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ABSTRACT 

 

The sugarcane aphid (Melanaphis sacchari (Zehntner)) is an established and 

problematic pest on sorghum (Sorghum bicolor (L.) Moench) in the United States. The 

virulent pest on sorghum was initially identified in Southeast Texas and significantly 

affects production. Heavy infestation will decrease yield and quality of grain and forage 

sorghum. The aphid’s sticky honeydew secretions cause harvest losses and clogging of 

combines. Using artificial and natural infestations, 500 lines from Texas A&M AgriLife 

Research were evaluated, including mechanisms of resistance and phenotypic traits 

useful for breeding. 

Resistant lines A/B.Tx3408 and A/B.Tx3409 were identified, and released to the 

public in 2016. Grain and forage sorghum hybrids produced using resistant lines also 

exhibited resistance. The resistant lines and hybrids produced from resistant sources 

were subsequently evaluated for their relative agronomic and breeding value. The 

performance of resistant hybrids was better than susceptible hybrids under sugarcane 

aphid infestation. The mechanisms of resistance were identified as antibiosis and 

antixenosis (non-preference). Some phenotypic traits also influenced aphid damage. 

 Further investigation into the phenotypic, biochemical and genotypic traits 

responsible for conditioning sugarcane aphid resistance is planned through heritability 

and quantitative trait locus (QTL) mapping studies. This will enable more efficient 

selection of genotypes that maintain grain and/or forage yield and quality when 

subjected to aphid infestation. 
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CHAPTER I 

INTRODUCTION 

 

In 2013, the sugarcane aphid (Melanaphis sacchari (Zehntner)) appeared as a 

virulent pest on sorghum (Sorghum bicolor (L.) Moench) in southeast Texas. Farmers 

reported significant economic losses resulting from aphid infestation (Villanueva et al., 

2014). The devastating effects of this pest were also seen in 2014 in most parts of Texas. 

In 2015, heavy rainfall at the beginning of the season in South Texas kept aphid pressure 

low but the pest was prolific in the fall season and caused economic damage on the 

Southern High Plains. 

During 2015 the aphid continued to spread throughout the United States (US) 

sorghum production region and was confirmed in at least 417 counties and 17 states 

(Bowling et al., 2016a). In Florida, 100% yield loss was reported, input costs worth $8 

million (USD) was lost and $20 million (USD) lost substituting stock-feed (Hollis, 

2014). In Texas, economic losses per hectare stood at $158.7 (USD) and $89.4 (USD) in 

2014 and 2015 respectively. Grain worth $31.6 million (USD) has been lost since 2014 

in Texas alone (Samuel et al., 2016). This pest is a threat to the $1.63 billion (USD) 

sorghum industry in Texas (USDA-NASS, 2013). As a result, the United Sorghum 

Checkoff Program committed $1 million (USD) to research and educational materials 

since 2015 (Bean, 2017). 

Melanaphis sacchari has been previously reported as a sorghum pest in areas of 

Africa, the Far East and Australia where it can cause grain yield loss as high as 73% 
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(Van den berg, 2002) and reduce the quality of grain for malting by as much as 16.5% 

(Van den berg, 2000). The pest may have a significant effect on the yield and quality of 

forage as well (Sharma, 1993). Yield loss due to aphid activity occurs in four ways: (i) 

infestation on susceptible seedlings leading to plant death; (ii) infestation on mature 

plants reducing photosynthetic activity; (iii) infestations on panicles before flowering 

affecting seed set (Singh et al., 2004) and (iv) honeydew reducing the efficiency of 

machinery at harvest resulting in grain yield loss. The pest can cause significant grain 

yield loss by as much as 73% (Van den berg, 2002). 

Options for the control of sugarcane aphid (SCA) fall into one of four categories: 

(i) chemical control, (ii) cultural control, (iii) biological control and (iv) host-plant 

resistance. Each of these methods has relative strengths and weaknesses and eventual 

management of the pest will likely involve all four or some combination thereof. 

Chemical control is highly effective but broad spectrum insecticides have 

indiscriminate effects on non-target beneficial insects. Highly efficacious insecticides 

are also known to cause development of resistance in arthropods because they exert a 

selection pressure (Daly et al., 1998). Because aphids are highly fecund with a 

complicated life cycle they can easily develop resistance and become progressively 

virulent in subsequent generations (Dixon, 1973). Other disadvantages of chemicals are 

toxic effects on the health of humans, animals, plants and the environment (FAO, 2001; 

Lorenz, 2009). Cultural and biological control is challenging to implement and execute 

on a large scale. In the past, among the reasons given for modest success with these two 

methods of control is that research funds that went into cultural and biological control 



 

3 

 

were rather limited (Kring and Gilstrap, 1984). Host-plant resistance is an economical 

method of pest management in sorghum (Sharma and Ortiz, 2002), but host plant 

resistance must be bred into elite genotypes and is subject to loss due to changes in the 

pest ecotype or unusual insect pressure. 

Other considerations for aphid management should take into account factors such 

as weather and edaphic conditions. Environmental conditions are known to affect the 

dynamics of ecosystems and aphid outbreaks and must be considered when developing 

strategies to manage aphids (Harvell et al., 2002; Van Emden and Harrington, 2007; 

Beyene et al., 2014). 

Justification 

Developing methods to mitigate SCA damage is important because aphids can 

easily evolve and occurrences tend to be unpredictable. There are numerous reports of 

defeated pest resistance in plants, and resurging pests are usually extra virulent (Daly et 

al., 1998). Hence, continued research to develop durable resistance should be an ongoing 

process. To do so, generating relevant information on plant resistance to aphids is of 

great importance (Esquinas-Alcázar, 2005). To maintain and preserve resistance, it is 

appropriate to identify additional sources of resistance to SCA. Wild sorghums and 

landraces have a natural capacity to endure biotic stress and are potential sources of 

resistance (Hajjar and Hodgkin, 2007). Ultimately, breeding is made more efficient if 

molecular tools identifying genes associated with plant resistance to aphids are available 

to compliment the current efforts in conventional breeding (Chang et al., 2012). 

Introducing aphid resistant traits from wild sorghums into cultivated sorghums takes 
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time and marker-assisted selection (MAS) may help to expedite the process (Sharma et 

al., 2014). 

Objectives 

Within this context, the objectives in this project were to: (i) evaluate sorghum 

germplasm for resistance to SCA; (ii) determine the effect of SCA infestation on yield 

and quality of resistant and susceptible forage hybrids; (iii) determine performance of 

grain sorghum lines and hybrids under SCA pressure (iv) determine categories of 

resistance and correlation between phenotype and resistance. 
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CHAPTER II 

LITERATURE REVIEW 

 

Biology of the Sugarcane Aphid (Melanaphis sacchari (Zehntner)) 

 

 

 
 

Figure 1 Characteristics of the sugarcane aphid (Melanaphis sacchari (Zehntner)) 

in North America. A = newly born nymph, B = alate, and C = adult nymph. 
 

 

 

The SCA is one of over 4000 aphid species currently identified (Wijerathna and 

Edirisinghe, 1995; Dixon, 1998). The SCA is a soft bodied green insect with a piercing-

sucking mouthpart that allows it to feed on sap in phloem vessels of sorghum. On 

average an adult nymph measures 0.85mm long and 0.64mm wide (Figure 2) and can 

weigh as much as 0.6mg. The newly born nymphs measure approximately one-tenth the 

size of adults. They can be distinguished by dark cornicles, tarsi and antennae tips. Dark 

cross marks on the backs and dark veins on wings are characteristic of winged SCA 
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(Figure 1). Sugarcane aphid populations in North America almost always consist of 

females that reproduce by parthenogenesis and are clonal; sexual reproduction and 

oviposition has not been observed in North America (White and Grisham, 2004; 

Knutson, et al., 2016). An adult viviparous aphid can produce 96 offspring under optimal 

conditions while a winged form, an alate, produce fewer offspring on average five 

(Bowling et al., 2016a). There are reports of sexual reproduction and oviparity on 

sorghum in Asia (Wang et al., 1961; Yadava, 1966; Setokuchi, 1975, David and Sandhu, 

1976). More recently, there were reports of sexual forms in Mexico (Pena-Martinez et 

al., 2016) but these findings need further validation. 

 

 

 
 

Figure 2 Dimensions of an adult 10 day old sugarcane aphid nymph (Melanaphis 

sacchari (Zehntner)) under an electron microscope (FEI Quanta 600 FE-SEM). 
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The aphid matures to adulthood in five days and has a lifespan of up to 30 days. 

Because of their rapid cycling and lifespan, exponential growth may take place in a 

favorable environment and result in overcrowding. In these situations, winged aphids 

(alates) develop and facilitate migration of the pest (Sharma et al., 2014). Colonized 

plants may have both wingless nymphs and winged adult aphids under the leaf (abaxial 

leaf surface). But under heavy pressure, feeding on the upper leaf surface (adaxial leaf 

surface) and the panicle (grain) has been observed (Villanueva et al., 2014). 

The SCA can cause devastating effects on sorghum production (Buntin, 2012). 

Infestations can occur any time after plant emergence, but if natural enemies are present 

and rainfall abundant the aphid populations are suppressed (Singh et al., 2004). In South 

Texas, heavy infestations usually occur in fall and greater than 10,000 aphids can 

colonize a single plant (Brewer et al., 2016). While the aphid is not toxic to the plant, 

such colonies can suppress plant growth in susceptible sorghum. In the fall alates 

become more abundant and they overwinter on ratoon sorghum and Johnson grass 

(Sorghum halepense (Linnaeus)) (Armstrong et al., 2015). 

In the spring, some of the overwintering aphids (i.e., the foundress) give rise to 

new alates and more non-winged aphids. The offspring of the two morphs will produce 

many more non-winged aphids that increase in numbers allowed by environmental 

factors and host availability. If the host-plants are limited or in poor condition, alates are 

produced and migration begins to colonize other plants. (Figure 3). 
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Figure 3 Schematic flow diagram of the sugarcane aphid life cycle in North 

America as is currently known. Rectangular boxes represent offspring of winged 

(alates) and non-winged aphids. Adapted from Shingleton et al., 2003. 
 

 

 

Geography and Differentiation of Sugarcane Aphid 

The SCA outbreak in North America may have been caused by a recent 

introduction from Hawaii. Perhaps due to increased trade between Hawaii and the USA 

(Mondor et al., 2007). SCA was first reported in Hawaii on sugarcane in 1896 

(Zimmerman, 1948) then in Florida USA, on hairy crabgrass (Paspalum sanguinale 

(Lamarck)) in 1922 (Wilbrink, 1922). However, this pest only became problematic after 

2013. Genetic relationships were determined using 10 microsatellite markers that 

support the introduction hypothesis. SCA in Hawaii shared the same multilocus lineages 

with SCA in Florida USA (Nibouche et al., 2014). The genetic study was not designed to 
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detect SCA host-plant association differentiation (HAD) or host-plant specialization, but 

rather geographic genetic diversity worldwide. 

Genetic diversity of SCA worldwide is low with no clear distinction of SCA into 

species of sorghum (Sorghum bicolor (L. Moench)) and sugarcane (Saccharum 

officinarum (L. (Poaceae)) (Nibouche et al., 2014). The distinction was geographical 

distribution rather than speciation. Only five multilocus lineages were found worldwide 

and genetic divergence among these was low (Nibouche et al., 2014). Nevertheless, in 

the late 1990s SCA on sorghum and sugarcane were classified as Melanaphis sorgi 

(Theobald) and Melanaphis sacchari (Zehntner) respectively (Remaudière and 

Remaudière, 1997). More recently on Reunion Island in France, host-plant specialization 

was observed on sugarcane and sorghum using host transfer experiments (Nibouche et 

al., 2015). Sorghum bicolor (L. Moench), Sorghum halepense (L. Moench) and Sorghum 

verticilliflorum (L. Moench) were collectively called sorghum. 

16 multilocus genotypes were identified but three of these (Ms11, Ms15 and 

Ms16) were more common and exhibited host-plant specialization. Ms11 and Ms16 

were more specialized on sugarcane and Ms15 on sorghum (Nibouche et al., 2015). 

Another independent study of SCA on Sorghum (Sorghum bicolor (L. Moench)), 

Johnsongrass (Sorghum halepense (L. Pers)) and sugarcane (Saccharum officinarum (L. 

(Poaceae)) was done using amplified fragment length polymorphisms (AFLPs). SCA in 

USA was grouped into three distinct clusters, but HAD or geographic relationship was 

not observed (Medina et al., 2016). 
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Despite low genetic diversity on a wide scale specialization can exist. 

Specialization of Ms15 on sorghum in France could be recent since it only differed by 

one allele from Ms11. The same may be true for USA. Only one genetically distinct 

cluster of SCA was observed from Louisiana, USA (Nibouche et al., 2015) and recently 

three genetically distinct clusters were observed despite luck of HAD (Medina, 2016). 

This may signify that even though SCA is highly parthenogenetic, evolution can occur 

quickly and may explain the host-plant shifts. However, evolutionary shifts of insect 

populations can also be driven by host-availability and a high adaptation capacity (Facon 

et al., 2006; Ward et al., 2008). 

An asexual insect species such as the SCA with a global ecological range possess 

a threat to crop production because evasive biotypes can easily evolve. As a result, 

biological and genetic characterization of SCA is important for plant breeders when 

developing resistant lines. This is because genetically distinct clones may be highly 

specific and require a different strategy relevant to their management and control 

(Medina, 2012). 

Economic Importance of Sugarcane Aphid 

SCA is a destructive pest of sorghum (Sorghum bicolor (L. Moench)) in tropical 

and subtropical regions of the world; it is known to occur in Africa, Asia, Australia, 

South and North America (Singh et al., 2004). Outbreaks of SCA almost always follow 

cultivation of sugarcane (Saccharum officinarum (L. (Poaceae)) and sorghum (Manthe, 

1992). An ecologically wide spread parthenogenetic species such as SCA is considered a 

“superclone” (Gilabert et al., 2015). 
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Figure 4 States and counties in the United States of America where sugarcane 

aphid was reported in 2015. 17 States (417 counties) were affected by the aphid, 

compared to only four States and 38 counties in 2013. Adapted from Bowling et al., 

2016a and USCP, 2017. 
 

 

 

Sugarcane aphid was of minimal economic importance in North America until 

2013 when a rapid increase in SCA numbers affected sorghum in Texas and Louisiana 

(Villanueva et al., 2014). Incidences prior to this were typically on sugarcane (Summers, 

1978; White et al., 2001). Since 2013, SCA has moved across sorghum growing regions 

in the USA and is now an established and highly problematic pest (Figure 4). 

SCA can cause economic grain yield losses in cultivated sorghums (Sharma et 

al., 2014). A heavy infestation at germination can kill sorghum seedlings or reduce yield 

significantly. At boot stage a heavy infestation of aphids may result in reduced grain 

yield and quality (Knutson et al., 2016). Poor grain yield and quality reduces the value of 
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sorghum and lowers incomes for farmers, hence the importance of addressing this 

problem. 

Effects of Sugarcane Aphid on Sorghum 

Biotic stress caused SCA can be very significantly in susceptible grain and 

forage sorghums. The effect of SCA can be very devastating and reduce yields 

considerably. To avoid yield losses due to SCA, keeping pest populations below 

economic threshold levels is essential (Pedigo et al., 1986; Villanueva et al., 2014; 

Gordy et al., 2015; Knutson et al., 2016). 

The degree of damage caused by SCA depends on the type of germplasm 

(resistant versus susceptible), the plant growth stage when infestation occurs and the 

aphid population pressure. While resistance to the pest is documented, no sorghum 

genotype is immune to the pest. In terms of growth stage (Vanderlip and Reeves, 1972), 

sorghum is susceptible in all three phases of development (seedling; vegetative; and 

reproductive), but due to environmental conditions and seed treatments, SCA infestation 

is rare in the seedling stage (Mbulwe et al., 2016). Infestations in the vegetative and 

reproductive phases are more common. 

Sorghum plants affected by SCA exhibit many or some of the following 

symptoms: presence of honeydew on leaves, stems and panicles; reduced plant growth 

rate; mottled or browning of leaves; and reduced yields and premature plant death 

(USAID-ARCC, 2014). While the SCA does not inject toxins in the plant during feeding 

(Knutson et al., 2016) it depletes nutrients from the plant and is notorious for production 
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of honeydew that encourages growth of grain mold. The honeydew can reduce the 

effectiveness of fungicides (Buntin, 2012). 

In South Africa, grain yield reductions between 46-78% have been reported 

(Matthee, 1962; Van Rensburg and Van Hamburg, 1975; Van den Berg et al., 2003). In 

the USA, and Mexico, SCA has been implicated in losses of up to 50% of expected grain 

yield (Villanueva et al., 2014). SCA also affects the quality of grain for malt (Van den 

Berg et al., 2003). Reductions in grain quality are influenced by reduced nutrient supply 

to the developing grain and honeydew that triggers secondary infections and grain 

molding. The mold affects the quality of grain carbohydrates and proteins (Leung, 

2002). Eventually the ability of the grain to germinate and malt is drastically reduced 

(Van den Berg et al., 2003). 

Aphids feeding on leaves deplete the cell sap (nutrients), disrupt photosynthesis 

and cause damage (chlorosis). This may affect the nutrient composition of forage 

sorghums (forage, hay and silage) and reduce plant vigor and plant health in susceptible 

plants. If the infestation is severe plant development may be disrupted. Disruption of 

plant development during dry matter accumulation of cereals and grasses changes plant 

nutrient composition (Torrecillas et al., 2011). It follows that aphid infestations may 

possibly affect forage quality in sorghums but this remains to be verified. 

Finally, besides the negative biological effects, sugarcane aphids affect yield by 

reducing harvesting efficiency. Sorghum infected with aphids and honeydew are a 

nuisance to machinery used for harvesting. Sticky leaves and grain tends to clump 

together and block moving parts of machinery. The end result is work stoppages and lost 
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time (Villanueva et al., 2014). Clumpy grain easily falls to the ground and a considerable 

percentage of the harvest is lost. 

Attempts to use early detection systems are being made using aerial multispectral 

remote sensing cameras that use Normalized Difference Vegetation Index (NDVI). 

NDVI uses visible near-infrared light. The idea behind this approach is to have a quick 

and inexpensive way of detecting SCA in sorghum fields (Elliott et al., 2015). Remote 

sensing techniques are made possible because NDVI readings and plant injury 

(chlorosis) are negatively correlated and significant. NDVI readings essentially measure 

chlorophyll, an indicator of photosynthetic activity in plants. Photosynthetic activity is 

disrupted by aphid feeding and can be detected using multispectral sensors (Goggin et 

al., 2015). This method is useful for crops grown on a large scale such as sorghum. 

Control of Aphids 

Integrated pest management  

Utilizing one method of pest control is often futile. Combining several strategies 

is more sustainable (Horber, 1980; Brewer et al., 2016), hence the philosophical concept 

of Integrated Pest Management (IPM). The IPM approach consists of combining and 

utilizing different pest control methods in an economical and environmentally sensitive 

approach to manage pests (Akbar et al., 2011). IPM may comprise using resistant 

varieties, crop rotations, alternate planting to allow some plants to escape aphid attacks, 

and selective use of insecticides. Overall, IPM is designed to minimize risks to the 

environment, human, animal and plant health. Thus, development of new varieties 

resistant varieties to SCA is an integral component of the IPM concept. 
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Chemical control 

Currently, chemical control is the most effective option for managing SCA and is 

the only method available to contain SCA infestations especially once pest levels reach 

economic thresholds (Gordy et al., 2015). The use of broad spectrum chemicals may kill 

or disrupt non-targeted beneficial insects that help in the biological control of aphids. 

Highly effective chemicals put a greater selection pressure on aphids and cause the 

evolution of exceptionally virulent bio-types. In the end, aphids can easily develop 

resistance against chemical insecticides (Balikai, 1993). Nonetheless, the harmful effects 

can be minimized by using selective insecticides. Seed dressing insecticide is another 

way of minimizing deleterious effects on beneficial insects. 

In the U.S. chemical control options for SCA are limited by label restrictions. In 

March 2014, Tranform WG® was approved for emergency exception (USEPA, 2014) 

and remains an option for control of SCA. More recently, Sivanto has been approved for 

use and is an important option given regulatory challenges related to using Transform 

WG®. Malathion, Dimethoate and Chlorpyrifos have labels for SCA control as well. 

Biological control 

Research on the use of biological control to manage aphids has produced modest 

success in the past partly because few farmers, if any, have adopted this method of 

control, and inadequate policies on biological control (Kring and Gilstrap, 1984; Van 

Lenteren, 1988). Regardless, biological control occurs naturally (Waage, 2007). 

Biological control of aphids makes use of parasitoids and predatory insects like wasps, 

lady bugs, lacewings and syrphid flies (Van Lenteren, 1988; Knutson et al., 2016). 
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Biological control is easily influenced by weather. For instance, hot and dry weather 

tends to favor SCA outbreaks rather than natural enemies (Sharma, 1993; Sharma et al., 

2014). For biological control to be effective, natural enemies of aphids need to be 

conserved either in natural vegetation, border crops or in surrounding crops (Van 

Rensburg and Van Hamburg, 1975). 

Cultural control 

There are a number of highly recommended management practices to reduce 

aphid infestations, termed, “good cultural practices” (Edwards, 1989). Crop rotation has 

proven to be a good method of managing insect pest outbreaks (Buttel and Shulman, 

1997). Burying crop residues and eliminating volunteer crop also assists in reducing 

aphid populations (Abawi and Widmer, 2000). Planting aphid resistant varieties with 

good vigor is a recommended practice to manage aphids (Buntin, 2009) and can be 

considered a part of cultural control. 

Host plant resistance 

Host-plant resistance compliments chemical, biological and cultural control 

(Peters and Starks, 1990; Knutson et al., 2016) and will increase the effectiveness of 

these control methods. Resistance as used in this dissertation refers to the trichotomous 

“categories of resistance” scheme (antibiosis, antixenosis or tolerance) in a host-plant 

(Painter, 1951). Resistance in this research was not equal to immunity. It was defined as 

heritable characteristics of a plant that influence the amount of damage done by the 

insect. However, Stout proposed a dichotomous scheme of “plant defense mechanisms” 
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(Stout, 2013). He only identified 2 types of “plant defense mechanisms”, resistance and 

tolerance, of which resistance encompasses antibiosis and antixenosis. 

Sorghum germplasm exhibits genetic variation for aphid damage and durable 

resistance should be possible. Durable resistance is when a host-plant possess both 

vertical and horizontal resistance (Palloix et al., 2009). Expression of variation to aphid 

damage is found in elite lines, landraces and wild sorghums (Sharma et al., 2014). 

Nevertheless, most sorghum hybrids currently grown in the USA are susceptible and 

have low levels of tolerance to SCA. Evidence reveals that wild sorghums or grassy 

sorghums tolerate heat, drought, nutritional stress, pests and diseases better than 

cultivated sorghums (Li et al., 2008). And so, wild sorghums, though challenging to 

work with in conventional breeding programs, are a potential source of SCA resistance. 

Even if resistant hybrids of sorghum are available, they might not be the preferred 

varieties by farmers or sorghum processing industries. As a result, crop improvement is 

required in existing cultivated sorghums to breed in durable resistance to SCA. Durable 

resistance is effective resistance in a widely cultivated crop (Scott et al., 1980). 

Resistance to SCA in sorghum may be the result of structural or biochemical 

traits. Sorghums with a higher nutritional content were reported to attract higher aphid 

populations than those with lower nutrition (Akbar et al., 2011). Additionally, plants 

with higher nitrogen levels were reported to be more susceptible to aphid outbreaks 

(Hsieh, 1988). Alternatively, the presence of cyanogenic glucosides (CNglcs) and 

phenolic compounds found in plants such as sorghum have been implicated in induced 

defense against insect pests (Kahn et al., 1997; Fürstenberg-Hägg et al., 2013). Whether 
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these compounds are involved in defense against SCA is a research area that requires 

further investigation. 

Physical barriers such as presence of wax and trichomes are among traits also 

associated with antixenosis (non-preference) (Singh et al., 2004). Other traits in 

sorghums that have been implicated in pest resistance include small leaves, narrow 

leaves, fewer leaves, erect leaves at seedling stage and vigorous growth after plant 

germination (Mote and Shahane, 1994). Expression of resistance influenced by the 

environment (Kogan, 1994), is also called ecological resistance (Painter, 1951). For 

example, early flowering plants can evade aphid infestation and so breeding for earliness 

by manipulating maturity genes may be essential. 

Identifying additional sources of resistance is key for durable resistance. In 

addition, bioinformatics and genomic resources available online such as the sequenced 

pea aphid (Acyrthosiphon pisum) genome (Legeai et al., 2010) are sources of 

information for aphid management. The genetic database for sorghum (Paterson, 2008) 

is another useful resource critical for understanding the genetics behind host-plant 

resistance to SCA in sorghum germplasm. 

Variation for SCA resistance exists in sorghum germplasm. In India, the sorghum 

germplasm lines: ICSB215; ICSB323; ICSB724; ICSR165; ICSV12001; ICSV12004 

and IS40615 manifested resistance to aphid outbreaks under natural and artificial 

infestation. A list of some of the resistant germplasm lines from all over the world is 

available (Singh et al., 2004). The mechanisms of resistance in these lines have been 

mainly identified as antixenosis and antibiosis. Antixenosis has been observed in the 
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following germplasm lines: R.TAM428; IS1144C; IS1366C; IS1598C; IS6416C; 

IS6426C; IS12661C and IS12664C. R.TAM428, IS12609C, and IS12664C also 

exhibited antibiosis (Singh et al., 2004). 

