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ABSTRACT 

Rotordynamic stability of gas compressors at high speeds and operating pressures is a significant technical challenge. 

Dynamic instability must be avoided for the sake of safe, reliable and continuous operation of turbomachinery.  Experience 

and literature have shown that one of the main sources of instability is the swirl within the secondary leakage path in 

shrouded impellers, especially the swirl entering the shroud seals. The technical brief presents the design and 

implementation of swirl brakes for centrifugal compressors with Teeth-on-Rotor seal configurations for shrouded 

impellers. Discussion includes (a) aerodynamic design of swirl brakes with the help of Computational Fluid Dynamics (CFD), 

(b) sub-scale testing of the swirl brake design in an instrumented single-stage test rig to measure the inlet swirl ratio in a 

shrouded impeller, (c) full-scale prototype shop-testing and qualification, with and without the swirl brakes in a closed-

loop test facility, and (d) results of incorporating the swirl brakes at an off-shore compressor installation to improve 

rotordynamic stability.  
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INTRODUCTION 

Rotordynamic stability of turbomachinery has been studied extensively during the past few decades. Literature (Benckert 

and Wachter, 1980 and Sivo et al. 1995) have shown that one of the main sources of rotordynamic instability in pumps is 

the swirl through the secondary leakage path in shrouded impellers, especially swirl entering the shroud seals. The same 

has been shown for centrifugal compressors by Baumann et al. (1999). Other features routinely employed by the industry 

for improving rotor stability include shunt-injection (Fozi, 1980) and hole-pattern seals (Moore, 2002). 

Flow leaving the impeller tip enters the cavity between the stator and impeller shroud at high swirl velocities. The 

swirl velocity increases as the flow reaches the inlet to the shroud-seal on the impeller shroud. This in turn has been shown 

to generate significant tangential, destabilizing forces that can be detrimental to the overall rotordyamic stability of the 

compressor. In conjunction with the seals, the forces generated by the shroud cavity itself can be equally destabilizing. 

Predictions of shroud forces have been reported extensively by Childs (1993) and Moore and Palazzolo (1999). Minimizing 

the swirl ratio at the seal inlet όǊŀǘƛƻ ƻŦ ǘƘŜ ŦƭǳƛŘΩǎ ŎƛǊŎǳƳŦŜǊŜƴǘƛŀƭ ǾŜƭƻŎƛǘȅ ǘƻ ǊƻǘƻǊ ǘƛǇ ǎǇŜŜŘ ŀǘ ǘƘŜ ǎŜŀƭύ is the goal of the 

swirl-brake design. 

Nielsen (1998) performed analysis of swirl-brakes using 3D-Navier Stokes equations leading to more work on using 

CFD simulations of the swirl-brakes. Moore (2000) used a full viscous 3D model in CFD to design a swirl-brake and showed 

the possibility of creating a negative swirl within the vanes, thereby increasing compressor stability. More recently, 

Baldassarre et al. (2014) presented a methodology to optimize the design of swirl-brakes using CFD by analyzing the key 

attributes that impact its effectiveness. Untariou et al. (2013) used CFD to predict inlet swirl ratios to a balance drum seal 

in a centrifugal pump that shows instability without swirl-slots and a stable rotor with swirl-slots. Pugachev and Deckner 

(2012) compared experimental leakage and dynamic stiffness coefficients to CFD-based analytical results for a 3-stage 

brush seal. 

It must be mentioned that while the industry has successfully used swirl-brakes for a few decades, many of these 

applications are for a Teeth-on-Stator configuration (TOS). Due to large wetted areas and practicality for assembly, 

developing an effective swirl-brake for Teeth-on-Rotor (TOR) has additional considerations. This paper presents the 

design, testing and successful implementation of swirl-brakes for a Teeth-on-Rotor configuration. 

