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ABSTRACT 

 
 

Analytical Modeling of Contaminant Transport and  

Horizontal Well Hydraulics. (August 2002) 

Eungyu Park, B.S., Yonsei University, Korea; 

M.S., Yonsei University, Korea 

Chair of Advisory Committee: Dr. Hongbin Zhan 

 

This dissertation is composed of three parts of major contributions. 

In Chapter II, we discuss analytical study of contaminant transport from a finite 

source in a finite-thickness aquifer. This chapter provides analytical solutions of 

contaminant transport from one-, two-, and three- dimensional finite sources in a finite-

thickness aquifer using Green's function method.  A library of unpublished analytical 

solutions with different finite source geometry is provided.  A graphically integrated 

software CTINT is developed to calculate the temporal integrations in the analytical 

solutions and obtain the final solutions of concentration.  

In Chapter III, we obtained solutions of groundwater flow to a finite-diameter 

horizontal well including wellbore storage and skin effect in a three-dimensionally 

anisotropic leaky aquifer.  These solutions improve previous line source solutions by 

considering realistic well geometry and offer better description of drawdown near the 

horizontal well. These solutions are derived on the basis of the separation of the source 

and the geometric functions.  The graphically integrated computer program FINHOW is 

written to generate type curves of groundwater flow to a finite-diameter horizontal well. 
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The influence of the finite-diameter of the well, the wellbore storage, the skin effect, the 

leakage parameter, and the aquifer anisotropy is thoroughly analyzed.  

In Chapter IV, a general theory of groundwater flow to a fractured or non-fractured 

aquifer considering wellbore storage and skin effect is provided.  Solutions for both 

leaky confined and water table aquifers are provided.  The fracture model used in this 

study is the standard double-porosity model.  The storage of the aquitard (the leaky 

confining layer) is included in the formula.  A program denoted FINHOW2 is written to 

facilitate the calculation.  Sensitivity of the solution to the confined versus unconfined 

conditions, fractured versus non-fractured conditions, and wellbore storage and skin 

effects is analyzed.   
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CHAPTER I 

GENERAL INTRODUCTION 

Through all over the world, groundwater is one of most precious resources for 

human being to sustain its life.  Unfortunately, these invaluable resources are abused by 

human activity in both quality and quantity.  There are uncountable numbers of 

contaminants induced by agriculture, industry, and daily human activity.  Also with the 

growth of human society, we seek for the larger quantity of groundwater which results in 

depletion of the groundwater from its aquifer. 

It seems that the development and industrialization, and healthy groundwater 

environments are generally incompatible.  The heavy metals, organic solvents, and fuels 

used by industry; the agricultural chemicals, hormone preparations and artificial 

fertilizers by agriculture; waste materials and acid drainages from mining industry; and 

municipal landfills, urban runoff and leaking underground storage tanks from 

urbanization are all typical examples of potential sources of groundwater contaminations.  

Groundwater resources are also quantitatively suffered by excessive water use with the 

growth of human society.  These cause many problems over the many developed 

countries.  Those typical problems are salt water intrusions in coastal area, land 

subsidence by losing effective stress, enhancement of aquifer contamination, and 

depletion or uneven distributions of groundwater. 

___________________________________ 

This chapter of the dissertation follows the style and format of the Journal of Hydrology. 
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Hydrogeologists struggle to resolve these many problems by taking advantage of 

current advanced technology.  In this endeavors, the most fundamental starting point is 

to understand the groundwater flow and the transport phenomenon, and develop those 

theories applicable to current problems and remedial techniques.  Currently, numerous 

field methods have been being developed and tested and will be developed in the near 

future.   

The effort to monitor the contaminant transport in the subsurface is one of our 

major practical interests.  Through the precise prediction of the movement of 

contaminant plume, we can save a lot of effort and time to guide and collect data and 

monitor water quality (Wexler, 1992).  In most cases, the contaminant sources in the 

subsurface have their particular geometries and dimensions.  For instance, the problems 

caused by non-aqueous phase liquids (NAPLs) are currently hot issue in environmental 

science and engineering because of their toxicity.  They have typically very low 

solubility while their toxicity is extremely high.  In many cases, the maximum 

contaminated levels (MCL) of the NAPLs are several orders higher than its solubility.  

Therefore, once they are intruded into groundwater system, they can serve as long-term 

contaminant source with the highest virulence.  The NAPLs can be classified into two 

groups by their density.  LNAPLs are the NAPLs which have lighter density than water 

and DNAPLs are heavier than water.  Once the LNAPLs are intruded into groundwater 

system, they usually form pools right on top of the water table.  On the other hand, 

DNAPLs usually form pools on the bottom of the aquifers or on top of the impermeable 
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layers.  Because of these characteristics, they usually have the particular geometries and 

three dimensional configurations.   

When applying field remedial techniques to the fields problems, the efficiency and 

effectiveness of the techniques are the main concern.  Most frequently, the techniques 

are associated with wells which are the passages of the materials to and from the 

subsurface. Typical examples of using wells include pump and treat methods, soil vapor 

extraction (SVE), free product recovery, enhanced bioremediation, air sparging, and soil 

flushing.  Therefore, it is not exaggerated to say that the efficiency of those passageways 

to subsurface, wells, are the primary factors for deciding the total system efficiency.  

Horizontal wells are proved in terms of efficiency by having good coupling with the 

aquifer systems due to its horizontal geometries.  They are used in many places for the 

environmental remediation and many supporting data of their superiority to vertical 

wells have been reported in most aquifer configurations.  

In this study, we like to investigate the two major hydrogeologic problems, i.e. 

contaminant transport from finite sources and well hydraulics of finite diameter 

horizontal wells, by considering more realistic aquifer and source conditions.  In the 

study, we use as less assumption on the source geometries and boundary conditions as 

possible to meet this purpose.  In Chapter II, we provide analytical solutions and 

computational code of contaminant transport from one-, two-, and three- dimensional 

finite sources in a finite-thickness aquifer that are previously not published.   

A library of analytical solutions is provided with corresponding source geometries.  

In the computational code, we include this library for various comparisons among the 
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geometries and graphical user interface (GUI) is integrated to facilitate the input and the 

output of these calculations.  The sensitivities of the line source solutions to source 

geometry, dispersion coefficients, and distance to the source are tested. 

In Chapters III and IV, we provide a general theory of groundwater flow to a 

fractured or non-fractured, aquifer considering wellbore storage and skin effect.  The 

analytical solutions for confined, leaky confined, and water table aquifers are provided.  

The developed analytical solutions are compared with previous theories.  The sensitivity 

analyses are performed over wide range of hydrogeologic parameters and well 

parameters. 

