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ABSTRACT 

 

Obesity causes a wide variety of metabolic diseases including fatty liver disease 

and diabetes. Mechanistically, obesity-associated inflammation has been implicated as a 

key factor in the development of fat deposition, insulin resistance, and metabolic 

dysregulation. As a member of the G-protein coupled receptor families, adenosine 2A 

receptor (A2AR) is anti-inflammatory. However, little is known about nutritional 

regulation of A2AR as it relates to insulin resistance.  

In the present study, the expression of A2AR in liver and adipose tissue was 

examined in wild type (WT) C57BL/6J mice upon feeding a high-fat diet (HFD) or a 

low-fat diet (LFD). Also, both A2AR-deficient mice and WT mice were fed an HFD for 

12 weeks to examine the involvement of A2AR in diet-induced inflammation and insulin 

resistance. Lastly, the effects of major macronutrients, i.e. glucose and palmitate, on the 

inflammatory responses were examined in adipocytes and macrophages, either from WT 

or A2AR-deficient background.  

 HFD increased the expression of A2AR in liver and adipose tissue, accompanied 

with obesity-related inflammation and insulin resistance. It appeared to be a defensive 

response, which may help protect against inflammatory damage. Nutrients had direct 

effects on A2AR expression in both adipocytes and macrophages, which indicated A2AR 

had protection effects on inflammation. When comparing with HFD-fed WT mice, HFD-

fed A2AR-deficient mice displayed a significant increase in the severity of inflammation 

and insulin resistance.  
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NOMENCLATURE 

 

AKT Protein Kinase B 

AC Adenylyl cyclase 

ACC Acetyl-CoA Carboxylase 

ATP Adenosine Triphosphate 

ADP Adenosine Diphosphate 

AMP Adenosine Monophosphate 

ADA Adenosine Deaminase 

A2AR Adenosine 2A receptor 

A2BR Adenosine 2B receptor 

BAT Brown Adipose Tissue 

BMDM Bone Marrow-Derived Macrophage 

cAMP Cyclic Adenosine Monophosphate 

CREB cAMP responsive element binding protein 

ENT Nucleoside Transporter 

FAS Fatty Acid Synthase 

FFAs Free Fatty Acids 

GTT Glucose Tolerance Test 

Gi G Protein Inhibitory 

Gs G Protein Stimulatory 

HFD High Fat Diet 
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IL-1β Interleukin-1β 

IL-4 Interleukin-4 

IL-4 Interleukin-6 

IR Insulin Resistance 

ITT Insulin Tolerance Test 

JNK c-Jun N-terminal Kinase 

LPS Lipopolysacharride 

MCP-1 Monocyte Chemotactic Protein-1 

NADPH Nicotinamide Adenine Dinucleotide Phosphate 

NAFLD Nonalcoholic Fatty Liver Disease 

NFκB Nuclear Factor kappa-light-chain-enhancer of activated B cells 

PKA Protein kinase A 

RT-PCR Reverse Transcription Polymerase Chain Reaction 

SREBP-1c Sterol Regulatory Element-Binding Protein 1c 

T2DM Type 2 Diabetes Mellitus 

TG Triglycerides 

TRIF TIR-domain-containing adaptor inducing interferon β 

TLR-4 Toll-like Receptor-4 

TNF-α Tumor Necrosis Factor-α 

VLDL Very Low Density Lipoprotein 

WAT White Adipose Tissue 

WT Wild-Type 
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CHAPTER I  

INTRODUCTION  

 

Obesity is a serious problem all over the world, and more than 36% of US adults 

are obese [1]. It involves adipose tissue expansion and dysfunction, which causes 

dysregulation of adipose tissue derived factors, leading to changed glucose and lipid 

homeostasis and inflammatory response. If unchecked, imbalanced fatty acids will 

traffic way from adipose tissue to other tissues such as liver and muscle, which is a main 

cause for the development of obesity-linked disorders, especially various metabolic 

diseases. Much of the literature has focused on intracellular sequence of events that 

resulted in dysfunction of adipose tissue and liver, like key enzymes related to lipolysis 

and de novo lipogenesis. However, there is little literature that covered regulation of 

adipose tissue and liver function whereby adenosine receptors mediated extracellular 

signals. Therefore, this dissertation aims at examining the links between adenosine 

receptors mediation and over-nutrition induced obesity.  

A2AR is one of the specific receptor that reported to have regulation on 

inflammation response. As a key extracellular signaling molecule, adenosine preserves 

tissue homeostasis through activating adenosine receptors. There are four subtypes of 

adenosine receptor (A1, A2A, A2B, A3), A2A and A2B activation can result in elevated level 

of cAMP level [2]. Of many cells in immune system, A2AR have effect on suppressing 

key steps of pro-inflammatory signaling pathways [3-6]. But the nutritional effects in 

regulating this process and downstream events have not yet been well established. In 
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virtue of A2AR knock out mice, we would like to focus on exploring the cellular 

mechanisms of as to how A2AR activation decreases diet-induced inflammation. 

Therefore, the central hypothesis of this dissertation is that A2AR coordinate metabolic 

and inflammatory response upon dietary effects in adipose tissue and liver, directly 

affecting adipocytes and macrophages in an obesity mice model.   
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CHAPTER II  

LITERATURE REVIEW  

 

Obesity-related Inflammation And Metabolic Diseases 

The incidence of obesity has been increasing substantially worldwide. In the US, 

over 1/3 of adults are classified as obese, and similar trends have been observed in 

countries all over the world [7]. More than 600 million adults were obese in 2014, 

according to a Global Status Report release by the World Health Organization. The 

obesity-related metabolic dysfunction includes heart diseases, stroke, type 2 diabetes, 

nonalcoholic fatty liver disease and certain types of cancer. So finding new 

pharmacological approaches is crucial in preventing the development or ameliorating 

they symptoms associated with obesity. 

People are living in environments that promote the intake of energy-dense, 

nutrient-poor food and physical inactivity. Diet packed with added sugar and saturated 

fatty acid (SFA) will cause excess accumulation of fat stored in adipose tissue. 

Nowadays, adipose tissue is viewed not only as an inert organ to store food-derived fat, 

but also as an endocrine organ, which is responsible for releasing several hormones [8]. 

The excess adipose tissue can trigger increased secretion of FFA and cytokines, which 

favors infiltration of macrophages and other immune cells into adipose tissue, leading to 

low-grade chronic inflammation. On the systemic level, altered adipocyte- and 

macrophage-derived factors secretion can lead to liver fat accumulation and insulin 

resistance.  
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SFA and lipotoxicity 

Not all fatty acids affect body metabolism and insulin sensitivity the same. SFA, 

especially palmitic acid, impairs insulin sensitivity and causes inflammation, while 

unsaturated fatty acids can improve insulin sensitivity [9]. SFA serves as a ligand to bind 

toll-like receptor 4 (TLR4) and triggers inflammatory responses. TLR4 signaling 

involves two distinct adaptor proteins, MyD88 and TIR-domain-containing adaptor 

inducing interferon β (TRIF). MyD88-dependent pathway is associated with the 

activation of MAP kinase (JNK, p38 MAPK) and NF-κB. MyD99-independent (TRIF) 

pathway is associated with the phosphorylation of IRF3 and the expression of IFNβ via 

IKKε/TBK1, which delays MAPK and NF-κB activation [10]. Palmitate also induces 

mitochondrial dysfunction, which elicits oxidative stress. Meanwhile, accumulated 

reactive oxygen species (ROS) eventually contribute to the progression of insulin 

resistance [11].  

Another consequence of SFA (particularly palmitate) is the synthesis of ceramide 

and diacylglycerol (DAG), which causes lipotoxicity. SFAs induce the biosynthesis of 

ceramide in a TLR-4 mediated fashion. The accumulation of intracellular SFA 

metabolites also act as “second messengers” that have a potent role in pathogenesis of 

insulin resistance [12, 13]. Ceramide inhibits the activity of Akt by dephosphorylating it 

through protein phosphatase 2A (PP2A) and blocking the translocation of Akt via PKCζ 

to the plasma membrane. The consequence of these two independent mechanisms is 

reduced translocation of GLUT4 to the plasma membrane and thus reduced glucose 

uptake [14]. Accumulated DAG in the liver activates PKCε to drive insulin resistance 
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and hepatosteatosis. PKCε correlates with decreased insulin-stimulated insulin receptor 

substrate-2 tyrosine phosphorylation and Akt phosphorylation, resulting in the failure of 

hepatic glycogen synthesis and suppressing gluconeogenesis [15]. PKCδ expression is 

also higher in the liver of obese mice and humans, which is linked by DAG 

accumulation. Global or liver-specific knockout of PRKCD gene mice had increased 

insulin signaling and suppressed glucogenesis and lipogenesis in the liver, which helped 

protect from hepatosteatosis. In contrast, liver-specific overexpression of the PRKCD 

gene led to insulin resistance, characterized by increased expression of lipogenetic 

enzymes, decreased insulin signaling and hepatic steatosis [16].  

Added sugar and insulin resistance 

Consuming too much sugar causes the pathologies of diabetes and cardiovascular 

disease in both direct and indirect ways [17]. The direct pathway is altered regulation of 

hepatic uptake and fructose metabolism that leads to increasing ectopic fat accumulation 

and uric acid levels. These detrimental effects are related to the consumption of main 

added sugar, e.g. sucrose, fructose-containing sugars and high fructose corn syrup. 

While the epidemiological study hold different opinions on the potential impact of added 

sugar on health, one opinion is that excess sugar causes weight gain and fat 

accumulation, which leads to diabetes and heart disease in an indirect way [18, 19]. The 

other opinion is that overconsumption of fructose is just because of the overload of 

energy [20]. Control the simple sugar intake less than 20% of total energy per day only 

increases triglycerides but not uniquely related to CVD risk factors [21]. According to 
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2015-2020 Dietary Guidelines, the maximum limits of added sugars and saturated fats 

are 10% of calories for a day.  

Obese Adipose Tissue, Inflammation And Insulin Resistance 

Two kinds of adipose tissue are distributed throughout the body: white adipose 

tissue (WAT) and brown adipose tissue (BAT). BAT is especially useful in that it has 

the potential for thermogenesis upon cold and diet, which mediates body temperature 

and energy expenditure. The prevalence of BAT decreases as humans age [22, 23]. The 

purpose of WAT is to store extra energy in the form of triglyceride and secret adipose-

derived hormones. It protects other tissues and organs from the accumulation of ectopic 

fat.  

WAT contains adipocytes, stromal vascular fraction of cells, endothelial cells, 

immune cells (i.e., adipose tissue macrophages), lymph nodes, fibroblasts and 

preadipocytes, some of which are able to secret bioactive products into bloodstream [8, 

24]. Adipocytes are able to change size according to the energy requirement of the body. 

Early onset obesity is characterized as the enlargement of adipocytes (hypertrophy). In 

humans who are severely obese, hyperplasia is enhanced depending on diet via adipose-

derived stem cells differentiation [25].  

Adipose tissue-derived factors 

 On the one hand, WAT secrets pro-hyperglycemic factors during obesity, which 

is characterized by impaired TAG storage and increased lipolysis. So the excess 

releasing of FFAs from WAT into other tissues via circulation, accompanied by 

increased pro-inflammatory cytokines and the altered secretion of adiponectin, leptin, 
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resistin and retinol binding protein-4 (RBP4) [26]. On the other hand, the level of 

adipose derived anti-hyperglycemic factors (adiponectin, SFRP5, IL-10) could decrease 

due to the expansion of adipose tissue. For example, overexpression of adiponectin in 

enlarged WAT can improve metabolic profiles despite obesity [27]. In all, with up-

regulated adipose derived pro-hyperglycemic factors and down-regulated anti-

hyperglycemic factors, various metabolic diseases will be induced through desregulation 

of glucose and lipid homeostasis as well as exacerbation adipose tissue inflammation.  

Altered macrophage polarization 

In addition to the increased production of pro-inflammatory molecules secreted 

by adipocytes, recruitment and infiltration by immune cells such as macrophages is also 

a main cause of inflammation. Both genetically obese mice and diet-induced obese mice 

showed the increased macrophage cell number in WAT [28, 29]. In lean and obese 

human WAT, the number of macrophages correlated positively with adipocyte size [30, 

31]. Along with a large amount of macrophages recruitment in adipose tissue, there is a 

switch from anti-inflammatory M2 polarization to pro-inflammatory M1 polarization in 

phenotype of macrophages. M2 state is characterized by the high level production of 

anti-inflammatory cytokines, such as interleukin-10 (IL-10). M1 state is characterized by 

the expression of pro-inflammatory cytokines, such as TNF-α, IL-6. FFAs serve as the 

ligand to bind TLR4, and activate the TLR4 cascade [32], which stimulate macrophages 

to secret cytokines including TNF-α, interleukin-1 (IL-1), interleukin-6 (IL-6), etc. [33-

35]. WAT inflammation is also characterized by an increased number of adipocytes 
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surrounded by macrophages in crown-like structures. Increased infiltrated macrophages 

and cells reside in stromal together, facilitating production of inflammatory cytokines.  

Insulin resistance in adipose tissue 

Insulin resistance is characterized as decreased insulin sensitivity in tissues and 

cells (liver, skeletal muscle, adipocytes, etc.), which means these cells and tissues can’t 

respond to insulin properly, leading to hyperglycemia in most cases. As one of the 

insulin-responsive tissues, adipose tissue stores triglycerides upon insulin stimulation via 

maturing of adipocytes, increasing glucose uptake, de novo lipogenesis and decreased 

lipolysis [36]. Insulin binds to insulin receptors on the cell membrane, which activates 

insulin receptor substrate proteins and initiates two insulin-signaling pathways. One is 

the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, and another one is the Ras-

mitogen-activated protein kinase (MAPK) pathway. Phosphorylated insulin receptor 

substrate-1 binds to and activates PI3K. PI3K produces phosphatidylinositol (3,4,5)-

triphsophate (PIP3), which activates downstream proteins such as AKT. Finally it causes 

the translocation of glucose transporter 4 to the plasma membrane, acting as a gateway 

for glucose to enter the cell. The MAPK pathway is not modulating glucose or lipid 

homeostasis but rather in mitosis and cell growth via insulin.  

Fatty Liver Disease And Insulin Resistance 

With the expansion of WAT, FFAs released from lipolysis will flow into the 

portal vein [37]. Thus, FFA reached into liver, increased ectopic fat deposition and 

induced inflammation. Non-alcoholic fatty liver disease (NAFLD) is a clinic pathologic 

change, which has been interpreted by the “double-hit” hypothesis. In this model, the 
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“first hit” includes liver steatosis characterized as TAG accumulation in the hepatocytes. 