Sorghum breeders are actively developing varieties resistant to SCA and are 

determining the genetics of resistance. In a study of a population created from a 

susceptible line (B.Tx623) and a tolerant line (HN16), SCA resistance was controlled by 

a single dominant gene (Pi and Hsieh, 1982; Singh et al., 2004; Chang et al., 2012; 

Wang et al., 2013). It is believed that the genetic region on chromosome 6 that harbors 

the gene for resistance to SCA resides in a chromosomal segment of about 126 kilobase 

(kb) containing only five predicted genes (Chang et al., 2012; Wang et al., 2013). 

Previous heritability studies on resistant F1 hybrids and F2 progenies based on 

crosses between susceptible (A.Tx3048/B.Tx378) and resistant (R.TAM428/SC170) 

lines disclosed that the resistance trait for SCA is dominant (Manthe, 1992). Resistance 

was reported as monogenetic because the segregation pattern; resistance vs susceptible, 

showed Mendelian inheritance pattern (3:1). Additive and complementary gene action 

was also observed in sorghum lines. 
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CHAPTER III 

EVALUATING SORGHUM GERMPLASM FOR RESISTANCE TO 

SUGARCANE APHID* 

 

Introduction and Objectives 

The sugarcane aphid Melanaphis sacchari, (Zehntner) was first reported on 

sorghum in the United States in 1922 (Wilbrink, 1922). The sugarcane aphid (SCA) has 

long been a pest of sorghum in regions of Asia and Southern Africa but until recently 

this insect had no significant effect on sorghum productivity in the U.S. and was rarely 

noted to even occur in sorghum fields. Late in the 2013 production season, the SCA 

suddenly expanded its regional presence by infesting grain sorghum in the Upper Gulf 

Coast of Texas, Louisiana and Mississippi and then moved into sorghum production 

regions throughout South Texas. In 2014, the SCA continued to disperse through 18 

southern and southeastern grain sorghum producing states representing several million 

acres of grain sorghum production. The presence of SCA in sorghum fields has also been 

reported as far north as Kansas and in Arkansas, Tennessee, Alabama, Georgia, Florida, 

South Carolina, North Carolina, Arizona and California. 

1The SCA initially infests sorghum on the underside of the lower leaves with 

populations increasing rapidly from flowering to grain-fill (Van Rensburg et al., 1975). 

While SCA feeding does not appear to introduce toxins into the leaves, the sheer 

                                                 
* Reprinted with permission from “Journal of Plant Registrations” by Mbulwe, L., G.C. Peterson, J. Scott-

Armstrong, and W.L. Rooney. 2016. Registration of Sorghum Germplasm Tx3408 and Tx3409 with 

Tolerance to Sugarcane Aphid (Melanaphis sacchari ((Zehntner)). Journal of Plant Registrations, 10:51-

56. 
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numbers of aphids that accumulate results in the leaves and inflorescences being covered 

by aphids or sticky honeydew followed by sooty mold (due to fungal growth from the 

sugar). This can result in yield loss and harvesting problems associated with sticky 

plants that make combines and harvesters less efficient. In drought stress situations, 

combining post-flowering drought stress with aphid infestation may enhance the 

occurrence of charcoal rot (Van Rensburg et al., 1975; Sharma et al., 2014). If 

infestation occurs prior to reproductive growth, the diversion of energy caused by severe 

infestation inhibits panicle development and/or grain development resulting in yield 

reduction. 

Given that sorghum is negatively affected in various ways by high SCA 

infestations control methods are required. Seed-based systemic insecticides offer 

seedling protection but gradually dissipate, providing protection for up to one month past 

planting. Post-emergence application of labelled insecticides is effective for short-term 

control of the aphid, but fields must be continually monitored and insecticide 

applications add to production expense and potential development of insecticidal 

resistance. In 2014, Section 18 emergency exemptions were approved in several states 

for Transform WG® which is effective but were restricted to two applications. In 2015, 

Sivanto® was approved under section 3 federal registrations with restrictions (Bowling et 

al., 2016a). For these reasons, genetic resistance is the best long-term option for SCA 

control. 

The history of sorghum and greenbug (Schizaphis graminum (Rondani)) provide 

an example of effective deployment of genetic resistance (Young and Teetes, 1977). The 
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greenbug became a significant pest of sorghum production in the U.S. in the late 1960’s 

and early 1970’s. Much like the SCA, initial control of the greenbug was based on 

chemical application but sorghum breeding programs were able to identify sources of 

genetic resistance to the greenbug. Resistance from these sources was successfully bred 

into commercial sorghum hybrids which reduced the need for chemical control. Many 

sources of resistance to SCA have been identified in Asia and Southern Africa (Manthe, 

1992). Preliminary results from the evaluation of sorghum germplasm for SCA 

resistance suggest that resistance sources from Southern Africa are effective against the 

SCA in Texas (L. Mbulwe, unpublished data). 

Herein, we describe the evaluation of sorghum germplasm for tolerance to SCA 

and the identification of two seed parent lines (B.Tx3408 and B.Tx3409) that possess 

high levels of tolerance to the SCA in both greenhouse and field trials that is stable 

across environments. Tolerance in these lines is dominant, meaning that tolerance need 

to be present in only one parent to produce hybrids that are tolerant as well. A/B.Tx3408 

and A/B.Tx3409 should have application as both seed parents in hybrid production as 

well as breeding new lines with tolerance to SCA. 

Materials and Methods 

A/B.Tx3408 and A/B.Tx3409 were developed from intentional breeding crosses 

using the pedigree method of plant improvement. Breeding crosses for B.Tx3408 and 

B.Tx3409 were made in College Station, Texas. Selection in subsequent generations was 

completed in nurseries throughout Texas and Puerto Rico over several years. The 

progenitors of B.Tx3408 and B.Tx3409 were individually selected from a single panicle 
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in the F6 generation and then bulk pollinated as an inbred line since that time. The male 

sterile version (A.Tx3408 and A.Tx3409) of each line was developed using A.Tx623 as 

the A1 cytoplasm source followed by five generations of backcrossing to the respective 

recurrent parent (B.Tx3408 and B.Tx3409). A.Tx623 is the sterile counterpart to 

B.Tx623 and both were released by the Texas Agricultural Experiment Station in 1977. 

The pedigree of B.Tx623 is B.Tx3197*SC170-6. As SCA was not a significant problem 

while A.Tx3408 and A.Tx3409 were developed, there was no selection for tolerance 

until these lines reached more advanced generations. 

 

 

Table 1 Summary of sugarcane aphid (SCA) evaluation environments in Texas, 

2014, with test planting date, date of SCA infestation, growth stage at initial SCA 

infestation and relative SCA infestation pressure. Ratings were based on a scale 

proposed by Sharma (Sharma et al., 2014). 
 

Type of Information Weslaco 

Spring 

Corpus 

Christi 

College 

Station 

Weslaco- 

Fall 

Planting Date 

 
Feb. 20 Mar. 10 Apr. 6 Aug. 15 

Date of Natural SCA 

Infestation 

~May 18 ~June 8 ~July 10 ~Sep 20 

Crop Growth Stage at 

Infestation 

 

 

Grain Fill - 

Milk to Soft 

Dough 

Grain Fill - 

Soft to Hard 

Dough 

Grain Fill - 

Hard Dough 

Vegetative 

to Pre-Boot 

Relative SCA pressure at 

peak (approximate no. 

SCA plant-1) 

High 

(>500) 

Moderate 

(>350) 

High 

(>500) 

High 

(>500) 

SCA Rating Date Jun. 4 Jun. 3 Aug. 10 Oct. 11 

Ratings were based on  

- Leaf 

chlorosis 

- Honeydew 

- Leaf 

chlorosis 

- Honeydew 

- Leaf 

chlorosis 

- Honeydew 

 

- Panicle 

Emergence 

- Seed Set 

- Leaf 

chlorosis 

- Plant death 
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B.Tx3408 has a pedigree of B.Tx631/08PR047. B.Tx631 was released by the 

Texas Agricultural Experiment Station in 1985 (Miller, 1986). 08PR047 is an AgriLife 

Research breeding line selected for agronomic desirability and greenbug resistance with 

the pedigree GB102A/B.Tx631. GB102A is a line originally developed for resistance to 

biotype C greenbug, and subsequently biotype E greenbug. The GB102A pedigree is 

(((4dwf BTx378*(4 dwf B.Tx378*Capbam der))-1-1-6-1)*B.Tx3042). Capbam is a 

greenbug biotype C and E resistant line originally introduced from Russia. The other 

lines in the ‘Capbam der’ are not known. 

B.Tx3409 has a pedigree of DLON357/08PR047. DLON357 is a seed parent 

with the pedigree of (B.Tx643*(B7904*(SC748*SC630))). B7904 is an unreleased sister 

line of B.Tx629 (Miller, 1986). DLON357 was developed in the AgriLife Research 

program and selected for agronomic performance and post-flowering drought tolerance. 

To identify lines with SCA tolerance, 500 Texas A&M AgriLife Research lines 

were evaluated in Weslaco, Texas in the fall of 2013. The trial was planted in mid-

August and heavy infestations (> 1000 SCA leaf-1 plant-1) occurred in these plots in mid- 

to late-September. Infestations were severe enough to restrict or stop growth; susceptible 

genotypes never headed while tolerant lines flowered and set grain (Figure 5). 
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Figure 5 Effect of sugarcane aphid (Melanaphis sacchari (Zehntner) on sorghum 

growth and development of B.Tx3408 (left) and a susceptible breeding line (right) 

in a fall planted nursery in Weslaco, Texas, 2013. 
 

 

 

All lines that flowered in that preliminary screening as well as selected checks 

were evaluated in controlled greenhouse infestations by the USDA-ARS, in Stillwater 

OK using methodology described by Armstrong et al. (2015). Lines identified and used 

as tolerant checks included R.Tx2783 (Peterson, et al., 1984), R.TAM428 and 

susceptible checks included R.Tx2737 (Johnson et al., 1982) and R.Tx7000. Lines that 

demonstrated consistent tolerance in both field and greenhouse trials were advanced for 

testing in replicated trials in four environments in 2014 (College Station, Corpus Christi 

and Weslaco (Spring and Fall), Texas) under natural infestations of SCA. In addition to 
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those lines, hybrids produced using these lines were also evaluated. Across these 

environments, SCA pressure varied and reached a peak at different growth stages in 

sorghum development therefore the ratings for tolerance were based on different criteria 

in each environment (Table 1). 

The experimental design in the field was a randomized complete block design 

(RCBD) with four replications. Standard crop management practices for sorghum 

production in each region were used with the exception that no insecticides (seed-based 

or foliar) were applied during the evaluation. Upon aphid infestation, the SCA 

population (levels of infestations) was measured using methods described by Armstrong 

(Armstrong et al., 2015). Damage caused by SCA was rated using the scale proposed by 

Sharma (Sharma et al., 2014) where 1 = few aphids present on lower one to two leaves, 

no apparent leaf damage; 2 = lower one to two leaves showing aphid infestation, 1 - 20% 

of the infested leaves/area showing damage symptoms; 3 = lower two to three leaves 

showing aphid infestation, 20 - 30% of the infested leaves/area showing damage 

symptoms, moderate levels of honeydew/black molds on the leaves/soil; 4 = lower three 

to four leaves showing aphid infestation, 30 - 40% of the infested leaves/area showing 

damage symptoms, moderate levels of honeydew/black molds on the leaves/soil; 5 = 

lower four to five leaves showing aphid infestation, 40 - 50% of the infested leaves/area 

showing damage symptoms, moderate levels of honeydew/black molds on the 

leaves/soil; 6 = aphid infestation up to five to six leaves, 50 - 60% of the infested 

leaves/area showing damage symptoms, heavy honeydew and black mold on the leaves 

and on the soil below; 7 = aphid infestation up to six to seven leaves, 60 - 70% of the 
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infested leaves/area showing damage symptoms, heavy honeydew/black molds on the 

leaves and on the soil below; 8 = aphid infestation up to seven to eight leaves, 70 - 80% 

of the infested leaves/area showing damage symptoms, heavy honeydew/black molds on 

the leaves and on the soil below; 9 = heavy aphid infestation up to the flag leaf, 80% of 

the leaves showing aphid damage (drying-up symptoms), heavy honeydew/black molds 

on the leaves and on the soil. Analyses were completed by comparing experimental 

entries with control susceptible lines. 

For agronomic performance, experimental hybrids of A.Tx3408 were evaluated 

in field trials grown at Monte Alto and College Station, Texas in 2014. Hybrid seed of 

A.Tx3409 was not available for evaluation. Agronomic production practices standard for 

the region were used in both locations including fertilization at recommended rates. One 

post-plant irrigation was applied in Monte Alto while the College Station test was rain-

fed. SCA were present at both locations; at Monte Alto, the SCA were controlled at the 

hard dough stage with an aerial application of Transform WG® at labeled rates. In 

College Station, the SCA infestation was too late to have any effect on the hybrids. At 

both locations, standard agronomic data (plant height, days-to-anthesis, grain yield, test 

weight and moisture content) were measured. All statistical comparisons were completed 

using PROC GLM in SAS (v 9.3) and means were compared with test trial L.S.D values 

(P < 0.05). 
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Results 

Characteristics of germplasm 

Inbred lines 

B.Tx3408 and B.Tx3409 are maintainers of sterility in the A1 CMS system. 

While their reaction in other cytoplasmic genetic male sterility systems (A2 and A3) has 

not been tested, based on pedigree it is likely a maintainer of sterility in both of these 

systems. Both lines are genetically three-dwarf (dw1Dw2dw3dw4) with some variation 

in height (Table 2). Both lines are photoperiod insensitive and medium (B.Tx3409) to 

medium late (B.Tx3408) maturity (Table 2). B.Tx3408 has white grain and tan plant 

color while B.Tx3409 has red grain and purple plant color. The endosperm of both lines 

is normal (non-waxy). 

 

 

Table 2 Agronomic data for B.Tx3408, B.Tx3409 and standard seed parents grown 

in three environments (Weslaco, College Station and Lubbock) in Texas, 2014. 
 

Trait B.Tx3408 B.Tx3409 B.Tx2928 B.Tx631 B.Tx645 LSD 

Days-to-

anthesis 

Weslaco 

College Station 

Lubbock 

 

83 

77 

63 

 

80 

77 

60 

 

70 

74 

63 

 

84 

75 

63 

 

79 

72 

63 

 

2.1 

2.2 

2.0 

Plant height 

(cm) 

Weslaco 

College Station 

Lubbock 

 

135 

142 

93 

 

117 

117 

90 

 

102 

112 

90 

 

150 

137 

93 

 

104 

117 

90 

 

6.1 

5.6 

4.3 

Panicle exertion  

Weslaco 

College Station 

Lubbock 

 

5.1 

7.6 

7.6 

 

10.2 

7.6 

7.6 

 

10.2 

10.2 

5.2 

 

10.2 

10.2 

10.2 

 

10.2 

5.1 

3.5 

 

1.0 

3.1 

1.8 
Days-to-anthesis (d), Panicle exertion (cm), LSD (P>0.05). 
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Sugarcane aphid tolerance 

While the numbers of SCA in the trials varied (Table 1), each trial was uniformly 

infested with SCA (they were found in all genotypes). The reaction of B.Tx3408 and 

B.Tx3409 to SCA varied in each environment, dependent primarily on the timing and 

pressure of infestation, but B.Tx3408 and B.Tx3409 consistently had the lowest damage 

ratings of any genotypes and were significantly better than the susceptible genotypes 

R.Tx2737 and R.Tx7000 (Tables 3 and 4). Compared to the tolerant checks, B.Tx3408 

and B.Tx3409 were comparable to R.Tx2783 and slightly more tolerant than R.TAM428 

in greenhouse assays (Table 3) and with similar, albeit less consistent trends observed in 

the field trials (Table 4). 

 

 

Table 3 Aphid damage, seedling height (cm), and number of leaves for sorghum 

entries subjected to sugarcane aphid infestations under no-choice greenhouse 

evaluation in Stillwater, Oklahoma, 2014. 
 

Entry Aphid Damagea Seedling Heightb Leavesc 

  
cm no. 

R.Tx2783 1.69a 32.06a 4.50a 

B.Tx3408 1.71a 30.82a-b 4.47a 

B.Tx3409 3.64a-c 23.68a-c 4.22a-b 

R.TAM428 5.01b-d 20.05b-d 3.93a-d 

R.Tx2737 8.55d-e 17.01c-d 3.25b-d 

R.Tx7000 8.76d-e 10.88d 3.09d 

R.Tx436 8.88e 8.11d 3.14c-d 

R.Tx430 8.99e 10.13d 3.16c-d 
a = Aphid damage measured by chlorosis ratings (1 - 9); column means followed by the same lowercase 

letters are not significantly different, P > 0.05; LSD. 

b = Mean difference in seedling height, (controls - Infested); column means followed by the same 

lowercase letters are not significantly different, P > 0.05; LSD. 

c = Mean difference in leaf numbers; column means followed by the same lowercase letters are not 

significantly different, P > 0.05; LSD. 
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Agronomic performance of A.Tx3408 hybrids 

A.Tx3408 hybrids had tolerance to SCA similar to that observed in B.Tx3408 

(Table 4). The same trend was observed for a single observation of A.Tx3409 hybrid in 

the 2014 Weslaco Fall environment. The consistent presence of tolerance in the hybrids 

demonstrates that the SCA tolerance in these lines is sufficiently dominant and therefore 

tolerance is not required in both parents. This was especially noticeable in the hybrids 

using R.Tx436 as a pollinator. From the greenhouse studies, R.Tx436 is susceptible to 

SCA (Table 3) but A.Tx3408/R.Tx436 and A.Tx3409/R.Tx436 hybrids are tolerant 

(Table 4). 

 

 

Table 4 Aphid damage, for sorghum entries subjected to sugarcane aphid 

infestations under natural infestation in four field environments (Weslaco, Corpus 

Christi and College Station), Texas, 2014. 
 

 

Weslaco 

Spring 

Corpus 

Christi 

College 

Station 

Weslaco- 

Fall 

Combined 

Lines 

     B.Tx3408 2.5g-h 2.2g 4.7e-g 1d-e 2.6e 

B.Tx3409 4.0d-g 2.1g 5.3d-f 1e 3.1d-e 

R.TAM428 (Tol. check) 5.0c-e 3.9e-f 6.0b-e 6a-b 5.3a-c 

R.Tx2737 (Sus. check) 8.7a 6.5b-c 8.3a 4.7a-c 7.1a-b 

R.Tx7000 (Sus. check) 7.5a-b 7.2a 8.0a-b 7a 7.4a 

Hybrids 

     A.Tx642/R.Tx2783 5.5c 3.7e-f 5.8c-e 1e 4.0c-e 

A.Tx2752/R.Tx2783 6.1b-c 3.9e-f 5.0e-g 2c-e 4.3b-d 

A.Tx2752/R.Tx437 7.5a-b 5.6d 5.1e-g 3.7b-e 5.5a-c 

A.Tx642/R.Tx436 4.5c-f 4.2e-f 5.7c-e 2.3c-e 4.2b-d 

A.Tx3408/R.Tx436 3.3f-h 1.9g 5.6d-e 1.3b-e 3.0d-e 

A.Tx3408/R.Tx437 2.7g-h 2.1g 5.4d-e 1e 2.8e 

A.Tx3409/R.Tx436 

   

1e 

 Aphid damage = chlorosis ratings on a scale of 1 = healthy; 2 = 1-5% chlorotic; 3 = 5-20%; 4 = 21-35%; 5 

= 36-50%; 6 = 51-65%; 7 = 66-80%; 8 = 81-95% and 9 = 95-100% or dead , df = 15, 96, F = 37.2, P > F = 

0.0001; means followed by the same lowercase letters are not significantly different, P > 0.05; LSD. Tol. = 

tolerant and sus. = susceptible. 
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In terms of agronomic performance, A.Tx3408 hybrids were comparable in 

performance with public check hybrids in yield trials in South and Central Texas (Table 

5). In these trials, no statistical differences in maturity, height, grain test weight, harvest 

moisture content or grain yield were detected between A.Tx3408 and A.Tx631 hybrids 

with the same pollinators (Table 5). A.Tx3408 hybrids were comparable in agronomic 

performance with A.Tx631 hybrids because SCA were either controlled or infestation 

occurred too late, it was not possible to assess the relative value of SCA tolerance in 

these hybrids. 

 

 

Table 5 Agronomic trait means of hybrids of A.Tx3408 compared with two public 

check hybrids grown in Weslaco and College Station, Texas, 2014. Hybrids in 

Weslaco were irrigated once and insecticide applied once to control the sugarcane 

aphid during the production season; while the College Station trial was rain-fed 

and no insecticide was applied. Aphid pressure in both locations was similar to that 

present in the SCA trials. 
 

Trait A.Tx3408

/R.Tx436 

A.Tx3408

/R.Tx437 

A.Tx631 

/R.Tx436 

A.Tx631 

/R.Tx437 

L.S.D 

(P<.05) 

Days to Anthesis (d)      

College Station 78 75 78 74 2 

Weslaco 78 78 78 79 1 

Panicle exertion (cm)      

College Station 18 15 18 18 6 

Weslaco 15 15 12 8 8 

Moisture content (%)      

College Station 11 11 11 11 1 

Weslaco 15 15 14 15 1 

Test weight (kg hl-1)      

College Station 75 74 75 73 2 

Weslaco 74 72 74 72 1 

Plant height (cm)      

College Station 152 152 152 152 8 

Weslaco 140 143 140 140 10 
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Table 5 Continued 

Trait A.Tx3408

/R.Tx436 

A.Tx3408

/R.Tx437 

A.Tx631 

/R.Tx436 

A.Tx631 

/R.Tx437 

L.S.D 

(P<.05) 

      

Grain yield (kg ha-1)      

College Station 10,000 9,235 9,220 8,967 1,510 

Weslaco 6,700 6,868 6,203 6,750 1,350 

 

 

 

Breeding consideration for sugarcane aphid evaluation 

The differences in SCA ratings in the field environments reflect the difficulty and 

challenge of rating SCA tolerance in sorghum. First, the definition of tolerance changes 

depending on the timing of SCA infestation. For infestations that occur post-anthesis, the 

visual rating is based primarily on leaf chlorosis and honeydew deposit. However, it is 

still not known exactly what effect post-anthesis infestation of SCA has on yield (these 

studies are underway) and assessment of yield to make early generation selections in a 

breeding environment are not possible. For infestations that occur prior to anthesis, the 

visual and agronomic effects are much more obvious. In these infestations, damage is 

manifested as delayed flowering or no panicle emergence at all and in severe cases, plant 

death. In this context, B.Tx3408 and B.Tx3409 are exceptional in that they consistently 

showed minimal effect of the SCA on panicle development when infested prior to 

anthesis (Weslaco Fall 2014, Table 4). This, in fact, was the type of environment in 

which they were first identified (Weslaco, fall 2013). 

Neither B.Tx3408 nor B.Tx3409 are immune to SCA and the type of resistance 

depends on the growth stage of the plant. This germplasm appears to escape or avoid 

excessively high numbers of SCA and/or it can maintain growth and development 
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despite the presence of SCA. Regardless of the type of resistance, it does seem valuable 

in mitigating the effect of SCA on sorghum productivity. The specific type of resistance 

and how it relates to protecting yield potential must still be determined. 

The resistance in both B.Tx3408 and B.Tx3409 is very likely derived from their 

common parent. 08PR047 was originally selected for greenbug biotype C and E 

resistance, this line is also resistant to SCA. It is unknown if resistance to greenbug 

biotype C and E has functionality for SCA as well. Not all sources of resistance to 

greenbug are effective against SCA (Armstrong et al., 2015). For example, while 

R.Tx2783 demonstrates tolerance to both pests, SC110-9 (a parent in R.Tx2783) is 

resistant to SCA but susceptible to all greenbug biotypes. What causes this difference is 

unidentified at this time and further research will be necessary to determine if tolerance 

to SCA is associated in any way with resistance to greenbug biotypes. 

Discussion 

A/B.Tx3408 and A/B.Tx3409 were released to provide the sorghum breeding 

industry with new sources of tolerance to SCA, which is a new and devastating insect 

pest of sorghum. This germplasm is sufficiently developed to be used as either a seed 

parent in hybrid combination or as a breeding line for the development of new seed 

parents with SCA tolerance. 

Availability 

Seed of A/B.Tx3408 and A/B.Tx3409 will be maintained by personnel in the 

Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 

77843-2474. Requests for this germplasm can be directed to W.L. Rooney, AgriLife 
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Research Sorghum Breeding or to Texas A&M Technology Commercialization, Texas 

A&M University, College Station, Texas 77843-3369. 
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CHAPTER IV 

DETERMINING EFFECT OF SUGARCANE APHID ON YIELD AND 

QUALITY OF FORAGE HYBRIDS 

 

Introduction and Objectives 

The SCA presents problems in managing sorghum for hay, forage and silage 

(collectively called forage sorghum). The greater canopy of forage sorghums makes it 

more difficult for insecticides applied on foliage to go through to lower lying leaves. On 

the other hand, concerns about chemical residues in farm products (animals and crops) 

and insecticide resistance has prompted research on reducing insecticide rates (Pardío et 

al., 2012; Handford, 2014; Knutson, 2016; Bean, 2017). Because of pesticide residue 

restrictions, managing SCA becomes even more complex (Armstrong et al., 2016). 

Grazing, feeding or haying crops sprayed with pesticides (insecticides or herbicides) are 

restricted from immediate use for a specified time window which may be as much as 

eight weeks in some cases. 

