

#### **Presenter**



#### **Amr Mohamed Gad**

Senior Machinery Engineer with RasGas company since 2007

- 13 years of experience in maintenance, retrofits, and upgrades of Gas Turbines, Compressors and Pumps in natural gas facilities.
- Previous publications at 5 major worldwide conferences





## **Boiler Feed Water Pumps Performance Loss**

Amr Mohamed Gad— RasGas Dr.Nicholas White — RasGas Arbain Bin Mahmood— RasGas

2<sup>nd</sup> Middle East Turbo Machinery Symposium 17<sup>th</sup> – 21<sup>st</sup> March 2013

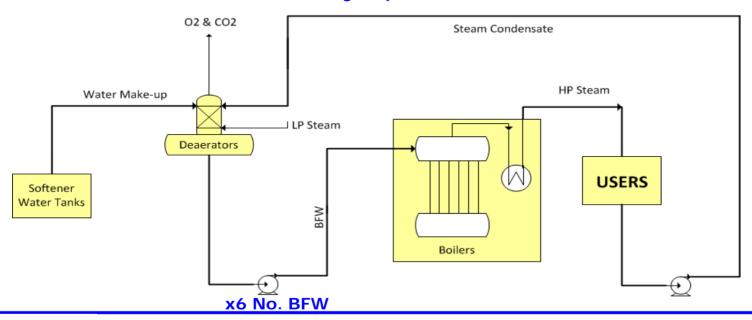




## Index

- RGX2 Steam Condensate System
- Problem Summary
- Troubleshooting History
- Unit 92-A261A –Failure
- Performance Deterioration
- RCFA-Unit 92-P261A
- Operational Risk Mitigation
- Recommendations Results
- Lessons Learned




# **RGX2 Steam Condensate System**

#### Steam condensate system set up at RGX2

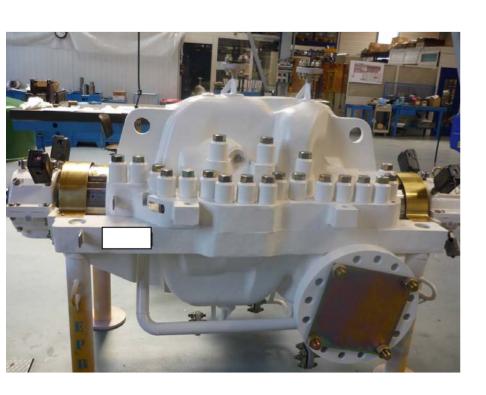
• Total of x6 Boiler Feed Water Pumps (x4 steam driven pumps and x2 motor driven pumps).

#### Operating philosophy N+2:

x4 in service and x2 Stand by operation.






# **RGX2 Steam Condensate System**

#### Pump specifications:

- Rated capacity 750 M3/hr
- Rated power 1.7 MW
- Differential head 680m
- Horizontally split casing
- 4 stage with double inlet impeller



# **RGX2 Steam Condensate System**

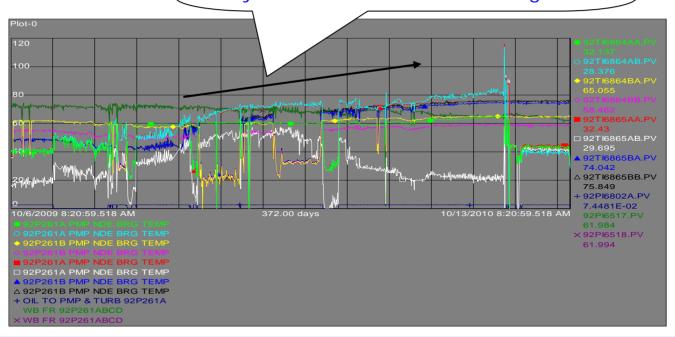


New pump before installation



Old pump at skid in RGX2




# **Problem Summary**

- One pump experienced high thrust bearing temperature alarm after 16 months of operation
- The thrust bearing was replaced twice during the following 6 months without identifying the root cause
- System operation indicated low pump performance (flow rate and head rise)
- During the 25 months of operation, thrust bearing temperature again reached high alarm level and pump was found seized upon inspection

