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ABSTRACT 

 

Despite existing countermeasures for addressing wrong-way driving, crashes relating to 

wrong-way driving continue to occur on Texas roads.  These crashes tend to be more 

severe than typical crashes since they tend to be head-on collisions at high speeds.  This 

study considers a countermeasure designed to use connected vehicle communications, on 

high-speed, controlled access, freeway-type facilities.  This study quantifies the impacts 

of a connected vehicle wrong-way driving countermeasure (CV-WWD) system, 

translates them into a benefit-cost ratio that represents the economic value of the system, 

and performs the analysis on a generic case and case study to draw conclusions on 

potential deployment needs for the system.   

 

To determine the probability that a vehicle received a warning about the wrong-way 

driver (WWD) early enough to be able to make an informed decision earlier than if they 

were not equipped, calculations were done to determine vehicle presence, connected 

vehicle capability probability, and successful warning message transmission.  The 

increased time for response was translated into reduced crash probability for various 

market penetration rates (MPRs) of connected vehicles.  Each analysis used the baseline 

scenario as the case where the MPR of zero, representing no connected vehicles, was 

used as a baseline for the economic analysis.  Reduced crash probability for a single 

event was used to estimate the benefit over the life of the system.  The benefit-cost ratio 

was this benefit divided by the cost of the system.   

 

The findings of the study indicate that the WWD crash rate is the driving factor for 

economic feasibility.  Each traffic density considered had similar MPRs for feasibility 

across each crash rate, with a rate of one WWD crash ever five years needing about 37 

percent MPR and a rate of once a year only needing 17 percent MPR to break even.  The 

case study on US-75 in downtown Dallas, TX, which has a crash rate of 1.8 WWD 

crashes per year, showed that a system installed there could be feasible with an MPR as 
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low as seven percent.  These results show that the system has potential to be 

economically feasible at low MPRs with a sufficiently high crash rate.   
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CHAPTER I 

INTRODUCTION 

 

Wrong-way driving (WWD) events do not happen often but, the crashes involving a 

WWD are often severe.  Numerous countermeasures have been attempted to prevent 

WWD maneuvers, but WWD events continue to occur.  WWD violations are often the 

result of physical or emotional impairment of the driver (1).  Impaired drivers are not as 

responsive to traffic control devices as alert drivers, so additional signage and in-road 

markings may not be the best method for preventing WWD events.  Connected vehicles 

(CVs) can be used to warn the WWD and anyone upstream of the WWD about the 

situation in real time.  CVs are a technology that allows messages to be sent to vehicles 

to display a message to the driver inside the vehicle.  These messages can be sent over a 

limited distance and are customizable to many different situations.  Additionally, it gives 

vehicles traveling the correct direction a warning about the violation so that they can 

take appropriate actions to maintain safe travel.  Using CVs as a countermeasure 

provides the chance to warn every equipped vehicle potentially affected by the WWD 

about the WWD event faster and more effectively than existing countermeasures.  Even 

though a CV-WWD system will be able to inform a WWD of their error and warn 

vehicles traveling the correct direction of the danger, the system will be significantly 

more expensive than other countermeasures.   

 

Equipment, maintenance, and operational costs for the system would only be offset if the 

system were able to warn enough travelers about WWD events occurring on the facility 

to accumulate benefits equal to or greater than the cost of the system.  To deploy a 

system effectively, there must be a way to determine if the system would make 

economic sense.  This study aims to create guidelines that could be used to determine if 

a location would economically benefit from a CV-WWD system deployment.  The 

guidelines account for the abilities of the system (including message propagation), 

potential reduction of crashes of varying severity, and the costs of deployment. 
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Problem Statement 

 

Quantification of the performance and translation of performance into economic value is 

necessary for determining the feasibility of the CV-WWD system over other 

countermeasures.  This research produces guidelines and criteria for the deployment of 

CV-WWD system on a facility based on the costs and conditions of the facility in 

question.  Increased costs will be manifested in the costs to install and maintain the 

system over other countermeasures.  The tradeoff is the increased ability for the CV-

WWD system to inform travelers over traditional WWD detection and warning systems.  

The benefit of the CV-WWD system is reduced crashes and the information about the 

danger ahead.  However, the effectiveness of the CV-WWD system is highly dependent 

on the number of equipped vehicles on the facility.  This study aims to evaluate potential 

performance the CV-WWD system at various market penetrations which will be 

compared to traditional sensor based detection and warning system and a no warning or 

detection system.  The comparison will consider the time for any warning to be issued, if 

there is one, and the potential for the countermeasure to save lives.  This analysis will 

aid the Texas Department of Transportation (TxDOT) in determining when to deploy the 

CV-WWD system by using a cost-benefit analysis which compares the CV-WWD 

system with varying market penetration ratios (MPRs) to existing WWD 

countermeasures.   

 

The system analyzed in this thesis is designed for a specific type of facility.  The system 

boundaries are: high-speed, controlled access, freeway-type facilities.  These boundaries 

include the main lanes of TxDOT freeways and toll facilities, and their entrance and exit 

ramps.  Frontage roads, cross-street of the frontage road intersections, the cross-streets 

themselves, urban roadways operated by municipalities, or rural freeways without a 

physical barrier are not considered within the system boundaries. 

  



 3 

Objectives 

 

The main goal of this thesis is to provide a framework for determining if a CV-WWD 

countermeasure could make economic sense for a site compared to other WWD 

countermeasures.  These subtasks support the completion of this objective: 

 

 Determine analytical formulation to explain the communication capabilities of 

the CV-WWD in different combinations of traffic characteristics.  Characteristics 

considered including traffic behavior (i.e. vehicle density on the facility during 

the WWD event and free-flow speed), market penetration of CV technology, and 

the length of time the WWD event lasts. 

 Develop an economic analysis framework to compare different WWD 

countermeasures.  This study seeks to find the market penetration/density/WWD 

rate configuration needed for the CV-WWD system to be economically 

reasonable in a general case. 

 Employ a case study on a stretch of US-75 in Dallas, TX to act as an example of 

how to use the analysis to make a decision on installation. 

 Summarize generic guidelines for an average Texas corridor and identify 

potential geometric factors in WWD movements. 

 

Overall, this thesis is attempting to describe the performance of a WWD countermeasure 

system that uses CV communications to transmit warnings about a WWD via 

infrastructure and vehicle-to-vehicle message propagation to send a warning about a 

detected WWD so drivers have more time to respond and can avoid a crash.  This 

advanced warning is anticipated to allow vehicles to make informed decisions early and 

greatly reduce the odds of a crash occurring.  This is so that an agency looking to deploy 

the system can decide if it is economically feasible to install the system on a facility.   
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Thesis Organization 

 

This thesis contains five chapters.  Chapter I provides an introduction into needs 

associated with wrong-way driving and presents the objective is the study.  Chapter II 

contains a literature review to better identify WWD characteristics, existing 

countermeasures, and connected vehicle technology.  The study methodology, including 

the steps to represent connected vehicle communications, procedure for the economic 

analysis, and the procedure to develop guidelines for the CV-WWD system, is outlined 

in Chapter III.  Chapter IV delivers the results for a generic facility that follows a crash 

distribution identical to the state of Texas and a case study over US-75 in Dallas, Texas.  