There is an imbalance between lipid input and output in the liver. Since on the one hand, 

more FFAs from adipose tissue lipolysis and/or chylomicron will be transported to the 

liver. On the other hand, increased glucose and insulin levels upon carbohydrate intake, 

leading to increased lipogenesis in liver, decreased FA oxidization and hepatic TAG 

secretion via packing ApoB to form VLDLs [38]. The following “second hit” is induced 

by extra fatty acid oxidation, which causes mitochondria dysfunction and reactive 

oxygen species (ROS) production, leading to oxidative stress. Both saturate fatty acids 

metabolites, such as ceramide and DAG, together with comprised oxidative status 

triggers the production of inflammatory mediators by Kupffer cells [39, 40]. 

Consequently, chronic pro-inflammatory molecules secretion will induce hepatocytes 

apoptosis and scaring of liver tissue, resulting in NASH.  

Insulin resistance in liver 

In the fatty liver, hepatocytes become resistant to the effect of insulin because of 

too much fat deposition. FFAs and ROS block the insulin signaling pathway process, 

which fails to decrease glucose output. FoxO1 enters the nucleus to upregulate the genes 

required for gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and 

glucose-6-phosphatase (G6Pase). But insulin sensitivity remains in the SREBP-1c 

pathway. An extremely high level of insulin dramatically increases nuclear SREBP-1c 

levels, which in turn increase lipogenesis and triglyceride biosynthesis, such as acetyl-

coenzyme A carboxylase (ACC) and fatty acid synthase (FAS). Excess triglycerides are 
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packed with VLDL, which are delivered to adipose tissue and muscle. Thus, 

hyperglycemia and hyperlipidemia together exacerbate systemic insulin resistance [41].  

On the other hand, overexpression of IκB in mice hepatocytes activated NFκB 

and induced insulin resistance in the liver and skeletal muscle. And HFD feeding also 

activates NFκB in mice’ liver, subsequently inducing systemic insulin resistance and 

inflammation [42]. If the progression of NAFLD can be caught in the early stages, there 

is a good chance to recover. However, there is limited effective medicine to cure 

NAFLD and the medication also has some extent of side effects.  

Kupffer cells in liver 

Liver sinusoids acted as the first line of host defense through acute phase 

response. Specialized liver resident macrophages, the kupffer cells account for 80-90% 

of the tissue macrophages present in the body. Under lean conditions, kupffer cells exert 

a tolerogenic phenotype that is necessary to defend against infected and exhausted cells. 

They sense invading pathogens such as bacterial products and toxic substances from gut, 

and produce IL-12 and other monokines (IL-18) to fight against bacterial infections and 

prevent their circulation. In the meantime, activated liver natural killer (NK) cells and 

NK1.1 Ag+ T cells produce interferon γ, as a part of first line defense to clear 

immunoreactive materials [43, 44].  

In obesity, the excess fat accumulation results in liver steatosis, which in turn 

develops into chronic hepatic endoplasmic reticulum stress caused by TLR activation 

and reactive oxygen species production. Kupffer cells switched from a tolerogenic state 

to a pathologically activate state. The polarization of kupffer cells changed to M1 
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phenotype, induced by pro-inflammatory cytokines, adipokines and FFAs secreted from 

enlarged adipose tissue, or altered gastrointestinal microflora. The adaption of 

polarization of kupffer cells in turn induce a vicious cycle of cytokines (TNFα, IL-6 and 

IL-1β), MCP-1, macrophage inflammatory protein (MIP)-1a, MIP1b, oncostatin and 

prostaglandins [45, 46] that further deteriorates liver functions.  

Furthermore, TNFα together with IL-6 limits systemic insulin sensitivity and 

induces oncostatin M in kupffer cells. Oncostatin M production decreased insulin-

dependent Akt activation and glucokinase which contributes to insulin resistance to the 

development of NASH [47]. Kupffer cells trigger the infiltration of monocyte-derived 

infiltrating liver macrophages, which amplify the hepatic inflammation and IR via TNFα 

and IL-6 production [48].  

G Protein-coupled Receptors 

G protein-coupled receptors are one of the largest gene families studied in 

eukaryotes. Nowadays, the superfamily of G protein-coupled receptors (GPCRs) has 

been postulated to contain more than 800 members in the human genome, which is 

divided into six classes, including Rhodopsin, Secretin, Glutamate, Adhesion, 

Frizzled/Taste2, and Other [49]. Their typical structure is seven-trans membrane α helix 

connected by extracellular loops (ELC1-ELC3) and intracellular loops (ICL1-ICL3), 

carrying an extracellular N terminus and an intracellular C terminus. GPCRs account for 

30-50% of best-selling drugs on the market or in clinical trials for cancer, diabetes, pain 

and neurodegeneration [50]. When a ligand binds to GPCR, it causes the conformation 

change in the receptor that makes Gα subunit leave from Gβγ dimer, with attached 
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exchanged GTP from GDP. Gα subunit activates other proteins in certain signal 

transduction pathways. There are four classes of G proteins, Gs, Gi, Gq/11 and G12. Gs 

couples adenylate cyclase to produce cAMP, which in turn stimulates protein kinase A 

(PKA), and then phosphorylates the downstream targets. Gi inhibits making cAMP from 

ATP. Gq/11 activates phospholipase C beta, which catalyzes hydrolysis of 

phosphoinositide 4,5-bisphosphate into two second messengers, inositol 1,4,5-

triphosphate and diacylglycerol. G12/13 are involved in activation of RhoGTPase 

nucleotide exchange factors for regulating cells migration.  

Adenosine And Its Receptors 

Under physiological conditions, adenosine was constantly released from ATP 

degradation. The concentration of adenosine is around 30-200 nM, which is mainly from 

dephosphorylating ATP. In order to exhibit immunosuppressive effects under acute or 

chronic inflammation conditions, adenosine accumulates in extracellular space is up to 

1-30 µM [51]. There are two main sources of adenosine. One is from the 

dephosphorylating extracellular ATP by CD39 and CD73 [52] . These enzymes are 

abundantly distributed in lymphocytes and endothelial cells, whose activity are intrigued 

by hypoxia, inflammation and adenosine itself [53, 54]. Another important source of 

adenosine is from the dephosphorylating intracellular AMP via 5’-nucleotidase. What’s 

more, the conversion of intracellular S-adenosyl homocystein to adenosine and 

homocysteine also provides a source of adenosine in extracellular space via nucleoside 

transporter (ENT) [55-57].  
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Adenosine receptors are a class of G-protein-coupled receptors. There are four 

subtypes, designated as A1, A2A, A2B and A3. A2AR and A2BR positively couple with Gs 

proteins to activate adenylate cyclase (AC) and increase cyclic AMP (cAMP)’s synthesis. 

A1AR and A3AR couple with Gi/o proteins and can lower cAMP’s synthesis. The 

affinity of adenosine to A1, A2A and A3 is high, with 0.2 -0.7µM of EC50 (effective dose). 

A2B has much less affinity to adenosine with 24 µM of EC50 [58].  

A2AR Signaling 

There is high abundance of A2AR in nervous system (CNS) and major peripheral 

tissues, such as liver, heart, lung and the immune system [59, 60]. In the striatum, A2AR 

couples to Golf proteins. In the peripheral tissues, the major G protein associated with 

A2AR is Gs [61]. As a sensor of inflammation and tissue damage, the expression of A2AR 

is enhanced in neutrophils [62], monocytes [63], T cells [64, 65] and platelets [66]. 

When macrophages and monocytes were treated with LPS, A2AR transcription elevated 

drastically due to NF-κB activation [67, 68]. Meanwhile, TNFα treatment prevented 

A2AR desensitization via inhibiting both translocation and association of GPCR kinase-2 

to the plasma membrane. Thus, the elevated function of A2AR can outweigh the 

increment of itself in expression [69].  

The binding of adenosine to A2AR triggers the conformation change of this 

GPCR, also the exchange of GDP to GTP. α subunit of GPCR leaves with attached GTP 

over to adenylyl cyclase (AC), which increases intracellular cAMP level. One possible 

mechanism is cAMP activates protein kinase A (PKA). PKA phosphorylates the 

transcription factor, cAMP responsive element binding protein (CREB), which turns on 
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downstream genes via binding to cAMP response elements (CRE). Phopho-CREB is 

response for the inhibition of NF-κB activity, so A2AR stimulation mediates a negative 

feedback to control the production of cytokines [70, 71]. One downstream target of 

cAMP is cAMP-regulated guanine nucleotide exchange factor 2 (Epac2), which inhibits 

TNFα production [72]. Another mechanism is involved in serine/threonine protein 

phosphatases [73]. Thus, these mechanisms explain why A2AR activation can inhibit 

inflammation from so many metabolic stresses such as local hypoxia, tissue damage, 

metabolic stress and inflammation [51, 74, 75]. 

A2AR Mediates the Anti-Inflammatory Effectors of Adenosine 

Wound healing 

Wound repair occurs in diabetic disease or long-term corticoid therapy, which is 

often associated with ulcers, amputations and disability. Wound healing needs the 

formation of granulation tissue and angiogenesis, including growing microvessels. 

Compared with WT littermates, A2AR knock out mice made bad performance in wound 

heal, such as bigger inflammation at the base of the wound. After treating with selective 

A2AR agonist 2-(p-(carboxyethyl)-phenethylamino)-5′-N-ethyl-carbamido adenosine 

(CGS21680), A2AR knock out mice had no change of rate in wound repair but WT mice 

had faster revascularization. Thus, A2AR is required for angiogenesis in wound closure 

[76]. The mechanism of A2AR in help wound closure is dependent on tissue plasminogen 

activator, which is product of macrophages and mast cells to activate the enzymes that 

breakdown fibrin and other matrix protein to migrate at sites of injury. Wound heal is 

impaired in tissue plasminogen activator-deficient mice compared to WT mice, and 
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A2AR agonist can increase the rate of wound heal in WT mice significantly but not 

knock out mice [77].  

In addition Leibovich et al. showed LPS and A2AR agonist CGS21680 can 

together dramatically increase the expression of vascular endothelial growth factor 

(VEGF) (10 fold), which is much effective than either treatment by itself. But VEGF 

expression was not up-regulated in TLR4 mutant mice (inactive TLR4 receptors) by 

macrophages, indicating synergistic interaction of A2AR agonist and LPS signaling 

through TLR4 pathway [78]. Thus it is synergistic reaction between A2AR and TLR 

signaling in macrophages, leading the phenotype of macrophages switch from 

production of pro-inflammatory cytokines to angiogenesis such as elevation the 

expression of VEGF. Macelo et al. observed the same effect in vivo, and its signaling via 

MyD88, IRAK4 and TRAF6 in virtue of knock-out mice and knockdown cells [79]. 

Brown fat activation 

Gnad et al. showed that via A2AR, adenosine can activate brown adipocytes and 

induced white fat into brown-like cells in human and mice [80]. In human and murine 

adipocytes, A2AR is expressed much higher in brown adipocytes than white adipocytes. 

And the expression inhibitory effector A1 is also expressed relatively low in brown 

adipocytes than white adipocytes. Thus, adenosine concentration is much lower in brown 

fat than white adipose tissue. However, in the brown fat of the hamsters, the abundance 

of A2AR and A1 are similar, so there is no brown fat activation by adenosine in hamsters. 

A2AR antagonist treatment or A2AR-deficient mice caused a decrease of thermogenesis in 

brown adipose tissue, while A2AR agonist CGS21680 treatment increased lipolysis and 
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thermogenesis program. In addition, A2AR agonist treatment and white adipocytes 

infected with lentiviral vectors expressing A2AR can induce white fat into beige cells. 

This study provides insights into how A2AR expression and activation affect adipocytes 

turnover and adipogenesis in adipose tissue.  

Increase β-cell proliferation 

Treatment modalities for individuals suffering from type I or type II diabetes 

include pancreas transplantation and administration of insulin or insulin sensitizer. 

Recently, other than insulin or insulin sensitizer, one new strategy was postulated. It 

stimulates the production of new β-cells from remaining ones, which could benefit 

diabetes patients and others who suffered from β-cell depletion. Anderson O. et al. 

screened 7186 molecules to identify the enhancers in β-cell proliferation [81]. They 

found A2AR agonist 5′-N-carboxamido adenosine (NECA) had a stronger effect on 

increasing β-cell mass and improving glucose homeostasis during β-cell regeneration, 

rather than under normal conditions. The authors proposed that A2AR activation 

conserves β-cells to an ideal number, but not acts as promoter for cancer growth. The 

proliferating and normoglycemia effects also were confirmed in mammals. Mouse islets 

treated with A2AR agonist had increased multiplication of β-cells. Streptozotocin induced 

diabetic mice treated with A2AR agonist had a 30% decrease in glycemia and 8-fold 

increase in β-cell mass. Adenosine signaling is pivotal in the β-cell proliferation since 

four of five detected enhancers are related to it. Annes et al.’ s research also support this 

point of view. They found adenosine kinase inhibitors also increase β-cell mass in mice, 

rats and pigs [82]. Since adenosine kinase inhibitors impede the conversion of adenosine 
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to AMP inside the cells, adenosine level increases, which activates A2AR like what the 

agonist did.  

Schulz N. et al found the endogenous role of adenosine signaling in β-cell 

regeneration [83]. A2AR agonist increased copying of new β-cells substantially when β-

cells were ablated. Under normal conditions, A2AR agonist only increased β-cells 

modestly. This effect did not depend on the apoptotic microenvironment. The mice with 

tissue-specific knockout of A2AR in pancreatic β-cells had impaired glucose tolerance 

and β-cell proliferation during pregnancy, which needs β-cell mass expansion. Under 

basal state, those mice that lacked A2AR in pancreatic β-cells had no overt phenotype. In 

addition, islets collected from A2AR conditional knockout mice had decreased level of β-

cell proliferation comparing to islets excised from WT mice.  

Immunosuppressive effect 

Ischemia reperfusion injury (IRI) is characterized as the production of reactive 

oxygen species, a range of pro-inflammatory cytokines releasing, activated white blood 

cells adhering to endothelial cells and postischemic tissue [84]. These inflammatory 

events disrupt vascular reactivity, lipid/ glucose homeostasis and other metabolic 

processes. Activated white blood cells and endothelial cells in the inner layer of arteries 

released C-reactive protein, interlukin-1 (IL-1), interlukin-6, tumor necrosis factor α 

(TNF-α), etc. These cytokines promote glycogenolysis, muscle protein catabolism, 

which fueling immune response and enabling rapid immune protein synthesis. Inhibition 

of fatty acid oxidation by inflammatory factors results in hyperlipidemia to neutralize 

viruses and reduce chemokines infection that induced by IRI. Inflammatory mediators 
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not only stimulate blood vessels manufacturing vascular cell adhesion molecule-a, 

causing deposition of fats and other particles in vessel linings, but also contribute the 

production and infiltration of foam cells, and eventually form plaques. During the 

reperfusion period, inflammation and micro vascular occlusion initiate tissue damage. 

