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ABSTRACT 

 

 

A two-year (2011 and 2012) study was conducted at the Texas A&M AgriLife 

Research Farm near College Station, Texas, to examine the effects of planting date and 

hybrid maturity on moisture stress in corn (Zea mays L.). The objective of this research 

was to determine the interactive effects of these factors on corn physiological processes, 

development, growth and yield in southcentral Texas. Treatments consisted of two 

irrigation strategies (dryland and irrigated), three planting dates (25-Feb, 10-Mar, and 

25-Mar), and four hybrid relative maturities (117 day, 111 day, 95 day, and 83 day). 

Plants were evaluated at three different growth stages (R1, R3 and R5), with several 

physiological parameters measured, including: photosynthetic activity, chlorophyll 

fluorescence, leaf temperature, and yield. Photosynthetic activity was the rate of stored 

carbon assimilate measured with a LI-COR 6400. Chlorophyll fluorescence was the 

quantum efficiency of photosystem II measured with a PAM-2100. Leaf temperature 

was measured with SmartCrop infrared canopy temperature sensors and data was 

represented as canopy temperature less ambient air temperature (canopy temperature 

depression).   Significant differences due to treatment occurred for all the above 

parameters. Measurements taken at the R1 growth stage provided little insight relative to 

plant stress. Canopy temperature depression was more indicative of stress than actual 

leaf temperature.  Irrigation provided greater yield, height, and photosynthetic activity. 

In general, later planting and longer maturing hybrids increased grain yield. 
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1.  INTRODUCTION AND LITERATURE REVIEW 

 

 

According to the EPA, the United States is the world’s largest corn (Zea mays L.) 

producer, accounting for 10 billion bushels of the world’s 23 billion bushel production in 

2000 (EPA, 2012). The USDA reported that US corn in 2012 was produced on 39 

million hectares (USDA, 2012). Eighty percent of all corn grown in the United States is 

consumed by domestic and overseas livestock, poultry, and fish production according to 

the National Corn Growers Association (NCGA, 2012). United States national average 

corn yield decreased from 9,240 kg ha-1 in 2011 to an average of 7,746kg ha-1 in 2012, 

with the 16% decline largely attributed to widespread drought conditions in the Midwest 

(USDA, 2013). Corn grain yield is influenced by a host of factors including planting 

date, hybrid relative maturity (RM), and available soil water at critical growth stages. 

The objective of this research was to determine the interactive effects of these factors on 

corn physiological processes, development, growth and yield in southcentral Texas.  

 

1.1 TEXAS CORN PRODUCTION 

 

In Texas, the USDA reported that acreage planted to corn decreased from 0.93 to 

0.72 million hectares in 2010 and 2012, respectively. Harvested area in Texas also 

decreased from 0.8 million hectares in 2010 to 0.6 million hectares in 2012 (USDA,  
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2013). Of the average 0.8 million hectares of corn annually planted in Texas, half the 

planted area is located in the Northern High Plains agricultural district. Within this 

district, approximately 97% of harvested acres are irrigated with the remainder being 

dryland. Over 0.4 million hectares of corn are also grown throughout Central and 

Southern Texas, with average yields below 6,277 kg grain ha-1. The majority of the 

Central and Southern Texas production is located in the eastern part of the state within 

the Upper Gulf Coast (UGC) and the Blacklands agricultural districts. Of the 357,530 

hectares planted to corn in 2009 in these two combined areas, 98% were non-irrigated 

(NASS, 2009).  Approximately 94% of harvested corn acreage in these two districts is 

under dryland production with combined average yields of 5,800 and 2,805 kg ha-1 in 

2010 and 2011, respectively (NASS, 2012). The yield decrease in 2011 was primarily 

attributed to severe drought conditions. According to the USDA 2012 Crop Report, dry 

soil conditions and above normal temperatures in 2011 during the critical development 

phases limited yield potential in many locations (USDA, 2012). Dryland corn yields in 

the Blacklands and UGC fluctuate due to variability in rainfall timing and amount. The 

rainfall pattern in these regions is bimodal, with precipitation normally peaking in May, 

then again in October (Nielsen-Gammon, 2011a).  As such, corn establishment and early 

growth rely on soil water from fall-winter precipitation.  Corn water demand peaks 

during pollination and early grain fill, which normally occurs during May in the 

Blacklands and UGC.  Therefore, corn yield variability is often due to fluctuation in 

amount and timing of precipitation received during this first peak demand period.  
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Efficient use of available soil-water throughout the growing season can help stabilize 

corn yields, reducing the “crash” often associated with summer drought events.   

 

1.2 EFFECTS OF DIFFERING PLANTING DATES 

 

Early planting is a management strategy used to potentially avoid water deficit 

during corn grain fill. The diversity of climate within Texas varies the optimum planting 

date by geographic location. Statewide corn planting season can begin in mid-February 

and continue to mid-June (TCPB, 2012). The most active period of corn planting in 

Texas spans from March 1st through May 17th   (USDA, 2013). The final insurable 

planting date for the Blacklands and UGC growing areas is April 15, with no limit on the 

earliest planting date (RMA, 2013).  Little current data exists in the literature on optimal 

planting time for the Blacklands and UGC.   

Research in the Corn Belt and the Mid-South has shown that planting corn earlier 

than the traditional planting date has minimal or no effect on corn yield, but planting 

later than optimal usually has detrimental yield effects (Pendleton and Egli, 1969: Alessi 

and Power, 1975; Walker and Mulvaney, 1980; Eckert 1984; Imholte and Carter, 1987; 

Shumway et al., 1992; Bollero et al., 1996; Mascagni and Boquet, 1996; Norwood and 

Currie, 1996; Lauer et al., 1999; Wiatrak et al., 2004; Bruns and Abbas, 2006; Van 

Roekel and Coulter, 2011). Varying factors contributed to these detrimental yield effects 

such as the growing season being interrupted by fall frost (Van Roekel and Coulter 

2011), insect and disease pressure (Wiatrak et al., 2004), increased temperatures during 
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grain fill (Norwood and Currie, 1996), interruption of harvest by a fall rainy season 

(Saunders and Johnson, 1998), and moisture stress during grain fill (Shumway et al., 

1992). 

  In Wisconsin, Lauer et al. (1999) found that the optimum corn planting date 

shifted from the northern to the southern half of the state, with the southern half being 

the first week of May and the northern half being the second week. Yields did not 

change when planting was advanced one week, but grain yields across the state 

decreased with later planting at a rate of 0.2 to 1.7% per day over the next two weeks 

after the optimal date, accelerating to 1.3 to 2.2% and 2.0 to 3.8% over the following two 

2-week periods. A study in West Africa concluded that delay of planting reduced yield 

due to drought and increased temperature (Kamara et al., 2009). A few studies 

determined that in their respective geographic locations, planting earlier than the given 

average date increased yield while planting later than average decreased yield (Arjal et 

al., 1978; Eckert, 1984; Imholte and Carter, 1987; Bruns and Abbas, 2006). In contrast 

to this research, a Kansas dryland corn trial exploring the effects of planting date found 

that earlier planting decreased yield and water use efficiency when compared to later 

plantings (Norwood, 2001).  

Some studies have found, however, that planting earlier than average, as well as 

delayed planting, can both have negative yield effects (Nafziger, 1994; Swanson and 

Wilhelm, 1996; Saunders and Johnson, 1998; Staggenborg et al., 1999; Sindelar et al., 

2010).  Several of these studies also concluded that yield declined more rapidly when 

planted late compared to early (Swanson and Wilhelm, 1996; Staggenborg et al., 1999; 
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Sindelar et al., 2010). A Mississippi study, however, found that earlier planting had a 

more detrimental effect on corn yield than did later planting, with decreases of 56 to 

28% and 20%, respectively (Saunders and Johnson, 1998). In Kansas, Sindelar et al. 

(2010) found that in a low stress environment, delayed planting reduced yield 10%, 

increased yield 30% with early season stress, and decreased yield 60% with full-season 

stress. These results suggested that situations do occur where later planting can increase 

dryland corn yield in select environments. Staggenborg et al. (1999) conducted a trial in 

Kansas in order to determine the optimum planting time in conjunction with the 

optimum hybrid maturity.  Results indicated that delayed planting decreased yields 

slightly, but the yield of later planted hybrids increased at one location due to early-

planting resulting in ear development during severe drought. Early and average planting 

dates for the full season hybrid produced higher yields. Norwood (2001) found that a 

later maturing hybrid used in conjunction with a later planting date resulted in increased 

yield. In general, many of these studies suggest a narrow window for optimal planting 

dates, but also acknowledge that the use of hybrids with differing relative maturities 

could allow for flexibility.

 

 

1.3 EFFECTS OF DIFFERING HYBRID RELATIVE MATURITIES 

 

Hicks et al. (1991) in a study conducted in the US Corn Belt, determined that 

with adequate rainfall, highest yields were produced with early planting dates for all 

maturity groups (early is relative to geographic area). Yield reduction with delayed 
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planting was greatest for a full-season compared to an early-season hybrid. Highest 

production was achieved with early planting of full-season hybrids. Likewise in 

Minnesota, early planting of full-season hybrids was best, followed by mid-season 

hybrids, followed by short-season hybrids (Hicks et al., 1991). In the southern and 

southeastern United States, corn grain yield was not affected by maturity differences 

(Hicks et al., 1991). On average in the southern United States, short- and mid-season 

hybrids yielded greater than full-season hybrids under irrigation, but full-season hybrids 

produced higher yields when planted late due to precipitation received during grain fill.  

Early- and mid-season hybrids, when planted early, experienced periods of no rain that 

lasted 4 to 6 weeks in April, May, and June. Husk coverage and grain quality were also 

reduced. Most importantly, when defining relative maturity as 32% grain moisture and 

considering all maturities, maturity occurs later when planted later. However, late 

planted early-maturing hybrids will mature before early-planted late maturing hybrids. 

According to Nielsen at Purdue University (2002), relative maturity (RM) of 

corn hybrids has been interpreted several different ways. Agronomists refer to maturity 

with regard to physiological maturity. Physiological maturity in corn is often associated 

with black layer formation in the tip of a mature kernel. Another definition of maturity, 

harvest maturity, is that point in time after physiological maturity when a hybrid can be 

safely harvested with minimal loss; this is typically associated with a grain moisture 

content of 25%. The traditional method for rating hybrid relative maturity is based on 

comparisons of hybrids near harvest maturity and is based on the assumption of a loss of 

0.5% moisture per day. Another method is based upon growing degree days (GDD) or 
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growing degree units (GDU) or heat units (HU). These values represent the amount of 

heat accumulated over a period of time. Due to the actual measurement of thermal time, 

there is no need to assign a maturity value. Growing degree units can be used to estimate 

time to tassel, mid-pollination, and physiological maturity or black layer (Monsanto, 

2010). Capristo et al. (2007) found that biomass increased positively and linearly with 

hybrid cycle length GDU. Long-season hybrids had highest light interception but lowest 

radiation use efficiency. Grain yields were lowest for short-season hybrids and 

equivalent for mid- and full-season hybrids. Results indicated that grain yield of short-

season hybrids (lower GDU) was more limited by the capacity of the reproductive sinks 

during grain fill than long-season hybrids. Also, hybrids with a short developmental time 

from emergence to flower, but a long developmental time from flower to maturity 

produced the largest values for radiation interception and grain yield. This study 

indicated that a hybrid with a low GDU requirement to tassel and an extended GDU 

requirement to physiological maturity could be beneficial to yield. A study by Sutton 

and Stucker (1974) to determine GDD to black layer for 24 hybrids showed that GDD to 

black layer correlated with RM. Relative maturity was defined as a value assigned to a 

particular hybrid for the length of time that hybrid took to reach black layer at a given 

moisture content. Results showed that GDD overlapped for this ranking of RM. 

Basically, not all varieties with a given RM value had the same GDD requirement. In 

light of this confusion, the decision was made that the use of GDD to black layer was 

inaccurate and GDD to moisture of 30% was most accurate. 



 

8 

 

 

Commercial corn hybrids with RM of approximately 116 to 120 days are 

typically grown in the Blacklands and UGC. The general assumption is that since the 

area has a prolonged growing season, full-season hybrids will perform better than early-

maturing corn hybrids.  Results of numerous trials indicate that a late-season hybrid, 

when compared to an early-season hybrid planted on the same day, provided greater 

yield (Howell et al., 1998; Trooien et al., 1999; Norwood 2001; Capristo et al., 2007; 

Raymond et al., 2009; Van Roekel and Coulter, 2012). Effects of differing relative 

maturity hybrids on yield vary widely when associated with either a different planting 

date or moisture stress situation (Norwood, 2001; Larson and Clegg, 1999; Trooien et 

al., 1999).  

In general, corn growth and physiological development can be split into two 

periods: germination to mid-pollination and mid-pollination to harvest. Corn hybrids 

planted in the Blacklands and UGC are from temperate germplasm, and their 

phenological development can be predicted with the Modified Growing Degree Day 

formula . An average commercial DEKALB 119RM corn product planted in Williamson 

County (central Blacklands) on March 1 would pollinate in late May, and reach 

physiological maturity in mid-late July.  In addition to stress from potential soil water 

deficit, air temperatures during this time average above 95° F and often exceed 100° F. 

Howell et al. (1998) found that peak evapotranspiration (ET) was not affected by 

maturity. Water use efficiency (WUE) of grain yield and dry matter were identical for 

short season (98 RM) and full season hybrids (115 RM). Yield decreased 17% from full-

season to short-season hybrids planted on the same day. ET rates remained the same, but 
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due to the length of season, the short-season hybrid had a 19% lower total ET. In the 

Mid-South, Bruns and Abbas (2005) showed that planting corn hybrids requiring less 

GDU 50 to R1 than the typical hybrid selected by growers for the area provided greater 

yields.  Therefore, corn hybrids with lower GDD requirements potentially could escape 

effects of water deficit and heat stress by pollinating and progressing through grain fill 

earlier in the growing season. Current data on optimum hybrid maturity selection for the 

Blacklands and UGC is lacking in the literature. In a Nebraska drought trial, Larson and 

Clegg (1999) found that two of three early-season hybrids did not yield comparably to 

late-season hybrids, but one early-maturing hybrid produced comparable yield to late-

season hybrids. Results indicated that a well-adapted early-season hybrid could produce 

comparable or better yields to late-season hybrids when late-season water stress is 

prevalent. 