Finally, Chapter V summarized conclusions from the generic analysis and case study, 

study limitations, and topics to be addressed in future research. 
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CHAPTER II 

LITERATURE REVIEW 

 

Wrong Way Driver Characteristics 

 

A study by the Texas A&M Transportation Institute (TTI) showed that WWD collisions 

account for only 0.2 percent of total crashes in Texas.  However, when these crashes 

occur, they are often fatal, accounting for about 1.4 percent of fatal crashes on divided 

highways (1).  The WWD crash represents a disproportionate number of fatal crashes.  

To put this into better perspective, one out of every 100 crashes in rural Texas highways 

are fatal, but 15 out of every 100 WWD crashes are fatal (1).  The National 

Transportation Safety Board (NTSB) report found that the primary WWD maneuver is 

entering the freeway the wrong-way on an exit ramp (2).  NTSB also found that WWD 

collisions are more likely to occur on the weekends at night, with 78 percent of fatal 

WWD collisions occurring between 6:00 pm and 6:00 am (2).  The nighttime WWD 

crashes tend to occur in the early morning hours (3).  This is consistent with the times 

that bars typically close on the weekends.  Therefore, it is no surprise, that alcohol 

impairment is a major contributing factor in most WWD incidents (2,3).  Some of the 

more interesting findings of previous studies showed that crashes usually occur in the 

lane closest to the median (2,3).  It makes sense that most of the WWD crashes occur in 

the lane closest to the median because that is the lane that is the rightmost lane, or the 

slow lane, for the WWD.  In attempts to drive safely, the WWD would likely choose the 

rightmost lane, so anyone traveling the correct direction in the leftmost lane, or the fast 

lane, would be set for a head on collision.   

 

A recent study, done by Ponnaluri, on the odds of wrong-way crashes and resulting 

fatalities helps reinforce these statistics (4).  This study took a data set from the Florida 

Department of Transportation (FDOT), separated the data into separate databases based 

on crashes, occupants, and vehicles, and created models to assess which variables were 
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statistically significant when comparing WWD and non-WWD crashes and fatal versus 

non-fatal WWD crashes (4).  Each significant variable had an odds ratio (OR), which 

presented how much more likely involvement in a WWD crash or fatal WWD crash was 

than the reference variable (4).  The odds of a WWD crash increased by 5 to 15 times 

when the blood alcohol content (BAC) was twice or four times the legal limit and the 

odds of a fatal crash increased up to 20 times when compared to the legal BAC limit (4).  

The results also confirmed that a WWD event was more likely to occur on the weekend 

(OR of 1.57) and the early morning hours (OR of 4.17 for WWD crash and 2.44 for fatal 

crash when compared to the early afternoon) (4).  Interestingly, limited access facilities, 

like tollways or freeways, were not as likely as non-limited access, like arterials (OR of 

2.29 for arterials) (4).  However, non-limited access facilities were under a quarter of the 

likelihood (OR of 0.24) of having a fatal WWD crash (4).  This is makes sense since it 

would be easier to drift into the opposing direction’s travel path in a non-limited facility, 

but the speeds are not as high.  A WWD on a limited access facility would think that 

they are traveling on the freeway and would be traveling at high speeds, drastically 

increasing the odds of a collision being fatal. 

 

This information suggests that WWD situations involve an impaired driver.  A TTI 

study, done by Finley, aimed to determine where impaired drivers tend to look while 

they drive, in an attempt to identify where to place WWD countermeasures.  The study 

found that alcohol-impaired drivers tend to look at the pavement in front of the vehicle 

and not look ahead of the vehicle as much as non-impaired drivers (5).  This means that 

the most effective traffic WWD countermeasures may be the in-road devices.  One of the 

recommendations of the study was to explore the use of CVs for WWD detection, 

warning and intervention (5).  CVs would offer in vehicle messages that could be 

effective at alerting the driver traveling the wrong-way about their error and to warn 

equipped vehicles traveling the correct direction on the same facility about the WWD 

detected ahead. 
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Existing and Innovative Countermeasures 

 

Another TTI study, done by Cooner et al., looked at the existing countermeasures around 

the United States to see what measures existed, at the time, to try to prevent WWD 

maneuvers.  Cooner et al. found that a variety of signs and markings were used for 

WWD countermeasures including (3): 

 

 DO NOT ENTER signs with and without flashing beacons 

 WRONG WAY signs with and without flashing beacons 

 ONE WAY signs 

 Red-backed pavement markers 

 Wrong-way pavement arrows 

 Lowered mounting heights for signs 

 Supplemental signs saying RAMP or FREEWAY 

 Overhead mounting of WRONG WAY signs 

 

Cooner et al. also reported some intelligent transportation systems (ITS) applications as 

countermeasures.  These systems typically involve detection of the WWD using a series 

of vehicles detectors to determine the direction of travel on a location that the WWD 

could begin traveling the wrong direction (3).  New Mexico and Washington use flashers 

and LED wrong-way signs respectively in conjunction with detectors to implement the 

WWD countermeasures when a WWD is detected (3).  FDOT uses loop detectors a 

bridge in Florida to detect vehicles traveling in the wrong-way which triggers an alert to 

a nearby police substation and activates an overhead signal system on span wire which 

warns motorists traveling in the proper direction that a WWD may be approaching (3).  

This same system also uses the in-pavement warning lights that are activated by wrong-

way vehicles consisting of lights that are placed laterally across the travel path (3).  In 

light of the study done by Finley, these countermeasures may not be very effective 



 8 

because the impaired driver tends to look at the pavement in front of the vehicle more 

than the surroundings.  Thus, there is still a need for a better countermeasure system. 

 

In another study, done by Finley et. al., data on Texas Freeways from 2007 to 2011 was 

collected and analyzed WWD crashes (6).  Their study found that 86 percent of wrong-

way crashes in Texas occurred in urban areas (6).  Finley et. al. also identified the top 

ten freeways with the highest number of wrong-way crashes.  These are shown in Table 

1.  Finley et. al. obtained the data used to create Table 1 from the Crash Records 

Information System (CRIS) which contains information about crashes in Texas from 

2010 to 2014.  Wrong-way-related crashes were identified by employing the 

Contributing Factor ID variable. 

 

 

Table 1.  Top 10 Texas Freeways with Highest Number of Wrong-Way Crashes 

(2010–2014) (6)  

Highway 

System 

Highway 

Number 
Non-fatal Fatal Total 

Percent 

Total 

Crashesa 

Percent 

Fatal 

Crashesb 

I 35 130 19 149 13 14 

I 20 93 18 111 9 13 

I 10 88 16 104 9 11 

I 45 86 8 94 8 6 

I 30 53 15 68 6 11 

I 410 32 3 35 3 2 

I 35E 27 1 28 2 1 

I 610 24 5 29 2 3 

US 290 24 1 25 2 1 

US 75 22 2 24 2 1 

Total 579 88 667 56 63 
I = Interstate; US = United States  
a

 Percent computed out of all wrong-way crashes (n = 1187).  
b

 Percent computed out of all fatal wrong-way crashes (n = 139). 
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Finley et. al. also summarized current WWD response protocols in the state of Texas.  

The study notes that most wrong-way vehicles are currently detected by motorists using 

their cell phones to call law enforcement agencies to report the event through 911 (6).  

Data from the San Antonio Police Department showed that the average duration of a 

WWD event, based on 911 calls, was about 4 minutes (6).  However, WWD events are 

skewed towards shorter durations with 61 percent of events lasting less than or equal to 2 

minutes (6).   