 

COMPRESSOR AND ROTOR DESIGN 

Figure 1 shows the high-pressure compressor on which the swirl-brakes are implemented. The in-line compressor is 

pre-engineered, barrel-type, two-flange, with dry-gas seals or optional oil-seals. The Maximum Allowable Working 

Pressure of the compressor family ranges from 2250 to 4500 psia (155 to 300 bar). Several hundred units of this model 

are successfully operating in a world-wide fleet. 
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Figure 1. Compressor model at a site installation and driven by a gas turbine engine 

Figure 2 depicts a typical modular-rotor, built-up with stub-shafts and impellers held together with a tie-bolt. The 

rotor chosen for the swirl-brake development is capable of accommodating up to 10-stages. Table 1 details key 

dimensions and attributes of the compressor/rotor-bearing system: 

 

 

Figure 2. Modular rotor of the compressor 

Table 1. Compressor and Rotor details  

Parameters Details 

Maximum Speed 22,300 rpm 

Slenderness ratio (Bearing span/Hub diameter) 10.5 

Bearings 5-pad tilt pad 

Bearing diameter нΦнрέ 57.1 mm 

Max Allowable Working Pressure 2250 psia 155 bar 

Impeller diameter  тΦрέ 190 mm 

 

Prior full-scale stability testing on this 10-stage compressor had revealed the excitation of resonant sub-synchronous 

vibration (RSSV) at high speed when operating pressures exceeded 1600 psi (110 bar). Although the amplitude of the RSSV 

was bounded, the excitation of the resonant frequency was still unacceptable to the OEM. Consequently, applications for 
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new sales were limited near the known stability threshold. But changes in operating conditions at a few existing 

installations of this compressor model led the end-users and the OEM to consider alternatives to improve the stability 

threshold. Many options were considered, but any significant modification to the existing pre-engineered rotor design 

was ruled out due to commercial and logistical reasons. Implementing swirl brakes was determined to be the most 

effective option.  

 

DESIGN OF THE SWIRL-BRAKE USING CFD 

The aerodynamic forces inside a centrifugal compressor stage shroud cavity can induce destabilizing rotordynamic 
cross-coupling forces.  These forces are caused by secondary leakage flows in the shroud cavity and are tied to the swirl 
within the cavity and the seals. Eliminating or minimizing the swirl leads to a significant decrease in cross-coupled force, 
thereby improving the rotordynamic stability (Sivo, 1995 and Baumann, 1999). 

In the study hereby presented, the goal was to develop a satisfactory swirl-brake design that (a) would limit the swirl 
developed in the cavity and upstream of the seal, thereby improving rotordynamic stability,  (b) have a minimal effect on 
the overall stage aerodynamic performance, and (c) be easy to implement without any major component modifications 
in the pre-engineered compressor. One key aspect of the compressor is that the shroud-seals and hub-seals are of the 
Teeth-on-Rotor (TOR) type. The labyrinth sealing teeth are machined on the impellerΩs shroud and hub locations. The 
stators are fitted with abradable seal rings on which the rotating teeth seals the secondary leakage flow (from impeller 
discharge to the suction). Figure 3 shows the seal ring (baseline) and two swirl-brake configurations. 

 

Figure 3. Schematic views of baseline, TOR seal and configurations with swirl-brakes. 

 

There is extensive literature (as referenced earlier) on swirl-brakes for Teeth-on-Stator (TOS) type seals, based on their 
wide prevalence in many compressor applications. However, not much has been reported on TOR seals with swirl-brakes 
for compressors. The swirl-brakes for TOR types are essentially seal rings with several slots milled around the 
ŎƛǊŎǳƳŦŜǊŜƴŎŜΣ ǊƛƎƘǘ ŀǘ ǘƘŜ ŜƴǘǊŀƴŎŜ ǘƻ ǘƘŜ ǎŜŀƭ όƻǊ ǘƘŜ ŦƛǊǎǘ ƭŀōȅǊƛƴǘƘ ǘƻƻǘƘύΦ ¢ƘŜ ǎƭƻǘǎ ŀŎǘ ŀǎ ŀ άǊŜǎŜǊǾƻƛǊέ to trap the 
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leakage flow, with the geometry sized to create free vortices that reduce the swirl just upstream of the first sealing tooth. 
This also impacts the swirl upstream in the shroud cavity.  

