

Think Out of the Box: Not All Sea Water Submerged Pump Failures Are Mechanical

by Hussain Al-Baloshi & Isham Sudardjat Reliability Section– Operations Engineering (Offshore)

2011

Outline

- Introduction to QP Offshore Operation
- Background
- Failure History
- Possible Failure Causes (Fish Bone Diagram)
- Submersible Pump Caisson Designs
- Suction Bearing Designs
- Experiment Video & Findings
- Failure Mechanism (Sequence of Failure)
- Conclusions
- Recommendations

Introduction to QP Offshore

SBM

TANKER

1000

PS-2

PS-3

TOTAL QPD OXY

WE PLA

VELL HEAD PLATFORM

WELL HEAD PLATFORM

QP Offshore Operations comprises of:

- Halul Storage and Loading Terminal
- 2 Production Platforms:
 - Maydan Mahzam (MM): PS-2
 - Bul Hanine (BH) : PS-3

Backgrounds

- Each Station has vertically suspended submersible pumps:
 - 2 Raw Water Pumps (1 operation / 1 standby)
 - 4 Fire Water Pumps (all standby)
 - 3 Sea Water Pumps (2 operation / 1 standby)
 - Raw Water Pumps were replaced in 2003 to accommodate higher water demand.
 - All New Raw Water Pumps & some Fire Water Pumps experience frequent failures with common phenomena: blocked/clogged suction strainer with marine growth
- High residual chlorine injection rates (4 times the SCENR requirements).

Failure History

Submersible Pump Caisson Designs Pump Caisson Designs & Suction Bearing Types in PS-2/3

Pump	Tag No	Caisson Design	Suction Bearing Type
LQ Fire Water Pump	P-3207 / P-3306	5 m longer*	Bronze (no groove)
B Fire Water Pump	P-4206B / P-4306B	1.5 m longer	SST (no groove)
G Fire Water Pump	P-4206A/S & P-4306A/S	0.2 m longer	Bronze –Rubber with Groove (Cutlass)
Raw Water Pump	P-4213A/S & P- 4313A/S	shorter	Bronze (no groove)
Old Raw Water Pump	P-4213A/S & P-4313A/S	shorter	Bronze –Rubber with Groove (Cutlass)
Sea Water Pump	P-4205A/B/S & P-4305A/B/S	shorter	Bronze –Rubber with Groove (Cutlass)

* Modified in July 08 to allow access for cleaning of strainer

Suction Bearing Design

Caisson Designs

Raw Water Pump (1977)

Caisson Designs (continued)

9

Raw Water Pump (2004)

PS-2 LQ Fire Water Pump Strainer

Experiment Video & Findings Video

"Strainer Outside the Caisson" Simulations

- Standby Condition
- Operating Condition

"Strainer Inside the Caisson" Simulations

- <u>Standby Condition</u>
- Standby Rough Sea
- Operating Condition

Caisson Designs from Other Operators

Companies / Operations	Function	Caisson Length*	Residual Chlorine
BP -ETAP	Sea Water Pump	45 m longer	Injection for 20 min each shift
QP PS-4	Sea Water Pump	6 m longer	0.1 ppm
QP PS-4	Fire Water Pump	5 m longer	0.1 ppm
Total Indonesia	Fire Water Pump	0.9 m longer	Unknown

* Caisson length below pump strainer

Failure Mechanism (Sequence of Failure)

Conclusions

- The longer caisson design has the following advantages:
 - Retains chlorine concentration inside the caisson from being washed away by sea current
 - Prevents flying young mussels or barnacles brought by sea current to attach to the strainer body and grow inside it
 - Avoids direct chlorine injection to open sea
 - Protects the pump against force from sea bed
 - Allows our stations to meet MoE (formerly SCENR) requirement for residual chlorine content (0.1 mg / L)
 - Eliminates the need for diving inspection for cleaning the strainer
- The type of suction bearing has contribution to the pump reliability due to better abrasive resistance capability

Recommended Design

Actions

- Close the windows of LQ FWP caissons to retain original design
- Extending the caisson's length for Raw Water Pumps (P-4213A/S & P-4313A/S)
- Study the replacement of suction bearing type for Raw Water Pumps with bronze - rubber with groove type.