 

Connected Vehicles 

 

Connected Vehicles (CVs) are part of a plan set by the United States Department of 

Transportation (USDOT) to develop Intelligent Transportation Systems (ITS).  The 

Research and Innovative Technology Administration (RITA) has focused the plan on 

connected vehicle research.  CVs use radios to send messages containing traveler 

information to other CVs within range.  The messages are sent anonymously and are 

received and decoded by any radio that receives the message.  These radios use 

dedicated short-range communications (DSRC), which is a 75 MHz electromagnetic 

band around the 5.9 GHz spectrum, for location-based vehicle-to-vehicle (V2V) and 

infrastructure-to-vehicle (I2V) messaging (7).  This message system is designed to have 

a range of 3,000 feet and can send messages in as little as 200 microseconds (7).  One of 

the focuses RITA made in the effort was privacy.  This objective is currently 

accomplished by using certification for each message to ensure anonymity can be 

maintained (8).   

 

The Society of Automobile Engineers (SAE) wrote a standard for the DSRC messages 

called “SAE J2735 – Dedicated Short Range Communications (DSRC) Message Set 

Directory”.  Two messages described in this standard are the basic safety message 

(BSM) and roadside alert (RSA).  The BSM is sent ten times a second by the on-board 

unit (OBU), which is a message rate that many safety applications require (9).  This 
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message contains information about the sending vehicle’s position, speed, acceleration, 

heading, and steering wheel angle (10).  These messages are meant to exchange safety 

data with the vehicles around them.  Alternatively, the RSA is meant to send alerts for 

nearby travel hazards.  For this reason, the structure of the RSA includes information 

about the type of event and priority of the event (10).  The RSA can also contain 

additional text codes to describe event, applicable headings, distance the message 

applies, and information about the position of the subject of the message (10).  The 

International Traveler Information Standard (ITIS) codes make up the information 

communicated in an RSA.  ITIS codes are part of another SAE dictionary: SAE J2540.  

An ITIS code already exists for wrong way scenarios, ITIS code 1793: “vehicle-

traveling-wrong-way” (11).  This code can be used to identify the message type as 

“Unusual Driving” (11).  The system discussed in this thesis would likely employ these 

two message types.  The BSM could be used for detection of a WWD and the RSA 

would be the warning message transmitted CVs to inform them about the WWD. 
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CHAPTER III 

STUDY METHODOLOGY 

 

The feasibility of the CV-WWD system hinges on the ability to broadcast a warning.  

This creates a need to describe the probability of receiving a message along the facility 

over space and time.  To accomplish this, a DSRC communications model is used to 

describe the probability of vehicles receiving a message, either from infrastructure or 

another vehicle, at every section of the analysis zone throughout the duration of the 

WWD event.  Any economic benefit is manifested as the ability for a CV to avoid a 

crash by receiving an alert ahead of time.  The baseline was considered as the zero 

market penetration ratio (MPR) scenario.  As the MPR increased the odds of a CV being 

present on the facility and the message propagation performance increase, reducing the 

odds of a crash and increasing the benefit of the CV-WWD system.  The benefits for a 

single event are used to find the benefit over the life of the system and the feasibility of 

deploying the system at the location in question. 

 

This chapter describes the tasks taken to describe message transmission, analyze the 

economic benefit-cost ratio, and develop guideline development for this research.  The 

calculations performed for the message transmission behavior and economic analysis 

were performed in MATLAB (12).  The code is provided in Appendix A. 

 

Warning Transmission Analysis 

 

Proper representation of CV communications is needed to identify the performance of 

the CV-WWD system.  This number will be evaluated analytically by combining the 

probability of a vehicle being within a distance and the probability of a vehicle within 

that distance receiving a message.  This will be accomplished using a Poisson 

distribution for the vehicle distances and a Nakagami distribution with m=3, where m is 

a variable representing moderate radio conditions when it is equal to 3, proposed by 
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Killat et. al. (13).  The Nakagami distribution was chosen for its simplicity and the 

ability to match empirical data in low volume scenarios (13).  Since WWD events tend 

to occur in early morning hours, low traffic volumes can be assumed.  A figure of the 

Nakagami distribution with m=3 is shown in Figure 1.  The formula for the Nakagami 

distribution is presented in Equation 1.  Although Figure 1 only shows a distance to 1600 

feet, the analysis zone is set to 2.5 miles, or the average length of a WWD event (6).   

 

 

 

Figure 1.  Continuous Nakagami Distribution with m=3 for DSRC Message 

Transmission Performance 
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𝐏𝐫(𝒅, 𝐂𝐑) =  𝐞−𝟑(
𝒅

𝐂𝐑
)𝟐

(𝟏 + 𝟑 (
𝒅

𝐂𝐑
)

𝟐

+
𝒈

𝟐
(

𝒅

𝐂𝐑
)

𝟒

)  Equation 1 

Where: 

  Pr is the probability of successful transmission at distance d and range CR 

  d is the distance between sender and receiver in meters 

  CR is the communication range in meters 

  g is the gravitational coefficient 

 

Since the Poisson distribution was used to describe the probability of a vehicle being at a 

distance range on the facility, the Nakagami distribution needed to be discretized.  The 

discretization divides the facility into segments that correspond to the distance a vehicle 

travels in a second.  This was done for ease of calculations for the economic analysis and 

can be justified because the DSRC messages are being transmitted once a second.  The 

probability of successful warning transmission for any CV in one of the segments is 

determined.  For example, discretization resulting in 50 foot segments, representative of 

a vehicle traveling 50 feet per second, is presented in Figure 2. 
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Figure 2.  Discretized Nakagami Distribution with m=3 for DSRC Message 

Transmission Performance 
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communications are considered from a roadside DSRC radio and multi-hops are 

assumed to be from vehicles on the facility that successfully received and transmitted the 

message one second after reception.  Furthermore, the market penetration of CVs was 

included as a variable in the analytical derivation.   
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Single Hop Communication 

 

Single hop communication is considered as the successful transmission of a RSA to a 

vehicle on the facility from the roadside infrastructure.  The probability of a vehicle 

being present, according to the Poisson distribution, is multiplied by the probability of 

successful transmission to get the probability of a vehicle being present on the facility 

and receiving a message at any section of the freeway, shown in Equation 2. 

 

𝑷𝒇𝒕𝒙,𝒋 = 𝑷𝒕𝒙,𝒋𝑷𝒗,𝒋𝑷𝑴𝑷𝑹  Equation 2 

Where: 

 𝑃𝑓𝑡𝑥,𝑗 is the total probability of a vehicle receiving a message from infrastructure at 

distance j 

  𝑃𝑡𝑥,𝑗 is the probability of a vehicle receiving a message at distance j 

  𝑃𝑣,𝑖 is the probability of a vehicle being present at distance j 

  𝑃𝑀𝑃𝑅 is the market penetration ratio of connected vehicles 

 

Since wrong-way events typically occur at the early morning hours and the market 

penetration rate is expected to be low initially, traffic volumes on the facility are 

assumed to be low.  If vehicles are spaced far apart, the message propagation may fail.  

Therefore, this analysis considers market penetration required for effective message 

propagation at very low volumes.  

