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ABSTRACT

A classical theorem of Issai Schur states that any n×n matrix is unitarily equivalent to

an upper-triangular matrix, and hence can be decomposed as the sum of a normal matrix

and a nilpotent matrix. Dykema, Sukochev and Zanin generalized this decomposition to

any operator in a von Neumann algebra with a normal, faithful, tracial state, replacing

nilpotent with s.o.t.-quasinilpotent.

In this paper we study the decomposition described by Dykema, Sukochev and Zanin.

We generalize the construction presented by Dykema, Sukochev and Zanin and introduce

the idea of a spectral ordering, a function φ : [0, 1]→ C which is suitable for construction

of such a decomposition. We give sufficient conditions for a function to be a spectral

ordering for an operator.

In the course of our investigation we develop the theory of SOT-quasinilpotent opera-

tors, and construct an operator Q which is SOT-quasinilpotent and has a spectrum which

is a non-trivial interval of the real line; such an operator had not previously appeared in

the literature.

We then restrict ourselves to operators with finitely supported Brown measure and

investigate the properties of an operator T with quasinilotent upper-triangular part Q. We

show this is equivalent to several conditions, including decomposability (in the sense of

C. Foiaş) and having a finite spectrum.
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1. INTRODUCTION AND BACKGROUND

1.1 Introduction

We start with some fundamentals of von Neumann algebras. LetH be a Hilbert space,

and letB(H) be the *-algebra of all bounded linear operators onH. A von Neumann alge-

braM of operators on H is a *-subalgebra of B(H) which contains the identity operator

and is closed in the strong operator topology, meaning that if T ∈ M, then T ∗ ∈ M,

and if Sn is a sequence of operators inM which converges pointwise onH to an operator

S ∈ B(H), then S ∈M.M is automatically closed in the norm topology on B(H).

A normal, faithful, tracial state onM is a function τ :M→ C which satisfies

1. τ(T ∗T ) ≥ 0 for all T ∈ M, and if τ(T ∗T ) = 0, then T = 0 (we will use scalars

to represent scalar multiples of the identity operator in M when it will not cause

confusion),

2. τ(1) = 1,

3. for a ∈ C and S, T ∈M, τ(aS + T ) = aτ(S) + τ(T ),

4. for all S, T ∈M, τ(ST ) = τ(TS),

5. whenever Tα is a monotone increasing net of operators with least upper bound T ,

τ(Tα)→ τ(T ).

In this paper we study properties of operators which belong to von Neumann algebras

equipped with normal, faithful, tracial states. The simplest such algebras are the algebras

of square matrices with complex entries, Mn(C). In the next chapter we describe a gener-

alization of the Schur upper-triangular form for matrices to tracial von Neumann algebras,

and the generalization of ordering the spectrum on the diagonal of the upper-triangular
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form. In the final chapter we will study consequences of this generalization, and compare

properties of operators with respect to it.

Many of the results in this paper are generalizations of properties of square matrices,

and for intuition the reader may wish to contemplate the results on an algebra of square

matrices.

L. Brown [2] introduced his spectral distribution measure for a not necessarily normal

operator T in a tracial von Neumann algebra, by which we mean a von Neumann algebra

M equipped with a normal, faithful, tracial state τ . This measure, now known as the

Brown measure of T , generalizes the spectral counting measure (weighted according to

algebraic multiplicity) on matrices. Brown proved an analogue of Lidskii’s Theorem in

tracial von Neumann algebras: letting νT denote the Brown measure of T , we have

τ(T ) =

∫
C
z dνT (z).

Haagerup and Schultz [8] proved existence of analogues of generalized eigenspaces for

operators T in tracial von Neumann algebras. Given a Borel subsetB of the complex num-

bers, they found a T -hyperinvariant projection P (T,B) satisfying τ(P (T,B)) = νT (B)

and splitting Brown measure as described in Theorem 1.5 below.

In [4], Dykema, Sukochev, and Zanin constructed upper-triangular decompositions

for operators in tracial von Neumann algebras. These decompositions are of the form

T = N + Q, where N is normal, Q is s.o.t.-quasinilpotent, and T and N have the same

Brown measure. The constructions generalize the Schur decomposition of an n×nmatrix.

The normal part N is constructed as the conditional expectation of T onto an abelian

algebra generated by an increasing net of Haagerup-Schultz projections of T .

Recall, for a bounded operator A on a Hilbert space, the notation |A| = (A∗A)1/2.

A matrix T ∈ Mn(C) is called nilpotent if there exists m ∈ N such that Tm = 0, or,
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equivalently, |Tm| = 0. This definition has motivated two generalizations to operator

algebras which are of interest to us. An operator T ∈ B(H) is called quasinilpotent if any

one of the following three equivalent conditions holds:

(i) ‖T n‖1/n → 0 as n→∞,

(ii) |T n|1/n → 0 in norm as n→∞,

(iii) σ(0) = {0}.

Also, a bounded operator Q on Hilbert space is said to be s.o.t.-quasinilpotent if |Qn|1/n

converges in strong-operator-topology to 0 as n→∞. A principal motivation for studying

these operators is the characterization, proved by Haagerup and Schultz [8], that, for ele-

ments of a tracial von Neumann algebra, being s.o.t.-quasinilpotent is equivalent to having

Brown measure concentrated at 0.

1.2 Preliminaries and notation

Throughout the paper, the following notation and language will be used: the word

trace will refer to a normal, faithful, tracial state. M will be a von Neumann algebra of

operators on a Hilbert space H and having a trace τ . Unless otherwise specified, T will

be an element of M and then σ(T ) will denote the spectrum of T . Finally, we use the

standard notations: C is the complex plane, D is the open unit disc in C centered at the

origin, and T is the unit circle, namely, the boundary of D.

Definition 1.1. Let N be a von Neumann subalgebra ofM. Then there exists a unique

trace-preserving faithful normal completely positive linear map EN : M → N . EN

satisfies the properties

1. EN is completely positive and unital

2. For any T1, T2 ∈ N and any S ∈M, EN (T1ST2) = T1EN (S)T2.

The map EN is called the conditional expectation ofM onto N .
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1.2.1 Brown measure and Haagerup-Schultz projections

In [2], L. Brown introduced a generalization of the spectral distribution measure for

not necessarily normal operators in tracial von Neumann algebras.

Theorem 1.2. Let T ∈ M. Then there exists a unique probability measure νT such that

for every λ ∈ C,

∫
[0,∞)

log(x) dµ|T−λ|(x) =

∫
C
log |z − λ| dνT (z),

where for a positive operator S, µS denotes the spectral distribution measure τ ◦E, where

E is the spectral measure of S.

The measure νT in Theorem 1.2 is called the Brown measure of T . If T is normal,

then νT equals the spectral distribution of T . If Mcal is finite dimensional, then νT is the

spectral counting measure of T .

Brown also made the following observation [2].

Observation 1.3. Let T be an element of a tracial von Neumann algebra and let B be a

connected component of σ(T ). Then νT (B) > 0.

Dykema, Sukochev and Zanin proved the following result about the Brown measure of

a conditional expectation in [5].

Lemma 1.4. For any increasing, right-continuous family of T -invariant projections (qt)t∈[0,1]

with q0 = 0 and q1 = 1, letting D be the von Neumann algebra generated by the set of all

the qt and D′ be the relative commutant of D inM, and letting ED′ be the τ preserving

conditional expectation, the Fuglede–Kadison determinants of T and ED′(T ) agree. Since

the same is true for T − λ and ED′(T ) − λ for all complex numbers λ, we have that the

Brown measures of T and ED′(T ) agree.
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The following is from the main result (Theorem 1.1) of [8]. It provides projections that

split the operator T according to the Brown measure.

Theorem 1.5. For any Borel set B ⊆ C, there exists a unique projection p = P (T,B)

such that

(i) Tp = pTp,

(ii) τ(p) = νT (B),

(iii) when p 6= 0, considering Tp as an element of pMp, its Brown measure νTp is

concentrated in B,

(iv) when p 6= 1, considering (1 − p)T as an element of (1 − p)M(1 − p), ν(1−p)T is

concentrated in C \B.

Moreover, P (T,B) is T -hyperinvariant and B1 ⊆ B2 implies P (T,B1) ≤ P (T,B2).

The projection P (T,B) is called the Haagerup-Schultz projection of T associated with

B. We may emphasize the algebra (and associated trace) with respect to which the projec-

tion is defined, by writing P (M)(T,B) instead ofP (T,B).

We will need the following characterization of the Haagerup-Schultz projection of T

associated with the ball of radius r centered at 0 given in [8].

Characterization 1.6. SupposeM≤ B(H). Define a subspaceHr ofH by

Hr = {ξ ∈ H : ∃ξn → ξ, with lim sup
n→∞

‖T nξn‖1/n ≤ r}.

Then the projection ontoHr is equal to P (T,Br).

