

Separation Seal Upgrade to overcome Repetitive Failures

Author : RasGas

Pradip B Sonavane (Senior Engineer - Rotating Equipment)

AbdelKhalek, Mohamed H (Advisor - Rotating Equipment)

Quraisy Shatri (Head of Maintenance - Machinery & Reliability)

RasGas

Objectives

- Trouble shooting of Separation seal failures.
- Reference for DGS design selection at Project stage.
- Share experience with audience for improved DGS

performance (in certain applications).

Contents

- ✓ Problem
- ✓ Events' Summary
- ✓ Observations & Findings
- ✓ Root Cause Failure Factors
- ✓ Solutions
- ✓ Selection & Implementation
- ✓ Conclusion

Problem

- Repetitive failures of Separation Seal (Contacting Design type).
- Flooding of main gas seal with lube oil.
- Excessive leakage of lube oil from DGS cavity drains.
- Lube oil accumulation at Primary & Secondary vent lines.
- Lube oil & vapors mixture seepage to buffer gas skid filters.

- Frequent seal failures in Fuel Gas Compressors, experienced over 12 years of operation.
- 9 sets of DGS were replaced on 4 units in last 4 years.
- Lube oil migration is monitored for quantity, color, and debris.
- Separation Seal Gas supply Nitrogen pressure was increased gradually from 0.45 (design) to 0.9 barg.
- About 50 to 150 ml/day accumulated lube oil being drained on daily basis from seal cavity.

Equipment Details

Compressor

- Service
- Type
- Model

- : Fuel Gas Compressors
- : LP (MCL) & HP (BCL)
- : MCL 9H-7C (LP Compressor)

BCL 5V-8B (HP Compressor)

• Max working pressure : 7 barg (LP) & 26 barg (HP)

Dry Gas Seal

- Gas seal
- Separation seal
- Size

- : Tandem 28AT Model
- : Contacting type, (T82)
- : 7.625" (for LP) , 6.625" (for HP)

DGS Schematic

Observations & Findings

• Lube oil accumulation inside seal bore

- High/hard spots
- Sharp edge / Irregularities

• Oil film on Secondary seal ring faces

Observations & findings

• Separation seal carbon segments in damaged and dislocated condition

• Worn out seal rings

Carbon deposit

Observations & Findings

 Excess oil collected from both Primary & Secondary drain line

• Oil reached up to primary vent line

• Oil collected from vent line drain points

Observations & Findings

• Lube Oil migration issue found more severe at NDE (Thrust Bearing) relative to DE (Non Thrust) DGS assembly.

Root Cause Failure Factors

Dusty climate effect on breather element function. (Equipment Strategy)

> Location of the oil - vapor extraction point from bearing housing

> > Lack of physical restriction like baffle/ deflector /labyrinth between bearing and separation seal.

> > > T-82 separation seal design does not work properly for compact Bearing Housing, where extraction of oil-vapor mixture is ineffective

Option-1

Compressor / system retrofit

- Bearing housing modification:
- Maintenance Strategy upgrade
- Improving QA / QC for the new spares

Option-2 Separation seal upgrades

Sequence of schemes considered:

- 1. Original seal (T-82) with oil deflector
- 2. Enhanced seal design (T-83)
- 3. T-83 with oil deflector.
- 4. Labyrinth seal design.
- 5. Non-contacting seal design (T-93FR).

Implemented Successfully

6. T-93FR with oil slinger/deflector.

Design Features of selected T-93FR

- Non-contacting for longer life and improved reliability.
- Bi-directional.
- Suitable for running with N2 separation gas irrespective of dew point.
- Self-centering design minimizes wear even during upset conditions.
- Robust cartridge design.
- Eliminate 'Fallback', 'Hang-on' phenomenon.
- Low heat generation, hence reduce coking.

