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ABSTRACT

Activity-permissive learning environments, such as school-based behavioral inter-

ventions, are increasingly employed to combat the prevalence of childhood obesity.

These interventions introduce stand-biased desks into classrooms as a means of in-

creasing school day physical activity behavior among children when compared to

traditional desks and chairs. Overweight and obesity among children are defined

based on age- and sex-adjusted body mass indexes (BMI) in the upper percentile

ranges. However, most studies assessing impacts of interventions on BMI rely on

traditional linear regression models designed to assess intervention effects on chil-

dren within ”normal” BMI percentile ranges, limiting assessments of how interven-

tions affect children at higher risks for overweight and obesity. Thus, statistical

approaches that permit evaluations of intervention effects across the full distribu-

tion of BMI are more desirable for determining their impacts on subjects at higher

risks for developing overweight or obesity. In this thesis, we first investigate if in-

creasing energy expenditure obtained at a prior time point such as baseline can be

used as a non-invasive screening tool for predicting future obesity risk. Secondly,

we describe the use of conditional functional quantile regression models to study the

relationship between school day energy expenditure, a function-valued covariate, and

BMI. Through empirical comparisons, we determine if results obtained from current

standard approaches used in obesity research such as the multiple linear regression

or functional linear regression provide notably different results from those obtained

from the conditional functional quantile regression model.
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1. INTRODUCTION

About 90% of children diagnosed with type 2 diabetes are either overweight or

obesity patients (Liu et al., 2010). While it is well known that obesity results from

a chronic imbalance between energy expenditure and energy intake, as well as from

environmental exposures and genetic predisposition, the exact role of reduced energy

expenditure in obesity development is unclear (Bandini et al., 2004). To combat this

growing epidemic among children, behavioral researchers are increasingly interested

in employing school-based interventions as targeted interventions designed to reduce

sedentary behavior among children. An example of such behavioral school-based in-

terventions is the activity-permissive learning environment (APLE) (Wechsler et al.,

2000; Benden et al., 2014; Lanningham-Foster et al., 2008). Activity-permissive

learning environments introduce stand-biased desks into classrooms as a means of

increasing physical activity among school-aged children. By reducing sedentary be-

havior, physical activity behavior is encouraged during the school day, and devices

such as accelerometry devices are used to assess the behavioral patterns of physical

activity. The devices provide estimates of school day energy expenditure (SDEE),

the total amount of energy or calories expended by the body to perform physical

activity during the school day.

Overweight and obesity in children are defined based on age- and sex- adjusted

body mass indexes (BMI) in the upper percentile ranges. However, most studies

assessing impacts of interventions on BMI rely on traditional linear regression mod-

els designed to assess intervention effects on children within the “normal” BMI per-

centile range, limiting assessments of how interventions affect children at higher risks

for overweight and obesity. Thus, statistical approaches that permit evaluations of
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covariates effects across the full distribution of BMI are preferable for assessing their

effects on subjects at higher risks for developing overweight or obesity (Koenker and

Bassett, 1978). Quantile regression is a statistical technique used to estimate effects

of predictors on quantile functions of a response. Examples of quantile functions

include the median, the 85th or the 95th percentiles of the outcome. A drawback to

the use of classical mean regression models in modeling BMI as an outcome is that

these methods provide incomplete answers to questions related to extreme values of

its distribution. Additionally, covariates such as SDEE and age may influence the

quantile functions differently. Therefore, statistical approaches that allow one to de-

termine the effects of covariates across the full spectrum of the conditional quantile

functions of BMI are preferable in obesity studies (Bottai et al., 2014; Koenker and

Bassett, 1978).
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2. MOTIVATING EXAMPLE AND DATA

2.1 Motivating Example

Our current work was motivated by a problem in childhood obesity research. In

a recent study, stand-biased desks were introduced to three elementary schools in a

Texas school district as a means of increasing physical activity. A research question

of interest was to examine if measures of school day energy expenditure obtained

at baseline can be used as a non-invasive screening tool for future risk of obesity

development. The recruited children were given BodyMedia SenseWear R© Armband

devices (BodyMedia, PA) to measure their energy expenditure during school hours,

while sex- and age- adjusted BMI was used as an indicator for obesity. Physical

activity monitoring devices are designed to measure the intensity of physical activ-

ity. Data from these devices are collected either at the second or minute level over

multiple days resulting in high dimensional longitudinal data that appear as curves.