 

When incorporating time into the analysis, it is known that the very first transmission of 

the RSA will be from the infrastructure.  All V2V communications will rely on the 

propagation of the messages from vehicles that received the message from the 

infrastructure.  The probability of receiving a message from the infrastructure at each 

time interval is does not change over time for each distance along the facility.  Figure 3 

shows the probability of receiving the message from the infrastructure component of 
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message transmission across the analysis zone.  This illustration, and other similar 

illustrations for combined I2V and V2V transmissions, should be read as the horizontal 

axis representing the location of the subject vehicle, the vertical axis representing the 

probability of receiving a message, and the curve representing the probability of 

receiving a message at the time during the event represented by the curve.  The curve in 

each figure showed the probability across the entire 2.5 mile analysis zone considered 

for a WWD event.  Notice, since V2V communication requires a vehicle to receive the 

warning before broadcasting, the first warning message sent, represented in Figure 3, has 

zero V2V communication contribution.   

 

 

 

Figure 3.  Probability of Successful Transmission of Initial Warning Message (I2V 

only) 
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Multiple Hop Communication 

 

Multiple hop communication assumes that a vehicle that received the warning RSA will 

begin broadcasting the message with their own DSRC unit.  The Nakagami Distribution 

with m=3 is used to determine the probability of the message being in a vehicle other 

than the broadcasting vehicle, both downstream and upstream of the broadcasting 

vehicle.  In low density scenarios expected for WWD events, negligible interference is 

expected from multiple vehicles transmitting on the facility.  Therefore, transmission 

failure from interference is not considered in this analysis.   

 

Vehicles traveling on the other side of the facility from the WWD may not need the 

warning but can contribute to the propagation of the DSRC message to another traveler 

in potential conflict with the WWD.  For this reason, vehicle on the other side of the 

facility are considered as contributors to the propagation.  This is accomplished by 

multiplying the transmitting vehicles by two, assuming densities and odds of having the 

message on both sides of the facility are equal. 

 

Any vehicle on the facility would only need to receive the message once to get the 

benefit of knowing about the WWD event.  This means that there is no benefit in 

receiving the message from multiple broadcasters.  There could be some benefit from 

receiving the message multiple times throughout the event, since the system could 

provide real time information on the WWD, but this is considered to be negligible 

because the majority of the benefit occurs with the first notification.  From statistics, we 

know that the probability of receiving the message from at least one entity at time t, is 

equal to one minus the probability of not receiving the message from any transmitting 

vehicle at time t, reflected in Equation 3. 
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𝑷𝒗𝒕𝒙,𝒋𝒕 = 𝟏 − ∏ (𝟏 − 𝑷𝒗𝒕𝒙,𝒊𝒋𝒕)𝒊    Equation 3 

Where: 

  𝑃𝑣𝑡𝑥,𝑗𝑡 is the probability of a vehicle at distance j receiving a message from 

another vehicle at time t 

  𝑃𝑣𝑡𝑥,𝑖𝑗𝑡 is the probability of a transmitting vehicle, which received the message 

at time  

t-1, at distance i successfully sending a message to another vehicle at time t 

 

Note that Equation 3 does not yet adjust for the probability vehicle presence at j or the 

probability of a vehicle at j being a connected vehicle.  This adjustment is done in 

similar fashion to Equation 2.  The probability of V2V and I2V communications are 

calculated in this way so that the probability of receiving at least one message from any 

entity can be graphed for a given time step for a vehicle at any distance on the facility.  

Any messages transmitted after the first I2V message will have some aspect of V2V 

communication.  To illustrate this, the second through fifth message transmitted after the 

initiation, shown in Figure 3, are presented in Figure 4, 5, 6, and 7. 
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Figure 4.  Probability of Successful Transmission for Second Warning Message 
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Figure 5.  Probability of Successful Transmission for Third Warning Message 
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Figure 6.  Probability of Successful Transmission for Fourth Warning Message 
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Figure 7.  Probability of Successful Transmission for Fifth Warning Message 

 

 

By the third warning message, represented by Figure 5, V2V communication begin to 

bend the probability of successful message transmission such that vehicles at increased 

distances have a larger likelihood of receiving the messages.  At some distance the 

probability of message transmission is governed by V2V communication and the 

probability of message transmission levels, as shown at a distance of about 2000 feet in 

both Figure 6 and Figure 7.  The probability that corresponds to the level line is the 

maximum probability of receiving a DSRC message via V2V communications, which 

occurs when all the CVs around the subject vehicle are transmitting the warning.  This 

value depends on the MPR and the density.   

 

Another factor that can be observed is the speed at which the V2V message propagation 

occurs.  The curve appears to travel at a speed of about 1000 feet per second.  This can 
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be observed from Figure 6 and 7, where the latter curve has the 0.5 probability intersect 

shifted about 1000 feet farther than the former after only one second.  This shows that 

propagation occurs at speeds much greater than the WWD.  For this reason, CVs far 

upstream can be warned about the WWD long before they encounter the WWD, driving 

their probability of crashing to zero.  At some point the message propagates such that the 

entire analysis zone of 2.5 miles has leveled out, depicted in Figure 8. 

 

 

 

Figure 8.  Probability of Successful Transmission of Warning Message After Entire 

Analysis Zone is Covered 

 

 

Even though MPR and density dictate the maximum probability of receiving the 

message, the speed of propagation remains constant among each scenario.  This is 

caused by the Nakagami Distribution used for the study which has a very high likelihood 

of receiving a message from transmitters at a short range. 
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Economic Analysis 

 

The economic analysis follows the guidance provided in the U.S. Department of 

Transportation’s Transportation Investment Generating Economic Recovery (TIGER) 

grant program Benefit-Cost Analysis Resource Guidance document (14).  Methods to 

determine the cost of a crash, including converting crash severity values from the 

KABCO scale (a commonly used injury severity scale developed by the National Safety 

Council) to the Abbreviated Injury Scale (AIS) for determining the value of a crash.  The 

values of the six AIS scales, in terms of the fraction of the value of a statistical live and 

the monetary value, are shown in Table 2. 

 

 

Table 2.  AIS Injury Scale Values (14) 

AIS Level Severity Fraction of VSL 
Unit Value 

($2013) 

1 Minor 0.003 $28,200 

2 Moderate 0.047 $441,800 

3 Serious 0.105 $987,000 

4 Severe 0.266 $2,500,400 

5 Critical 0.593 $5,574,200 

6 Not survivable 1.000 $9,400,000 

 

 

The table provided to convert the KABCO injury scale to the AIS injury scale by the 

TIGER grant program is presented in Table 3. 
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Table 3.  KABCO/Unknown – AIS Data Conversion Matrix (14) 

 O C B A K U 

No 

injury 

Possible 

Injury 

Non-

incapacitating 

Incapacitating Killed Injured 

Severity 

Unknown 

AIS 0 0.92534 0.23437 0.08347 0.03437 0.00000 0.21538 

1 0.07257 0.68946 0.76843 0.55449 0.00000 0.62728 

2 0.00198 0.06391 0.10898 0.20908 0.00000 0.104 

3 0.00008 0.01071 0.03191 0.14437 0.00000 0.03858 

4 0.00000 0.00142 0.0062 0.03986 0.00000 0.00442 

5 0.00003 0.00013 0.00101 0.01783 0.00000 0.01034 

Fatality 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 

Sum(Prob) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

 

 

The average cost of a crash at a site can be computed by converting the number of 

crashes in the KABCO system to the AIS scale, multiplying the value of each AID scale, 

and summing across all values.  Note that in the AIS scale there is no value of a level 

zero crash.   