The results about Brown measure and Haagerup-Schultz projections in the following

lemma are basic and easy to prove except, perhaps, for the last of them, which is Corollary

7.27 of [8].
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Lemma 1.7. Let T be an element of a tracial von Neumann algebra M. Then for any

λ ∈ C and any Borel set B ⊆ C, letting B∗ denote the image of B under complex

conjugation, we have

(i) ν(T−λ)(B) = νT (B + λ)

(ii) νT ∗(B) = νT (B
∗)

(iii) P (T − λ,B) = P (T,B + λ)

(iv) P (T ∗, B) = 1− P (T,C \B∗).

In Theorem 8.1 of [8], Haagerup and Schultz also prove the following theorem.

Theorem 1.8. Let T be an operator in a tracial von Neumann algebra. Then the sequence

|T n|1/n has a strong operator limit A, and for every r ≥ 0, the spectral projection of A

associated with the interval [0, r] is P (T, rD).

The above theorem gives us the previously mentioned result that T is s.o.t.-quasinilpotent

if and only if the Brown measure of T is concentrated at 0 (see [8]). Hence s.o.t.-

quasinilpotent operators are spectrally trivial with respect to Brown measure.

1.2.2 Upper-triangular forms in tracial von Neumann algebras

The following classical theorem of Schur allows for the upper-triangular decomposi-

tion of square matrices.

Theorem 1.9. Let A ∈ Mn(C) and let a1, a2, . . . , an be the eigenvalues of A, listed ac-

cording to algebraic multiplicity and in any order. Then there exists a unitary matrix

U ∈ Mn(C) such that U∗AU is an upper-triangular matrix and [U∗AU ]ii = ai, for every

i ∈ {1, . . . , n}.

We can then decompose the matrix A from Theorem 1.9 as A = N + Q, with N

normal, Q nilpotent, and the Brown measure of N identical to the Brown measure of A,
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by letting N̂ be the diagonal matrix with diagonal matching that of U∗AU , and setting

N = UN̂U∗.

This decomposition was generalized to tracial von Neumann algebras for continuous

spectral orderings in Theorem 6 of [4]. The following theorem is the main result of Chap-

ter 2. It further generalizes the result and does not require a continuous ordering of the

spectrum.

Theorem 1.10. LetM be a finite von Neumann algebra with a trace τ , and let T ∈ M.

Let ψ : [0, 1] → C be a Borel measurable function such that ψ([0, t]) is Borel for every

t ∈ [0, 1], and the set {z ∈ C | ψ−1(z) has a minimum} is a full measure Borel set with

respect to νT . Then there exists a spectral measure E satisfying

(i) E(ψ([0, t])) = P (T, ψ([0, t])), and hence T and N =
∫
C z dE(z) have the same

Brown measure, and

(ii) Q = T −N is s.o.t.-quasinilpotent.

Many of the results below apply to decompositions of the form T = N + Q, where

N =
∫
C zdE(z) for a spectral measure E as described in Theorem 1.10. The term upper-

triangular decomposition will refer to a decomposition of this type.

Let us briefly review some facts about the proof of the version of Theorem 1.10 found

in [4], in the case of a continuous spectral ordering ψ. Here ψ is any continuous func-

tion from [0, 1] into the complex plane, whose image contains the support of νT . Let-

ting D be the commutative von Neumann algebra generated by the set of projections

{P (T, ψ([0, t])) | 0 ≤ t ≤ 1}, N is the conditional expectation onto D.

Upper-triangular decompositions are compatible with spectral theory and Brown mea-

sure as described by the following two results. Though the first is well known, we include

a proof for convenience.
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Lemma 1.11. Let T be an operator in a finite von Neumann algebra M, and let p be

a T -invariant projection with p /∈ {0, 1}. Then T is invertible if and only if Tp and

(1−p)T are invertible in the algebras pMp and (1−p)M(1−p), respectively. It follows

that σ(T ) = σ(Tp)
⋃
σ((1 − p)T ), where the spectra of Tp and (1 − p)T are for these

operators considered as elements of the algebras pMp and (1−p)M(1−p), respectively.

Proof. If T is invertible, then

(pT−1p)(Tp) = p

and

((1− p)T )((1− p)T−1(1− p)) = (1− p).

Hence Tp has a left inverse, and since pMp is finite, it follows that Tp is invertible.

Additionally, (1− p)T has a right inverse, and must be invertible.

If Tp and (1− p)T are both invertible, we may write T in the form of a matrix

 Tp pT (1− p)

0 (1− p)T


which has as an inverse (Tp)−1 −(Tp)−1pT (1− p)((1− p)T )−1

0 ((1− p)T )−1

 .

Note that if p is T -invariant then p is (T − λ)-invariant for every complex number λ.

Thus T −λ is invertible if and only if both (T −λ)p and (1−p)(T −λ) are both invertible.

Thus σ(T ) = σ(Tp)
⋃
σ((1− p)T ).

The following result is stated in Proposition 10 of [4], and is a consequence of Theorem

2.24 of [7].
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Theorem 1.12. Let T be an element of a finite von Neumann algebraM with a trace τ ,

and let p be a T -invariant projection. Then

νT = τ(p)νTp + τ(1− p)ν(1−p)T ,

where νS denotes the Brown measure of S, and Tp and (1−p)T are considered as elements

of pMp and (1− p)M(1− p), respectively.

We use Lemma 1.11 and Theorem 1.12 to give the following corollary.

Corollary 1.13. Let T be an operator in a finite von Neumann algebraM with a trace τ

and let p ∈M be a T -invariant projection. Then the following two statements hold.

(i) T is quasinilpotent if and only if Tp and (1− p)T are both quasinilpotent.

(ii) T is s.o.t.-quasinilpotent if and only if Tp and (1−p)T are both s.o.t.-quasinilpotent.

9



2. SPECTRAL ORDERINGS AND UPPER-TRIANGULAR FORMS

2.1 Introduction

In this chapter we investigate generalizations of Schur’s Theorem 1.9 to tracial von

Neumann algebras, and prove Theorem 1.10.

In [4], Dykema, Sukochev and Zanin use Haagerup-Schultz projections to construct

upper-triangular decompositions of operators in tracial von Neumann algebras.

Theorem 2.1. Let M be a diffuse, finite von Neumann algebra with normal, faithful,

tracial state τ and let T ∈M. Then there exist N,Q ∈M such that

1. T = N +Q

2. the operator N is normal and the Brown measure of N equals that of T

3. The operator Q is s.o.t.-quasinilpotent.

The proof of Theorem 2.1 uses a Peano curve ρ : [0, 1]→ B‖T‖. The normal operator

N is created by taking the trace-preserving conditional expectation onto the von Neumann

algebra generated by the Haagerup-Schultz projections of the operator T associated with

the sets ρ([0, t]) for t ∈ [0, 1]. These projections, along with the normal operator N , are

determined by the ordering on the support of the Brown measure of T given by z1 ≤ z2

if and only if min(ρ−1(z1)) ≤ min(ρ−1(z2)). Theorem 2.1 generalizes the idea of using

an ordering of the spectrum of the operator T to write it as an upper-triangular form. This

raises the natural question: What functions act as orderings on the spectrum of an operator

in a tracial von Neumann algebra to give such upper-triangular decompositions?

For the reader’s convenience we restate Theorem 1.10.

Theorem 1.10. LetM be a finite von Neumann algebra with a trace τ , and let T ∈ M.

Let ψ : [0, 1] → C be a Borel measurable function such that ψ([0, t]) is Borel for every

10



t ∈ [0, 1], and the set {z ∈ C | ψ−1(z) has a minimum} is a full measure Borel set with

respect to νT . Then there exists a spectral measure E satisfying

(i) E(ψ([0, t])) = P (T, ψ([0, t])), and hence T and N =
∫
C z dE(z) have the same

Brown measure, and

(ii) Q = T −N is s.o.t.-quasinilpotent.

In particular the conclusion holds if ψ is continuous or is a Borel isomorphism, or a

composition of a continuous function and a Borel isomorphism. We leave open the fol-

lowing question: Given a function ϕ which satisfies the hypotheses of Theorem 1.10, does

there exist a Borel ismorphism ψ such that ϕ and ψ generate the same spectral measure?

2.2 Construction of the spectral measure E

Throughout this section, ψ will be as described in Theorem 1.10, Z will denote {z ∈

B‖T‖ : ψ
−1(z) has a minimum} and Y will denote B‖T‖ \ Z.

We first define a Borel measure on the unit interval which will be useful in later proofs.

Lemma 2.2. Let X = {min(ψ−1(z)) : z ∈ B‖T‖}. If b ⊆ [0, 1] is Borel, then ψ(b ∩X) is

Borel.