Thus, SDEE data are collected over time and can easily be represented by curves

rather than scalar valued summary numbers (Tekwe et al., 2017; Assaad et al., 2014;

Tekwe et al., 2013; Augustin et al., 2012). Functional data analysis focuses on the

analyses of experimental data collected as curves, functions or images and treats the

curves as the unit of statistical analysis (Silverman and Ramsay, 2005).

Parametric regression approaches have been considered in functional data settings

(Eubank, 1999). In these settings, the exact forms of the regression curves are

assumed known. For example, nonlinear or polynomial mixed effects models can

be used to parametrically model the effects of curves on an outcome. However,

a limitation of parametric approaches to curve fitting is the requirement of strong

parametric assumptions regarding the shapes of the curves. Thus, semi- and non-
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parametric approaches are standard approaches to analyzing functional data. These

approaches provide more flexibility for fitting curves to data since they do not require

a specific parametric form. Additionally, their abilities to easily accommodate the

high dimensionality of functional data is desirable.

As an example, Figure 2.1 illustrates energy expenditure data gathered about

every minute over five school days for a randomly selected student from our moti-

vating example. Data like these are often summarized as a scalar-valued summary

statistic such as the mean energy expenditure or the total energy expenditure in their

statistical analyses (Dorminy et al., 2008; Benden et al., 2014; Wendel et al., 2016;

Augustin et al., 2012). Other approaches include summarizing the data from ob-

servations taken per minute to hourly mean energy expenditures and subsequently

applying standard regression approaches, such as polynomial mixed effect models

Tekwe et al., 2013. However, more complex statistical data reduction techniques such

as a functional principal components analysis (FPCA) or polynomial basis expan-

sions for approximating the mean of the curves data have also been used (Silverman

and Ramsay, 2005; Tekwe et al., 2017; Assaad et al., 2014; Zhou et al., 2008; James

et al., 2000). Polynomial basis expansions approximate curves by describing their

shapes by a few main features. Thus, an advantage of using polynomial splines is

that they summarize the information contained within the curves into basis functions

that adequately capture the patterns of the curves. Unlike summary statistics, such

as the mean that accounts for only one source of variation in the data, each basis

function accounts for a different source of variation in the data (Assaad et al., 2014).

An example of such basis functions includes the B-splines (de Boor, 1978; Eilers and

Marx, 1996; Rice and Wu, 2001). B-splines do not assume a specific form for the

shape of the curves but rather they assume that the individual curves can be approx-

imated by spline functions with random coefficients (Rice and Wu, 2001). In Figure

4



Figure 2.1: Plot of School Day Energy Expenditure and Mean Energy Expendi-
ture Over Five Days for a Randomly Selected Subject Included in the Stand-Biased
Desk Study. Blue lines indicate the observed energy expenditure while the red lines
represents the smoothed version of the overall mean energy expenditure.
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2.1, nonparametric smoothing was used to approximate the mean of the school day

energy expenditure. By smoothing the mean, we uncover underlying patterns in the

data while also retaining some of its important features (Eubank, 1999; Rice and
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Wu, 2001).