Evaluating resistance to SCA or the effect of reduced application rates is of 

paramount importance. Thus, there was need to make efforts to determine the effects of 

SCA on the yield performance and quality of forage sorghum hybrids. The idea was to 

investigate if the response to heavy SCA infestation varied between controlled 

(insecticide) and uncontrolled (no-insecticide) crops in the field. The response of 

resistant and susceptible sorghum hybrids to heavy SCA pressure under natural 

conditions also needed to be investigated. Thirdly, photoperiod sensitive and 
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photoperiod insensitive hybrids needed to be evaluated in terms of how they react to 

SCA under heavy aphid pressure in the field. 

Forage sorghum hybrids have natural variation for many qualitative and 

quantitative traits. It is this variation that was explored to determine the effect of SCA on 

the performance of forage sorghums. This was done in summer (Lubbock, College 

Station, and Corpus Christi) and fall (Weslaco) in Texas 2016. The germplasm 

A.Tx3408 and A.Tx3409 developed by the Sorghum Breeding Program at Texas A&M 

AgriLife Research (Mbulwe et al., 2016) was used as the source of resistance. The goal 

was to determine the effect of SCA on the yield performance and quality of forage 

sorghum hybrids under natural SCA infestations and assess the viability of resistant 

hybrids in addressing this problem. 

Materials and Methods 

Plant germplasm 

Twelve forage sorghum hybrids were selected for evaluation, and these hybrids 

were composed of seed parents that varied in SCA tolerance levels. All of the pollinator 

parents were rated as susceptible to SCA. Four hybrids were produced using the SCA 

tolerant seed parents (A.Tx3408/R.Tx2910, A.Tx3408/R.Tx2909, A.Tx3409/R.Tx2785 

and A.Tx3408/R.Tx2785 (Mbulwe et al., 2016). The hybrids rated as susceptible 

included A.Tx645/R.Tx2909, A.Tx631/R.Tx2910, A.Tx645/R.Tx2910, 

A.Tx631/RTx2909, A.Tx631/R.Tx2785 and A.Tx645/R.Tx2785. A.Tx645 and A.Tx631 

are commonly used to produce forage hybrids (Rosenow et al., 2002; Miller, 1986). 

R.Tx2785 is a downy mildew resistant forage pollinator line that produces a photoperiod 
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insensitive hybrid (Frederiksen et al., 1983). A.Tx2909 and A.Tx2910 produce 

photoperiod sensitive forage hybrids (Rooney et al., 1998; Rooney and Aydin, 1999). 

Hybrid seed was produced in College Station, 2015. Due to seed limitations, not all 

hybrids were included in every location. 

Experimental design and locations 

To determine the effect of SCA on the yield and quality of forage hybrids, a 

split-plot design was used (Appendix II) with two whole plot treatments of insecticide 

(control) and no-insecticide, sub-plots in the study were hybrids. In the control, aphids 

were controlled to minimize infestation by spraying with Transform WG® at the rate of 

0.11L/ha. Aphids were not controlled in the other whole plot treatment. Differences in 

yield and quality of forage hybrids between whole plots was assumed to indication the 

effect due to SCA. 

 

 

Table 6 Dates of planting, SCA infestation, insecticide application and harvest for 

evaluating the effect of sugarcane aphid (SCA) on yield and quality of forage 

sorghum hybrids in four environments in summer and fall, Texas, 2016. 
 

Location Planting 

Date 

Date of 

SCA 

Infestation 

Date of 

Insecticide 

Application 

Date of 

Harvest 

Lubbock (insecticide) **** 25 May 30 Jun. 2 Aug. 26 Sep. 

Lubbock (no-insecticide)*** 6 Jun. 30 Jun. No-insect. No-insect. 

College Station-1 * 23 Mar. 26 Aug. 29 Aug. 18 Sep. 

College Station-2 **** Cut: 19 Sep. 31 Oct. 3 Nov. 21 Nov. 

Corpus Christi * 14 Apr. 23 May 27 May 6 Jul. 

Weslaco-fall*** 15 Aug. 19 Oct. 23 Oct. 29 Nov. 
Weslaco evaluated in fall. In Lubbock one half of the split-plot was each planted on different dates and 

locations. Aphid pressure according to location: ****Heavy (> 1000 SCA leaf-1 plant-1), ***high (500-

1000 SCA leaf-1 plant-1), *low (< 350 SCA leaf-1 plant-1). The population in College Station was initially 

high (500-1000 SCA leaf-1 plant-1) for a month then crashed. No-insect. = no-insecticide. 
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Each of the 12 hybrids planted in the split-plot trial was replicated four times in 

each whole plot planted in the four Texas locations (Table 6). In most locations, the two 

whole plot treatments were adjacent with a buffer to mitigate insecticide efficacy. 

However, in Lubbock, the whole plot effects were planted in separate fields on different 

days (Table 6). In College Station, the main crop (CS-1) and a second ratoon crop (CS-

2) were harvested. Plot sizes, spacing, agronomy and management of the crop was done 

according to agronomic practices standard for each location. 

Agronomic traits 

Regardless of SCA pressure, forage hybrids were harvested to measure yield 

potential. Because of the differences in photoperiod response, trials were purposely 

harvested later than normal for a photoperiod insensitive hybrid. In Weslaco and 

Lubbock, yield was estimated by hand harvesting 1.0 contiguous meter of the row and 

weighing the biomass using a portable electronic balance (Ohaus Defender® 5000 

Deluxe Bench Scale-250 lbs (113.4kgs). x .02 lb (0.01kgs)). In College Station and 

Corpus Christi harvesting was done using a tractor mounted 1-row forage harvester with 

an inbuilt forage collection and weighing system. In all locations, fresh biomass samples 

were pulled and weighed, followed by drying to stable weight in an electric oven drier 

(Three Phase Large Cabinet Oven, 400°F Max Temperature (230V) Model: BO-60EB). 

After dried, samples were reweighed to calculate moisture content at harvest, and 

samples were saved for composition analysis. 

Dried samples were ground in a Wiley Mill (Model No. 3, Serial number 

43102H) to pass through a 2 mm screen and used for compositional analysis. Forage 
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quality (percent nutrient composition) was determined using Near-Infrared Spectroscopy 

(NIR) (FOSS XDS Rapid Content™ Analyzer) using calibration curves developed in the 

Texas A&M AgriLife Research Sorghum Breeding Program (Hoffmann et al., 2012). 

Percent composition estimates were obtained for protein, cellulose, hemicellulose, lignin 

and ash. In addition, plant height (m), days to 50% anthesis, seed color, plant color and 

desirability were also measured (Appendix III). 

Statistical analysis 

The statistical model for the split-plot design with two treatments (insecticide and 

no-insecticide) is given by the formula: Yijk = μ + Ti + djk + Yj + TYij + εijk; were Yijk = 

observed damage due to the ith level of aphids (insecticide), μ = average damage 

resulting from aphids, Ti = fixed effect due to the ith level of aphids (insecticide), djk = 

random effect due to the kth plot (block) receiving the ith level of aphids (insecticide), 

Yj = fixed effect on different forage hybrids, TYij = fixed effect for the ith level of 

aphids on forage hybrids and εijk = experimental (random) error. The null hypothesis is 

denoted by: H0: ØT = 0 (H0: All Ti = 0) (Ott and Longnecker, 2015). Statistical 

comparisons were computed using the statistical software PROC GLM in SAS v 9.3 

(SAS Institute, 2011), and means were compared with test trial LSD values (P < 0.05). 

Included in the analysis was a single degree of freedom contrast of resistant versus 

susceptible hybrids. 
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Results 

Agronomic yield 

Aphid infestation levels varied depending on time and location. For example, the 

SCA infestation was non-existent to low in College Station-first harvest (CS-1) but 

heavy in the second harvest (CS-2) and in Lubbock (>1000 SCA leaf-1 plant-1). 

Differences in biomass yield were not detected among insecticide treatments in CS-1, 

but they were highly significant in CS-2, Lubbock and Weslaco (Table 7). 

In all locations, genotypes were different except in Lubbock where genotypes 

were not significant primarily because the insecticide and no-insecticide whole plots 

were planted on different dates. The environment, management and irrigation regime of 

whole plots was also different for insecticide and no-insecticide treatments in Lubbock. 

Some of the differences among genotypes were the effect of photoperiod 

sensitivity; photoperiod sensitive hybrids were higher yielding than photoperiod 

insensitive hybrids. Within these hybrids, no genotypic differences were detected. Single 

degree of freedom contrasts detected differences in yield response between resistant and 

susceptible hybrids in all environments in which SCA were present. 
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Table 7 Analysis of variance for effect of sugarcane aphid (SCA) (insecticide and 

no-insecticide) on forage sorghum hybrids (biomass yield per hectare (yield ha-1), 

Lubbock (LB) and College Station (CS-1 and CS-2) in summer and Weslaco in fall 

(WE-fall), Texas, 2016. 
 

Source of Variance Combined 

Locations 

CS1 CS2 LB WE 

Fall 

Genotype <0.0001* <0.0001* <0.0001* <0.3404 0.0001* 

Genotype Error <0.0001* <0.0001* <0.0001* 0.5826 0.0012* 

Insecticide <0.0001* 0.1436 0.0009* <0.0001* 0.0001* 

Insecticide Error 0.0048* 0.4451 <0.0420* <0.0001* 0.0003* 

Genotype x Insecticide 0.7958 0.3153 0.4982 0.3481 0.6819 

Replication(Insecticide) 0.5015 0.1371 0.1576 0.7981 0.1510 

Location <0.0001*     

Location x Genotype <0.0001*     

Location x Insecticide 0.0002*     

Locati. x Genoty. x Insect. 0.7961     

Corrected Total 0.0001* <0.0001* <0.0001* 0.0107* <0.0001* 

LS Means Contrast: R vs S <0.0001* <0.5629 <0.0001 <0.6540 0.0021* 

      

Aphid pressure  None Heavy Heavy Moder. 
Split-plot design. Twelve entries by four replications by two whole plots by four environments. R = 

resistant hybrids, vs = versus and S = susceptible hybrids. Moderate is abbreviated as moder. The asterisk 

(*) indicates significance. CS-1 = College Station, summer, first harvest, SCA pressure none; CS-2 = 

College Station, summer, second harvest, SCA pressure heavy (> 1000 SCA leaf-1 plant-1); Weslaco, fall, 

SCA pressure moderate (350-500 SCA leaf-1 plant-1). 
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Relative value of sugarcane aphid resistance 

 

 

Table 8 Means for yield (tons ha-1) of resistant versus susceptible hybrids across 

four locations in Texas, 2016 showing effect of sugarcane aphid (insecticide and no-

insecticide) on the yield of forage sorghum hybrids in Lubbock and College Station 

in summer and Weslaco in fall, Texas, 2016. Means were grouped by location, 

insecticide treatment and type of germplasm i.e. photoperiod sensitive (PS) and 

photoperiod insensitive (PI). 
 

Combined Insecticide No-insecticide Difference 

Resistant 61.7 53.2 -8.6 

Susceptible 61.7 51.4 -10.2 

Difference 0.0 -1.7 -1.7 

 

 

 

Location SCA Type PS PS  PI PI 

   Insect. No-insect.  Insect. No-insect. 

College 

Station-1 

None Resistant 130.2 134.4  58.3 54.5 

  Susceptible 128.7 126.5  56.0 59.4 

College 

Station-2 

Heavy Resistant 23.9 19.7  24.4 22.5 

  Susceptible 12.5 7.6  20.6 17.8 

Lubbock Heavy Resistant 72.8 42.7  69.6 49.2 

  Susceptible 77.1 48.3  76.0 57.3 

Weslaco Moderate Resistant 59.7 57.4  54.8 45.3 

  Susceptible 65.6 47.1  56.9 47.6 
Split-plot design. Twelve entries by four replications by two whole plots by four environments. Sugarcane 

aphid (SCA) pressure was present except for College Station, summer, first harvest. The effect of SCA on 

yield (tons ha-1) between resistant and susceptible germplasm in the insecticide and no-insecticide 

treatments is further analyzed in Appendix IV. Insect. = insecticide, No-insect. = no-insecticide. 

 

 

 

In forage hybrids, it appears that resistance provides some protection from yield 

loss. Overall, no differences in yield performance were detected between susceptible 

(61.7 tons) and resistant (61.7 tons) forage hybrids when they were treated with 

insecticide (Table 8). When aphids were not controlled, the average yield for resistant 
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hybrids (53.2 tons ha-1) was higher than susceptible hybrids (51.4 tons ha-1).  Both 

susceptible and resistant hybrids incurred yield losses when not treated with insecticide. 

But, the yield loss was higher in susceptible hybrids (10.2 tons ha-1) than in resistant 

hybrids (8.6 tons ha-1) (Table 8). Interestingly, in College Station first harvest the 

increase in yield from insecticide to no-insecticide in the resistant photoperiod sensitive 

hybrids was not significant. There was no SCA pressure, implying that the differences 

were due to factors that appeared prior to chemical control. In the Weslaco environment, 

with the exception of photoperiod insensitive hybrids (PI), resistance definitively 

provided value to forage yield. In Lubbock, no differences in performance between 

resistant and susceptible hybrids was seen because the insecticide and no-insecticide 

trials were managed differently (Table 8). 

Percent biomass yield loss in susceptible forage sorghum hybrids was linearly 

related to aphid damage. Using percent biomass yield loss as a dependent variable (Y-

axis) and SCA damage as a predictor variable (X-axis) percent biomass yield loss could 

be predicted by the linear relationship: Percent biomass yield loss (%) = 31.6 - 7.8 x 

Aphid damage. As SCA damage approached nine on Sharma’s chlorosis scale of 1-9 

percent biomass yield loss due to aphids was nearly 50%. Percent biomass yield loss was 

negatively linearly related to SCA damage and was significant (Figure 6). For every one 

unit increment due to SCA damage 7.8% of expected biomass yield was lost as a result 

of aphids. 
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Figure 6 Negative linear relationship of percent biomass yield loss versus sugarcane 

aphid (SCA) damage in susceptible forage sorghum hybrids under heavy (> 1000 

SCA leaf-1 plant-1). In Lubbock, College Station and Weslaco, Texas, 2016. SCA 

damage measured using Sharma’s chlorosis scale of 1-9. Percent yield loss (%) = 

31.6 - 7.8 x Aphid damage. R-square = 0.56, F. Ratio = 11, Probability > F = 

0.00085*. 
 

 

 

Like biomass yield, dry matter accumulation was also affected. Susceptible 

genotypes suffered a higher loss. Using linear regression, and using biomass yield loss  

(tons ha-1) as a predictor variable against dry matter loss (accumulation) in tons per 

hectare as a response variable, dry matter yield loss (tons ha-1) due to aphids could be 

predicted from biomass yield loss (tons ha-1) by linear a relationship: DMLha-1 = 154.9 

+ 0.184 x BYLha-1. This was significant at 0.0088*. Where DMLha-1 = Dry matter 

yield loss (tons ha-1) and BYL = Biomass yield loss (tons ha-1). Spearman’s correlation 

for biomass versus dry matter yield was 0.96 r and significant at < 0.0001* (Figure 7). 
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Figure 7 Positive linear relationship of dry matter yield loss (tons ha-1) versus 

biomass yield loss (tons ha-1) due to sugarcane aphid (SCA). Heavy (> 1000 SCA 

leaf-1 plant-1) in Lubbock, College Station (second harvest) and Weslaco, Texas, 

2016. DMLha-1 = 154.9 + 0.184 x BYLha-1. Significant at 0.0088*. Where DMLha-1 

= Dry matter yield loss (tons ha-1) and BYL = Biomass yield loss (tons ha-1). 

Spearman’s correlation for biomass versus dry matter yield was 0.96 r and 

significant at < 0.0001* and R-square = 0.94. 
 

 

 

Relative to susceptible hybrids, resistant forage hybrids generally remained green 

and healthy looking with no obvious disruption in chlorophyll accumulation and 

photosynthesis under heavy aphid pressure (> 1000 SCA leaf-1 plant-1) (Figure 8). This 

may explain why resistant hybrids yielded higher than susceptible hybrids under heavy 

aphid pressure. 
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Figure 8 Effect of sugarcane aphid (Melanaphis sacchari (Zehntner)) on forage 

sorghum growth and development of resistant (left) and susceptible (right) 

genotypes. A = Photoperiod insensitive forage hybrid A.Tx3408/R.Tx2785 (left) and 

a photoperiod sensitive hybrid A.Tx3408/R.Tx2909 (right). B = photoperiod 

sensitive forage hybrids A.Tx645/R.Tx2910 (left) and A.Tx631/R.Tx2910 (right), 

Trial grown in College Station, Texas, 2016 (Second cutting 19th September 2016). 

Sugarcane aphid (SCA) heavy (> 1000 SCA leaf-1 plant-1). 
 
 

 

Forage quality 

In terms of forage quality, there were significant differences among genotypes 

for protein, starch, sucrose, cellulose and lignin. SCA infestation affected protein content 

but had no effect on starch, sucrose, cellulose and lignin. Environment (location) as well 

as genotype by environmental interactions were significant for protein, starch, sucrose, 

cellulose and lignin. Environment by insecticide interactions were only significant for 

protein. Genotype by environment by insecticide interactions were not significant but for 
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starch and cellulose. The least squares means contrast was an indication of differences 

between resistant and susceptible hybrids and were all significant except for lignin 

(Table 9). 

 

 

Table 9 Analysis of variance for forage quality for resistant versus susceptible 

hybrids across four locations showing effect of sugarcane aphid (insecticide and no-

insecticide) on the quality of forage sorghum hybrids in Lubbock and College 

Station (first and second harvest) in summer and Weslaco in fall, Texas, 2016. 
 

Source of Variance Protein Starch Sucrose Cellulos. Lignin 

Genotype <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

Genotype Error 0.0001* 0.0005 0.0643 0.0006* 0.0013* 

Insecticide <0.0001* 0.6142 0.0954 0.8711 0.3677 

Insecticide Error 0.0416* 0.5215 0.5729 0.0241* 0.4077 

Genotype x Insecticide 0.5835 0.8870 0.8027 0.9404 0.6738 

Replication (Insecticide) 0.0693 0.8777 0.9573 0.2969 0.7055 

Location <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

Location x Genotype <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

Location x Insecticide 0.0264* 0.4078 0.5040 0.5817 0.8659 

Locati. x Genoty. x Insect. 0.0731 <0.0001* 0.0366 0.0072* 0.1127 

Corrected Total <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

LS Means Contrast: R vs S 0.0445* <0.0001* 0.0475* <0.0001* 0.2418 

      

Aphid pressure  None Heavy Heavy Moder. 
Split-plot design. Twelve entries by four replications by two whole plots by four environments Insect. = 

insecticide, R = resistant hybrids, vs = versus and S = susceptible hybrids, Moder. = Moderate and 

Cellulos. = Cellulose. CS-1 =College Station, summer, first harvest, SCA pressure none; CS-2 = College 

Station, summer, second harvest, SCA pressure heavy (> 1000 SCA leaf-1 plant-1); Weslaco, fall, SCA 

pressure moderate (350-500 SCA leaf-1 plant-1). 
 
 

 

SCA influenced protein quality and further evaluation revealed trends. The effect 

due to aphids was the difference between insecticide and no-insecticide. Overall, without 

insecticide treatment for SCA, both resistant and susceptible germplasm had a reduction 

in protein by 0.1 and 0.2 respectively (Table 10). With the exception of Lubbock, the 
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general trend was a reduction in protein values between the insecticide and no-

insecticide regardless of whether the germplasm was photoperiod sensitive or 

photoperiod insensitive (Table 10). Surprising, regardless of the type of photoperiodic 

response by the germplasm, resistant hybrids had a lower protein content than 

susceptible hybrids except for the College Station difference between photoperiod 

sensitive insecticide and no-insecticide treatments (Table 10). 

 

 

Table 10 Means for percent protein quality in forage sorghum for resistant versus 

susceptible hybrids across four locations showing effect of sugarcane aphid 

(insecticide and no-insecticide) on the quality of forage sorghum hybrids in 

Lubbock and College Station (first and second harvest) in summer and Weslaco in 

fall, Texas, 2016. Means were grouped by location, insecticide treatment and type 

of germplasm i.e. photoperiod sensitive (PS) and photoperiod insensitive (PI). 
 

Combined Insecticide No-insecticide Difference 

Resistant 4.6 4.5 -0.1 

Susceptible 5.2 5.0 -0.2 

Difference 0.6 0.5 -0.1 

 

 

 

Location SCA Type PS PS  PI PI 

   Insect. No-insect.  Insect. No-insect. 

College 

Station-1 

None Resistant 3.6 3.5  4.1 4.0 

  Susceptible 3.2 3.2  4.4 4.3 

College 

Station-2 

Heavy Resistant 6.8 6.4  6.0 5.5 

  Susceptible 8.0 7.4  7.0 6.8 

Lubbock Heavy Resistant 4.4 5.3  4.9 4.6 

  Susceptible 5.7 6.2  6.0 5.2 

Weslaco Moderate Resistant 3.4 3.3  3.6 3.1 

  Susceptible 4.1 3.4  3.6 3.6 
Split-plot design. Twelve entries by four replications by two whole plots by four environments. Sugarcane 

aphid (SCA) pressure was present except for College Station, summer, first harvest. The effect of SCA on 

protein quality between resistant and susceptible germplasm in the insecticide and no-insecticide 

treatments is further analyzed in Appendix V. Insect. = insecticide, No-insect. = no-insecticide. 
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Discussion 

Heavy SCA infestations reduced biomass yield in both resistant and susceptible 

forage hybrids when trials were not treated with insecticide for SCA. It must also be 

noted that heavy SCA infestation resulted in yield loss in resistant genotypes at rates 

similar to that observed in the susceptible genotypes. But the effect was more 

pronounced in susceptible hybrids. In the four environments, much of the yield 

differences among resistant and susceptible hybrids were noted where insecticide was 

applied. This implies that the effect of SCA was occurring prior to chemical control and 

that resistance in these hybrids is not immunity. Under more moderate infestations (350-

500 SCA leaf-1 plant-1), resistance appeared even more effective. In all environments, the 

resistant hybrids did not have as high an infestation rate as susceptible hybrids. Further, 

plant vigor and health were better in the resistant hybrids than in the susceptible hybrids. 

This supports findings by Armstrong (Armstrong et al., 2016). 

Without controlling SCA, yield loss in susceptible forage sorghum hybrids were 

substantial. This has important implications for farmers growing sorghum for forage, 

silage or hay. This research support reports that SCA cause biomass yield loss (Knutson 

et al., 2016). SCA also reduce forage quality, for example without aphid control, loss in 

percent protein was nearly 9.0% in Weslaco Texas (Appendix V). Loss in protein quality 

resulting from aphids feeding on sorghum was identical between resistant and 

susceptible genotypes but resistant genotypes had a better yield advantage. Nonetheless, 

forage quality is severely affected when plants are infested at an early stage (Sharma et 

al., 2014) and the end result is a plant with a lower quality of silage. In the field, heavily 
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infested susceptible plants developed mold more easily. But the effect of mold on the 

quality of silage requires further investigation. Mold can affect forage quality and reduce 

the effectiveness of fungicides and cause secondary fungal infections (Jessica, 2002). 

Dry matter accumulation is equally affected by SCA. Biomass yield loss was 

linearly related to dry matter yield loss. The amount of dry matter lost could be directly 

calculated from biomass yield loss. Dry matter yield evaluation is costly and time 

consuming. Calculating dry matter accumulation involves taking samples from biomass 

harvests, weighing, preventing moisture loss from samples, and drying in an oven for 

several days. The linear equation provided a quick way to access dry matter loss directly 

from biomass yield loss. 

Consumer concerns about detrimental effects of improper use of agricultural 

chemicals (Maloni and Brown, 2006; Weber and Matthews, 2008; Zweig, 2013), attracts 

regulatory agencies. EPA has label restrictions on chemical insecticides used to control 

SCA, including re-entry period and application rates per hectare (USEPA, 2014; 

Bowling et al., 2016a). Under the international trade agreements of the World Trade 

Organization (WTO) there are regulations on the amount of allowed chemicals residues 

on agriculture produce (Pardío et al., 2012; Handford et al., 2014). Fortunately, a number 

of studies are looking at reducing applications rates i.e. liters/hectare and number of 

applications per season (Bean, 2017). This research suggests that resistant forage hybrids 

are valuable in averting excessive use of pesticides. Resistant hybrids would also work 

synergistically with reduced application rates in terms of number of applications or the 

application rates per hectare. 



 

51 

 

Since aphids are notorious for breaking resistance further studies to find 

additional sources of resistance in forage sorghums is an important consideration. The 

advantages of additive gene action for resistance to SCA can also be further investigated 

since this has been reported before (Manthe, 1992). Additive gene action has been 

demonstrated in many cases to have advantages in breeding for durable resistance 

against aphid pests in a number of crops (Reddy and Patil, 2015) and this should also be 

possible in sorghum considering that variation for SCA resistance exists. 
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CHAPTER V 

PERFORMANCE OF GRAIN SORGHUM LINES AND HYBRIDS UNDER 

SUGARCANE APHID PRESSURE 

 

Introduction and Objectives 

Grain sorghum is an important crop in Texas and many other states in the United 

States of America (USA). The outbreak of SCA has caused concern on how to 

effectively manage this devastating pest. The pest causes yield and quality losses in a 

number of ways. The feeding activity of this insect affects yield and quality of grain 

sorghum. At grain maturity, the sticky honeydew secretions disturb harvesting of grain, 

and also causes problems with grain storage due to mold (Knutson et al., 2016). 

Ultimately, this necessitated evaluation of the effect of this pest on grain sorghums. 

Evaluation of the relative value of resistance in grain sorghum hybrids was done 

using a Grain Sorghum Hybrid Trial (SCAG). The trial was grown in four environments, 

Lubbock, College Station, Corpus Christi and Weslaco. The approach was the same as 

the one used for forage hybrids SCA evaluation except the main interest was grain. 