This research provides better tools for understanding the contaminant transport 

from a finite source in a finite thickness aquifer and well hydraulics of the horizontal 

wells by considering finite diameter of the horizontal wellbores. 
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CHAPTER II 

ANALYTICAL SOLUTIONS OF CONTAMINANT TRANSPORT  

FROM FINITE ONE-, TWO-, AND THREE- DIMENSIONAL SOURCES IN A 

FINITE-THICKNESS AQUIFER* 

Analytical study of contaminant transport from a finite source in a finite-thickness 

aquifer is most useful in hydrological and environmental sciences and engineering, but 

rarely investigated in previous studies. This paper provides analytical solutions of 

contaminant transport from one-, two-, and three- dimensional finite sources in a finite-

thickness aquifer using Green's function method.  A library of unpublished analytical 

solutions with different finite source geometry is provided.  A graphically integrated 

MATLAB script is developed to calculate the temporal integrations in the analytical 

solutions and obtain the final solutions of concentration. The analytical solutions are 

examined by reproducing the solutions of some special cases discussed in previous 

studies.  The sensitivities of the line source solutions to source geometry, dispersion 

coefficients, and distance to the source are tested. 

___________________________________ 

*Reprinted with permission from “Analytical Solutions of Contaminant Transport from 

Finite One-, Two-, and Three- Dimensional Sources in A Finite-Thickness Aquifer” by 

Eungyu Park and Hongbin Zhan, 2001, Journal of Contaminant Hydrology, 53(1-2), p. 

41-61, Copyright 2001 by the Elsevier Science B.V. 
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The contaminant concentration in the near field is found to be sensitive to the source 

geometry and anisotropy of the dispersion coefficients.  The contaminant concentration 

in the far field is found to be much less sensitive to the source geometry. The physical 

insights of the analytical solutions are interpreted. 

2.1 Introduction 

Contaminant transport in the subsurface has been one of the most important 

research topics in the hydrological sciences and engineering in the last four decades 

(Bear, 1972; Gelhar, 1993; Domenico and Schwartz, 1998; Fetter, 1999). Although 

many transport problems must be solved numerically, analytical solutions are still 

pursued by many scientists because they can provide better physical insights into 

problems.  Analytical solutions are usually derived from the basic physical principles 

and free from numerical dispersions and other truncation errors that often occurred in 

numerical simulations (Zheng and Bennett, 1995).  With help of analytical solutions to 

estimate movements of contaminant plumes, we can save a lot of effort to guide and 

collect data and monitor water quality despite complexities of hydrogeologic systems 

(Wexler, 1992).  Using analytical solutions, we can better understand the mechanism of 

contaminant transport, predict the movement of contaminant plumes, measure the field 

parameters related to solute transport, and verify the results of numerical modeling. 

The solutions of one-, two-, and three- dimensional deterministic advection-

dispersion equations have been investigated in numerous publications before and are still 

actively studied (Ogata and Banks, 1961; Bear, 1972; Sauty, 1980; Van Genuchten, 

1981; Domenico and Robbins, 1984; Domenico, 1987; Batu, 1993; Leij et al., 1993; 
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Domenico and Schwartz, 1998; Fetter, 1999; Leij et al., 2000).  Although most of the 

source bodies of contaminants are usually three-dimensional and finite, the advection-

dispersion equation is commonly solved either with an infinitely large source (Ogata and 

Banks, 1961) or with a one- or two- dimensional source (Domenico and Robbins, 1984, 

Domenico, 1987; Batu, 1993; Leij et al., 1993; Leij et al, 2000). A three-dimensional 

source is rarely considered.  Beside that, many of the previous solutions assume that 

either the sources are fully penetrated through the entire thickness of the aquifer (Ogata 

and Banks, 1961) or the aquifers are infinite or semi-infinite along the vertical axis (Leij 

et al., 2000). In reality, aquifers are finite vertically. 

Previous works closely related to our study were carried out by Domenico and 

Robbins (1984), Domenico (1987), Batu (1989, 1993), and Leij et al. (2000). Domenico 

and Robbins (1984), and Domenico (1987) considered finite sources as boundary 

conditions when solving the advection-dispersion equation. They did not include the 

effect from the upper and lower boundaries of an aquifer.  Batu (1989, 1993) provided a 

two-dimensional analytical solute transport model in a bounded aquifer by using the 

same source dimension as the aquifer thickness along the z-axis and included the 

contaminant source as a boundary condition. The general solutions were derived there 

through the help of Fourier analysis and Laplace transform (Batu, 1989, 1993).  Leij et 

al. (2000) also used the Green’s function method by including the contaminant source as 

a boundary condition.  In their study, a vertically semi-infinite aquifer and a vertically 

infinitely thin source are assumed.  In this study, we assume a three-dimensionally finite 
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source within a vertically finite-thickness aquifer, and include the source as a source 

term in the advection-dispersion equation. 

The first goal of this paper is using Green’s function method to solve the general 

form of contaminant transport from three-dimensionally finite, instantaneous or 

continuous sources in a finite-thickness aquifer. Using the same methodology, we derive 

the solutions for the point, line, and area sources in a finite-thickness aquifer.  The 

Green’s function method is a convenient way to solve three-dimensional flow and 

transport problems that include source terms.  With a parallelepiped shape of source, the 

three-dimensional Green’s function can be obtained from three separate one-dimensional 

Green’s functions.  Such one-dimensional solutions have been provided in previous 

works (Gringarten and Ramey, 1973).   

The second objective of this paper is, using the established general methodology, 

to derive various solutions for point, line, and area sources.  By generating concentration 

curves using the derived solutions, we can observe how each of the different source 

geometries and aquifer conditions influence the concentration distribution. A library of 

unpublished analytical solutions will be provided. 

2.2 Conceptual and Mathematical Models 

The general geometry of the problem is shown in Figure 2.1.  The origin of the 

coordinate system is at the upper boundary. The positive z-axis is downward. The 

aquifer is assumed infinite in the x- and y- directions but finite in the z-direction with a 

thickness of d.  The aquifer is horizontal without curvature. A no-flow boundary exists at 
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the bottom of the aquifer (z=d).  A no-flow or a water table boundary exists at the top of 

the aquifer. If a water table boundary exists, we assume that the slope of the water table 

is so small that we can assume the water table to be parallel to the lower boundary. The 

shape of the contaminant source is a parallelepiped body with ],0[ 0xx∈ , ],[ 00 yyy −∈ , 

and ],[ 10 zzz∈ .  Steady-state groundwater flow is along the x-axis. The three-dimensional 

deterministic advection-dispersion equation, which describes equilibrium solute 

transport within a vertically finite aquifer from a finite source, is written as follows: 

),,,(2

2

2

2

2

2
tzyxqC

x
Cv

z
CD

y
CD

x
CD

t
C

vzyx =+
∂
∂
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∂
∂

−
∂
∂

−
∂
∂

−
∂
∂ λ     (2.1) 

with boundary conditions: 

0),,,( =±∞ tzyC ,   ∞<<−∞ y , dz <<0 , and 0>t    (2.2)  

0),,,( =±∞ tzxC ,   ∞<<−∞ x , dz <<0 , and 0>t    (2.3)  

0),,,(),0,,( =
∂
∂

=
∂
∂ tdyxC

z
tyxC

z
,  0t >       (2.4) 

and initial condition: 

0)0,,,( =zyxC ,    0 z d< <      (2.5) 
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Figure 2.1. A schematic diagram of a three-dimensional source body within parallel non-

penetrable boundaries for the solute.  The upper boundary is a no-flow boundary or a 

water table boundary. The lower boundary is a no-flow boundary. 
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where C is the solute concentration (kg/m3); t is time (day); Dx, Dy, and Dz are the 

principal dispersion coefficients in the x-, y-, and z- directions, respectively (m2/day); v 

is the ground water flow velocity(m/day); λ  is the first order reaction or decay constant 

(1/day); qv(x, y, z, t) is the volumetric source strength function (SSF) (kg/(m3day)) (qv>0 

means producing contaminant mass in the source volume, qv<0 means removing 

contaminant mass from the source volume); and d is the thickness of the saturated 

aquifer (m). 

