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The Problem Statement

• A multistage HPRT was upgraded to meet the new operating
requirement of the refinery plant in China.

• The rotordynamics analyses revealed the possible presence of 1st

torsional resonance mode for the upgraded design, which could
lead to the premature failure of the machine train.

• To resolve this, various methods were considered to tune the 1st

torsional mode away from its design operating speed range.
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The Machine Train

Pump Gearbox Motor Upgraded 
HPRT

Pump Speed: 5249 rpm
Motor/ HPRT Speed: 2980 rpm
Gearbox ratio: 1: 1.7561
Power: 1500kW

New couplings

Scope of the Upgrade 

New 
Clutch
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• Model with the 35 stations of lumped mass & elastic beam.

• Iterative Holzer method to solve the differential equations. 

• Component looseness effect was investigated in flexible model.

• Two scenarios were analyzed:

a) With clutch disengaged (HPRT is not running)

b) With clutch engaged

The Torsional Model
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• Rotor: forcing torque was constant and steady.

• Shaft: Small deformation theory applied.

• Gear: wheels & teeth were infinitely stiff. 

• Gearbox: modelled as a reduced single shaft.

• Torsional mass moment of inertia values were provided by
individual component vendors.

The Model Assumption
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The Stiff vs Flexible Model
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Torsional Analysis Result – Clutch Disengaged

• Torsional response was calculated for
critical speeds lie within the 10%
separation margin.

• Analysis indicated that the component
stresses were below endurance limit.
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Torsional Analysis Result – Clutch Engaged

• The predicted 1st critical torsional speed
was very close to the motor running
speed. Further review is required.
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Torsional Analysis Result – Clutch Engaged

1st mode (clutch engaged), Natural frequency = 2871 rpm

The highest 
change of 
angles 

Clutch is the 
weakest link
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Torsional Analysis Result – Clutch Engaged

2nd mode 3rd mode

Frequency = 3880 RPM Frequency = 7864 RPM
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Torsional Response Assumption – Clutch Engaged
• Damping factor: 0.5% of critical damping.
• Dynamic torque:

a) Impeller: 4% of static torque @ vane pass frequencies.
b) Gearbox: 1% of static transmitted torque at 1x LS shaft speed

and 0.5% of static transmitted torque at 2x LS shaft speed.
c) Couplings: 1% of static transmitted torque at 1x and 2x

running speed.
• Allowable stresses included fatigue stress concentration factor.

Sn Sus

ksi ksi

15 21.27 88

13 16.43 64.8

StationModel Station name

Flexible

Stiff

Allowable Stress

COMPLETE CLUTCH

COUPLING PRT OUT
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Torsional Response Result – Clutch Engaged

flexible model: 
safety factor = 13.0

stiff model: 
safety factor = 4.1

• Calculated stresses were within fatigue limit.

• However, a better design is needed to avoid resonant
condition in steady-state operation for high cycles load.
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Tuning Torsional Natural Frequencies – Method 1
• Increase clutch torsional stiffness will shift the frequency up.
• Changing the clutch stiffness is costly, as it does not have any

rubber elements.
• Upsizing the clutch has a long lead time constraint.

Alloy steel & 

aluminum alloy1.57

Component

4.27

Coupling clutch to HPRT 410.0 2.72

K torsion

lb.in 2
M  lb.in/rad

M oment of inertia

Coupling clutch to motor 888.5

Clutch 1604.0
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Tuning Torsional Natural Frequencies – Method 2
• Increase moment of inertia near both sides of clutch. 
• Attach a large disc (large diameter in comparison to length).
• This would reduce 1st mode frequency to 2666 rpm.
• Challenge: Very costly to accommodate the larger disc.
• Heavy overhanging mass could also affect rotor lateral stability.

Large Disc ClutchHPRT

1.57

Component

4.27

Coupling clutch to HPRT 410.0 2.72

K torsion

lb.in 2
M  lb.in/rad

M oment of inertia

Coupling clutch to motor 888.5

Clutch 1604.0
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Tuning Torsional Natural Frequencies – Method 3
• Reduce torsional stiffness of couplings at both clutch ends.
• Iterative process to find a suitable stiffness value of couplings.
• 1st torsional frequency now has > 10% separation margin.
• This solution was adopted by customer.

After

947.6

323.0

1604.0

M oment of inertia

lb.in 2

Before

Component

Before After

K torsion

M  lb.in/rad

1604.0

410.0

888.5

Clutch

Coupling clutch to HPRT

Coupling clutch to motor 2.41

1.77

1.57

4.27

2.72

1.57
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• User feedback: The modified HPRT was running well at
desired duty since August 2017.

• Challenge: Pure torsional vibration could not be detected by
the accelerometer and proximity probe.

• Field test using strain gauge telemetry system to measure the
dynamic torque at the coupling spacer was planned.

• Site validation data would be attached when available later.

Field Validation
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• Essential to perform the torsional analyses whenever there is
any change in the component of machine train.

• Changing the coupling torsional stiffness is a more effective
and commercial viable solution.

• Effect of component looseness could have significant impact
on the calculated torsional frequencies and must be included
in the analyses.

Lesson learned
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Questions?
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