# **Troubleshooting History**

# Historical Records Unit 92-P261A historical events shown on a timeline

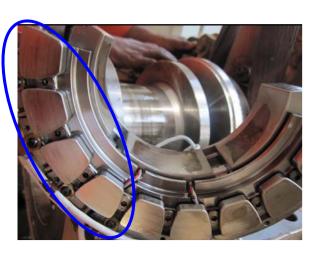
pump's thrust bearing temperature increase due to bearing degradation over one year – alarm level reach xx deg C





# **Troubleshooting History**

#### Unit 92-P261A -Vibration readings

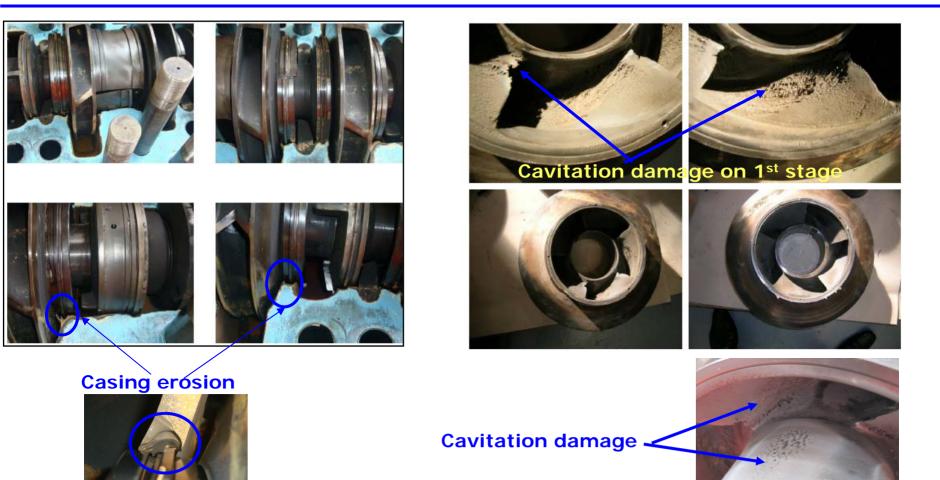





## Unit 92-A261A -Failure

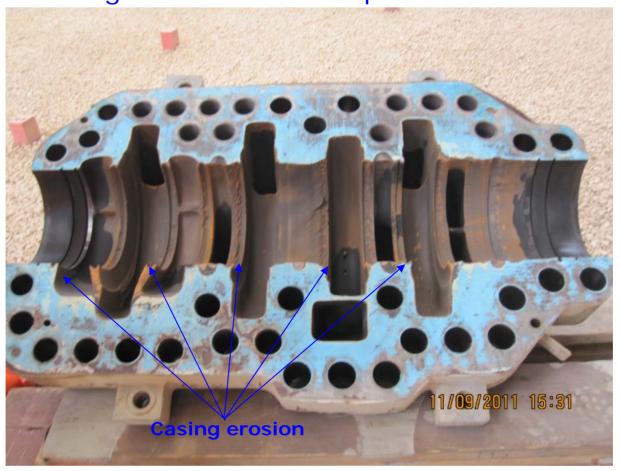
#### Thrust Bearing failure signs:

Scoring and smear on thrust pads

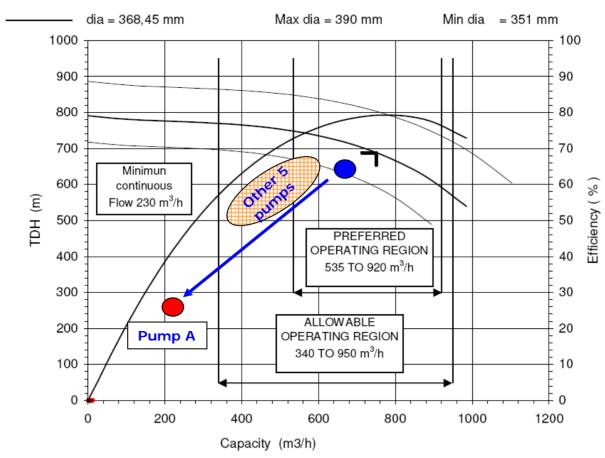





#### **Smeared Journal pads**




## Unit 92-A261A -Failure




## Unit 92-A261A -Failure

RCFA initiated August 2011 and completed October 2011



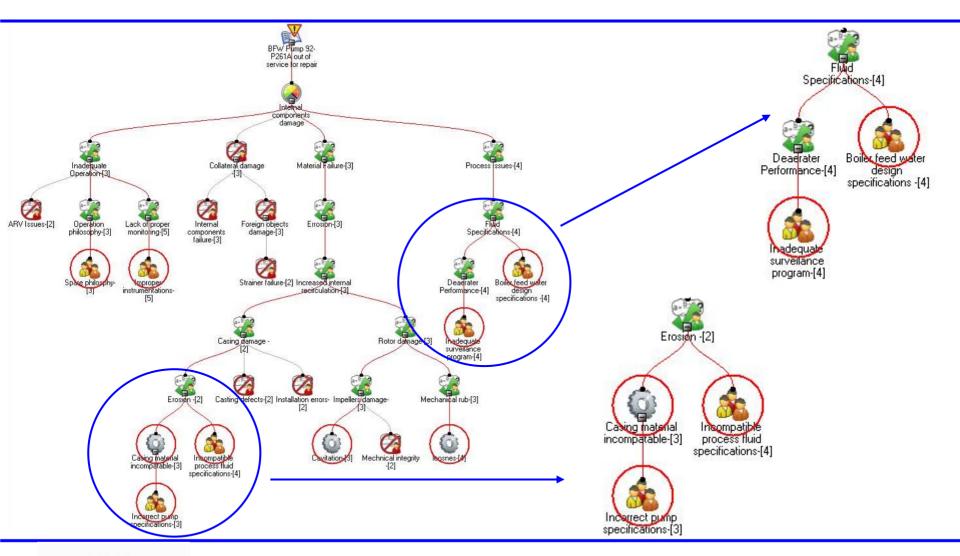
## **Performance Deterioration**







**Deteriorated performance** 




Other pumps performance





## RCFA-Unit 92-P261A



## RCFA-Unit 92-P261A

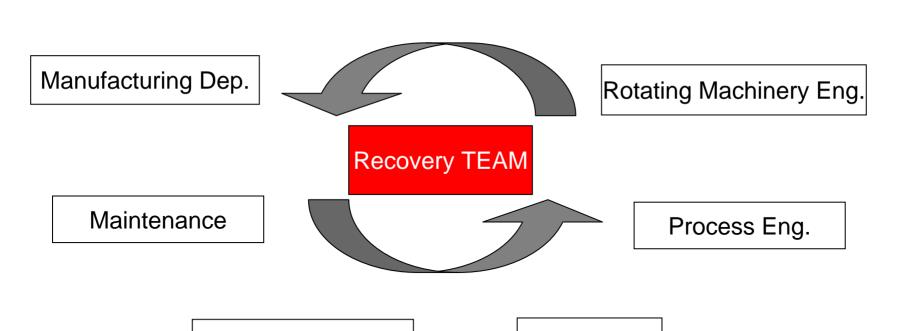
#### **RCFA** – Findings

- Root Cause (Human) Incorrect material specification of the pump casing for boiler feed water service led to major damage of casing inner walls and rotor parts
- Contributing Factor 1 (Latent) Insufficient online monitoring of pump performance due to inadequate instrumentation prevented effective pump health monitoring
- Contributing Factor 2 (Latent) Inadequate surveillance program for boiler feed water conditions led to a possible corrosive environment within pump flow path

## RCFA-Unit 92-P261A

#### **RCFA** – Recommendations

- Immediate action: Purchase x6 new BFWPs with 12%Cr Stainless Steel casings and replace the existing pumps with carbon steel casing
- Medium action: Revise the Equipment Strategy to perform a bi-monthly online performance monitoring task including steam condensate dissolved oxygen and pH levels to ensure they remain within specification
- Long term action: Improve online monitoring by installation of the following:
  - -Digital discharge pressure transmitter
  - -Install flow measurement devices on the discharge and recirculation line




# **Operational Risk Mitigation**

Contracts Dep.