For a three dimensionally finite source, qv is defined as the mass removed or added 

to a unit aqueous volume at a unit time interval.  qv is assumed to have the characteristics 

of Heaviside function (see Figure 2.1): 

0 ( )
( , , , )

0v

q f t
q x y z t 

= 


 , 0 0 0 0 10 , - , , and 0
otherwise

x x y y y z z z t< < < < < < >  (2.6) 

where q0 is a constant and f(t) is a function of time. 

The concentrations at laterally infinite distances are assumed zero. Along the z-

direction, both the upper and lower boundaries are assumed non-penetrable for the solute.  

By transforming x to vtxx −= , C to CtC )exp(λ= , qv to vv qtq )exp(λ= and doing the 

following dimensionless transformations: 

 
x

z
D D

D
d
xx = , 

y

z
D D

D
d
yy = ,

d
zzD = , t

d
Dt z

D 2= , C
dq

DC z
D 2

0
= ,

0q
qq v

vD = ,
zx

D DD
vdv =  (2.7)  

above Eqs. (2.1)-(2.5)  become  
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2 2 2

2 2 2

inside the source
0 outside the source

D D D D vD

DD D D

qC C C C
t x y z

∂ ∂ ∂ ∂
− − − = ∂ ∂ ∂ ∂ 

    (2.8) 

0),,,( =±∞ DDDD tzyC ,   ∞<<−∞ Dy , 10 << Dz      (2.9) 

0),,,( =±∞ DDDD tzxC ,   ∞<<−∞ Dx , 10 << Dz     (2.10) 

0),1,,(),0,,( =
∂
∂

=
∂
∂

DDDD
D

DDDD
D

tyxC
z

tyxC
z

,      (2.11) 

0)0,,,( =DDDD zyxC ,  0 1Dz< <       (2.12) 

2.3 Solutions Derived Using Green’s Function Method 

2.3.1 Three-dimensional solutions 

Above mathematical model can be solved using Green’s function method.  Green’s 

function in this problem is defined as the concentration at ),,,( tzyx  due to an 

instantaneous point source of strength unity generated at the point ),,,( τzyx ′′′ , the aquifer 

being initially kept at zero concentration and boundary surface being kept at zero 

concentration (Gringarten and Ramey, 1973). This method has been used in fewer 

previous studies of contaminant transport (Yeh, 1981; Leij, 2000). Detailed description 

of the Green’s function method can be found from Carslaw and Jaeger (1959), 

Gringarten and Ramey (1973); and Arfken and Weber (1995). 

Recently, Leij et al. (2000) used the Green’s function method to solve the transport 

equation with an infinitesimally thick source in a semi-infinite space along the z-

direction. In their study, the contaminant sources are included as boundary conditions.  
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Thus, their solutions are not suitable to handle the sources inside the studied domain. In 

this study, we consider various shapes of sources inside the studied domain. 

The Green’s function of this problem can be obtained by solving the following 

differential equation with initial and boundary conditions (2.9)-(2.12). 

)()()()(2

2

2

2

2

2

DDDDDDDD
DDDD

ttzzyyxx
t
G

z
G

y
G

x
G ′−′−′−′−=

∂
∂

−
∂

∂
+

∂

∂
+

∂

∂ δδδδ    (2.13) 

The three-dimensional Green’s function can be expressed as the product of three 

one-dimensional Green’s functions. The one-dimensional Green’s function in an infinite 

aquifer is (Carslaw and Jaeger, 1959): 









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−=′

D

DD

D
DDD t

jj
t

tjjG
4

)(exp
2

1),,(
2

π
, zoryxj  ,=      (2.14) 

where, Dj′  and Dj  denote the coordinates of the source point and measured point, 

respectively. 

The Green’s function method is commonly applied using the source function (SF), 

which is defined as the integration of the Green’s function over the volume or area or 

length of the source (Carslaw and Jaeger, 1959; Gringarten and Ramey, 1973).  Using 

the Green’s function method, the concentration in Eq. (2.8) can be written as follows 

(Carslaw and Jaeger, 1959; Gringarten and Ramey, 1973): 

∫∫ ∫ −=Ω′′′−=
Ω

DD t

DDDDDDDD

t

DDDDDDDDDDDDDDDD dtzyxSqddzyxtzyxGqtzyxC
00

),,,()(),,;,,,()(),,,( ττττττ  

           (2.15) 
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whereΩ is the source domain, G is the Green’s function, and S is the source function.  

The physical meaning of Eq. (2.15) deserves discussion. This equation shows that 

the three-dimensional Green’s function is the solution at point ( Dx , yD, zD, tD) with a unit 

strength, instantaneous, point source at ( Dx ′ , y′D, z′D,τD); the three-dimensional source 

function is the solution at ( Dx , yD, zD, tD) with a unit strength, instantaneous, volume 

source at time τD. The continuous source solution is the temporal integration of the 

instantaneous source solutions. Eq. (2.15) also shows that the continuous source solution 

is simply the temporal convolution of the source strength function Dq and the source 

function S.  Therefore the resultant dimensionless concentration of DC  can be thought as 

the summation of the product of the effect of pulse source, DDdq τ , and the temporal 

difference kernel, ),,,( DDDDD tzyxS τ− , that is related to the system of hydrogeologic 

setting. 

Applying Neumann’s product rule, the three-dimensional source function is 

expressed as the product of three one-dimensional source functions: 

),(),(),(),,,( DDDDDDDDDDDDDD tzStyStxStzyxS ττττ −−−=−     (2.16) 

Through the z-axis, the one-dimensional source function, ),( DDD tzS τ− , is represented as 

an integration of the one-dimensional Green’s function, ),,( DDDD tzzG τ−′ , from Dz0  to 

Dz1 , where  Dz0  and Dz1  are the dimensionless source dimensions in the z direction, 

defined in Eq. (2.7). Along the vertical direction, there are two boundaries that 

contaminant cannot penetrate through.  To solve the boundary value problem, the 
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method of image is applied (Bear, 1972).  The method of image uses infinite numbers of 

image sources along the z-axis to replace the upper and lower boundaries (Zhan, 1999). 

The source function along the z-axis is a summation of the source function of the 

original source and the source functions of all the image sources. The resulting source 

function in the z-axis is given by Eq. (2.17) (Carslaw and Jaeger, 1959, p. 275). 
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Through the y-axis, the source function is an integration of the corresponding one-

dimensional Green’s function from Dy0−  to Dy0  along the y-axis (Gringarten and Ramey, 

1973): 
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where Dy0  is the dimensionless y0, defined in Eq. (2.7).  