  

1.4 EFFECTS OF WATER DEFICIT ON CORN YIELD 

 

The use of either early or late planting and the choice of hybrid RM are impacted 

by potential abiotic stresses placed on the crop. Two abiotic stresses of concern, in 

regards to yield, are exposure to water deficit and thermal stress. The impact of water 

deficit on corn grain yield has long been understood. As many agronomic corn trials 

have reported, induced water deficit or measurements of irrigated crops in comparison to 

dryland crops has shown that moisture limiting conditions reduce yield (Denmead and 

Shaw, 1960; Claassen and Shaw, 1970; Lamm et al., 1994; Howell et al., 1997; 
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Schneider and Howell, 1998; Da Silva et al., 1999; Calvino et al., 2003; Bowman et al., 

1993; Di Marco et al., 2007; Aydinsakir et al., 2013).   

In a study by Trooien et al. (1999), fully irrigated crops yielded 70% greater than 

non-irrigated crops in the central Great Plains, but non-irrigated crops had greater water 

use efficiency. This difference in water use efficiency is best explained by the length of 

season differences that the two different water regimes experienced. The use of different 

planting dates and/or different hybrid RM in order to expose the crop to water deficit at 

different developmental stages has been commonly used (Jurgens et al., 1978; NeSmith 

and Ritchie, 1992; Howell et al., 1998; Larson and Clegg, 1999; Trooien et al., 1999; 

Norwood, 2001; Norwood and Dumler, 2002; Garcia et al., 2009).  These studies 

showed that it is not necessarily the amount of precipitation that occurs but when that 

precipitation falls that is more important. Larsen et al. (1999) compared three early-

maturing hybrids and three late-maturing hybrids across two locations for two years. 

One year experienced average rainfall and one year experienced end of season water 

stress. In the year with end of season stress, the yield of all three late maturing hybrids 

declined and the yield of two of the early hybrids declined. One early-season hybrid 

maintained yield. The two other early-season hybrids could not compete in yield in the 

average rainfall year or the end of season stress year. This study showed that the use of a 

well-adapted short-season hybrid could generate greater yield stability under moisture 

limiting conditions. In general, research using differing planting dates or hybrid 

maturities planted on the same day has shown that corn yield was affected the most 

when the crop was exposed to water deficit during reproductive growth.  
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Robins and Domingo (1953) found yields were equivalent when plots were 

irrigated at tassel and not stressed compared to plots that were stressed prior to tassel and 

irrigated at R1. Yields were reduced about 50% when stressed at tassel even with 

irrigation eight days after tassel. Yields were 30% lower for plots that were stressed at 

tassel and irrigated eight days after than plots that were irrigated at tassel with no 

subsequent irrigation.  Many other studies have researched the effects of water deficit 

before, during, and after silking (Denmead and Shaw, 1960; Claassen and Shaw, 1970; 

Hall et al., 1971; NeSmith and Ritchie, 1992; Otegui et al., 1995; Norwood, 2000). In 

general, these studies agreed with Robins and Domingo (1953) that the effects of water 

stress are greatest when the deficit occurs at or around silking. The effects of water 

deficit that occurs during grain fill (after silking) on corn yield are somewhat less severe 

than at silking, and the effects of water stress on yield during the vegetative phase are 

much less than stress occurring during silking.  Where water use was compared across 

growth stages by measuring soil moisture and comparing to a control, results indicated 

that maximum soil moisture deficit or water use occurred during the R2 (milk) growth 

stage (Garcia et al., 2009).  Several studies suggest that stress during silking reduces 

yield by reducing the number of kernels, and that stress during the grain-fill period 

reduces kernel weight (Hall et al., 1971; Grant et al., 1989; NeSmith and Ritchie, 1992; 

Otegui et al., 1995; Maddonni et al., 1998). Grant et al. (1989) found that kernel number 

(yield) becomes most sensitive to stress 2 to 7 days after silking and ended 16 to 22 days 

after silking. Stress initiated prior to silking, but relieved within 2 days after silking, did 

not reduce yield. The fewest number of kernels (45% of control) occurred when stress 
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was applied 7 days after silking. Kernel weight was reduced when the crop was stressed 

during the grain fill period. The lowest weight (51% of control) occurred 12 to 16 days 

after silking. 

 

1.5 EFFECTS OF WATER DEFICIT ON PHOTOSYNTHESIS 

 

Drought during and after the flowering period decreases seed-fill duration, 

leading to smaller seed size and lower yield (Frederick et al., 1991; de Souza et al., 

1997; Wardlaw and Willenbrink, 2000). However, seed growth rate in soybean [Glycine 

max L. (Merr.)] has been shown to be relatively insensitive to drought stress during later 

reproductive development (Egli, 2004). Potential explanations for the insensitivity of 

grain development to drought may be attributed to the plants ability to draw upon 

carbohydrate reserves during later reproductive development. A trial was conducted by 

Jurgens et al. (1978) in which water was withheld from a corn crop during grain fill in 

order to determine if grain fill was dependent upon newly acquired photosynthate or 

stored assimilate. Results showed a decrease in leaf area after stress was imposed. As 

grain fill progressed, the rate of grain fill began to exceed the rate of dry matter 

accumulation, indicating redistribution of stored assimilates. In this study, 14C was also 

used to study translocation in corn. Translocation was inhibited with first exposure to 

limited water supply 7 days after water was withheld, but was not limited during the 

second exposure (21 days). The continued translocation despite the lack of dry matter 

accumulation indicated that photosynthesis was more inhibited than translocation during 
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dry conditions. McPherson and Boyer (1977) subjected a corn crop to water stress 

during the grain-fill period. Results indicated reduced photosynthesis with reduced water 

potential, and stressed plants had 47 to 69% lower yield, with grain development 

dependent on stored photosynthate. Those results agreed with Jurgen et al. (1978) in that 

translocation was less inhibited than photosynthesis and also that total photosynthetic 

accumulation for the growing season controlled yield during a drought that did not 

disrupt flowering. Westgate and Boyer (1985) imposed low water potential at silking, 

early-grain fill, or mid-grain fill, but then followed with fully irrigated conditions to 

maturity. Results indicated decreased yield in all cases under low water potential. Yield 

losses resulted from decreased seed size in mid-grain fill, decreased seed size and 

number in early-grain fill, and cessation of silk and ear development at silking when 

water restrictions were imposed at these stages. Also, inhibition of photosynthesis by 

low leaf water potential was recorded. The most severe yield decrease was seen from 

low water potential at silking. Results indicated that carbohydrate reserves were not 

sufficient to support anthesis at this stage of development. The effects of water deficit 

during early stages of flowering have also been shown to have deleterious effects on 

other plant processes. A reduction in plant height when plants are exposed to water 

deficit is well documented (NeSmith and Ritchie, 1992; Simonneau et al., 1993; Otegui 

et al., 1995; Da Silva et al., 1999). Other reported traits of plants subjected to drought 

stress include: reduced photosynthetic rate, closed stomata, and high leaf temperatures 

(Mittler, 2006). 
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Drought can influence photosynthesis by inducing stomatal closure and 

decreasing the flow of CO2 into the plant (Chaves, 1991; Ort et al., 1994; Chaves et al., 

2003; Flexas et al., 2004).  Metabolic functions of photosynthesis are also inhibited, such 

as a decline in ribulose bisphosphate (RuBP) and ribulose 1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) content (Bota et al., 2004), and decreased Rubisco 

activity (Parry et al., 2002). According to Cornic (2000), decreased stomatal 

conductance is the primary cause of the decline in photosynthesis during the initial onset 

of stress. Drought stress has been shown to cause increases in internal CO2 concentration 

(Kicheva et al., 1994; Siddique et al., 1999), which can lead to stomatal closure (Briggs 

et al., 1986). Photosynthesis rate in corn during silking and early grain-fill has been well 

documented (Hall et al., 1971; Barnett and Pearce, 1983; Bunce, 2010). All results 

indicated that decreased photosynthetic rate correlated to decreased yield. In a corn trial 

in China, Li et al. (2013) concluded that reduced photosynthetic rate was the dominant 

factor affecting yield under increased temperature and reduced moisture. Researchers 

determined that factors reducing photosynthetic rate were drought, reduced photoperiod, 

lower light intensity, and higher leaf temperature.  

 

1.6 EFFECTS OF WATER DEFICIT ON PLANT TEMPERATURE 

 

Plant temperature has long been used as an indicator of moisture stress, being 

based upon the strong, inverse relationship between leaf temperature and transpirational 

cooling (Jackson et al., 1981). Canopy temperature measurements taken with an infrared 
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thermometer have been used to investigate drought stress in many crops (Singh and 

Kanemasu, 1983; Chaudhur et al., 1986; Hatfield et al., 1987; Blum et al., 1989; Stark et 

al., 1991; Duffkova, 2006; Erdem et al., 2006; O'Shaughnessy et al., 2011), with several 

investigators using canopy temperature as a gauge for drought tolerance and yield 

stability (Singh and Kanemasu, 1983; Blum et al., 1989; Stark et al., 1991; Rashid et al., 

1999). In these studies, a positive correlation was found between drought susceptibility 

and canopy temperature. The most drought resistant plants usually exhibited the lowest 

canopy temperatures under stressed environments. A study conducted by Wanjura et al. 

(2006) defined stress as when the corn crop canopy temperature exceeded 28° C 

(maximum). The percentage of positive canopy-air temperature differences increased 

with increasing stress time, with yield declining with increasing stress time. Birch et al. 

(1998) concluded that the optimum temperature for corn plant development was 34° C 

(93.2° F), with a minimum temperature of 8° C (46.4° F) and maximum temperature of 

40° C (104° F).  Several studies agree with the optimum temperature for corn ontogeny 

(Mokhtarpour et al., 2011; Bockhold et al., 2011). Bockhold et al. (2011) found that the 

threshold temperature for corn in humid environments may be up to 1° C higher than the 

findings suggested by Birch et al. (1998). Maddoni et al. (1998) reported that changes to 

thermal time occurring during the grain-fill period affected corn kernel weight. Lower 

temperatures increased fill time and kernel weight whereas higher temperatures 

shortened grain-fill period and decreased kernel weight. Negative correlations between 

canopy temperature and water use efficiency have also been found for corn (Mtui et al., 

1981; Didonet et al., 2002). Gonzales-Dugo et al. (2006) determined that the use of 
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canopy temperature to measure crop water stress was most accurate in fields with low 

water stress. For moderate or highly stressed crops, canopy temperature was sensitive to 

deviations in field characteristics and plant distribution, but had a linear relationship to 

field scale crop water stress index.  O’Neill et al. (2006) measured leaf temperature in 

conjunction with chlorophyll fluorescence measurements and recorded an increase in 

leaf temperature (2.5° C) when deficit irrigation plots were compared to adequately 

irrigated plots. Results also showed a 25% decrease in quantum yield fluorescence when 

deficit irrigation plots were compared to adequately irrigated plots. Measurements of 

chlorophyll fluorescence, however, were similar among different hybrids when not 

under moisture stress. 

 

1.7 EFFECTS OF WATER STRESS ON CHLOROPHYLL FLUORESENCE 

 

The use of chlorophyll fluorescence measurements has proven useful as a method 

for quantifying the impact of drought stress on plants (Oukarroum et al., 2007; Ristic et 

al., 2007).  Light energy absorbed by chlorophyll molecules drives photosynthesis, can 

be re-emitted as heat, and/or be re-emitted as light (fluorescence). The fluorescence 

signal or yield provides valuable information regarding the efficiency of photosynthesis 

and heat dissipation. Due to the fact that chlorophyll fluorescence is the measure of re-

emitted light, ambient light has the potential to interfere with measurement. Currently, 

one of the most accurate methods of measuring fluorescence is with an instrument that 

applies light at a known frequency to induce fluorescence. This instrumentation is 
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known as a modulating fluorometer and can induce and measure fluorescence in field 

conditions (Shreiber et al., 1986). Due to the ease of measurement, the light adapted 

fluorescence measurement of the quantum efficiency of photosystem II (PSII) has 

become established as an accurate indicator of operational PSII efficiency (Genty et al., 

1992; Maxwell and Johnson, 2000; Baker, 2008). The operating efficiency of PSII, 

Fq’/Fm’ (Genty et al., 1989) gives the proportion of absorbed light that is actually used 

in photochemistry (Genty et al., 1992). This method directly measures quantum yield of 

PSII electron transport and can be used to estimate the rate of electron transport through 

PSII and provide an indication of overall photosynthesis (Maxwell and Johnson, 2000).  

The relationship of chlorophyll fluorescence and moisture stress in corn has been well 

documented in the literature (Selmani and Wassom, 1993; Earl and Davis, 2003; O’Neill 

et al., 2006). Earl and Davis (2003) were able to record significantly large differences in 

efficiency of PSII between irrigated and moisture-stressed corn plants. Selmani and 

Wassom (1993) detected decreases in photosynthetic ability through use of fluorescence 

where variable fluorescence, F(v), increased when going from well-watered to water-

stressed conditions. 

 

1.8 EFFECTS OF WATER DEFICIT ON AFLATOXIN IN CORN 

 

Water deficit in combination with heat stress can increase the level of aflatoxins, 

which are detrimental to human health, in grains (Bruns and Abbas, 2005). Even though 

there is fluctuation with aflatoxin levels from year to year and from field to field, the 
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Blacklands and UGC regularly present levels above those set by the FDA as safe for 

human consumption. In extreme cases, these levels even surpass the animal consumption 

levels which are considerably greater than those for human consumption. Elevated 

temperature and limited rainfall during grain fill, corn ear insects, husk cover, and hybrid 

genetics are factors that influence the severity of aflatoxin content in grain samples. 