**Asset Management** 

Electrical and Instrumentation Eng.

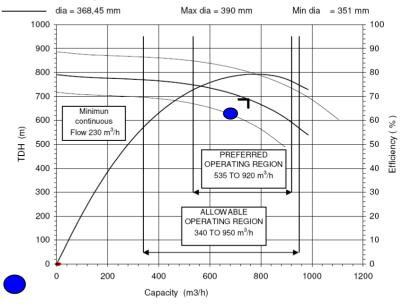




Supply Dep.

# **Operational Risk Mitigation**

#### Integrated Repair plan


- x3 pumps repaired between October 2011 and March 2012
- x2 pumps were repaired used spare parts manufactured by third party as fast track repair to save time
- System reviewed for equipment reliability
   (Turbines, Automatic Recycle Valves, Instruments etc.) and corrective actions taken as appropriate
- Close monitoring and measurement of discharge and recycle flow using clamp flow meter to assess pump performance
- Long term Installation of x6 new BFW pumps with stainless steel casing (procurement and installation during 14 months)



## **Recommendations Results**

- Performance for the repaired 3 units as interim solution was similar to OEM design.
- Ultimate replacement of all pumps by new stainless steel casing's units results in operating the BFW system with reliable

units as per OEM design.



**Optimum performance** 



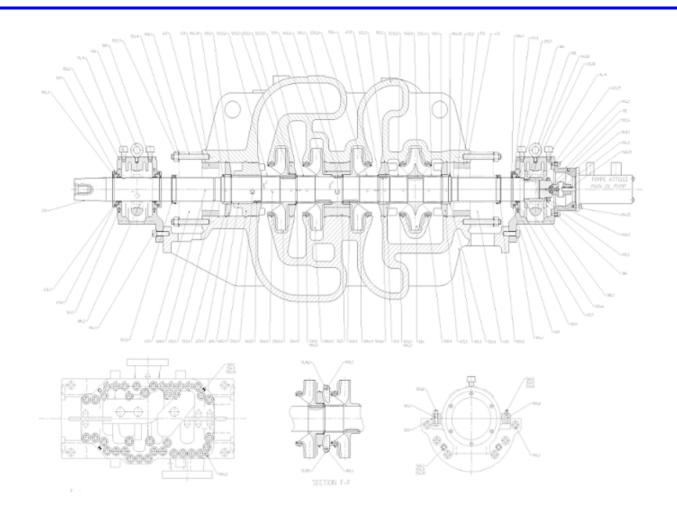
## **Lessons Learned**

- Follow API610 guidelines during equipment procurement (material specifications versus fluid service)
- Improve datasheet and specification review during project FEED and procurement
- Improve online monitoring instruments required during plant design