Because SCA either did not infest the SCAG trial or where they did (Lubbock) bird 

damage was severe, yield data could not be not collected. 

Aphids did not establish on the SCAG trial in College Station summer. The 

experiment in Weslaco at Rio Farms, and Weslaco Hiler Farms had a low SCA pressure 

(< 350 SCA leaf-1 plant-1), and minimal effect on the germplasm was observed. In 

Corpus Christi, aphids began infesting the fields on 6th June 2016, but after two weeks 
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the aphid population collapsed. The only trial that had SCA was in Lubbock but this test 

had heavy bird damage and yield data could not be collected. Yield data was not 

collected in Corpus Christi as well. 

Despite these challenges, data was available from four trials grown in 2014, 2015 

and 2016. The four trials were thus used for evaluating the effect of SCA on grain 

sorghums. The data consisted of aphid damage ratings due to SCA and yield under SCA 

pressure. The damage due to aphids was recorded on a chlorosis rating of 1-9 (Sharma et 

al., 2014). Some trials were under aphid pressure and some were not. To make 

inferences on the yield performance of resistant and susceptible germplasm the data was 

cross-examined. 

The major objective of this study was to evaluate the performance of resistant 

and susceptible germplasm under aphid pressure, and determine whether resistant 

hybrids were advantageous in the event of a heavy SCA infestation. 

Materials and Methods 

Data from four trials was evaluated to determine the effect of SCA on grain 

sorghums. The four trials were: (i) screening of grain sorghum against SCA based on 

aphid damage to the plant in Weslaco-fall in 2014 designated as SCAP (I), (ii) screening 

of grain sorghum, based on panicle yield performance (plus yield per hectare in Halfway 

only), under SCA pressure in College Station, Corpus Christi and Weslaco in summer 

2014 designated as SCAP (II), (iii) evaluation of developed grain hybrids for SCA 

resistance under SCA pressure in Halfway, College Station and Weslaco in summer 

2015 designated as SCAH and (iv) evaluation of the effect of SCA on grain yield of 
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developed sorghum hybrids, in Lubbock, College Station, Corpus Christi and Weslaco in 

2016 designated as SCAG. 

 

 

Table 11 Dates of planting, sugarcane aphid (SCA) infestation, insecticide 

application and harvest for grain sorghum lines and hybrid trials, used to evaluate 

aphid damage (SCAP (I)), panicle yield (SCAP (II)), yield per hectare (yield ha-1) 

and panicle yield (yield p-1) in hybrids (SCAH), and yield per hectare (yield ha-1)) in 

hybrids (SCAG) in Texas, 2014 to 2016. 
 

Location Planting 

Date 

Date of 

SCA 

Infestation 

Date of 

Insecticide 

Application 

Date of 

Harvest 

SCAP (I): aphid damage (2014)     

Weslaco (fall)*** 15 Aug. 8 Sep. 12 Sep. N/A  

SCAP (II): panicle yield (2014)     

College Station (summer)**** 31 Mar. 28 May No-insecticide  Aug. 

Corpus Christi (Summer)**** 18 Feb. 28 May No-insecticide 2 Sep. 

Weslaco (summer)**** 18 Feb. 28 May No-insecticide  Aug. 

SCAH: yield (2015)     

Halfway (summer)* 10 Jun. 13 Jul. No-insecticide 12 Oct. 

College Station (summer)** 22 May 17 Aug. No-insecticide 27 Aug. 

Weslaco (summer)*** 30 Mar. 05 May No-insecticide 5 Oct. 

SCAG: yield (2016)     

Lubbock-I (summer)*** 25 May 30 Jun. 2 Aug. 26 Sep. 

Lubbock-II (summer)*** 6 Jun. 30 Jun. No-insecticide 27 Sep. 

College Station-I (summer)* 23 Mar. 26 Aug. 29 Aug. 5 Sep. 

College Station-II (fall)*** 26 Jul. 28 Aug. 2 Sep. Nov. 

Corpus Christi (summer)* 14 Apr. 23 May 27 May 6 Jul. 

Weslaco-I, Rio Farms (summer)* 14 Aug. Aug. No-insecticide Aug. 

Weslaco-II, Hiler Farms (summer)* 15 Aug. Aug. No-insecticide Aug. 
Aphid pressure according to location: ****Heavy (> 1000 SCA leaf-1 plant-1), ***high (500-1000 SCA 

leaf-1 plant-1), **moderate (350-500 SCA leaf-1 plant-1), *low (< 350 SCA leaf-1 plant-1). The population in 

College Station was initially high (500-1000 SCA leaf-1 plant-1) for three weeks then crashed. In Corpus 

Christi the population was low (< 350 SCA leaf-1 plant-1) and crashed after two weeks. Yield data not 

collected in Lubbock due to bird damage. Corpus Christi yield data was not collected as well. 
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Details of the trials are discussed under their respective subheadings below. In 

the four trials; dates of planting, SCA infestations, insecticide application and harvest 

was recorded (Table 11). Agronomic management of the crop was done according to 

standard practices at the AgriLife research station in each location. The summary of 

dates of planting, SCA infestation and where insecticide was applicable are presented 

(Table 11). 

Aphid damage (SCAP (I)) 

SCAP (I) consisted of evaluating aphid damage to grain sorghum using the 

chlorosis rating of 1-9 (Sharma et al., 2014). This was evaluated in Weslaco fall 2014. In 

the SCAP (I) aphid damage trial, the experimental design was a split-plot, consisting of 

whole plot treatments of insecticide and no-insecticide and sub-plot treatments of 

genotypes. The trial was planted on 15th August 2014. The test was composed of 20 

entries of 12 lines and 8 hybrids. Each of the 20 entries was replicated nine times. The 

germplasm consisted of resistant and susceptible sorghums (breeding lines and hybrids). 

The resistant lines were Ent62/SADC, SC170, SC110, B.Tx3408, B.Tx3409, R.Tx2783, 

R.TAM428 (Macia/R.TAM428)-LL9 and (SV1*Sima/IS23250)-LG15. Susceptible lines 

were JS222, R.Tx2737, M 627, AF7301 and R.Tx7000. Two resistant hybrids 

(A.Tx642/R.Tx2783 and A.Tx2752/R.Tx2783) and four susceptible hybrids 

(A3.Tx436/R.Tx437, A3.Tx436/R.Tx437, A.Tx642/R.Tx436, and A.Tx2752/R.Tx437) 

were used.  R.Tx2783 was developed for greenbug resistance (Peterson et al., 1984; 

Peterson et al., 2009) and R.TAM428 was previously evaluated for SCA resistance 

(Manthe, 1992; Singh et al., 2004) and were used as resistant checks. There was a high 
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SCA pressure (500-1000 SCA leaf-1 plant-1) when the crop was at seedling stage (Stage 

2) (Decimal code for plant stages of development stage 0-9 (Zadoks et al., 1974). When 

susceptible plants were 90% damaged on Sharma’s scale, the SCA damage rating were 

recorded. 

Panicle yield (SCAP (II)) 

 SCAP (II) was used to evaluate the performance of grain sorghum (panicle yield) 

under SCA pressure. The trial was evaluated in summer 2014 in College Station, Corpus 

Christi and Weslaco, using a randomized complete block design. The evaluation was 

done in College Station, Corpus Christi and Weslaco in summer 2014. Dates of planting 

and SCA infestation were recorded.  The germplasm used was identical to SCAP (I) 

above. Heavy aphid pressure (> 1000 SCA leaf-1 plant-1) occurred at anthesis stage 

(stage 6) in all the locations. When susceptible genotypes were at least 90% damaged 

(Sharma et al., 2014), panicle yield were collected. Panicle yield was measured by 

harvesting ten random panicles by hand from the middle of the plot. Panicles were 

threshed using a single panicle thresher and grain was weighed using an electronic 

balance (Ohaus Adventurer™, model AV4101 x 0.1g). The weights were adjusted to an 

average of panicle yield for each experimental unit. But, it must be pointed out that 

panicle yield is not a direct reflection of yield per hectare. 

Yield (SCAH) 

SCAH consisted of evaluating the yield performance of grain hybrids under 

aphid infestation. The trial was planted in Halfway, College Station and Weslaco in 

summer 2015. In the SCAH, the primary trait of emphasis was yield under aphid 
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pressure, but SCA pressure was mostly very light and very late in the season. The SCAH 

yield trial, consisted of 15 entries (nine resistant and six susceptible hybrids) and three 

replications organized in a randomized complete block design. The nine resistant hybrids 

were A.Tx3409/R12169, A.Tx3408/R.Tx2783, A.Tx3409/R.Tx437, 

A.Tx2928/R.Tx2783, A.Tx3409/R.Tx436, A.Tx645/R.Tx2783, A.Tx3408/R.Tx436, 

A.Tx2752/R.Tx2783 and A.Tx3408/R.Tx437. Six susceptible hybrids were 

A.Tx645/R12169, A.Tx2752/R.Tx437, A.Tx2928/R.Tx436, A.Tx645/R.Tx436, 

A.Tx2752/R.Tx436 and A.Tx2928/R.Tx437. A.Tx2928 is a 3-dwarf line used for grain 

(Rooney, 2003). B.Tx2752 was released as a greenbug resistant line in 1976 (Johnson et 

al., 1982). B.Tx3408 and B.Tx3409 were released for SCA resistance in 2016 (Mbulwe 

et al., 2016). R.Tx436 and R.Tx437 are grain lines (Rooney, 2003). This trial was grown 

in Halfway, College Station and Weslaco in summer 2015. 

Across these locations during the trial, the SCA pressure varied with a low 

infestation (< 350 SCA leaf-1 plant-1) in Halfway but moderate in College Station and 

Weslaco (350-500 SCA leaf-1 plant-1). In Halfway, aphids appeared when grain on the 

plants was at hard dough stage (V8 stage). In Weslaco and College Station aphids 

appeared at anthesis (stage 6) and soft dough (stage 7), respectively. The primary traits 

measured were the same as described in the SCAP (II) yield, with the exception of grain 

yield on a per hectare basis in Halfway because full plots were harvested and threshed. 

Yield (SCAG) 

Similar to SCAH in 2015, SCAG was used to further evaluate the effect of SCA 

on the yield of developed grain hybrids. The trial was planted in Lubbock, College 
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Station (summer and fall), Corpus Christi and Weslaco in summer 2016. The experiment 

was composed of 12 grain sorghum hybrids that included eight resistant and four 

susceptible sorghums. Eight hybrids were produced using SCA resistant lines namely; 

A.Tx631/R.Tx2783, A.Tx3408/R.Tx437, A.Tx3409/R.Tx437, A.Tx3409/R.Tx2783, 

A.Tx3408/R.Tx2783, A.Tx3408/R.Tx436, A.Tx3409/R.Tx436 and A.Tx645/RTx2783 

(Mbulwe et al., 2016). The susceptible hybrids were A.Tx631/R.Tx437, 

A.Tx645/R.Tx436, A.Tx645/R.Tx437 and A.Tx631/R.Tx436. A.Tx631 released in 1985 

and A.Tx645 released in 2002 are common seed parents used to produce forage hybrids 

(Miller, 1986; Rosenow et al., 2002) while R.Tx436 and R.Tx437 are used as male 

parents in grain hybrids (Rooney et al., 2003). The SCAG trial was grown in six 

locations; Lubbock, College Station, Corpus Christi, Weslaco Rio Farms and Hiler 

Farms in summer 2016. The College Station trial planted in fall was the sixth location. 

The SCAG trial was laid out in a split-plot design with whole plot treatments for 

chemical mitigation and a control. The subplots were the hybrid genotypes with each 

hybrid designated as resistant or susceptible based on parents in the hybrid. Each whole 

plot treatment had four replications. 

Whole plots were harvested by hand and threshed using a belt thresher (Almaco 

single plant thresher, Model BT14). Yield was reported as tons per hectare. Plant height 

and exertion were recorded using a calibrated height stick (Barcode readable). Plant 

height was the perpendicular length in meters from the apex of the sorghum head 

(panicle) to the ground. While exertion (panicle exertion) was the length between the 

bottom of the panicle and the flag leaf (final top most leaf). Days to 50% anthesis (the 
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time it takes for half of the sorghum panicle to flower) was recorded using the Julian 

calendar and grain moisture was recorded using a moisture meter (Dickey John, Model 

MINI GAC1). 

Statistical analysis 

The ANOVA model for the split-plot design with two treatments (insecticide and 

no-insecticide), used to analyze the forage sorghum hybrid trials in chapter four, was 

used in the SCAP (I) trial of Weslaco fall 2014, and also in the SCAG yield trials of 

2016. One way ANOVA was used to analyze germplasm differences in panicle yield in 

the SCAP (II) and SCAH trials and means compared with test trial LSD values (P < 

0.05). Statistical comparisons were calculated using the statistical software PROC GLM 

in SAS v 9.3 (SAS Institute, 2011). 

Results 

Analysis of variance for aphid damage (SCAP (I)) 

 

 

Table 12 Analysis of variance for aphid damage (SCAP (I)). Plant damage 

evaluated under high sugarcane aphid (SCA) pressure (500-1000 SCA leaf-1 plant-

1), for a month in fall, Weslaco, Texas, 2014. Aphid damage was done using 

chlorosis rating of 1-9 under insecticide and no-insecticide conditions. 

 

Source of Variance Weslaco Fall 

Genotype <0.0001* 

Genotype Error 0.0002* 

Insecticide <0.0001* 

Insecticide Error <0.0001* 

Genotype x Insecticide 0.0003* 

Replication (Insecticide) 0.2233 

Corrected Total <0.0001* 

LS Means Contrast: R vs S <0.0001* 
Randomized complete block design. Twenty entries by nine replications by one environment. R = resistant 

hybrids, vs = versus and S = susceptible hybrids. Asterisk (*) Indicates significance. 
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Analysis of variance showed a significant difference between genotypes and 

insecticide treatments (Table 12). Genotype by insecticide interaction was also 

significant. The Least Squares (LS) means contrast also showed significant differences. 

However, replication effects could not be detected by the statistical model. 

Mean comparison for aphid damage (SCAP (I)) 

The mean for aphid damage (chlorosis rating) of resistant lines with insecticide 

treatment was 1.0 and without insecticide was 2.3 while the mean for susceptible lines 

was 5.7 with insecticide and 7.7 without insecticide (Table 13). The effect due to SCA 

damage, which is the difference between insecticide and no-insecticide, was less for 

resistant lines (1.3) and greater for susceptible lines (2.0) (Table 13). In the hybrids, the 

mean for resistant germplasm under insecticide was 2.0 and susceptible 2.2 while 

without any insecticide treatment the mean for resistant was 4.8 and susceptible 8.1. The 

effect as a result of SCA damage was lower for resistant hybrids 2.8 and higher for 

susceptible hybrids 5.9 (Table 13). 
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Table 13 Mean separation of aphid damage (SCAP (I)). Plant damage evaluated 

under high sugarcane aphid (SCA) pressure (500-1000 SCA leaf-1 plant-1), for a 

month in fall, Weslaco, Texas, 2014. Aphid damage was done using chlorosis rating 

of 1-9 under insecticide and no-insecticide conditions. 
 

Pedigree Type Genotype Insect. No-insect. Difference 

Ent62/SADC Line Resistant 1.0c 1.0b 0.0c 

SC170-14  Line Resistant 1.0c 1.0b 0.0c 

SC110-14  Line Resistant 1.0c 1.7b 0.7c 

B.Tx3408  Line Resistant 1.0c 3.3a-b 2.3b-c 

B.Tx3409  Line Resistant 1.0c 4.7a-b 3.7a-c 

R.Tx2783* Line Resistant 1.0c 9.0a 8.0a 

R.TAM428* Line Resistant 6.0a-b 9.0a 3.0a-c 

(Macia/R.TAM428)-LL9* Line Resistant 1.0c 9.0a 8.0a 

(SV1*Sima/IS23250)-LG* Line Resistant 4.0a-c 6.3a-b 2.3b-c 

Mean Line Resistant 1.0 2.3 1.3 

JS222  Line Susceptible 4.0a-c 7.3a-b 3.3a-c 

R.Tx2737 Line Susceptible 5.0a-c 9.0a 4.0a-c 

M 627 Line Susceptible 6.0a-b 6.0a-b 0.0c 

AF7301 Line Susceptible 6.0a-b 6.7a-b 0.7c 

R.Tx7000 Line Susceptible 7.0a 8.3a 1.3c 

Mean Line Susceptible 5.6 7.5 1.9 

A.Tx642/R.Tx2783 Hybrid Resistant 2.0b-c 4.3a-b 2.3b-c 

A.Tx2752/R.Tx2783 Hybrid Resistant 2.0b-c 5.3a-b 3.3a-c 

Mean Hybrid Resistant 2.0 4.8 2.8 

A3.Tx436/R.Tx437 Hybrid Susceptible 1.0c 8.7a 7.7a 

A3.Tx436/R.Tx437 Hybrid Susceptible 1.0c 9.0a 8.0a 

A.Tx642/R.Tx436 Hybrid Susceptible 2.0b-c 8.3a 6.3a-b 

A.Tx2752/R.Tx437 Hybrid Susceptible 4.0a-c 7.0a-b 3.0a-c 

Mean Hybrid Susceptible 2.0 8.3 6.3 
Randomized complete block design. Twenty entries by nine replications by one environment. Column 

means followed by the same lowercase letters are not significantly different. Insect. = insecticide, No-

insect. = no-insecticide.  * R.Tx2783, R.TAM428, (Macia/R.TAM428)-LL9) and (SV1*Sima/IS23250)-

LG) appeared susceptible but are in fact resistant. Hard to control factors (random errors) associated with 

environmental conditions, spatial distribution of aphids, edaphic conditions or plant physiology may have 

contributed to the germplasm appearing susceptible in this one incidence. 

 

 

 

Analysis of variance for panicle yield (SCAP (II)) 

Significant differences for grain weight per panicle in the SCAP (II) trial were 

found for genotype, location, genotype by location and resistant versus susceptible. In 
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the combined analysis, the main effects, interaction and contrast were all significant 

(Table 14). 

 

 

Table 14 Analysis of variance for panicle yield (SCAP (II)) of resistant versus 

susceptible germplasm under moderate SCA pressure (350-500 leaf-1 plant-1), in 

College Station and Corpus Christi, and at high SCA pressure (500-1000 SCA leaf-1 

plant-1) in summer, Weslaco, Texas, 2014. 
 

Sources of Variance Combined 

Locations 

College 

Station 

Corpus 

Christi 

Weslaco 

Genotype <0.0001* <0.0001* 0.0022 <0.0001* 

Replication 0.1352 0.0942 0.0018 0.5704 

Location <0.0001*    

Genotype*Location <0.0001*    

LS Mean Contrast: R vs S <0.0001* <0.0001* 0.0010* <0.0001* 

Aphid Pressure  Moderate Moderate High 
Randomized complete block design. Twenty entries by nine replications by three environments. S = 

susceptible hybrids, vs = versus, and R = resistant hybrids. Asterisk (*) indicates significance. 
 

 

 

Mean comparison for panicle yield (SCAP (II)) 

Under high aphid pressure (500-1000 SCA leaf-1 plant-1), the mean panicle yield 

(Table 15) for resistant lines was 55.4, 33.1 and 56.3 in College Station, Corpus Christi 

and Weslaco respectively while the susceptible lines in the same locations averaged 

28.4, 17.8 and 18.6 respectively (Table 15). Likewise, in respective order of location; 

College Station, Corpus Christi and Weslaco, the resistant hybrids had panicle yield of 

52.8, 31.5 and 55.8. The susceptible hybrids panicle yield averaged 46.0, 34.5 and 35.0 

respectively (Table 15). The implication is that the differences in panicle yield were due 

to susceptibility to SCA. However, there was no control to look at relative loss. 

Therefore, the differences could be genotypic as well. 
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Table 15 Mean separation for panicle yield (SCAP (II)) of resistant versus 

susceptible germplasm under moderate SCA pressure (350-500 leaf-1 plant-1), in 

College Station and Corpus Christi, and high SCA pressure (500-1000 SCA leaf-1 

plant-1) in summer, Weslaco, Texas, 2014. 
 

Pedigree Type Genotype CS 

Yield p-1 

CC 

Yield p-1 

WE 

Yield p-1 

Ent62/SADC Line Resistant 61a-c 26a-b 91a 

SC170 Line Resistant 52b-e 32a-b 54b-d 

SC110 Line Resistant 41d-g 30a-b 50b-d 

B.Tx3408 Line Resistant 57a-d 26a-b 42b-f 

B.Tx3409 Line Resistant 50b-e 31a-b 48b-e 

R.Tx2783 Line Resistant 49b-e 30a-b 53b-d 

R.TAM428 Line Resistant 69a 52a 68a-b 

A.Tx2752/R.Tx2783 Line Resistant 63a-b 30a-b 42b-f 

(SV1*Sima/IS23250)-LG15 Line Resistant 57a-d 41a-b 59b-c 

Mean  Line Resistant 55.4 33.1 56.3 

JS222 Line Susceptible 23g-h 11b 16f-g 

R.Tx2737 Line Susceptible 27g-h 9b 1g 

M 627 Line Susceptible 39e-h 23a-b 27d-g 

AF7301 Line Susceptible 25g-h 18a-b 28d-g 

R.Tx7000 Line Susceptible 28f-h 28a-b 21e-g 

Mean Line Susceptible 28.4 17.8 18.6 

A.Tx3408/R.Tx437 Hybrid Resistant 49b-e 32a-b 68a-b 

A.Tx3408/R.Tx436 Hybrid Resistant 44c-f 42a-b 65a-b 

A.Tx642/R.Tx2783 Hybrid Resistant 55a-e 22a-b 48b-e 

A.Tx2752/R.Tx2783 Hybrid Resistant 63a-b 30a-b 42b-f 

Mean  Hybrid Resistant 52.8 31.5 55.8 

A.Tx642/R.Tx436 Hybrid Susceptible 48b-e 43a-b 49b-e 

A.Tx2752/R.Tx437 Hybrid Susceptible 44c-f 26a-b 21e-g 

Mean Hybrid Susceptible 46.0 34.5 35.0 
Randomized complete block design. Twenty entries by nine replications by three environments. Column 

means followed by the same lowercase letters are not significantly different. 

 

 

 

Analysis of variance for yield (SCAH) 

From the combined (College Station and Weslaco) and individual (Halfway, 

College Station and Weslaco) analysis of grain yield, genotypic differences were 

observed (Table 16). In the combined analysis, location and genotype by location 
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differences were not detected. Where SCA pressure was low in Halfway, the LS means 

contrast showed that there were no differences in yield per hectare between resistant and 

susceptible hybrids. In College Station and Weslaco where aphids pressure was 

moderate (350-500 SCA leaf-1 plant-1) the LS means contrast for panicle yield showed 

significant differences between susceptible and resistant hybrids. 

 

 

Table 16 Analysis of variance for yield per hectare (yield ha-1), and panicle yield 

(yield p-1) (SCAH), in Halfway with low sugarcane aphid (SCA) pressure (< 350 

SCA leaf-1 plant-1). Panicle yield in College Station and Weslaco under moderate 

aphid pressure (350-500 SCA leaf-1 plant-1), summer, Texas, 2015. 
 

Sources of Variance Combined 

CS and 

WE 

Halfway 

Yield ha-1 

Halfway 

Yield p-1 

College 

Station  

Yield p-1 

Weslaco 

Yield p-1 

      

Genotype <0.0001* 0.0014* 0.2288 <0.0001* 0.0002* 

Replication 0.8096 0.7186 0.9515 0.9468 0.7860 

Location 0.0280     

Genotype x Location 0.6626     

LS Mean Contrast: R vs S <0.0001* 0.058 0.5341 <0.0001* 0.0001* 

Aphid Pressure  Low Low Moderate Moderate 
Randomized complete block design. Fifteen entries by three replications by four environments. S = 

susceptible hybrids, vs = versus, and R = resistant hybrids. Asterisk (*) indicates significance.  

 

 

 

Mean comparison for yield (SCAH) 

In Halfway under low aphid pressure (< 350 SCA Leaf-1 panicle-1), resistant and 

susceptible hybrids performed similarly in terms of panicle yield with a mean of 62.0 

grams for resistant and 66.3 grams for susceptible hybrids. The same was true for yield 

per hectare in Halfway where resistant hybrids had an average of 6.2 tons per hectare 

and susceptible hybrids had 6.5 tons per hectare. In College Station and Weslaco, where 
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SCA pressure was moderate (350-500 SCA leaf-1 plant-1), resistant hybrids had a higher 

panicle yield than susceptible hybrids (Table 17). Resistant hybrids had 71 and 77 grams 

per panicle in College Station and Weslaco respectively, compared to 55 and 61 grams 

in susceptible hybrids. 

 

 

Table 17 Mean separation for yield per hectare (yield ha-1), and panicle yield (yield 

p-1) (SCAH), in Halfway with low sugarcane aphid (SCA) pressure (< 350 SCA leaf-

1 plant-1). Panicle yield in College Station and Weslaco under moderate aphid 

pressure (350-500 SCA leaf-1 plant-1), summer, Texas, 2015. 
 