The source function along the x-axis is derived as follows. The source along the Dx -axis 

is between -vD Dτ and x0D -vD Dτ  in the coordinate system ( Dx , yD, zD) at time Dτ .  Notice 

that the source function S( Dx , tD- Dτ ) is referred to an instantaneous source at time Dτ  and 

it is the spatial integration of the corresponding Green’s function at that time Dτ . Thus 

when calculating S( Dx , tD- Dτ ), Dτ  is treated as a fixed value.  Therefore, S( Dx , tD- Dτ ) is 

(Gringarten and Ramey, 1973): 
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The ultimate solution of our problem is given by the integration of product of Eqs. 

(2.17)-(2.19). 
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Changing the integration parameter from Dτ  to DDD t ττ −=′  in Eq. (2.20) and finishing the 

spatial integration first, we have 
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If expressed in a dimensional format, Eq. (2.21) becomes  
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Eqs. (2.21) and (2.22) are the dimensionless and dimensional solutions of contaminant 

transport in a finite-thickness aquifer with a three-dimensional finite source. 

If an instantaneous source exists, the SSF, )()( 0 tCtqv δ= , where 0C  is the source 

concentration at time t , and )(tδ  is the Dirac Delta function. Therefore, the instantaneous 
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source solution is expressed by the same equation as Eq. (2.22) without doing the 

integration and vq  is replaced by C0.  If the source is eliminated at a certain time t′ , we 

can get the solution by changing the lower limit of the integration from 0 to tt ′−  in Eq. 

(2.22). 

The following discussion explains how to determine vq  and source concentration 

C0 at some hypothetical cases. If doing a tracer test with a continuously adding tracer, vq  

is the amount of mass added to the source zone per unit volume of pore water per unit 

time. If doing a tracer test with an instantaneous tracer, C0 is the mass of tracer added to 

the source zone per unit volume of pore water per unit time.  If free phase contaminants 

such as LNAPLs and DNAPLs exist in the aquifer, then dissolved free phase 

contaminants become the sources of aqueous phase contamination.  The dissolution 

process cannot be easily handled by solution (2.22) because of the difficulty of 

accurately determining the source strength function.  However, that process can be 

handled by Leij et al.’s solution (Leij, 2000) if treating the source as a boundary 

condition rather than a source term inside the studied domain.  

2.3.2 One- and two- dimensional solutions 

Using Eq. (2.22) as a base, a library of analytical solutions for different source 

types are derived and shown in Table 2.1.  The source types in Table 2.1 include a point 

source (Case A, Figure 2.2a); three line sources (Cases B-D, Figures 2b-2d); and two 

area sources (Cases E-F, Figures 2e-2f). 
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Table 2.1. Solutions of several general types of sources 

Solution of given geometry Source Type
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Case A  

 

Point source 

(Fig. 2.2a) 
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Case B  

 

Line source 

(Fig. 2.2b) 
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Case C  

 

Line source 

(Fig. 2.2c) 
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Case D  

 

Line source 

(Fig. 2.2d) 
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Case E  

 

Area source 

(Fig. 2.2e) 
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Case F  

 

Area source 

(Fig. 2.2f) 
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Figure 2.2. Schematic diagrams of various source shapes within two parallel non-

penetrable boundaries for the solute. (a) A point source;  (b) a horizontal line source 

parallel to the regional flow; (c) a horizontal line source perpendicular to the regional 

flow; (d) a vertical line source perpendicular to the regional flow; (e) an area source 

perpendicular to the regional flow; and (f) an area source parallel to the upper and lower 

boundaries. 
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The SSF for a point case, denoted as qp, is defined as the produced or removed 

mass per unit time at the point [M/T]; the SSF for a line source, denoted as ql, is defined 

as the produced or removed mass per unit length per unit time [M/(LT)]; and the SSF for 

an area source, denoted as qa, is defined as the produced or removed mass per unit area 

per unit time [M/(L2T)]. 

The point source in Figure 2.2a is located at (0, 0, 0z ).  The sources in Figures 2b, 

2c, and 2d are line sources with infinitesimal radius.  The source in Figure 2.2b spans 

along the x-direction, from (0, 0, z0) to (x0, 0, z0), parallel to the groundwater flow.  The 

source in Figure 2.2c spans along the y-direction, from (0, -y0, z0) to (0, y0, z0), normal to 

the groundwater flow.   The source in Figure 2.2d spans along the z-direction, from (0, 0, 

z0) to (0, 0, z1), normal to the groundwater flow.  The sources in Figures 2e and 2f are 

rectangular area sources.  The source in Figure 2.2e is on the yz-plane with infinitesimal 

thickness along the x-direction; it is from 0y−  to 0y  along the y- direction; and from z0 to 

z1 along the z-direction. The source in Figure 2.2f is located on the xy-plane with a 

distance z0 below the upper boundary; it is from 0y−  to 0y  along the y-direction; and 

from 0 to x0 along the x-direction.  

Eq. (2.22) can be simplified in certain special cases.  For instances, if the source 

dimension in the vertical direction is the same as the aquifer thickness, the solution 

becomes independent of the vertical coordinate. If the source dimension in the y 

direction is infinite, then the solution is independent of the y coordinate.  Through these 

manipulations, the general solution (2.22) will converge to some typical solutions 
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derived before by other investigators (Morgenau and Murphy, 1956; Ogata and Banks, 

1961; Leij et al., 2000).  Time-dependent source strength function can be applied to our 

solution to simulate the loading history of the contaminant sources. Some typical cases 

are discussed below and their results are compared with previous solutions. 

Case 1 (a continuous area source located at the upper boundary in a semi-infinite 

aquifer).  In this special case, the continuous source has an infinitesimal thickness along 

the z-direction; an extension from zero to 0x  along the x-direction; and an extension 

from 0y−  to 0y  along the y-direction.  The source is located at the upper boundary. The 

lower impermeable boundary is assumed to be far from the source thus its influence 

upon the transport is negligible. Therefore, the source function along the z-direction 

becomes: 
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If including the first-order decay, the concentration then becomes 
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Eq. (2.24) is identical to the equation of the second type source solution given by Leij et 

al. (2000, p.166, Eq. (24)) but )( τ−tq  is replaced by the mass flux,
z
CDz ∂
∂  at z=0, given 
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by Fick’s law, in their equation. Notice that the y- and z- axes used in Leij et al. (2000, 

Figure 2.1 there) are equivalent to the z- and y- axes in our coordinate system, 

respectively (Figure 2.1). 

Case 2 (a fully penetrated instantaneous source).  If we extend the source length 

along the z-axis to the aquifer thickness and exclude the first-order decay and sorption, 
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For a problem with an instantaneous source, )()( 0 tCtqv δ= .  Eq. (2.22) becomes the 

following Eq. (2.26). 
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Eq. (2.26) agrees with the two-dimensional solution derived by Morgenau and Murphy 

(1956).  

Case 3 (an instantaneous semi-infinite source).  For a problem with an 

instantaneous source, if we extend the source length along the z-axis to the aquifer 

thickness, the source length along the y-axis to infinity, the source length along the x-

axis from zero to negative infinity, and exclude the first order-decay and sorption, we 

can reproduce the solution derived by Ogata and Banks (1961). In this case 
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Therefore Eq. (2.22) becomes Eq. (2.29), which is the well-known Ogata and Banks’ 

solution (Ogata and Banks, 1961; Domenico and Schwartz, 1998). 
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where C0 is the concentration of the source. 