## **Questions?**

## **Authors:**

Amr Mohamed Gad - RasGas


Dr. Nicholas White - RasGas

Arbain Mahmood - RasGas

asmohamedgad@rasgas.com.qa



# **Backup**



| 2 FOR Ras Laffan Liquefied Natural Gas Company Limited (3) |                                | 92 Steam and Condensate System |               |                      |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------|--------------------------------|---------------|----------------------|--|--|--|--|--|--|
| 3 SITE RAS LAFFAN, QATAR                                   |                                | Boiler Feed Water Pump         |               |                      |  |  |  |  |  |  |
| 4 NO. REQ 5 PUMP SIZE 8x10x14.5 H/Y                        |                                |                                | NO. STAGES    | 4                    |  |  |  |  |  |  |
| 5 MANUFACTURER UNION PUMP S.A.S.                           | MODEL                          | DVMX                           | SERIAL NO.    | P350 to P354         |  |  |  |  |  |  |
| 6 NOTES: INFORMATION BELOW TO BE COMPLETED: O BY PURCHASER | □ BY MANUF                     | ACTURER                        | BY MANUFACT   | URER OR PURCHASER    |  |  |  |  |  |  |
| 7 O GENERAL (3.                                            | 1.1)                           |                                |               |                      |  |  |  |  |  |  |
| 8 PUMPS TO OPERATE IN (PARALLEL) NO. MOTOR DRIVEN          | 2                              | NO. TUR                        | BINE DRIVEN   | 3 (2+1)              |  |  |  |  |  |  |
| 9 (SERIES) WITH 92-P261A/B/C/D PUMP ITEM NO.               | 92-P261C/D                     | PUMP IT                        | M NO. 92      | 2-P261A/B , 92-P271A |  |  |  |  |  |  |
| 10 GEAR ITEM NO. MOTOR ITEM NO.                            | 92-PM261C/D                    | TURBINE                        | ITEM NO. 92-  | PT261A/B , 92-PT271  |  |  |  |  |  |  |
| 11 GEAR PROVIDED BY MOTOR PROVIDED BY                      | Pump ∀endor                    | TURBINE                        | PROVIDED BY   | Pump Vendor          |  |  |  |  |  |  |
| 12 GEAR MOUNTED BY MOTOR MOUNTED BY                        | Pump Vendo                     | TURBINE                        | MOUNTED BY    | Pump Vendor          |  |  |  |  |  |  |
| 13 GEAR DATA SHT. NO. MOTOR DATA SHT. NO.                  |                                | TURBINE                        | DATA SHT. NO. |                      |  |  |  |  |  |  |
| 14 OPERATING CONDITIONS                                    | SITE AND UTILITY DATA (CONT'D) |                                |               |                      |  |  |  |  |  |  |
| 15 CAPACITY, NORMAL 630.0 (m3/h) RATED 750.0 (m3/h)        | WATER SOURCE                   |                                | Fresh Wa      | -                    |  |  |  |  |  |  |
| 16 OTHER                                                   | CHLORIDE CONCEN                | NTRATION (PPM)                 |               | (3.5.2.0             |  |  |  |  |  |  |
| 17 ■ SUCTION PRESSURE MAX./RATED 5.10 / 2.30 (BARG)        | INSTRUMENT AIR: N              |                                |               | / 4.5 (BARG          |  |  |  |  |  |  |
| 18 ● DISCHARGE PRESSURE 65.20 *1.7 (BARG)                  |                                | 1                              | QUID          |                      |  |  |  |  |  |  |
| 19 DIFFERENTIAL PRESSURE 62.90 *1.7 (BAR)                  | TYPE OR NAME                   |                                |               | 1 Water *1 3         |  |  |  |  |  |  |
| 20 DIFF. HEAD *1.8 680.4 (m) NPSHA 13.6 (m) *1.1           | PUMPING TEM                    |                                | Dollor 1 co.  | a vvalor 1.5         |  |  |  |  |  |  |
| 21 O PROCESS VARIATIONS (3.1.2)                            |                                |                                | MAY 150 /     | °C) MIN. 43 (°       |  |  |  |  |  |  |
| 22 STARTING CONDITIONS Auto Start/Stop *1.5 (3.1.3)        |                                |                                |               | @ 120 (°             |  |  |  |  |  |  |
| 23 SERVICE: CONT. O INTERMITTENT (STARTS/DAY)              | RELATIVE DEN                   |                                |               | ( 120 (              |  |  |  |  |  |  |