Wiatrak et al. (2004) concluded that corn hybrids containing a Bt trait may reduce 

aflatoxin content in grain due to insect control. This hypothesis has not been tested since 

the advent of new Bt traits that have superior corn ear insect control. Hence, newer Bt 

traits with added efficacy in controlling ear feeding Lepidopteran species could have a 

greater reduction in mycotoxins than those results found by Wiatrak et al. (2004). 

In a research study conducted at the Texas A&M AgriLife Research Farm in 

Burleson County, Texas, many of the above factors influencing corn growth and yield 

were addressed. The physiological effects of moisture stress on corn growth and yield 

were studied across planting dates, irrigation amounts, and differing hybrid relative 

maturities.  
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1.9 OBJECTIVES 

 

The objectives of this research were to:  

1. Broaden the understanding of how water deficit during early grain fill might be 

avoided or reduced by determining the optimal planting time and corn hybrid 

maturity under rain-fed conditions in the Texas Blacklands and Upper Gulf 

Coast; and, 

2. Evaluate physiological traits (e.g. leaf fluorescence, leaf photosynthetic rate, 

water use efficiency, etc) to explain enhanced water deficit tolerance during early 

grain fill. 
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2.  MATERIALS AND METHODS 

 

 

A two-year study (2011 and 2012) was conducted to determine the optimal 

planting time and hybrid maturity for corn grown in the Blacklands and UGC 

agricultural districts of Texas. Field plots were located at the Texas A&M AgriLife 

Research Farm in Burleson County near College Station, TX (30°32′N, 94°26′W) on a 

Weswood silt loam soil (fine-silty, mixed, superactive, thermic, Udifluventic 

Halpustepts) having a pH of 7.9.   

In both years, the study was a split-split plot design with four replications. The 

main plot was irrigation regime (rain-fed or 80% ET replacement), the sub-plot was 

planting date (Feb. 25, Mar. 11, or Mar. 25, referred to hereafter as PD1, PD2, and PD3, 

respectively), and sub-sub plots were varieties with different relative maturities (RM). 

Four commercially available varieties were utilized: DKC67-21 VT3Pro, DKC61-35 

VT3Pro, DKC45-51GenSS, and DKC33-53GenSS (referred to hereafter as H4, H3, H2, 

and H1, respectively). The relative maturities for these varieties are approximately 117 

RM, 111 RM, 95 RM, and 83 RM, respectively.  

Soil samples were collected in late December 2010 and early January 2012. Soil 

samples were delivered to the Texas A&M AgriLife Extension Service Soil, Water, and 

Forage Testing Lab. The nutrient requirements recommended by the Testing Lab were 

based on a projected 11,290 kg ha-1 grain yield. Plots were disked before being bedded 

on one meter centers. Fertilizer was applied at the recommended rate in split applications 
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(pre-plant and V3 to V5 application). Pre-plant fertilizer was 11-37-0 and was placed 

within 5 cm x 5 cm of seed at 143.5 kg ha-1. The V3 to V5 applications used 32-0-0 and 

were side-dressed at 420 kg ha-1. Plots were seeded with a CASE cone plot planter at 

64,220 seed ha-1 on the three separate planting dates.  Plots consisted of four one-meter 

rows that were 9.75 meters in length. A linear Zimmatic® Iirrigation System was 

utilized to supplement water to the irrigated plots. The amount of irrigation applied was 

based upon ET calculated by a SmartField (Lubbock, TX) weather station. Local Texas 

A&M Agrilife Extension Service recommendations were utilized to prevent disease, 

control insects, and manage weed populations. Due to the fact that some of these hybrids 

were not common to this geographical area, monitoring was conducted for foliar disease 

from VT to R6.   

Measurements to quantify stress included yield, photosynthetic rate, canopy 

temperature, and chlorophyll fluorescence. Canopy temperature was monitored 

throughout the growing season with an infrared temperature monitor (SmartCrop®, 

Lubbock, TX). Canopy temperature sensors were mounted on posts that were placed 

within the third row of each plot. Sensors and posts were installed in all plots after the 

final planting date had established a stand. The SmartCrop sensors recorded canopy 

temperature every minute and reported a 15-minute average to a corresponding base data 

logging station (Smartfield, Lubbock, TX) located in the field. For data analysis, an 

average of all 15-minute readings between the hours of 10:00 AM and 2:00 PM was 

used for corresponding dates that R1, R3, and R5 occurred for each relative maturity and 

planting date combination. Chlorophyll fluorescence was measured with a portable 
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chlorophyll fluorometer model PAM 2100 (Heinz Walz Gmbh, Effeltrich, Germany) at 

growth stages R1, R3, and R5 for each hybrid RM and planting date combination. Data 

were collected between the hours of 10:00 AM and 2:00 PM. Measurements were 

collected from the third row of each plot on the uppermost fully expanded leaf. Data 

used for analysis represented an average of five random plants within each plot. 

Photosynthetic rate was measured with a LI-COR 6400 infrared gas analyzer (Lincoln, 

NE) at growth stages R1, R3, and R5 for each hybrid RM and planting date combination. 

Measurements were collected from the third row of each plot on the uppermost fully 

expanded leaf. Data used for analysis represented an average of three random plants 

within each plot. Plant heights were also measured from the soil surface to flag leaf node 

at growth stages R1, R3, and R5 for each hybrid and planting date combination. 

Measurements were collected from the third row of each plot on 10 random plants. Dates 

of physiological stages across hybrids and planting dates were recorded throughout both 

growing seasons. Weather data were obtained from a nearby USDA weather station as 

well as the SmartField® (Lubbock, TX) base station located within the field.  

In both years, the two middle rows of each plot were machine harvested at 

maturity with a Gleaner two-row modified plot combine. Harvest maturity was 

determined by grain moisture measured using a grain moisture meter. Plots were 

harvested when the average moisture for each planting date was 15%.  Grain yields were 

determined in the field by catching and weighing each plot with a hanging scale, and 

sub-samples collected from each plot for determination of bushel weight and moisture at 
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harvest. Grain yield was adjusted to 15 % moisture content. Each sample was measured 

using a grain moisture meter for moisture content.  

SAS® (version 9.3) statistical computer software was used for analysis of all 

data (SAS, 2009). Data were combined over years where permissible. When a significant 

interaction existed for years*treatment, those means were presented separately by year. 

Data were analyzed by analysis of variance using the General Linear Model (GLM) at 

the 5% level, with significant means separated using Fisher’s Protected Least Significant 

Difference (LSD) at a significance of 5% (SAS, 2009). 
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3. GRAIN YIELD: RESULTS AND DISCUSSION 

 

 

3.1 COMBINED RESULTS 

 

Weather data were collected in both 2011 and 2012. The average daily maximum 

temperature from approximately mid-February through July in 2011 was 31.5° C, while 

that in 2012 was 29.5° C (Fig. 3.1). On average, the maximum temperature in 2011 was 

two degrees higher every day compared with 2012, and 2011 was the most severe 

drought year on record (Nielsen-Gammon, 2011b). In 2011, 169 mm of rain fell during 

the growing season, while in 2012, the amount was 522 mm. The analysis of variance 

for combined years is presented in Table 3.1. Due to the significant interaction of year 

with all main effects and all two-way interactions, the results of each of the two years 

will be presented separately. 



 

 

 

 

   Figure 3.1.   Average maximum daily temperatures in degrees Celsius for the 2011 and 2012 growing seasons. 
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Table 3.1.   Combined analysis of variance for corn grain yield. 

Source  Df   Grain Yield     

Year 1   ***       

Replication 3   ns†       

Year x Rep 6   ns       

Irrigation (I) 1   **       

Year x I 1   ***       

Error a 1          

Planting Date (PD) 2   ***       

PD x Year 2   ***       

PD x I 2   **       

PD x I x Year 2   ***       

Error b 11          

Hybrid (H) 3   ***       

H x Year 3   *       

H x PD 6   ns       

H x PD x Year 6   **       

H x I 3   *       

H x I x Year 3   ***       

H x PD x I 6   ns       

H x PD x I x Year 6   ns       

Error C 51   
 

      

R2     0.88       

CV %     16.37       

* Significant at 0.05 probability level.             

** Significant at 0.01 probability level.     

*** Significant at 0.001 probability level.        

† ns, Nonsignificant.      
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3.2 SEPARATE RESULTS: GRAIN YIELD 2011  

 

The analysis of variance for grain yield in 2011 is presented in Table 3.2.  

 

Table 3.2.   Analysis of variance for corn grain yield in 

2011.   

Source df 

 

Grain Yield 

Irrigation (I) 1   ***   

Replication 3   ns†   

Error a 3       

Planting Date (PD) 2   ***   

PD x I 2   ***   

Error b 11       

Hybrid (H) 3   ***   

H x PD 6   ***   

H x I 3   ***   

H x PD x I 6   ns   

Error C 51       

R2     0.9   

CV %     20.4   

* Significant at 0.05 probability level.         

** Significant at 0.01 probability level. 

*** Significant at 0.001 probability level.        

† ns, Nonsignificant.    

 

The main effect of irrigation significantly influenced grain yield in 2011, with irrigation 

significantly increasing mean corn grain yield by 87% when compared to dryland plots 

(Table 3.3), primarily because of the extreme drought conditions that occurred that year.  
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Table 3.3.   Irrigation effect on corn grain yield in 

2011. 

Treatment   Grain Yield (kg ha-1)   

 

          

Dryland     2190 b†   

 

    
 

    

Irrigated     4103 a   

            

Pr>f     0.0038     

R2     0.9     

CV %     20.4     

† Means followed by the same letter are not significantly 

different according to LSD (0.05). 

 

The main effect of planting date also significantly influenced grain yield in 2011 

(Table 3.4).  The latest planting date (3) resulted in the greatest corn grain yield, which 

was approximately 39% greater than the averaged yields of planting dates 1 and 2, with 

yield from planting date 1 was not significantly different from that of planting date 2. 

These results contrasted with other reported trials where planting date was a manipulated 

variable. Many studies concluded that planting later than the average optimal time had 

detrimental yield effects (Pendleton and Egli, 1969; Alessi and Power, 1975; Walker and 

Mulvaney, 1980; Eckert, 1984; Imholte and Carter, 1987; Shumway et al., 1992; Bollero 

et al., 1996; Mascagni and Boquet, 1996; Norwood and Currie, 1996; Lauer et al., 1999; 

Wiatrak et al., 2004; Bruns and Abbas, 2006; Van Roekel and Coulter, 2011).  A 

Mississippi study, however, found that earlier planting had a more detrimental effect on 

corn yield than did later planting, with decreases of 56 to 20% (Saunders and Johnson, 
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1998).  The most likely explanation of differences between findings of my research and 

that of previous reports is the range of the planting date window and the environmental 

conditions during grain fill in 2011. The length of time included in this planting window 

spanned only four weeks and most likely was not enough time to adequately describe the 

decreased yield from planting both before and after the optimum planting period. In 

2011, planting date 3 resulted in flowering and grain fill occurring during periods of 

slightly lower temperatures compared to planting dates 1 and 2.  Many studies have 

found that planting earlier than average, as well as delayed planting, can both have 

negative yield effects (Nafziger, 1994; Swanson and Wilhelm, 1996; Saunders and 

Johnson, 1998; Staggenborg et al., 1999; Sindelar et al., 2010). These results suggest that 

situations do occur where later planting can increase corn yield in select environments. 

 

Table 3.4.   Planting date effect on corn grain yield in 

2011. 

Treatment   Grain Yield (kg ha-1)   

 

          

Planting Date 1   2648 b†   

      
 

    

Planting Date 2   2928 b   

      
 

    

Planting Date 3   3863 a   

            

Pr>f     <0.0001     

R2     0.9     

CV %     20.4     

† Means followed by the same letter are not significantly 

different according to LSD (0.05). 

Planting Dates (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15) 
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The main effect of hybrid also significantly influenced grain yield in 2011. As 

hybrid relative maturity (RM) increased from shortest to longest (1 to 4), grain yield also 

increased (Table 3.5). Results of numerous trials indicate that a late-season hybrid, when 

compared to an early-season hybrid planted on the same day, provided greater yield 

(Howell et al., 1998; Trooien et al., 1999; Norwood, 2001; Capristo et al., 2007; 

Raymond et al., 2009; Van Roekel and Coulter, 2012). Hicks et al. (1991) found that 

full-season hybrids may produce higher yields when planted late due to increased 

precipitation received during grain fill. Hybrids 3 and 4 had greater yield than hybrid 1, 

and hybrid 3 was not significantly different from hybrid 2 in 2011. Hybrid 4 resulted in 

56% greater yield than hybrid 1. Results of the literature suggested that, on average, later 

maturing hybrids likely avoided either heat or drought stress during grain fill, resulting 

in greater yield. 

The interactive effect of PD x I also significantly impacted grain yield in 2011 

(Fig. 3.2). Highest yield was achieved with the latest planting date (3) under irrigation, 

whereas in dryland plots, a change in planting date did not generate a significant 

difference in grain yield. The reduction in yield for planting dates 1 and 2 under 

irrigation was likely due to higher ambient temperature in combination with the severe 

drought during grain fill in 2011. Planting date 3 allowed corn grain fill to occur during a 

period of lower stress than planting dates 1 or 2 (Fig. 3.1).  Planting dates 1 and 2 were 

not different from one another under irrigation, but yields for planting dates 1 and 2 

under irrigation were greater than those for any planting date under dryland conditions. 
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Table 3.5.   Hybrid effects on corn grain yield in 2011. 

Treatment   Grain Yield (kg ha-1)   

 
          

Hybrid 1     2443 c†   

 
    

  
  

Hybrid 2     2874 bc   

 
    

  
  

Hybrid 3     3462 ab   

 
    

  
  

Hybrid 4     3806 a   

 
      

 
  

Pr>f     <0.0001     

R2     0.9     

CV %     20.4     

† Means followed by the same letter are not significantly 

different according to LSD (0.05). 

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 



 

 

 

 

Figure 3.2.   Planting date x irrigation interactive effect on corn grain yield in 2011. 