Pedigree Genotype HW 

Yield ha-1 

HW 

Yield p-1 

CS 

Yield p-1 

WE 

Yield p-1 

A.Tx3409/R.12169 Resistant 5.03b 53.5a 89a 88a-b 

A.Tx3408/R.Tx2783 Resistant 4.7b 49.5a 84a-b 96a 

A.Tx3409/R.Tx437 Resistant 8.3a 88.5a 80a-c 77a-c 

A.Tx2928/R.Tx2783 Resistant 7.0a-b 57.6a 77a-d 77a-c 

A.Tx3409/R.Tx436 Resistant 5.0a-b 53.3a 77a-d 71a-c 

A.Tx645/R.Tx2783 Resistant 6.2a-b 66.2a 63a-d 74a-c 

A.Tx3408/R.Tx436 Resistant 4.6b 48.9a 59a-d 69a-c 

A.Tx2752/R.Tx2783 Resistant 7.3a-b 77.7a 55b-d 62b-c 

A.Tx3408/R.Tx437 Resistant 7.7a-b 62.8a 54b-d 77a-c 

Mean Resistant 6.2 62.0 71 77 

A.Tx645/R.12169 Susceptible 5.8a-b 61.6a 80a-c 79a-c 

A.Tx2752/R.Tx437 Susceptible 7.9a-b 84.0a 57b-d 55c 

A.Tx2928/R.Tx436 Susceptible 7.0a-b 52.8a 52b-d 55c 

A.Tx645/R.Tx436 Susceptible 6.9a-b 73.8a 48c-d 54c 

A.Tx2752/R.Tx436 Susceptible 4.8b 51.4a 47d 61b-c 

A.Tx2928/R.Tx437 Susceptible 7.0a-b 74.3a 46d 48c 

Mean Susceptible 6.5 66.3 55 61 
Randomized complete block design. Fifteen entries by three replications by three environments. Column 

means followed by the same lowercase letters are not significantly different. 
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Analysis of variance for yield (SCAG) 

In the SCAG trial of 2016, there was no aphid pressure and under these 

conditions, neither insecticide treatment nor contrast were significant. Differences in 

genotypes were detected as was expected (Table 18). Because the aphid pressure was 

low (< 350 SCA leaf-1 plant-1) the variance due to insecticide treatments was not 

detected and neither were the interaction effects. 

 

 

Table 18 Analysis of variance for yield per hectare (yield ha-1) (SCAG) under low 

sugarcane aphid (SCA) pressure (< 350 SCA leaf-1 plant-1), in tons per hectare (tons 

ha-1) in College Station, Weslaco-Hiler Farms and Weslaco-Rio Farms in Texas, 

2016. 
 

Sources of Variance Combined 

 

College 

Station 

(Summer) 

College 

Station 

(Fall) 

Weslaco 

Hiler 

(Summer) 

Weslaco 

Rio 

(Summer) 

Insecticide 0.5347 0.5605 0.5905   

Rep(Insecticide) 0.9193 0.8644 0.9572 <0.0001* 0.9201 

Genotype 0.0166* 0.0129* 0.0005* 0.0399* 0.0081* 

Genotype x Insecticide 0.7621 0.6363 0.5096   

Location <0.0001*     

Genotype x Location 0.1497     

Geno. x Loca. x Insect. 0.0366*     

LS Mean Cont. R vs S 0.0969 0.1001 0.2976 0.3055 0.7977 

Aphid Pressure Low Low Low Low Low 
Randomized complete block design. Twelve entries by eight replications by four environments. 

Abbreviations: Geno. = genotype, Loca. = location, Insect. = Insecticide, R = resistant hybrids, vs = versus 

and S = susceptible hybrids. Asterisk (*) indicates significance. 
  

 

 

Mean comparison for yield (SCAG) 

Since insecticide treatments effects and LS means contrasts were not significant 

for yield, the yield data was combined (Table 19). It appears that without SCA pressure 

resistant and susceptible germplasm yield the same (4.1 tons ha-1). Both resistant and 
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susceptible germplasm had a similar plant height, grain moisture, and days to 50% 

anthesis with only a few exceptions. Means followed by the same lowercase letters were 

not significantly different. 

 

 

Table 19 Agronomic characteristics (yield per hectare (tons ha-1) (SCAG), height, 

grain moisture, days to 50% anthesis and leaf exertion) of resistant and susceptible 

sorghum hybrids under low aphid pressure (< 350 SCA leaf-1 plant-1) in summer, 

College Station, Weslaco-Hiler Farms and Weslaco-Rio Farms in Texas, 2016. 
 

Trait Yield (tons 

ha-1) 

Height 

(m) 

Grain 

Moisture 

(%) 

Day to 

Anthesis 

Exertion 

(cm) 

A.Tx3408/R.Tx437 (R) 5.0a 1.3b-c 9.4a 68a-b 0.16a 

A.Tx3408/R.Tx436 (R) 4.7a 1.3b-c 9.7a 69a-b 0.18a 

A.Tx645/R.Tx2783 (R) 4.5a 1.3b-c 9.9a 70a-b 0.19a 

A.Tx631/R.Tx2783 (R) 4.3a 1.4a-b 10.1a 74a 0.17a 

A.Tx3409/R.Tx2783 (R) 4.0a 1.3b-c 9.5a 67a-b 0.21a 

A.Tx3409/R.Tx437 (R) 3.7a 1.3c 9.7a 70a-b 0.18a 

A.Tx3408/R.Tx2783 (R) 3.6a 1.5a 10.5a 73a 0.18a 

A.Tx3409/R.Tx436 (R) 3.3a 1.2c 9.7a 70a-b 0.21a 

Mean 4.1 1.3 9.8 70 0.19 

A.Tx645/R.Tx437 (S) 4.3a 1.3b-c 9.8a 65b 0.22a 

A.Tx631/R.Tx437 (S) 4.2a 1.3b-c 9.4a 67a-b 0.20a 

A.Tx631/R.Tx436 (S) 4.0a 1.3b-c 9.6a 69a-b 0.21a 

A.Tx645/R.Tx436 (S) 4.0a 1.2c 10.1a 67a-b 0.23a 

Mean 4.1 1.3 9.7 67 0.21 

LSD (P < 0.05) 0.62 0.03 0.22 2 0.02 
Randomized complete block design. Twelve entries by four replications by two whole plots by four 

environments. Column means followed by the same lowercase letters are not significantly different R = 

resistant hybrids. S = susceptible hybrids. Since there were no significant differences yield from the four 

locations were combined and analyzed. 

 

 

 

Discussion 

At seedling stage (stage 2), in the whole plot without insecticide treatment, grain 

sorghum germplasm resistant to SCA (B.Tx3408 and B.Tx3409) exhibited less aphid 
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damage under high SCA pressure. Conversely, susceptible germplasm (JS222, 

R.Tx2737, M627, AF301 and R.Tx7000) was more severely affected. This was observed 

in a controlled split-plot trial called SCAP (I) in Weslaco fall 2014 where one whole plot 

was treated with insecticide and the other whole plot was not treated with insecticide. 

This suggested that even at an early stage resistance to SCA is present and valuable. 

R.TAM428, a line reported to have SCA resistance (Manthe, 1992; Singh et al., 

2004), and other lines (R.Tx2783, R.TAM428, (Macia/R.TAM428)-LL9 and 

(SV1*Sima/IS23250)-LG), appeared susceptible to SCA only in SCAP (I) but are 

resistant. Other hard to control factors (experimental error) associated with 

environmental conditions, spatial distribution of aphids or edaphic conditions could have 

contributed to the germplasm appearing susceptible in this one particular situation. The 

said germplasm had performed relatively well in earlier evaluations (Armstrong et al., 

2015; Mbulwe et al., 2016). 

It should be noted that only one application of Transform WG® (0.11L ha-1) was 

applied; some aphid pressure was present even in the section sprayed with insecticide. 

As a result, this caused significant aphid damage or death in completely susceptible 

lines. Some resistant lines did not have aphid damage regardless of chemical control. 

Other lines and hybrids were effectively protected by the chemical treatment but were 

obviously susceptible without chemical protection. These results, roughly align with 

previous evaluation of these materials in greenhouse conditions (Armstrong et al., 2015). 

Ultimately, this implies that resistant germplasm would probably survive with fewer 

insecticide applications than susceptible germplasm under integrated pest management. 
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The SCA infestations in the summer grain trials occurred during the grain filling 

stages (stages 7-8). Yield differences (yield ha-1) were not significant when SCA is not 

present (SCAH) in Halfway. Likewise, in the SCAG trials when SCA were not present, 

yield differences (yield ha-1) were not seen. Differences in panicle yield were observed 

between resistant and susceptible lines and hybrids where SCA pressure was present. 

This was seen in the uncontrolled treatment of SCAP (II) yield trial but this could be due 

to genotypic differences per se. Equally, in the SCAH yield trial, in College Station and 

Weslaco summer 2014, where aphid pressure was moderate (350-500 SCA leaf-1 plant-

1), resistant genotypes had higher yield per panicle. 

The observed differences in panicle yield may be likely due to SCA. The 

concomitant drops in panicle yield in both the resistant and susceptible groups implies 

that either aphid pressure was persistent in each group or that resistance in these hybrids 

is overcome after a specific SCA load is attained. These findings support a report from 

Kansas State University that susceptible panicles not protected from SCA damage weigh 

70% less (Michaud and Zukoff, 2016). Additionally, the higher panicle yield (all things 

equal) of resistant germplasm in itself is an advantage. Nevertheless, it appears 

resistance helps the sorghum plant to continue growing under SCA pressure relative to 

the susceptible germplasm. In general, sorghum lines and hybrids with resistance under 

high SCA pressure (500-1000 SCA leaf-1 plant-1) produced higher panicle yield and less 

aphid damage than did susceptible germplasm. On that account, there is some benefit in 

utilizing resistant grain hybrids. Additional evaluation of resistant grain hybrids will 

continue to confirm this observation and to identify additional sources of resistance. 
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Since there was no control (insecticide and no-insecticide) to partition variation 

due to SCA infestations, and since panicle yield does not reflect yield per hectare, 

conclusions presented herein need additional evaluation. Many additional variables 

influence panicle yield such as grain weight, size and number as well as panicle size and 

plant density. Nonetheless, results do point out inherent traits that may be advantageous 

to resistant grain hybrid sorghums as opposed to susceptible hybrids. These factors need 

further scrutiny in future investigations. 

To consolidate findings of the advantages of resistant grain hybrids, the 

originally planned sorghum hybrid trial (SCAG) could be repeated using insecticide and 

no-insecticide treatments in a split-plot design or randomized complete bock design 

using resistant and susceptible lines with similar maturity and yield in at least three 

environments to make a better comparison. However, one must take into account 

position of the field, timing (planting latter), natural energies, spatial distribution of 

aphids, and weather in order to have a successful experiment (Sharma et al., 2014). 

However, aphid occurrences are difficult to predict under natural conditions (Bowling et 

al., 2016b). 

It was relatively easy to manipulate planting dates and position of the field to 

synchronize peak aphid infestations. But natural enemies and aphid occurrences were 

more difficult to predict in time and space even when aphids were abundant. Generally, 

late maturing photoperiod sensitive forage hybrid sorghums, influenced by late maturity 

genes (Rooney and Aydin, 1999; Bhosale et al., 2012), had a higher incidence of SCA 

because of the longer exposure in the field. On the other hand the majority of grain 
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sorghums escaped aphid infestations. This was particularly so in some fields in Halfway, 

College Station and Corpus Christi in summer 2015 and 2016.  
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CHAPTER VI 

DETERMINING CATEGORIES OF RESISTANCE AND CORRELATION 

BETWEEN PHENOTYPE AND RESISTANCE 

 

Introduction and Objectives 

Variation in response to SCA infestation is present in cultivated and wild 

sorghum genotypes. SCA reproduces at a higher rate and causes more damage to 

susceptible sorghum genotypes than to resistant sorghum genotypes in both grain and 

forage types (Armstrong et al., 2016). In this study, B.Tx3408, B.Tx3409 and R.Tx2783 

were used as sources of resistance to SCA. The line R.Tx2783 resistant to greenbug 

biotypes C and E (Peterson et al. 1984) is also resistant to the sugarcane aphid 

(Armstrong et al., 2015; Bayoumay et al., 2016; Mbulwe et al., 2016). 

The earlier studies of SCA resistance mechanisms were accomplished in a 

greenhouse using standard screening techniques that determined the types of resistance. 

The mechanisms underlying resistance were identified as antibiosis, antixenosis and 

tolerance (Armstrong et al., 2016). This study contributed to early efforts by further 

evaluating resistance mechanisms under natural field conditions using additional 

approaches. The studies were done in College Station in fall 2016. Because of 

circumstances pertaining to time and presence of aphids only antibiosis and antixenosis 

(non-preference resistance) were possible to evaluate. 

Traits associated with host-plant resistance against arthropods have been 

traditionally categorized in three ways: antibiosis, antixenosis and tolerance (Painter, 
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1951; Stout 2013). Resistance (Painter, 1951) was defined as “the relative amount of 

heritable qualities possessed by the plant which influence the ultimate degree of damage 

done by the insect”. Research on host-plant resistance has been largely influenced by 

Reginald Painter’s definition of resistance to insect arthropods (Stout, 2013).   

Antibiosis resistance is a biochemical or morphological defense mechanism used 

by the host plant to reduce insect damage. Antibiosis may be induced by feeding insects 

or may be constitutive. Antibiosis effects on insect arthropods range from minimal to 

deadly. Examples of adverse effects on insect arthropods are poor growth (weight gain), 

higher mortality, decreased longevity and reduced reproduction capacity (Dixon, 1998). 

Ultimately, the overall effect of antibiosis is reduced fecundity (Smith, 2005). Antibiosis 

is usually measured using no-choice insect feeding experiments. Alternative methods are 

available to screen trials for antibiosis under field conditions.  These include assessing 

amount of damage, arthropod populations, arthropod growth and mortality of insects on 

the plants. 

Antixenosis or non-preference resistance is when the presence of any 

morphological or biochemical factor of a plant adversely modifies insect arthropod 

behavior. For example, thick epidermis, wax or trichomes may force insects to abandon 

their efforts to colonize, feed or oviposit on a host-plant. The lack of phytochemicals 

may also affect the ability of an insect to recognize a host-plant. Alternatively, resistant 

plants may possess phytochemicals that fend off or prevent insects from colonizing, 

feeding or ovipositing (Singh et al., 2004). Antixenosis is normally evaluated by choice 

insect feeding experiments. Under field conditions, antixenosis can be detected by 
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looking at feeding activities, population densities and preference of insects for certain 

plants. 

Tolerance is the ability of a host-plant to withstand or recover from insect 

damage resulting in yield equal to or above the yield of susceptible plants not infested 

with the insect. Biologically, tolerance is the ability of a host-plant to recover from 

arthropod injury. From an agronomic perspective, tolerance is the inherent genetic 

ability of resistant cultivars to produce a greater amount of biomass than susceptible 

cultivars (Smith, 2005). Tolerance in field crops is measured by comparing yield of 

resistant cultivars infested with insects to yield of susceptible cultivars without insects. 

For SCA, tolerance was considered to be the ability of resistant sorghums infested with 

SCA to yield equal to susceptible sorghums without infestation.  

The major objective of this study was to determine the categories of resistance in 

grain and forage sorghum hybrids. As a result, systematic tests were conducted to 

identify if antibiosis or antixenosis (non-preference resistance) were contributing to SCA 

resistance in sorghum. Additionally correlation between phenotypic traits and aphid 

damage was done to identify traits that contribute to resistance.  

Materials and Methods 

To measure if antibiosis existed in sorghum germplasm against SCA three 

methods were used: (i) average weight per aphid and number of aphids per leaf (Method 

I), (ii) average number of aphids per leaf and field rate of increase (reproductive 

capacity) (Method II), and (iii) nymphal mortality rate (Method III). To determine 

antixenosis (non-preference) resistance, only one method was possible under field 
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conditions, i.e. the average number of alates per leaf (Method IV). Additionally, 

phenotypic traits were measured and a correlation done between the traits and SCA 

damage ratings (Method V). These five methods of detecting resistance mechanisms 

were done in summer and fall 2016 (Table 20). These methods are further described 

under their respective subheadings. 

The experiments were conducted at the Texas A&M University (College Station) 

research facility located in Burleson County. The research facility lies between latitude 

(N30o33’11.52” and N30o32’19.68”) and longitude (W96o26’51.36” and 

W96o25’7.68”), elevation (67-68 m) above sea-level, soil type 39 (Clay-loam) (USDA-

NRCS, 2008; Google Earth Pro 7.1.8.3036, 2014). The trials were managed according to 

standard agronomic management practices at this research facility. The list of methods 

used, trials, evaluation dates and type of morphs on which data was collected in College 

Station summer and fall 2016 are listed (Table 20). 

 

 

Table 20 List of methods used, trials, evaluation date and type of morphs on which 

data was collected in College Station, Texas, summer and fall 2016. 
 

List of Methods Trial Evaluation Date Data Collected on 

Method I 8 Lines 8 July. Aphid colonies 

Method II SCAG and SCAF 21 Aug to 10 Aug. Aphid colonies 

Method III SCAG and SCAF 28 Aug to 6 Sep. Nymphs 

Method IV 3 Lines 20 Aug. Migrating alates 

Method V SCAG and SCAF 21 Aug. to 21 Nov. Plant Phenotype 
Method I trial planted on 7th April and Method II-V trials planted on 26th July. Method I = Average weight 

per aphid and number of aphids per leaf (antibiosis). Method II = Average number of aphids per leaf and 

field rate of increase (reproductive capacity) (antibiosis). Method III = Nymphoal mortality rate 

(antibiosis). Method IV = Average number of alates per leaf (antixenosis). Method V = Correlation and 

principal component analysis (aphid damage vs phenotype). SCAG = Sugarcane Aphid Grain Hybrid 

Trial. SCAF = Sugarcane Aphid Forage Hybrid Trial. 
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Antibiosis (method I) average weight per aphid and number of aphids per leaf 

Eight sorghum germplasm were used to assess average weight per aphid and 

number of aphids per leaf. Four resistant lines (B.Tx3408, B.Tx3409, R.TAM428 and 

R.Tx2783), three susceptible lines (B.Tx631, R.Tx436, R.Tx7000) and one susceptible 

hybrid (Pioneer 84P80) were used. A/B.Tx3408 and A/B.Tx3409 were released as 

resistant lines to SCA (Mbulwe et al., 2016), R.Tx2783 was released as a resistant line to 

greenbug (Peterson et al., 1984) and R.TAM428 was reported as having resistance to 

SCA in Africa and India (Manthe, 1992; Sharma et al., 2014). R.Tx7000, R.Tx436 and 

Pioneer 84P80 are susceptible to SCA (Armstrong et al., 2016; Mbulwe et al., 2016; 

Pekarcik, 2016). B.Tx631 is resistant to greenbug biotype E (Miller, 1986) but not 

necessarily resistant to SCA. 

The eight sorghum germplasm were replicated twice in a randomized complete 

block design. The germplasm were planted late at the Texas A&M AgriLife Research 

Farm on 7th April 2016. The late planting coordinated reproductive growth stages (stage 

6-9) with peak aphid infestations and enabled effective evaluation of the reproductive 

capacity of aphids on susceptible and resistant germplasm. 

In this study aphids were first detected on 23rd June 2016 and after the aphid 

population was heavy (> 1000 SCA leaf-1 plant-1) on 8th July, SCA weights were taken. 

A heavy population of aphids was necessary to measure aphid weights more accurately. 

Heavy SCA pressure was also essential to effectively characterization resistance. When 

aphid pressure is heavy and no alternate host-plant is available this is considered no-

choice feeding. The reasoning being that when aphids have no alternate host they are 
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forced to survive on the existing host-plant. At sampling time, ten plants were selected at 

random in a plot and five fully expanded leaves with a heavy infestation of aphids (> 

1000 SCA leaf-1 plant-1) were removed for analysis per plant giving a total of 100 

samples per genotype or 50 samples per replication. 

To count the total number of aphids per leaf, a high quality picture of each leaf 

was taken immediately after sampling using a digital camera (Panasonic Lumix G DMC-

GF2K) in macro mode. Aphids were counted from the captured images using a desktop 

computer (Asus model X555LA). The windows image viewer program was used with 

the help of a digital tally hand counter (Control company counter, model # 3129). 

Alternatively, the total number of aphids was also estimated using the total area covered 

by aphids divided by the average area covered by one aphid using Microsoft visual basic 

2010TM software (Emesu and Chenamani, 2013). 

The two methods of counting aphids were compared using Spearman’s 

correlation. Counting aphids using Microsoft visual basic was correlated to hand counts 

by ρ = 0.90 (Spearman’s). But since this was only a preliminary attempt to use software 

to count aphids, only hand counts of aphids were used in the analysis of aphid weights. 

Counting aphids using Microsoft visual basic was an initial attempt to automate counting 

hoping that it will make counting more efficient and less strenuous in future studies. 

The total weight of the leaf with aphids was measured using a portable electronic 

balance (MS-600 Digital Pocket Scale, 600 x 0.1G) that was sensitive enough to 

measure a minimum weight of 500 aphids. After initial weight, the aphids were 

immediately swept off the leaf using a soft horsehair hand brush. The cleaned leaf was 
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weighed again immediately. The difference between weight of leaf with aphids and 

weight of leaf without aphids was the total weight of aphids on that leaf. Average weight 

of aphids per leaf was calculated as the total weight of aphids divided by the total 

number of aphids on the leaf. 

The null hypothesis (H0) was that sorghum lines with active defense against SCA 

would have lower aphid weights compared to plants without. Since aphid colonies 

consist of varying stages of aphid development (all morphs) whose weight distributions 

are not known, the univariate normal (Gaussian) distribution curve in probability theory 

(Durrett, 2010 and Klenke, 2013) was used to determine the variances around the mean 

aphid weights. This is possible because of the central limit theory, which states that 

averages of random variables independently drawn from independent distributions have 

a normal distribution given by the probability density function as: ƒ(x|µ,σ2) = 

(1/√2σ2π)((e-( x̅-π)( x̅-π))/2σ2)). If active defense exists, a difference or shift in the weight 

distribution of aphids between the resistant and susceptible lines was expected. To test 

this difference, a paired unequal variance Student’s test statistic (Student’s t-test) was 

used (Yuen, 1974; Cressie and Whitford, 1986; Ruxton, 2006). 

Antibiosis (method II) average number of aphids per leaf and field rate of increase 

(reproductive capacity) 

The reproductive capacity of SCA was determined on resistant and susceptible 

grain hybrids (SCAG) and forage hybrids (SCAF). Both SCAG and SCAF consisted of 

12 entries (Table 21) replicated eight times. The two trials were planted side by side, 

each in a randomized complete block design. In the SCAG trial, eight resistant and four 
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susceptible hybrids were used. In the SCAF trial five resistant and seven susceptible 

hybrids were used (Table 21). The trial was planted on 26th July 2016, next to (10 meters 

apart) a forage hybrid crop (SCA refuge crop, 250 by 50 meters), that was used as a 

source of SCA to inundate the SCAG and SCAF trials with aphids naturally. 

 

 

Table 21 List of grain sorghum hybrids (SCAG) and forage sorghum hybrids 

(SCAF) used to evaluate antixenosis and antibiosis using method II and III in fall, 

College Station, Texas, 2016. 
 

No. SCAG (Pedigree) Genotype SCAF (Pedigree) Genotype 

1. A.Tx3408/R.Tx2783 Resistant A.Tx3408/R.Tx2785 Resistant 

2. A.Tx3408/R.Tx436 Resistant A.Tx3408/R.Tx2785 Resistant 

3. A.Tx3408/R.Tx437 Resistant A.Tx3408/R.Tx2909 Resistant 

4. A.Tx3409/R.Tx2783 Resistant A.Tx3408/R.Tx2909 Resistant 

5. A.Tx3409/R.Tx436 Resistant A.Tx3408/R.Tx2910 Resistant 

6. A.Tx3409/R.Tx437 Resistant A.Tx631/R.Tx2785 Susceptible 

7. A.Tx631/R.Tx2783 Resistant A.Tx631/R.Tx2909 Susceptible 

8. A.Tx645/R.Tx2783 Resistant A.Tx631/R.Tx2910 Susceptible 

9. A.Tx631/R.Tx436 Susceptible A.Tx645/R.10781 Susceptible 

10. A.Tx631/R.Tx437 Susceptible A.Tx645/R.Tx2785 Susceptible 

11. A.Tx645/R.Tx436 Susceptible A.Tx645/R.Tx2909 Susceptible 

12. A.Tx645/R.Tx437 Susceptible A.Tx645/R.Tx2910 Susceptible 

Antibiosis method II (average number of aphids per leaf and field rate of increase (reproductive capacity). 

Antibiosis method III (nymphoal mortality rate). 

 

 

 

In both the SCAG and SCAF, six plants were randomly selected from every plot, 

and the topmost leaf of each plant was used to count aphids. The initial number of aphids 

per leaf was counted in the field by hand on 1st September 2016, and the total number of 

aphids after ten days was recorded on 10th September 2016. On the 10th day the topmost 

leaf was photographed and aphids counted using the same method as described in 
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Method I using Microsoft Windows Photo program. The reproductive capacity 

(fecundity) of aphids was reported as total number of aphids per leaf and field rate of 

increase (fm) after 10 days. 

The field rate of crease for r-strategists or r-selected species (Dixon, 1998) was 

calculated using the formula: (dN/dt)*(1/N) = fm, where d = delta or change, N = 

population size and fm = field rate of increase. The difference between the initial aphid 

population (N1) and population after ten days (N2) is dN. N is the population size of 

aphid colonies on the leaf after 10 days. The difference in time between the first and the 

second aphid count is dt. This formula is essentially the same as the one used to 

calculate intrinsic rate of increase under controlled conditions (Lewontin, 1965) but 

because hypothetical rates of aphid increase under controlled conditions are usually 

different from field growth rates (Ragsdale et al., 2007), the term field rate of increase 

was used. 

The null hypothesis H0 was that there should be no differences in the 

reproductive capacity of SCA on resistance and susceptible sorghum germplasm if 

antibiosis did not exist. Consequently, sorghums plants expressing antibiosis would have 

a lower number of aphids than plants without antibiosis. Analysis of variance was done 

using PROC GLM in SAS v 9.3 (SAS Institute, 2011), and means were compared with 

test trial LSD values (P < 0.05). 