Treatment with A2AR agonist ATL146e can inhibit concanavalin A- induced 

liver damage by decreasing serum glutamyl pyruvic transaminase and pro-inflammatory 

cytokines. A2AR agonist also suppressed T cell activation and decreased cytokines that 

generated by CD4+ T cells [85]. A2AR knock out mice had exacerbated liver injury 

comparing to WT mice. A2AR agonist treatment had decrease cytokines (IL-1 α, IL-1 β, 

IL-6, IFN-β, IFN-γ, etc.) and chemokines (monocyte chemotactic protein-1, RANTES 

(CCL5)) production in WT mice but not to A2AR-deficient mice [86]. The anti-

inflammatory effect of A2AR exert through cAMP and PKA signaling pathway [62, 87].  

Reverse cholesterol transport 

Transport cholesterol from periphery back to liver is critical in the prevention of 

forming foam cells. Foam cells are characterized as monocytes engulfing droplets of 

cholesterol. Proinflammatory cytokines and immune complex decrease cholesterol 27-

hydroxylase, an enzyme plays impartment role in converting cholesterol to oxysterols. 

Inhibition of cholesterol 27- hydroxylase stops movement of cholesterol from inside to 

outside of macrophages, results in forming foam cells. Stacked foam cells can form 

plaques, and over time, plaques narrow blood vessels and make them lose elasticity. 

Inflammatory mediators also induces immune-mediated disorder and eventually, 

development of atherosclerotic lesions [88].  
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A2AR activation reverses foam cells formation via 5’-triphosphate-binding 

cassette transporter A1 (ABCA1). ABCA1 is involved in an active process dependent of 

apoA1. ABCA1 transports cholesterol and phospholipid in this manner, assisting the 

efflux of cholesterol from cells to apoA-1 or HDL in extracellular space [89]. Bingham 

et al. found that A2AR agonist inhibited foam cell formation in THP-1 cells, but has no 

effect in cells infected with lentiviral vector delivery of siRNA encoding gene of 

ABCA1. Meanwhile, A2AR agonist CGS21680 increased cholesterol efflux almost two-

fold in THP-1 human macrophages but not in ABCA1-deficient cells. As downstream 

target of cAMP, Epac enhanced ABCA1 and phosphorylated ABCA-1. Thus, A2AR 

occupancy prevents foam cells formation via reversing cholesterol transport through 

ABCA1 [90].   

Bingham et al. also found that A2AR agonist CGS21680 inhibited forming foam 

cells with lentiviral siRNA infection, which markedly decreased apoE or apoE mRNA in 

THP-1 cells. But A2AR agonist cannot pause foam cell formation in cholesterol 27-

hydroxylase knock down cells. Similarly, A2AR activation decreased cholesterol efflux 

in apoE knockdown cells but no effect in cholesterol 27-hydroxylase deficient cells. So 

it is indicated that A2AR occupancy prevents foam cells formation via enhancing the 

expression of cholesterol 27-hydroxylase [91]. In the liver, the activation of A2AR 

increased glycogenolysis and gluconeogenesis mediated by cAMP-dependent signaling 

[92].  
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Other than anti-inflammatory and altering lipid profile effect, A2AR was studied 

on its role in the heart and Parkinson’s disease, the latter of which was even moved into 

clinical trails.  

A1 Receptor 

A1R is ubiquitous in body, which couples to Gi to inhibit adenyl cyclase, reduce 

cAMP production and inhibit voltage dependent Ca2+ channels that responsible for 

activating phospholipase C [93]. In adipose tissue, A1R has been showed to play an 

important role in adipogenesis and lipid accumulation, including increase lipogenesis 

and inhibit lipolysis [94]. They also promote leptin secretion and protect against insulin 

resistance [95, 96]. In addition, stimulation of A1R favors cardioprotection through 

modulating adenyl cyclase activity, phospholipiase C- dependent mitochondrial function 

and nitric oxide-dependent calcium currents [97, 98]. Patients with stable angina treated 

with A1R agonist capadenoson had increased total exercise time and time to ischemia 

[99].  In brain, A1R has neuroprotection effects such as inhibiting calcium influx and 

excitatory synaptic transmission via blocking glutamate release. In parallel, A1R couples 

to and activate potassium channels via a Gi/o protein, which is sensitive to pertussis 

toxin [100].  

A2B Receptor 

In heart, adenosine modulates vascular smooth muscle tone not only via A2AR, 

but A2BR. Both A2AR and A2BR are platelet inhibitory mediator, which prevents 

thrombotic disorders and unstable cardiovascular syndrome [101].  
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A2BR plays an essential role in protecting from atherosclerosis induced by HFD 

in apoE-deficient mice. Mice lacking A2BR displayed increased cholesterol and 

triglyceride level in liver and plasma, and onset of steatosis through activating SREBP-1 

and its downstream enzymes for lipognenesis, acetyl- CoA carboxylase and fatty acid 

synthase [102]. In parallel, ablation of A2BR induced increased M1 and decreased M2 

macrophage activation in mice. When BMDM was challenged by LPS or FFA, 

stimulation of A2BR help decrease TNF-α production [103].  

A2BR is overexpressed in various tumor cell types and foster tumor growth [104-

106]. By virtue of cancer cell line, A2BR was found to trigger a signaling cascade to 

decrease the prenylation of Rap1B, which suppress cell-cell adhesion and promote 

tumor-cell metastasis [107].   

A3 Receptor 

They are less distributed than other ARs, including lung, aorta, liver, brain and 

heart. It is overexpressed in cancer and inflammatory cells and less expressed in normal 

cells, rendering the potential of A3R agonist as a therapeutic target. A3R agonist treated 

mice or rats had suppressed tumor growth and induced apoptosis through dampening 

NF-κB and Wnt signaling pathways [108, 109]. A3R agonist exerted anti-inflammatory 

effects through decreasing PI3K- NF-κB pathway, result in decreased MIP-1α, TNF-α, 

IL-12 and IL-6 [110, 111]. Thus, A3R agonist CF101 and CF102 were conducted into 

clinical trail on its anti-inflammatory effects on rheumatoid arthritis, psoriasis and 

hepatitis C virus infection [112-114].  
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Summary 

Obesity induced chronic low degree inflammation, is highly associated with 

altered immune response and insulin sensitivity, and is becoming common cause of 

metabolic diseases, such as type II diabetes, non-alcoholic fatty liver disease, ischemic 

stroke, cardio vascular disease. People are bombarded with advertising to buy high fat, 

poor quality food, and not given enough information of its relation with inflammation 

during obesity. Since high fat diet (HFD) is energy-dense, high in saturated fatty acid, it 

increases risk of overeating and excessive accumulation of fat in adipose tissue. Elevated 

fat deposition in adipose tissue will trigger many positive feedback pathways that 

overproducing pro-inflammatory proteins (cytokines and chemokines) and hormone. 

Hyperglycemia and hyperinsulinemia also relate to increased de novo lipogenesis and 

liver fat accumulation. Pro-inflammatory mediators derived from adipose tissue also 

contribute to the progression of this pathological state. In the context of this slow, subtle 

and last up to years of inflammation, macrophages paly a critical role in generating 

cross-talk to the cells in adipose tissue and liver, thereby affecting the immune response 

of these tissues. 

The great challenge is to find potent, endogenous, anti-inflammatory signals, and 

therapeutically targeting them. Luckily, endogenous adenosine signaling via A2AR was 

proved to reduce tissue damage and inflammation. With regard to this, A2AR may be one 

underlying receptor that suppress or compensate for obesity-associated adipose 

inflammation response upon dietary influences. Therefore, it is of particular interest to 
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study the effects of A2AR in mediating various cell populations such as the macrophages, 

adipocytes in improving tissue inflammation and insulin sensitivity. 
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CHAPTER III  

THE PHYSIOLOGICAL RELEVANCE OF A2AR IN ADIPOSE TISSUE UNDER 

DIFFERENT NUTRITIONAL CONDITIONS  

 

Introduction 

Obesity is a worldwide epidemic that is associated with the increase of chronic 

diseases including type 2 diabetes, cardiovascular disease, stroke and some cancers. 

During obesity, adipose tissue cannot respond properly to the fluctuations in nutrient and 

energy supply via altering the size and/or number of adipocytes. The state of obesity can 

be reversed by increased physical activity and healthy eating pattern.   

Actually, not all the adipose tissue expansion is vicious. It has been suggest that 

10% to 25 % of people who have metabolically healthy obesity (MHO) [115]. The 

characteristics of MHO people are that they have normal insulin sensitivity, glucose 

tolerance, and blood lipid. They seem to resist obesity associated metabolic disease like 

type II diabetes and cardiovascular disease [116]. MHO people have a lower risk of 

developing cardiovascular disease when comparing with other obese patients. The main 

reason is different adipose function between two groups [117]. The problem is how to 

keep the MHO condition through life span, and not transition to metabolically unhealthy 

obesity (MUO). Living a healthy life also decreases the gap between energy intake and 

expenditure, leading to less fat deposition in adipose tissue. Schoeder et al. conducted a 

survey over nine years, showed that being physically active help maintain a healthy 

cardio metabolic stage, and inhibit transition to MUO [118]. However, 10% to 27% of 
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lean people are reported to have higher risk for cardiovascular disease, and they are 

classified as metabolically unhealthy normal weight (MUNW). Characteristics of these 

patients are insulin resistance, dyslipidemia and a high percentage of body fat, in 

particular visceral fat [119]. 

The underlying mechanism is that under normal conditions, small adipocytes 

keep the hemostasis of adipose tissue with the coordination and collaboration of secreted 

adipokines. The relation of visceral fat accumulation but not subcutaneous fat volume to 

altered lipid profile is independent of body composition and fat distribution [120]. Upon 

excess energy storage, the hypertrophy and/or hyperplasia of adipocytes is associated 

with an increase in lypolysis, accompanied by disregulated adipokines production, 

macrophages infiltration, local hypoxia, fatty acid fluxes and fibrosis [121]. A variety of 

cell types in adipose tissue contribute in an orchestrated manner to induce adipose tissue 

remodeling, metabolic stress, and disorders on other organs or on the organism [122]. 

Increased lipolysis of adipose tissue causes elevated secreted free fatty acids and 

delivering FFAs to the liver via the portal vain directly, which leads to increased 

synthesis of VLDL. Increased FFAs secretion inhibits the activity of lipoprotein lipase in 

adipose tissue and skeletal muscle. In addition, increased synthesis of VLDL in liver 

inhibits the catabolism of diet fat, which induces hyperglycemia.  

From the onset of obesity, many factors drive to the metabolic disorders 

including increased pro-inflammatory cytokines, decreased adiponectin, and infiltration 

of immune cells. Visceral adipose tissue is prone to secret inflammatory cytokines and 

has altered macrophages localization and inflammatory state. With the prevalent 
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inflammatory factors, adipose tissue endures hypoxia, endoplasmic reticulum stress and 

adipocytes death. Macrophages in adipose tissue surround the dead adipocytes and form 

crown-like structures while producing inflammatory cytokines such as TNF-α, 

macrophage inflammatory protein-1α, etc. [123, 124]. Macrophages presented in crown-

like structures link to local and ultimate systemic insulin resistance. Adipocytes and 

macrophages communicate in a paracrine loop involving FFAs and TNF-α, not only 

exacerbate inflammatory state of adipose tissue, but also interferes adipocyte insulin 

signaling and further insulin resistance in the whole body [33].  

Adenosine, a well-known purine nucleoside, plays as a key endogenous 

suppressor in mediating inflammation and immune system response. Adenosine also can 

be released in the extracellular space to respond to the metabolic disturbance, stress, 

inflammation or apoptosis. Upon the activation of A2AR, the pro-inflammatory cytokines 

decrease, including TNF-α, IL-12 and nitric oxide produced by M1 macrophages. One 

proposed mechanism is through cAMP dependent pathway, which activate PKA and 

phosphorylates CREB. This regulate transcription by binding to the promoter region of 

CREs [125]. One proposed mechanism of suppression TNF-α production is via an 

increase in cAMP levels, but PKA and Epac independent way. Instead, okadaic acid can 

block the inhibitive actions of A2AR agonist by selectively inhibiting protein 

serine/threonine phosphatases [126]. Another proposed pathway is involving heme 

oxygnase-1 and its product carbon monoxide, which increasing the level of A2AR and 

sensitizing the macrophages to the action of adenosine [127, 128].  
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Materials And Methods 

Animal experiments 

5-6 weeks old male C57BL/6J mice from the Jackson Laboratory were group 

housed (3-5 mice/cage), feeding with LFD vs. HFD for 12 weeks. Composition of LFD 

is 10% fat, 20% protein and 70% carbohydrate of total kcal, while composition of HFD 

is 60% fat, 20% protein and 20% carbohydrate of total kcal. Both LFD and HFD were 

gained fro Research Diets, Inc (New Brunswick) and contained same amount of 

micronutrients per kcal diet, such as vitamin mix and mineral mix, and casein, cellulose, 

soybean oil as well. LFD is 3.85 kcal/g, including 1260 kcal of cornstarch, 1400 kcal of 

sucrose, and 180 kcal of lard. While HFD is 5.24 kcal/g, including 275 kcal of sucrose, 

2205 kcal of lard and no cornstarch. The mice were maintained in a controlled 

environment, inverted 12h daylight-cycle (lights on at 06:00). During the 12-week 

feeding period, body weight and food intake were monitored weekly. After the feeding 

regimen, mice were anesthetized (0.1 mL/10 g of body weight of 1:1 v/v xylazine 1%/ 

ketamine 10%, intraperitoneal injection), blood was collected and tissue samples were 

carefully excised, weighted and stored for further study [129-131]. To determine if the 

process of over-nutrition affects A2AR expression, adipose tissue were collected from 

LFD or HFD fed WT mice. The adipose tissue that was dissected for testing involved 

epididymal, mesenteric and perinephric fat pads. The Institutional Animal Care and Use 

Committee of Texas A&M University approved the laboratory animal care and handling. 
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Glucose and insulin tolerance tests 

Glucose tolerance test (GTT) measures the body’s ability to clear an injected 

glucose load. Insulin tolerance test (ITT) were used in conjunction with GTT, to 

determine how well of systemic insulin sensitivity after giving an injection of insulin.  

Mice were fasted for approximately 4 h and fasted glucose levels are determined before 

receiving an intra-peritoneal injection of solution of D-glucose (2 g/kg BW) or insulin (1 

U/kg BW). For GTT, blood was collected from tail veins at 30, 60, 90 and 120 min after 

an intraperitoneally injected bolus glucose. For ITT, blood was collected from tail veins 

at 15, 30, 45 and 60 min after an intraperitoneally injected bolus insulin [132, 133]. The 

plasma glucose was determined by glucose assay kit (Sigma, St. Louis, MO).  