 
 

† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

3
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The interaction of H x PD also significantly affected grain yield in 2011  

(Fig. 3.3). For the two earlier planting dates, grain yield tended to increase as hybrid 

relative maturity increased (1 through 4). For the third planting date, a similar trend was 

noted with the exception of hybrid 4, in that for this planting date, hybrid 4 had a lower 

yield than hybrid 3 and was not significantly different from hybrids 1 or 2. For hybrids 

1, 2, and 3, as planting date progressed from 1 to 3, a difference of 30 days, grain yields 

were significantly greater for each hybrid. Hybrid 4, with the longest RM, generated its 

highest yield when planted during the earliest planting date. Results agreed with 

Staggenborg et al. (1999) and Hicks et al. (1991) where early planting dates for full 

season hybrids produced higher yields. Results also agreed with Norwood (2001), who 

found that the use of a later maturing hybrid used in conjunction with a later planting 

date resulted in increased yield. The combination of hybrid relative maturities in 

conjunction with the three separate planting dates provided information concerning the 

optimum time period for grain fill in 2011. Early maturing hybrids in combination with 

earlier plantings resulted in ear development occurring during periods of greater stress 

compared to later plantings combined with later maturing hybrids.   

The interactive effect of H x I also significantly affected grain yield in 2011  

(Fig. 3.4).  Under dryland conditions, regardless of planting date, grain yields of the 

various hybrids were not significantly different from each other. This result was likely 

due to the severity of drought stress during reproductive growth in 2011.  However, with 

irrigation, grain yield increased with increasing hybrid RM. Hicks et al. (1991) found 

that full-season hybrids produce higher yields when planted late due to increased 
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precipitation received during grain fill. Irrigation in my study lessened the effects of the 

drought stress and allowed the hybrids a better opportunity to express their yield 

potential, where later maturing hybrids had higher yield potential than shorter season 

hybrids. Results of numerous trials indicate that the use of a late-season hybrid, when 

compared to an early-season hybrid planted on the same day, provided greater yield 

(Howell et al., 1998; Trooien et al., 1999; Norwood 2001; Capristo et al., 2007; 

Raymond et al., 2009; Van Roekel and Coulter, 2012). 

 

 



 

 

 

 

Figure 3.3.   Planting date x hybrid interactive effect on corn grain yield in 2011. 

 
 

† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb 15, 2: Mar 1, and 3: Mar 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).
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Figure 3.4.   Hybrid x irrigation interactive effect on corn grain yield in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 
H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).
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3.3 SEPARATE RESULTS: GRAIN YIELD 2012 

 

The analysis of variance for corn grain yield in 2012 is presented in Table 3.6.  

 

Table 3.6.   Analysis of variance for corn grain yield in 

2012. 

Source  df   Grain Yield 

Irrigation (I) 1   ** 

Replication 3   ns† 

Error a 3     

Planting Date (PD) 2   Ns 

PD x I 2   Ns 

Error b 12     

Hybrid (H) 3   *** 

H x PD 6   Ns 

H x I 3   Ns 

H x PD x I 6   Ns 

Error C 33     

R2 
 

  0.87 

CV %     12.01 

* Significant at 0.05 probability level.       

** Significant at 0.01 probability level.     

*** Significant at 0.001 probability level.    

† ns, Nonsignificant.   

 

As in 2011, irrigation again significantly influenced grain yield in 2012 (Table 3.7). 

Irrigation again increased grain yield when compared to dryland, although not by as 

much as in 2011 (Table 3.3). Irrigation increased grain yield by only 16% compared to 

dryland in 2012 due to the increased amount of precipitation received that year.  
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Table 3.7.   Irrigation effects on corn grain yield in 2012. 

Treatment 
  

Grain Yield (kg ha-1) 

 
        

Dryland     3917 b† 

 
    

 
  

Irrigated     4548 A 

          

Pr>f     0.0106   

R2     0.87   

CV %     12.01   

† Means followed by the same letter are not significantly 

different according to LSD (0.05).   

 

 

Planting date did not significantly affect grain yield in 2012 (Table 3.8), likely 

due to the higher precipitation received and lower ambient temperature during grain fill 

(Fig. 3.1), but the main effect of hybrid did significantly influence grain yield  (Table 

3.9). Later maturing hybrids (3 and 4) yielded significantly more than earlier maturing 

hybrids (1 and 2). Hybrid 2 produced 26% more grain than hybrid 1, which is similar to 

results for 2011, while hybrids 3 and 4 on average yielded 32% more than hybrid 2. In 

2012, no significant interactive effects were detected for any studied factors.  
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Table 3.8.   Planting date effect on corn grain yield in 

2012. 

Treatment 

 

Grain Yield (kg ha-1)   

 

          

Planting Date 1   3747 a†   

      
 

    

Planting Date 2   3794 a   

      
 

    

Planting Date 3   3796 a   

            

Pr>f       0.778     

R2     0.87     

CV %     9.3     

† Means followed by the same letter are not significantly 

different according to LSD (0.05). 

 

Table 3.9.   Hybrid effect on corn grain yield in 2012. 

Treatment   Grain Yield (kg ha-1)   

            

Hybrid 1     3028 c†   

            

Hybrid 2     3817 b   

            

Hybrid 3     5068 a   

            

Hybrid 4     5016 a   

            

Pr>f     <0.0001     

R2     0.87     

CV %     12.01     

† Means followed by the same letter are not significantly 

different according to LSD (0.05). 

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 
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4. PHOTOSYNTHETIC ACTIVITY: RESULTS AND DISCUSSION 

 

 

4.1 COMBINED RESULTS 

 

Photosynthesis was measured during three growth stages within the corn 

reproductive period (R1, R3, and R5) in 2011 and 2012. Table 4.1 contains the analysis 

of variance for measured photosynthetic activity for combined years. For measurements 

taken at any growth stage and for all main effects (irrigation, PD, and H), results could 

be combined across years only for the main effect of irrigation at the R1 growth stage. 

Irrigation effects for measurements conducted during the R3 and R5 growth stages are 

presented separately for the two years because of significant interactions. The main 

effects of PD and H are also presented separately. The interactive effect of PD x I could 

only be combined across years when measured at the R5 growth stage; however, results 

did not provide a significant difference. Results from measurements conducted during 

the R1 and R3 growth stages are presented separately. Neither the H x I nor H x PD 

interactions could be combined over years; thus, interactions are presented separately. 

The I x PD x H interaction was not significant for measurements conducted during R1 

and R3. Data were unable to be combined for measurements collected during R5. 

Results of the I x PD x H interaction on photosynthesis at R5 were not significant when 

measured during either 2011 or 2012.  
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Table 4.1.   Analysis of variance for corn photosynthetic activity 

measured during R1, R3, and R5 reproductive growth stages. 

Source  df R1 R3 R5 

Year 1 ns† ns *** 

Replication 3 ns ns ns 

Year x Rep 6 ns *** ns 

Irrigation (I) 1 ** ** ** 

Year x Irrigation 1 ns *** *** 

Error a 1 
   

Planting Date (PD) 2 ** ns *** 

PD x Year 2 *** *** ** 

PD x I 2 ns ** ns 

PD x I x Year 2 *** *** ns 

Error b 11 
   

Hybrid (H) 3 *** ns ns 

H x Year 3 * *** *** 

H x PD 6 *** ns ns 

H x PD x Year 6 ** ** ** 

H x I 3 ns ns ns 

H x I x Year 3 ** *** * 

H x PD x I 6 ns ns ns 

H x PD x I x Year 6 ns ns *** 

Error C 51 
   

R2   0.82 0.83 0.83 

CV %   8.9 16.25 20.1 

* Significant at 0.05 probability level.        

** Significant at 0.01 probability level.   

*** Significant at 0.001 probability level.      

† ns, Nonsignificant.         

 

The main effect of irrigation influenced photosynthesis when measured at the R1 

growth stage when combined over years (Table 4.1).  Corn in irrigated plots had a 

significantly higher rate of photosynthetic activity compared to that in dryland plots 
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(Table 4.2) A reduction in photosynthetic rate in response to limited moisture has been 

well documented (McPherson and Boyer, 1977; Jurgens et al., 1978; Chaves, 1991; Ort 

et al., 1994; Chaves et al., 2003; Flexas et al., 2004; Mittler, 2006). 

 

Table 4.2.   Irrigation effect on corn photosynthetic 

activity at R1 growth stage combined over years. 

Treatment   R1     

            

Dryland     34.00† b‡   

            

Irrigated     36.63 a   

            

Pr>f     0.0068     

R2     0.82     

CV %     8.9     

† Units are µmol CO2 m
-2 s-1. 

‡ Means followed by the same letter are not significantly 

different according to LSD (0.05). 

 

4.2 SEPARATE RESULTS: PHOTOSYNTHETIC ACITIVITY 2011  

 

The analysis of variance for measured photosynthetic activity in 2011 is 

presented in Table 4.3.  
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Table 4.3.   Analysis of variance for corn photosynthetic activity 

during reproductive growth stages R1, R3, and R5 in 2011. 

Source  df R1 R3 R5 

Irrigation (I) 1 * ** *** 

Replication 3 ns† *** ns 

Error a 3    
Planting Date (PD) 2 ** *** *** 

PD x I 2 * *** ns 

Error b 12    
Hybrid (H) 3 *** *** ns 

H x PD 6 *** ns *** 

H x I 3 *** ** * 

H x PD x I 6 ns *** *** 

Error C 52       

R2   0.87 0.91 0.89 

CV %   7.7 15.2 24.24 

* Significant at 0.05 probability level.      

** Significant at 0.01 probability level. 

*** Significant at 0.001 probability level.      

† ns, Nonsignificant.   

 

The main effect of irrigation on photosynthesis was significant during R3 and R5 

growth stages in 2011 and greatly increased photosynthesis compared to the dryland 

treatment (Table 4.4). Measurements conducted during the R5 growth stage had a 

greater numerical separation and percentage increase than measurements conducted 

during R3 or for the combined measurements of R1, though overall values were lower.  
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Table 4.4.   Irrigation effects on corn photosynthetic activity at 

R3 and R5 growth stages in 2011.   

Treatment   R3   R5     

 

              

Dryland     20.83† b‡ 10.40 b   

 
    

 
  

 
    

Irrigated     33.62 a 26.81 a   

                

Pr>f     0.0033   0.0005     

R2     0.91   0.89     

CV %     15.2   24.4     

† Units are µmol CO2 m
-2 s-1. 

‡Within columns, means followed by the same letter are not significantly 

different according to LSD (0.05). 

 

The main effect of planting date influenced photosynthesis in all three growth 

stages in 2011 (Table 4.5). Earlier planting resulted in higher photosynthetic rates at both 

R1 and R3 in 2011. Photosynthetic rates associated with planting dates 1 and 2 were not 

significantly different when measured at R1 while corn from planting date 3 had a 

significantly lower photosynthetic rate than that of the two earlier dates. Photosynthetic 

rates during corn during silking and early grain-fill have been well documented (Hall et 

al., 1971; Barnett and Pearce, 1983; Bunce, 2010). All results indicated that decreased 

photosynthetic rate or capacity correlated to decreased yield. My data conflicted with 

these reports and suggested an inverse relationship between photosynthetic rate at R1 

and grain yield.  Grain yield results in 2011 (Table 3.4) showed the latest planting date 

resulted in the greatest yield when compared to planting dates 1 and 2.  Photosynthetic 

activity at the R5 growth stage, however, was the opposite of results from earlier growth 
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stages, with plants from the last planting date (3) having a significantly higher 

photosynthetic rate than those for planting dates 1 or 2.  

Photosynthetic activity at planting dates 1 and 2 did not differ when measured at 

the R5 growth stage. It’s possible that the differences in photosynthetic rate measured at 

R1, even though statistically significant, may not have been great enough to substantially 

affect yield. The differences detected at the R3 and R5 growth stages may also have had 

a limited effect on yield because of translocation of carbohydrates from within the plant. 

Potential explanations of lowered sensitivity of grain development to drought may be 

attributed to the plants ability to draw upon carbohydrate reserves during later 

reproductive development. A trial conducted by Jurgens et al. (1978) in which water was 

withheld from a corn crop during grain fill determined if grain fill was dependent upon 

newly acquired photosynthate or stored assimilate. As grain fill progressed, the rate of 

grain fill exceeded the rate of dry matter accumulation, indicating redistribution of stored 

assimilates. These authors also reported that translocation was less inhibited than 

photosynthesis by drought and that total photosynthetic accumulation for the growing 

season controlled yield during a drought that did not disrupt flowering. Reduced 

photosynthetic rate that does not relate to yield might also be explained by the results of 

Li et al. (2013). These researchers concluded that several factors could reduce corn 

photosynthetic rate including drought, reduced photoperiod, lower light intensity, and 

higher leaf temperature.  
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Table 4.5.   Planting date effects on corn photosynthetic activity at R1, R3 

and R5 growth stages in 2011. 
  

Treatment   R1   R3   R5   

                  

Planting Date 1   35.52 † a‡ 32.95 a 16.94 b 

      
 

  
 

  
 

  

Planting Date 2   36.71 a 26.51 b 15.71 b 

      
 

  
 

  
 

  

Planting Date 3   31.90 b 22.22 c 23.17 a 

                  

Pr>f     0.0004   <0.0001   <0.0001   

R2     0.9   0.91   0.89   

CV %     8.4   15.2   24.24   

 † Units are µmol CO2 m
-2 s-1. 

‡Within columns, means followed by the same letter are not significantly different 

according to LSD (0.05). 

Planting Dates (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

 

 

The main effect of hybrid influenced photosynthesis during R1 and R3 growth 

stages in 2011, but not at R5 (Table 4.3).  Photosynthetic activity during the R1 and R3 

growth stages decreased as hybrid relative maturity increased (1 to 4) (Table 4.6). The 

shortest relative maturity hybrid (1) had a significantly higher photosynthetic rate than 

the two longer relative maturity hybrids (3 and 4) when measured at either growth stage.  

Results of previous literature (Hall et al., 1971; Barnett and Pearce, 1983; Bunce, 2010) 

indicated that decreased photosynthetic rate or capacity correlated to decreased yield. 