Antibiosis (method III) nymphal mortality rate 

To determine the mortality rate of newly born nymphs, which were 

approximately one-tenth (0.1) of the average size of adults, three hybrids were used 
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(A.Tx3408/R.Tx2783, A.Tx3409/R.Tx2783 and A.Tx631/R.Tx436). A.Tx631/R.Tx436 

was described as a susceptible hybrid and the other two as resistant. The three were 

planted in a randomized complete block design on 26th July 2016. Aphid infestation 

were first observed on this experiment at the vegetative stage of plant development 

(stage 2) on 17th August 2016. Mass migrations of alates were observed from the refuge 

forage crop onto these hybrids on 19th August 2016. After migrations had ceased from 

the refuge crop to these lines, evaluations commenced on 20th August 2016. 

One newly alighted alate (settling and beginning to reproduce) was trapped to a 

leaf using a clip cage (BioQuip clip cage # 1458). The clip cages were white, circular, 

diameter 3.7cm and thickness of 1.0 cm. Two experiments were set, in the first 

experiment the alate and offspring were caged for five days. In the second experiment, 

the alate and offspring were caged for 10 days. Once the caged alate had given birth to 

nymphs, which were about one-tenth (0.1) the average size of adults, the total number of 

births (live aphids) and the total number of deaths (dead aphids) was calculated in each 

cage. The nymphal mortality rate of newly born SCA was recorded from 21st to 25th 

August 2016. The other recording was from 28th August to 6th September 2016. 

The advantages of using only one winged aphid per cage were: (i) they were 

abundant in fall, (ii) all nymphs in each clip cage arose from one alate, (iii) it was easy to 

keep track of the nymphs and determine their age, (iv) cages kept out natural enemies to 

ensure that mortality was due to host-plant resistance and (v) they helped to shelter 

aphids from weather elements. 
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Because clip cages could only accommodate a finite population, rather than use 

intrinsic rate of increase (rm) to assess the reproductive capacity (fecundity) of SCA the 

mortality rate was used instead. The null hypothesis H0 was that hybrids with active 

resistance would cause a higher mortality on newly born nymphs than hybrids without 

resistance. The mortality rate was calculated by the formula: Mr = D/N, where Mr = 

mortality rate, D = deaths and N = population size. The means were analyzed for 

variance using PROC GLM in SAS v 9.3 (SAS Institute, 2011), and means were 

compared with test trial LSD values (P < 0.05). 

Antixenosis (method IV) average number of alates per leaf 

In this experiment winged aphids had a natural choice to colonize their preferred 

host-plant. Their mobility allowed them to choose which plants were more suitable 

based on their perception of cues from the host-plants. After alate migration from the 

refuge crop had stopped, six plants were randomly selected and alates were counted on 

the top, fully expanded leaf of each plant. The top leaf was used because the colonization 

of the host-plant by the alates was from top to bottom, and only the top three leaves were 

colonized to a great extent throughout the field. Rather than physically count aphids 

individually in the field a high resolution picture of the leaf with alates was taken using a 

digital camera (Panasonic Lumix G DMC-GF2K) in macro mode. Alates were counted 

using Microsoft Windows Photo program on a desktop computer (ASUS) with the help 

of a hand tally counter. The total plant count per plot, multiplied by three leaves, 

multiplied by the average number of alates per leaf was the estimate of the aphid 

population per plot (cumulative total per plot). 
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The hypothesis stated that if morphology or chemical cues of germplasm altered 

the behavior of winged aphids, the alate population density would be lower on resistant 

plants than susceptible plants. A lower alate population would reflect the non-preference 

for that genotype by SCA. Analysis of variance was used to calculate differences using 

the statistical software PROC GLM in SAS v 9.3 (SAS Institute, 2011), and means were 

compared with test trial LSD values (P < 0.05). 

Phenotype (method V) correlation and principal component analysis 

Phenotypic traits (days to 50% anthesis, biomass yield ha-1, dry matter yield ha-1, 

plant height and number of leaves per plant) were collected on forage sorghum hybrid 

trials in Lubbock and College Station in summer and Weslaco in fall. Plant composition 

components (present lignin, protein, cellulose and sucrose) were estimated using Near-

Infrared Spectroscopy. Using Spearman’s correlation analysis and Principal Component 

Analysis (PCA), the relationship between these traits and aphid damage was established.  

Statistical analysis (correlation) 

Correlation analysis is a statistical measure of a linear relationship between two 

variables. Given by the formula ρ = 1 – (6 Ʃd2
i)/n(n2–1), where n is the number of 

variables and d2
i is the squared difference of the ranked differences. Correlation can be 

either positive or negative. Spearman’s correlation, ρ, was used to measure correlation 

and is equivalent to Pearson correlation of ranked values of variables. Correlations 

between different measured traits within each test were completed using PROC GLM 

correlation in SAS version 9.2 (SAS Institute, 2011). 
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Statistical analysis (PCA) 

PCA was used to cluster variables (lignin, protein, cellulose, days to 50% 

anthesis, sucrose, biomass yield ha-1, dry matter yield ha-1, height, No. Leaves) 

according to environment, genotype and aphid damage. In large data sets PCA made 

interpretation of results easier because data was reduced to a smaller number of variables 

that account for most of the variation. The formula for PCA using covariance method is 

given by the general formula cov(X,Y) = Ʃn
i=1 (Xi – X̅)(Yi – Ӯ)/(n–1) (Smith, 2002) and 

the generalized linear model for covariate analysis is given by: Y = β0 + β1X1 + β2X2 + . . 

. + βtXt + e. The null hypothesis is given by H0: β2 = β3 = … = βt = 0 (Ott and 

Longnecker, 2015). The analysis was implemented using the statistical software PROC 

GLM in SAS v 9.3 (SAS Institute, 2011). 

Results 

Antibiosis (method I) average weight per aphid and number of aphids per leaf 

In this study, the aphid pressure was heavy (> 1000 SCA leaf-1 plant-1) and 

distinct variation for aphid weight in milligrams (mg) was detectable (Figure 9). The 

lines designated as resistant, colored dark gray, (B.Tx3408, B.Tx3409, R.Tx2783 and 

R.TAM428), had significantly lower aphid weights 0.060mg, 0.090mg, 0.080 and 

0.048mg respectively. Aphid weights on susceptible germplasm colored light gray and 

red (R.Tx436, R.Tx7000, Pioneer 84P80 and B.Tx631) were significantly higher 

0.252mg, 0.129mg, 0.181mg and 0.488mg respectively. Susceptible genotypes consisted 

of three lines and one hybrid. Two susceptible lines (R.Tx436 and R.Tx7000) and one 

hybrid Pioneer 84P80 are jointly colored light gray and B.Tx631 is colored red. 
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The Gaussian distribution revealed a shift in the distribution of mean weights 

(0.388mg on susceptible and 0.070mg on resistant germplasm). Mean weight of SCA on 

resistant lines centered at 0.070mg whereas the mean of susceptible germplasm centered 

at 0.338 milligrams (Figure 9). This shift in weight distribution was significant using the 

students-t test (t-test). The test statistic was -213.03, p > |t| < 0.0001, p < t < 0.0001, 

degrees of freedom = 399, Standard deviation 0.000022 with an actual estimate of the 

mean on resistant hybrids of 0.00007mg. 

The bimodal distribution in the susceptible germplasm may have been influenced 

by differences in the germplasm or may have been influenced by the hybrid and could be 

broken down into two means: (i) 0.188 milligrams, for the combined means of R.Tx436, 

R.Tx7000 and Pioneer 84P80 and (ii) 0.488 milligrams for B.Tx631. Why there was 

such a significant difference between B.Tx631 and the other three susceptible 

germplasm is not definitively known. The means of individual resistant genotypes did 

not differ. These shifts in the mean weight distribution of SCA on resistant lines suggests 

an antibiosis effect which was impending the growth of the insect. 
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Figure 9 Gaussian distribution of aphid weight in milligrams (antibiosis (method I)) 

on four resistant and four susceptible sorghum germplasm in summer, College 

Station, Texas, 2016. Weight distribution; Low (B.Tx3408, B.Tx3409, R.Tx2783, 

R.TAM428), Medium (Pioneer84P80 (hybrid), R.Tx7000, R.Tx436), and High 

(B.Tx631). Means weights for high, medium and low were 0.488mg, 0.188mg and 

0.07mg respectively. t-test; p > |t| < 0.0001, p < t < 0.0001, DF = 399, Std. Dev. 

0.000022. 
 

 

 

Analysis of variance was performed on the eight sorghum germplasm consisting 

of four resistant lines, three susceptible lines and one susceptible hybrid (Table 22). 

Differences in weight distribution was significant p < 0.0001* and R.Square of 0.95. The 

lowest mean aphid weight was on the resistant lines and highest mean aphid weight was 

on the susceptible lines (Table 22). 
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Table 22 Analysis of variance for antibiosis (method I) using average weight per 

aphid on resistant and susceptible germplasm. Mean separation of aphid weights 

on eight sorghum germplasm evaluated in summer, College Station, Texas, 2016. 
 

Pedigree Genotype Mean Separation Standard Error 

R.TAM428 Resistant 0.048f 0.00000309 

B.Tx3408 Resistant 0.060f 0.00000309 

R.Tx2783 Resistant 0.080e 0.00000309 

B.Tx3409 Resistant 0.090e 0.00000309 

R.Tx7000 Susceptible 0.129d 0.00000309 

Pioneer 84P80 Susceptible 0.181c 0.00000309 

R.Tx436 Susceptible 0.252b 0.00000309 

B.Tx631 Susceptible 0.488a 0.00000309 
Randomized completely block design. Eight entries by two replications. Column means followed by the 

same lowercase letters are not significantly different. DF = 7, R.Square = 0.95, Observations = 800, F. 

Ratio = 2263.4, P. > F = < 0.0001*. 

 

 

 

Antibiosis (method II) average number of aphids per leaf and field rate of increase 

(reproductive capacity) 

Among the hybrids evaluated for the number of aphids and field rate of increase, 

resistant hybrids accumulated fewer aphids (160-215) per leaf than susceptible hybrids. 

Susceptible hybrids had more aphids (351-427) per leaf (Table 23). Given the reduced 

number, it can be inferred that either reproduction rates are reduced or survivability of 

the SCA is more limited on the resistant genotypes as estimated by number of aphids per 

leaf and field rate of increase (fm) (Table 23). 
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Table 23 Mean separation for antibiosis (method II), using average number of 

aphids per leaf and field rate of increase. Grain sorghum hybrids in fall, College 

Station, Texas, 2016. Average no. of aphids per leaf, field rate of increase (fm), no. 

of aphids per plant, plant count and cumulative no. of aphids per plot on resistant 

(R) and susceptible (S) hybrids. 
 

Genotype Aphids 

Leaf-1 

fm 

Leaf-1 

Aphids 

Plant-1 

Plant 

Count 

Aphids 

Plot-1 

A.Tx631/R.Tx2783 (R) 160d 0.097d 480d 15a 9240d 

A.Tx3408/R.Tx437 (R) 168d 0.097d 504d 20a 11602d 

A.Tx3409/R.Tx437 (R) 195d 0.097d 585d 27a 16929d 

A.Tx3409/R.Tx2783 (R) 196c-d 0.097c-d 588c-d 25a 14700c-d 

A.Tx3408/R.Tx2783 (R) 200c-d 0.098c-d 600c-d 27a 12891c-d 

A.Tx3408/R.Tx436 (R) 209c-d 0.098c-d 627c-d 21a 10668c-d 

A.Tx3409/R.Tx436 (R) 210b-d 0.098b-d 630b-d 25a 14800b-d 

A.Tx645/R.Tx2783 (R) 215c-d 0.098c-d 645c-d 24a 26772c-d 

Mean (R) 194 0.098 582 23 14700 

A.Tx631/R.Tx437 (S) 351a-c 0.099a-c 1053a-c 19a 19656a-c 

A.Tx645/R.Tx436 (S) 368a-b 0.099a-b 1104a-b 22a 25146a-b 

A.Tx645/R.Tx437 (S) 381a 0.099a 1143a 25a 32025a 

A.Tx631/R.Tx436 (S) 427a 0.099a 1281a 29a 18383a 

Mean (S) 382 0.099 1145 24 23803 
Randomized complete block design. Twelve entries by eight replications. Column means followed by the 

same lowercase letters are not significantly different fm = field rate of increase. P > 0.0001*; DF = 11, 

F.Ratio, LSD, Mean response. The asterisk (*) indicates significance. 

 

 

 

In the forage hybrid study, resistant hybrids accumulated 119-134 aphids per leaf 

while the susceptible genotypes ranged from 309-356 (Table 24). Interestingly, 

A.Tx631/R.Tx2785 and A.Tx645/R.Tx2785 although classified as susceptible, had 

lower numbers of aphids per leaf, implying that they have some form of resistance to 

SCA. Further studies are needed to confirm this observation. The reproductive capacity 

or field rate of increase (fm) on resistant forage hybrids was also lower than on 

susceptible hybrids (Table 24). 
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Table 24 Mean separation for antibiosis (method II), using average number of 

aphids per leaf and field rate of increase. Forage sorghum hybrids in fall, College 

Station, Texas, 2016. Average no. of aphids per leaf, field rate of increase (fm), no. 

of aphids per plant, plant count and cumulative no. of aphids per plot on resistant 

(R) and susceptible (S) hybrids. 
 

Genotype Aphids 

Leaf-1 

fm 

Leaf-1 

Aphids 

Plant-1 

Plant 

Count 

Aphids 

Plot-1 

A.Tx3408/R.Tx2785 (R) 119c 0.096c 357c 32a-b 11424c 

A.Tx3408/R.Tx2910 (R) 116b-c 0.096b-c 348b-c 27a-b 9396b-c 

A.Tx3408/R.Tx2909 (R) 116c 0.096c 348c 35a 12180c 

A.Tx3409/R.Tx2910 (R) 128c 0.096c 384c 30a-b 11520c 

A.Tx3409/F10762-3dw (R) 133c 0.096c 399c 23b 9177c 

A.Tx3409/R.Tx2785 (R) 134c 0.096c 402c 25a-b 10050c 

Mean (R) 124 0.096 373 29 10625 

A.Tx631/R.Tx2785 (S) 148c 0.097c 444c 33a 14652a 

A.Tx645/R.Tx2785 (S) 158c 0.097c 474c 35a 16590a 

ES5200 (S) 309a-b 0.098a-b 927a-b 33a 30591a-b 

A.Tx645/R.Tx2910 (S) 321a 0.098a 963a 35a 33705a 

A.Tx631/R.Tx2910 (S) 334a 0.099a 1002a 35a 35070a 

A.Tx645/R.Tx2909 (S) 356a 0.099a 1068a 34a 36312a 

Mean (S) 271 0.098 813 34 27820 
Randomized complete block design. Twelve entries by eight replications. Column means followed by the 

same lowercase letters are not significantly different fm = field rate of increase. P > 0.0001*; DF = 11, 

F.Ratio, LSD, Mean response. The asterisk (*) indicates significance. 

 

 

 

Antibiosis (method III) nymphal mortality rate 

Analysis of antibiosis by nymphal mortality rate revealed significant differences 

among genotypes, and least squares means detected differences between resistant and 

susceptible germplasm for mortality rate of nymphs. Replication effects could not be 

detected by the model as well as duration and genotype by duration interactions (Table 

25). 
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Table 25 Analysis of variance for antibiosis (method III), using mortality rate of 

newly born nymphs the size of one-tenth the average size of an adult, in clip cages 

in a five and ten day duration in two resistant (R) and one susceptible (S) grain 

sorghum hybrid (SCAG trial) in fall, College Station, Texas, 2016. 
 

Sources of Variance Combined 

Duration 

(5 and 10 days) 

5 day 

Duration 

10 day 

Duration 

Genotype 0.0003* 0.0269* 0.0347* 

Replication 0.3128 0.2709 0.3647 

Duration (5 and 10 days) 0.1143   

Genotype x Duration 0.5047   

LS Mean Contrast: (R) vs (S) 0.0004* 0.0138* 0.0366* 
Randomized complete block design. Three entries by four replications. R = resistant hybrids, S = 

susceptible hybrids. The asterisk (*) indicates significant differences. 

 

 

 

In a 24 hour period, an alate produced on average five nymphs. In a five day 

period, mortality was not observed on susceptible germplasm (Table 26). In fact, trends 

in the five and ten day test were essentially identical. In the resistant backgrounds, the 

mortality of nymphs averaged 34% (0.34). In addition, differences among genotypes in 

each classification were observed as well (Table 26). 

Higher mortality rates reduced the exponential growth rates of SCA on resistant 

hybrids and largely explained differences in aphid numbers and possibly reduced aphid 

weight reported earlier. SCA host-plant interaction resulted in adverse effects on the 

SCA newly born nymphs, which were about one-tenth (0.1) the size of an average adult. 

It appears that the antibiosis effect was direct but it is unknown if this adverse effect is 

constitutive (inherent) or induced (triggered by SCA herbivory activity). 
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Table 26 Mean separation for antibiosis (method III), using mortality rate, for 

newly born nymphs (one-tenth the average size of an adult), in clip cages, in two 

resistant (R) and one susceptible (S) grain sorghum hybrids (SCAG trial) in fall, 

College Station, Texas, 2016. 
 

Pedigree Genotype Mortality Rate 

Mean Separation 

A.Tx3408/R.Tx2783 Resistant 0.24 a 

A.Tx3409/R.Tx2783 Resistant 0.44 a 

Mean Resistant 0.34 

A.Tx631/R.Tx436 Susceptible 0.00 b 

Mean Susceptible 0.00 
Randomized complete block design. Three entries by four replications. Column means followed by the 

same lowercase letters are not significantly different. P > 0.0003*; DF = 2, LSD, F.Ratio, Mean response. 

The asterisk (*) indicates significance. 

 

 

 

Antixenosis (method IV) number of alates per leaf 

In College Station fall, in the grain hybrid (SCAG) trial and forage hybrid 

(SCAF) trial, resistant grain hybrids had fewer alates (34-64) than susceptible hybrids 

(82-86) (Table 27). On average susceptible hybrids had nearly twice as many winged 

aphids as resistant hybrids per leaf.  The same was true for the estimated number of 

winged aphids per plant and also the total accumulated estimate of winged aphids per 

plot. 
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Table 27 Mean separation for antixenosis (method IV), using number of alates per 

leaf on grain sorghum hybrids in fall, College Station, Texas, 2016. Average no. of 

alates per leaf, no. of alates per plant, plant count and no. of alates per plot on 

resistant (R) and susceptible (S) hybrids. 
 

Genotype Alates  

Leaf-1 

Alates  

Plant-1 

Plant 

Count 

Alates 

Plot-1 

A.Tx3408/R.Tx436 (R) 34c 102c 22a-b 2244c 

A.Tx3408/R.Tx437 (R) 35c 105c 31a 3255b-c 

A.Tx631/R.Tx2783 (R) 35c 105c 23a-b 2415c 

A.Tx3408/R.Tx2783 (R) 41c 123c 25a 3075c 

A.Tx645/R.Tx2783 (R) 44c 132c 23a-b 3036c 

A.Tx3409/R.Tx2783 (R) 48b-c 144b-c 23a-b 3312c 

A.Tx3409/R.Tx437 (R) 50b-c 150b-c 26a 3900b-c 

A.Tx3409/R.Tx436 (R) 64a-c 192a-c 13b 2496c 

Mean (R) 44 132 23 2967 

A.Tx645/R.Tx437 (S) 82a-b 246a-b 26a 6396a-b 

A.Tx631/R.Tx436 (S) 83a 249a 18a-b 4482a-c 

A.Tx631/R.Tx437 (S) 85a 255a 19a-b 4845a-c 

A.Tx645/R.Tx436 (S) 86a 258a 27a 6966a 

Mean (S) 84 252 23 5672 
Randomized complete block design. Twelve entries by eight replications. Column means followed by the 

same lowercase letters are not significantly different. P > 0.0001*; DF = 11, LSD, F.Ratio, Mean response. 

The asterisk (*) indicates significance. 

 

 

 

Similar to grain hybrids, forage sorghum resistant hybrids had fewer numbers of 

alates per leaf (24-49) while the numbers were higher on susceptible hybrids (60-89) 

(Table 28). Almost twice as many alates were present on susceptible hybrids per leaf 

than on resistant hybrids per leaf.  The estimated number of alates per plant and also the 

total accumulated estimate of alates per plot were fewer on resistant forage sorghums 

than of susceptible forage sorghums. 
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Table 28 Mean separation for antixenosis (method IV), using number of alates per 

leaf. Forage sorghum hybrids in fall, College Station, Texas, 2016. Average no. of 

alates per leaf, no. of alates per plant, plant count and no. of alates per plot on 

resistant (R) and susceptible (S). 
 

Genotype Alates  

Leaf-1 

Alates 

Plant-1 

Plant 

Count 

Alates 

Plot-1 

A.Tx3408/R.Tx2909 (R) 24e 72e 35a 2520e 

A.Tx3408/R.Tx2785 (R) 26e 78e 32a 2496e 

A.Tx3409/R.Tx2785 (R) 48a-e 144a-e 23a 3312a-e 

A.Tx3409/R.Tx2910 (R) 49b-e 147b-e 32a 4704b-e 

Mean (R) 37 110 31 3258 

A.Tx631/R.Tx2785 (S) 33d-e 99d-e 35a 3465d-e 

A.Tx645/R.Tx2785 (S) 38c-e 114c-e 35a 3990c-e 

A.Tx645/F10762-3dw (S) 60a-e 180a-e 35a 6300a-e 

A.Tx645/R.Tx2910 (S) 64a-d 192a-d 35a 6720a-d 

A.Tx631/R.Tx2910 (S) 66a-d 198a-d 35a 6930a-d 

A.Tx645/R.Tx2909 (S) 69a-c 207a-c 33a 6831a-c 

A.Tx631/R.Tx2909 (S) 86a-b 258a-b 35a 9030a-b 

ES5200 (S) 89a 267a 32a 8544a 

Mean (S) 63 189 34 6476 
Randomized complete block design. Twelve entries by eight replications. Column means followed by the 

same lowercase letters are not significantly different. P > 0.0001*; DF = 11, LSD, Mean response. The 

asterisk (*) indicates significance. 

 

 
 

Phenotype (method V) correlation and principal component analysis 

Correlation analysis 

In forage sorghum hybrids yield components were positively correlated with 

aphid damage. SCA damage was measured using Sharma’s chlorosis scale of 1-9 

(Sharma et al., 2014). Plant height and average number of leaves per plant were 

negatively correlated to aphid damage (chlorosis) at -0.8 while yield per hectare and dry 

matter yield per hectare were moderately negatively correlated to aphid damage at -0.6 

and -0.5 respectively. Days to 50% anthesis was not correlated to aphid damage. Protein 
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and lignin were highly positively correlated to aphid damage at 0.8 and 0.7 respectively 

while cellulose was fairly positively correlated to aphid damage at 0.3 (Table 29). 

 

 

Table 29 Forage sorghum correlation analysis of nine phenotypic traits (by-

variable) with aphid damage (variable) in Lubbock and College Station (summer) 

and Weslaco (fall) in Texas, 2016 using Spearman’s (ρ) and Pearson’s (r) 

correlations and the associated probability for (ρ). Aphid damage was measured 

using Sharma’s chlorosis scale of 1-9. 
 

Variable By Variable Spearman 

(ρ) 

Prob. > |ρ| Pearson 

(r) 

Aphid damage Lignin 0.6842 < 0.0001* 0.7 

Aphid damage Protein 0.7421 < 0.0001* 0.8 

Aphid damage Cellulose 0.3752 < 0.0001* 0.3 

Aphid damage Days to 50% anthesis -0.1823 0.318 -0.2 

Aphid damage Sucrose -0.6600 < 0.0001* -0.7 

Aphid damage Biomass yield ha-1 -0.6227 < 0.0001* -0.6 

Aphid damage Dry matter yield ha-1 -0.6834 < 0.0001* -0.6 

Aphid damage Height -0.7394 < 0.0001* -0.8 

Aphid damage Number of Leaves -0.8234 < 0.0001* -0.8 
Asterisk (*) indicates significance for Spearman correlation test. 

 

 

 

Principal component analysis 

Principal component analysis resulted in seven PCA variance components which 

accounted for most of the variation. The first two components accounting for 81.3% of 

the total variation (Figure 10). The PCA components beyond PCA3 were of minimal 

value and not shown in the figure. In the PCA analysis, the individual traits aligned 

similarly to the correlations between the individual traits (Table 29). Height, number of 

leaves and yield (biomass and dry matter ha-1) were tightly associated and had opposite 

reactions compared to lignin, sucrose and aphid damage (Figure 10). 
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Figure 10 Principal component analysis (PCA) of lignin, sucrose, number of leaves 

plant-1, biomass yield ha-1, dry matter yield ha-1 and height in forage sorghums in 

relation to aphid damage. Lubbock and College Station (summer) and Weslaco 

(fall) in Texas, 2016. Aphid damage measured using Sharma’s chlorosis scale of 1-9. 
 

 

 

Discussion 

Antibiosis 

Sorghum lines and hybrids manifested antibiosis in the form of reduced aphid 

weights and number of sugarcane aphid on resistant genotypes compared to susceptible 

genotypes (Method I and II antibiosis evaluation). In addition, the mortality rate of SCA 

(Method III antibiosis evaluation) on resistant germplasm was greater than on the 

susceptible genotypes. The reproductive capacity (fecundity) of the SCA was lower on 
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resistant germplasm. These results support earlier studies of antibiosis against SCA on 

sorghum (Manthe, 1992; Armstrong et al., 2016). Additional studies on aphid weight 

gain done in the current work further support that resistant germplasm is expressing 

antibiosis for SCA actively. 