The objectives of the current manuscript are two-fold. First, we examine if mea-

sures of SDEE obtained at a prior time such as baseline can be used as a non-invasive

screening tool for future obesity risk, such as two years post-baseline. Secondly, we

describe the use of conditional functional quantile regression models to study the

relationship between SDEE and BMI, by treating SDEE as a function-valued co-

variate while adjusting for relevant socio-demographic variables. Through empirical

comparisons, we determine if results obtained from standard approaches used in

obesity research such as the multiple linear regression or functional linear regression

provide notably different results from those obtained from the conditional functional

quantile regression model. To the best of our knowledge, this is the first comparative

analysis focused on determining the usefulness of SDEE as a non-invasive screening

tool for obesity risk based among elementary school-aged children.

2.2 The Stand-Biased Desk Study

The stand-biased desk study was conducted from 2012 to 2014 in three elemen-

tary schools within the College Station Independent School District (CSISD) (Benden

et al., 2014). The study has been described elsewhere, but briefly, at the beginning

of the 2012-2013 academic year, 24 teachers from three elementary schools were re-

cruited and randomly assigned to the use of either stand-biased desks (Stand2learn

LLC College Station, TX, USA, stand-biased desk and stool (models S2LK04 and

S2LS04, respectively)) or traditional desks (Model 2200 FBBK Series by Scholar

Craft Products, Birmingham, AL), and chairs (9000 Classic Series, by Virco Inc.,

Torrance, CA, USA)) for in-class activities (Benden et al., 2014). A total number of

374 students from second through fourth grades were assented and included in the

study at baseline. Each student’s height and weight were obtained at the start of
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each semester by trained research assistants to calculate their BMI. The study par-

ticipants were required to wear calibrated BodyMedia SenseWear R© Armband devices

(BodyMedia, PA) during the school hours for a week for each semester from fall 2012

to spring 2014. The devices recorded subject-specific steps counts and caloric energy

expenditure per minute while worn. Of the 374 recruited students, 193 students

completed the study, while the remaining either graduated from elementary school

or their parents retracted their consent from the study. Five students with large

proportions of missing data were excluded from the study. Thus, our final analytic

sample size was 188. The study was approved by the Texas A&M IRB.

2.3 Current Approaches to Assessing the Relationship Between Objective

Measures of Physical Activity and BMI

In this section, we discuss some approaches for assessing the relationship between

objective measures of patterns of physical activity behavior and BMI. Wendel et al.

(2016) recently used classical linear regression to analyze covariate effects on the

average change in BMI percentiles from baseline. Their results indicated that the use

of standing desks significantly reduced the average change in BMI percentiles when

compared to conventional desks (p = 0.04) (Wendel et al., 2016). However, analyzing

the average change in BMI percentiles does not indicate how the use of standing

desks affects BMI percentile changes that are below or above the average change.

Benden et al. (2014) have also shown that children who used the standing desks

had a significantly higher mean energy expenditure of 0.16 kcal/min (p < 0.0001)

when compared to students who used conventional desks. Their analyses focused on

the impact of the standing desks use on the average SDEE using hierarchical linear

mixed effects models (HLMEM) (Benden et al., 2014). A limitation of the use of

HLMEM is that it focuses on the mean SDEE, thus only assessing impacts on the

7



”normal” SDEE. The HLMEM used also failed to account for the functional nature

of SDEE.

Trinh et al. (2013) studied the effect of physical activity at baseline on 3-year

change in BMI among elementary school-aged children in Australia. The authors

provided little evidence to indicate that baseline physical activity is predictive of

future risk of obesity. These conclusions were drawn based on applications of classical

regression methods that treated objective measures of physical activity as a summary

statistic. Specifically, the summary statistic used was the average count of steps per

minute (Trinh et al., 2013). The use of summary statistics to describe the intensity

of physical activity fails to account for its diurnal patterns (Davis and Fox, 2007;

Augustin et al., 2012; Tekwe et al., 2013; Valenti et al., 2016; Tekwe et al., 2017).