| 24 PARALLEL OPERATION REQ'D (2.1.11) *1.6                  |                                |                                | MAX           | MIN                  |  |  |  |  |  |  |
| 25 O SITE AND UTILITY DATA *1.2                            | O SPECIFIC HEAT                | 0.343                          | MAA           | /k l/kn 9C\          |  |  |  |  |  |  |
| 28 LOCATION: (2.1.29)                                      | VISCOSITY                      |                                |               |                      |  |  |  |  |  |  |
| 27 O INDOOR O HEATED O UNDER ROOF                          | O MAX. VISCOSIT                |                                | (CF) @        | 120 (0               |  |  |  |  |  |  |
| 28 OUTDOOR UNHEATED O PARTIAL SIDES                        | O CORROSIVE/EF                 |                                |               | (2.11.1              |  |  |  |  |  |  |
| 29 GRADE O MEZZANINE O                                     | O CHLORIDE COM                 |                                | PM)           | (3.5.2.0             |  |  |  |  |  |  |
| 30 O ELECTRIC AREA CLASSIFICATION (2.1.22 / 3.1.5)         | O H <sub>2</sub> S CONCENT     | DATION (DDM)                   |               | (2.11.1.11)          |  |  |  |  |  |  |
| 31 *1.4                                                    | LIQUID (2.1.3)                 |                                |               |                      |  |  |  |  |  |  |
| 32 O WINTERIZATION REQ'D TROPICALIZATION REQ'D.            | O OTHER                        | J HAZARDOUS                    | O FLAMINIAD   | LE                   |  |  |  |  |  |  |
|                                                            | O OTHER _                      |                                |               |                      |  |  |  |  |  |  |
| 33 SITE DATA (2.1.29)                                      |                                |                                | FORMANCE      |                      |  |  |  |  |  |  |
| 34 ALTITUDE(m) BAROMETER(BAR abs)                          | PROPOASAL CURV                 |                                |               |                      |  |  |  |  |  |  |
| 35 RANGE OF AMBIENT TEMPS: MIN/MAX. 4 / 49 (°C)            |                                |                                |               | MIN. 351 (mm)        |  |  |  |  |  |  |
| 36 RELATIVE HUMIDITY: MIN / MAX 35 / 80 (%)                |                                |                                | (BHP) EFFICIE | NCY                  |  |  |  |  |  |  |
| 37 UNUSUAL CONDITIONS: (2.1.23) DUST O FUMES               | MINIMUM CONT                   |                                |               |                      |  |  |  |  |  |  |
| 38 OTHER Salty and dusty (Sand Storm)                      | -   -                          |                                | (m3/h) STABLE |                      |  |  |  |  |  |  |
| 39 O UTILITY CONDITIONS:                                   | PREFERRED O                    |                                |               |                      |  |  |  |  |  |  |
| 40 STEAM: DRIVERS HEATING                                  | ALLOWABLE OF                   |                                |               |                      |  |  |  |  |  |  |
| 41 MIN 39.5 (BARG) 366 (°C) (BARG) (°C)                    | MAX HEAD @ F                   |                                |               | 14                   |  |  |  |  |  |  |
| 42 MAX 41.3 (BARG) 376 (°C) (BARG) (°C)                    | MAX POWER @                    |                                |               | 1900 (kW)            |  |  |  |  |  |  |
| 43 ELECTRICITY DRIVERS HEATING CONTROL SHUTDOWN            | NPSHR AT RAT                   |                                |               |                      |  |  |  |  |  |  |
| 44 VOLTAGE 6600 240 120 24                                 | SUCTION SPEC                   | CIFIC SPEED                    | 11820 (m      | 7/hr - m) (2.1.9)    |  |  |  |  |  |  |
| 45 HERTZ 50 50 50                                          | O MAX. SOUND P                 |                                |               | 85 (dBA) (2.1.1      |  |  |  |  |  |  |