My results disagreed and suggested an inverse relationship between photosynthetic rate 

at R1 and R3 growth stages and grain yield in 2011, as corn yield increased with 

increasing hybrid relative maturity in 2011 (Table 3.5). Again, it is possible that the 

differences in photosynthetic rate measured at R1 and R3, even though statistically 
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significant, may not have been great enough to substantially influence yield. The 

differences detected at the R3 growth stage also may not have affected yield because of 

the effects of translocation as previously discussed (Jurgens et al., 1978; Westgate and 

Boyer, 1985). Higher grain yield of the later maturing hybrids that exhibited lower 

photosynthetic rates may implicate translocation capacity as an important grain yield 

factor. Results of numerous trials indicate that the use of a late-season hybrid, when 

compared to an early-season hybrid planted on the same day, resulted in greater yield 

due to a prolonged reproductive growth period (Howell et al., 1998; Trooien et al., 1999; 

Norwood 2001; Capristo et al., 2007; Raymond et al., 2009; Van Roekel and Coulter, 

2012). 
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Table 4.6.   Hybrid effects on corn photosynthetic activity at 

R1 and R3 growth stages in 2011. 

Treatment R1   R3    

 
           

Hybrid 1   36.88† a‡ 30.10 a  

    
 

  
 

   

Hybrid 2   36.15 ab 30.01 a  

    
 

  
 

   

Hybrid 3   34.96 b 25.27 b  

    
 

  
 

   

Hybrid 4   30.84 c 23.52 b  

             

Pr>f   <0.0001   <0.0001    

R2   0.90   0.91    

CV %   8.4   15.2    

† Units are µmol CO2 m
-2 s-1. 

‡Within columns, means followed by the same letter are not 

significantly different according to LSD (0.05). 

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).   

 

Since significant PD x I, H x PD, and H x I interactions existed in 2011, 

comparisons were made within appropriate factor combinations. The interactive effect of 

PD x I on photosynthesis was significant when measured during the R1 and R3 growth 

stages in 2011, whereas measured values during the R5 growth stage were not 

significantly different (Table 4.3). Photosynthetic activity measured at R1 during 2011 

was only different for corn planted on the last planting date under dryland conditions and 

was lower than that of other treatments (Fig. 4.1). This lower rate might be attributed to 

increasing drought severity and temperature stress that plants in planting date 3 endured 

as they entered reproductive growth.  Further indication of the different environment 

encountered by dryland plants in planting date 3 may be seen in that photosynthetic 
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activity of plants in planting dates 1 and 2 under dryland conditions were not different 

from each other and also were not different from any of the three planting dates under 

irrigation.  

When photosynthetic rate was measured at R3 in 2011, results were somewhat 

similar to measurements taken during the R1 growth stage (Fig. 4.2). Photosynthetic rate 

did not differ among planting dates when plots were irrigated; however, under dryland 

conditions plants from planting dates 2 and 3 had a significantly lower photosynthetic 

rate than those of the first planting date, and may be due to worsening drought 

conditions. Westgate and Boyer (1985) imposed low water potential at silking, early-

grain fill, or mid-grain fill, but then followed with fully irrigated conditions to maturity. 

Results showed decreased yield in all cases under low water potential, and their data 

agreed with my results in that irrigated plots had both a higher photosynthetic rate and 

higher yield. The highest grain yield was achieved with the latest planting date under 

irrigation, whereas in dryland plots, a change in planting date did not generate a 

significant difference in grain yield. Again, photosynthetic rate at R1 or R3 may not be 

indicative of final grain yields. 



 

 

 

Figure 4.1.   Planting date x irrigation effect on corn photosynthetic activity at R1 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

5
0
 



 

 

 

Figure 4.2.   Planting date x irrigation effect on corn photosynthetic activity at R3 in 2011.  

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

 PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

5
1
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The interactive effect of H x PD on photosynthesis was significant during the R1 

and R5 growth stages in 2011 (Table 4.3 and Figs. 4.3 and 4.4, respectively). When 

photosynthetic rate was measured during the R1 growth stage, within the first planting 

date, photosynthetic rate increased with increasing hybrid maturity (Fig. 4.3). Within the 

second planting date, hybrids 1 through 3 tended to follow a similar trend as observed 

for the first date, but hybrid 4 now showed the lowest photosynthetic activity, and in the 

last planting date (3), a pattern opposite to that for planting date 1 occurred, in that 

photosynthetic activity now decreased with increasing hybrid maturity. The results 

suggested a possible overlap in the optimum timing for R1 to occur during the 2011 

growing season, and potentially an opposite trend for effects of corn hybrid maturity on 

photosynthetic rate when corn was planted on dates one month apart.  

When photosynthetic rate was measured at R5 in 2011 (Fig. 4.4), the trend was 

similar to the R1 data for hybrid maturity within the last planting (Fig. 4.3), but few 

obvious trends were noted for the first two dates. The latest planting date generated the 

greatest photosynthetic rate in hybrids 1, 2, and 3, but hybrid 4 had a lower rate 

indicating this planting date resulted in a more photosynthetically active crop during this 

time period with the exception of hybrid 4. These results also indicated an optimum 

window for ear development in 2011 where the highest photosynthetic rates were 

achieved with either earlier maturing hybrids planted later or later maturing hybrids 

planted earlier.  
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When photosynthetic activity was measured at R1 (Fig. 4.3), results 

corresponded to grain yield in 2011 for planting dates 1 and 2 but not for date 3 (Table 

3.4), possibly because of inhibition of photosynthesis by drought in later maturing 

hybrids (Chaves, 1991; Ort et al., 1994; Chaves et al., 2003; Flexas et al., 2004) and the 

insensitivity of grain yield to reduced photosynthetic activity because of its dependence 

on the translocation of stored carbohydrates (Jurgens et al., 1978). Results of numerous 

trials indicate that a late-season hybrid will usually produce greater yield compared to an 

early-season hybrid planted on the same day (Howell et al., 1998; Trooien et al., 1999; 

Norwood, 2001; Capristo et al., 2007; Raymond et al., 2009; Van Roekel and Coulter, 

2012). Capristo et al. (2007) found that biomass increased positively and linearly with 

hybrid cycle length and that long-season hybrids had higher light interception but lower 

radiation use efficiency. Grain yields were lowest for short-season hybrids and 

equivalent for mid- and full-season hybrids. Results indicated that grain yield of short-

season hybrids (lower GDU) would likely be more limited by the capacity of the 

reproductive sinks during grain fill than long-season hybrids.



 

 

 

Figure 4.3.   Hybrid x planting date effect on corn photosynthetic activity at R1 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 
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Figure 4.4.   Hybrid x planting date effect on corn photosynthetic activity at R5 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

5
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The interactive effect of H x I significantly influenced photosynthesis during all 

three growth stages in 2011 (Table 4.3).  Photosynthetic activity under dryland 

conditions during R1 was greatest for the earliest maturity hybrid and lowest for the 

latest maturing hybrid (Fig. 4.5). Hybrid 4 generally exhibited the lowest photosynthetic 

rate of all hybrids regardless of water treatment. Photosynthetic rate did not differ among 

hybrids under irrigated conditions. These results may indicate that the later maturing 

hybrids entered into the R1 growth stage during a more stressed period in 2011, with 

more limited soil water and elevated temperatures (Fig. 3.1).   

Results from the R3 growth stage were similar to those of the R1 growth stage 

(Fig. 4.6 and 4.5, respectively). Photosynthetic rate during R3 also declined with 

increasing hybrid maturity (Fig. 4.6). Although the trend for irrigated data mirrored that 

for dryland during R3, photosynthetic rate for irrigated plots did not diminish as much as 

those for dryland, although the rates for the two later maturing hybrids (3 and 4) were 

statistically lower than that for hybrid 2. Later maturing hybrids likely entered into the 

R3 growth stage under increased stress. By this stage of development, photosynthetic 

rates were reduced by 20%, 35%, 54%, and 52% for hybrids 1, 2, 3 and 4, respectively, 

in the dryland compared to the irrigated plots. Photosynthetic activity during R5 was 

drastically reduced under dryland conditions compared to those measured at R3 (Fig. 

4.7). Rates under irrigation also declined, but not as much. In dryland plots, 

photosynthetic rates were again lower for later maturing hybrids. 



 

 

 

Figure 4.5.   Hybrid x irrigation effect on corn photosynthetic activity at R1 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 
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Figure 4.6.   Hybrid x irrigation effect on corn photosynthetic activity at R3 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).
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Figure 4.7.   Hybrid x irrigation effect on corn photosynthetic activity at R5 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

5
9
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4.3 SEPARATE RESULTS: PHOTOSYNTHETIC ACTIVITY 2012 

 

The analysis of variance for corn photosynthetic activity in 2012 is presented in 

Table 4.7.  

 

Table 4.7.   Analysis of variance for corn photosynthetic activity 

measured during reproductive growth stages R1, R3, and R5 in 

2012. 

Source  df R1 R3 R5 

Irrigation (I) 1 * * ns† 

Replication 3 ns ns ns 

Error a 3 
   

Planting Date (PD) 2 *** *** *** 

PD x I 2 ns ns ns 

Error b 12 
   

Hybrid (H) 3 *** *** *** 

H x PD 6 *** *** * 

H x I 3 ns * ns 

H x PD x I 6 ns ns ns 

Error C 48 
   

R2   0.8 0.84 0.78 

CV %   8.6 14.85 15.8 

* Significant at 0.05 probability level.        

** Significant at 0.01 probability level. 

*** Significant at 0.001 probability level.      

† ns, nonsignificant.    
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Photosynthetic activity during the R3 growth stage was increased by irrigation in 

2012 (Table 4.8), but the main effect of irrigation was not significant for photosynthetic 

activity at the R5 growth stage in 2012, possibly because of the wetter growing season 

compared to 2011. Since year x irrigation was not significant for photosynthesis at R1 

(Table 4.1), effects were previously combined over years (Table 4.7).   

 

Table 4.8.   Irrigation effect on corn photosynthetic activity at 

growth stages R3 and R5 in 2012. 

Treatment   R3   R5   

              

Dryland     33.71† b‡ 23.62 a 

      
 

  
 

  

Irrigated     37.76 a 28.29 a 

              

Pr>f     0.0121   ns   

R2     0.84   0.78   

CV %     14.85   15.8   

† Units are µmol CO2 m
-2 s-1. 

‡Within columns, means followed by the same letter are not 

significantly different according to LSD (0.05).     

 

The main effect of planting date influenced photosynthesis at all three growth 

stages in 2012 (Table 4.7). Regardless of growth stage, plants from later planting dates 

had higher photosynthetic rates than those from earlier planting dates (Table 4.9). 

Photosynthetic rate decreased as plants aged regardless of planting date. In 2012, 

planting date 3 produced plants with the highest photosynthetic rate at all growth stages, 

except R1 where plants from planting dates 2 and 3 had statistically equal rates. The year 
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2012 differed from 2011 in the amount of precipitation received during reproductive 

growth, with 2012 receiving over 50.8 cm of precipitation while 2011 received only 15.2 

cm. Corn planted on dates 2 and 3 in 2011 had lower photosynthetic rates than those 

planted on date 1 indicating increasing stress with time in 2011, but not 2012.  

 

Table 4.9.   Planting date effect on corn photosynthetic activity in 

2012. 
  

Treatment   R1   R3   R5   

                  

Planting Date 1   32.37† b‡ 22.84 c 21.87 c 

                  

Planting Date 2   37.52 a 28.99 b 26.01 b 

                  

Planting Date 3   37.32 a 32.03 a 29.98 a 

                  

Pr>f     0.0002   <0.0001   <0.0001   

R2     0.8   0.84   0.78   

CV %     8.6   14.85   15.81   

† Units are µmol CO2 m
-2 s-1. 

‡Within columns, means followed by the same letter are not significantly different 

according to LSD (0.05).     

Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

  

 

The main effect of hybrid also influenced photosynthesis during all corn growth 

stages in 2012 (Table 4.10). Results for the R1 growth stage were similar to those for 

2011, in that as hybrid relative maturity (1 to 4) increased, photosynthetic rate decreased. 

In contrast to 2011, however, measurements collected during the R3 and R5 growth 

stages showed that as hybrid maturity (1 to 4) increased, photosynthetic rate also 

increased.  This contrast may be representative of the difference between the growing 
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seasons of 2011 and 2012, where 2011 was a very hot, extremely dry growing season 

and 2012 had a reasonable amount of rainfall and cooler temperatures. In a growing 

season where rainfall is not a limiting factor, it is reasonable to assume that the longer 

maturing hybrids would have an elevated photosynthetic rate compared to shorter season 

hybrids due to the extended grain fill characteristics of a longer season hybrid.  Capristo 

et al. (2007) found that hybrids with a short developmental time from emergence to 

flower, but a long developmental time from flower to maturity, resulted in the greatest 

radiation interception and grain yield.  

 

Table 4.10.  Hybrid effect on corn photosynthetic activity in 2012. 

Treatment R1   R3   R5   

                

Hybrid 1   38.72 a 25.06 b 23.26 b 

                

Hybrid 2   36.24 b 23.58 b 22.76 b 

                

Hybrid 3   34.93 bc 31.34 a 28.66 a 

                

Hybrid 4   33.05 c 31.83 a 29.14 a 

                

Pr>f   <0.0001   <0.0001   <0.0001   

R2   0.8   0.84   0.78   

CV %   8.6   14.85   15.81   

† Units are µmol CO2 m
-2 s-1. 

‡Within columns, means followed by the same letter are not significantly 

different according to LSD (0.05).    

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).  
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Since significant H x PD and H x I interactions existed, comparisons were also 

made within appropriate factor combinations. The interactive effect of PD x I was not 

significant for photosynthetic activity during any growth stage in 2012 (Table 4.7). This 

result was more than likely due to increased rainfall amount received and cooler 

temperatures during the 2012 growing season. Approximately 523 mm of rain fell during 

the 2012 growing season as opposed to 169 mm in 2011. The interactive effect of H x 

PD, however, significantly influenced photosynthesis during all three growth stages in 

2012 (Table 4.7). When measurements were taken during the R1 growth stage in 2012, 

earlier maturity group hybrids 1 and 2 responded with an increased photosynthetic rate 

to delayed planting (Fig. 4.8). Hybrids 3 and 4 had limited response to a change in 

planting date, with hybrid 3 increasing photosynthetic rate from PD 1 to 2 and then 

decreasing from PD 2 to 3.  