Due to the fluid flow path and the need to maintain a minimum axial distance between the edge of the seal and the 
impeller shroud to avoid rubs, it was not possible to extend the seal axial length. Hence, the swirl-brake seal design allowed 
for the loss of one or two sealing teeth, as depicted in Figure 3. This methodology provided the option to either use seal 
rings without the swirl-brakes or with the swirl-brakes, ensuring easy inter-changeability of parts. No other components 
were modified. It was anticipated that the use of swirl brakes would increase the stage leakage flow due to the loss of 
sealing teeth, so an optimization of geometry was performed between the seal rotordynamic attributes and the stage 
aerodynamic performance.  

Figure 4 shows a typical swirl-brake with key dimensions for a Teeth-on-Rotor configuration. A few different 
configurations of the swirl brakes were studied, with a varying number of slots and geometry. The key parameters 
optimized were (a) Chord length of the slot, (b) # of slots, and (c) Pitch-to-Chord ratio. All optimization was performed 
through modeling and simulation of the various configurations with the help of Computational Fluid Dynamics (CFD).  

A fully developed geometry was used to create the volume mesh, see Figures 5 and 6, for simulation, setup, run, and 
post-processing the results.  For this study, it was found that a pie slice model incorporating one swirl-brake passage and 
the corresponding cavity flow path was sufficient for simulation. The secondary leakage path mesh had roughly 372,000 
nodes and 1 million elements.  Including the impeller primary passage, the full geometry contained 750,000 nodes and 
1.5 million elements. The simulation employed the k-  turbulence model. The overall y+ from the simulations in the seal 
region was below 10. 

 

 

Nomenclature 
 
ID, OD : Labyrinth Seal diameters (inside and outside, 
respectively) 
P: Total Pitch of the swirl-slots, includes wall thickness 
W: Pitch of the swirl-slots, fluid cavity only 
C: Chord of the swirl-slots 
W/C: Pitch-to-Chord ratio 
 
 

 

Figure 4. Geometry of labyrinth seal with swirl-brakes for Teeth-on-Rotor configuration 
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Figure 5.  Shroud Cavity Flow Path with swirl-

brake, Optimized Design 
 

Figure 6. Shroud Cavity and Cavity-Teeth Mesh, 
swirl-brake Included, Optimized Design 

 
 

In prior research, Moore et al. (2002) found that having between 30 and 90 swirl-brakes would give the maximum 
cavity swirl reduction.  Based on the CFD optimization for the subject geometry, a total of 61 slots (vanes) was chosen.  
The choice of a large prime number was made to avoid any potential system resonance arising from blade passing 
frequency. 

For a tooth-on-rotor design, the axial movement of the rotor is a critical factor in swirl-brake design. It was determined 
that the swirl-brake chord length be limited to 0.14 inches (3.56 mm). This ensures that, during operation, the rotor tooth 
would never move far enough axially to detract a second labyrinth tooth from sealing, thereby dropping the stage 
efficiency.  The pitch to chord ratio is W/C=1.29, with the empty space encompassing two thirds of the circumference and 
the solid material including the rest (resulting in a 0.33 solidity ratio).  

Table 2 lists a comparison of CFD-results between the baseline seal (without swirl-brakes) and the seal with swirl-
brakes. Note the design with the swirl brake shows an increase in leakage of 10% through the cavity when compared to 

Swirl 
brake 
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the baseline design.  While a small increase, this will lead to a drop in the overall stage and system efficiency. The table 
also shows that the inclusion of the swirl-brake does not appreciably increase the axial thrust load on the balance piston 
or the system power consumption. 