# **Operational Risk Mitigation**

#### Integrated Repair plan

| Task Name                                                    | Duration S | Start    | Finish   | Resource Names  | December |               | January       |               | February |     | N            | March |               | April        |                  | May          |      | June         |      | J   |
|--------------------------------------------------------------|------------|----------|----------|-----------------|----------|---------------|---------------|---------------|----------|-----|--------------|-------|---------------|--------------|------------------|--------------|------|--------------|------|-----|
|                                                              |            | ′        |          |                 | 11/27    | 12/11         | 12/25         | 1/8           | 1/22     | 2/5 | 2/19         | 3/4   | 3/18          | 4/1          | 4/15             | 4/29         | 5/13 | 5/27         | 6/10 | 6/2 |
| L Mitigation Plan for exposure without healthy spare BFWP    | 16 days    | 10/26/11 | 11/16/11 | Team 1          |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| Procurement of x6 new BFWPs                                  | 53 days    | 10/26/11 | 1/5/12   | Team 1          |          | =             | $\overline{}$ |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| Procurement of consumable spares (x1 set) from CU            | 120 days   | 11/7/11  | 4/12/12  | Team 1          | _        | $\rightarrow$ | $\vdash$      | -             |          |     |              |       | $\overline{}$ | <del>-</del> | A                |              |      |              |      |     |
| Procument for consumable spares (x2 sets) from WG            | 64 days    | 11/1/11  | 1/22/12  | Team 1          |          | <del></del>   |               | _             | ₩        |     |              |       |               |              |                  |              |      |              |      |     |
| eMWO for CU Service Engineer                                 | 1 day      | 11/3/11  | 11/4/11  | Team 1          |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| Write QA/QC check list for vendor BFWP repairs               | 3 days     | 11/13/11 | 11/15/11 | Team 1          | 1        |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| Award CU contract for repair services                        | 13 days?   | 12/2/11  | 12/19/11 | Team 1          | -        | —             |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| Locally manufacture replacement ST guide rod assembley       | 7 days     | 12/21/11 | 12/29/11 | Team 1          |          | -             | ₩             |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| Procure spare ST guide rod assembley (x2 sets) from DR (USA) | 29 days    | 12/19/11 | 1/22/12  | Team 1          |          | -             |               |               | ₩        |     |              |       |               |              |                  |              |      |              |      |     |
| D Procure spare ST guide rod assembley (x1 set) from DR JAE) | 18 days    | 12/22/11 | 1/14/12  |                 |          |               |               | ~             |          |     |              |       |               |              |                  |              |      |              |      |     |
| 1 92-P261A repair and installation                           | 50 days    | 11/4/11  | 1/11/12  | CU/Team 1       |          | -             |               | -₩            |          |     |              |       |               |              |                  |              |      |              |      |     |
| 2 Repair of original 92-P261A rotor                          | 116 days   | 12/13/11 | 5/14/12  | CU/Team 1       |          | <del>-</del>  | $\vdash$      | $\overline{}$ |          |     |              | _     | $\leftarrow$  |              | +-               | $\leftarrow$ | ₩    |              |      |     |
| 3 92-P261B repair and installation                           | 35 days    | 11/3/11  | 12/20/11 | WG/Team 1       |          | <del></del>   |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| 4 92-P271 repair and installation                            | 49 days    | 12/21/11 | 2/20/12  | WG/Team 1       |          | -             | $\vdash$      | $\overline{}$ |          |     | ₩            |       |               |              |                  |              |      |              |      |     |
| L5 92-P261C repair and installation                          | 37 days    | 2/21/12  | 4/11/12  | WG/Other/Team 1 |          |               |               |               |          |     | <del>-</del> | _     | -             | <del></del>  | <i>i</i>   '     |              |      |              |      |     |
| 16 92-P261D repair and installation                          | 37 days    | 4/12/12  | 6/1/12   | WG/Other/Team 1 |          |               |               |               |          |     |              |       |               | ₩            | $\longleftarrow$ | $\leftarrow$ | -    | <b>─</b> ▽ ′ |      |     |
| 17 ARV replacement and surveillence                          | 76 days?   | 8/1/11   | 11/15/11 | Team 2          |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| 18 Troubleshooting Instrumentation & Controls                | 5 days     | 10/30/11 | 11/4/11  | Team 3          |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| 19 Enhanced monitoring program                               | 21 days    | 10/26/11 | 11/23/11 | Team 1/ Team 2  |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| 20 Failure Analysis for ARV's                                | 177 days   | 3/2/11   | 11/4/11  | Team 2          |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| 21 Failure Analysis for Pumps                                | 23 days    | 11/3/11  | 12/5/11  | Team 1          |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| 22 Failure Analysis for Instrumentation & Controls           | 24 days    | 10/30/11 | 12/1/11  | Team 3          |          |               |               |               |          |     |              |       |               |              |                  |              |      |              |      |     |
| 23 Manufacture of x 6 BFWPs at CU                            | 141 days   | 1/2/12   | 7/6/12   | CU/Team 1       |          |               |               |               |          |     |              |       |               |              |                  |              |      | -            | -    | 4   |