Similar to the results of corn photosynthetic rates during R1, results from the R3 

growth stage also showed that hybrid photosynthetic rate increased in response to 

delayed planting (Fig. 4.9). In contrast to R1 data, however, R3 results showed this trend 

across all maturity groups, although hybrids 3 and 4 had elevated photosynthetic rates 

during all planting dates when compared to hybrids 1 and 2. The trend of increased 

photosynthetic rate among hybrids in response to delayed planting also continued during 

R5 (Fig. 4.10). However, photosynthetic rate decreased from R1 to R3 to R5 (Figs. 4.8, 

4.9, and 4.10, respectively). This trend contrasted with the 2011 data, likely because 

hybrids planted during the 2012 growing season did not incur the severity of stress as 

they did during the 2011 season.  
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The interactive effect of H x I on photosynthesis was only significant at the R3 

growth stage, represented in Figure 4.11. Regardless of irrigation level, the later 

maturing hybrids (3 and 4) had a higher photosynthetic rate when compared to the 

earlier hybrids (1 and 2). Photosynthetic rates were higher for all hybrids when plots 

were irrigated, but the increase in photosynthetic rate for hybrids 1 and 2 was greatest.  

 



 

 

 

Figure 4.8.   Hybrid x planting date effect on corn photosynthetic activity at R1 in 2012. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 
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Figure 4.9.   Hybrid x planting date effect on corn photosynthetic activity at R3 in 2012. 

 
†Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15.
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Figure 4.10.  Hybrid x planting date effect on corn photosynthetic activity at R5 in 2012. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15.
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Figure 4.11.  Hybrid x irrigation effect on corn photosynthetic activity at R3 in 2012. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 
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5. CHLOROPHYLL FLUORESCENCE: RESULTS AND DISCUSSION 

 

 

5.1 COMBINED RESULTS: CHLOROPHYLL FLUORESCENCE  

 

Chlorophyll fluorescence indicates the quantum efficiency of photosystem II by 

measuring the excess energy being re-emitted as light (Maxwell and Johnson, 2000). 

Quantum yield of photosystem II (ɸPSII) was measured using the saturation pulse 

method in light adapted leaves and calculated as Y = (Fm – Ft) / Fm, where Fm is 

maximum fluorescence and Ft is fluorescence at given time. As long as there is no 

chlorophyll containing object, the Ft parameter field shows values close to 0.0. With a 

healthy leaf, Y amounts to approximately 0.8 (Maxwell and Johnson, 2000). ɸPSII was 

measured during three growth stages (R1, R3, and R5) within the corn reproductive 

period. The analysis of variance for combined years is presented in Table 5.1.  
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Table 5.1.   Analysis of variance for the quantum yield of photosystem II 

(ɸPSII) measured during corn reproductive growth stages R1, R3, and 

R5. 

Source  df R1 R3 R5 

Year 1 *** *** *** 

Replication 3 ns† ns ns 

Year x Rep 6 ns ns ns 

Irrigation (I) 1 ns ns ns 

Year x Irrigation 1 *** * ns 

Error a 1 
   

Planting Date (PD) 2 *** * *** 

PD x Year 2 ns ns *** 

PD x I 2 ns ns ns 

PD x I x Year 2 ns ns ns 

Error b 11 
   

Hybrid (H) 3 *** *** *** 

H x Year 3 ** ns *** 

H x PD 6 *** *** *** 

H x PD x Year 6 ns *** *** 

H x I 3 ns ns ns 

H x I x Year 3 ns ** * 

H x PD x I 6 ns ns ns 

H x PD x I x Year 6 ns *** ns 

Error C 51 
   

R2   0.69 0.76 0.74 

CV %   13.81 16.41 15.14 

* Significant at 0.05 probability level.       

** Significant at 0.01 probability level.       

*** Significant at 0.001 probability level.      

† ns, nonsignificant.   

 

 

The main effect of irrigation on ɸPSII was not significant at any of the measured 

reproductive growth stages nor were any of the interactions involving irrigation at R5, 



 

72 

 

except H x I x year (Table 5.1). Effects of irrigation on ɸPSII at R1 and R3 could not be 

combined across years because of significant year x irrigation interactions.  The main 

effect of planting date significantly influenced ɸPSII at all measured reproductive stages, 

but could not be combined across years for R5 because of a significant planting  

date x year interaction for that stage. When ɸPSII was measured at R1, planting dates 1 

and 3 had greater ɸPSII rates than planting date 2 (Table 5.2). At R3, the third planting 

date generated the greatest ɸPSII rate, while planting dates 1 and 2 were lower and not 

significantly different from each other. This trend is likely due to the higher 

temperatures and limited available moisture during that period.  

 

Table 5.2.   Planting date effects on quantum yield of corn 

photosystem II (ɸPSII) combined across years and measured 

during reproductive growth stages R1 and R3. 

Treatment   R1 
 

R3 
 

 
    

  
  Planting Date 1   0.57 a† 0.47 b 

      
    

Planting Date 2   0.48 b 0.49 b 

      
    

Planting Date 3   0.54 a 0.53 a 

      
 

   Pr>f     <0.0001 

 

0.0164 

 R2     0.69 
 0.76 

 CV %     13.8 
 

16.4 

 † Within columns, means followed by the same letter are not 

significantly different according to LSD (0.05). 

Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum 

fluorescence and Ft = fluorescence at given time. 
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The main effect of hybrid relative maturity on ɸPSII could not be combined over 

years at the R1 and R5 growth stages because of significant hybrid x year interactions, 

but could be combined during R3 (Table 5.1). Hybrid 4, the longest RM hybrid, had the 

highest ɸPSII rate at R3, with all other hybrids not significantly different from each other 

(Table 5.3). Variability of ɸPSII among different hybrids was previously documented by 

Selmani and Wassom (1993) where ɸPSII was measured for different hybrids in order to 

test the measurement as an indicator of drought tolerance. Results showed that the 

measurement could be used to identify more drought tolerant hybrids if used under 

moisture limiting conditions.  

 

Table 5.3.   Corn hybrid effects on quantum yield of 

photosystem II (ɸPSII) measured during the R3 

reproductive growth stage and combined across years. 

Treatment   R3 
  

      

Hybrid 1     0.46 b† 
 

      
   

Hybrid 2     0.47 b 
 

      
   

Hybrid 3     0.47 b 
 

      
   

Hybrid 4     0.61 a 
 

      
  

 Pr>f     <.0001 
 

 R2     0.76 
 

 CV %     16.4 
 

 † Means followed by the same letter are not significantly 

different according to LSD (0.05). 

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late) 
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Since significant PD x I, H x PD, and H x I interactions existed (Table 5.1), 

comparisons were also made within appropriate factor combinations. The interactive 

effect of PD x I on ɸPSII was only significant when measured at the R5 growth stage. 

Regardless of moisture treatment, the third planting date exhibited the greatest ɸPSII 

(Fig. 5.1), and was likely due to the narrow range of the planting window and the 

environmental conditions during grain fill. The length of time included in the planting 

window spanned only four weeks, and likely was not enough time to adequately describe 

the extremes of higher and lower ɸPSII measurements from planting both before and 

after the optimum planting period. Planting date 3 resulted in flowering and grain fill 

occurring during periods of slightly lower temperatures compared to planting dates 1 and 

2. Also, irrigation increased ɸPSII within the second and third planting dates compared to 

dryland, while irrigation had no effect for the first planting date.  

The interactive effect of H x PD on ɸPSII could not be combined over years for 

measurements at the R3 and R5 growth stage because of a significant year interaction 

(Table 5.1). Measurements during the R1 growth stage were able to be combined and 

were significantly influenced by the interactive effect of H x PD (Fig. 5.2).  

 

 



 

 

Figure 5.1.   Planting date x irrigation effect on quantum yield of photosystem II (ɸPSII) at corn R5 growth stage 

across years. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum fluorescence and Ft = fluorescence at given time. 

7
5
 



 

 

Figure 5.2.   Hybrid x planting date effect on quantum yield of photosystem II (ɸPSII) at corn R1 growth stage across 

years. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).  

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum fluorescence and Ft = fluorescence at given time. 

7
6
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For hybrids 1 and 2, the latest planting date resulted in the highest ɸPSII at R1 

(Fig. 5.2). The highest ɸPSII observed for hybrid 3 was at planting date 2, while hybrid 4 

exhibited the largest ɸPSII with the earliest planting date. Within the first two planting 

dates, the highest ɸPSII occurred with later maturing hybrids (3 and 4), while the third 

planting date resulted in a decreased ɸPSII for the hybrid 3 with others being not 

significantly different. These results indicated that for earlier maturing hybrids, later 

planting resulted in a higher ɸPSII, and the later maturing hybrids achieved the highest 

ɸPSII when planted earlier. 

The interactive effect of H x I on ɸPSII was not significant during any measured 

corn growth stages (Table 5.1). The H x I x year interaction, however, was significant 

for ɸPSII during R3 and R5; therefore, ɸPSII results from the R3 and R5 growth stages 

could not be combined across years. The H x PD x I interaction was not significant for 

ɸPSII when measurements were conducted at any of the three growth stages. This 

interaction could not be combined over years for measurements collected during R3, 

however, because of a significant H x PD x I x year interaction at this growth stage.  
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5.2 SEPARATE RESULTS: CHLOROPHYLL FLUORESENCE 2011 

 

Analysis of variance for ɸPSII measured during the reproductive period for 2011 

are presented in Table 5.4. The main effect of planting date significantly influenced 

ɸPSII when measured at R5 in 2011, with no other planting date interactions being 

significant for this growth stage (Table 5.4). 

 

Table 5.4.   Analysis of variance for quantum yield of 

photosystem II (ɸPSII) measured during corn reproductive 

growth stages R1, R3, and R5 in 2011. 

Source df R1 R3 R5 

Irrigation (I) 1 ns ns ns 

Replication 3 ns * ns 

Error a 3 
   

Planting Date (PD) 2 * ** *** 

PD x I 2 ns ns ns 

Error b 12 
   

Hybrid (H) 3 *** *** ns 

H x PD 5 *** ** ns 

H x I 3 ns ** ns 

H x PD x I 5 ns ns ns 

Error C 48 
   

R2   0.76 0.75 0.54 

CV %   10.6 10.8 16.98 

* Significant at 0.05 probability level. 

** Significant at 0.01 probability level. 

*** Significant at 0.001 probability level.  

† ns, nonsignificant. 
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Results for measured ɸPSII for growth stages R1 and R3 were combined over 

years (Table 5.1). The third planting date resulted in the greatest ɸPSII at R5 in 2011, 

followed by the first planting date, with the second planting date resulting in the lowest 

ɸPSII (Table 5.5). This result may indicate that the second planting date was under the 

most stress during R5 (Fig. 3.1). Combined 2011 and 2012 results from measurements 

collected during R1 and R3 (Table 5.2) showed a similar trend where the third planting 

date had the greatest ɸPSII. Again, this is likely due to the range of the planting dates and 

the environmental conditions during grain fill. The length of time included in this 

planting window spanned only four weeks and likely was not enough time to adequately 

describe the extremes of ɸPSII from planting both before and after the optimum planting 

period. 

 

Table 5.5.   Planting date effects on quantum yield of corn 

photosystem II (ɸPSII) at growth stage R5 in 2011. 

Treatment   R5   

          

Planting Date 1   0.56 b† 

      
 

  

Planting Date 2   0.50 c 

      
 

  

Planting Date 3   0.64 a 

      
 

  

Pr>f     <0.0001   

R2     0.54   

CV %     16.98   

† Means followed by the same letter are not significantly different 

according to LSD (0.05). 

Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum 

fluorescence and Ft = fluorescence at given time. 
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The main effect of hybrid also significantly influenced ɸPSII at R1 in 2011 

(Table 5.4). Results for measurements conducted during the R3 growth stage were 

previously combined over years (Table 5.1). Measurements collected during the R5 

growth stage were not significantly different (Table 5.4). Results for hybrid effect at R1 

in 2011 showed that later maturing hybrids (3 and 4) achieved higher rates of ɸPSII when 

compared to hybrids 1 and 2 (Table 5.6). Hybrid 4 also had a higher rate of ɸPSII than 

hybrid 3. Results of numerous trials indicate that the use of a late-season hybrid, when 

compared to an early-season hybrid planted on the same day, resulted in greater yield 

due to an elongated reproductive growth period (Howell et al., 1998; Trooien et al., 

1999; Norwood, 2001; Capristo et al., 2007; Raymond et al., 2009; Van Roekel and 

Coulter, 2012). The combined 2011 and 2012 results for measurements collected during 

R3 showed a similar trend in that hybrid 4 had the highest ɸPSII and hybrids 1-3 were 

lower and not statistically different (Table 5.3).  
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Table 5.6.  Hybrid effects on quantum yield of corn photosystem II 

(ɸPSII) at R1 growth stage in 2011. 

Treatment R1   

 
      

Hybrid 1   0.50 c† 

    
 

  

Hybrid 2   0.53 c 

    
 

  

Hybrid 3   0.58 b 

    
 

  

Hybrid 4   0.62 a 

    
 

  

Pr>f   <0.0001   

R2   0.76   

CV %   10.60   

† Means followed by the same letter are not significantly different 

according to LSD (0.05). 

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum fluorescence 

and Ft = fluorescence at given time. 