2.3.3 Numerical calculation of the concentration 

The analytical solutions shown in above Eq. (2.22) and in Table 2.1 include the 

temporal integrations. A numerical integration program using the Gaussian Quadrature 

method (Abramowitz and Stegun, 1972) is written in a MATLAB M-file (MathWorks, 

2000). A visual graphical interface is built in the program so that input and output 

handling becomes straightforward. This program has the following characteristics. 

1. It can calculate concentration at any given time for any given type of sources 

presented in Figures 1 and 2. 

2. It can calculate concentration for both continuous and instantaneous sources 

including the first-order decay. 

3. It can automatically calculate the abscissas and weights used in the Gaussian 

Quadrature to achieve the desired accuracy of integration. 

The program and its user’s manual are available from the author’s website 

http://geoweb.tamu.edu/Faculty/Zhan/Research.html.  
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2.4 Characteristics and Applications of the Solutions 

2.4.1 Characteristics and applications of the three-dimensional solution 

The results of this study have many applications. For instance, Eq. (2.22) can be 

directly applied to sources located within or on the boundaries. Typical cases of this kind 

could be a smear zone of a chemical spill, formed by a changing water table, or a leaking 

landfill. The solutions for the line sources can be applied to wells, abandoned mines, 

utility pipes, ditches, etc.   

Figure 2.3 shows the results of a contaminant plume caused by a source similar to a 

smear zone of a continuous chemical spill, calculated from eq. (2.22) using the 

numerical program described above.  Two cases are presented here for comparison. 

Figures 3a-3b are the results in a finite-thickness aquifer in which the lower boundary is 

at z=d, Figures 2.3c-2.3d are the results in a semi-infinite aquifer in which the lower 

boundary is at ∞=z . As expected, the plume spreads out with time and the plume 

movement depends on the regional flow velocity. The degree of spreading depends on 

the dispersion coefficients of each direction.  Because the source is closer to the upper 

boundary, the expansion of the plume along the +z direction is prohibited.  The iso-

concentration profiles in Figure 2.3b are perpendicular to the upper and lower 

boundaries, reflecting the influence of impermeable conditions at z=0 and z=d.  The iso-

concentration profiles in Figure 2.3d are semi-elliptic shapes, reflecting the impermeable 

condition at z=0 and an infinitely far lower boundary.   
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Domenico and Schwartz (1998, p. 379) also discussed the influence of a finite aquifer 

thickness upon the evolution of a plume. They gave an order-of-magnitude estimation of 

the distance at which the plume will “touch” the lower boundary. The Eq. (2.22) in this 

paper is a rigorous solution including the influence of the upper and lower boundaries 

upon the concentration. 

2.4.2 Effects of source geometry, dispersion coefficients, and distance from the source 

Figures 4 and 5 show the influence of source geometry and dispersion coefficients on the 

concentration distribution. Figure 2.6 shows the influence of distance from the source on 

the concentration distribution. Three line sources are included in Figures 2.4-2.6.   

The following parameters are used in Figures 2.4-2.6. The source mass per unit length is 

0.09 g/m for the instantaneous line source in Figure 2.4. The source strength 

function lq is 0.09 (gm-1d-1) for the continuous line source in Figure 2.5. The line source 

along the x–axis is from (0, 0, 8 m) to (8 m, 0, 8 m); the line source along the y-axis is 

from (0, -4 m, 8 m) to (0, 4 m, 8 m); and the line source along the z-axis is from (0, 0, 0) 

to (0, 0, 8 m). 
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Figure 2.3. Iso-concentration contours on the xz plane (y=0) and yz plane (x=20 m) in 2 

years after injecting of solute. The source strength is qv=0.01 g m-3 d-1.  The source 

dimensions are x∈[0, x0], y∈[-y0, y0] ],[ 00 yyy −∈ , and z∈[0, z0] where x0=5, y0=1, and 

z0=2 m.  The aquifer parameters are d=5 m, Dx=0.1 m2d-1, Dz/Dx=0.5, and Dz/Dx=0.3. 

(a) xy-slice plane passing through the center of the source along the z-axis in a finite-

thickness aquifer; (b) yz-slice plane passing through x=20 m in a finite-thickness aquifer; 

(c) xy-slice plane passing through the center of the source along the z-axis in a semi-

infinite aquifer.; and (d) yz-slice plane passing through x=20 m in a semi-infinite aquifer. 
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Figure 2.3. Continued 
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The concentration profiles of instantaneous sources in Figure 2.4 show left skewed 

bell shapes. This is consistent with what was found before for a finite-length source in 

the x direction (Zhan, 1998). Such left skewed bell shapes are caused by the subtraction 

of two x-dependent complementary error functions in Eq. (2.22) and in Table 2.1. If  

00 →x , the skewed bell shapes will become symmetric bell shapes. 

As shown in Figures 2.4a and 2.5a, difference of the source geometry affects the 

concentration distribution significantly if dispersion coefficients are anisotropic. The 

horizontal line source along the regional flow shows the highest concentration, the 

horizontal line source normal to the regional flow shows the second highest 

concentration, and the vertical source shows the lowest concentration.  If Dx=Dy=Dz, 

Figures 4b and 5b show that the difference of the source geometry has less significant 

influence upon the concentration distributions.  
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Figure 2.4. Theoretical concentration measured at 20 m downstream from the center of 

the sources that is released instantaneously. The released mass per unit length of the 

source C0=0.09 gm-1, Dx=0.1 m2 d-1, d=10 m. (a) Comparison of concentrations from 3 

different types of sources, the ratio of Dy/Dx and Dz/Dx are 0.1 and 0.01, respectively; (b) 

comparison of concentrations from 3 different types of sources, the ratio of xy DD /  and 

Dz/Dx are all 1. 
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Figure 2.4. Continued 
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Figure 2.5. Theoretical concentration measured at 20 m downstream from the center of 

the sources that is released continuously. q=0.09 m-1 d-1, Dx=0.1 m2 d-1, and d=10 m.  

(a) Comparison of concentrations from 3 different types of sources, the ratio of xy DD /  

and Dz/Dx are 0.1 and 0.01, respectively; (b) Comparison of concentrations from 3 

different types of sources, the ratio of Dy/Dx and Dz/Dx  are all 1. 
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Figure 2.5. Continued 
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Figure 2.6. Comparison of the theoretical concentration measured at 50 m downstream 

from the center of the source with 3 different types of continuous line sources. q=0.09 

m-1d-1, Dx =0.1 m2 d-1, d=10 m, the ratio of Dy/Dx and Dz/Dx are all 1. 
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The results of Figures 2.4 and 2.5 can be explained as follows.  Let’s compare the 

line sources in Figure 2.2b and Figure 2.2c first. The contaminant dispersive flux 

is )/()/()/( zCDyCDxCD zyx ∂−∂+∂−∂+∂−∂ , if xD  is much larger than yD  and Dz 

( 01.0:1.0:1:: =zyx DDD ), )/( xCDx ∂−∂ is the leading term in the dispersive flux. The line 

sources in Figure 2.2b and Figure 2.2c are along the regional flow and perpendicular to 

the regional flow, respectively, thus )/( xC ∂−∂ near the line source in Figure 2.2b should 

be less than that in Figure 2.2c. Therefore, the dispersive flux in Figure 2.2b should be 

less than that in Figure 2.2c. Notice that the dispersive effect is the only mechanism 

causing dilution for the non-reactive contaminant transport in Figure 2.2, thus the 

dilution effect in Figure 2.2b should be less than that in Figure 2.2c at the same 

downstream point. In another word, the concentration in Figure 2.2b should be higher 

than that in Figure 2.2c, as shown in Figures 2.4a and 2.5a.  