 

Table 2.  Comparison of CFD simulation - Baseline (no-swirl-brakes) seal and with swirl-brake design 
 

Model 
# of 
Swirl 
Slots 

Slot 
Length 

(in) 

Inlet 
Pressure 

Pinlet  
(psi) 

Swirl 
velocity 
Ct laby 1 

(ft/s) 

Swirl 
velocity 
Ct average 
(ft/s) 

Laby1 
Leakage 

(% 
flow) 

Average 
Leakage 
(% flow) 

Axial 
Force 

Faxial (lbf) 

Power 
loss 
(hp) 

No swirl-brakes 0 N/A 100 225 223 2.18 2.19 2,791 0.34 

Swirl-brakes 61 0.14 100 -29 83 2.42 2.41 2,791 0.5 
Ct: Circumferential velocity of the fluid 
Faxial: Net Axial force on the stage (lb-f) 

Pinlet: Pressure at stage inlet (psi) 

 

Inclusion of the swirl-brake significantly reduced the average swirl velocity through the seal.  Furthermore, it 
significantly reduced the swirl velocity at the first labyrinth tooth from the baseline case, to the extent it produced a 
negative pre-swirl. The slots (or vane-to-vane space) show generation of free vortices, leading to swirl reduction, as shown 
in Figure 7 below.  

 

  

Figure 7. CFD stream-line plots showing generation of free-vortices within the swirl-brake. 

 

Figure 8 shows the change in swirl velocity ratio at a cavity as a function of normalized axial distance.  The normalized 
axial distance is taken from the cavity entrance at 0 (left of graph) and terminating at the cavity outlet at -0.99.  The 
baseline swirl ratio Ą 0.6 towards the exit plane.  However, the geometry including the swirl-brake shows a marked drop 
in cavity swirl ratio reaching a minimum of -0.06 at the region above the first labyrinth tooth.  It is of note that the swirl-

Side view Top view 

Free 

vortices 

flow 
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brake has an effect that propagates upstream of the slot entrance.  The cavity swirl increases within the labyrinth seal, 
but never reaches the baseline value. 

 

 

Figure 8.  Comparison of Cavity Swirl Reduction - Baseline vs. swirl-brake design. 

Figure 9 shows a comparison of the full shroud cavity swirl (circumferential) velocities, with and without swirl brakes. 
This shows the effectiveness of the swirl-brake particularly at the seal inlet. Table 3 lists the magnitude of the 
circumferential swirl velocities at a few key locations through the seal. Overall, the CFD simulation of the final swirl-brake 
geometry shows a significant decrease in the circumferential swirl at the seal inlet plane, thereby causing a lower average 
swirl through the seal cavities. 

 

 

 

 

 

 

 

flow 

Exit                                              Inlet 
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Table 3. Magnitude of the swirl (circumferential) velocities within labyrinth seal cavities 

Location Area-averaged Circumferential velocity, Ct (ft/s)  

 Baseline (Without Swirl-brakes) With Swirl-brakes 

Laby Inlet 234.7 33.7 

Tooth 1 224.8 -29.3 

Tooth 2 214.5 50.6 

Tooth 3 210.7 89.2 

Tooth 4 208.1 113.9 

Laby Outlet 185.7 104.2 

Average Across Seal 223.1 83.0 

 

 

 

Figure 9. Comparison of cavity swirl-ratios as predicted by CFD, baseline and with swirl-brakes. 

 

flow 
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SUB-SCALE RIG-TESTING OF THE SWIRL BRAKES 

A sub-scale testing of the swirl-brakes was performed at the facilities of one of the co-authors. The purpose of the 

testing was to determine whether a significant reduction in swirl velocity in the shroud cavity and downstream of the seal 

existed with the swirl-brake geometry and relative to the baseline design. The measurements would help to anchor the 

computational fluid dynamics (CFD) that could be used to further optimize the designs. In addition, the scaled-test results 

would help decide if full scale development testing of the swirl-brakes was warranted. 

A Single Stage Test Rig (SSTR), rig capable of up to 22,000 rpm and 200 psi, was used for this purpose. The facility 

consists of an Open-Loop, 200 hp (at 3,600 rpm) electric motor with variable speed drive, a speed-increasing gearbox and 

a high-speed spindle rotor assembly. The test impeller is mounted to the spindle rotor assembly with a precision pilot fit 

and a tie bolt. Flow rate is measured at the inlet to the SSTR using a calibrated bell-mouth Venturi, and throttling takes 

place at the discharge via a control valve. The SSTR housing is insulated to minimize heat transfer to the environment.  