Thus, approaches that allow assessments of diurnal patterns have been considered

as alternatives. Recently, Tekwe et al. (2017) used functional principal components

methods to analyze energy expenditure data. This approach allowed assessments

of its diurnal patterns on obesity-related outcomes. Augustin et al. (2012) also

considered semi-parametric approaches to describe the patterns of physical activity.

The authors used a histogram of the distribution of physical activity as a predictor

in their regression model. Using data from the Avon Longitudinal Study of Parents

and Children (ALSPAC), they established that their approach provided a better fit

than summary statistics-based methods.

8



3. MODEL SPECIFICATIONS

In this section, we provide descriptions of the models considered. To fit the

various models considered, we first obtained socio-demographic adjusted residuals for

our outcome of interest. The residuals adjusted for baseline measures of BMI, age,

sex, ethnicity, treatment assignment, as well as potential interactions between the

demographic variables. Ethnicity was categorized into four categories, namely, white,

Hispanic, black, and Asian/native American. Mean hourly SDEE were obtained by

averaging observations obtained per minute to the hourly level across the five days

that the devices were worn. The adjusted residuals were treated as the outcomes in

our models while SDEE was the independent variable. All the statistical analyses

were easily implemented using the R software (R Core Team, 2016).

3.1 Multiple Linear Regression Model (MLRM)

In the first model considered, we obtained a summary scalar-valued form for

SDEE after obtaining its overall mean. The following model,

Yi = α0 + β1Xi + εi, i = 1, . . . , 188, (3.1)

was specified for the MLRM. The Yi = residual(BMIi) represents the response,

α0 is a scalar-valued intercept, β1 represents the coefficient on SDEE. Usual as-

sumptions associated with linear regression models were assumed. Thus, we assume

εi ∼ N(0, σ2
u). While the implementation of the MLRM is straightforward, it is

limited in our application. It assesses impacts of covariates on the conditional expec-

tation of Yi, and information in SDEE is summarized into a scalar-valued covariate,

leading to potential loss of information.
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3.2 Functional Linear Regression Model (FLRM)

In the functional linear regression model (FLRM), the outcome considered was

also Yi = residual(BMIi). However, SDEE was treated as a function-valued covari-

ate. The FLRM allowed a scalar-valued outcome and a function-valued covariate.

Let {Y,X(t)} be a pair of variables where Y is a scalar-valued random variable, and

X(t) a random function assumed to be square integrable and defined on [0, 1] such

that Xi = {Xi(t), tε[0, 1]}. The functional linear regression model for the ith subject

at time t is specified as

Yi = α0 +

∫ 1

0

β1(t)Xi(t)dt+ εi i = 1, . . . , 188, (3.2)

where α0 is a scalar-valued intercept and β1(t) is a functional coefficient. The Xi(t)

represents a function-valued covariate and εi ∼ N(0, σ2
u). To implement the model,

we first represent the functional component with polynomial splines. Then, β1(t) be-

comes β1(t) ≈
∑Kn

k=1 γkbk(t), where γk are unknown spline coefficients and {bk(t)}Kn

k=1

are a set of known spline basis functions. The term Kn indicates the number of ba-

sis functions used to approximate the curve associated with β1(t). The explanatory

variable, Xi(t), can also be expressed as Xik =
∫ 1

0
Xi(t)bk(t)dt. The reparameterized

model becomes

Yi ≈ α0 +
Kn∑
k=1

γkXik + εi i = 1, . . . , 188. (3.3)

The reparameterized functional linear regression model in (3.3) also reduces to a

multiple linear regression model. An advantage of using splines is their flexibility in

capturing the patterns associated with the functional coefficient β1(t). This model

can be easily fitted using standard software such as R (R Core Team, 2016) or SAS

10



(Cary, NC). To assess the effect of baseline SDEE on BMI values at two years post

baseline using the FLRM, we obtained β̂(t) ≈
∑Kn

k=1 γ̂kbk(t), while inferences were

based on bootstrap point-wise confidence intervals.