Similar rationale can be used to explain the difference between Figures 2c and 2d.  

Now the x components of the dispersive fluxes in Figures 2c and 2d are nearly the same, 

but the y-component of the dispersive flux in Figure 2.2c is less than that in Figure 2.2d.  

If yD  is much larger than zD ( )1.0/ =yz DD , the overall dilution effect caused by the 

dispersion in Figure 2.2b should be less than that in Figure 2.2c. Therefore, the 

concentration is higher in Figure 2.2b than that in Figure 2.2c for a given downstream 

point. 

When the dispersion coefficients are isotropic, the differences of concentration 

distributions are less significant for different line source orientations.  The remaining 
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slight differences in Figures 2.4b and 2.5b are caused by the finite aquifer dimensions in 

the z direction.  If the aquifer thickness is infinite, those differences will disappear.  

Figures 2.4-2.5 indicate that the source geometry has a profound influence on the 

concentration profiles when the dispersion coefficients are anisotropic. Such influence is 

insignificant when the dispersion coefficients are isotropic. 

Figure 2.6 is similar to Figure 2.5b except that the measuring point is 50 m 

downstream in Figure 2.6, while it is 20 m downstream in Figure 2.5b.  Comparison of 

Figures 2.5b and 2.6 shows that at a near field point (Figure 2.5b), the source geometry 

influences the concentration distribution, but at a far field point (Figure 2.6), the source 

geometry has an almost negligible influence upon the concentration distribution. 

2.5 Summary and Conclusions 

We generated analytical solutions of multidimensional concentration fields 

originated from one- two-, and three-dimensional, finite sources within finite-thickness 

aquifers using the Green’s function method.  Our solution is examined by reproducing 

the special solutions of previous works.  Based on the general three-dimensional 

solutions (Eq. (2.22)), a library of analytical solutions for different source shapes is 

published in Table 2.1.  The temporal integrations in the analytical solutions are 

calculated using a graphically integrated MATLAB program. The program is available 

from the author’s website http://geoweb.tamu.edu/Faculty/Zhan/Research.htm. 

The derived analytical solutions show that the upper and lower aquifer boundaries 

have a profound influence upon the concentration distribution. We also find that the 
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concentration at a near field point is sensitive to the source geometry when the 

dispersion coefficients are anisotropic; it is less sensitive to the source geometry when 

the dispersion coefficients are isotropic.  The concentration at a far field is found to be 

almost independent of the source geometry.  

The limitation of these analytical solutions is that they assume simplified aquifer 

geometry with no slope, and a uniform one-dimensional groundwater flow. Dispersion 

coefficients are assumed to be constants at all scales rather than scale-dependent 

variables as described by Gelhar (1993), Zhan (1998), and many others. 
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CHAPTER III 

HYDRAULICS OF A FINITE-DIAMETER HORIZONTAL WELL WITH 

WELLBORE STORAGE AND SKIN* 

We have obtained solutions of groundwater flow to a finite-diameter horizontal 

well including wellbore storage and skin effect in a three-dimensionally anisotropic 

leaky aquifer. These solutions improve previous line source solutions by considering 

realistic well geometry and offer better description of drawdown near the horizontal well. 

These solutions are derived on the basis of the separation of the source and the geometric 

functions. The source function is analyzed using Laplace transformation, and the 

geometric function is derived based on the method of superposition. The solution in a 

confined aquifer is derived as a special case of the solution in a leaky aquifer. The 

graphically integrated computer program FINHOW is written to generate type curves of 

groundwater flow to a finite-diameter horizontal well. The influence of the finite-

diameter of the well, the wellbore storage, the skin effect, the leakage parameter, and the 

aquifer anisotropy is thoroughly analyzed. 

___________________________________ 

*Reprinted with permission from “Hydraulics of A Finite-Diameter Horizontal Well 

with Wellbore Storage and skin” by Eungyu Park and Hongbin Zhan, 2002, Advances in 

Water Resources, 25 (4), p. 389-400, Copyright 2002 by the Elsevier Science B.V. 
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 The well diameter, the wellbore storage, the skin effect, and the aquifer anisotropy 

substantially affect the near-well early time drawdown if compared to the line source 

solution, but they have negligible influence upon the far field or late time drawdown. 

This research provides a better tool for interpreting finite-diameter horizontal well 

pumping tests. 

3.1 Introduction 

Horizontal wells have screen sections parallel to the horizontal directions. These 

wells have been widely used in petroleum engineering (Joshi, 1988; Maurer, 1995; 

Seines et al., 1994), and agricultural and civil engineering (Hantush and Papadopulos, 

1962; Murdoch, 1994) in the past. They have gained significant interests among 

hydrogeologists, environmental scientists, and engineers in recent years (Falta, 1995; 

Hunt B, Massmann, 2000; Sawyer and Lieuallen-Dulam, 1998; Zhan, 1999; Zhan and 

Cao, 2000; Zhan et al., 2001). Horizontal wells have advantages that are irreplaceable by 

vertical wells at some circumstances. For instance, they can be used at sites where 

ground surfaces are obstructed by permanent structures such as buildings, highways, 

railways, wetlands, landfills, etc.; they can have great contact areas with the thin ground 

water aquifers; they can be effective in recovering thin layer contaminants; they can 

perform better recovery in vertically fractured aquifers; etc. 

Hantush and Papadopulos (1962) have initially investigated the hydraulics of a 

collector well, which is a series of horizontal wells distributed in a horizontal plane.  

Petroleum engineers have studied fluid flow to horizontal wells in oil and gas reservoirs 

(Daviau et al., 1988; Goode and Thambynayagam, 1987; Rosa and Carvalho, 1989).  In 
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recent years, hydrogeologists have studied hydraulics of horizontal wells in shallow 

ground water aquifers (Cleveland, 1994; Sawyer and Lieuallen-Dulam, 1998; Zhan, 

1999; Zhan and Cao, 2000; Zhan et al., 2001).  In most of these studies, the horizontal 

well is treated as a line source and the well storage and skin effect are not included.  The 

wellbore storage refers to water initially stored inside the well; the skin effect refers to 

the alteration of hydraulic conductivity at a thin layer immediately outside the wellbore 

during the well-installation process.  The well skin serves as a barrier separating the 

wellbore from the aquifer.  

