

ASIA TURBOMACHINERY & PUMP SYMPOSIUM MARCH 2018 | SUNTEC SINGAPORE

Glycol-Based Lube Oil Behavior & Its Effects In Fuel Gas Compression System

Yupiter Kristiyanto Aditya Kris Harjanto Douglas J. Funk

Author Biography

- Yupiter Kristiyanto, Machinery Engineer, MSc, 9 years experience in Rotating Equipment, ExxonMobil Indonesia Affiliate
- Aditya Kris Harjanto, Facilities Engineer, BSc, 4 years experience in Process Engineering, ExxonMobil Indonesia Affiliate
- Douglas J Funk, Mechanical Maintenance Specialist, 30+ years experience in Rotating Equipment Maintenance, ExxonMobil Indonesia Affiliate

Introduction

- Oil-flooded screw compressors (2 units x 100% duty) deliver fuel gas from AGRU Absorber at saturated condition to GTG to sustain oil production facilities @ ~33 MW power demand
- Each Fuel Gas Compressor (FGC) is rated for 0.788 Msm³/day with max 100 ppm H2S

FGC Lube Oil Schematic Diagram

Lube Oil System consists of:

2 x 100% Vertical Gear Pumps

- Capacity: 110 m³/hr
- Ps: 3000 kPag, Pd: 3600 kPag
- Ts: 90degC, Td: 100degC

Lube Oil Cooler (Air-Cooled Fan)

with Temperature Control Valve

Lube oil is Polyalkylene Glycol (ISO

VG 68) with hygroscopic behavior

Background

- Fuel gas compressor experienced considerable downtime resulting in costly diesel fuel consumption & additional flaring
- The repetitive downtime events were due to
 - lube oil pump failures
 - low oil level events in primary separator
- The downtime events also relate to high maintenance costs
 - Frequent lube oil repairs (3 months MTBF)
 - Lube oil refills (<6 months interval)

Findings

□ Repetitive Failures of Vertical Mounted Gear Pump

Worn Out Screw

Overheat Casing

Broken Shaft

Findings

- Journal Shaft Deposit
 - "Sludge"-like deposit
 - Easy to remove
 - No scratch
 - Deposit layer location confirmed at high temperature location

Observations

- Water Content
 - Normal Operations: 8% 10%
 - After start-up: 1.2% to 6% in 12 hours
- □ Viscosity Drop from 62 cSt to 44 cSt
- Saturation limit was approximately 10% (emulsion was visually observed)
 - Saturation limit not publicly
 available

New Oil Oil 8% water

Further Analysis

Conclusions

- Water condenses along an uninsulated 60m pipe from FG scrubber to FGC suction mostly during start-up and/or raining condition
- PAG lube absorbs the water resulting in viscosity drop leading to poor lubrication (severe friction & overheat LO Pump)
 - Less viscous lube is easily carried over to GTG fuel lines

Carried-over Lube @ GTG Fuel Gas Filter

Short Term Solutions (Actions Already Taken)

- 1. Performed vacuum dehydration to remove water from the lube
 - Vacuum -0.7barg @65degC, water removed from 5.8% to 1.6%
 - Recovered viscosity from 48 cSt to 60 cSt
 - $\checkmark\,$ Avoid expensive spent on LO refill
- 2. Set Lube Oil Cooler Outlet Temperature at least 5degC above Fuel Gas Inlet Temperature to avoid further water condensation when comingle with the lube at compressor suction
 - ✓ Improved LO Pump MTBF

Long Term Solutions

- Install Electrical Heat Tracing from FG scrubber to Compressor suction to avoid water condensation
- Use VG 100 for On-line Top-up (Compatible Mix with VG68)
 - Regain Viscosity to maintain rotor hydrodynamic force
- Upgrade LO Pump to Twin Screw with Timing Gear
 - Allow wider range of viscosity variation
 - Upgrade to corrosion-resistant material due to H2S & water presence

Lessons Learned

Design Optimization:

- Potential water condensation during unit start-up needs to be fully recognized through dynamic process simulation.
- Whenever practicable, gas temperature at compressor inlet shall have margin over its dew point or be fully dehydrated
- Electrical heat tracing essential necessity evaluation
- Lube selection to consider water condensation for compressors requiring internal lubrication (oil-flooded screw, sliding vane compressor, and lubricated reciprocating compressor)

Lessons Learned

Operational Optimization

- Ensure injected oil temperature always 5degC above inlet gas temperature at compressor suction
- FGC in fully depressurized mode whenever stand-by (i.e. Blowdown with every shutdown/ trip/ stop) to avoid water condensation by the dormant gas stream