There appears to be sufficient antibiosis defense in the resistant lines to reduce 

the fecundity of SCA, this allows resistant plants to continue growing under SCA 

pressure while susceptible plants succumb to aphid pressure. The study suggest that 

resistant germplasm have some advantage over susceptible germplasm under SCA 

infestations. Hybrids made by crossing resistant lines (B.Tx3408, B.Tx3409 and 

R.Tx2783) with susceptible lines also expressed antibiosis in both grain and forage 

sorghums. This mode of resistance appears to be repeatable, transferable and dominant. 

Studies on greenbug resistance on sorghum germplasm R.Tx2783 also concluded 

that antibiosis was one of the defense mechanisms towards biotype E and H (Gorena, 

2004). Molecular studies of defense against insect herbivores have implicated 

cyanogenic glucosides in antibiosis reaction (Darbani et al., 2016). Studies on greenbug 

resistance suggest that salicylic acid and jasmonic acid are involved in defense pathways 

including dhurrin, a cyanogenic glucoside which is essentially converted into hydrogen 

cyanide at the wounding site (Zhu-Salzman et al., 2004). Several other genes have been 

implicated in conditioning resistance to greenbug and are believed to be mostly additive 

in nature (Katsar, 2002). 

The role of anthocyanins (3-deoxyanthocyanidins) in the fight against fungal and 

bacterial infections is well documented of which the major candidate gene is 
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Sb06g029550 (Poloni and Schirawski, 2014). Yellow sugarcane aphid (Sipha flava 

(Forbes)) infestations have been associated with an increase in the production of red and 

purple pigmentation usually associated with anthocyanins (Gonzáles et al., 2002; Poloni 

and Schirawski, 2014). Since Sipha flava transmits pathogens it is not surprising that 3-

deoxyanthocyanidins are associated with Yellow Sugarcane Aphid infestation. 

However, an increase in red or purple pigmentation (anthocyanin production) 

does not necessarily mean resistance to SCA. It may be a secondary effect due to 

opportunistic infections as a result of plant stress. Increase in pigmentation was observed 

on R.Tx2783 as plants began natural senescence (programed cell death) at the same time 

as R.Tx7000 succumbed to heavy aphid pressure. Further B.Tx3408, which has high 

levels of resistance to the SCA, is a tan plant and does not produce any significant 

quantity of anthocyanins. Plants may mistake aphid activity for pathogen infection 

(Jaouannet et al., 2014) and this may explain the anthocyanin production. 

Different aphid species and biotypes trigger different defense pathways because 

of their variable herbivory activity (Jaouannet et al., 2014). That could partially explain 

why a resistant host-plant to one aphid biotype may be susceptible to another. That could 

also explain why a host-plant may be susceptible to one aphid species and resistant to 

another, as was the case with R.TAM428 resistant to SCA (Manthe, 1992, Sharma et al., 

2014) but susceptible to greenbug. Conversely, R.Tx2783 resistant to greenbug also 

expressed resistance to SCA. In this situation, this may imply that genes conditioning 

greenbug and SCA resistance in B.Tx3408, B.Tx3409 and R.Tx2783 are related. 

However, even when genes are related defense pathways may be different. Aphids are 
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capable of evading even very effective host-plant defense pathways (Zhu-Salzman et al., 

2004). Elucidating the molecular mechanisms of antibiosis resistance will require further 

molecular analysis. 

Antixenosis 

Antixenosis was evident due to differences in the population densities of alates 

on leaves for resistant and susceptible genotypes. Since aphids are able to pick up cues 

on the suitability of a host-plant (Dixon, 1998), the lower population densities of alate 

SCA at the onset of colonization on resistant plants implies antixenosis or non-

preference. This documented behavior (Blum 1968; Heftmann, 1975; Seigler and Price, 

1976; Kogan and Ortman, 1978; Atkin and Hamilton; 1982; Maiti and Gibson, 1983; 

Campbell and Dreyer, 1985; Smith, 2005), may be due to plant volatiles or plant 

morphology that alert SCA of the unsuitable nature of the resistant host-plant for their 

survival. 

Many other traits that may be involved in antixenosis resistance (Sharma et al., 

2014) could not be measured such as leaf thickness, size and wax.  Plant phytochemicals 

could not be measured either. This was because some equipment were not suitable for 

field measurements and not all traits could be measured accurately under field conditions 

that are useful for a plant breeding program. Future studies should include additional 

tools to measure antixenosis under field conditions on sorghum. It would be worthwhile 

to also include studies to measure plant phytochemicals. 
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Phenotype 

Positive correlation between SCA damage and any trait implies that these traits 

are not helpful to improve resistance. Conversely, traits negatively correlated with SCA 

help the plant to cope with SCA infestations. Therefore, forage sorghums with higher 

amounts of sucrose, yield per hectare, fresh biomass, taller plants and plants with more 

leaves were among traits that helped resistant plants cope with SCA better in a 

production environment. PCA analysis indicated that taller plants, plants with more 

leaves or plants with a higher yield contributed to resistance plants being less damaged 

under heavy aphid pressure. This is because height, number of leaves, and yield were 

highly negatively correlated with aphid damage (chlorosis). 
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CHAPTER VII 

CONCLUSIONS 

 

Variation for SCA resistance was found in breeding lines and led to the release of 

A/B.Tx3408 and A/B.Tx3409 as sources of resistance to SCA. Additional sources of 

resistance are being evaluated. R.Tx2783, a resistant check, was originally developed for 

greenbug resistance (Peterson et al., 1984) and was also resistant to the sugarcane aphid. 

Greenbug resistance does not necessarily mean SCA resistance since other sources of 

greenbug resistance were susceptible to SCA (Armstrong et al., 2015). Ultimately, 

resistance is valuable in mitigating the effect of SCA on sorghum productivity in both 

grain and forage systems. To quantify this conclusion more research is needed. 

B.Tx3408 and B.Tx3409 were derived from a common parent 08PR047. This 

line was originally selected for greenbug biotype C resistance and E. Additional studies 

are required to know whether resistance to SCA and greenbug comes from a common 

source. Some R.Tx2783 derived lines are both resistant to SCA and greenbug biotypes C 

and E. R.Tx2783 has a complex pedigree, with a significant proportion of its parentage 

from SC110-9. While R.Tx2783 demonstrates resistance to both pests, SC110-9 (a 

parent in R.Tx2783) is resistant to SCA but susceptible to all greenbug biotypes. What 

causes this difference is intriguing and further work will be indispensable. 

Resistant germplasm exhibited all three mechanisms of resistance described by 

Painter (Painter, 1951). Evidence of antibiosis included reduced aphid weight, aphid 

numbers and aphid fecundity. Antibiosis effect was direct as observed by death of newly 
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born nymphs. Antixenosis was demonstrated by reduced alate frequency on resistant 

genotypes compared to susceptible genotypes. Finally tolerance was manifested by 

resistant lines and hybrids that maintained some level of growth and productivity (Smith, 

2005) despite the presence of SCA. It is noteworthy that resistance does not imply 

immunity; none of these resistance sources are completely immune. 

Resistance was consistently expressed as a dominant trait. Hybrids of resistant 

and susceptible lines were always resistant regardless of which parent was male or 

female. This supports studies in Southern Africa on resistance to SCA which was 

inherited as a dominant trait. Segregation rations of an F2 population, from a cross 

between a resistant line R.TAM428 and a susceptible line A.Tx3048, showed a 

Mendelian inheritance pattern. Segregation rations of resistant versus susceptible was 

3:1 (Manthe, 1992). R.Tx2783 was among the lines identified as a resistant source to 

SCA. 

The inherent genetic qualities of resistant hybrids enabled the plants to outgrow 

SCA infestations. Genes involved in the production of anti-nutritive proteins associated 

with resistance to aphid attacks have been identified in sorghum and are believed to be 

highly conserved (Wang et al., 2013). Perhaps the high level of conservation might also 

mean that this resistance is narrow (vertical resistance/qualitative) and hence the 

dominant effect. 

Taller sorghum genotypes suffered relatively less aphid damage. So were plants 

with higher yields and number of leaves. Thus, plant phenotypic traits also contributed to 

resistance to a great extent. In conclusion, for practical application of this information 
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the ultimate goal in plant breeding is to reduce plant damage and increase yield and 

quality of the crops. In the end, measurements of insect damage to plants are more useful 

than measurements of insect growth or population development on plants. Often, 

measurements of yield reduction manifest direct insect feeding injury in plants. 

IPM strategies are important to reduce the likelihood of SCA developing 

resistance. Tritrophic interactions between the resistant host-plant, the insect herbivore 

and the natural enemies also contribute to host-plant resistance under field conditions 

(Brewer and Elliott, 2004). Preserving natural habitats for the natural enemies is just as 

important. Weather has a major influence on SCA prevalence and expression of 

resistance. Hot-dry weather favored SCA rather than rainy weather. But in the end host-

plant resistance should be less dependent on external factors but on the genetics of the 

plant. 

Detailed studies in heritability and QTL mapping are under way. This will help 

to determine specific genes and pathways conditioning resistance in B.Tx3408, 

B.Tx3409 and R.Tx2783 or if these genes are similar to other already identified genes. 

Populations of Recombinant Inbreed Lines (RILs) have already been developed. The 

next step is to extract deoxyribonucleic acid (DNA) from RILs and collect additional 

data (genotypic and phenotypic) accurately. QTL mapping combined with 

bioinformatics will help to establish the role of specific genes and phytochemicals in 

SCA resistance. 
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APPENDIX I  

LIST OF 500 LINES SCREENED FOR SUGARCANE APHID 

No. Pedigree No. Pedigree 

1 ((B1*B9501)-V60*B024) 38 (B.05134/B.05165)-CSF1 

2 (03BRON171*R.TAM428) 39 (B05134/B05165)-CSF1 

3 (03BRON171*R.TAM428) 40 (B.05136/B.Tx2752)-CSF1 

4 (08BRON295 41 (B.05167/B.Tx2752)-CSF1 

5 (88B943*91BE7414) 42 (B.05173/B.Tx2752)-CSF1 

6 (88V1080/ 43 (B.05193/B.Tx645)-CSF1 

7 (90EON362-4/B.05330) 44 (B.05221/B.Tx623)-CSF1 

8 (91BE7414*R.Tx2917) 45 (B.05221/B.Tx623)-CSF1 

9 (96CD677*87EO109) 46 (B.1*B.9501) 

10 (B.03093-CS4-WF2/B.Tx378) 47 (B.807*(KS22*P9516))-F1 

11 (B.03093-CS4-WF2/B.Tx378) 48 (B.807*(KS24*BON34))-F1 

12 (B.05001/B.Tx645) 49 (B.807*(KS24*BON34))-F1 

13 (B.05001/B.Tx645)-CSF1 50 (B.807*B35)-F1-WFF2 

14 (B.05001/B.Tx645)-CSF1 51 (B.9817*B402)-F1 

15 (B.05057/B.01021)-CSF1 52 (B.9817*B9108)-F1 

16 (B.05058/B.01021)-CSF1 53 (B.9817*B9108)-F1 

17 (B.05067/B.01021)-CSF1 54 (B.DLT125*B402)-F1 

18 (B.05067/B.01021)-CSF1 55 (B.Tx3042*(BTx625*B35)) 

19 (B.05070/B.01074)-CSF1 56 (B.TX399*98CA4779)-F1 

20 (B.05070/B.01074)-CSF1 57 (B.Tx631/(GB102A*Tx631)) 

21 (B.05070/B.01074)-CSF1 58 (B.Tx643*B.Tx635)-HF8 

22 (B.05070/B.01074)-CSF1 59 (B.Tx643*B.Tx635)-V6 

23 (B.05070/B.01074)-CSF1 60 (DL0N357/(GB102A*R.Tx631)) 

24 (B.05070/B.01074)-CSF1 61 (DL0N357/(GB102A*R.Tx631)) 

25 (B.05070/B.Tx642)-CSF1 62 (Macia*TAM428)-LL9 

26 (B.05070/B.Tx642)-CSF1 63 (R.01171*R.01180)-F1 

27 (B.05070/B.Tx642)-CSF1 64 (R.01171*R.01180)-F1 

28 (B.05075/B.01074)-CSF1 65 (R.02107/R.Tx436)-CSF1 

29 (B.05075/B.01074)-CSF1 66 (R.02107/R.Tx436)-CSF1 

30 (B.05075/B.01074)-CSF1 67 (R.02107/Tx436)-CSF1 

31 (B.05075/B.01074)-CSF1 68 (R.04164/R.Tx436)-CSF1 

32 (B.05077/B.01074)-CSF1 69 (R.04164/R.Tx436)-CSF1 

33 (B.05098/B.05071)-CSF1 70 (R.9603*SC1251)-F1 

34 (B.05098/B.05071)-CSF1 71 (R.9645*97BRON304)-F1 

35 (B.05117/B.05165)-CSF1 72 (R.9645*97BRON304)-F1 

36 (B.05117/B.05165)-CSF1 73 (R.9645*97BRON304)-F1 

37 (B.05134/B.05165)-CSF1 74 (R.9733*97BRON304)-F1 
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No. Pedigree No. Pedigree 

75 (R.TX436*(87EO366*R.TAM428) 112 07BRON269/ 

76 (R.Tx436/ICSV745) 113 07BRON273-R 

77 (R.Tx437/(96GCPOB124*P851171) 114 07BRON273/ 

78 (SC35-14E/R04104) 115 07BRON274-R 

79 (SV1*Sima 116 07BRON274/ 

80 (SV1*Sima/IS23250)-LG15 117 07BRON280-R 

81 (A.Tx2536/B.05005) 118 07BRON280/ 

82 (R.Tx2783*SC414-12E) 119 07BRON283/ 

83 (R.Tx2963 120 07BRON296/ 

84 01BRON184 121 07BRON298/ 

85 01BRON186 122 07BRON300/ 

86 01BRON186-R 123 08BRON277-R 

87 02BRON166 124 08BRON277/ 

88 03BRON172 125 08BRON290/ 

89 04BRON254 126 10BRON276/ 

90 04BRON257 127 11BRON237-R 

91 04BRON257-R 128 11BRON251-R 

92 04BRON262 129 11BRON251/ 

93 04BRON262-R 130 11BRON255-R 

94 04BRON267 131 11BRON287-B 

95 04BRON267-R 132 12BRON276/ 

96 04BRON271 133 12BRON289-R 

97 04BRON271-R 134 13BRON268-R 

98 04BRON273 135 13BRON272/ 

99 04BRON273-R 136 13BRON273-R 

100 04BRON291/ 137 13BRON273/ 

101 05BRON279/ 138 13BRON278-R 

102 05BRON287-R 139 13BRON278/ 

103 05BRON287/ 140 13BRON279 

104 05BRON289-R 141 13BRON279-R 

105 05BRON289/ 142 13BRON280 

106 06BRON274/ 143 13BRON280-R 

107 06BRON277-R 144 13BRON281 

108 06BRON277/ 145 13BRON282 

109 06BRON287-R 146 13BRON285-R 

110 06BRON287/ 147 13BRON287-R 

111 06BRON289/ 148 13BRON291 
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No. Pedigree No. Pedigree 

149 13BRON291-R 186 A.Tx631/R.Tx2910 

150 14BRON270-R 187 A.Tx631/R.Tx436 

151 14BRON287-B 188 A.Tx631/R.Tx437 

152 14BRON288-B 189 A.Tx642/R.Tx2783 

153 14BRON290-B 190 A.Tx642/R.Tx436 

154 14BRON291-B 191 A.Tx645/R.10781 

155 14BRON292-B 192 A.Tx645/R.12169 

156 14BRON293-B 193 A.Tx645/R.Tx2783 

157 14BRON294-B 194 A.Tx645/R.Tx2785 

158 14BRON295-B 195 A.Tx645/R.Tx2909 

159 1790E 196 A.Tx645/R.Tx2910 

160 1BRON195/(91BE146*Tx2864) 197 A.Tx645/R.Tx436 

161 A3.Tx436/R.Tx437//B.11055 198 A.Tx645/R.Tx436 

162 A3.Tx436/R.Tx437//B.11070 199 A.Tx645/R.Tx437 

163 A3.Tx436/R.Tx437//B.11071 200 B.DLO357 

164 A3.Tx436/R.Tx437//B.11072 201 B.DLO357 

165 A/B.11055-WF1-CS1/R.Tx436 202 B.OK11 

166 A/B.11055-WF1-CS1/R.Tx437 203 B.Tx2921 

167 A.F7301 204 B.Tx2923 

168 A.Tx2752/R.Tx2783 205 B.TX3197 

169 A.Tx2752/R.Tx436 206 B.Tx3408 

170 A.Tx2752/R.Tx437 207 B.Tx3409 

171 A.Tx2928/R.Tx2783 208 B.TX378 

172 A.Tx2928/R.Tx436 209 B.Tx399 

173 A.Tx2928/R.Tx437 210 B.Tx623 

174 A.Tx3408/R.Tx2783 211 B.Tx631 

175 ATx3408/RTx2909 212 B.Tx635 

176 A.Tx3408/R.Tx2910 213 B.TxARG-1 

177 A.Tx3408/R.Tx436 214 B.11055 

178 A.Tx3408/R.Tx437 215 B.11055-WF1-CS1-WF3 

179 A.Tx3409/R.12169 216 B.11055-WF1-CS1-WF3-CS2 

180 A.Tx3409/R.Tx436 217 B.11070 

181 A.Tx3409/R.Tx437 218 B.11070-CS2-CS1-WF3 

182 A.Tx631/R.Tx2783 219 B.11071 

183 A.Tx631/R.Tx2785 220 B.11072 

184 A.Tx631/R.Tx2909 221 B.11094 

185 A/B.11055-WF1-CS1/R.Tx436 222 B.13001 
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No. Pedigree No. Pedigree 

223 B.13002 260 B.13043 

224 B.13003 261 B.13044 

225 B.13005 262 B.13045 

226 B.13005 263 B.13046 

227 B.13006 264 B.13047 

228 B.13007 265 B.13048 

229 B.13008 266 B.13049 

230 B.13009 267 B.13050 

231 B.13010 268 B.13051 

232 B.13011 269 B.13052 

233 B.13012 270 B.13053 

234 B.13013 271 B.13054 

235 B.13014 272 B.13055 

236 B.13018 273 B.13055 

237 B.13019 274 B.13056 

238 B.13020 275 B.13057 

239 B.13021 276 B.13058 

240 B.13022 277 B.13059 

241 B.13023 278 B.13060 

242 B.13025 279 B.13061 

243 B.13026 280 B.13063 

244 B.13027 281 B.13064 

245 B.13028 282 B.13065 

246 B.13029 283 B.13066 

247 B.13030 284 B.13067 

248 B.13031 285 B.13068 

249 B.13032 286 B.13069 

250 B.13033 287 B.13070 

251 B.13034 288 B.13071 

252 B.13035 289 B.13076 

253 B.13036 290 B.13077 

254 B.13037 291 B.13078 

255 B.13038 292 B.13079 

256 B.13039 293 B.13080 

257 B.13040 294 B.13081 

258 B.13041 295 B.13082 

259 B.13042 296 B.13083 
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No. Pedigree No. Pedigree 

297 B.13085 334 B.13137 

298 B.13086 335 B.13138 

299 B.13087 336 B.13139 

300 B.13090 337 B.13140 

301 B.13091 338 B.13141 

302 B.13092 339 B.13142 

303 B.13093 340 B.13146 

304 B.13094 341 B.13147 

305 B.13095 342 B.13148 

306 B.13096 343 B.13149 

307 B.13097 344 B.1778 

308 B.13098 345 B.4R 

309 B.13099 346 B.Tx2752 

310 B.13100 347 B.Tx3042 

311 B.13101 348 B.Tx378 

312 B.13102 349 B.Tx623 

313 B.13103 350 B.Tx631 

314 B.13104 351 B.Tx642 

315 B.13105 352 B.Tx643 (B1) 

316 B.13106 353 B.Tx645 (B807) 

317 B.13108 354 CE151 

318 B.13109 355 DK37-07 

319 B.13110 356 Ent62/SADC 

320 B.13111 357 EPSON 2-40/E#15/SADC 

321 B.13121 358 FGYQ336 

322 B.13122 359 ICSV745 

323 B.13123 360 ICSV745 

324 B.13124 361 ICSV745 

325 B.13125 362 IS1144C/SC451/Dur 

326 B.13126 363 IS1212158C/SC984/ZZ 

327 B.13127 364 IS12609C/SC109/ZZ 

328 B.13131 365 IS12610C/SC110/ZZ 

329 B.13132 366 IS12612C/SC112/ZZ 

330 B.13133 367 IS12661C/SC170/ZZ 

331 B.13134 368 IS12664C/SC173/ZZ 

332 B.13135 369 IS1266C/SC210/Dur 

333 B.13136 370 IS5887C/SC248/Rox 

 

 

 

 

 



 

128 

 

No. Pedigree No. Pedigree 

371 JS222 408 R.13247 

372 M 627 409 R.13248 

373 PGRC/E#222878 410 R.13249 

374 PGRC/E#222879 411 R.13250 

375 PGRC/E#69414 412 R.13251 

376 Pioneer 84P80 413 R.13252 

377 R.08270 414 R.13253 

378 R.11131 415 R.13261 

379 R.11159 416 R.13262 

380 R.11239 417 R.13263 

381 R.13208 418 R.13264 

382 R.13209 419 R.13265 

383 R.13210 420 R.13266 

384 R.13211 421 R.13267 

385 R.13212 422 R.TAM2566 

386 R.13213 423 R.TAM428 

387 R.13214 424 R.TX2737 

388 R.13215 425 R.Tx2783 

389 R.13219 426 R.Tx2908 

390 R.13220 427 R.Tx2913 

391 R.13221 428 R.Tx2935 

392 R.13222 429 R.Tx434 

393 R.13223 430 R.Tx435 

394 R.13224 431 R.Tx436 

395 R.13226 432 R.Tx437 

396 R.13227 433 R.Tx7000 

397 R.13228 434 R.9188 

398 R.13229 435 R.Tx430 

399 R.13230 436 R.Tx437 

400 R.13231 437 Sarvasi (s) 

401 R.13240 438 Sarvasi (t) 

402 R.13241 439 SC1047-9 

403 R.13242 440 SC1080/IS9370C/Caf 

404 R.13243 441 SC110 

405 R.13244 442 SC110/IS12610C/ZZ 

406 R.13245 443 SC113/IS2655C/CauNig 

407 R.13246 444 SC1211C/CauKaf/Cacho de  
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No. Pedigree No. Pedigree 

445 SC124/IS12615C/DurDoc 482 R.Tx2954 

446 SC1429 483 R.Tx2956 

447 SC170 484 R.Tx2973 

448 SC170/IS12661C/ZZ 485 R.Tx2974 

449 SC170-6-17 486 R.Tx430 

450 SC20/IS12540C/DocAmb 487 R.Tx436 

451 SC222/IS1098C/Dur 488 R.Tx7000 

452 SC243/IS3956C/Rox 489 WM#177 

453 SC259/IS2510C/Con 490 WM#322 

454 SC266-6 491 WSV187 

455 SC28/IS12548C/Dur 492 R.SC 2-251 

456 SC301/IS3817C 493 R.SC 2-252 

457 SC373/IS7461C 494 R.SC 2-253 

458 SC455/IS5479C/Dur 495 R.SC 2-254 

459 SC517-9 496 R.SC 2-255 

460 SC54/IS2535C/Cau 497 R.SC 7-406 

461 SC56/IS12568C/CauNig 498 R.SC 7-407 

462 SC582 499 R.SC 7-408 

463 SC599/IS17459/CauKaf 500 R.SC 7-409 

464 SC610/IS1220C   

465 SC626/IS8004C/Caf   

466 SC659/IS2225C/CafRox   

467 SC702   

468 SC756/IS6920C/CauKaf   

469 SC782/IS6057C/CauNig   

470 SC847/IS1108C   

471 SC963/IS2864C/Cau   

472 SCS2690-2   

473 R.TAM428   

474 TanGbRW   

475 R.Tx2737   

476 R.Tx2783   

477 R.Tx2794   

478 R.Tx2859   

479 R.Tx2860   

480 R.Tx2868   

481 R.Tx2952   
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APPENDIX II  

SPLIT PLOT DESIGN OF TWELVE SORGHUM HYBRIDS (FOUR 

RESISTANT AND SIX SUSCEPTIBLE) WITH FOUR REPLICATIONS USED 

TO EVALUATE THE EFFECT OF SUGARCANE APHID ON THE YIELD AND 

QUALITY OF FORAGE USING INSECTICIDE AND NO INSECTICIDE 

TREATMENTS 

ATx631/RTx2785 ATx645/RTx2910 ATx3408/RTx2785 ATx645/BTx623/R10781 BLOCK I

ATx645/RTx2910 ATx3408/RTx2909 ATx631/RTx2909 ATx3408/RTx2785

ATx645/RTx2909 ATx3408/RTx2785 ATx3408/RTx2909 ATx631/RTx2785

ATx3408/RTx2785 ATx645/RTx2909 ATx3408/RTx2910 ATx645/RTx2785

ATx631/RTx2910 ATx631/RTx2785 ATx645/BTx623/R10781 ATx631/RTx2909 Insecticide

ATx645/BTx623/R10781 ATx631/RTx2909 ATx631/RTx2910 ATx3408/RTx2910 (spray)