 

 

Because significant H x PD and H x I interactions existed (Table 5.4), 

comparisons were made within appropriate factor combinations. The interactive effect of 

H x PD significantly influenced ɸPSII at R1 and R3 in 2011. Results for the R1 growth 

period were able to be combined over years (Table 5.1). The interaction of H x PD 

during R5 in 2011 was not statistically significant (Table 5.4). Means for ɸPSII at R3 as 

influenced by the H x PD interaction are presented in Figure 5.3. For all hybrids, the first 

and last planting date resulted in ɸPSII values that were not significantly different within 

a hybrid. For hybrids 3, and 4, the second planting date tended to result in lower ɸPSII 

values when compared to the first and third. Results for hybrid 2 showed no effect of 

planting date, while for hybrid 1, the second planting date resulted in ɸPSII values that 
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were greater than the first and third dates.  The general trend was for greater ɸPSII with 

longer maturing hybrids. Higher ɸPSII in more drought tolerant hybrids has been well 

documented (O’Neill et al., 2006; Selmani and Wassom 1993). Numerous studies 

indicate a late-season hybrid, when compared to an early-season hybrid planted on the 

same day, provided greater yield (Howell et al., 1998; Trooien et al., 1999; Norwood, 

2001; Capristo et al., 2007; Raymond et al., 2009; Van Roekel and Coulter, 2012).  

The interactive effect of H x I also significantly influenced ɸPSII at the R3 

growth stage in 2011 (Table 5.4).  Regardless of irrigation, hybrid 4 achieved the highest 

ɸPSII values (Fig. 5.4). When irrigation was applied, as hybrid maturity increased, ɸPSII 

values also increased. Irrigation did not increase ɸPSII in hybrids 1 or 2 compared to 

dryland, but did in hybrids 3 and 4, likely due to differences in hybrid ɸPSII (O’Neill et 

al., 2006) and the yield characteristics of a longer season hybrid. Quantum yield 

decreased under dryland conditions with increased maturity for hybrids 1 through 3, but 

not for hybrid 4. 

 



 

 

 

Figure 5.3.   Hybrid x planting date effects on quantum yield of photosystem II (ɸPSII) at corn R3 growth stage in 

2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).  

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum fluorescence and Ft = fluorescence at given time. 
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Figure 5.4.   Hybrid x irrigation effects on quantum yield of photosystem II (ɸPSII) at corn R3 growth stage in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).  

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum fluorescence and Ft = fluorescence at given time. 

8
4
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5.3 SEPERATE RESULTS: CHLOROPHYLL FLUORESCENSE 2012 

 

Analysis of variance for ɸPSII measured during the respective corn reproductive 

periods in 2012 are presented in Table 5.7.  

 

 

Table 5.7.   Analysis of variance for quantum yield of 

photosystem II (ɸPSII) measured during corn reproductive 

growth stages R1, R3, and R5 in 2012. 

Source  df R1 R3 R5 

Irrigation (I) 1 ns† ns ns 

Replication 3 ns ns ns 

Error a 3 - - - 

Planting Date (PD) 2 * ** *** 

PD x I 2 ns ns ** 

Error b 12 - - - 

Hybrid (H) 3 ns ** *** 

H x PD 5 ns *** ns 

H x I 3 ns ns ns 

H x PD x I 5 ns ns ns 

Error C 48 - - - 

R2   0.78 0.74 0.86 

CV %   17.48 23.45 15.05 

* Significant at 0.05 probability level.       

** Significant at 0.01 probability level. 

*** Significant at 0.001 probability level.      

† ns, nonsignificant. 
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The main effect of irrigation on ɸPSII was not statistically significant at any 

growth stage in either year (Tables 5.4 and 5.7). The main effect of planting date, 

however, significantly influenced ɸPSII at all three growth stages in 2012 (Table 5.7). 

However, results at R1 and R3 were able to be previously combined over years (Table 

5.1).  As planting date was delayed in 2012, ɸPSII at R5 increased (Table 5.8). The 

combined results from measurements collected at R1 and R3 showed the same trend 

(Table 5.2). Quantum yield results during R5 in 2011 also exhibited a similar pattern as 

those in 2012 (Tables 5.5 and 5.8). Again, this was likely due to the range of the planting 

window and the environmental conditions during grain fill. The length of time included 

in this planting window spanned only four weeks and likely was not wide enough to 

result in extremes of ɸPSII from planting both before and after the optimum planting 

period. 
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Table 5.8.   Planting date effects on quantum yield of photosystem II 

(ɸPSII) at corn growth stage R5 in 2012. 

Treatment   R5   

          

Planting Date 1   0.44 c† 

      
 

  

Planting Date 2   0.48 b 

      
 

  

Planting Date 3   0.62 a 

      
 

  

Pr>f     0.0186   

R2     0.78   

CV %     17.48   

† Means followed by the same letter are not significantly different 

according to LSD (0.05). 

Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum 

fluorescence and Ft = fluorescence at given time. 

 

 

The main effect of hybrid significantly influenced ɸPSII in 2012 at R3 and R5, 

but not at R1 (Table 5.7). Measurements collected during R3, however, were able to be 

combined over years and were previously presented in Table 5.3.  The two later 

maturing hybrids (3 and 4) had significantly greater ɸPSII values at R5 in 2012 

compared to shorter maturity hybrids (1 and 2) (Table 5.9). These results were similar to 

those for R1 in 2011 (Table 5.6) and combined results over years for R3 (Table 5.3).  
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Table 5.9.   Hybrid effects on quantum yield of photosystem II 

(ɸPSII) at corn R5 growth stage in 2012. 

Treatment R5   

 
      

Hybrid 1   0.41 b† 

    
 

  

Hybrid 2   0.41 b 

    
 

  

Hybrid 3   0.63 a 

    
 

  

Hybrid 4   0.59 a 

    
 

  

Pr>f   <0.0001   

R2   0.86   

CV %   15.05   

† Means followed by the same letter are not significantly different 

according to LSD (0.05). 

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).  

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum 

fluorescence and Ft = fluorescence at given time. 

 

 

Since a highly significant H x PD interaction existed at R3 (Table 5.7), 

comparisons were made within appropriate factor combinations. Results for the R1 

growth stage were able to previously be combined over years (Table 5.1). For hybrids 1 

and 2, planting date 3 resulted in the highest value in 2012 (Fig. 5.5). Planting date had 

no effect on ɸPSII for hybrid 3 in 2012, while the greatest values for hybrid 4 were 

associated with planting dates 2 and 3. Within planting date, the later maturing hybrids 

(3 and 4) generally exhibited higher ɸPSII values than the earlier maturing hybrids (1 and 

2). Planting date 3 tended to result in increased ɸPSII when compared to earlier planting 

dates.  



 

 

 

Figure 5.5.   Hybrid x planting date effect on quantum yield of photosystem II (ɸPSII) at corn growth stage R3 in 2012. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb 15, 2: Mar 1, and 3: Mar 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).  

ɸPSII, calculated as Y = (Fm – Ft) / Fm, where Fm = maximum fluorescence and Ft = fluorescence at given time. 

   

 

8
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6. CANOPY TEMPERATURE DEPRESSION: RESULTS AND DISCUSSION 

 

 

Canopy temperature was measured throughout the growing season. However, 

canopy temperature depression (CTD) was only calculated for three growth stages, R1, 

R3, and R5, within the corn reproductive period during 2011 and 2012. 

 

6.1 COMBINED RESULTS: CANOPY TEMPERATURE DEPRESSION 

 

 The analysis of variance for CTD for combined years is presented in Table 6.1. 

The main effect of irrigation on CTD was not significant combined over years when 

measured at R1, but was significant at R3 and R5. Differences between canopy 

temperature and air temperature increased with irrigation when measured during either 

R3 or R5 growth stages (Table 6.2). When comparing measurements across growth 

stages, decreased CTD was observed at R5 compared to R3 and was likely due to the 

transition by the corn plant to draw upon carbohydrate reserves as opposed to 

photosynthetic gain, also known as “drying down”. Both irrigated and dryland plots had 

a canopy temperature that was significantly cooler than ambient temperature, with 

irrigated plots having a greater CTD.  
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Table 6.1.   Analysis of variance for canopy temperature depression measured 

during three corn reproductive growth stages R1, R2, and R3 and combined 

over years. 

Source  df R1 R3 R5 

Year 1 *** ns† *** 

Replication 3 ns ns * 

Year x Rep 6 ns ns *** 

Irrigation (I) 1 ns ** * 

Year x Irrigation 1 ** ns ns 

Error a 1 
   

Planting Date (PD) 2 *** *** ** 

PD x Year 2 ** *** *** 

PD x I 2 * ns ns 

PD x I x Year 2 ns ** ** 

Error b 11 
   

Hybrid (H) 3 *** ** ns 

H x Year 3 ** *** *** 

H x PD 6 ns *** ns 

H x PD x Year 6 ns *** *** 

H x I 3 *** ns ns 

H x I x Year 3 ns ns * 

H x PD x I 6 ns ns ns 

H x PD x I x Year 6 ns ns ns 

Error C 51 
   

R2   0.87 0.83 0.70 

CV %   58.40 26.06 32.08 

* Significant at 0.05 probability level.          

** Significant at 0.01 probability level.   

*** Significant at 0.001 probability level.          

† ns, nonsignificant.     

 

 

 

 



 

92 

 

Table 6.2.   Irrigation effects on corn canopy temperature depression 

combined over years at growth stages R3 and R5. 

Treatment   R3   R5   

            

Dryland   4.42† b‡ 3.75 b 

            

Irrigated   6.54 a 4.95 a 

            

Pr>f   0.0046   0.0313   

R2   0.52   0.32   

CV %   43.05   46.6   

† Units are degrees Celsius. 

‡Within columns, means followed by the same letter are not significantly 

different according to LSD (0.05).     

 

The main effects of planting date and hybrid on CTD could not be combined 

over years for any of the three growth stages because of significant treatment 

interactions with year (Table 6.1). The interactive effect of PD x I significantly affected 

CTD when measured at R1, but not at R3 and R5. The interactive effect of PD x I 

involved a significantly greater temperature depression for the latest planting date when 

coupled with irrigation (Fig. 6.1). Regardless of irrigation, canopy temperatures were 

closer to ambient for the first planting date, with greater separation as planting dates 

progressed. This data suggested that corn from the second and third planting dates was 

under less stress than that from the first planting date. Several investigators have used 

canopy temperature as a gauge for drought tolerance and yield stability (Singh and 

Kanemasu, 1983; Blum et al., 1989; Stark et al., 1991; Rashid et al., 1999). In these 

studies, a positive correlation was found between drought susceptibility and canopy 

temperature. The most drought resistant plants usually exhibited the lowest canopy 
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temperatures under stressed environments. Planting date results are likely somewhat 

limited due to the narrow range of the planting window (four weeks) and the 

environmental conditions during grain fill. This range most likely was not long enough 

to adequately describe extremes of higher and lower CTD from planting both before and 

after the optimum planting period. A greater separation for CTD was generally also 

observed for irrigated plots across planting dates than for dryland plots.  

The interactive effect of H x PD on CTD was not significant when measured at 

R1 and R5 (Table 6.1). The interaction of H x PD x year was significant at R3 and R5 

and effects, therefore, could not be combined over years. The interactive effect of H x I 

on CTD was significant when measured at R1, but not at R3 and R5. Measurements 

taken at R5 were unable to be combined over years because of a significant H x I x year 

interaction.  

 



 

 

 

Figure 6.1.   Planting date x irrigation effect on corn canopy temperature depression at R1 combined over years.  

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15)

9
4
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Results of the H x I interaction indicated that CTD was greater for hybrid 4, 

regardless of irrigation level, when compared to hybrid 1 (Fig. 6.2). Irrigation also 

significantly increased CTD in hybrid 4, but did not significantly influence CTD for the 

other hybrids. A numerical trend worth noting is the increase in CTD with increasing 

hybrid maturity; however, these results were not statistically significant. Capristo et al. 

(2007) found that biomass increased positively and linearly with hybrid cycle length 

growing degree units (GDU). Long-season hybrids had highest light interception but the 

lowest radiation use efficiency. Grain yields were lowest for short-season hybrids and 

equivalent for mid-season and full-season hybrids. Also, hybrids with a short 

developmental time from emergence to flower, but a long developmental time from 

flower to maturity produced the greatest radiation interception and grain yield. The H x 

PD x I interaction was not significant for CTD during any growth stage (Table 6.1).   



 

 

 

 

Figure 6.2.   Hybrid x irrigation effect on corn canopy temperature depression at R1 combined over years.  

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late

9
6
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6.2 SEPARATE RESULTS: CANOPY TEMPERATURE DEPRESSION 2011 

 

The analysis of variance for canopy temperature depression (CTD) measured 

during the 2011 reproductive period is presented in Table 6.3. 

 

Table 6.3.   Analysis of variance for corn canopy temperature depression measured 

during reproductive growth stages R1, R3, and R5 in 2011. 

Source  df R1 
 

R3 
 

R5   

Irrigation (I) 1 ns† 
 

* 
 

ns   

Replication 3 ns 
 

ns 
 

**   

Error a 1        

Planting Date (PD) 2 *** 
 

*** 
 

***   

PD x I 2 ns 
 

ns 
 

ns   

Error b 11        

Hybrid (H) 3 *** 
 

*** 
 

ns   

H x PD 6 ns 
 

*** 
 

***   

H x I 3 *** 
 

ns 
 

*   

H x PD x I 6 ns 
 

** 
 

ns   

Error c 51             

R2   0.82 
 

0.89 
 

0.78   

CV %   26.03 
 

28.07 
 

33.8   

* Significant at 0.05 probability level.                

** Significant at 0.01 probability level.       

*** Significant at 0.001 probability level.              

† ns, nonsignificant.       

 

The main effect of irrigation on CTD at R1 and R5 was not significant in 2011 

(Table 6.3). Results for CTD during the R3 and R5 growth stages were able to be 

combined over years because the year x irrigation effect at these stages was not 
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significant (Table 6.1).  The main effect of planting date significantly affected CTD at 

all growth stages in 2011 (Table 6.3). For CTD measurements at the R1 growth stage, 

the earliest planting date resulted in canopy temperatures that were warmer than ambient 

temperatures, indicating a very stressed crop (Table 6.4). For measurements during R3 

and R5, however, the earliest planting date produced plants with significantly greater 

CTD than the latest planting date, indicating that plants from the latest planting date 

were under more stress than those from the earliest planting date. 

 

Table 6.4.   Planting date effects on corn canopy temperature depression 

at growth stages R1, R3, and R5 in 2011.   