Proof. Note first that, for t ∈ (0, 1], we have ψ([0, t] ∩X) = ψ([0, t]) \ Y and ψ([0, t) ∩

X) = ψ([0, t)) \ Y , and these sets are Borel. Now, since ψ restricted to X is an injection,

we have ψ((α, β) ∩ X) = ψ([0, β) ∩ X) \ ψ([0, α] ∩ X) which is Borel. Since [0, 1]

is second countable, an arbitrary open set v =
⋃
n∈N un is the countable union of open

intervals so that ψ(v ∩X) = ψ(
⋃
n∈N(un ∩X)) =

⋃
n∈N(ψ(un ∩X)) is Borel.

To complete the proof, we show that the collection of sets

S = {b ⊆ [0, 1] : ψ(b ∩X) is Borel}

11



forms a σ-algebra. Suppose that ψ(b∩X) is Borel. Then ψ(bc ∩X) = ψ(X \ (b∩X)) =

Z \ ψ(b ∩ X) is Borel. Now suppose that (bn)n∈N ⊆ S. Then
⋃
n∈N bn ∈ S by the same

argument used for open sets, and we are done.

We now define µ(b) = νT (ψ(b ∩ X)) for any Borel set b ⊂ [0, 1]. It is clear that µ

is countably additive, and hence a Borel probability measure on [0, 1]. That µ is a regular

measure follows from Theorem 1.1 of [1].

Observation 2.3. For any Borel set B ⊆ B‖T‖, µ(ψ−1(B)) = νT (B).

Proof. Since ψ is a bijection from X to Z we have

µ(ψ−1(B)) = νT (ψ(ψ
−1(B) ∩X)) = νT (B ∩ Z) = νT (B)

Prior to constructing the spectral measure, we will need a map from the open subsets

of the closed unit interval to the set of projections inM. For an open interval, define

F (∅) = 0

F ((α, β)) = P (T, ψ([0, β)))− P (T, ψ([0, α]))

F ([0, β)) = P (T, ψ([0, β)))

F ((α, 1]) = 1− P (T, ψ([0, α])).

Since P (T, ψ([0, t])) and P (T, ψ([0, t))) are increasing in t, it follows that F (u) is

increasing in u, and F (u1)F (u2) = 0 if u1 ∩ u2 = ∅. For u1 = (α1, β1) and u2 = (α2, β2)

12



with α1 ≤ α2 ≤ β1 ≤ β2,

F (u1)F (u2) = (P (T, ψ([0, β1)))− P (T, ψ([0, α1])))(P (T, ψ([0, β2)))− P (T, ψ([0, α2])))

= P (T, ψ([0, β1)))− P (T, ψ([0, α2]))− P (T, ψ([0, α1])) + P (T, ψ([0, α1]))

= F (u1 ∩ u2).

Hence for any open intervals u1 and u2, F (u1)F (u2) = F (u1 ∩ u2).

For an arbitrary open set v ⊂ [0, 1], we first write v =
⋃
n∈N un, where the un are

pairwise disjoint, and all nonempty un are open intervals. Then
∑

n∈N F (un) converges

to a projection in the strong operator topology. We define F (v) =
∑

n∈N F (un). Mul-

tiplication of the series and application of the corresponding result for intervals gives us

F (v1)F (v2) = F (v1 ∩ v2) for open sets v1, v2 ⊂ [0, 1].

Observation 2.4. For any open set v ⊆ [0, 1], τ(F (v)) = µ(v).

Proof. For an open interval u = (α, β), we have

τ(F (u)) = τ(P (T, ψ([0, β)))− P (T, ψ([0, α]))

= νT (ψ([0, β)))− νT (ψ([0, α]))

= µ([0, β))− µ([0, α])

= µ(u).

The observation follows from additivity of µ, F and τ .

We are now ready to define the spectral measure E. For any Borel set B ⊆ B‖T‖,

define

E(B) =
∧
{F (v) : v is open andψ−1(B) ⊆ v}.
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Note that E is increasing and that the range of E is contained in the von Neumann algebra

generated by the projections P (T, ψ([0, t])) for t ∈ [0, 1], which is commutative. We will

prove later that E defines a spectral measure.

Proposition 2.5. For any Borel set B ⊂ B‖T‖, τ(E(B)) = νT (B).

Proof. Let ε > 0 be given. There exist open sets v1, v2 ⊆ [0, 1] such that

1. ψ−1(B) ⊂ v1 and µ(v1)− µ(ψ−1(B)) < ε, and

2. ψ−1(B) ⊂ v2 and τ(F (v2))− τ(E(B)) < ε.

Applying Observations 2.3 and 2.4 to (1), we have

τ(E(B))− νT (B) ≤ τ(F (v1))− νT (B) = µ(v1)− µ(ψ−1(B)) < ε.

Applying Observations 2.3 and 2.4 to (2) gives

νT (B)− τ(E(B)) = µ(ψ−1(B))− τ(E(B))

≤ µ(v2)− τ(E(B)) = τ(F (v2))− τ(E(B)) < ε.

Hence we have |τ(E(B))− νT (B)| < ε, and we are done.

Lemma 2.6. If B1 and B2 are Borel subsets of B‖T‖, then E(B1)E(B2) = E(B1 ∩B2).

Proof. Noting that whenever v1 is an open set containing ψ−1(B1) and v2 is an open set
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containing ψ−1(B2), v1 ∩ v2 is an open set containing ψ−1(B1) ∩ ψ−1(B2), we have

E(B1 ∩B2) =
∧
{F (v) : v open, ψ−1(B1 ∩B2) ⊆ v}

=
∧
{F (v) : v open, ψ−1(B1) ∩ ψ−1(B2) ⊆ v}

≤
∧
{F (v1 ∩ v2) : v1, v2 open, ψ−1(B1) ⊆ v1, ψ

−1(B2) ⊆ v2}

=
∧
{F (v1)F (v2) : v1, v2 open, ψ−1(B1) ⊆ v1, ψ

−1(B2) ⊆ v2}

=
∧
{F (v1) : v1 open, ψ−1(B1) ⊆ v1}

∧
{F (v2) : v2 open, ψ−1(B2) ⊆ v2}

= E(B1)E(B2).

Now let ε > 0 be given. There exist open subsets v, ṽ1, ṽ2 of [0, 1] such that

1. ψ−1(B1 ∩B2) ⊆ v and µ(v \ ψ−1(B1 ∩B2)) < ε,

2. a1 = ψ−1(B1) \ ψ−1(B1 ∩B2) ⊆ ṽ1 and µ(ṽ1 \ a1) < ε, and

3. a2 = ψ−1(B2) \ ψ−1(B1 ∩B2) ⊆ ṽ2 and µ(ṽ2 \ a2) < ε.

Let vi = ṽi
⋃
v for i = 1, 2. Then v1 is an open set containing ψ−1(B1) and v2 is an open

set containing ψ−1(B2). We have

µ(v1 ∩ v2 \ ψ−1(B1 ∩B2)) ≤ µ(v \ ψ−1(B1 ∩B2)) + µ(ṽ1 ∩ ṽ2 \ ψ−1(B1 ∩B2)).

Observing that a1 ∩ a2 = ∅ and

ṽ1 ∩ ṽ2 = (a1 ∩ a2)
⋃

((ṽ1 \ a1) ∩ a2)
⋃

((ṽ2 \ a2) ∩ a1)
⋃

((ṽ1 \ a1) ∩ (ṽ2 \ a2))

we have

µ((v1 ∩ v2) \ ψ−1(B1 ∩B2)) < 4ε.
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Applying Observations 2.3 and 2.4 and Proposition 2.5, we have

τ(E(B1)E(B2))− τ(E(B1 ∩B2)) ≤ τ(F (v1)F (v2))− τ(E(B1 ∩B2))

= τ(F (v1 ∩ v2))− τ(E(B1 ∩B2))

< 4ε,

and we conclude E(B1)E(B2) = E(B1 ∩B2).

Lemma 2.7. E is countably additive on disjoint sets, where convergence of the series is

in the strong operator topology.

Proof. Suppose (Bn)n∈N is a countable collection of disjoint Borel subsets of B‖T‖. By

Lemma 2.6, E(Bi)E(Bj) = 0 if i 6= j. Then E(
⋃
n∈NBn) is a superprojection of

each E(Bn), and hence a superprojection of
∑

n∈NE(Bn). Also, τ(E(
⋃
n∈NBn)) =

νT (
⋃
n∈NBn) = τ(

∑
n∈NE(Bn)). We conclude E(

⋃
n∈NBn) =

∑
n∈NE(Bn).

We are now ready to show that E is a spectral measure supported on supp(νT ).

Proof. We must prove three statements:

1. E(∅) = 0 and E(supp(νT )) = 1

2. E(B1 ∩B2) = E(B1)E(B2) for Borel sets B1, B2, and

3. ifM acts on a Hilbert space H, and x, y ∈ H, then η(B) = 〈E(B)x, y〉 defines a

regular Borel measure on C.

Statement 1 follows from Proposition 2.5, since τ(E(∅)) = 0 and τ(E(supp(νT ))) =

1.