ATx3408/RTx2910 ATx631/RTx2910 ATx645/RTx2909 ATx3408/RTx2909

ATx645/RTx2785 ATx3408/RTx2910 ATx645/RTx2910 ATx645/RTx2910

ATx3408/RTx2909 ATx645/BTx623/R10781 ATx645/RTx2785 ATx631/RTx2910

ATx631/RTx2909 ATx645/RTx2785 ATx631/RTx2785 ATx645/RTx2909

ATx3408/RTx2785 ATx645/RTx2910 ATx645/RTx2910 ATx3408/RTx2785 BLOCK II

ATx3408/RTx2909 ATx3408/RTx2910 ATx631/RTx2785 ATx631/RTx2909

ATx3408/RTx2910 ATx645/RTx2785 ATx631/RTx2910 ATx3408/RTx2909

ATx631/RTx2785 ATx631/RTx2909 ATx3408/RTx2910 ATx645/RTx2909

ATx631/RTx2909 ATx631/RTx2785 ATx645/RTx2909 ATx645/RTx2910 No-insecticide

ATx631/RTx2910 ATx645/RTx2909 ATx3408/RTx2785 ATx631/RTx2910 (NO-spray)

ATx645/RTx2785 ATx645/BTx623/R10781 ATx631/RTx2909 ATx645/BTx623/R10781

ATx645/RTx2909 ATx3408/RTx2909 ATx645/BTx623/R10781 ATx631/RTx2785

ATx645/RTx2910 ATx631/RTx2910 ATx645/RTx2785 ATx3408/RTx2910

ATx645/BTx623/R10781 ATx3408/RTx2785 ATx3408/RTx2909 ATx645/RTx2785
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APPENDIX III 

 AGRONOMIC TRAITS MEASURED IN COLLEGE STATION 1 COLLEGE 

STATION 2 LUBBOCK AND WESLACO IN 2016 ON RESISTANT AND 

SUSCEPTIBLE HYBRIDS ON FORAGE SORGHUM HYBRID TRIALS FOR 

SUGARCANE APHID RESISTANCE PLANT HEIGHT DAY TO 50% 

ANTHESIS SEED COLOR PLANT COLOR AND DESIRABILITY 

Genotype Plant  

Height 

Days to 50% 

Anthesis 

Desirability Seed 

Color 

Plant 

Color 

College Station-1      

A.Tx3409/R.Tx2785 (R) 2.8ab 180 1 P P 

A.Tx3408/R.Tx2785 (R) 2.8a 179 1 W T 

A.Tx3408/R.Tx2909 (R) 2.5bc >180 1 W T 

A.Tx3408/R.Tx2910 (R) 2.6a-c >180 1 T T 

A.Tx645/R.Tx2785 (S) 2.7a-b 177 1 P P 

A.Tx631/R.Tx2785 (S) 2.8a 177 1 T T 

A.Tx645/R.Tx2909 (S) 2.7a-b >180 1 P P 

A.Tx631/R.Tx2909 (S) 2.6a-c >180 1 T T 

A.Tx631/R.Tx2910 (S) 2.6a-c >180 1 T T 

A.Tx645/R.Tx2910 (S) 2.6a-c >180 1 P P 

College Station-2      

A.Tx3409/R.Tx2785 (R) 1.7b 180 1 P P 

A.Tx3408/R.Tx2785 (R) 2.0a 178 1 W T 

A.Tx3408/R.Tx2909 (R) 1.2c >180 1 W T 

A.Tx3408/R.Tx2910 (R) 1.1c-d >180 1 T T 

A.Tx645/R.Tx2785 (S) 1.9a-b 177 1 P P 

A.Tx631/R.Tx2785 (S) 1.7b 177 1 T T 

A.Tx645/R.Tx2909 (S) 1.0c-e >180 1 P P 

A.Tx631/R.Tx2909 (S) 0.9d-e >180 1 T T 

A.Tx631/R.Tx2910 (S) 0.8e >180 1 T T 

A.Tx645/R.Tx2910 (S) 0.9e >180 1 P P 

Lubbock      

A.Tx3409/R.Tx2785 (R) N/A N/A 1 P P 

A.Tx3408/R.Tx2785 (R) 1.9a N/A 1 W T 

A.Tx3408/R.Tx2909 (R) 1.9a N/A 1 W T 

A.Tx3408/R.Tx2910 (R) N/A N/A 1 T T 

A.Tx645/R.Tx2785 (S) 1.9a N/A 1 P P 
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Genotype Plant  

Height 

Days to 50% 

Anthesis 

Desirability Seed 

Color 

Plant 

Color 

A.Tx631/R.Tx2785 (S) 2.1a N/A 1 T T 

A.Tx645/R.Tx2909 (S) 2.0a N/A 1 P P 

A.Tx631/R.Tx2909 (S) 1.9a N/A 1 T T 

A.Tx631/R.Tx2910 (S) 2.0a N/A 1 T T 

A.Tx645/R.Tx2910 (S) 1.9a N/A 1 P P 

Weslaco      

A.Tx3409/R.Tx2785 (R) N/A N/A 1 P P 

A.Tx3408/R.Tx2785 (R) 2.8a-b N/A 1 W T 

A.Tx3408/R.Tx2909 (R) 3.0a-b N/A 1 W T 

A.Tx3408/R.Tx2910 (R) N/A N/A 1 T T 

A.Tx645/R.Tx2785 (S) 2.9a-b N/A 1 P P 

A.Tx631/R.Tx2785 (S) 2.8a-b N/A 1 T T 

A.Tx645/R.Tx2909 (S) 3.1a N/A 1 P P 

A.Tx631/R.Tx2909 (S) 3.0a-b N/A 1 T T 

A.Tx631/R.Tx2910 (S) 3.0a-b N/A 1 T T 

A.Tx645/R.Tx2910 (S) 3.0a-b N/A 1 P P 
Randomized complete block design. Twelve entries by four replications by two whole plots by three 

environments. Column means followed by the same lowercase letters are not significantly different. P > 

0.0001*, Location P > 0.0001*, Treatment P 0.0707, LSD. There was not enough seed to plant 

A.Tx3408/R.Tx2910. Days to 50% anthesis not collected in Lubbock and Weslaco. In Weslaco, data 

collected in fall. 
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APPENDIX IV 

MEAN SEPARATIONS OF EFFECT OF SUGARCANE APHID (SCA) 

PRESSURE ON YIELD HA-1 (TONS HA-1) OF FORAGE SORGHUM HYBRIDS 

BETWEEN INSECTICIDE AND NO INSECTICIDE TREATMENTS IN FOUR 

ENVIRONMENTS IN TEXAS 2016 

College Station-1 Summer 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3408/R.Tx2910 (R) 132.4a 133.1a 0.7a 0.5a 

A.Tx3408/R.Tx2909 (R) 128.0a 135.6a 7.6a 5.9a 

A.Tx3409/R.Tx2785 (R) 62.1b 56.1b -6.0a -9.7a 

A.Tx3408/R.Tx2785 (R) 54.5b 52.9b -1.6a -2.9a 

Mean (R) 94.3 94.4 0.1 0.1 

A.Tx645/R.Tx2909 (S) 134.8a 127.8a -7.1a -5.3a 

A.Tx631/R.Tx2910 (S) 127.8a 121.2a -6.5a -5.1a 

A.Tx645/R.Tx2910 (S) 126.4a 128.6a 2.2a 1.7a 

A.Tx631/R.Tx2909 (S) 125.6a 128.3a 2.7a 2.1a 

A.Tx631/R.Tx2785 (S) 57.8b 63.7b 6.0a 10.4a 

A.Tx645/R.Tx2785 (S) 54.2b 55.1b 0.8a 1.5a 

Mean (S) 104.4 104.1 -0.3 -0.3 

College Station-2 Summer 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3409/R.Tx2910 (R) 20.8a-e 17.9b-e -2.9b -13.9b 

A.Tx3408/R.Tx2910 (R) 20.8a-e 20.1b-d -0.7c -3.4c 

A.Tx3408/R.Tx2909 (R) 26.9a-d 21.5b-d -5.4a -20.1a 

A.Tx3409/R.Tx2785 (R) 28.0a-b 24.9a-b -3.1 -11.1b 

Mean (R) 24.1 22.8 -1.3 -5.4 

A.Tx645/R.Tx2785 (S) 23.1a-e 21.0b-d -2.0b -8.7b 

A.Tx631/R.Tx2785 (S) 18.1c-e 14.5b-e -3.6a -19.9a 

A.Tx645/R.Tx2909 (S) 15.9d-e 10.4d-e -5.5a -34.6a 

A.Tx645/R.Tx2910 (S) 13.1d-e 7.2e -5.9a -45.0a 

A.Tx631/R.Tx2909 (S) 12.2d-e 7.5e -4.7a -38.5a 

A.Tx631/R.Tx2910 (S) 8.6e 5.2e -3.3a -38.4a 

Mean (S) 15.1 10.6 -4.5 -29.8 
Split-plot-design. Twelve entries by four replications by two whole plots. R = resistant hybrid, S = 

susceptible hybrid. Column means followed by the same lowercase letters are not significantly different. 

SCA pressure in College Station-1 summer was low (< 350 SCA leaf-1 plant-1). SCA pressure in College 

Station-2 summer was high (500-1000 SCA leaf-1 plant-1). 
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Weslaco Fall 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3408/R.Tx2909 (R) 59.7a 57.4a -9.5b -15.9b 

A.Tx3408/R.Tx2785 (R) 54.8a 45.3a-b -2.3c -4.2c 

A.Tx3409/R.Tx2910 (R)     

A.Tx3408/R.Tx2910 (R)     

Mean (R) 57.3 51.3 -6.0 -10.5 

A.Tx631/R.Tx2910 (S) 65.9a 44.0a-b -22.0a -33.4a 

A.Tx645/R.Tx2910 (S) 65.3a 50.2a-b -15.1a-b -23.1a-b 

A.Tx645/R.Tx2785 (S) 62.3a 54.5a-b -7.9b -12.7b 

A.Tx631/R.Tx2785 (S) 51.5a 40.7a-b -10.8b -21.0b 

A.Tx631/R.Tx2909 (S)     

A.Tx645/R.Tx2909 (S)     

Mean (S) 61.3 47.3 -14.0 -22.8 

Lubbock Summer 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3409/R.Tx2785 (R)     

A.Tx3408/R.Tx2785 (R)     

A.Tx3408/R.Tx2909 (R) 72.8a 42.3a -30.5a -41.9a 

A.Tx3408/R.Tx2910 (R) 69.6a 49.2a -20.3a -29.2a 

Mean (R) 71.2 45.8 25.4 -35.7 

A.Tx645/R.Tx2785 (S) 72.2a 42.7a -29.5a  

A.Tx631/R.Tx2785 (S)     

A.Tx645/R.Tx2909 (S) 73.8a 49.2a -24.6a -33.3a 

A.Tx631/R.Tx2909 (S) 85.3a 53.1a -32.2a -37.7a 

A.Tx631/R.Tx2910 (S) 78.4a 52.8a -25.6a -32.7a 

A.Tx645/R.Tx2910 (S) 73.5a 61.7a -11.8a -16.1a 

Mean (S) 76.6 51.9 -24.7 -32.2 
Split-plot-design. Twelve entries by four replications by two whole plots. R = resistant hybrid, S = 

susceptible hybrid. Column means followed by the same lowercase letters are not significantly different 

There was not enough seed to plant A.Tx3409/R.Tx2910, A.Tx3408/R.Tx2910, A.Tx631/R.Tx2909 and 

A.Tx645/R.Tx2909 in Weslaco. SCA pressure in Weslaco-fall was moderate (350-500 SCA leaf-1 plant-1). 

There was not enough seed to plant A.Tx3409/R.Tx2785, A.Tx3408/R.Tx2785, and A.Tx631/R.Tx2785 in 

Lubbock. SCA pressure in Lubbock was high (500-1000 SCA leaf-1 plant-1). 
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APPENDIX V 

MEAN SEPARATION OF EFFECT OF SUGARCANE APHID (SCA) ON 

PERCENT PROTEIN QUALITY OF FORAGE SORGHUM HYBRIDS 

BETWEEN INSECTICIDE AND NO INSECTICIDE TREATMENTS IN FOUR 

ENVIRONMENTS IN TEXAS SUMMER 2016 

College Station-1 Summer 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3409/R.Tx2785 (R) 4.1a 4.0a 0.0a 0.0a 

A.Tx3408/R.Tx2785 (R) 4.0a 3.9a -0.1a -2.5a 

A.Tx3408/R.Tx2909 (R) 3.6a 3.6a 0.0a 0.0a 

A.Tx3408/R.Tx2910 (R) 3.5a 3.4a -0.1a -2.9a 

Mean (R) 3.8 3.7 -0.1 -2.6 

A.Tx645/R.Tx2785 (S) 4.4a 4.3a -0.1a -2.3a 

A.Tx631/R.Tx2785 (S) 4.3a 4.2a -0.1a -2.3a 

A.Tx645/R.Tx2909 (S) 3.5a 3.5a 0.0a 0.0a 

A.Tx631/R.Tx2909 (S) 3.3a 3.3a 0.0a 0.0a 

A.Tx631/R.Tx2910 (S) 3.1a 3.0a -0.1a -3.2a 

A.Tx645/R.Tx2910 (S) 3.0a 3.0a 0.0a 0.0a 

Mean (S) 3.5 3.4 -0.1 -2.9 

College Station-2 Summer 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3408/R.Tx2910 (R) 6.8a 6.4a-c -0.4a-b -5.9a-b 

A.Tx3408/R.Tx2909 (R) 6.7a 6.4a-c -0.3a-b -4.5a-b 

A.Tx3409/R.Tx2785 (R) 6.1a 5.3c -0.8a -13.1a 

A.Tx3408/R.Tx2785 (R) 5.9a 5.6b-c -0.3a-b -5.1a-b 

Mean (R) 6.4 5.9 -0.5 -7.8 

A.Tx631/R.Tx2909 (S) 8.1a 7.8a -0.3a-b -3.7a-b 

A.Tx645/R.Tx2909 (S) 8.0a 7.3a -0.7a -8.8a 

A.Tx631/R.Tx2910 (S) 8.0a 6.8a-b -1.2b -15.0b 

A.Tx645/R.Tx2910 (S) 8.0a 7.7a -0.3a-b -3.8a-b 

A.Tx645/R.Tx2785 (S) 7.3a 7.0a-b -0.3a-b -4.1a-b 

A.Tx631/R.Tx2785 (S) 6.7a 6.6a-c -0.1a-b -1.5a-b 

Mean (S) 7.7 7.2 -0.5 -6.5 
Split-plot-design. Twelve entries by four replications by two whole plots. R = resistant hybrid, S = 

susceptible hybrid. Column means followed by the same lowercase letters are not significantly different. 

SCA pressure was low in College Station-1 summer (< 350 SCA Leaf-1 Plant-1). SCA pressure in College 

Station-2 summer (500-1000 SCA leaf-1 plant-1). 
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Weslaco Fall 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3408/R.Tx2785 (R) 3.6b 3.1b -0.5a -13.9a 

A.Tx3408/R.Tx2909 (R) 3.4b 3.3b -0.1a -2.9a 

A.Tx3408/R.Tx2910 (R)     

A.Tx3409/R.Tx2785 (R)     

Mean (R) 3.5 3.2 -0.3 -8.6 

A.Tx645/R.Tx2910 (S) 4.2a-b 3.5a-b -0.7a -16.7a 

A.Tx631/R.Tx2910 (S) 3.9b 3.2b -0.7a -17.9a 

A.Tx645/R.Tx2785 (S) 3.6a-b 3.8a-b 0.2a 5.6a 

A.Tx631/R.Tx2785 (S) 3.5b 3.3b -0.2a -5.7a 

A.Tx631/R.Tx2909 (S)     

A.Tx645/R.Tx2909 (S)     

Mean (S) 3.8 3.5 -0.3 -7.9 

Lubbock Summer 

Genotype Insecticide No-insecticide Difference % Difference 

A.Tx3408/R.Tx2909 (R) 4.9a-b 4.6d -0.3a-c -6.1a-c 

A.Tx3408/R.Tx2785 (R) 4.4b 5.3b-d 1.0c 22.7c 

A.Tx3408/R.Tx2785 (R)     

A.Tx3408/R.Tx2910 (R)     

Mean (R) 4.6 5.0 0.3 6.5 

A.Tx645/R.Tx2909 (S) 6.1a 5.5a-d -0.6a-b -9.8a-b 

A.Tx631/R.Tx2909 (S) 6.0a 6.6a 0.6a-b 10.0a-b 

A.Tx631/R.Tx2910 (S) 5.9a 4.8c-d -1.1a -18.6a 

A.Tx631/R.Tx2785 (S) 5.3a-b 5.8a-c 0.5a-c 9.4a-c 

A.Tx645/R.Tx2785 (S)     

A.Tx645/R.Tx2910 (S)     

Mean (S) 5.8 5.7 -0.1 -1.7 
Split-plot-design. Twelve entries by four replications by two whole plots. R = resistant hybrid, S = 

susceptible hybrid. Column means followed by the same lowercase letters are not significantly different. 

There was not enough seed to plant A.Tx3408/R.Tx2910, A.Tx3409/R.Tx2785, A.Tx631/R.Tx2909 and 

A.Tx645/R.Tx2909 in Weslaco fall. SCA pressure was moderate in Weslaco fall (350-500 SCA leaf-1 

plant-1). There was not enough seed to plant A.Tx3408/R.Tx2785, A.Tx3408/R.Tx2910, 

A.Tx645/R.Tx2785 and A.Tx645/R.Tx2910 in Lubbock summer. SCA pressure was high in Lubbock 

(500-1000 SCA leaf-1 plant-1). 
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APPENDIX VI 

WORK PLAN (I) EVALUATION OF SORGHUM GERMPLASM FOR 

RESISTANCE TO SUGARCANE APHID AND LIST OF TRAITS MEASURED 

IN FOUR ENVIRONMENTS WESLACO (SUMMER AND FALL) IN CORPUS 

CHRISTI AND COLLEGE STATION 

Objective: I To Evaluate Sorghum Germplasm for 

Resistance to Sugarcane Aphid.  

Experimental details: (i) Planting Date: 
Weslaco - 20th February 2015. 

Corpus Christi - 10th March 2015.  

College Station - 6th April 2015.  

Weslaco Fall - 15th August 2015. 

(ii) Treatment: Natural infestation with sugarcane 

aphid.  

(iii) Design: Randomized complete block. 

(iv) No. Entries: 500.  

(v) Plots: 1 row. 

(vi) Replications:  
(vii) Plot length: 22ft, 20ft, and 20ft (College 

Station, Corpus Christi and Weslaco respectively). 

Measurements: The primary measurement in screening/evaluating 

for sugarcane aphid resistance will be the chlorosis 

rating on a scale of 1 - 9.  

Traits Weslaco Corpus 

Christi 

College 

Station 

Description 

DY x x x Days to 50% anthesis (Julian days using Julian 

calendar). 

HT x x x Plant height (inches using height stick). 

EX x x x Panicle exertion (inches ruler). 

PL x x x Plant color (purple = P, red = R and tan = T). 

SD x x x Grain color (red = R, white = W, yellow = Y and 

brown = B). 

DS x x x Desirability rating (1-9 scale). 

LG x x x Lodging rating (fallen and un-harvestable 

grain/plant) (1 - 9). 

SCAC x x x Sugarcane aphid chlorosis-Aphid damage 

approximately 2 weeks pre-flowering (based on 1 - 

9 scale). 
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Objective: II To determining Effect of Sugarcane Aphid on 

Yield and Quality of Forage Hybrids 

Experimental details: (i) Planting Date:  
Weslaco - 17th February 2016. 

Corpus Christi - 29th March 2016.  

College Station;  

Field 213 - 23rd March 2016.  

Field 213 - 25th April 2016.  

Second planting (fall):  
College Station;  

Field 405 - 30 June 2016 

(ii) Treatment: Two blocks. One block sprayed 

(insecticide) for aphids (control) and the other will not in 

order to determine the effects of aphids on grain yield 

and quality. Each block has 12 entries x 1 rows x 4 

replications.  

(iii) Design: Split-plot with two factors (insecticide). 

(iv) No. Entries: SCAF = 12.  

(v) Plots: SCAF = 1 row. 

(vi) Replications: SCAF = 4 reps.  

(vii) Plot length: 22ft, 20ft, and 20ft (College Station, 

Corpus Christi and Weslaco respectively). 

Measurements: The primary measurement in SCAF are yield 

components (grain yield). The secondary measurement 

of importance is quality components of grain and the 

tertiary measurements will be the standard phenotypic 

measurements and if opportunity arises additional 

measurements may be taken. 

Traits WE CC CS Description 

DY x x x Day to 50% anthesis (Julian days using Julian calendar). 

HT x x x Plant height (inches using height stick). 

EX x x x Panicle exertion (inches ruler). 

PL x x x Plant color (pigmented = P, red=R and tan=T). 

SD x x x Grain color (red= R, white = W, yellow = Y and brown 

= B). 

DS x x x Desirability rating (1 - 9 scale). 

LG x x x Lodging rating (fallen and un-harvestable grain/plant) (1 

- 9). 

YD x x x Yield (grams/plant or grams/plot). 

DI x x x Date of aphid infestation.  
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Objective: II To Determining Effect of Sugarcane Aphid on Yield and 

Quality of Forage Hybrids 

Measurements: The primary measurement in SCAF are yield components (grain 

yield). The secondary measurement of importance is quality 

components of grain and the tertiary measurements will be the 

standard phenotypic measurements and if opportunity arises 

additional measurements may be taken. 

Traits WE CC CS Description 

AR   x Aphid reproduction (count the number of aphids in the clip cage 

everyday on mature plants at growth stage 2-5 stage just before 

flowering (number of aphids per clip cage per day) (SCAF).  

SCAC x x x Sugarcane aphid chlorosis-Aphid damage approximately 2 weeks 

pre-flowering (based on 1 - 9 scale). 

AP    Estimate aphid populations (density) weekly on all germplasm. 

TR    Presence of trichomes (Yes = 1, no = 0).  

 

 

 

Objective: III To Determine the Performance of Grain Sorghum Lines 

and Hybrids Under Sugarcane Aphid Pressure. 

Experimental details: (i) Planting Date:  
Weslaco - 17th February 2016. 

Corpus Christi - 29th March 2016.  

College Station;  

Field 213 - 23rd March 2016.  

Field 213 - 25th April 2016 

(ii) Treatment: Two blocks. One block will be sprayed 

(insecticide) for aphids (control) and the other will not in order 

to determine the effects of aphids on forage yield and quality. 

Each block has 12 entries x 1 row x 4 replications. 

(iii) Design: Split-plot with two factors (insecticide). 

(iv) No. Entries: SCAG (12), SCAP (20), SCAH (15) 

(v) Plots: 1 row. 

(vi) Replications: SCAG (8), SCAP (9), SCAH (3). 

(vii) Plot length: 22ft, 20ft, and 20ft (College Station, Corpus 

Christi and Weslaco respectively). 
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Objective: III To Determine the Performance of Grain Sorghum Lines 

and Hybrids Under Sugarcane Aphid Pressure. 

Measurements: The primary measurement on SCAF are yield components 

(forage-biomass yield). The secondary measurement of 

importance is quality components by looking at the nutrient 

composition. The tertiary measurements will be the standard 

phenotypic measurements and if opportunity arises additional 

measurements may be taken. 

Traits WE CC CS Description 

DY x x x Day to 50% anthesis (Julian days using Julian calendar). 

HT x x x Plant height (inches using height stick). 

EX x x x Panicle exertion (inches ruler). 

PL x x x Plant color (pigmented = P, red = R and tan = T). 

SD x x x Grain color (red = R, white = W, yellow = Y and brown = B). 

DS x x x Desirability rating (1 - 9 scale). 

LG x x x Lodging rating (fallen and un-harvestable grain/plant) (1-9). 

YD x x x Yield (grams/plant or grams/plot). 

DI x x x Date of aphid infestation. 

SCAC x x x Sugarcane aphid chlorosis-Aphid damage approximately 2 

weeks pre-flowering (based on 1 - 9 scale). 

AP    Estimate aphid populations (density) weekly on all germplasm. 

TR x x x Presence of trichomes (Yes = 1, no = 0).  

 

 

 

Objectives: IV To Determine Categories of Resistance and Correlation 

Between Phenotype and Resistance. 

Experimental details: (i) Planting Date: College Station 7th April 2016 and 26th July 

2016. 

(ii) Treatment: N/A 

(iii) Design: Randomized complete block. 

(iv) No. Entries: SCAG (12), SCAF (12), Breeding lines (8), 

SCAG-Subset (3). 

(v) Plots: 1 row plots. 

(vi) Replications: SCAG (8), SCAF (8), Breeding lines (2), 

SCAG-Subset (4). 

(vii) Plot length: 22ft (College Station). 

Measurements:  The primary measurement is the standard phenotypic 

measurements and if opportunity arises additional measurements 

may be taken on SCAG, SCAF and on 8 breeding lines of 

interest.  

Traits WE CC CS Description 

DY  x x Day to 50% anthesis (Julian days using Julian calendar). 

HT  x x Plant height (inches using height stick). 
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Measurements: The primary measurement is the standard phenotypic 

measurements and if opportunity arises additional measurements 

may be taken on SCAG, SCAF and on 8 breeding lines of 

interest. 

Traits WE CC CS Description 

PL  x x Plant color (pigmented = P, red = R and tan = T). 

SD  x x Grain color (red = R, white = W, yellow = Y and brown = B). 

DS  x x Desirability rating (1 - 9 scale). 

LG  x x Lodging rating (fallen and un-harvestable grain/plant) (1-9). 

DI  x x Date of aphid infestation.  

AP  x x Estimate aphid populations (density) weekly on all germplasm. 

SCAC  x x Sugarcane aphid chlorosis-Aphid damage approximately 2 

weeks pre-flowering (based on 1 - 9 scale).  

 