3.3 Conditional Functional Quantile Regression Model (CFQRM)

The conditional functional quantile regression model (CFQRM) was applied with

SDEE as a functional covariate at the 10th, 25th, 50th, 85th, 95th and 99th per-

centiles of the outcome variable Yi = residual(BMIi). Following the expansion of

the functional covariate using polynomial splines as presented in the FLRM case, the

reparameterized model becomes

Qτ{Yi | Xi(t)} ≈
Kn(τ)∑
k=1

γ(τ)kXik i = 1, . . . , 188, (3.4)

where Qτ{Yi | Xi(t)} represents the τth conditional quantile function for the re-

sponse, Yi|Xi(t), while γ(τ)k represents the kth unknown spline coefficient associated

with the τth quantile. The RQ function available in the QUANTREG package in R

was used to fit the model (Koenker et al., 2017). The CFQRM can also be easily

fitted in SAS using PROC QUANTREG. Similar to the functional linear regression

model, we also obtained β̂τ (t) from our estimated coefficients γ̂(τ)k by the expression

β̂τ (t) ≈
∑Kn

k=1 γ̂(τ)kbk(t). Inferences for the CFQRM were also based on bootstrap

point-wise confidence intervals.

The number of basis functions, Kn and Kn(τ) associated with models (3.3) and

(3.4) respectively, control the smoothness of the functional covariate (Yao et al.,

2005). Thus, selection of the number of basis functions is a critical step when consid-

ering nonparametric approaches for fitting curves. In our applications, we considered

4 to 7 basis functions for each model. In R, the AIC function in the LM package and

11



the AIC.rq function in the RQ package provide AIC values, which were obtained and

compared to select the best fitting number of basis functions for the FLRM and the

CFQRM at each quantile.

12



4. RESULTS

4.1 Descriptive Statistics

Table 4.1 presents the descriptive statistics for our motivating example. The

mean BMI at baseline (Fall of Year 1) was 17.18 kg/m2 (sd = 2.79), while the

mean BMI at the end of the study (Spring of Year 2) was 17.55 kg/m2 (sd = 3.23).

Gender was equally distributed (94 boys and 94 girls) in the study sample, and the

average age of the enrolled students at baseline was 7.75 (sd = 0.73) years. About

75% of the students were whites, 8% Hispanics, 7.5% blacks, and 9.5% Asians/native

Americans.

Table 4.1: Descriptive Statistics for the Study Sample (n=188).
”Other”=Asians/Native Americans, SDEE= school day energy expenditure,
s.d.=standard deviation of the mean.

Variable Mean(s.d.)/ N(%)

BMI at baseline (kg/m2) 17.18(2.79)

BMI in Spring Year 2 (kg/m2) 17.55(3.23)

Average SDEE (cal/min) 2.48(1.34)

Age (years) 7.75(0.73)

Whites 141(75.00 %)

Hispanics 15(7.98 %)

Blacks 14(7.45 %)

Other 18(9.57 %)

Boys 94(50.00 %)

Girls 94(50.00 %)

In Figure 4.1a and Figure 4.1b, we provide density plots of the BMI 24 months
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post-baseline and the residuals obtained after adjusting for baseline covariates. The

plots illustrate the skewness of both the BMI and the residuals distributions. The

shapes of these curves indicate a possible violation of the normality assumption in

linear regression models.

Figure 4.1: Density Plot of BMI Distribution 24 Months Post Baseline (Figure 2a)
and Density Plot of the Baseline Covariates Adjusted Residuals (Figure 2b). The
skewness of the distribution of the BMI outcome and the adjusted residuals are
outlined in the two plots.
(a) BMI distribution of the study population
24 months post baseline.
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(b) Distribution of the residuals adjusted for
baseline covariates.
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4.2 Results from MLRM

The MLRM requires summarizing the high dimensional measures of SDEE per

subject to a scalar-valued measure. We obtained this summary scalar by computing

the arithmetic mean of all measures of SDEE by subject. From the MLRM results,

we concluded that mean SDEE was significantly associated with BMI 24 months

post-baseline (β̂1(t) = 0.54, 95% CI: 0.04-1.05, p = 0.0356). Thus, application of the

MLRM indicated that overall mean energy expenditure obtained at baseline could be

used as a predictor of future values of the conditional mean of BMI after adjusting for

14



the socio-demographic covariates (p = 0.0356). The MLRM produced an AIC of 472.