 

To determine the impacts of the CV-WWD system, the probability of an equipped 

vehicle receiving the warning with enough time to be able to react and perform a 

maneuver to avoid a crash was determined for each vehicle in conflict.  Vehicles that 

have passed the WWD are not considered in this study.  If a vehicle has passed the 

WWD, meaning that there is no more potential conflict between them, there is no more 

need to consider their odds of crashing into the WWD.  Therefore, the analysis only 

considers the segments that are upstream of the WWD.  Since low densities are assumed, 

the analysis considers evasive maneuvers to be always possible given enough reaction 

time.  That is, any vehicle can change lanes at any time to avoid a crash.  Another 
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assumption is that every vehicle on the facility is in immediate danger.  Since vehicles 

traveling in the wrong-way tend to be erratic, the analysis assumes that it could crash 

into any other vehicle on the same side of the facility.   

 

A critical tool in determining the probability of a crash is the crash probability function.  

In their paper, Kim and Jeong describe the crash probability rates for head-on collisions 

based on time performing a maneuver (15).  The analysis considered different relative 

speeds of the vehicles and vehicle characteristics for 1000 simulations performed to find 

the crash probability for a closing speed and action time.  The highest considered closing 

speed in the paper is 160 km/h, which is similar to 100 mph.  With highway speeds in 

Texas being at least 65 miles per hour, a closing speed of 160 km/h is slow for this 

study.  Nonetheless, it can behave as a conservative estimate since the actual probability 

of a crash at a higher closing speed would be higher.  The perception-reaction time used 

in this study is from the NCHRP 400 report for an unexpected event: 1.25 seconds mean 

and 0.44 standard deviation (16).  Beyond the perception time, an action time of 2.5 

seconds with a standard deviation of 0.5 seconds was assumed for travelers.  This means 

that the human reactions modeled in this study are assumed to be aware of the event if 

they have less than 3.75 seconds to respond with a standard deviation of 0.67 seconds.  

While determining the crash probability with the function, the action time is determined 

by subtracting the perception-reaction time is from the time before collision. 

 

The process in determining the minimum crash probabilities for each vehicle on the 

facility is displayed in Figure 9.  The minimum crash probability is the value of interest 

because it will be determined by the maximum reaction time, either by line of sign or 

receiving the DSRC warning, a subject vehicle has before it crashes. 
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Figure 9.  Crash Probability Determination 

 

 

The minimum crash probability is averaged for each vehicle involved in the event.  This 

gives a single value to act as a measure of performance for the system.  If more vehicles 

in a scenario have a lower probability of a crash than another scenario the average crash 

probability will be lower, therefore indicating a benefit.  The crash probability is 
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multiplied by the probability of vehicle presence, according to the Poisson distribution, 

and then multiplied by the average cost of a crash. 

 

The baseline case for the economic analysis is the case where the market penetration of 

CVs is zero.  Meaning that there are no CVs present on the facility to receive a message.  

With zero market penetration, all vehicles are reacting based on physically seeing the 

WWD.  Cases where the MPR is greater than zero have some gain over the baseline, 

since CVs that successfully receive the message will have more time to react to the 

WWD.  This gain is the benefit for a single event.  That benefit needs to be multiplied by 

the expected number of events per year and the number of years in the system life.  This 

study considers the expected number of events to be equal to the average number of 

crashes in a year for a considered facility divided by the calculated crash probability 

from the baseline for the site characteristics.  This determines the expected number of 

events to produce the measured annual crashes for the site.  To find the expected number 

of events across the system life, the value would need to be multiplied by the life of the 

system.   

 

Since the system is based on electronics, especially a technology that changes quickly, 

the life of the system of the system is considered to be five years.  The components and 

corresponding costs, as determined by the TTI project team, is given in Table 4.   
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Table 4.   Connected Vehicle Wrong-Way Driver System Costs  

Item Description Quantity Price 

RSE DSRC infrastructure-mounted device 1 $3,500  

RSE-

Complete 

RSE stand-alone installation hardware 

(excluding RSE device) 
1 $4,000  

RADAR 
Dual RADAR WWD detection device with 

camera and other equipment 
1 $15,000  

Processor  1 $3,000  

Ethernet 

Switch 

 
1 $1,000  

Transceiver  1 $2,000  

Construction Installation of poles, etc. 1 $100,000  

Other Portable power unit 1 $15,000  

  Total $143,500  

 

 

To account for costs associated with powering the system, labor (from operations and 

maintenance), and any additional unexpected costs, the analysis considers the cost of the 

installation to be $200,000.  Costs associated with equipping CVs are not considered in 

this analysis because the travelers on the facility are expected to have covered that cost 

in the purchase of their personal vehicles.  The benefit over the system life is divided by 

the cost to produce the benefit-cost ratio.  This benefit-cost ratio is used to determine if 

the system a reasonable countermeasure under the conditions for the facility in question. 

 

Develop Guidelines 

 

The transmission and economic analysis will produce numeric results that can be used as 

guidelines for the CV-WWD system.  These results will be presented as a benefit-cost 

ratio for the system for a certain market penetration and vehicular density.  This task 
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identifies the traffic characteristics and market penetration thresholds for the system to 

break even for a standard 3-lane facility.   

 

Another function of this task is to identify features or geometries that could increase the 

likelihood that an improper maneuver is performed.  This is done by taking note of 

different attractions and geometric features near an area identified as a high density 

WWD area.  

 

A potential corridor in Texas was identified as a candidate for the CV-WWD system.  

This facility had the analysis applied to it as a case study.  The results and the 

recommendation according to this study are provided to show how the analysis would be 

applied to a real facility.   
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CHAPTER IV 

RESULTS AND CASE STUDY 

 

Generic Results 

 

Before diving into a case study, a generic case for overall Texas wrong-way crash data 

was created.  The speed of the fictitious facility was assumed to be 65 miles per hour and 

the number of lanes equal to three.  Densities, wrong-way crash rate, and MPR were 

varied to perform a sensitivity analysis on traffic characteristics.  The overall crash 

severity distribution for Texas according to the Crash Records Information Systems 

(CRIS) data gathered from 2010 to 2014 is shown in Table 5.   

 

 

Table 5.  Wrong Way Crash Severity Distribution for Texas (n=1190) 

Crash Severity Percentage 

Fatal 11.7% 

Incapacitating Injury 9.6% 

Non-Incapacitating 18.1% 

Not Injured 39.5% 

Possible Injury 19.2% 

Unknown 1.9% 

Grand Total 100.0% 

 

 

The generic scenarios considered use a variety of densities and WWD crash rates.  The 

densities considered for the generic cases are 1, 2, and 5 vehicles per mile per lane 

(vpmpl).  These values represent sub-typical, typical, and high densities for an early 

morning time of day on a facility.  Five WWD crash rates are considered: 0.2, 0.4, 0.6, 

0.8, and 1.0 expected per year.  This translates to 1 through 5 crashes throughout the life 
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of the system.  Each of these fifteen scenarios are calculated and the resulting benefit 

cost ratios for each MPR are presented in three different graphs: Figure 10, 11, and 12.   