Extensive studies on hydraulics of finite or large diameter vertical wells, including 

the wellbore storage and skin effect, have been reported before (Cassiani and Kabala, 

1998; Cassiani et al., 1999;  Dougherty and Babu, 1984; Ehlig-Economides and Joseph, 

1987;  Kabala and Cassiani, 1997;  Moench, 1985; Moench, 1997; Moench and Hsieh, 

1985; Novakowski, 1989; Papadopulos and Cooper, 1967; Wilkinson D, Hammond, 

1990). The analytical solution for the drawdown produced by a large-diameter vertical 

well including fluid storage capacity was first presented by Van Everdingen and Hurst 

(1949) in petroleum, and by Papadopulos and Cooper (1967) in groundwater literature. 

Those studies have been extensively applied to oil and gas well problems later (Agarwal 

et al., 1970; Jargon, 1976; Ramey, 1965; Ramey, 1970; Ramey and Agarwal, 1972; 

Streltsova, 1988).  Large diameter wells have been used for hydrological applications in 

homogeneous aquifers (Jiao and Rushton, 1995; Moench, 1985; Moench, 1997; 

Papadopulos and Cooper, 1967) and in heterogeneous aquifers (Hemker, 1999).  They 

have been applied in confined aquifers (Papadopulos and Cooper, 1967; Sen, 1992), 
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leaky aquifers (Lai and Su, 1974; Moench, 1985), and water table aquifers (Moench, 

1997). They have also been used to study problems with non-Darcian fluid flow (Ramey, 

1965; Sen, 1992).  

However, hydraulics of a finite-diameter horizontal well, including the wellbore 

storage and skin effect, has rarely been studied before. The available references in this 

field include an analytical study for horizontal wells with wellbore storage and skin in a 

layered petroleum reservoir (Kuchuk and Habashy, 1996); and an analysis of horizontal 

wells in a bounded naturally fractured reservoir (Ng and Aguilera, 1999).  But those 

analytical studies only reflect the measurement of drawdown inside the wellbore based 

on the previous study on wellbore storage and skin effect (van Everdingen and Hurst, 

1949).  Solutions for monitoring piezometers or wells were not available from those 

studies. Those solutions did not explicitly consider the finite diameter of the horizontal 

wellbore, and they were not suitable for studying leaky confined aquifers. 

It is the purpose of this paper to study hydraulics of horizontal wells under a more 

realistic circumstance, i.e., considering the actual diameter of a horizontal well and 

including the effect of the wellbore storage and the skin effect. The results derived in 

this paper will be closer to the physical reality of the horizontal well performance. These 

results will be compared with previous line source solutions to assess the sensitivity of 

ground water flow on the horizontal well diameter, the wellbore storage, the skin effect, 

and the aquifer anisotropy. 
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3.2 Conceptual and Mathematical Model 

The general geometry of the problem is shown in Figure 3.1. The origin of the 

coordinate system is at the lower boundary below the center of the horizontal wellbore, 

and the positive z-direction is upward. The aquifer is assumed laterally infinite but 

vertically finite with a thickness of d. The aquifer is homogeneous, and the principal 

directions of the hydraulic conductivity tensor are generally assumed to coincide with 

the coordinate axes. A no-flow boundary exists at the bottom, and a leaky confining 

layer is at the top of the aquifer. The aquifer and the fluid are slightly compressible and 

have constant physical properties. We assume that the horizontal well has a finite-

diameter and a finite screen length. The central axis of the well is along the x-axis from –

L/2 to L/2, where L is the screen length of the horizontal wellbore, and the cross section 

of the horizontal well is a circular area with the diameter of 2rw. The depth from the 

central axis of the horizontal well to the lower boundary is zw.  
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Figure 3.1. General geometry of a finite-diameter horizontal well in a homogeneous, 

anisotropic, leaky confined aquifer. A leaky confining layer separates the leaky confined 

aquifer from an adjacent aquifer. MW is the location of the monitoring point. 
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We separate the problem-solving process into two parts (the rationale of doing so 

is explained later in section 2.1). The first part is finding the geometric function (GF) 

that is related to the geometry of the well and characteristics of the aquifer. In this part, 

we study ground water flow to a point source first, and then superpose the point source 

solution to obtain the solution of a horizontal well. The second part of the process is 

about the source function (SF) that includes the production rate, wellbore storage, and 

skin effect. 

Now we briefly discuss the way to handle the leaky aquifer. Hantush (1964, p. 

348) pointed out that studying flow in a leaky aquifer must consider a combined problem 

of flow in the leaky aquifer, flow in the leaky confining layer, and flow in the adjacent 

aquifer simultaneously. The solution of this problem is difficult to use in practice. 

Hantush (1964) suggested that the leakage may be substituted as a source/sink which is 

located inside the aquifer whose boundary is fully impermeable. We should point out 

that Hantush’s assumption (1964) about leakage is usually thought to be “sufficiently 

accurate for practical purposes” for the vertical well solutions developed by him. 

However, whether this assumption is accurate enough for a horizontal-well problem is 

unknown. If treating a finite-length, finite-diameter horizontal well as a superposition of 

many partially penetrating vertical wells whose screen lengths equal the diameter of the 

horizontal well, then it is reasonable to extend Hantush’s assumption to a horizontal-well 

problem. In this study, we assume that such a treatment is sufficiently accurate for 

practical purposes for a horizontal as well as vertical wellbore.  
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The hydrological system is assumed to be static before pumping; thus the initial 

hydraulic head of the leaky aquifer equals the head in the adjacent aquifer above the 

leaky confining layer (h0). Based on this, the governing equation of ground water flow to 

a point source in a three-dimensionally anisotropic leaky aquifer is (Hantush, 1964) 

2 2 2
0

0 0 02 2 2
( ) ( ) ( ) ( )x y z S f

h h h h h hK K K K S q t x x y y z z
x y z dd t

δ δ δ∂ ∂ ∂ − ∂′+ + − − = − − −
′∂ ∂ ∂ ∂

,  (3.1) 

where Kx, Ky, Kz are the principal hydraulic conductivities (m/sec) in the x-, y-, and z-

directions, respectively, h is hydraulic head (m), K′ is hydraulic conductivity of the leaky 

confining layer (m/sec), h0 is the head in the adjacent aquifer above the leaky confining 

layer and is assumed to be constant (m), d and d′ are the thickness of the leaky aquifer 

and the leaky confining layer, respectively, Ss is specific storativity of the aquifer (m-1), t 

is time (sec), qf is the aquifer pumping rate for a point source (m3/sec) (qf>0 means 

pumping), ( )uδ is the Dirac delta function, and (x0, y0, z0) is the point source location. 

The outer boundaries that are located infinity from the source along the horizontal 

directions are 

0( , , , )
x

h x y z t h
=±∞

= , 0( , , , ) ,
y

h x y z t h
=±∞

=       (3.2)  

and the conditions at the upper and lower boundaries are 

0
( , , , ) / 0

=
∂ ∂ =

z
h x y z t z , ( , , , ) / 0

=
∂ ∂ =

z d
h x y z t z .      (3.3)  

The initial condition is 

00
( , , , )

t
h x y z t h

=
= .       (3.4)  
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If K′/d′→0, Eq. (3.1) converges into the governing equation of a confined aquifer.  