Western blot 

Lysates from frozen liver samples applied the lysis buffers (pH 7.4) containing 

20 mM HEPEs, 100 mM sodium fluoride, 10 mM sodium orthovanadate, 1% NP-40, 0.1% 

SDS, 2 mM EDTA and 2 mM navadate. The 5× loading dye contains 1.0 M Tris (pH 

6.8), 50% glycerol, 10% SDS and 0.1% bromophenol blue [129, 131]. Cell lysates (50 

µg of protein) and protein markers (cell signaling Technology) were subjected to sodium 

dodecyl sulphate (SDS)- polyacrylamide gel electrophoresis. Proteins were semi-dry 

transferred to synthetic membranes, and incubated overnight at 4 ℃, with primary 

antibody specific to the protein of interest at a 1: 1 000 dilution. Subsequent 

immunoblotting of labeled protein were performed for 2h at room temperature, with a 

1:10 000 dilution of goat anti-rabbit horseradish peroxidase-conjugated secondary kit 

(ImmobilonTM Western; EMD Millipore, Billerica, MA USA) [129]. The loading control 
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is glyceraldehyde 3- phosphate dehydrogenase (GAPDH). The quantitated density of 

target bands was calculated by using Image Lab TM software. Ratios of Pp46/p46, 

Pp65/p65 and AR were normalized to GAPDH and adjusted relative to the average of 

LFD fed control, which was arbitrarily set as 1 (AU). 

RNA extraction and real-time PCR 

The detection and quantitative- analysis of pro-inflammatory cytokine genes in 

WAT were conducted by real-time PCR. Total RNA isolated from frozen adipose tissue 

was homogenized by using RNA STAT-60TM. To extract RNA, 1 vol. of homogenate 

was added with 0.2 vol. of chloroform. The precipitation of RNA was performed using 

0.5 vol. of isopropanol and used 75% ethanol to wash the RNA pellet. Reverse 

transcription was performed in GoScriptTM Reverse Transcription System (Promega). 

cDNA was prepared from 0.5 µg total RNA by heating for 15 min at 42℃ in the 

presence of AMV reverse transcriptase, recombinant RNasin® ribonuclease inhibitor 

and oligodeoxythymidilic acid (oligo(dT)15). cDNA was subjected to PCR amplification 

in SYBR Green (LightCycler ® 480 system; Roche) system. The reaction mix contained 

1.2 µL cDNA, 0.8 µL primer, 10 µL power Sybr-green PCR master mix and 8 µL 

nuclease-free water [134, 135]. The mRNA levels were analyzed for A2AR, TNF-α, IL-

1β, IL-6 and MCP1 in adipose tissue samples. The internal reference gene 18S 

ribosomal RNA was used to normalize the data.  
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Statistical analysis 

Numeric data are presented as means ± SE (standard error). Two-tailed student’s 

t test was used to assess if the data is statistically significant. The standards of the study 

is when P value <0.05.  

Results 

HFD induces obesity and insulin resistance 

To determine if the process of over-nutrition affects A2AR expression, the 

adipose tissue were collected from low fat diets (LFD) or HFD fed wild-type (WT) mice. 

C57BL/6J mice at 5-6 weeks of age were fed ad libitum with a HFD for 12 weeks, 

which showed profound increases in body weight (diet-induced obesity, DIO). 

Compared to age- and gender- matched mice that were fed with a LFD, HFD fed mice 

gained much more body weight after 5 weeks. After 12 weeks feeding, the average body 

weight in HFD group was 42 g, whereas LFD fed mice was only 30 g (Figure 1 (A)). 

HFD fed mice displayed decreased glucose tolerance. Comparing to LFD fed mice, HFD 

fed mice’ plasma glucose level increased significantly after ingestion of glucose solution. 

The plasma glucose level of HFD fed mice kept high after 2 h of ingestion (Figure 1 (B)). 

ITT showed that HFD fed mice have bad insulin sensitivity. After ingestion of insulin, 

their plasma glucose level was higher than LFD fed mice group, which indicated that the 

tissues of HFD fed mice cannot respond to insulin properly (Figure 1 (C)). HFD diet fed 

mice also gained more visceral fat in terms of epididymal fat, perinephric fat and 

mesenteric fat than LFD fed mice (Figure 1(D)). 
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Figure 1. HFD induces obesity and insulin resistance. 
Male C57BL/6J mice were fed with a LFD or HFD for 12 weeks. Data are means ± SE, 
n= 5. (A) Body weight was monitored weekly during the feeding period. (B) GTT. (C) 
ITT. (D) The ratio of different adipose tissue weight to body weight (mg/g). For B and C, 
mice were fasted for 4 h and fasted glucose levels are determined before receiving an 
intra-peritoneal injection of glucose (2 g/kg BW) or insulin (1 U/kg BW). *, P<0.05 and 
**, P<0.01. LFD fed vs. HFD fed for the same time point (B and C).  
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HFD increases the inflammatory responses in WAT 

Inflammatory and metabolic biomarkers were tested through Western Blot and 

RT-PCR to compare LFD and HFD treatment, which can help to link overnutrition 

induced inflammation and A2AR expression and activation. In the present study, we 

confirmed the findings that HFD increased inflammatory responses in the WAT (Sun, 

2012 #3009）(Greenberg, 2006 #1733）. Western blot result of WAT samples showed 

that HFD fed mice had more JNK and NF-κB (p65) phosphorylation than LFD fed mice, 

which indicated that HFD had effects on the activation of JNK pathway and NF-κB 

pathway (Figure 2 (A)). In addition, mRNA levels of pro-inflammatory cytokines, such 

as TNF-α, IL-1β, IL-6 and chemokines such as MCP1, were significantly higher in the 

WAT of HFD fed mice than LFD fed mice (Figure 2 (B)).  

 

Figure 2. HFD increase the inflammatory responses in WAT. 
(A) WAT inflammatory signaling. Protein extracts from WAT were subjected to western 
blots. The degree of phosphorylation was determined from the measured ratio of 
phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated NF-κB p65 to total 
p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (B) The detection and 
quantitative- analysis of pro-inflammatory cytokine genes in WAT were conducted by 
real-time PCR. For bar graphs (A and B), data are means ± SE, n= 5. *, P<0.05 and **, 
P<0.01. 
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A2AR level increases significantly in WAT 

Tissue distribution of adenosine receptor has been examined in the mice by using 

of Western blots. High levels of adenosine receptors are found in brain, spleen and liver 

of WT mice (Figure 3 (A)). Western blots result showed HFD feeding increased the 

level of adenosine receptors (Figure 3 (B)). The mRNA level of A2AR in adipose tissue 

from HFD-fed mice were significantly higher than that from LFD fed mice (Figure 3 

(C)).  

 

Figure 3. The level of A2AR increases significantly in WAT. 
(A) Tissue distribution of adenosine receptor in mice. (B) WAT adenosine receptor 
signaling. Protein extracts from WAT were subjected to western blots. The level of 
adenosine receptor was determined from the measured ratio of adenosine receptor to 
GAPDH (AU, arbitrary unit). (C) The detection and quantitative- analysis of A2AR gene 
in WAT were conducted by real-time PCR. For bar graphs (B and C), data are means ± 
SE, n= 5. *, P<0.05 and **, P<0.01. 
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Discussions 

C57BL/6J mice had profound increase in body weight and visceral fat on a HFD, 

compared with LFD fed WT mice. Adipose tissue of HFD fed WT mice had increased 

JNK and NF-κB phosphorylation and increased pro-inflammatory gene expression. 

Concurrently, HFD-fed WT mice had decreased glucose tolerance and insulin sensitivity. 

These are consistent with the results gained from the mouse model [132, 133, 136, 137]. 

Obesity activates IKKβ/ NF-κB signaling pathway, by which IKK (NF-κB activator) 

phosphorylates IkBα (NF-κB inhibitor) and releases NF-κB that was sequestered in 

cytoplasm. NFκB-p65 is phosphorylated and translocate to the nucleus to mediate the 

transcription of target genes such as TNF-α, IFN-γ and iNOS, etc. IKKβ protects 

adipocytes from death in diet-induced obesity and is required for the expansion or 

contraction of adipose tissue according to different nutrient status [138]. HFD-fed mice 

displayed 2-fold enhanced NF-κB luciferase illumination and translocation to the 

nucleus in adipose tissue macrophages compared to their lean counterparts. Furthermore, 

HFD-fed mice had also increased activation of IKKε and NF-κB in adipose tissue and 

liver. IKKε- deficient mice maintained normal glucose tolerance, insulin sensitivity and 

insulin signaling, which also protected against hepatic steatosis [139].  

The pro-inflammatory cytokines and FFAs activate JNK1 (p46) and JNK2 (p54) 

in adipose tissue. JNK activation promotes pro-inflammatory cytokines production (IL-6, 

TNF-α etc.), lipolysis, and insulin resistance in adipose tissue of diet-induced obesity 

animal models. Global knockout of JNK maintained insulin sensitivity and insulin 

signaling [140-142]. Because JNK causes serine/threonine phosphorylation of IRS1 and 
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IRS2 and impairs tyrosine phosphorylation in response to insulin, it decreases 

PI3K/AKT signaling [143]. A double knockout of JNK1 and JNK 2 specific in 

macrophages retained similar obesity in HFD-fed mice compared to their WT littermates, 

but knock mice had reduced inflammation and insulin resistance owing to decreased 

macrophages infiltration into adipose tissue. It was proposed that JNK1 and JNK2 have 

redundant function, and omission of both genes in myeloid cells would induce insulin 

resistance and inflammation [144].  

The excess adiposity causes insulin resistance, which is characterized as impaired 

suppression of lipolysis and diminished glucose uptake. Interestingly, insulin resistance 

is incomplete in adipose tissue, by which GLUT trafficking is impaired, yet nuclear 

exclusion of Forkhead box O-1 (FoxO1) is preserved [145]. Limited expansion of 

subcutaneous adipose tissue leads to the enlargement of visceral adipose tissue. The 

mechanisms link visceral fat accumulation and insulin resistance so that the secreted 

pro-inflammatory cytokine from visceral adipose tissue impairs insulin sensitivity. Also, 

the accumulation of visceral fat happens in parallel with ectopic fat accumulation, such 

as in the liver and muscles, which causes the lipotoxicity and insulin resistance in these 

tissues.  

The present study suggests that the increased A2AR level in adipose tissue of 

HFD-fed mice is a defensive response, which may help protect against inflammatory 

damage. The underlying mechanism could be inhibiting immune cell trafficking and 

proliferation in adipose tissue, decreasing pro-inflammatory cytokines production, or 
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cytotoxicity. These hypotheses are proved and discussed further in the following 

chapters. 
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CHAPTER IV  

THE PHYSIOLOGICAL RELEVANCE OF A2AR IN LIVER UNDER 

DIFFERENT NUTRITIONAL CONDITIONS  

 

Introduction 

Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in the obese 

population, which is characterized by swelling of the liver with fat. It is particularly 

astonishing since it can develop into the stage of cirrhosis, hepatocellular carcinoma and 

ultimately liver failure. There are 3-12% of adults in the U.S. are affected by this kind of 

severe NAFLD, termed as nonalcoholic steatohepatitis (NASH). The main causations of 

NAFLD are insulin resistance and compensatory hyperinsulinaemia by which excess 

accumulation of triglyceride is produced in the liver. In adipose tissue, diminished 

insulin action causes impaired suppression of lipolysis and increased release of non-

esterified fatty acids [146]. Thus, increased blood sugar caused by inhibited glucose 

uptake in skeletal muscle, together with elevated secreted fatty acids from adipose tissue 

promote hepatic fat uptake, de novo lipogenesis and impede β- oxidation. Consequently, 

the liver will enlarge with triglyceride accumulation, which results in hepatic steatosis. 

Steatosis means more than 5% of liver weight is lipid content. It is the most frequent 

liver lesion striking up to 70% of overweight adults [147].  

A variety of fatty acids are cytotoxic, such as SFA and arachidonic acid, via 

producing pro-inflammatory cytokines like IL-1, IL-6 and TNF-α. Thus, a mechanism 

for fatty acid trapping is needed to avoid cell toxicity, which involves insulin and 
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acylation stimulating protein/C3adesArg pathway [148]. Insulin metabolism contains a 

complex insulin-signaling network. Binding of insulin activates its receptor Tyr kinase, 

leading to phosphorylation and recruitment of insulin receptor substrate (IRS) that 

related two main signaling pathway activation, PI3K-AKT/PKB pathway and MAPK 

pathway. PI3K is one target of IRS, which produces PIP3 to activate PDK kinase to 

phosphorylate and activate Akt kinase. Consequently, this signaling results in 

translocation of GLUT4 to plasma membrane, and increasing glucose uptake. MAPK 

activates mitogenic and growth effects of insulin.  

In the liver, the insulin resistance is incomplete, which is displayed as impaired 

suppression of gluconeogenesis but conserved lipogenesis [145]. The underlying 

mechanism is that downstream effectors of insulin signaling pathways are differently 

affected, prominently the isoforms PI3K and Akt kinases. For instance, p110α isoform 

of PI3K and Akt2 isoform of Akt are essential in both insulin-regulated hepatic glucose 

and lipid metabolism [146, 149-151].  

Adenosine acts as A2AR to stimulate short interruption of blood flow, which 

protects the liver from damage followed by a subsequent ischemia/reperfusion. It is a 

mechanism of liver tolerance to avoid the damage from irreversible tissues by starving 

them. Pretreatment of A2AR agonists displayed hepatoprotection against 

ischemia/reperfusion injury or hypoxia. Upon A2AR activation, those genes for 

intracellular survival were expressed [152]. Besides, an indirect mechanism is inhibiting 

the suppressant effect of ischemia/ reperfusion on nitric oxide synthase in the liver 

endothelial cells [153].  
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People with steatosis significantly decrease tissue tolerance after 

ischemia/reperfusion injury from liver surgery [154]. Moreover, these people had 

estimated twice the risk of postoperative complications, and triple on risk of liver failure 

to those with excess steatosis [155]. The infiltration of FFAs and their metabolites 

relates to hepatotoxic effects such as increase of oxidative stress, mitochondrial 

dysfunction and decrease of ATP, which leads to liver intolerance and to ischemia/ 

reperfusion injury. A2AR activation inhibited apotosis in rats primary hepatocytes 

challenged with FFAs and ameliorated the progression of NAFLD in rat fed with 

methionine choline-deficient diet [156]. A2AR agonist inhibited JNK1/2 activation via 

impeding MKK4 (mitogen activated protein kinase-4)/ SEK1 (stress-activated protein 

kinase/extracellular-signal regulated kinase 1). These studies underscore the need to 

better understand the mechanisms of protective effects of A2AR against steatosis. Thus, 

using the liver collected from diet-induced obesity model in the previous chapter, we 

hypothesized that A2AR activation could decrease the inflammatory status and protect 

hepatocytes lipotoxicity. 