Treatment R1   R3   R5   

                

Planting Date 1 -1.65† b‡ 6.16 a 6.53 a 

                

Planting Date 2 0.68 a 6.48 a 3.18 b 

                

Planting Date 3 1.03 a 3.64 b 4.42 b 

                

Pr>f   0.0003   <0.0001   0.0004   

R2   0.82   0.89   0.78   

CV %   26.03   28.07   33.8   

† Units are degrees Celsius. 

‡Within columns, means followed by the same letter are not significantly different 

according to LSD (0.05).  

Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

 

 

The main effect of hybrid on CTD was significant when measured at R1 and R3 

in 2011 (Tables 6.3 and 6.5). Canopy temperatures during the R1 growth stage were 

closer to ambient temperatures than at R3 for all hybrids, and was likely due to the 
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moisture stress in 2011 (169 mm rainfall) and the elevated maximum temperature at that 

time (Fig. 3.1).  Hybrid 4 exhibited the greatest CTD at R1 and equivalent to the greatest 

CTD at the R3 growth stage. 

 

 

 

 

 

 

 

 

 

  

 

 

 

Since highly significant H x PD and H x I interactions existed (Table 6.3), 

comparisons were made within appropriate factor combinations. The interactive effect of 

PD x I was not significant for CTD at any growth stage in 2011, but H x PD was 

significant when measured at R3 and R5. Results for the latter interaction at R3 are 

shown in Fig. 6.3 while those at R5 are presented in Fig. 6.4. For R3, within the first 

planting date, as hybrid maturity increased, CTD also significantly increased (Fig. 6.3). 

Table 6.5.   Hybrid effects on corn canopy temperature depression 

at growth stages R1 and R3 in 2011.   

Treatment   R1   R3   

 
            

Hybrid 1     -0.62† b‡ 5.05 b 

              

Hybrid 2     -0.38 b 6.30 a 

              

Hybrid 3     -0.74 b 4.39 b 

              

Hybrid 4     1.82 a 5.98 a 

              

Pr>f     <.0001   0.0002   

R2     0.82   0.89   

CV %     26.03   28.07   

† Units are degrees Celsius. 

‡Within columns, means followed by the same letter are not significantly 

different according to LSD (0.05).    

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).   
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Within the second planting date, however, a large separation was observed, with the two 

earlier maturing hybrids having greater CTD than the two later maturing hybrids. The 

third planting date had mixed results, with hybrid 3 exhibiting the lowest CTD. With the 

focus on hybrid, the two earlier maturing hybrids had the greatest CTD for planting date 

2, while the two later maturing hybrids achieved the greatest CTD with the first planting 

date.  

At R5, all four hybrids showed the greatest CTD with the earliest planting date 

(Fig. 6.4). The lowest CTD was observed with the second planting date for the later 

maturing hybrids 3 and 4. O’Neill et al. (2006) measured leaf temperature in conjunction 

with chlorophyll fluorescence measurements and recorded an increase in leaf 

temperature (2.5 °C) when deficit irrigation plots were compared to adequately irrigated 

plots. Results also demonstrated that under stress, leaf temperature was 2.8°C cooler for 

tolerant vs. susceptible hybrids, while all hybrids produced similar leaf temperatures 

under no stress. 

The interactive effect of H x I significantly affected CTD at R1 and R5 in 2011 

(Table 6.3). Measurements for R1 were able to be previously combined over years and 

measurements for R3 were not significant (Table 6.1). For R5, hybrid 3 had the least 

CTD than all other hybrids under dryland conditions, but CTD for all hybrids was 

similar with irrigation (Fig. 6.5).



 

 

 

Figure 6.3.   Hybrid x planting date effects on corn canopy temperature depression at R3 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

1
0
1
 



 

 

 

Figure 6.4.   Hybrid x planting date effects on corn canopy temperature depression at R5 in 2011. 

 
 

† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 
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Figure 6.5.   Hybrid x irrigation effects on corn canopy temperature depression at R5 in 2011. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late)

1
0
3
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6.3 SEPARATE RESULTS: CANOPY TEMPERATURE DEPRESSION 2012 

 

The analysis of variance for CTD measured during the reproductive period for 

2012 is presented in Table 6.6. The main effect of irrigation when measured at all 

measured reproductive stages significantly affected CTD in 2012. Measurements 

collected during the R3 and R5 growth stages were previously combined over years 

(Table 6.1). 

 

Table 6.6.   Analysis of variance for corn canopy temperature depression measured 

during three reproductive growth stages in 2012. 

Source  df R1 
 

R3 
 

R5   

Irrigation (I) 1 ** 
 

* 
 

**   

Replication 3 ns† 
 

** 
 

**   

Error a 3 
       

Planting Date (PD) 2 *** 
 

*** 
 

***   

PD x I 2 ns 
 

* 
 

ns   

Error b 12 
       

Hybrid (H) 3 *** 
 

*** 
 

***   

H x PD 6 ns 
 

*** 
 

***   

H x I 3 * 
 

ns 
 

ns   

H x PD x I 6 * 
 

** 
 

ns   

Error C 52 
       

R2   0.85 
 

0.88 
 

0.86   

CV %   22.5 
 

19.27 
 

20.3   

* Significant at 0.05 probability level.                

** Significant at 0.01 probability level.       

*** Significant at 0.001 probability level.              

† ns, nonsignificant.       
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The difference between corn canopy and air temperatures at R1increased with 

irrigation in 2012, with irrigated plants having significantly greater CTD than dryland 

plants (Table 6.7).  Results were similar to the results combined over years for the R3 

and R5 growth stages (Tables 6.2 and 6.7).  

 

Table 6.7.   Irrigation effects on corn canopy temperature depression 

at R1 in 2012. 

Treatment   R1   

 

        

Dryland     3.72† b‡ 

 

        

Irrigated     4.61 a 

          

Pr>f     0.003   

R2     0.85   

CV %     22.52   

† Units are degrees Celsius. 

‡Within columns, means followed by the same letter are not significantly 

different according to LSD (0.05).        

 

The main effect of planting date also significantly affected CTD when measured 

at all reproductive stages in 2012 (Table 6.6). When CTD was measured at any growth 

stage in 2012, the third planting date resulted in the greatest difference between canopy 

and ambient air temperatures when compared to the earliest planting date (Table 6.8). 

Results for R1 in 2012 were similar to those measured in 2011 (Table 6.4) in that the 

third planting date also had the greatest CTD and the first planting date had the lowest 

CTD. Results for R3 and R5 in 2012 also showed that the third planting date had the 

greatest CTD and the first planting date had the lowest CTD (Table 6.8). These results 



 

106 

 

contrast with R3 and R5 results for 2011 where the inverse was true (Table 6.4). 

Although there were CTD differences for planting date in 2012, planting date did not 

result in a significant difference in grain yield in 2012 (Table 3.6).  

 

Table 6.8.   Planting date effects on corn canopy temperature depression at 

three growth stages in 2012. 

Treatment   R1   R3   R5   

                  

Planting Date 1 3.11† c‡ 4.44 b 3.35 c 

                  

Planting Date 2 4.04 b 6.04 a 3.84 b 

                  

Planting Date 3 5.36 a 6.14 a 4.80 a 

                  

Pr>f     <0.0001   0.0001   <0.0001   

R2     0.85   0.88   0.86   

CV %     22.52   19.27   20.33   

† Units are degrees Celsius. 

‡Within columns, means followed by the same letter are not significantly different 

according to LSD (0.05).  

Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

     

 

The main effect of hybrid on CTD was significant at all reproductive stages in 

2012 (Table 6.6). When CTD was measured at the three growth stages, later maturing 

hybrids (3 and 4) had significantly greater canopy temperature depressions than the 

earliest maturing hybrids (1 and 2), indicating that the longer RM hybrids were better 

suited for ambient conditions and stressed less than earlier maturing hybrids during the 

2012 cropping season (Table 6.9). Hybrid 4 also exhibited significantly greater CTD 

than hybrid 3 at R1 and R5. O’Neill et al. (2006) reported a 2.8 °C cooler leaf 

temperature for drought tolerant hybrids compared to susceptible hybrids. 
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Table 6.9.   Hybrid effects on corn canopy temperature depression at three 

growth stages in 2012. 

Treatment   R1   R3   R5   

                  

Hybrid 1     2.71† d‡ 3.93 c 3.48 c 

                  

Hybrid 2     3.58 c 5.04 b 3.17 c 

                  

Hybrid 3     4.80 b 6.58 a 4.40 b 

                  

Hybrid 4     5.59 a 6.61 a 4.94 a 

                  

Pr>f     <0.0001   <0.0001   <0.0001   

R2     0.85   0.88   0.86   

CV %     22.52   19.27   20.33   

† Units are degrees Celsius. 

‡Within columns, means followed by the same letter are not significantly different 

according to LSD (0.05).         

Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 

 

Significant PD x I, H x PD, and H x I interactions existed for some reproductive 

stages, so comparisons were made within appropriate factor combinations (Table 6.6). 

The interactive effect of PD x I measured at R3 significantly affected CTD in 2012 (Fig. 

6.6).  Later planting dates resulted in a greater CTD at R3, indicating a lower stress 

environment for later planting dates during this growth stage. Irrigation enhanced CTD 

for all planting dates, especially the latter two dates. The PD x I interaction results for 

the R3 growth stage in 2012 were similar to those at the R1 growth stage combined over 

years (Fig. 6.1). 

The interactive effect of H x PD for CTD was significant at R3 and R5 in 2012 

(Table 6.6). Within the first planting date, as hybrid maturity increased, CTD at R3 also 
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increased (Fig. 6.7).  Results are consistent with 2011 where later maturing hybrids 

combined with early planting dates resulted in the greatest CTD (Fig. 6.3). Within the 

second planting date, a large separation was noted between hybrids 1, 2, and 3 and 

hybrid 4, with hybrid 4 having a greater CTD than the other three hybrids (Fig. 6.7). 

Results conflicted with 2011 findings for the second planting date where hybrids 1 and 2 

had significantly greater CTD compared to hybrids 3 and 4 (Fig. 6.3). The conflicting 

results are likely due to the lower rainfall (Fig. 3.1) and elevated temperatures in 2011 

and could indicate a stress event in 2011 that limited the yield potential of the later 

maturing hybrids for the second planting date. The third planting date had mixed results 

with hybrid 3 having the greatest CTD and a decline seen with hybrid 4 (Fig. 6.7). 

Results again conflicted with 2011 where hybrids 1 and 2 exhibited greater CTD than 

hybrids 3 and 4 (Fig. 6.3).  For hybrids 1, 2, and 3, the greatest CTD resulted with the 

later planting dates (Fig. 6.7). For hybrid 4, however, the greatest CTD was achieved 

with the first and second planting date.



 

 

 

Figure 6.6.   Planting date x irrigation effect on corn canopy temperature depression at R3 in 2012. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).
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Figure 6.7.   Hybrid x planting date effect on corn canopy temperature depression at R3 in 2012. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late). 
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Results for the H x PD effect on canopy temperature depression at R5 are given 

in Fig. 6.8. For hybrids 1, 3, and 4, greater CTD resulted from the later planting dates. 

Results conflicted with those of 2011 where the greatest CTD was seen within the first 

planting date by all hybrids (Fig. 6.4). However, the lowest CTD was seen for the second 

planting date and hybrid 2 in 2012 but not in 2011 (Figs. 6.4 and 6.8). In 2012, the 

greatest CTD resulted from a combination of later planting dates and later maturing 

hybrids (Fig. 6.8). Results of numerous trials indicate that the use of a late-season 

hybrid, when compared to an early-season hybrid planted on the same day, resulted in 

greater yield due to a prolonged reproductive growth period (Howell et al., 1998; 

Trooien et al., 1999; Norwood, 2001; Capristo et al., 2007; Raymond et al., 2009; Van 

Roekel and Coulter, 2012). 



 

 

 

Figure 6.8.   Hybrid x planting date effect on corn canopy temperature depression at R5 in 2012. 

 
† Means followed by the same letter are not significantly different according to LSD (0.05). 

PD, Planting Date (1: Feb. 15, 2: Mar. 1, and 3: Mar. 15). 

H, Hybrid (1: Early, 2: Mid, 3: Mid-late, and 4: Late).
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1
2
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7. CONCLUSION 

 

 

The 2011 and 2012 growing seasons contrasted dramatically. Dryland and 

irrigated treatments during a drought in 2011 and good growing conditions in 2012 

provided essentially four vastly different environments. Reduced photosynthetic rate, 

chlorophyll fluorescence, and canopy temperature depression indicated moisture stress 

and generally resulted in lower corn grain yield. In general, within the 2011 growing 

season, later planting and longer maturing hybrids produced greater grain yields, lower 

photosynthetic rates at R1, greater ɸPSII, and greater CTD at R1. In the 2012 growing 

season, planting date did not significantly influence grain yield but longer maturing 

hybrids did increase grain yield. Also in 2012 longer maturing hybrids and later planting 

resulted in lower photosynthetic rates at R1, greater ɸPSII, and greater CTD at all growth 

stages. This research demonstrated, as many others have shown, that the growing 

environment during pollination tends to have the greatest effect on corn grain yield. 

Information regarding general timing of rainfall is important for optimizing planting 

date. For example, in College Station, TX, significant rainfall is historically received in 

late March through mid-April with a potential dry period between that and a rainy period 

in September. Thus, corn hybrid maturity should be selected to target pollination 

occurring during a period of more likely precipitation.  

In the College Station example, a planting date 45 to 55 days prior to mid-April 

with a 105-day corn hybrid would target pollination occurring during a likely wet period. 
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The same hybrid could also potentially be planted 45 to 55 days prior to the rainy period 

in September. The later planting would allow for pollination to occur during the 

September rainy period but would require planting during probable dry conditions. 

Understanding weather patterns in a given production region along with historic freeze 

dates may be the best management practice available to identify possible planting dates 

and hybrid relative maturities. The combination of those two choices coupled with 

regional weather patterns could help avoid moisture stress. 

To provide specific recommendations regarding planting date and hybrid choice, 

further research should possibly narrow its focus to the bimodal rain pattern. Relevant 

data should include GDD and growth stage dates in order to understand temperatures 

effect when trying to target the pollination window.  
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