Lagrangian trajectory model and two chemistry-climate models. Previous work has

shown that evaporation of convectively lofted ice plays a key role in the long-term trend

of increasing the stratospheric water vapor content in the CCMs [Dessler et al., 2016]. We

analyze the location, seasonality, and long-term trends of this evaporation.

The Asian monsoon region and the tropical western Pacific, because of low tropopause

temperature, are important regions that control the stratospheric water vapor by controlling

dehydration in the TTL [Schoeberl and Dessler, 2011]. In this thesis, we find that they are

also key regions where the convectively lofted ice occurs and evaporates in the CCMs.

Although the distribution of lofted ice evaporation follows the distribution of lofted ice,

its value is temperature limited in these key regions. In other word, the rate of lofted ice

evaporation is sensitive to temperature instead of lofted ice mixing ratio.

The net contribution of evaporation of lofted ice is mainly determined by the convective

contrast — the capability of being hydrated before adding lofted ice. The areas around the

lofted ice key regions with a high convective contrast have larger net contribution. This is

then transported throughout the stratosphere by the general circulation.

By dividing the TTL into several layers, we can study the net contribution from each

layer individually. We find that the evaporation of lofted ice above the Lagrangian cold

point makes the biggest contribution to stratospheric water vapor; the layer just above to

the Lagrangian cold point makes the greatest contribution, due to the abundance of lofted

ice.

Finally, we explore how lofted ice and its evaporation change over the 21st century. We

find that the evaporation rate of lofted ice will have approximately the same geographical
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pattern, but will increase in quantity over the 21st century in the CCMs. We also find

that the net contribution of lofted ice will increase in quantity, responding to the increase

of TTL temperature and convective contrast, contributing to the increase of stratospheric

water vapor mixing ratio over the 21st century.
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