"Upgrade **existing** DGSs to available technology of Non contacting type Separation Seal (T-93FR) with Oil Slinger / Deflector provision followed by related modifications in Main Gas Seal"

✓ Options considered at RasGas to phase out the existing T82 Separation Seal with T93FR Separation Seal, but with Oil Slinger / Deflector provision to solve this oil migration issue.

✓ This enhanced design was so far running successfully at RG.

New seal T-93FR drawing

MIDDLE EAST TURBOMADHINERY SYMPOSIUM

T-93FR Upgrade Requirement

1. <u>N2 Pressure Regulator:</u>

T-93FR is designed to operate at low N2 pressure from 0.02 – 0.25 bar, while the old T-82 was in operation with higher range from 0.25 – 0.75 bar.

2. <u>N2 Gas Flow Meter:</u>

With T-93FR seal system, N2 flow rate consumption will increase as per followings:-

- Original T-82 range : 2 5 NM3/HR
- T-93FR, cold static Range
- T-93FR, hot dynamic
- : 8- 12 NM3/HR
 - : 2 4 NM3/HR

New Seal T-93FR – Few Snap Shots

Oil slinger (deflector) •

Bearing installation ٠

Separation Seal Upgrade to overcome Repetitive Failures

Bearing assembly ٠

DGS Performance Monitoring

DGS Performance Monitoring

PI ProcessBook - [1	18-K001 New DGS (T-93 FR) Performance] Insert Tools Draw Arrange Window H	lelp			
	à X ⊫a = ≏ ± ⊂ ± ≪ м		k? 🔲 🤌 🕨 🖂		
] ⊖ ſ @ Ն ∿ Ն Lui ⊠ %		<		
	B Z U	* 🗷 * 🚈 * = 🚎 🛱 🕵 🚿	변 면 면 🔲 군 양 🌿		
S 🛛 🛶 🛶 - Y:\Eng	gineering\5 - Machinery & Reliability\1.0 - Se	ection Personnel\Pradip Sonavane\18-K001\18-	-K001 Ne 🍷 兪 🗸 🚖 🥵		
+ 2011		7/29/2012 💽 🥶 🕨 🕨 🚰			
⊃lot-0					
1.6					 \vius02\\18PDI8071.FV 0.49451 AR \vius02\\18PI8074.PV
1.195					0.01709 BAR • \\rtis02\18Pl8075.PV 0.00000
0.995					BAR \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0.795					0.07782 Bar Uvrtis02\18PI8082.PV 0.51860
0.595					Bar ▲ \\rtis02\18Pl8088.PV 0.00183 Bar ▲ \\rtis02\18Pl8091.PV
0.395					0.02747 Bar
-0 005		•			
5/26/2012 1:15:47 F 11K001 SEAL 3 0 18K001 DISCH 3 18K001 SUCT 8 18K001 SUCT 8 18K001 FG Sea 18K001 FG Sea	PM AS FLITER DP SIDE 1ST VENT IDE 1ST VENT andery vent inlist end ondary vent discharge end 12 supply	↔ ବ. 64.00 days ◄		7/29/2012 1:15	47 PM
▲ 18K001 FG Seco ▲ 18K001 FG Seco	ondary vent inlet end ondary vent discharge end				
@				Server Time	Image: NUM NUM ▲ Image: NUM 1:17 PM 7/29/2012

Conclusion

- DGS Upgrade with Floating Ring / Non Contacting Type T-93FR Separation Seal has so far successfully solved the Lube Oil Migration / Ingress issue.
- Oil Slinger provision along with Dual Segmented Floating Carbon Ring T-93FR Cartridge Assembly has proven as effective barrier between Main Gas Seal and Bearing Housing.
- This upgrade was carried out without any modification works on Compressor side.
- T-93FR Non contacting Type Separation Seal performance observed to be significantly better in comparison with T-82 and T-83 contacting type Separation Seals.
- Successful prototype implementation based on full OEM and End User contribution

Thank you !!

Questions ??