Materials And Methods 

Animal experiments 

5-6 weeks old male C57BL/6J mice from the Jackson Laboratory were group 

housed (3-5 mice/cage), feeding with LFD vs. HFD for 12 weeks. Composition of LFD 

is 10% fat, 20% protein and 70% carbohydrate of total kcal, while composition of HFD 

is 60% fat, 20% protein and 20% carbohydrate of total kcal. Both LFD and HFD were 

gained fro Research Diets, Inc (New Brunswick) and contained same amount of 
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micronutrients per kcal diet, such as vitamin mix and mineral mix, and casein, cellulose, 

soybean oil as well. LFD is 3.85 kcal/g, including 1260 kcal of cornstarch, 1400 kcal of 

sucrose, and 180 kcal of lard. While HFD is 5.24 kcal/g, including 275 kcal of sucrose, 

2205 kcal of lard and no cornstarch. The mice were maintained in a controlled 

environment, inverted 12h daylight-cycle (lights on at 06:00). During the 12-week 

feeding period, body weight and food intake were monitored weekly. After the feeding 

regimen, mice were anesthetized (0.1 mL/10 g of body weight of 1:1 v/v xylazine 1%/ 

ketamine 10%, intraperitoneal injection), blood was collected and tissue samples were 

carefully excised, weighted and stored for further study [129-131]. To determine if the 

process of over-nutrition affects A2AR expression, liver will be collected from LFD or 

HFD fed WT mice. The Institutional Animal Care and Use Committee of Texas A&M 

University approved the laboratory animal care and handling. 

Lysates from frozen liver samples applied the lysis buffers (pH 7.4) containing 

20 mM HEPEs, 100 mM sodium fluoride, 10 mM sodium orthovanadate, 1% NP-40, 0.1% 

SDS, 2 mM EDTA and 2 mM navadate. The 5× loading dye contains 1.0 M Tris (pH 

6.8), 50% glycerol, 10% SDS and 0.1% bromophenol blue [129, 131]. Cell lysates (50 

µg of protein) and protein markers (cell signaling Technology) were subjected to sodium 

dodecyl sulphate (SDS)- polyacrylamide gel electrophoresis. Proteins were semi-dry 

transferred to synthetic membranes, and incubated overnight at 4 ℃, with primary 

antibody specific to the protein of interest at a 1: 1 000 dilution. Subsequent 

immunoblotting of labeled protein were performed for 2h at room temperature, with a 

1:10 000 dilution of goat anti-rabbit horseradish peroxidase-conjugated secondary kit 
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(ImmobilonTM Western; EMD Millipore, Billerica, MA USA) [129]. The loading control 

is glyceraldehyde 3- phosphate dehydrogenase (GAPDH). The quantitated density of 

target bands was calculated by using Image Lab TM software. Ratios of Pp46/p46, 

Pp65/p65 and AR were normalized to GAPDH and adjusted relative to the average of 

LFD fed control, which was arbitrarily set as 1 (AU). 

RNA extraction and real-time PCR 

The detection and quantitative- analysis of pro-inflammatory cytokine genes in 

liver were conducted by real-time PCR. Total RNA isolated from frozen adipose tissue 

was homogenized by using RNA STAT-60TM. To extract RNA, 1 vol. of homogenate 

was added with 0.2 vol. of chloroform. The precipitation of RNA was performed using 

0.5 vol. of isopropanol and used 75% ethanol to wash the RNA pellet. Reverse 

transcription was performed in GoScriptTM Reverse Transcription System (Promega). 

cDNA was prepared from 0.5 µg total RNA by heating for 15 min at 42℃ in the 

presence of AMV reverse transcriptase, recombinant RNasin® ribonuclease inhibitor 

and oligodeoxythymidilic acid (oligo(dT)15). cDNA was subjected to PCR amplification 

in SYBR Green (LightCycler ® 480 system; Roche) system. The reaction mix contained 

1.2 µL cDNA, 0.8 µL primer, 10 µL power Sybr-green PCR master mix and 8 µL 

nuclease-free water [134, 135]. The mRNA levels were analyzed for A2AR, TNF-α, IL-

1β, IL-6 and MCP1 in liver samples. The internal reference gene 18S ribosomal RNA 

was used to normalize the data.  
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Statistical analysis 

Numeric data are presented as means ± SE (standard error). Two-tailed student’s 

t test was used to assess if the data is statistically significant. The standards of the study 

is when P value <0.05.  

Results 

HFD induces the inflammatory responses in liver 

To determine if excess SFAs affect A2AR expression, the liver were collected 

from LFD or HFD fed WT mice. In addition, inflammatory and metabolic biomarkers 

were tested through Western Blot and RT-PCR to compare LFD and HFD treatment, 

which can help to link overnutrition induced inflammation and A2AR activation and 

modulation. In the present study, we also confirmed that HFD increased inflammatory 

responses in the liver. Western blot result of liver samples showed that HFD fed mice 

have more JNK and NF-κB (p65) phosphorylation than LFD fed mice, which indicated 

HFD had effects on activation of the JNK pathway and NF-κB pathway (Figure 4 (A)). 

In addition, mRNA levels of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-

6 were significantly higher in WAT of HFD fed mice than LFD fed mice (Figure 4 (B)). 

Also, HFD mice had much higher liver tissue weight relative to body weight (Figure 4 

(C)). 
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Figure 4. HFD increase the inflammatory responses in liver. 
(A) Liver inflammatory signaling. Protein extracts from liver were subjected to western 
blots. The degree of phosphorylation was determined from the measured ratio of 
phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated NF-κB p65 to total 
p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (B) The detection and 
quantitative- analysis of pro-inflammatory cytokine genes in liver were conducted by 
real-time PCR. For bar graphs (A and B), data are means ± SE, n= 5. *, P<0.05 and **, 
P<0.01. (C) The ratio of liver weight to body weight (mg/g). 
 

A2AR level increases significantly in liver 

Western blot of liver samples showed that A2AR level was much higher in HFD 

fed mice than LFD fed mice (Figure 5).  
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Figure 5. The level of A2AR increases significantly in liver. 
(A) Liver adenosine receptor signaling. Protein extracts from WAT were subjected to 
western blots. The level of adenosine receptor was determined from the measured ratio 
of adenosine receptor to GAPDH (AU, arbitrary unit). For bar graphs, data are means ± 
SE, n= 5. *, P<0.05 and **, P<0.01. 
 

 

 

Discussions 

In the present study, 12-week HFD feeding caused swelling of the liver 

compared to LFD fed mice. Impaired glucose tolerance and insulin tolerance occurred 

with altered lipid metabolism in liver. This is consistent with widely accepted concept 

that insulin resistance in adipose tissue results in increased lipolysis and subsequent 

FFAs secretion. FFAs, especially from visceral fat, is taken up by the liver directly from 

the portal vein, which results in decreased insulin clearance in liver and further 

hyperinsulinemia. Hyperinsulinemia compensated for insulin resistance and led to 

steatosis through increased de novo lipogenesis, decreased β- oxidation, decreased 

hepatic lipid output and increased flux of FFAs. FFAs promote impaired suppression of 
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insulin stimulated gluconeogenesis, glucose output, and conserved lipogenesis lead to a 

combination of hyperglycemia and hyperlipidemia [145]. In addition, FFAs ligate to toll-

like receptor 4 (TLR-4) complex, activating MyD 88-NF-κB-denpendent pathway and 

increase TNF-α release [157].  

By virtue of C57B6/J mice, we observe that after the onset of steatosis, the liver 

is more vulnerable to the factors and interactions induced by HFD feeding, which 

delineated as increased JNK and NF-κB phosphorylation, increased pro-inflammatory 

genes expression. A number of papers also demonstrated that other than pro-

inflammatory cytokines, adipokines, endoplasmic reticulum stress, mitochondrial stress 

etc. promote the progress of liver fibrosis [26, 124, 158]. Saturated fatty acids in HFD 

serve as a ligand to TLR4, triggering both MyD88-dependent and MyD88-independent 

(TRIF) pathways. The downstream of MyD88-dependent pathway is IκB kinase (IKK) 

complex activation, which subsequently phosphorylates IKKα, and ubiquination of IKK 

thereafter by the proteasome and free NF-κB to nucleus. As a transcription factor, 

phosphorylation and the activation of NF-κB lead to the activation of vicarious members 

of MAPK such as p38 and JNK. The TRIF pathway is due to IRF3 phosphorylation and 

induced expression of IFNβ that interacts with RIP1 and activates NF-κB [10]. As a 

result of NF-κB, SFAs (mainly palmitic acids) induce the pro-inflammatory gene 

products such as IL1 and TNF-α.  

In addition, JNK plays a central role in causing cellular inflammation and insulin 

resistance, leading to NAFLD. JNK causes both hepatic and systemic insulin resistance 

through serine/threonine phosphorylation of IRS1 and IRS2, resulting in impaired 
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tyrosine phosphorylation of these molecules, which is required for insulin signaling 

[143]. Mice with genetic deletion of JNK in the liver not only reversed insulin resistance 

in the liver but also improved systemic insulin sensitivity. Activation of JNK1 (p46) 

induced phosphorylation of SIRT1 with its subsequent degradation. The inhibition of 

SIRT1 catalytic activity increased the level of genes related to de novo lipogenesis such 

as LXRα, SREBP-1 and SCD1. In addition, together with SIRT1 inhibition, decreased 

LKLB1 and AMPK activity lead to pathogenesis of steatosis [159]. In the mesenteric fat, 

ablation of SIRT1 contributed to the elevation of FFAs secretion, which was further 

taken up by the hepatocytes [160]. JNK1 (p46) and 2 (p54) ablation specific in myeloid 

cells had attenuated hepatic steatosis, liver inflammation, immune cells infiltration and 

better insulin sensitivity [144]. JNK also promotes the development of inflammation 

through AP-1 dependent transcription.  

Intriguingly, increased A2AR level in the liver of HFD-fed mice is a defensive 

response, which may help protect against inflammatory damage. This result is consistent 

with the previous study done by the Italian group who conducted the research on 

pharmacological activation of A2AR in hepatocytes and in rats [161]. When the 

hepatocytes were challenged with stearic acid, treatment of A2AR agonist (CGS21680) 

ameliorated JNK1/2 activation and decreased apoptosis. A2AR agonist inhibited 

induction of apoptosis from blocking stress-signaling kinase MKK4/SEK1, mediated by 

PI3K/Akt. Administration of A2AR agonist to MCD-fed rats prevented MKK4/SEK1- 

mediated JNK signaling, improved liver inflammation and fibrosis, and thus ameliorated 

NASH.  
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CHAPTER V  

DIRECT ROLE OF A2AR ON ADIPOCYTES AND MACROPAHGES  

 

Introduction 

When there is an excessive amount of energy consumption that is not 

immediately oxidized for cellular energy, will be stored as fat. To deposit excessive 

energy from diet for compensation, preadipocytes differentiate into mature adipocytes.  

Increased inflammation and insulin resistance in an obese body induce dramatically 

decreased number of preadipocytes to undergo differentiate. The mechanism may be the 

increased expression of mitogen-activated protein 4 kinase 4 (MAP4K4), which inhibit 

peroxisome proliferator-activated receptor-gamma (PPARγ), one of the key transcription 

factors that governing the adipogenesis process. TNF-α promoted Wnt10b expression to 

inhibit differentiation of the preadipocytes and switch preadipocytes into pro-

inflammatory phenotype, involving increased expression of cytokines and chemokines 

[162, 163].  

SFAs, such as steric acid and palmititc acid, activate TLR4 cascade, and 

subsequently induce inflammation attributes to JNK and NF-κB pathways. In addition, 

SFAs cause ER stress involving increased phosphorylation of signal transduction 

proteins such as PPKR-like endoplasmic reticulum kinase (PERK) and inositol-requiring 

enzyme 1α (IRE-1α) [164]. Thus, TLR4 activated by SFAs may serve as the molecular 

link between metabolic and immunologic effects in adipose tissue [165].  
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Adipose tissue is infiltrated by macrophages upon obesity, and these 

macrophages surround the dead adipocytes to form crown-like structures, leading to pro-

inflammatory cytokines production such as IL-1, TNF-α and IL-1β. These cytokines and 

SFAs contribute to a paracrine loop between adipocytes and macrophages. The crosstalk 

between these two kinds of cells leads to inflammation transformation and insulin 

resistance of adipose tissue via activation of JNK1/2 [166, 167]. Co-culture of 

adipocytes and macrophages with LPS in a transwell system markedly up-regulated IL-6, 

IL-8, MCP-1 and RANTES [168]. Macrophages attacked and phagocytosed adipocytes, 

which led to synthesis and release of IL-6 and MCP-1 in a NF-κB dependent fashion 

[169].   

Kupffer cells are resident hepatic macrophages in the linings of the liver 

sinusoids. They exert a tolerogenic state upon immunoreactive materials into the 

sinusoids including gut-derived bacteria and microbial products that to be transported via 

the portal vein, and also dead or damaged cells during the circulation of the liver [170]. 

While kupffer cells, together with monocyte-derived macrophages, switch to 

immunogenic state in the setting of chronic liver injuries and inflammasome activation 

caused by such as NAFLD/ NASH [171]. Palmitate stimulates death receptor 5 (DR5/ 

TNFSF10B), leading to the release of extracellular vesicles bearing TNF-related 

apoptosis-inducing ligand (TRAIL/ TNFSF10) from hepatocytes and subsequent 

activation of macrophages to shift to inflammatory state. THP-1 macrophages 

challenged with extracellular vesicles or TRAIL can activate NF-κB pathways in 

presence of elevated p65 translocation [172]. Another danger signal related to 
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macrophage activation and polarization is liver- derived histidine-rich glycoprotein 

(HRG). Genetic deletion of HRG had ameliorated liver fibrosis, reduced macrophages 

number and shifted macrophages toward M2 polarization in livers of mice fed with CCI4 

or MCD diet. Patients with NAFLD dramatically increased HPG expression in liver, 

which was related to the shifting of M1 phenotype of macrophages [173]. In addition, 

the decrease of the glucocorticoid- induced leucine zipper (GILZ) in the liver with 

nonalcoholic steatosis results in macrophage populations skews toward M1 polarization. 

Unlike monocyte-derived macrophages, kupffer cells are the scavenger for antigens to 

induce systemic tolerance and antigen-specific CD4 and CD8 T cell activation. In 

chronic liver disease, monocyte-derived macrophages infiltration is correlated to the 

failing of kupffer cells to induce T cell responses, which leads to liver tolerance 

abrogation [171]. 

Adenosine, an extracellular signaling molecule via the activation of four GPCRs, 

is incessantly released from adipocytes. Among adenosine receptors, A2AR and A2BR are 

dominant in preadipocytes, while A1R is predominantly expressed on mature adipocytes. 

A1R activation induces adipocytes differentiation, inhibits lipolysis and leptin secretion. 

Lipolysis itself can induce vicious cycle of inflammatory alteration in adipose tissue, 

including elevated FFAs secretion and impaired insulin sensitivity. A2AR expression 

promotes differentiation and proliferation of adipocyte progenitors via elevating the 

expression of transcription factors in adipogenesis process, PPARγ and C/EBPα [174]. 