 

 

 

Figure 10.  Benefit-Cost Ratio Across MPR for Generic TX Case with 1 vpmpl  
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Figure 11.  Benefit-Cost Ratio Across MPR for Generic TX Case with 2 vpmpl  
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Figure 12.  Benefit-Cost Ratio Across MPR for Generic TX Case with 5 vpmpl 

 

 

It is clear from Figure 10 through Figure 12 that the change in density does not have a 

large effect on the benefit-cost ratio.  As a matter of fact, the curves in each figure 

appear nearly identical.  The results indicate that the effect is so small that it hardly 

changes the MPR required for a ratio greater than one.  This is better displayed in Table 

6, which contains the MPRs for the different generic cases at which the benefit-cost ratio 

first became greater than one. 
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Table 6.  MPRs for Benefit-Cost Ratio Greater Than One for Generic Cases 

 Density 

WWD Crash Rate 1 vpmpl 2 vpmpl 5 vpmpl 

0.2 per year 37% 37% 36% 

0.4 per year 24% 25% 25% 

0.6 per year 20% 20% 20% 

0.8 per year 18% 18% 18% 

1.0 per year 17% 17% 17% 

 

 

This shows that density is not a very large factor in the benefit-cost ratio determination.  

The reason for this is that at any density there is still a probability of vehicle presence, 

the probability is just higher for larger densities.  The other factors driving the benefit-

cost ratio overpower the role of density. 

 

One factor driving the benefit-cost ratio is the market penetration rate.  In each scenario, 

the increase of the MPR corresponds to the increase of the benefit-cost ratio.  Although 

this result is intuitive, it is validating to observe such a result.  Every scenario had a point 

that the system was economically appropriate as the MPR increased.  In high MPRs 

every scenario had the benefits outweigh the costs several times over.   

 

The driving force in the benefit-cost ratio is the wrong-way crash rate.  The MPRs for 

the different crash rates in Table 6 were practically constant across each of the densities.  

The higher the WWD crash rate, the lower the MPR needed because the number of 

expected events increased.  Therefore, the lower MPR is not showing that the system 

will perform better with an increased number of wrong-way crashes, but that it will be 

utilized more often.   
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Case Study 

 

To exemplify how the procedure would be applied to an existing facility and further 

develop guidelines for the system deployment, a case study was performed.  The 

following sections of this chapter describe the process of site selection, describe site 

characteristics, and present the results and conclusions of the analysis.   

 

Site Selection 

 

The case study location was determined using the data from the CRIS which contains 

information about crashes in Texas from 2010 to 2014.  Wrong-way-related crashes 

were identified using the contributing factor variable.  The data gathered focused on four 

metropolitan areas in Texas: Dallas, Fort Worth, Houston, and San Antonio.  Traffic 

count data by time-of-day for freeway facilities in Dallas and Fort Worth is available 

through the North Central Texas Council of Governments (NCTCOG) (17).  Therefore, 

Dallas and Fort Worth were primarily considered for site selection.  Crash data for 

Dallas and Fort Worth were filtered to exclude entries with crash severity of “unknown” 

and “not injured” to focus potential locations on more severe crashes.  An image of the 

crash locations for the filtered data from Dallas and Fort Worth is shown in Figure 13.  

This map was manually searched for locations that had a high WWD rate over a 5 mile 

stretch.  The site is a 5 mile stretch instead of a 2.5 mile stretch because the CV-WWD 

system is bi-directional.  If a WWD is detected, the warning can propagate along 

whichever direction the WWD is traveling with the same system installation.   
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Figure 13.  KAB Severity Wrong-Way Crash Locations in Dallas and Fort Worth 

 

 

The search for a site was done in conjunction with identifying potential causes for a 

wrong-way movement.  Many of the locations that appears to have a high amount of 

wrong-way crashes were either downtown, with one way streets, or in areas that drivers 

are likely to be unfamiliar, like near the airport.  Downtown Dallas has particularly high 

densities.  Upon further inspection, there were some areas where one-way streets, bars, 

and night clubs were all within close proximity.  One such site, and the site selected for 

the case study, is US-75.  The 5-mile study location begins where US-75 begins, 
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splitting off from I-45, and extends north to mile marker 4.  An image of the site, with all 

the crashes in the CRIS data from 2010 to 2014, their respective severities, and the 

potential installation location is provided in Figure 14.  

 

 

 

Figure 14.  US-75 Site Wrong-Way Crash Locations and Severity from 2010-2014 

 

 

The suggested location was selected by attempting to find an intersection at which a one-

way street comes near an exit ramp near the midpoint of the crashes.  There is no data on 

the entry locations for the WWD crashes on this facility, so the location could not be 
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determined from WWD entry points.  A zoomed in map of the potential location is 

provided in Figure 15.  At this location, San Jacinto Street merges with Ross Avenue just 

before encountering the frontage road for US-75. 

 

 

 

Figure 15.  Recommended Location of CV-WWD System on US-75 
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Site Characteristics 

 

The posted speed limit on this section of US-75 is 65 miles per hour.  The facility has 

three lanes and the hourly volumes from midnight to 3:00 am from the NCTCOG 

website were averaged for traffic in both directions of the freeway to determine the 

density.  This yielded an average flow of 440 vehicles per hour and a corresponding 

density of 2.3 vpmpl.  Over the course of five years, there were nine crashes along the 5 

miles, meaning that the wrong-way crash rate for the site is 1.8 crashes per year.  The 

severity distribution of the crashes reported is given in Table 7.  

 

 

Table 7.  Wrong Way Crash Severity Distribution for US-75 Site in Dallas (n=9) 

Crash Severity Percentage 

Fatal 22.2% 

Incapacitating Injury 22.2% 

Non-Incapacitating 22.2% 

Not Injured 22.2% 

Possible Injury 11.1% 

Unknown 0.0% 

Grand Total 100.0% 

 

 

Feasibility Analysis 

 

The analysis required the speed, density, and crash distribution for the calculations to be 

performed according to what is outlined in Chapter III: Study Methodology.  The 

resulting benefit-cost ratio across market penetration for the graph is included in Figure 

16. 
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Figure 16.  Benefit-Cost Ratio for CV-WWD System Across MPR for US-75 

 

 

Notice the change of scale in the vertical axis of this figure compared to previous 

figures.  The maximum benefit-cost ratio calculated is about 73.  The MPR at which the 

benefit-cost ratio becomes greater than one is seven percent.  This is lower than the 

generic cases mainly because the WWD rate is higher and the crash distribution is 

skewed more towards the more severe, and valuable, crash types.   

 

Case Study Conclusions 

 

The results of this analysis indicate that the CV-WWD countermeasure system would be 

a cost-effective countermeasure for the stretch of US-75 from splitting off from I-45 

north to mile marker 4 as long at the MPR for CVs is seven percent or greater.   
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CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

 

As part of the development of a connected vehicle wrong way driving countermeasure 

system, this study formulates and conducts a feasibility analysis for the system in a 

generic case and in a case study.  This countermeasure is designed to detect a WWD and 

transmit a warning over dedicated short range communications to vehicles in potential 

conflict with the WWD.  In addition to the infrastructure transmitting a warning, 

equipped vehicles will be able to relay the message to other vehicles on the facility.  A 

communication model to represent CV transmission success was used to represent all 

DSRC communication in this study.  These warnings ultimately allow a CV to be aware 

of a WWD situation earlier and have more time to react and reduce crash risk.  Special 

care was made to represent economic benefit based on the minimum crash risk 

experienced by each vehicle on the facility.  The crash probability was averaged for each 

case and translated to crash costs from a crash severity distribution.  The difference of 

potential crash costs between a case of zero MPR, which represents a baseline case from 

an economic standpoint, and each MPR was determined to find the potential benefit for 

that MPR in a single event.  The benefit from a single event was multiplied by the 

expected number of events over the system life to find the cumulative benefits for the 

system.  This value was divided by the cost of the system to find the benefit-cost ratio, 

which represents economic feasibility for the system.  The MPR at which the benefit-

cost ratio became greater than one was identified for each case analyzed.   