Figure 10 shows the various features of the SSTR; the cross-section depicts a simple collector configuration for a 

representative performance test. The rig can accommodate various impeller and seal geometries by manufacturing the 

custom shroud side (and hub side if necessary) diffuser pieces.  

 

 

Figure 10. Single-stage Compressor test rig and the rotor-mount in the inset. 

 

Pitot tube and static pressure measurements were added immediately upstream and downstream of the shroud seal 

to determine the circumferential velocity of the flow entering and exiting the seal, see Figure 11. The stator components 

in the rig were reworked ǘƻ ŀŎŎƻƳƳƻŘŀǘŜ ǘƘƛǎ ƛƴǎǘǊǳƳŜƴǘŀǘƛƻƴΦ ! лΦлонέ ǎŜǘ ƻŦ tƛǘƻǘ ǘǳōŜǎ ǿŀǎ ǳǎŜŘ ŦƻǊ ǳǇǎǘǊŜŀƳ ǎǿƛǊƭ 
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measurement and a 3-hole cobra probe was used for downstream measurement. Circumferential speed or swirl was 

measured at 2 different radial depths and 3 circumferential locations at 120o apart, upstream and downstream of the 

test seal.  

 

 

Figure 11. Location of Instrumentation to measure swirl in the single stage test rig 

Note that the probes are extremely small, so positioning the probes repeatedly was very difficult; however, it was 

possible to achieve a depth accuracy of within approximately 4 mils of the target. This amounted to be approximately 

3% of the shroud flow path width, which should be sufficient for the purposes of the test to capture the physical 

parameters.  

Measuring swirl at the seal inlet was daunting. The instrumentation size had to be small enough to avoid impacting 

the flow through the cavity, yet rigid enough to measure reliably. Measurement was located just upstream of the seal 

inlet, as measurement right at the seal inlet is not possible.  

Test data was collected for the swirl brakes with a similar impeller at 3 shaft speeds, 16,040 rpm, 19,240, 21,875 

rpm. At each speed, the stage flow was throttled from choke to surge. At each flow, the pitot tube measurements were 

recorded for the calculation of the swirl. Measurements taken are shown in Figure 12 for both the baseline seal (left) 

and the swirl-brake design (right). Where the swirl is measured in the cavity, a 10-20% reduction in swirl velocities with 

the swirl- brakes is noticeable at the three operating speeds. Additionally, head flow characteristics were measured to 

determine the impact of the different designs on the aero performance of the compressor. 

Table 4 lists the % reduction in swirl velocity with the swirl-brakes at two different measurement planes (upstream 

and downstream), and at two probe-immersion depths upstream. The shallow location did not show much change; 

however, the deep location upstream showed a 9% swirl reduction with swirl-brakes. Albeit small, the measurement 

matched well with CFD predictions for the same location upstream of the seal inlet. It gave the confidence that further 

reduction of swirl was possible closer to seal inlet, though not measurable due to the constraints mentioned earlier. 

Also, the downstream measurement showed a 15% decrease in swirl.  
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(a) Seal with no swirl brake    (b) Seal with swirl brake 

Figure 12. Measured swirl velocities (Pitot tube) upstream of seal inlet. Left : baseline seal and Right: Seal  with swirl-

brake.  

Tip Speeds @ seal inlet = 456 ft/s (139 m/s), 16030 rpm; 548 ft/s (167 m/s), 19240 rpm; 623 ft/s (190 m/s), 21875 rpm 

V12G0 (80o) , V12U0 (260o) and V12A0 (350o) are pitot velocities measured at 3 circumferential Deep locations, 

upstream of seal inlet. V120 is the circumferentially averaged values. 
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Table 4. Scaled-rig swirl-brake test results: baseline vs. swirl-brakes 

Location % reduction in inlet swirl 

Measured CFD Predictions 

Upstream Deep (close to impeller surface) 9.0 6.2 

Upstream Shallow (close to shroud surface) -0.2 0.8 

Downstream  15.6 9.8 

 

Thus, the scaled-rig testing definitively indicated that the swirl brake designs have a major impact on swirl velocities 

relative to the baseline design. Based on this, the pace of full-scale testing was accelerated. The testing successfully 

utilized the rig to provide performance and detailed pressure, velocity measurement data for the swirl-brake designs.  