A2BR expression inhibits adipogenesis via continued expression of Krüppel-like factor 

4 (KLF4), which is involved in regulation of stem cells [175]. Concomitant with the 
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inhibited adipogenesis is A2BR- stimulated osteoblast including increased osteocalcin 

and alkaine phosphatase (ALP) [176].  

The anti-inflammatory effects of adenosine on M1 macrophages are mediated 

predominantly by A2AR through inhibition of TNF-α, IL-6, nitric oxide and increase of 

IL-10 production. Adenosine released upon phagocytosis of adipocytes by macrophages 

activated A2AR, which inhibited chemokines production such as MIP-2 and KC [177].  

From the result of Chapter III and IV, we demonstrated that increased A2AR level 

in diet-induced obesity mice serve as defensive response. Therefore, in this chapter, we 

are interested in investigating the direct effect of A2AR on a cellular level.  

Materials And Methods 

Cell culture and treatment 

3T3-L1 adipocytes were cultured in low glucose (5.5 mM) vs. high glucose (27.5 

mM) DMEM medium. DMEM was supplemented with 10% fetal bovine serum (FBS), 

100 U/mL penicillin and 100 µg/mL streptomycin. To differentiate 3T3-L1 cells into 

adipocyte-like cells, the 1 d post-confluent cells were incubated in induction medium 

including 1µM dexamethasone, 0.5 mM 3-isobutyl-1-methyl-xanthine and 10 µg/mL 

insulin (Day 0). On day 3, changed the induction medium into DMEM supplemented 

with 10 µg/mL insulin for an another 6-8 days. Differentiated into adipocyte-like cells 

were treated with or without palmitate (250 µM) for 24h. To test the effects of each 

macronutrient on A2AR expression, RT-PCR results among groups were determined. 

Inflammatory and metabolic biomarkers like TNFα, IL-6 and adiponectin were 

examined by RT-PCR, which address the relationship between nutritional factors and 
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inflammatory responses. Whole cell lysates were prepared and conducted Western Blot, 

the phosphorylation of JNK and NF-κB p65 were measured. 

Bone marrow was isolated from the tibias and femurs of WT mice and was 

cultured in Iscove’s modified Dulbecco’s medium (IMDM) with 10% fetal bovine serum. 

To initiate the outgrowth of macrophages, IMDM was added with 15% (v/v) L929 

culture supernatant for 8 days. After differentiation, BMDM were treated with either LG 

(5.5 mM) or HG  (27.5 mM) medium, with or with palmitate (250 µM) for 24 h. After 

harvesting the cells, total RNA of each treatment cells was extracted to measure the 

expression level of A2AR, TNF-α, IL-1β and IL-6 via RT-PCR. Whole cell lysates were 

collected to measure the phosphorylation of JNK and NF-κB p65 via Western Blot. 

Bond marrow was isolated from A2AR-/- and A2AR+/+ mice. BMDM were cultured 

in either LG (5.5 mM) or HG (27.5 mM) medium, with or without palmitate (250 µM) 

treatment for 24 h. After harvesting the cells, total RNA of each treatment cells was used 

to measure the expression level of A2AR, TNF-α, IL-1β and IL-6 via RT-PCR. Whole 

cell lysates were used to measure the phosphorylation of JNK and NFκB p65 via 

Western Blot.  

Western blot 

Lysates from cells applied the lysis buffers (pH 7.4) containing 20 mM HEPEs, 

100 mM sodium fluoride, 10 mM sodium orthovanadate, 1% NP-40, 0.1% SDS, 2 mM 

EDTA and 2 mM navadate. The 5× loading dye contains 1.0 M Tris (pH 6.8), 50% 

glycerol, 10% SDS and 0.1% bromophenol blue [129, 131]. Cell lysates (50 µg of 

protein) and protein markers (cell signaling Technology) were subjected to sodium 
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dodecyl sulphate (SDS)- polyacrylamide gel electrophoresis. Proteins were semi-dry 

transferred to synthetic membranes, and incubated overnight at 4 ℃, with primary 

antibody specific to the protein of interest at a 1: 1 000 dilution. Subsequent 

immunoblotting of labeled protein were performed for 2h at room temperature, with a 

1:10 000 dilution of goat anti-rabbit horseradish peroxidase-conjugated secondary kit 

(ImmobilonTM Western; EMD Millipore, Billerica, MA USA) [129]. The loading control 

is glyceraldehyde 3- phosphate dehydrogenase (GAPDH). The quantitated density of 

target bands was calculated by using Image Lab TM software. Ratios of Pp46/p46, 

Pp65/p65 and AR were normalized to GAPDH and adjusted relative to the average of 

WT control with BSA treatment, which was arbitrarily set as 1 (AU). 

RNA extraction and real-time PCR 

The detection and quantitative- analysis of pro-inflammatory cytokine genes in 

cells were conducted by real-time PCR. Total RNA isolated from frozen adipose tissue 

was homogenized by using RNA STAT-60TM. To extract RNA, 1 vol. of homogenate 

was added with 0.2 vol. of chloroform. The precipitation of RNA was performed using 

0.5 vol. of isopropanol and used 75% ethanol to wash the RNA pellet. Reverse 

transcription was performed in GoScriptTM Reverse Transcription System (Promega). 

cDNA was prepared from 0.5 µg total RNA by heating for 15 min at 42℃ in the 

presence of AMV reverse transcriptase, recombinant RNasin® ribonuclease inhibitor 

and oligodeoxythymidilic acid (oligo(dT)15). cDNA was subjected to PCR amplification 

in SYBR Green (LightCycler ® 480 system; Roche) system. The reaction mix contained 

1.2 µL cDNA, 0.8 µL primer, 10 µL power Sybr-green PCR master mix and 8 µL 
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nuclease-free water [134, 135]. The mRNA levels were analyzed for A2AR, TNF-α, IL-

1β, IL-6 and MCP1 in adipose tissue samples. The internal reference gene 18S 

ribosomal RNA was used to normalize the data.  

Statistical analysis 

Numeric data are presented as means ± SE (standard error). Two-tailed student’s 

t test was used to assess if the data is statistically significant. The standards of the study 

is when P value <0.05.  

Results 

Palmitate enhanced the inflammatory responses in 3T3-L1 cells 

To investigate the effects of carbohydrate and SFAs on A2AR, differentiated 3T3-

L1 adipocytes were cultured in low glucose or high glucose DMEM medium, with or 

without palmitate treatment for 24 hours. In differentiated 3T3-L1 adipocytes, high 

glucose and palmitate treatment groups had more JNK (p46) phosphorylation comparing 

to PBS control group, which indicated both high glucose and palmitate had effects on the 

activation of JNK pathway. Palmitate treatment also elevated adenosine receptors level, 

in both low glucose and high glucose groups (Figure 6 (A)). In addition, mRNA levels 

of pro-inflammatory cytokines, such as TNF-α and IL-6 were significantly higher in 

palmitate treatment groups than in control groups. Thus, palmitate treatment induced 

inflammatory responses in 3T3-L1 differentiated adipocytes, which was consistent with 

previous findings. The higher A2AR expression was also induced by palmitate treatment, 

either in low glucose or high glucose condition (Figure 6 (B)).  
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Figure 6. Palmitate enhanced the inflammatory responses in 3T3-L1 cells. 
(A) 3T3-L1 adipoctyes inflammatory signaling. Protein extracts from whole cells were 
subjected to western blots. The degree of phosphorylation was determined from the 
measured ratio of phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated 
NF-κB p65 to total p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (B) 
The detection and quantitative- analysis of pro-inflammatory cytokine genes and A2AR 
in cells were conducted by real-time PCR. For bar graphs (A and B), data are means ± 
SE, n= 5. *, P<0.05 and **, P<0.01.  
 

 

 

Palmitate enhanced the inflammatory responses in WT BMDM 

To examine the effects of carbohydrate and SFAs on WT mice macrophages, 

bone marrow-derived macrophages (BMDM) were cultured in low glucose or high 

glucose DMEM medium, with or without palmitate treatment for 24 h. In BMDM, 
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palmitate treatment groups had more NF-κB p65 (Ser 536) phosphorylation in both low 

glucose and high glucose treatment groups, which indicated palmitate had effects on the 

activation of NF-κB pathway (Figure 7 (A)). The mRNA levels of pro-inflammatory 

cytokine TNF-α was significantly higher in palmitate treatment group than in control 

group. Also, palmitate treatment increased A2AR gene expression in WT macrophages 

(Figure 7 (B)).  

 

Figure 7. Palmitate enhanced the inflammatory responses in BMDM. 
(A) BMDM inflammatory signaling. Protein extracts from whole cells were subjected to 
western blots. The degree of phosphorylation was determined from the measured ratio of 
phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated NF-κB p65 to total 
p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (B) The detection and 
quantitative- analysis of pro-inflammatory cytokine genes and A2AR in cells were 
conducted by real-time PCR. For bar graphs (A and B), data are means ± SE, n= 5. *, 
P<0.05 and **, P<0.01.  
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A2AR KO BMDM had enhanced pro-inflammatory responses 

To examine if A2AR have effects on macrophages upon high carbohydrate and 

SFAs treatment, bond marrow were isolated from A2AR+/+ and A2AR-/- mice. BMDM 

were cultured in low glucose or high glucose DMEM medium, with or without palmitate 

treatment for 24 h. In BMDM with genetic deletion of A2AR, high glucose and palmitate 

treatment groups had significantly higher phosphorylation of JNK (p46) and NF-κB p65 

(Ser 536), meaning both high glucose and palmitate had effects on the activation of JNK 

and NF-κB pathways (Figure 8(A)). Comparing to WT macrophages, A2AR deficient 

macrophages had significantly higher JNK (p46) phosphorylation, in both BSA and 

palmitate treatment groups  (Figure 8 (B)). The mRNA levels of pro-inflammatory 

cytokines were significantly higher in genetic deletion of A2AR group than in WT 

control group (Figure 8 (C)). Together, these results suggested that A2AR had a direct 

effect upon palmitate-induced inflammation.  
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Figure 8. A2AR KO BMDM had enhanced pro-inflammatory responses. 
(A) A2AR KO BMDM inflammatory signaling. Protein extracts from whole cells were 
subjected to western blots. The degree of phosphorylation was determined from the 
measured ratio of phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated 
NF-κB p65 to total p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (B) 
Inflammatory signaling in WT and A2AR KO BMDM. Protein extracts from whole cells 
were subjected to western blots. The degree of phosphorylation was determined from the 
measured ratio of phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated 
NF-κB p65 to total p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (C) 
The detection and quantitative- analysis of pro-inflammatory cytokine genes and A2AR 
in cells were conducted by real-time PCR. For bar graphs (A and B), data are means ± 
SE, n= 5. *, P<0.05 and **, P<0.01.  

 

 

 

Discussions 

In virtue of in vitro study, we were able to separately illustrate that A2AR 

activation not only exerts a protective effect on adipocytes, but also directly mediates 
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macrophage inflammation. Upon palmitate treatment, 3T3-L1 adipocytes had increased 

JNK, NF-κB phosphorylation, TNF-α, IL-6 expression and increased A2AR levels. 

According to the literature, it is agreeable that accumulated SFAs contribute to the 

inflammatory responses in adipocytes and macrophages [158]. Obesity-induced low-

grade inflammatory responses are characterized by the secretion of adipokines from 

adipocytes, such as TNF-α, IL-6 and MCP1. These adipokines induced the infiltration 

and polarization of macrophages in adipose tissue. There is direct connection of 

adipocytes and macrophages due to crown-like structure formation.  

Adipocytes hypertrophy and hyperplasia impair adipose tissue function including 

glucose intolerance, insulin resistance and inflammation [178]. The turnover of the 

adipocytes may be one mediator that is responsible for the different adipose 

morphologies upon obese-induced inflammation. The annual turnover rate of adipocytes 

is approximately 10% of the total fat cell pool. To clear the dead cells, macrophages 

form a crown-like structure to scavenge the cellular debris that endured apoptosis, to 

keep the balance of cell number. In lean adipose tissue, resident macrophages exert the 

alternatively activated phenotype, which is critical in maintaining adipose tissue 

homeostasis. Onset of obesity increases the ratio of macrophages in adipose tissue from 

5% up to 50%. The prevalence of macrophages predominantly switch to the classically 

activated phenotype that promotes inflammatory responses. Those macrophage pro-

inflammatory genes highly express on stromal vascular fraction of obese adipose tissue 

comparing to adipocytes [179].  
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FFAs have been implicated in activating the TLR4 cascades [32], which 

stimulate M1 polarization and secret cytokines including TNF-α, IL-1, IL-6, etc. [33-35]. 

Adipocytes and macrophages act in a paracrine loop involving FFAs and TNF-α and 

contribute to inflammation and insulin resistance in adipose tissue. It is a vicious cycle 

that pro-inflammatory cytokines released from macrophages cause insulin resistance in 

adipose tissue, and subsequently increase lipolysis and elevated FFAs production from 

adipocytes. The uncontrolled FFAs secretion further activates macrophages for the 

transcription of inflammatory cytokines upon TLR4 cascade activation. 

Kupffer cells are heterogeneous population and the microenvironment in the liver 

determines the prevalence and phenotype of these liver-resident macrophages. LPS acts 

like a ligand to attach to TLR-4 on kupffer cells, and triggers the acute inflammation via 

inducing the release of IL-6. During chronic liver injury such as NASH, the monocyte-

derived macrophages infiltrate into liver and cause the ablation of hepatic tolerance in 

presence of TNF production by activated kupffer cells [180]. Secreted TNF in turn 

promotes the additional infiltration of neutrophil, and stimulates ROS production in 

hepatocytes, which contributes to apoptosis of hepatocytes and inflammation in the liver. 

When mice were fed with MCD diet to induce steatosis and fibrosis, it was showed that 

kupffer cells activated hepatic stellate cells induced tissue inhibitor of metalloproteinase 

1 and suppressed metalloproteinase synthesis through the release of TNF. Genetic 

deletion of TNF receptor 1 and 2 showed amelioration in liver fibrosis. Furthermore, 

hepatic macrophages activate the progression of fibrosis by maintaining hepatic stellate 

cell number in a NF-κB dependent manner. By applying CCl4 treatment and bile duct 
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ligation to induce fibrosis in mice, it showed activation of NF-κB pathway increased the 

transcription of IL-1 and TNF, which did not activate hepatic stellate cells but sustained 

the myofibroblast survival [181]. 

This chapter showed that exposure of BMDM to palmitate induced inflammatory 

signaling and pro-inflammatory cytokines’ secretion, a typical M1-like phenotype. We 

therefore tested the hypothesis that genetic deletion of A2AR in BMDM would 

accentuate the inflammatory potential. We crossed the A2AR+/- with A2AR+/- to develop a 

global knockout model (A2AR-/-) with WT littermates (A2AR+/+). Upon high glucose and 

palmitate treatment, A2AR-deficient macrophages had increased JNK and NF-κB 

phosphorylation. Comparing to WT macrophages, A2AR-deficient macrophages had 

increased JNK phosphorylation, and increased pro-inflammatory cytokines. Given that 

ablation of A2AR exacerbates inflammatory responses upon palmitate treatment in 

BMDM, it is postulated that A2AR has direct effect on macrophages to mediate 

immunologic effects.  