Statement 2 was proven as Lemma 2.6.

To prove statement 3, note that η is countably additive on disjoint sets follows from

Lemma 2.7. Regularity of η follows from Theorem 1.1 of [1].

16



2.3 Proof of Theorem 1.10

We first establish several results which will be used in the proof. Throughout this

section, ψ is as described in Theorem 1.10, and µ, E and Ev are as defined in Section 2.2.

M acts on a Hilbert space H .

We now show that
∫
C zdE is the norm limit of conditional expectations onto an in-

creasing sequence of abelian von Neumann algebras. For each n, divide the 3‖T‖ by

3‖T‖ square centered at 0 into 2n by 2n squares of equal size indexed (An,k)
22n

k=1, k in-

creasing to the right then down. Include in each An,k the top and left edge, excluding the

bottom-left and top-right corners, so that for each n, An,k
⋂
An,j = ∅ whenever j 6= k and

B‖T‖ ⊂
⋃22n

k=1An,k. Let Dn be the von Neumann algebra generated by the (orthogonal)

projections (E(An,k))2
2n

k=1.

Proposition 2.8. Let EDn(T ) denote the conditional expectation of T onto Dn. Then

EDn(T ) converges in norm as n→∞ to
∫
C zdE.

Proof. Observe that

EDn(T ) =
∑

1≤k≤22n
τ(E(An,k)) 6=0

τ(E(An,k)TE(An,k))

τ(E(An,k))
E(An,k).

Applying Brown’s analog of Lidskii’s theorem (see [2]) gives

EDn(T ) =
∑

1≤k≤22n
νT (An,k) 6=0

∫
An,k

zdνT (z)

νT (An,k)
E(An,k).

For each n, define

fn(w) =
∑

1≤k≤22n
νT (An,k)6=0

∫
An,k

zdνT (z)

νT (An,k)
χAn,k

(w) +
∑

1≤k≤22n
νT (An,k)=0

∫
An,k

zdm(z)

m(An,k)
χAn,k

(w),
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where m is the Lebesgue measure on C.

Since νT (An,k) = 0 implies E(An,k) = 0,
∫
C fndE = EDn(T ). Note that fn converges

uniformly on supp(E) to the inclusion function f(z) = z. Hence
∫
C fndE converges in

norm to
∫
C zdE, and we are done.

Let D be the von Neumann algebra generated by (E(ψ([0, t])))t∈[0,1] (or equivalently

by
⋃∞
n=1Dn).

Proposition 2.9. Suppose that T ∈ D′ and B ⊂ B‖T‖ is Borel with νT (B) 6= 0. Then the

Brown measure of E(B)TE(B), considered as an element of E(B)ME(B), is concen-

trated in B.

Proof. We begin by observing that for any open v ⊂ [0, 1], with τ(F (v)) 6= 0, F (v) ∈ D

and if v = (α, β) is an open interval, then νTF (v) is concentrated in ψ([0, β)) \ ψ([0, α]),

and hence is also concentrated in ψ((α, β)) ∩ Z, where Z is as described in Section 2.2.

Thus νTF (v) is concentrated in ψ((α, β) ∩X).

Now suppose that v =
⋃∞
n=1 un where all nonempty un are pairwise disjoint open

intervals. Let ε > 0 be given. Let N be so large that

τ

(
N∑
n=1

F (un)

)
> τ(F (v))(1− ε).

Then, since each F (un) commutes with T , Theorem 1.12 gives

νTF (v) =
1

τ(F (v))

(
N∑
n=1

τ(F (un))νTF (un) + τ

(
∞∑

n=N+1

F (un)

)
ν(

∑∞
n=N+1 F (un))T

)
.

Hence, since each νTF (un) is concentrated in ψ(un ∩X) ⊂ ψ(v ∩X), we have

νTF (v)(ψ(v ∩X)) ≥ 1

τ(F (v))

(
N∑
n=1

τ(F (un)

)
νTF (un)(ψ(v ∩X)) > 1− ε,
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so that νTF (v) is concentrated in ψ(v ∩X).

Now observe that when v is an open set containing ψ−1(B), since

νTF (v) =
1

τ(F (v))
(τ(E(B))νTE(B) + τ(F (v)− E(B))ν(F (v)−E(B))T ),

νTE(B) is concentrated in ψ(v ∩X).

Choose an open set v ⊂ [0, 1] such that ψ−1(B) ⊂ v and µ(v)−µ(ψ−1(B)) < ε. Then

using Theorem 1.12 and Proposition 2.5,

ε > νT (ψ(v ∩X))− νT (B)

= τ(E(B))νTE(B)(ψ(v ∩X) \B) + (1− τ(E(B)))ν(1−E(B))T (ψ(v ∩X) \B)

≥ τ(E(B))νTE(B)(ψ(v ∩X) \B).

Hence

τ(E(B))− ε < τ(E(B))(1− νTE(B)(ψ(v ∩X) \B)) = τ(E(B))(νTE(B)(B)).

Thus

1− ε

τ(E(B))
< νTE(B)(B).

Letting ε tend to 0 gives the desired result.

Lemma 2.10. If T ∈ D′, then the Brown measure of T − EDn(T ) is supported in the ball

of radius 6
√
2‖T‖
2n

.

Proof. The key observation is that for any α ∈ C, if νT−α is the Brown measure of T −α,

then for any Borel set B ⊂ C, νT−α(B) = νT (B − α). Since whenever E(An,k) 6= 0 the
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Brown measure of TE(An,k) is supported inAn,k, the Brown measure of
(
T − τ(TE(An,k))

τ(E(An,k))

)
E(An,k) is supported in the square centered at 0 with edge length 6‖T‖

2n
. We complete the

proof by observing that T − EDn(T ) =
∑22n

k=1

(
T − τ(TE(An,k))

τ(E(An,k))

)
E(An,k) and applying

Theorem 8 to compute the Brown measure of the sum.

We now are ready to prove Theorem 1.10.

Proof. We claim that the spectral measure E constructed above satisfies the conclusions

of Theorem 1.10. To show this, we must prove three things:

(i) For any t ∈ [0, 1], P (T, ψ([0, t])) = E(ψ([0, t]))

(ii) For any Borel set B ⊆ C, τ(E(B)) = νT (B)

(iii) T −
∫
C zdE(z) is s.o.t.-quasinilpotent.

To prove (i), let t ∈ [0, 1]. Whenever v is an open set containing ψ−1(ψ([0, t])), there

exists ε > 0 such that [0, t+ ε) ⊂ v so we see that

P (T, ψ([0, t])) ≤ F ([0, t+ ε)) ≤ F (v).

Hence we have

P (T, ψ([0, t])) ≤ E(ψ([0, t])).

By Proposition 2.5 and Theorem 1.5,

τ(P (T, ψ([0, t]))) = τ(E(ψ([0, t])))

so that

P (T, ψ([0, t])) = E(ψ([0, t])),

which proves (i).
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Statement (ii) was proven as Proposition 2.5.

We now show (iii). We will prove that the Brown measure of T−
∫
C zdE(z) is concen-

trated at 0, which proves the statement. We show it first in the case that T ∈ D′. Observe

from the proof of Proposition 2.8 that ‖ED(T )− EDn(T )‖ ≤
3
√
2‖T‖
2n

. We now follow the

model of the proof of Lemma 24 in [4].

We assume without loss of generality that ‖T‖ ≤ 1/2. Fix n ∈ N and a unit vector

ξ ∈ H . By assumption T ∈ D′, so we have

(T − ED(T ))2m =
2m∑
k=0

(−1)k
(
2m

k

)
(ED(T )− EDn(T ))

2m−k(T − EDn(T ))
k.

Since ‖T‖ ≤ 1/2, both ED(T )−EDn(T ) and T−EDn(T ) are contractions. For k ≤ m

and any η ∈ H , we have

‖(ED(T )− EDn(T ))
2m−k(T − EDn(T ))

kη‖H ≤ ‖ED(T )− EDn(T )‖m.

For k > m and any η ∈ H we have

‖(ED(T )− EDn(T ))
2m−k(T − EDn(T ))

kη‖H ≤ ‖(T − EDn(T ))
mη‖H .

Hence for any η ∈ H ,

‖(T − ED(T ))2mη‖H ≤ 22mmax

{(
3
√
2‖T‖
2n

)m

, ‖(T − EDn(T ))
mη‖H

}
. (2.1)

By Proposition 2.9, the Brown measure of T − EDn(T ) is supported in the ball of

radius 6
√
2‖T‖
2n

centered at 0. By the Haagerup-Schultz characterization (1.6), there exists a
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sequence ξm → ξ such that ‖ξm‖H = 1 and

lim sup
m→∞

‖(T − EDn(T ))
mξm‖1/mH ≤ 6

√
2‖T‖
2n

.

Hence there exists M (depending on n) such that

‖(T − EDn(T ))
mξm‖H ≤

(
7
√
2‖T‖
2n

)m

, m > M.