 

FULL-SCALE CLOSED LOOP TESTING 

An integral part of the swirl-brake development was extensive full-scale development testing at a closed-loop facility 
at operating conditions far beyond typical sales applications for this compressor. The closed-ƭƻƻǇ ŦŀŎƛƭƛǘȅ Ƙŀǎ мнέ (305 mm) 
piping with ANSI 900# flanges, capable of reaching up to 2250 psia (155 bar) flange rating with Nitrogen as the working 
gas.  

A six-stage rotor was selected for studying the effect of swirl-brakes. The compressor was tested multiple times, with 
and without swirl-brakes, at equivalent site conditions. While swirl-brakes were added to all six impeller shroud seals, the 
hub seals were left intact without swirl brakes. Aerodynamic performance was recorded with instrumentation and 
standards meeting the ASME PTC10 Type II requirements. Rotor radial (and axial) vibration was monitored through 
proximity probes located near the journal bearings. The excitation of the resonant sub-synchronous vibrations was 
monitored through spectral analysis of the proximity probe output and this was the primary determinant in assessing the 
stability improvement. It would have been ideal to use an external frequency-dependent excitation (like a magnetic-
exciter) on the rotor or non-intrusive techniques such as Operational Modal Analysis (OMA) to quantify the stability 
improvement, but geometric constraints ruled out their use on these tests. The OMA technique and its implementation 
in determining rotordynamic stability of a compressor rotor is shown by Baldassarre et al (2015). 

Figure 13 shows the vibration characteristics of the rotor at the rated condition in two different tests. On the left, the 
waterfall plot obtained while testing the rotor without swirl-brakes shows the excitation of the first resonance frequency 
at ~ 145 Hz. The peak-to-peak amplitude levels at the resonant condition are bound, however this would still be 
detrimental to the reliable operation of a compressor if this were to show-up at site operation. On the right of Figure 13, 
the same rotor tested with swirl-brakes on the shroud-seals of all 6 stages shows no excitation of the resonant frequency. 
These tests were repeated thrice, with the compressor and rotor disassembled and reassembled each time, to verify 
repeatability and consistency. To keep out the uncertainties from bearing tolerances when evaluating the swirl-brakes, 
the same identical bearing was used to test the rotor. In addition to the above-mentioned tests, some tests were repeated 
with a new, different bearing in order to study the sensitivity of bearing tolerances to rotor stability characteristics. 
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(a) Rotor with stage seals with no swirl brakes    (b) Rotor with seals with swirl brakes 

Figure 13. Full-scale shop testing results at rated conditions ς without Swirl-brakes (presence of sub-synchronous 

vibrations) and with Swirl-brakes (no signs of sub-synchronous vibrations). 

 

The rated condition and other conditions at which the performance of swirl-brakes were confirmed are plotted on the 
API chart for reference in Figure 14 (without swirl-brakes) and Figure 15 (with swirl-brakes). The Red indicates presence 
of resonant sub-synchronous vibrations (RSSV) and Green indicates absence of RSSV, at the corresponding operating 
conditions. As shown, sub-synchronous vibrations are always excited for the rotor without swirl-brakes, albeit at different 
levels for the various test conditions. By comparison, the rotor with swirl-brakes at identical conditions does not show any 
sub-synchronous vibrations.  

The aerodynamic performance of the compressor measured with and without swirl brakes showed a very minimal 
impact from the swirl brakes. With the swirl brakes on the shroud seals of all 6 stages, the overall compressor efficiency 
dropped less than 0.7%. This is a negligible impact on the isentropic head. 

Based on the successful outcome, the swirl-brake designs were qualified for field installation. 

 

 

 