 

 61 

CHAPTER VI  

A2AR PROTECTS AGAINST OVERNUTRTION-INDUCED CHRONIC 

INFLAMMATION AND SYSMETIC INSULIN RESISTANCE  

 

Introduction 

During cellular stress or hypoxia, the purine nucleoside, adenosine, is produced 

from dephosphorylation of ATP, ADP or AMP. Adenosine attaches to adenosine 

receptors and mediates tissue protection mainly achieved by suppressing immune system 

responses. However, it is still unappreciated that A2AR expressed on liver and adipose 

tissue can control metabolic and immunologic events such as glucose/ lipid metabolism 

and inflammation. The aim of this chapter is to evaluate the effects of A2AR ablation, 

focusing on liver and adipose tissue inflammation induced by obesity in mice.  

The de novo lipogenesis exists in the liver to generate fat from glucose, which 

contributes to increased fat mass and subsequent obesity-induced tissue dysfunction. 

Transcription factors such as SREBP-1c exert significant activating effects on de novo 

synthesis of fatty acids since SREBP-1c regulates many genes that code for the rate-

limiting enzymes in fatty acids biosynthesis pathways such as ACC, FAS, ATP-citrate 

lyase (ACL) and stearoyl-CoA desaturase (SCD). SREBPs reside in the endoplasmic 

reticulum (ER) membranes as inactive precursors (~125k Da). SREBPs translocate from 

ER to the Golgi to undergo a proteolytic process upon demand signals for fatty acids, 

escorted by a SREBP cleavage activating protein (SCAP).  The SREBPs are cleaved by 

the Site-1 and Site-2 protease, and a N-terminal fragment of SREBPs then transfers into 
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the nucleus and acts as transcription factor. In the nucleus, SREBPs bind to the 

promoters of the sterol response elements (SREs), resulting in the “turning on” of 

transcription. The activity of SREBP is regulated by its phosphorylation and acetylation.  

The activity of SREBP-1c is correlated with SIRT1. During fasting, SIRT1 

induces the deacetylation of SREBP-1c. Under feeding conditions, increased insulin and 

glucose levels caused SIRT1 to lose interaction with SREBP-1c, thus increasing the 

acetylation SREBP-1c. In diet-induced obese mice, acetylation of SREBP-1c increased 

abnormally, which worsen the state of obesity by enhancing fatty acid de novo synthesis. 

It is supposed that inflammatory signaling (JNK pathway) caused the degradation of 

SIRT1 and the lose of interaction with SREBP-1c, so the level of de novo lipogenesis 

increased and so did liver steatosis. Overexpression of SIRT1 in the liver for 1 week 

could decrease the acetylation of SREBP-1c and exerted beneficial effects [159, 182].  

Acetyl-CoA is the acyl group donor in the process of de novo fatty acid synthesis, 

which is generated from citrate using the enzyme ACL. The fatty acid chain that 

transformed from Acetyl-CoA carboxylate to malonyl-CoA, which is a committed step 

of fatty acids biosynthesis pathway, catalyzed by ACC. Malonyl-CoA is indispensable in 

fatty synthesis since on the one hand, it provides 2-carbon units in the synthesis of 

palmitate. On the other hand, it inhibits β-oxidation by binding and blocking carnitine 

palmitoyltransferase (CPT1), which is the requisite transporter of fatty acid across 

mitochondrial membrane to undergo mitochondrial oxidation.  

Malonyl-CoA donates 2-carbon units every time to the fatty acid chain and 

finally generates palmitate, using the enzyme FAS. Recent research revealed that 
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macrophage FAS was essential in determining phospholipid composition on membrane, 

thus altering lipid raft domain upon diet-induced inflammation [183]. Genetic deletion of 

Fasn specific in myeloid cells attenuated HFD-induced inflammation and resistance in 

mice. In FAS deficient macrophages, the membrane order was changed, retention of 

lipid raft was impaired and Rho GTPase activity was reduced. Rho GTPase mediated 

macrophage cell motility, including migration, adhesion and activation. These findings 

suggested that FAS was needed in endogenous fatty acids synthesis, which resulted in 

membranes composition perturbation, and macrophages recruiting upon inflammatory 

signaling.   

The anti-inflammatory effects of adenosine on macrophages are characterized as 

inhibition of M1 macrophages via A2AR regulation and activation of M2 macrophages 

via A2BR mediation, which subsequently decreases pro-inflammatory cytokine, 

chemokine secretion and nitric oxide produced by M1 macrophages and increasing IL-

10 release from M2 macrophages [184]. HFD fed Swiss mice treated with the A2AR 

agonist (CGS-21680) showed improved glucose and insulin tolerance with decreased 

inflammation. TNF-α and plasminogen activator inhibitor-1 (PAI-1) were reduced in 

Swiss mice’ blood. TNF-α and MCP-1 were also reduced in visceral adipose tissue. 

Adipose tissue macrophages secrete these cytokines and chemokines, which lead to the 

activation JNK1/2 pathway. JNKs phosphorylate insulin receptor at serine/threonine, and 

inhibit insulin signaling, which results in increased lipolysis in adipose tissue and 

generate a vicious cycle of inflammation. Thus, A2AR activates upon agonist ameliorated 

adipose tissue inflammation and thus systemic low-grade inflammation and insulin 
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resistance. In adipose tissue, A2AR agonist treatment increased p38 mitogen activated 

protein kinase (MAPK) signaling [185]. From the result of Chapter V, we demonstrated 

that an increased A2AR level serves as a defensive response at the cellular level. 

Therefore, in this chapter, we are interested in investigating HFD induced inflammation 

using A2AR knockout mice.  

Materials And Methods 

Animal experiments 

5-6 weeks-old A2AR-/-, A2AR+/- and A2AR+/+ mice litter mates were group housed 

(3-5 mice/cage), feeding with HFD for 12 weeks. Composition of LFD is 10% fat, 20% 

protein and 70% carbohydrate of total kcal, while composition of HFD is 60% fat, 20% 

protein and 20% carbohydrate of total kcal. HFD were gained fro Research Diets, Inc 

(New Brunswick) and composition was 5.24 kcal/g, including 275 kcal of sucrose, 2205 

kcal of lard and no cornstarch. The mice were maintained in a controlled environment, 

inverted 12h daylight-cycle (lights on at 06:00). During the 12-week feeding period, 

body weight and food intake were monitored weekly. After the feeding regimen, mice 

were anesthetized (0.1 mL/10 g of body weight of 1:1 v/v xylazine 1%/ ketamine 10%, 

intraperitoneal injection), blood was collected and tissue samples were carefully excised, 

weighted and stored for further study [129-131]. To determine if the process of over-

nutrition affects A2AR expression, tissues such as liver and adipose tissue were collected 

from LFD or HFD fed WT mice. The adipose tissue that was dissected for testing 

involved epididymal, mesenteric and perinephric fat pads. The Institutional Animal Care 
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and Use Committee of Texas A&M University approved the laboratory animal care and 

handling. 

Glucose and insulin tolerance tests 

Glucose tolerance test (GTT) measures the body’s ability to clear an injected 

glucose load. Insulin tolerance test (ITT) were used in conjunction with GTT, to 

determine how well of systemic insulin sensitivity after giving an injection of insulin.  

Mice were fasted for approximately 4 h and fasted glucose levels are determined before 

receiving an intra-peritoneal injection of solution of D-glucose (2 g/kg BW) or insulin (1 

U/kg BW). For GTT, blood was collected from tail veins at 30, 60, 90 and 120 min after 

an intraperitoneally injected bolus glucose. For ITT, blood was collected from tail veins 

at 15, 30, 45 and 60 min after an intraperitoneally injected bolus insulin [132, 133]. The 

plasma glucose was determined by glucose assay kit (Sigma, St. Louis, MO).  

Histology 

Liver and epididymal fat were fixed in formalin (10%, Sigma). Tissue blocks 

were cut into 5 µm sections for F4/80 with rabbit anti-F4/80 (1:100) (AbD Serotec, 

Raleigh, NC) [186]. For lipid detection, frozen liver sections were fixed with formalin 

followed by Oil-Red-O in isopropanol. Images of Oil-Red-O staining were taken with a 

Canon Powershot SD300 digital camera. Optical density was measured at 510 nm. 

Western blot 

Lysates from frozen liver samples applied the lysis buffers (pH 7.4) containing 

20 mM HEPEs, 100 mM sodium fluoride, 10 mM sodium orthovanadate, 1% NP-40, 0.1% 

SDS, 2 mM EDTA and 2 mM navadate. The 5× loading dye contains 1.0 M Tris (pH 
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6.8), 50% glycerol, 10% SDS and 0.1% bromophenol blue [129, 131]. Cell lysates (50 

µg of protein) and protein markers (cell signaling Technology) were subjected to sodium 

dodecyl sulphate (SDS)- polyacrylamide gel electrophoresis. Proteins were semi-dry 

transferred to synthetic membranes, and incubated overnight at 4 ℃, with primary 

antibody specific to the protein of interest at a 1: 1 000 dilution. Subsequent 

immunoblotting of labeled protein were performed for 2h at room temperature, with a 

1:10 000 dilution of goat anti-rabbit horseradish peroxidase-conjugated secondary kit 

(ImmobilonTM Western; EMD Millipore, Billerica, MA USA) [129]. The loading control 

is glyceraldehyde 3- phosphate dehydrogenase (GAPDH). The quantitated density of 

target bands was calculated by using Image Lab TM software. Ratios of Pp46/p46, 

Pp65/p65 and AR were normalized to GAPDH and adjusted relative to the average of 

LFD fed control, which was arbitrarily set as 1 (AU). 

RNA extraction and real-time PCR 

The detection and quantitative- analysis of pro-inflammatory cytokine genes in 

liver were conducted by real-time PCR. Total RNA isolated from frozen adipose tissue 

was homogenized by using RNA STAT-60TM. To extract RNA, 1 vol. of homogenate 

was added with 0.2 vol. of chloroform. The precipitation of RNA was performed using 

0.5 vol. of isopropanol and used 75% ethanol to wash the RNA pellet. Reverse 

transcription was performed in GoScriptTM Reverse Transcription System (Promega). 

cDNA was prepared from 0.5 µg total RNA by heating for 15 min at 42℃ in the 

presence of AMV reverse transcriptase, recombinant RNasin® ribonuclease inhibitor 

and oligodeoxythymidilic acid (oligo(dT)15). cDNA was subjected to PCR amplification 
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in SYBR Green (LightCycler ® 480 system; Roche) system. The reaction mix contained 

1.2 µL cDNA, 0.8 µL primer, 10 µL power Sybr-green PCR master mix and 8 µL 

nuclease-free water [134, 135]. The mRNA levels were analyzed for A2AR, TNF-α, IL-

1β, IL-6 and MCP1 in liver samples. The internal reference gene 18S ribosomal RNA 

was used to normalize the data.  

Statistical analysis 

Numeric data are presented as means ± SE (standard error). Two-tailed student’s 

t test was used to assess if the data is statistically significant. The standards of the study 

is when P value <0.05.  

Results 

A2AR-deficient male mice had increased body weight and insulin resistance 

To study the extent to which A2AR disruption exacerbates inflammation, adipose 

tissue and liver were obtained from HFD-fed A2AR-/-, A2AR+/- and A2AR+/+ mice litter 

mates. Systemic glucose tolerance, insulin sensitivity and inflammatory biomarkers were 

analyzed and compared among groups. Male A2AR+/- mice gained more body weight 

than A2AR+/+ mice, and male A2AR-/- mice showed significant increased bodyweight 

comparing to A2AR+/- mice (Figure 9 (A)). There is no difference among A2AR-/-, A2AR+/- 

and A2AR+/+ mice in daily food intake during 12-week HFD feeding  (Figure 9 (B)). An 

intraperitoneal glucose challenge showed that male A2AR+/- and A2AR-/- mice had 

decreased glucose tolerance. Comparing to A2AR+/+ mice, plasma glucose level of 

A2AR+/- and A2AR-/- mice significantly increased after ingestion of glucose solution. The 

plasma glucose kept high after 2h of ingestion (Figure 9 (C)).  ITT showed that male 
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A2AR knockout mice had a dysfunctional insulin signaling. After ingestion of insulin, the 

plasma glucose levels of A2AR+/- and A2AR+/+ mice were higher than A2AR+/+ mice, 

which indicated that tissues of A2AR knockout mice cannot respond to insulin properly 

(Figure 9 (D)). HFD-fed A2AR-/- mice had much higher liver tissue weight relative to 

body weight than A2AR+/+ mice. In addition, A2AR+/- and A2AR+/+ mice had significant 

higher adiposity, which indicated they accumulated more visceral fat than A2AR+/+ mice 

(Figure 9 (E)). 
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Figure 9. A2AR-deficient male mice had increased body weight and insulin 
resistance. 
Male mice (A2AR-/-, A2AR+/- and A2AR+/+) were fed with HFD for 12 weeks. Data are 
means ± SE, n= 10. (A) Body weight was monitored weekly during the feeding period. 
(B) Food intake. (C) GTT. (D) ITT. (E) The ratio of liver weight to body weight (mg/g), 
and the rate of visceral fat to body weight (%). For C and D, mice were fasted for 4 h 
and fasted glucose levels are determined before receiving an intra-peritoneal injection of 
glucose (2 g/kg BW) or insulin (1 U/kg BW). *, P<0.05 and **, P<0.01. A2AR WT vs. 
A2AR knockout for the same time point (C and D).  

 

 



 

 70 

A2AR-deficient female mice had insulin resistance and increased adiposity 

 There were no significant differences of body weight among the A2AR+/+, 

A2AR+/- and A2AR-/- female mice (Figure 10 (A)). There was no difference between 

A2AR+/- and A2AR+/+ mice in daily food intake during 12-week HFD feeding, but A2AR-/- 

mice had significant decreased daily food intake (Figure 10 (B)). GTT and ITT were 

conducted to assess systemic glucose level and insulin sensitivity. GTT showed that 

female A2AR+/- and A2AR-/- mice had decreased glucose tolerance. Comparing to A2AR+/+ 

mice, the plasma glucose level of A2AR-/- and A2AR+/- mice increased significantly after 

ingestion of glucose solution. The plasma glucose kept high after 2h of ingestion. 