Taking η = ξm in Equation (1), we have

‖(T − ED(T ))2mξm‖1/mH ≤ 28
√
2‖T‖
2n

, m > M.

Since ξ was arbitrary, it follows from characterization (1.6) that the Brown measure of

(T −ED(T ))2 is supported in the ball of radius 28
√
2‖T‖
2n

centered at 0. Letting n→∞, we

obtain that the Brown measure of T − ED(T ) is δ0.

For T /∈ D′, we first show that P (T, ψ([0, t])) = P (ED′(T ), ψ([0, t])) for all t ∈ [0, 1].

For any t, P (T, ψ([0, t])) ∈ D, so

ED′(T )P (T, ψ([0, t])) = P (T, ψ([0, t]))ED′(T )P (T, ψ([0, t])).

By Lemma 1.4, T and ED′(T ) have the same Brown measure, so we have for all t

τ(P (T, ψ([0, t]))) = νT (ψ([0, t])) = νED′ (T )
(ψ([0, t])).

For any s, t ∈ [0, 1] P (T, ψ([0, s])) is TP (T, ψ([0, t])) invariant, so by Lemma 1.4, the

operators TP (T, ψ([0, t])) and ED′(TP (T, ψ([0, t]))) have the same Brown measure for
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any t, so whenever P (T, ψ([0, t])) 6= 0 we have

νED′ (T )P (T,ψ([0,t])) = νED′ (TP (T,ψ([0,t]))) = νTP (T,ψ([0,t]))

is supported in ψ([0, t]). Similarly P (T, ψ([0, s])) is (1 − P (T, ψ([0, t])))T invariant for

all s, t ∈ [0, 1], so

ν(1−P (T,ψ([0,t])))T = ν(1−P (T,ψ([0,t])))ED′ (T )

which is supported in C \ ψ([0, t]) whenever P (T, ψ([0, t])) 6= 1. Hence by Theorem

1.5 P (T, ψ([0, t])) is the Haagerup-Schultz projection of ED′(T ) associated with the set

ψ([0, t]).

Since P (T, ψ([0, t])) = P (ED′(T ), ψ([0, t])) for all t ∈ [0, 1], we see that ψ generates

the same spectral measure E and abelian subalgebra D for both T and ED′(T ). Applying

Lemma 7 we have T −
∫
C zdE and ED′(T )−

∫
C zdE have the same Brown measure,

which we have shown is δ0, as desired.
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3. CONCLUSIONS: ON CONVERGENCE PROPERTIES AND

UPPER-TRIANGULAR FORMS

3.1 Introduction

The work presented in this chapter is joint work with Ken Dykema and Dmitriy Zanin.

In this chapter we investigate how properties of the upper-triangular part Q of an op-

erator T with upper-triangular decomposition T = N +Q affect the properties of T . The

principal results of this chapter are around the following question.

Question 3.1. Given an element T in a tracial von Neumann algebra, under what cir-

cumstances is the s.o.t.-quasinilpotent operator Q in an upper-triangular decomposition

T = N +Q actually quasinilpotent.

We confine ourselves to upper-triangular decompositions of operators with Brown

measures supported at finitely many points. In the course of these investigations, we also

gain knowledge about operators that are s.o.t.-quasinilpotent but not quasinilpotent.

Recall that in [8], Haagerup and Schultz show that whenever T is an operator in a

tracial von Neumann algebra, the sequence |T n|1/n has a strong operator limit as n →

∞, and that the limit is determined by the Haagerup-Schultz projections of T associated

with discs centered at 0. This result motivates our next definition, which generalizes the

property of being quasinilpotent.

Definition 3.2. An operator T in a tracial von Neumann algebra has the norm convergence

property if the sequence |T n|1/n is norm-convergent. We say that T has the shifted norm

convergence property if T − λI has the norm convergence property for every complex

number λ.

A naive guess is that the answer to Question 3.1 is: Q is quasinilpotent if and only if
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T has the norm convergence property. However, this is not correct, as we show by explicit

construction of a counter-example in Example 3.12.

A less naive guess is that Q is quasinilpotent if and only if T has the shifted norm

convergence property. This may be true and, in Theorem 3.17, we prove it is true when

the Brown measure of T has finite support.

Question 3.1 is related to decomposability of the operator T . Decomposability was

introduced in the realm of local spectral theory by Foiaş [6] and was later extensively de-

veloped. See the book [10] for an exposition. We show in Theorem 3.17 that for operators

with finitely supported Brown measure, decomposability is equivalent to the shifted norm

convergence property.

We now turn to the topic of the spectrum of an s.o.t.-quasinilpotent operator. It follows

from Remark 4.4 of [2] that, for a general element of a tracial von Neumann algebra, every

connected component of the spectrum must meet the support of the Brown measure; thus,

the spectrum of an s.o.t.-quasinilpotent operator must be a closed, connected set containing

0.

A natural example of an s.o.t.-quasinilpotent operator that is not quasinilpotent is pro-

vided by the direct sum

Q = ⊕∞n=1Jn ∈
∞⊕
n=1

Mn(C),

where Jn is the n×n Jordan block. Note that this can be realized inside the hyperfinite II1-

factor. Since Q has the same ∗-distribution as eiθQ for every real θ (i.e., its ∗-distribution

is invariant under rotation), and since the spectral radius of Q is easily computed to be 1,

we have that the spectrum of Q is the unit disk centered at the origin.

Also the examples of s.o.t.-quasinilpotent operators found in [3] that are not quasinilpo-

tent clearly have ∗-distributions that are invariant under rotations and, thus, have spectra

that are disks centered at the origin. Prior to this writing, every example of such an operator
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which has appeared in the literature or could be constructed therefrom using holomorphic

functional calculus, has had a spectrum with non-empty interior. In Theorem 3.4, we

construct an s.o.t.-quasinilpotent, non-quasinilpotent operator having thin spectrum (i.e.,

contained in an interval).

The contents of the rest of this chapter are as follows. Section 3.2 contains the construc-

tion of an s.o.t.-quasinilpotent operator with thin spectrum. In Section 3.3 we investigate

the norm convergence properties and decomposability for operators with finitely supported

Brown measure.

3.2 An s.o.t.-quasinilpotent operator with thin spectrum

Our main purpose in this section is to construct an s.o.t.-quasinilpotent operator with

spectrum that is equal to a nondegenerate interval in R.

Let f ∈ L∞(T) and let (ak)k∈Z be its Fourier coefficients:

f(eiθ) ∼
∑
k∈Z

ake
ikθ.

Let Mf denote the multiplication operator on L2(T) given by Mfh(e
iθ) = f(eiθ)h(eiθ).

Consider the usual orthonormal basis (vk)k∈Z for L2(T) where vk(eiθ) = eikθ. Writing Mf

with respect to this orthonormal basis, we have the Laurent operator L(f) := (a`−k)k,`∈Z.

Let P be the projection of L2(T) onto span {vk | k ≥ 0} and for n ≥ 0, let Pn be

the projection of L2(T) onto span {vk | 0 ≤ k ≤ n}. Then T (f) := PL(f)P is the

Toeplitz operator T (f) = (a`−k)k,`≥0 and Tn(f) := PnL(f)Pn is the Toeplitz matrix

Tn(f) = (a`−k)0≤k,`≤n.

The next result contains well known facts about norms of Toeplitz matrices; for con-

venience we give a brief proof of them. For more refined results in the self-adjoint case,

see [9].
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Proposition 3.3. (a) ‖L(f)‖ = ‖f‖∞.

(b) For every n ≥ 0, ‖Tn(f)‖ ≤ ‖Tn+1(f)‖ ≤ ‖T (f)‖.

(c) ‖L(f)‖ = ‖T (f)‖ = limn→∞ ‖Tn(f)‖.

Proof. Parts (a) and (b) are immediate from the definitions, as is the inequality ‖T (f)‖ ≤

‖L(f)‖. Let ε > 0. There exist x, y ∈ span {vk | k ∈ Z} such that ‖x‖ = ‖y‖ = 1 and

|〈L(f)x, y〉| ≥ ‖L(f)‖ − ε. Since L(f) commutes with the bilateral shift operator, we

may without loss of generality assume x, y ∈ span {vk | 0 ≤ k ≤ n} for some n ≥ 0.

Thus,

‖Tn(f)‖ ≥ |〈L(f)x, y〉| ≥ ‖L(f)‖ − ε.

This implies (c).

The mappings f 7→ L(f), f 7→ T (f) and f 7→ Tn(f) are, of course, linear and

∗-preserving, so we have

Tn(<f) = <Tn(f), Tn(=f) = =Tn(f).

Theorem 3.4. In the hyperfinite II1-factor, there exists an s.o.t.-quasinilpotent operator

whose spectrum is a nondegenerate interval in the real line.