 

A case study over US-75 in Dallas, Texas was completed to exemplify the use of the 

analysis.  The crash severity distribution, vehicle density, and wrong-way crash severity 

for the site was used in the analysis to find the benefit-cost ratio and MPR relationship. 
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Deployment Guidelines 

 

This study found that the CV-WWD system would be economically feasible depending 

mostly on the WWD crash rate and MPR.  If the WWD crash rates are high, like they are 

at US-75 between 2010 and 2014 with a rate of 1.8 crashes per year, the system could be 

economically feasible with the MPR as low as seven percent.  As the crash rate lowers, 

the MPR to break even increases.  Crash rates of one wrong-way crash a year would be 

feasible at about 17 percent MPR and crash rates of one every five years would need an 

MPR of about 37 percent to be feasible.  High MPRs led to each scenario having 

benefits that far exceeded the costs of the system.  The benefit-cost ratio becomes so 

large because the system is relatively cheap compared to the costs of the crashes it is 

designed to prevent. 

 

Furthermore, site selection in Dallas and Fort Worth showed that WWD crashes appear 

to have high densities around downtown areas, with one-way streets, and areas with 

unfamiliar travelers, such as airports.  The site did have bars and night clubs nearby in 

downtown Dallas.  This was simply an observation and had no computations to verify its 

legitimacy.   

 

Limitations 

 

The limitations identified for this study are as follows: 

 

 The entry location of a WWD on a limited access facility is not commonly 

known, and this case is no exception.  The analysis assumes that the system is 

installed at the entry location of the WWD to provide the warning messages once 

the event begins.  However, the system is only capable of providing warnings 

once the system detects the WWD.  With better data on WWD entry locations, 

this system can be better deployed at high WWD entry locations. 
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 This analysis does not consider installing multiple roadside DSRC units to 

broadcast warnings along the facility.  In an actual installation, there could be 

multiple roadside units to broadcast the message to warn more upstream traffic 

traveling in the correct direction about the WWD event.   

 The assumption about being able to perform a maneuver to avoid the WWD at all 

times may not be valid at higher densities and market penetrations.  There could 

be difficulty performing the recommended maneuver, like take the next exit, if 

all the vehicles are attempting to take the next exit as quick as possible.  This 

potential problem could be evaluated with a microscopic analysis.   

 There is no consideration of alternatives such as using a changeable message sign 

to display information to all drivers, connected or not, upstream of the WWD.  A 

changeable message sign could increase the chances of a non-CV being aware of 

the WWD and responding in an informed fashion. 

 The DSRC communications were calculated entirely with the Nakagami 

Distribution with m=3.  The results of the analysis could be biased towards this 

communication model, especially if the CVs at a facility being considered follow 

a different model for communication.  

 The crash probability function used in this study varied from conditions expected 

in this scenario.  Identification of a crash probability function at higher speeds in 

a WWD scenario could aid the analysis in this study. 

 

Future Research 

 

To further analyze the potential performance of a CV-WWD system, future work could 

consider the following topics: 

 

 The analysis done in this study is macroscopic.  That is, the traffic stream is 

represented as a function and stochasticity of traffic is captured by probabilities.  

The analysis could benefit from a microscopic simulation that analyzes a facility 
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with the same inputs, but simulates communications between other vehicles.  

This would add certainty in the potential performance of the system.  

 Next steps for the research would be to consider the impacts of installing 

multiple roadside units.  Multiple units will increase the capability of the DSRC 

communications component of the CV-WWD system and will change the 

behavior of message propagation. 

 Similarly, other countermeasures, such as the use of changeable message signs 

(either instead of or in conjunction with the CV-WWD), need to be considered.  

These different configurations would impact the performance of the system and 

could increase costs if a changeable message sign needs to be installed.  The 

impacts of these configuration on the feasibility need to be considered.  

 One potential feature of the CV-WWD system is to warn the driver of the wrong-

way vehicle about their error.  Research on the potential impacts and structure of 

such a warning to a potentially impaired driver is needed.  If implemented 

successfully, such a warning could provide further benefits by stopping the 

erroneous maneuver completely. 

 Better representation of the crash probability of drivers encountering a WWD, 

both with and without CV capabilities, would improve the results of this study.  

This could be accomplished with driving simulation where subjects unknowingly 

encounter a WWD and measuring the behavior. 
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APPENDIX A 

MATLAB CODE FOR MESSAGE TRANSMISSION AND 

ECONOMIC ANALYSIS 

 

% Author: David Florence 
% Created for Master's Thesis on CV-WWD 
% 
% This script calculates the probability of vehicle presence and 

message 
% transmission for entered site characteristics and simulation time. 
% 
clear; clc; close all; 

  
tic 

  
%Site characteristics 
v = 65;                             %free flow speed on the facility in 

mph; WWD and right-way  
                                    %      traffic are assumed to be 

traveling at this speed 
v = round(v*5280/3600);             %Convert free-flow speed from mph 

to fps 
dist=2.5*5280+2000;                 %Average distance of WWD event in 

feet 
time = round((dist-2000)/v);        %average duration of WWD event 
lanes = 3;                          %number of lanes on the subject 

facility 
k = 5.0;                            %density on subject facility during 

WWD event in vh/mi/ln          
MPR = 0:0.01:1;                     %market penetration of connected 

vehicles  
f2m = 3.28084;                      %feet to meters conversion 
SystemCost = 200000;                %Cost of installation and 

maintenance of system 

  
int=v;                              %space interval considered for 

distribution 
VSL=9300000;                        %Value of Statistical Life 
life = 5;                           %Life of system 
wwdcr = 0.2:0.2:1;                  %Average number of crashes on 

facility 
Bmpr = zeros(length(MPR),length(wwdcr));        %Benefits at all MPRs 
CCmpr = zeros(length(MPR),length(wwdcr));       %Crash costs at all 

MPRs 
PCmpr = zeros(length(MPR),length(wwdcr));       %Overall probability of 

crash at all MPRs 
BCmpr = zeros(length(MPR),length(wwdcr));        %Benefits at all MPRs 
AIS = [0 0.003 0.047 0.105 0.226 0.593 1]; 
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KABCO2AIS = [0.92534    0.23437 0.08347 0.03437 0.00000 0.21538 
    0.07257 0.68946 0.76843 0.55449 0.00000 0.62728 
    0.00198 0.06391 0.10898 0.20908 0.00000 0.10400 
    0.00008 0.01071 0.03191 0.14437 0.00000 0.03858 
    0.00000 0.00142 0.00620 0.03986 0.00000 0.00442 
    0.00003 0.00013 0.00101 0.01783 0.00000 0.01034 
    0.00000 0.00000 0.00000 0.00000 1.00000 0.00000]; 

  

  
CrshDist = [0.395 0.192 0.181 0.096 0.117 0.019]; 