(Figure 10 (C)). ITT showed that female A2AR+/- mice had worse insulin sensitivity than 

A2AR+/+ mice, and A2AR-/- mice had the worst insulin sensitivity. After ingestion of 

insulin, the plasma glucose levels of A2AR+/+ and A2AR-/- mice were higher than A2AR+/+ 

mice (Figure 10 (D)). We did not observe the liver weight difference between female 

A2AR-/- mice and A2AR+/+ mice. A2AR+/- and A2AR-/- mice had significant higher adiposity, 

which showed that they accumulated more visceral fat than A2AR+/+ mice (Figure 10 (E)). 
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Figure 10. A2AR-deficient female mice had insulin resistance and increased 
adiposity. 
Female mice (A2AR-/-, A2AR+/- and A2AR+/+) were fed with HFD for 12 weeks. Data are 
means ± SE, n= 10. (A) Body weight was monitored weekly during the feeding period. 
(B) Food intake. (C) GTT. (D) ITT. (E) The ratio of liver weight to body weight (mg/g), 
and the rate of visceral fat to body weight (%). For C and D, mice were fasted for 4 h 
and fasted glucose levels are determined before receiving an intra-peritoneal injection of 
glucose (2 g/kg BW) or insulin (1 U/kg BW). *, P<0.05 and **, P<0.01. A2AR WT vs. 
A2AR knockout for the same time point (C and D).  
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A2AR-deficient mice displayed severe inflammation and insulin resistance in liver 

A2AR+/- mice had much more fat deposition than A2AR+/+ mice. In addition, 

A2AR-/- mice demonstrated increased fat accumulation in the liver than A2AR+/- mice. 

F4/80 staining showed A2AR+/- and A2AR-/- mice accumulated much more hepatic 

macrophages (Figure 11 (A)). Gene expression of pro-inflammatory cytokines, such as 

TNF-α and IL-6 were significantly higher in A2AR deficient mice. The genes expression 

that involved in lipogenesis, such as ACC, FAS, CPT1a and SREBP1c were also 

significantly higher in A2AR deficient mice (Figure 11 (B)). Comparing to A2AR+/+ mice, 

A2AR+/- and A2AR-/- mice had more NF-κB (p65) phosphorylation in livers, which 

indicated the deficiency of A2AR augmented the activation of JNK pathway and NF-κB 

pathway (Figure 11 (C)). To examine the connection between A2AR and insulin 

sensitivity, liver samples were collected from A2AR+/+, A2AR+/- and A2AR-/- mice that 

injected with insulin before harvesting. Genetic deletion of A2AR in mice had decreased 

phosphorylation of AKT in liver (Figure 11 (D)).  
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Figure 11. A2AR-deficient mice displayed severe inflammation and insulin 
resistance in liver. 
 (A) Liver histology. Top panels, H&E staining; middle panels, Oil-Red-O staining; 
Bottom panels, F4/80 staining. (B) The detection and quantitative- analysis of pro-
inflammatory cytokine genes and fatty acids biosynthesis genes in liver were conducted 
by real-time PCR. (C) Liver inflammatory signaling. Protein extracts from liver were 
subjected to western blots. The degree of phosphorylation was determined from the 
measured ratio of phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated 
NF-κB p65 to total p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (D) 
Liver insulin signaling. A2AR-/-, A2AR+/- and A2AR+/+ mice were injected with insulin 
before harvesting. Protein extracts from liver were subjected to western blots. The 
degree of phosphorylation was determined from the measured ratio of phosphorylated 
Akt to total Akt, via GAPDH normalization (AU, arbitrary unit). For bar graphs (B, C 
and D), data are means ± SE, n= 10. *, P<0.05 and **, P<0.01.  
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A2AR-deficient mice displayed sever inflammation and insulin resistance in adipose 

tissue 

A2AR+/- and A2AR-/- mice had bigger adipocytes and accumulated much more 

adipose tissue macrophages than A2AR+/+ mice (Figure 12 (A)). There was also a switch 

of phenotype from anti-inflammatory M2 to pro-inflammatory M1 macrophages (Figure 

12 (B)). Comparing to A2AR+/+ mice, A2AR+/- and A2AR-/- mice had more JNK and NF-

κB (p65) phosphorylation in WAT, which indicated the deficiency of A2AR augmented 

the activation of JNK pathway and NF-κB pathway in the adipose tissue (Figure 12 (C)). 

Genetic deletion of A2AR in mice had decreased phosphorylation of AKT in the adipose 

tissue (Figure 12 (D)). A2AR+/- and A2AR-/- mice expressed higher level of pro-

inflammatory cytokines than A2AR+/+ mice. Also, A2AR+/- and A2AR-/- mice expressed 

lower levels of anti-inflammatory gene (adiponetkin) and lipolysis enzyme genes (Figure 

12 (E)).  
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Figure 12. A2AR-deficient mice displayed severe inflammation and insulin 
resistance in adipose tissue. 
(A) Adipose tissue histology. Top panels, H&E staining; Bottom panels, F4/80 staining. 
(B) Polarization of macrophages in adipose tissue by using flow cytometry. (C) Adipose 
tissue inflammatory signaling. Protein extracts from liver were subjected to western 
blots. The degree of phosphorylation was determined from the measured ratio of 
phosphorylated JNK1 to total JNK1 (Pp46/p46) and phosphorylated NF-κB p65 to total 
p65 (Pp65/p65), via GAPDH normalization (AU, arbitrary unit). (D) Adipose tissue 
insulin signaling. A2AR-/-, A2AR+/- and A2AR+/+ mice were injected with insulin before 
harvesting. Protein extracts from adipose tissue were subjected to western blots. The 
degree of phosphorylation was determined from the measured ratio of phosphorylated 
Akt to total Akt, via GAPDH normalization (AU, arbitrary unit). (E) The detection and 
quantitative- analysis of pro-inflammatory cytokine genes and lipolysis genes in adipose 
tissue were conducted by real-time PCR. For bar graphs (B, C and D), data are means ± 
SE, n= 10. *, P<0.05 and **, P<0.01.  
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Discussions 

HFD feeding caused inflammation and insulin resistance in the liver and adipose 

tissue, which involved liver steatosis and infiltration of macrophages to adipose tissue. 

This study showed that A2AR is requisite in quenching diet-induced inflammation. A2AR-

deficient mice had higher body weight, decreased glucose tolerance and insulin 

sensitivity, compared to WT mice. The adipose tissues and the livers of A2AR-deficient 

mice had increased JNK and NF-κB (p65) phosphorylation, pro-inflammatory gene 

expression and lipogenesis gene expression. Furthermore, our data showed increased 

macrophage recruitment and the dominant classically activated phenotype in the adipose 

tissue of A2AR knockout mice. Aside from affecting inflammation and glucose 

homeostasis, ablation of A2AR also induced a worsening phenotype of ectopic fat 

accumulation with elevated de novo lipogenesis genes expression.  

The anti-inflammatory effect of A2AR has also been studied in diabetic 

retinopathy. WT mice treated with A2AR agonist (CGS21680) showed dramatic 

decreases in retinal cell death (especially neuronal cells) stimulated by hyperglycemia, 

and TNF-α secretion. Genetic deletion of A2AR in diabetic mice resulted in enhanced 

TNF-α secretion, and expression of genes that correlated to retinal vascular 

inflammation in diabetic patients such as intercellular adhesion molecule-1 (ICAM-1) 

expression and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling- 

(TUNEL). The A2AR signaling was investigated by treating primary retinal microglia 

with amadori-glycated albumin to induce diabetic disorders. Activation of A2AR 

ameliorated TNF-α secretion mediated in a cAMP-dependent manner and suppressed C-
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Raf/ERK cascade. Thus, A2AR possessed a retinal protective effect by reducing 

inflammatory signaling and rescuing cell death in diabetic retinopathy [187]. 

Human epithelium, in specific urothelium, A2AR has been implicated in 

mediating inflammation. Human urothelium cells challenged with Escherichia coli or 

pro-inflammatory cytokines displayed increased A2AR expression. A2AR agonist 

(CGS21680) treatment did not increase cAMP generation or CREB phosphorylation 

profoundly. A2AR agonist (CPCA) activated cAMP/CREB pathway and inhibited 

MAPK-family (ERK, JNK, p38 and STAT3) signaling. However, despite the inhibition 

of these inflammatory signaling, neither CGS21680 nor CPCA could functionally 

suppress Escherichia coli stimulated IL-8 production [188].  

The immunomodulatory effects of A2AR on immune cells were studied back to 

ohta and sitkovsky’s study [189]. Adenosine receptors, particular A2AR has been shown 

to prevent excessive M1 macrophage activation in terms of the decreasing expression of 

reactive nitrogen and oxygen species, macrophage inflammation protein-1 α, IL-12, and 

especially TNF-α secretion [184]. The cAMP/ CREB pathway involved the activation of 

PKA by cAMP, which in turn phosphorylates the transcription factor, CREB. CREB 

binds to CRE to turn on the transcription of the downstream genes. Phopho-CREB is the 

response for the inhibition of NF-κB activity. So A2AR stimulation mediates negative 

feedback to control the production of cytokines [70, 71]. Murine alveolar macrophages 

were challenged with broken down fragments of extracellular matrix hyaluronan had 

increased pro-inflammatory cytokines and chemokines production. A2AR stimulation 

suppressed TNF-α generation in a PKA independent manner, which via cAMP (Epac-1) 
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[190]. In addition, A2AR activation also augmented anti-inflammatory cytokine IL-10 

secretion. A2AR ablation mice failed to increase IL-10 secretion in peritoneal 

macrophages from mice, while WT mice were able to stimulate IL-10 production by E. 

coli stimulation [191, 192].  

A2AR also supported macrophage metabolism through the induction of glycolysis, 

which may facilitate in switching their phenotype to M2 polarization to help tissue 

restoration. Adenosine activated glycolysis via the synergic effects of LPS and A2AR 

agonist in elevating the expression of PFKFB3 isozyme of 6PFK1 in a Specific protein 1 

dependent manner [193]. A2AR exerted an immunosuppression effect not only through 

the inhibition of inflammatory responses but also the clearance of apoptotic cells by 

macrophages. The level of adenosine increased significantly to activate A2AR. The 

neutrophil migration factors such as macrophage inflammatory protein-2 were inhibited 

in the cAMP/PKA pathway. A2AR null mice failed to inhibit neutrophil-attracting 

chemokines production [194]. 

Intriguingly, our study demonstrated ablation of A2AR displayed switched 

phenotype of macrophages in liver, which also contributed to the vicious cycle of FFAs 

and pro-inflammatory cytokines production. Altogether, our data indicate that A2AR is 

one of mediators in suppressing inflammation and de novo lipogenesis.  
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CHAPTER VII  

SUMMARY AND CONCLUSIONS  

 

Summary 

In the present study, WT mice were fed with HFD to induce inflammation and 

insulin resistance as an animal model to investigate the immunomodulatory and 

metabolic effects of A2AR in vivo. As expected, HFD fed mice had increased body 

weight and tissue weight such as visceral fat and liver, compared to LFD fed mice. Other 

than unregulated glucose homeostasis, HFD fed mice also exhibited inflammation 

characterized as increased inflammatory signaling (JNK and NF-κB pathway), and pro-

inflammatory cytokines and chemokines (TNF, IL-1β, IL-6 and MCP-1). Intriguingly, 

the level of A2AR increased in the liver and adipose tissue of HFD fed mice, which may 

help to protect tissue from this high content of saturated fatty acids diet.  

The direct effects of nutrients on A2AR and inflammatory responses were also 

examined in vitro study. Adipocytes and BMDM showed increased inflammation upon 

high glucose and palmitate treatment, in terms of increased phosphorylation of JNK (p46) 

and NF-κB (p65) and pro-inflammatory cytokines production. Consistent with the result 

from mice, 3T3-L1 adipocytes and BMDM showed increased A2AR levels upon 

saturated fatty acid stimulation. In addition, A2AR-deficient macrophages provided 

evidence for the direct effect of A2AR in modulating inflammatory responses as shown 

by an increase in phosphorylation of JNK (p46) and NF-κB (p65) upon high glucose and 

palmitate treatment, and an increase in mRNA expression of TNF, IL-1β and IL-6. A2AR 
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deletion augments of inflammation in macrophages with increased JNK (p46) 

phosphorylation upon both BSA and palmitate treatment. Given this, the protective 

effect of A2AR was proven by using A2AR knockout BMDM.  

In virtue of A2AR-deficient mice, we were able to illustrate the effect of A2AR on 

the diet-induced obesity animal model. Ablation of A2AR caused mice significant 

increased body weight, compared to WT mice. Global knockout mice fed with HFD 

displayed impaired glucose clearance and insulin sensitivity. In the liver, genetic 

deletion of A2AR showed a significant increase in fat accumulation upon HFD feeding, 

shown by H&E and Oil-Red-O staining, comparing to WT mice. A significant increase 

in mRNA expression of de novo lipogenesis such as ACC, FAS, CPT1a and SREBP1c 

indicated abnormal lipid homeostasis in liver. In addition, F4/80 staining showed 

elevated macrophage population in liver, which also indicated the elevated production of 

pro-inflammatory molecules from liver macrophages. Moreover, an increase in 

phosphorylation of JNK (p46) and NF-κB (p65), expression of pro-inflammatory 

cytokines (TNF, IL-1β and IL-6) in liver suggested A2AR possess a beneficial effect on 

diet-induced chronic inflammation. A2AR- deficient mice injected insulin before harvest 

showed decreased phosphorylation of AKT comparing to WT mice, which indicated 

impaired insulin signaling. In adipose tissue, F4/80 staining showed increased 

macrophages infiltration in A2AR-deficient mice, and prolonged classical activated 

macrophages polarization indicated pro-inflammatory cytokine generation, which was 

confirmed by increased gene expression of MCP1. Genetic deletion of A2AR also 

exacerbated adipose tissue inflammation as shown by an increase in phosphorylation of 
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JNK (p46) and NF-κB (p65) and increased mRNA level of TNF, IL-1β and IL-6. A2AR 

heterozygous knockout mice showed decreased Akt phosphorylation in adipose tissue 

after insulin injection, compared to WT mice. And A2AR homozygous mice had 

significant reduced phosphorylated Akt, comparing to both heterozygous knockout and 

WT mice. 

Conclusions 

The presented study provided evidence that A2AR had both metabolic and 

immunologic effects in adipose tissue and liver. This was supported by the results of 

C57BL/6J mice fed with HFD, which showed an increase in the expression of A2AR in 

liver and adipose tissue, accompanied with obesity-related inflammation and insulin 

resistance. It appeared to be a defensive response, which may help protect against 

inflammatory damage. Further in vitro studies confirmed nutrients had direct effects on 

A2AR expression in both adipocytes and macrophages, which indicated that A2AR had 

protective effects on inflammation. Lastly, when comparing with HFD fed WT mice, 

HFD fed A2AR deficient mice displayed a significant increase in the severity of 

inflammation and insulin resistance. And the ablation of A2AR exacerbated the liver 

steatosis and adipose tissue macrophages infiltration and polarization. Together, these 

results suggested that A2AR is requisite in improving diet-induced obesity, characterized 

by regulating glucose/ lipid homeostasis, insulin signaling and most prominently, the 

anti-inflammatory effects via mediating the population and phenotype of macrophages 

that resided in both liver and adipose tissue. 
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