While the use of the overall mean SDEE to represent patterns of school day physical

activity behavior results in loss of information, functional regression models correct

for this loss of information by using the full profile of the function-valued covariate in

the estimation process (Augustin et al., 2012; Durá et al., 2012; Ratcliffe et al., 2002).

4.3 Results from FLRM

Energy expenditure measures obtained at baseline were summarized using four

basis functions in the FLRM considered. The final number of basis functions were

selected by comparing the AIC values for the FLRM under varying number of basis

functions. The computed AIC ranged between 444 and 447, with the lowest value

of 444 achieved for four basis functions. The basis functions were subsequently used

as explanatory variables for SDEE to fit the FLRM. Once the model was fitted,

SDEE was considered statistically significant when all estimated coefficients of the

basis functions yielded small p-values. Based on our estimations, we did not find

evidence of a relation between SDEE and BMI adjusted for baseline covariates after

the two-year period (p > 0.05 for all of the estimated coefficients), see Table 4.2.

Figure 4.2 shows the estimated functional coefficient, β̂(t) along with its 95%

confidence interval. The functional coefficient was estimated from a linear combi-

nation of the estimated spline coefficients γ̂k and the basis functions bk(t) using:

β̂(t) ≈
∑k=4

k=1 γ̂kbk(t). Point-wise bootstrap confidence intervals were also obtained at

the 95% confidence level. The estimated functional coefficient illustrates the curvi-

linear pattern for the energy expenditure estimate over the time, indicating that the

pattern of physical activity is not constant across time. The AIC obtained from the

FLRM was 444, which was smaller than the value of 472 obtained for MLRM. Thus,
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Table 4.2: Results from the FLRM to Assess the Effect of Energy Expenditure (as
a Functional Independent Variable) on Two-Year Change in BMI. S.E.=Standard
Error. γ̂1,. . . ,γ̂4 are estimates for the spline coefficients of energy expenditure.

Estimate S.E. P-value

γ̂1 -0.11 0.38 0.771

γ̂2 0.42 0.82 0.605

γ̂3 0.23 0.74 0.753

γ̂4 -0.40 0.31 0.192

the FLRM provides both a better fit and more flexibility in the estimations when

compared to the MLRM in our application. The confidence intervals also support

the conclusion that there is insufficient evidence in our data to indicate that SDEE

is predictive of the BMI values at two years post-baseline among the children.

Figure 4.2: Plot of the Conditional Mean Function of the Energy Expenditure Esti-
mate and its Confidence Interval. The plain line indicates the conditional quantile
function while dashed lines represent the upper and lower bound of the confidence
interval for each quantile function.
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4.4 Results from CFQRM

At each quantile, measures of energy expenditure were reduced into linear com-

binations of splines and basis functions. Similar to the FLRM, the final numbers of

basis functions were selected by comparing the AIC values computed under varying

number of basis functions at each quantile. The AIC comparisons led to the choice of

Kn = 4 at the 10th, 25th and 50th quantiles, Kn = 6 at the 85th and 99th quantiles,

while Kn = 7 was selected at the 95th quantile. The AIC values were higher for

extreme quantiles. Table 4.3 displays the results and AICs produced by the CFQRM

at each quantile. We did not detect any statistical significant association between

SDEE and the conditional quantile functions of our response across all the quantile

regressions considered (p > 0.05 for most spline coefficients).