  
CrashCost = 0; 

  
for i=1:6 
   for j=1:7 
       CrashCost = CrashCost + KABCO2AIS(j,i)*CrshDist(i)*AIS(j)*VSL; 
   end 
end 

  

  
I2V_dist = 0:int:dist; 
n = length(I2V_dist); 
I2V_tx = zeros(n,1); 
V2V_dist = zeros(n); 
V2V_tx = zeros(n); 
X2V_tx = zeros(n,n,time); 
X2V_1tx = zeros(n,time); 
X2V_vtx = zeros(n,n,time); 
X2V_v1tx = zeros(n,time); 

  
cut = n - round(2000/int); 

  
rng default; 
NonCV_rt = normrnd(1.25,0.44,cut+time-1,1)+normrnd(2.5,0.5,cut+time-

1,1); 

  
wwdf=zeros(1,length(wwdcr)); 

  
%Vehicle step size for finding where vehicles were in the last time 

step 
for w=1:length(wwdcr) 
    for m=1:length(MPR) 
        NCrshProb = zeros(cut+time-1,1);  %Crash probability for each 

vehicle throughout event 
        NCrshjt = zeros(n,time); 
        %Poisson distribution for density using the site density and 

lanes. 
        Poisson = @(c) ((((k/5280)*int*lanes)^c)*exp(-

1*(k/5280)*int*lanes))/factorial(c); 
        P1CV = Poisson(1)*MPR(m); 
        P1nCV = Poisson(1)*(1-MPR(m)); 
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        %Nakagami Distribution with m=3 to describe probability of 

successful 
        %message transmission. Assume communication range is 250 meters 
        NakaD = @(d) exp(-

3.*(((d/f2m)/250).^2)).*(1+3.*((d/f2m)/250).^2+(9.81/2).*((d/f2m)/250).

^4); 

  

  

  

  

  
        %Calculate the probability of receiving the message from 

roadside radio 
        %along the facility 
        for i=1:n 
                I2V_tx(i) = NakaD(I2V_dist(i)); 
        end 

  

  
        for i=0:n-1 
           for j=0:n-1 
              V2V_dist(i+1,j+1) = abs(int*i-int*j); 
              V2V_tx(i+1,j+1) = NakaD(V2V_dist(i+1,j+1)); 
           end 
        end 

  

  
        for t=1:time 
            for i=1:n 
               for j=1:n 
                  if t == 1 
                      if i==j 
                           X2V_tx(i,j,t) = I2V_tx(i); 
                           X2V_vtx(i,j,t) = I2V_tx(i); 
                      end 
                  else 
                      if i==j 
                          X2V_tx(i,j,t) = I2V_tx(i); 
                          X2V_vtx(i,j,t) = I2V_tx(i); 
                      else 
                           X2V_tx(i,j,t) = (1-prod(1-X2V_tx(:,i,t-

1)))*V2V_tx(i,j); 
                           X2V_vtx(i,j,t) = 2*P1CV*X2V_tx(i,j,t); 
                      end 
                  end 
               end 
            end 
        end 
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        for t=1:time 
            for j=1:n 
                X2V_1tx(j,t) = 1-prod(1-X2V_tx(:,j,t)); 
            end 
        end 

  

  

  
        for t=1:time 
            for j=1:n 
                X2V_v1tx(j,t) = (1-prod(1-X2V_vtx(:,j,t))); 
            end 
        end 

  
        for t = 1:time 
           jww = round((v*t)/int); 

  
               for j=jww:cut 
                   r = ((j-jww)*int)/(2*v); 
                   Pvc = Pc(r); 

  
        %            Determine based on reaction time if either CVs or 

NonCVs are aware of WWD 
                   if r<=NonCV_rt(j+t-1) 
                       NonCVaware=1; 
                       CVaware=1; 
                   else 
                       NonCVaware=0; 
                       CVaware=0; 

  
        %               Determine cumulative probability of CV 
        %               awareness based on all transmissions across 
        %               time 
                       for jj = j:j+t-1 
                           for tt = 1:t 
                               if jj==j && tt==1 
                                   CVaware=X2V_v1tx(jj,t-tt+1); 
                               else 
                                   if jj>cut || X2V_v1tx(jj,t-tt+1)==0 
                                       break;  
                                   end 
                                   CVaware=1-((1-CVaware)*(1-

X2V_v1tx(jj,t-tt+1))); 
                               end 
                           end 
                       end 
                   end 

  
        %            Probability of the subject vehicle(CV or not) NOT 

crashing  
                   NCrshjt(j,t)=P1CV*CVaware*Pvc+P1nCV*NonCVaware*Pvc; 
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        %            Keep probability of no crash if maximum for 

subject vehicle 
                       if t == 1 
                            NCrshProb(j+t-1) = NCrshjt(j,t); 
                       elseif j==cut 
                            NCrshProb(j+t-1) = NCrshjt(j,t); 
                       elseif NCrshjt(j,t)>NCrshjt(j+1,t-1) 
                            NCrshProb(j+t-1) = NCrshjt(j,t);   
                       end 
               end 
        end 

  
        % Find probability of overall crash during event 
        PCmpr(m,w) = Poisson(1)*mean(1-(NCrshProb(:)/Poisson(1))); 

  
        % Find cost of potential crash for event 
        CCmpr(m,w) = CrashCost*Poisson(1)*mean(1-

(NCrshProb(:)/Poisson(1))); 

  
        % Compare any crash cost to baseline case(with 0 MPR) to find 

benefit 
        Bmpr(m,w) = CCmpr(1,w)- CCmpr(m,w); 

  

  
    end 

  
    % Calculate WWD frequency from crash frequency and calculated 

baseline 
    % crash probability 
    wwdf(w) = round(wwdcr(w)/PCmpr(1,w)); 

  
    % Calculate benefit cost by multiplying single event benefit by 

rate and 
    % lifespan and dividing by system costs. 
    BCmpr(:,w) = (Bmpr(:,w)*wwdf(w)*life)/SystemCost; 
end 

  
toc 

  
figure(1) 
p1 = plot(MPR(:),BCmpr(:,1),'b-'); 
title('Benefit-Cost Ratio Across Market Penetration Ratio for Generic 

TX Case') 
xlabel(['Market Penetration Ratio and Density Equals ' num2str(k) ' 

vpmpl on a ' num2str(lanes) ' Lane Facility']) 
ylabel('Benefit-Cost Ratio') 

  
hold on 
p2 = plot(MPR(:),BCmpr(:,2),'r:'); 
p3 = plot(MPR(:),BCmpr(:,3),'k-.'); 
p4 = plot(MPR(:),BCmpr(:,4),'b--'); 
p5 = plot(MPR(:),BCmpr(:,5),'r-'); 
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legend('0.2 WW crash rate','0.4 WW crash rate','0.6 WW crash rate','0.8 

WW crash rate','1.0 WW crash rate','location','northwest') 

  

  
%Some function to represent probability of crash based on reaction 
%time 
function Pcrsh =Pc(r) 

  
r = round(r-1.25,1); 
Pcr = [1 1 1 1 1 1 1 1 0.85 0.6 0.4 0.25 0.17 0.1 0.1 0.08 0.07 0.06 

0.02 0.02 0.01]; 
           if r>2 
               Pcrsh = 1; 
           elseif r<=0 
               Pcrsh = 0; 
           else 
               ii = 10*r+1; 
               Pcrsh = 1-Pcr(ii); 
           end 
end 

  

  

 

 