Proof. Let fn be a conformal mapping from the unit disk onto

{
a+ ib

∣∣∣∣ − 1 < a < 1, − 1

n
< b <

1

n

}
.

that satifies fn(0) = 0. Then, of course, for all n, we have ‖<fn‖∞ = 1 and ‖=fn‖∞ = 1
n

,

so limn→∞ ‖fn‖∞ = 1. Since fn is holomorphic and fn(0) = 0, its Fourier coefficients

ak vanish for k ≤ 0. Thus, the Toeplitz matrix Tk(fn) is strictly upper triangular and,

27



hence, nilpotent, for each k ≥ 1. Applying Proposition 3.3, we get a sequence (k(n))∞n=1

of positive integers such that

lim
n→∞

‖Tk(n)(fn)‖ = 1 = lim
n→∞

‖<Tk(n)(fn)‖.

By a standard construction, we can realize the von Neumann algebra direct sum

M =
∞⊕
n=1

Mk(n)(C)

as a von Neumann subalgebra of the hyperfinite II1-factor. Let

Q = ⊕∞n=1Tk(n)(fn) ∈M.

Let An = <(Tk(n)(fn)) and Bn = =(Tk(n)(fn)).

Claim 3.4.1. Q is s.o.t.-quasinilpotent.

Since for each n, Tk(n)(fn) is nilpotent and since inM, the projection 0⊕n⊕1⊕1⊕· · ·

converges in strong operator topology to 0 as n→∞, this is clear.

Claim 3.4.2. The spectral radius of Q is at least 1.

For each m ∈ N, we have ‖Qm‖ ≥ lim supn→∞ ‖Tmk(n)‖ and for each n, we have

‖Tmk(n)‖ ≥ ‖Amn ‖ −
m∑
k=1

(
m

k

)
‖An‖m−k‖Bn‖k.

Since ‖Amn ‖ = ‖An‖m and limn→∞ ‖An‖ = 1, while limn→∞ ‖Bn‖ = 0, we get ‖Qm‖ ≥

1. This proves Claim 3.4.2.

Claim 3.4.3. The spectrum of Q lies in R.

Suppose λ ∈ C \R. We have λ−Q =
⊕∞

n=1(λ− Tk(n)(fn)). Since for each n, Tk(n)(fn)
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is nilpotent, each λ− Tk(n)(fn) is invertible. To show λ−Q is invertible, it will suffice to

show

sup
n≥1
‖(λ− Tk(n)(fn))−1‖ <∞.

As soon as n > 2/|=λ|, we have ‖Bn‖ ≤ |=λ|/2 and, thus, ‖(=λ − Bn)
−1‖ ≤ 2/|=λ|.

We also have

(λ− Tk(n)(fn))−1 =
(
(=λ−Bn)i+ (<λ− An)

)−1
= |=λ−Bn|−1/2

(
± i+ |=λ−Bn|−1/2(<λ− An)|=λ−Bn|−1/2

)−1|=λ−Bn|−1/2,

where the sign in ±i is the sign of =λ. Since the operator

|=λ−Bn|−1/2(<λ− An)|=λ−Bn|−1/2

is self-adjoint, the operator

±i+ |=λ−Bn|−1/2(<λ− An)|=λ−Bn|−1/2

is normal and has inverse of norm ≤ 1, so we get

∥∥(λ− Tk(n)(fn))−1∥∥ ≤ 2

|=λ|
.

This shows that λ−Q is invertible, and Claim 3.4.3 is proved.

From Claims 3.4.1, 3.4.2 and 3.4.3 and the fact that the spectrum of an s.o.t.-quasinilpotent

operator must be connected and contain the point 0, it follows thatQ is an s.o.t.-quasinilpotent

operator in the hyperfinite II1-factor whose spectrum is an interval in R containing 0 and

at least one of the points ±1.
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3.3 The norm convergence properties for operators with finitely supported Brown

measure

We begin by proving two lemmas for quasinilpotent operators.

Lemma 3.5. Let Q be quasinilpotent. Then the series
∑∞

k=1 ‖Qk‖ converges and, hence,

the series
∑∞

k=1Q
k converges in norm to an operator that is quasinilpotent.

Proof. For any δ > 0, there exists N0 ∈ N such that for all k ≥ N0, we have ‖Qk‖ ≤ δk.

Thus, we see that the series
∑∞

k=1 ‖Qk‖ converges. From this, we get that the series∑∞
k=0Q

k converges in norm to a bounded operator R that commutes with Q, and the

series
∑∞

k=1Q
k converges in norm to the bounded operator RQ. Now standard estimates

show that RQ is quasinilpotent.

Lemma 3.6. Let Q be quasinilpotent. Then 1 + Q is invertible and (1 + Q)−1 = 1 + S,

where S is quasinilpotent.

Proof. By Lemma 3.5, the series
∑∞

k=1(−1)kQk converges to a quasinilpotent operator S.

We easily see that 1 + S = (1 +Q)−1.

Proposition 3.7. Let Q be quasinilpotent. Then

lim
n→∞

∥∥|(1 +Q)n|1/n − 1
∥∥ = 0.

Thus, 1 +Q has the norm convergence property and Q has the shifted norm convergence

property.

Proof. We must show that for all ε > 0 there exists N0 ∈ N such that, for all n ≥ N0, we

have

(1− ε)2n ≤ (1 +Q∗)n(1 +Q)n ≤ (1 + ε)2n.
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Since 1 +Q is invertible, it will suffice to show that for all n ≥ N0 we have

‖(1 +Q)n‖ ≤ (1 + ε)n (3.1)

‖(1 +Q)−n‖ ≤ (1− ε)−n. (3.2)

To show (3.1), let N1 be such that ‖Q‖n ≤
(
ε
2

)n for every n ≥ N1. Using the binomial

formula, for n ≥ N1 we have

‖(1 +Q)n‖ ≤
n∑
k=0

(
n

k

)
‖Qk‖ ≤

N1−1∑
k=0

(
n

k

)
‖Qk‖+

n∑
k=N1

(
n

k

)(ε
2

)k
≤
(
1 +

ε

2

)n
+

N1−1∑
k=0

nk‖Q‖k ≤
(
1 +

ε

2

)n
+N1(1 + n‖Q‖)N1 .

Since

lim
n→∞

log
(
(1 + ε

2
)n +N1(1 + n‖Q‖

)N1)

n
= log

(
1 +

ε

2

)
< log(1 + ε),

we get that (3.1) holds for n large enough.

By Lemma 3.6, (1 + Q)−1 = 1 + S for some quasinilpotent S. Hence applying (3.1)

in the case of this operator S implies that (3.2) holds for n large enough.

If the Brown measure of the operator T has more than one point in its support, then it

is possible to construct distinct upper-triangular decompositions of T . Theorem 1.8 tells

us that the strong operator limit, A, of the sequence |T n|1/n has as spectral projections

P (T, rD) for r ∈ [0, ‖T‖]. Thus if a1, . . . , am is an ordering of the support of the Brown

measure of T satisfying |a1| ≤ |a2| ≤ · · · ≤ |am|, then the corresponding upper-triangular

decomposition T = N + Q is upper-triangular with respect to the spectral projections of

A for disks centered at the origin. Theorem 1.8 thus implies that A = |N |. We use this
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fact to show that if the upper-triangular part Q for such an ordering is quasinilpotent, then

T has the norm convergence property.

Proposition 3.8. LetM be a finite von Neumann algebra and Q ∈ M be quasinilpotent.

Let (Pi)1≤i≤m be projections such that
∑m

i=1 Pi = 1 and such that, for every 1 ≤ k ≤ m,

the projection
∑k

i=1 Pi isQ-invariant. Let a1, . . . , am be complex numbers with 0 ≤ |a1| ≤

|a2| ≤ · · · ≤ |am|. Let T =
∑m

i=1 aiPi + Q. Then |T n|1/n converges in norm as n → ∞

to
∑m

i=1 |ai|Pi. In particular, T has the norm convergence property.

Proof. If am = 0, the result is clear, so assume am 6= 0. The proof proceeds by induction.

The case m = 1 follows from Proposition 3.7. For m > 1, suppose the result holds for all

1 ≤ k < m.

Let

N =
m−1∑
i=1

aiPi, Q11 = Q
m−1∑
i=1

Pi, Q12 =
m−1∑
i=1

PiQPm, Q22 = PmQ.

Note that by Lemma 1.11, Q11 and Q22 are quasinilpotent.

We may now write T as the 2×2 matrix,

T =

 N +Q11 Q12

0 am +Q22

 .

We now write

A = N +Q11, C = am +Q22, Bn =
n−1∑
k=0

AkQ12C
n−k−1,

Rn =

1 BnC
−n

0 1

 , G =

A 0

0 C

 ,
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so that T n = RnG
n. Note that Rn is invertible inM and C is invertible in PmMPm, with

C−1 = a−1m + S

for a quasinilpotent operator S (by Lemma 3.6), and

R−1n =

1 −BnC
−n

0 1

 .