Figure 4.3 provides plots of the estimated functional coefficients on SDEE and

their corresponding 95% point-wise confidence intervals. The plots also illustrate

the patterns of physical activity behavior across time under each quantile regression.

Each of the six quantile functions shows a different pattern.
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Table 4.3: Results from the CFQRM to Assess the Effect of SDEE (as a Function-
Valued Covariate) on the Percentiles of BMI Two Years Post Baseline. Est.=
spline coefficient estimate, S.E.=standard error. AIC= Akaike Information Crite-
rion. γ̂1,. . . ,γ̂7 are estimates for the spline coefficients of energy expenditure.

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7

10th quantile

Est. 2.25 -4.94 7.82 -7.94 – – –

S.E. 5.34 14.05 14.45 4.93 – – –

P 0.675 0.726 0.589 0.109 – – –

AIC 549

25th quantile

Est. 7.09 -11.82 11.88 -8.81 – – –

S.E. 6.04 15.52 15.71 5.52 – – –

P 0.242 0.448 0.451 0.112 – – –

AIC 482

50th quantile

Est. -2.81 14.25 -11.68 0.55 – – –

S.E. 7.86 17.40 15.12 5.40 – – –

P 0.721 0.414 0.441 0.918 – – –

AIC 446

85th quantile

Est. -12.46 15.12 -11.94 20.08 -18.52 5.28 –

S.E. 12.63 16.86 17.76 17.65 15.27 7.94 –

P 0.325 0.371 0.503 0.257 0.227 0.507 –

AIC 500

95th quantile

Est. -35.66 16.91 -2.97 -1.84 28.16 -16.40 -2.38

S.E. 9.61 12.70 13.36 11.19 14.11 12.41 7.33

P 0.000 0.185 0.825 0.870 0.048 0.189 0.746

AIC 558

99th quantile

Est. -64.76 107.29 -73.73 62.47 -44.63 7.46 –

S.E. 25.22 39.52 36.28 35.38 28.94 17.09 –

P 0.011 0.007 0.044 0.079 0.125 0.663 –

AIC 601
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Figure 4.3: Plot of the Estimated Functional Coefficients and Their Corresponding
95% Point-Wise Bootstrap Confidence Intervals at the 10th, 25th, 50th, 85th, 95th

and 99th Quantiles. For each plot, the plain line indicates the conditional quantile
function while dashed lines represent the upper and lower bound of the confidence
interval for each quantile function.
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5. DISCUSSIONS AND CONCLUSIONS

Three regression approaches were used to assess the impact of baseline school

day energy expenditure on BMI values at two years post-baseline. The use of splines

in the models considered enabled flexible assessments of the impact of patterns of

physical activity behavior across time. Unlike the spline methodology employed, the

use of the overall mean school day energy expenditure to represent physical activity

behavior at baseline resulted in loss of information. While the MLRM and FLRM

enable the evaluation of covariates on the conditional mean of BMI, the CFQRM

enables assessment of its impact across its full distribution. MLRM indicated that

the average hourly energy expenditure was associated with BMI two years post-

baseline, while the FLRM and the CFQRM did not. AIC values ranged between 444

and 601 under the FLRM and CFQRM, while the MLRM had an AIC of 472. This

study illustrates the use of various statistical approaches to assess the relationship

between a function-valued covariate and BMI. Overall, we recommend the use of

quantile based regression approaches for assessing behavioral interventions on BMI.

Despite its strengths of the statistical methods used, we identified a few limi-

tations to this study that might impact our results. A larger sample size would

improve our results in the study. Also, some factors such as diet and socioeconomic

status were not measured during the stand-biased desk study and therefore, were not

taken into account in our analysis. Such factors could have some significant effects

on our results. Finally, it would have been of interest for researchers to assess the

predictability of SDEE on BMI beyond the two-year time frame of the stand-biased

desk study, as detecting future risks of obesity at a very early point in time will

permit to design and implement effective interventions.
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