By the inductive hypothesis, for sufficiently small ε > 0, there exists K0 ∈ N such that

for any n ≥ K0, letting α = max{‖N‖, |a−1m |}+ 1,

‖An‖ <
(
‖N‖+ ε

3α

)n
=
(
|am−1|+

ε

3α

)n
,

(|am| − ε)n < ‖Cn‖ < (|am|+ ε)n,

(|a−1m | − ε)n < ‖C−n‖ <
(
|a−1m |+

ε

3α

)n
.

Hence for n > K0,

‖BnC
−n‖ =

∥∥∥∥∥
K0∑
k=0

AkQ12C
−k−1 +

n−1∑
K0+1

AkQ12C
−k−1

∥∥∥∥∥
≤

∥∥∥∥∥
K0∑
k=0

AkQ12C
−k−1

∥∥∥∥∥+
n−1∑
K0+1

‖Ak‖‖Q12C
−1‖‖C−k‖

<

∥∥∥∥∥
K0∑
k=0

AkQ12C
−k−1

∥∥∥∥∥+ ‖Q12C
−1‖

n−1∑
K0+1

(
|am−1|+

ε

3α

)k (
|am|−1 +

ε

3α

)k
<

∥∥∥∥∥
K0∑
k=0

AkQ12C
−k−1

∥∥∥∥∥+ n‖Q12C
−1‖(1 + ε)n,
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so that for n > K0, we have

‖Rn‖ < 1 +

∥∥∥∥∥
K0∑
k=0

AkQ12C
−k−1

∥∥∥∥∥+ n‖Q12C
−1‖(1 + ε)n

‖R−1n ‖ < 1 +

∥∥∥∥∥
K0∑
k=0

AkQ12C
−k−1

∥∥∥∥∥+ n‖Q12C
−1‖(1 + ε)n.

Therefore there exists K1 ≥ K0 such that for n ≥ K1, we have

‖Rn‖ < (1 + 2ε)n and ‖R−1n ‖ < (1 + 2ε)n.

Since

|T n|2 = (G∗)nR∗nRnG
n

and

(G∗)nR∗n
(R∗n)

−1R−1n
‖(R∗n)−1R−1n ‖

RnG
n ≤ |T n|2 ≤ (G∗)n‖R∗nRn‖Gn,

we get

(1 + 2ε)−1|Gn|1/n < |T n|1/n < (1 + 2ε)|Gn|1/n. (3.3)

The inductive hypothesis implies that |Gn|1/n converges in norm to

|N | 0

0 |am|

 .

Call this operator N̂ . There exists K2 ≥ K1 such that for any n ≥ K2,

N̂ − ε < |Gn|1/n < N̂ + ε.
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Combining this with equation (3.3) gives us

(1 + 2ε)−1(N̂ − ε) < |T n|1/n < (1 + 2ε)(N̂ + ε).

Hence |T n|1/n is norm-convergent and its limit is N̂ , as desired.

We now show that for an operator with finitely supported Brown measure, the spectral

ordering used to construct an upper-triangular decomposition T = N +Q does not affect

whether s.o.t.-quasinilpotent part Q is quasinilpotent.

Proposition 3.9. Suppose T ∈ M has finitely supported Brown measure. Suppose that

there exists an upper-triangular decomposition T = N +Q such that Q is quasinilpotent.

If T = N̂ + Q̂ is another upper-triangular decomposition, then also Q̂ is quasinilpotent.

Proof. Writing N =
∑n

k=1 akPk, where for m ≤ n,
∑m

k=1 Pk is the Haagerup-Schultz

projection of T associated with the set {a1, a2, . . . , am}, Lemma 1.11 and Corollary 1.13

imply that σ(T ) = {a1, a2, . . . , an}.

If {b1, b2, . . . , bn} is any reordering of {a1, a2, . . . , an}, and T = N̂ + Q̂ is the corre-

sponding decomposition of T , with N̂ =
∑n

k=1 bkRk and with
∑m

k=1Rk the Haagerup-

Schultz projection of T associated with the set {b1, b2, . . . , bm} for allm ≤ n, then Lemma

1.11 implies that σ(RkTRk) contains finitely many points for each k. Combining this with

Observation 1.3, we see that supp(νRkTRk
) = σ(RkTRk) for each k. Since RkQ̂Rk is

s.o.t.-quasinilpotent, we have for every k,

σ(RkTRk) = supp(νRkTRk
) = {bk}.

As RkTRk = bk + RkQ̂Rk, this implies that RkQ̂Rk is quasinilpotent. Since this is true

for all k, Corollary 1.13 implies that Q̂ is quasinilpotent, completing the proof.

35



Proposition 3.10. Let Q ∈M be s.o.t.-quasinilpotent. Then the following are equivalent:

(a) Q has the norm convergence property,

(b) Q has the shifted norm convergence property,

(c) Q is quasinilpotent.

Proof. The equivalence of (a) and (c) is clear. The implication (b) =⇒ (a) is also imme-

diate, while the implication (c) =⇒ (b) is from Proposition 3.7.

We will show, using the following proposition in Example 3.12 below, that the equiv-

alence of (a) and (b) in Proposition 3.10 does not extend even to operators having Brown

measure supported at exactly one (nonzero) point.

Proposition 3.11. LetM be a finite von Neumann and letQ ∈M be s.o.t.-quasinilpotent.

Then 1 +Q has the norm convergence property if and only if σ(1 +Q) ⊆ T.

Proof. The proof is a straightforward application of the spectral radius formula. Suppose

first that σ(1 + Q) ⊆ T. Since the spectral radii of 1 + Q and (1 + Q)−1 are both 1, for

any ε > 0, there exists N ∈ N such that for all n > N , ‖(1 + Q)n‖ < (1 + ε)n and

‖(1 +Q)−n‖ < (1 + ε)n. Thus we have

(1 +Q∗)n(1 +Q)n ≤ ‖(1 +Q)n‖2 ≤ (1 + ε)2n

and

(1 +Q∗)n(1 +Q)n ≥ (1 +Q∗)n
(1 +Q∗)−n(1 +Q)−n

‖(1 +Q∗)−n(1 +Q)−n‖
(1 +Q)n ≥ (1 + ε)−2n.

Hence,

(1 + ε)−1 ≤ |(1 +Q)n|1/n ≤ 1 + ε.
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It follows that the sequence |(1 +Q)n|1/n converges in norm to 1.

Now assume that 1 +Q has the norm convergence property. Since |(1 +Q)n|1/n must

converge in norm to 1, it follows that for sufficiently large n, |(1+Q)n|1/n is invertible, so

that also (1 +Q)n and 1 +Q are invertible. We observe now that for large n we have

(1− ε)2n ≤ (1 +Q∗)n(1 +Q)n ≤ (1 + ε)2n

so that

(1 + ε)−2n ≤ (1 +Q)−n(1 +Q∗)−n ≤ (1− ε)−2n.

Hence, (1 +Q∗)−1 has the norm convergence property.

In addition, since |(1 + Q)n|1/n must converge in norm to 1, for large n we have

‖(1+Q)n‖ < (1+ ε)n, so σ(1+Q) ⊆ D. Applying the same argument to (1+Q∗)−1 we

see that σ(1 +Q∗) ⊆ C \ D. Thus,

σ(1 +Q) ⊆ D
⋂

(C \ D) = T,

as desired.

Here is the promised example, that serves both to show that Proposition 3.10 does not

extend, and to show that the naive guess at an answer to Question 3.1 is wrong.

Example 3.12. Let Q be the s.o.t.-quasinilpotent operator constructed in Section 3.2,

where σ(Q) is a nondegenerate interval in the real line. Using either the holomorphic

functional calculus and the main result of [5], or arguing more directly with power series,

we have that the operator exp(iQ) is of the form 1 + S, where S is s.o.t.-quasinilpotent

and exp(iQ) has spectrum contained in T. Hence, by Proposition 3.11, exp(iQ) has the

norm convergence property. However, σ(exp(iQ) − 1) 6= {0}, so S = exp(iQ) − 1 is
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not quasinilpotent and does not have the norm convergence property. Therefore, exp(iQ)

does not have the shifted norm convergence property.

Lemma 3.13. Suppose that T has the shifted norm convergence property. Then supp(νT ) =

σ(T ).

Proof. Let λ ∈ C \ supp(νT ). Then by Theorem 1.8, |(T − λ)n|1/n converges in the

strong operator topology to an invertible operator, and by assumption this convergence is

in norm. Hence for sufficiently large n, |(T −λ)n|1/n is invertible, and consequently T −λ

is also invertible. Thus λ /∈ σ(T ). Hence σ(T ) ⊆ supp(νT ). Since the reverse inclusion

is always true, the result is proven.

Proposition 3.14. Let T ∈ M. Suppose that the support of the Brown measure of T

is finite and that T has the shifted norm convergence property. Let T = N + Q be an

upper-triangular decomposition of T . Then Q is quasinilpotent.

Proof. We let 

a1 +Q1,1 Q1,2 ... Q1,m

0 a2 +Q2,2 ... Q2,m

... . . . ...

0 ... 0 am +Qm,m


be the matrix representation of T with respect to any upper-triangular decomposition.

By Lemma 3.13 and Observation 1.3, for each i, σ(ai +Qi,i) is a connected subset of

a finite set, and hence is a singleton. It follows that σ(Qi,i) = {0} as it is a singleton and

contains 0. The result is now a consequence of Corollary 1.13.

We shift our attention now to decomposable operators. Recall that an operator T on

a Hilbert space H is said to be decomposable if, for every pair (U, V ) of open sets in

the complex plane whose union is the whole complex plane, there are closed, T -invariant
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subspaces H′ and H′′ such that the restrictions of T to these have spectra contained in U

and V , respectively and such thatH′ +H′′ = H.

Given an operator T on a Hilbert space H, a spectral capacity for T is a mapping E

from the collection of closed subsets of C into the set of all closed T -invariant subspaces

ofH such that

1. E(∅) = {0} and E(C) = H,

2. E(U1) + E(U2) + ... + E(Un) = H for every finite open cover {U1, U2, ..., Un} of

C,

3. E (
⋂∞
k=1 Fk) =

∧∞
k=1E(Fk) for every countable family (Fk)

∞
k=1 of closed subsets

of C,

4. letting PE(F ) denote the projection with range E(F ), and calculating the spectrum

in the algebra PE(F )MPE(F ), σ(TPE(F )) ⊆ F , with the convention that if T is an

operator on the 0 Hilbert space, σ(T ) = ∅.

The following, Proposition 1.2.23 of [10], gives conditions equivalent to decompos-

ability for an operator.

Proposition 3.15. Let T be a bounded operator on a Hilbert space H. Then the following

are equivalent:

1. T is decomposable,

2. T has a spectral capacity,

3. for every closed subset F of C,HT (F ) is closed and

σ((1− PT (F ))T ) ⊆ σ(T ) \ F
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where HT (F ) is the local spectral subspace of T corresponding to F , PT (F ) is

the projection onto HT (F ), and the spectrum is calculated in the algebra (1 −

PT (F ))HT (F )(1− PT (F )).

See, for example, [10] for more on local spectral theory and decomposability.

In Section 9 of [8], Haagerup and Schultz proved that for decomposable operators

T ∈ M, the Haagerup-Schultz projection P (T, F ) equals the projection onto the local

spectral subspaceHT (F ) of T for F , whenever F is a closed subset of the complex plane.

Proposition 3.16. Suppose T is an operator with finitely supported Brown measure. If T

is decomposable, then T has the shifted norm convergence property.

Proof. Since decomposabiliity and the shifted norm convergence property are both trans-

lation independent, we may assume without loss of generality that 0 /∈ supp(νT ) and for

any two elements λ1 and λ2 in the support of νT , |λ1| 6= |λ2|.

Our method for this proof is to choose a specific ordering, α1, α2, ..., αn, for the support

of the Brown measure of T . We then consider the upper-triangular decomposition T =

N +Q corresponding to this ordering, and show that Q must be quasinilpotent.

Note also that by Corollary 9.3 of [8], supp(νT ) = σ(T ).

Let Ps denote the Haagerup–Schultz projection P (T, sD). By Proposition 9.2 of [8],

Ps is the projection onto the closure of the local spectral subspace HT (sD) and, since T

is decomposable, this local spectral subspace is itself closed. Since the map F 7→ HT (F )

(for F an arbitrary closed subset of C) is a spectral capacity, the spectrum of TPs is

contained in sD, while when Ps 6= 1, since σ(T ) is finite, the spectrum of (1 − Ps)T ,

considered as and element of (1− Ps)M(1− Ps), is contained in C \ sD.

Let α1, α2, ..., αn be the elements of supp(νT ), ordered by increasing absolute value,

let T = N + Q be the upper-triangular decomposition given by this ordering, and let

α0 = 0. For any 0 < ε < |α1| and any k ∈ {1, 2, ..., n}, we have σ(TP|αk|) ⊆ |αk|D

40



and σ((1− P|αk|−ε)T ) ⊆ C \ (|αk| − ε)D, where the spectra are computed in the algebras

P|αk|MP|αk|, and (1− P|αk|−ε)M(1− P|αk|−ε), respectively.

Since the support of νT is finite we have for k ∈ {1, 2, ..., n} (and for sufficiently small

ε),

P|αk|−ε = P|αk−1|

and

P|αk|+ε = P|αk|.

Hence we have

σ((1− P|αk−1|)T ) ⊆ C \ (|αk| − ε)D,

with the spectrum computed in the algebra (1−P|αk−1|)M(1−P|αk−1|). Since the left side

of this expression has no dependence on ε,

σ((1− P|αk−1|)T ) ⊆ C \ (|αk|)D.

Therefore, by Lemma 1.11,

σ((1− P|αk−1|)TP|αk|) ⊆ |αk|T,

where the spectrum is computed in the algebra (P|αk| − P|αk−1|)M(P|αk| − P|αk−1|). Since

N(P|αk| − P|αk−1|) = αk(P|αk| − P|αk−1|), we know that

(1− P|αk−1|)QP|αk| = (1− P|αk−1|)TP|αk| − αk(P|αk| − P|αk−1|)

and

σ((1− P|αk−1|)QP|αk|) ⊆ |αk|T− αk,
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again computing the spectrum in the algebra (P|αk| − P|αk−1|)M(P|αk| − P|αk−1|).

Fix j ∈ {1, 2, ..., n}. Let ρ > 0 satisfy

α1 + ραj 6= 0

and for 2 ≤ k ≤ n,

|αk−1 + ραj| < |αk + ραj|.

A repetition of the previous argument, replacing T with T + ραj , gives

σ((1− P|αj−1|)QP|αj |) ⊆ |(1 + ρ)αj|T− (1 + ρ)αj,

where the spectrum is computed in the algebra (P|αj | − P|αj−1|)M(P|αj | − P|αj−1|).

It follows that the spectrum of (1 − P|αj−1|)QP|αj |), computed in the algebra (P|αj | −

P|αj−1|)M(P|αj |−P|αj−1|), lies in the intersection of the two circles |(1+ρ)αj|T−(1+ρ)αj

and |αj|T − αj , which is precisely {0}. Since this argument holds for every j, it follows

from Lemma 1.11 that Q is quasinilpotent, which completes our proof.

We collect all of the results of this chapter into one final theorem:

Theorem 3.17. Let T ∈ M. Suppose the Brown measure of T is finitely supported. Then

the following are equivalent:

(i) σ(T ) is a finite set

(ii) σ(T ) = supp(νT )

(iii) T has the shifted norm convergence property

(iv) T is decomposable

(v) There exists an upper-triangular decomposition T = N+Q such thatQ is quasinilpo-

tent
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(vi) For any upper-triangular decomposition T = N +Q, Q is quasinilpotent

(vii) T ∗ has the shifted norm convergence property.

Proof. We showed that (iv) =⇒ (iii) in Proposition 3.16 and that (iii) =⇒ (ii) in

Lemma 3.13. That (ii) =⇒ (i) is trivial.

That (i) =⇒ (iv) follows from a general result that operators with finite spectra are

decomposable. See, for example, Proposition 1.4.5 of [10] for a proof of a stronger result.

Equivalence of (v) and (vi) is a consequence of Proposition 3.9. We proved that

(iii) =⇒ (vi) as Proposition 3.14. The converse is a consequence of Proposition 3.8.

To prove equivalence of (i) and (vii), recall that σ(T ∗) = (σ(T ))∗, where the ∗ on

the right refers to complex conjugation. Assuming (i), we note that σ(T ∗) is a finite set,

and hence (vii) holds by the equivalence of (i) and (iii), applied to T ∗. Assuming (vii),

we have that σ(T ∗) is a finite set by equivalence of (iii) and (i) applied to T ∗. Hence (i)

holds, as desired.

We have thus shown equivalence of all seven statements, completing the proof.
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[6] C. Foiaş, Spectral maximal spaces and decomposable operators in Banach space,

Arch. Math. (Basel) 14 (1963), 341–349

[7] U. Haagerup and H. Schultz, Brown measures of unbounded operators affiliated with

a finite von Neumann algebra, Math. Scand. 100 (2007), no. 2, 209–263

[8] , Invariant subspaces for operators in a general II1–factor, Publ. Math. Inst.

Hautes Études Sci. 109 (2009), 19-111

[9] P. Hartman and A. Wintner, The spectra of Toeplitz’s matrices, Amer. J. Math. 76

(1954), 867–882

44



[10] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, Lon-

don Mathematical Society Monographs. New Series, vol. 20, The Clarendon Press,

Oxford University Press, New York, 2000

45