3.2.1 Solution in a leaky aquifer 

For the convenience of calculation, we change the variable from head, h, to 

drawdown, s=h0-h, and define the dimensionless parameters in List of Symbols where 

all the parameters are explained in the List of Symbols. The solution of Eq. (3.1) can be 

obtained either using a Laplace transform (Dougherty and Babu, 1984; Moench, 1997, 

1998) or Green’s function methods (Gringarten and Ramey, 1973; Ozkan and Raghavan, 

1991). By applying a Laplace transform to Eqs. (3.1)-(3.4) and using above defined 

dimensionless parameters, one has  

2 2 2

0 0 02 2 2
4 ( ) ( ) ( ) ( )π δ δ δ

′ ′ ′∂ ∂ ∂′ ′= + + + − − −
∂ ∂ ∂

D D D
D fD D D D D D D

D D D

s s sps q p x x y y z z
x y z

,    (3.5)  

( , ,0, ) / 0′∂ ∂ =D D D Ds x y p z ,       (3.6)  

( , ,1, ) / 0′∂ ∂ =D D D Ds x y p z ,       (3.7)  

( , , , ) ( , , , ) 0D D D D D Ds y z p s x z p′ ′±∞ = ±∞ = ,      (3.8)  

where p is the Laplace transform variable referred to as the dimensionless time, over bar 

means Laplace transformation, Ds′  and ′fDq are defined in List of Symbols, and x0D, y0D, 

and z0D are defined in the same way as xD, yD, and zD, respectively. 

Eqs. (3.5)-(3.8) are solved in the appendix, and the dimensionless drawdown is 

2
2 2

2 0
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4

τ
τ

τ τπ π π τ
τ

∞

=

    −        
= − − + −∑∫ fD D

Dt
D

D D D D
nD

t
r ds t q n z n z nB

, (3.9) 
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where rD is the dimensionless horizontal distance from point source to monitoring 

location, and 2
DB is defined in Table 3.1.  

The first term inside the integration sign of Eq. (3.9), ( )fD Dq t τ− , is the source 

function (SF) for a point source; while the product of all the rest of the terms inside the 

integration sign of Eq. (3.9) is the dimensionless point geometric function, 

0 0 00 , , ; , , ,( )D D D D D D Dg y z y zx x t : 

2

0 0 0 2

2 2
0 01

, , ; , , , exp
4

1( ) 1 2 cos[ ]cos[ ]expD D
D D D D D D D

D D D
D DDn

rg y z y z
B t
tx x t n z n z n t

t
π π π

∞

=

    − −      
= + −∑ ,

        (3.10) 

and in Laplace domain 

2 2 2 2
0 0 0 0 0 0

1
0 , , ; , , , ( 1/ ) 4 cos[ ]cos[ ] ( 1/ )( ) 2D D D D D D D D D D D D

n
g y z y z p r p B n z n z K r p n Bx x K π π π

∞

=
+ + + +∑= .

        (3.11) 

where 0g  is the Laplace transform of 0g , 0K is the second kind, zero order modified 

Bessel function. Eq. (3.9) indicates that the dimensionless drawdown is simply the 

convolution of the source function and geometric function in dimensionless time domain. 

If represented in Laplace domain, the dimensionless drawdown is the product of source 

function and geometric function. Such a problem-solving mechanism can be extended to 

other types of sources such as line or volume sources. One can reproduce the line source 

solution of a partially penetrating vertical well in a leaky aquifer (Bear, 1979, p.349, 

Hantush, 1964, p.350) by integrating z0D along the vertical direction of Eq. (3.9).  
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3.2.2 Solution for a point source in a confined aquifer 

As a special case of the leaky aquifer solution, if assuming that the conductance of 

the leaky confining layer, K′/d′, goes to zero, Eq. (3.1) becomes the governing equation 

of flow in a confined aquifer and Eq. (3.9) reduces to the solution for a confined aquifer. 

By assigning DB →∞  in Eq. (3.9), one obtains 

0 0 0

2
2 2

010
, , ; , , , ( )( ) exp 1 2 cos[ ]cos[ ]exp

4D D D D D D fD D

Dt
D

D D D Dn
y z y z t

r ds x x t q n z n z nτ
τ
τπ π π τ

τ
∞

=

     −      
= − + −∑∫

,        (3.12)  

which is the point source solution in a confined aquifer.  

3.3 Solution of a Finite-Diameter Horizontal Well with Wellbore Storage and Skin 

Effect 

The point source solution Eq. (3.9) is the foundation for the following work. A 

finite-diameter horizontal well can be visualized as superposition of many point sources, 

and the aquifer pumping rate from the horizontal well, Qf , is defined as 

1( ) ( , , , )= ∫f f
V

Q t q x y z t dV
V

,       (3.13) 

where V is the volume of the horizontal wellbore and qf(x, y, z, t)/V is the point source 

strength. Before proceeding, we need to answer the following two questions:  

1. How is the pumping rate distributed inside a horizontal wellbore? 

2. How is the aquifer pumping rate, Qf(t), related to the total pumping rate, Q, 

and the pumping time? 
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3.3.1 Pumping rate distribution inside a horizontal well 

There are traditionally two different methods to treat a pumping well. One method 

is to treat it as a uniform flux boundary, and another is to treat it as a uniform head 

boundary. Hantush (1964) pointed out that these two treatments were two extremes and 

a realistic wellbore was a mixed-type boundary between these two extremes because of 

flow inside the wellbore. Several researches have studied the mixed-type boundary value 

problems for the partially penetrating vertical well (Cole and Zlotnik, 1994; Haitjema 

and Kraemer, 1988; Kirkham, 1959; Muskat, 1937).  In recent years, great advancements 

have been made in using the mixed-type boundary to treat a vertical wellbore (Cassiani 

and Kabala, 1998; Cassiani and Kabala, 1999; Rund and Kabala, 1997; Wilkinson and 

Hammond, 1990).  Intensive computational power is still needed to perform the 

numerical calculation when using this method. No effort is made in this study to 

incorporate the mixed-type boundary method to treat the horizontal wellbore. However, 

because the mixed-type boundary is assumed to be closer to the physical boundary, 

additional research is needed to apply this method for horizontal-well study in the future.  

As a result, scientists favor the uniform flux boundary because of its simple 

implementation in the analytical study. However, the true distribution of pumping rate is 

non-uniform because the pumping rate at both ends of the screen is higher than the 

average over the screen length. Thus, it is important to know the errors associated with 

the uniform flux boundary assumption. Previous studies indicated that the error is 

usually less than a few percent if the screen length-to-well radius is large enough: 

L/rw>40 (Cole and Zlotnik, 1994; Rund and Kabala, 1997). This condition is almost 
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always satisfied for a horizontal pumping well case because the horizontal wells used in 

hydrological and environmental studies usually have long screen lengths. Because of this, 

the uniform flux boundary can be safely used for treating horizontal wells in practical 

cases. If using the uniform flux to treat a horizontal well, qf(x, y, z, t) in Eq. (3.13) is 

independent of (x, y, z), and Eq. (3.13) becomes Qf(t)=qf(t). 

3.3.2 Consideration of wellbore storage and skin effect 

The wellbore storage is one of the important parameters that mask early time or 

near to pumping well pressure data by distorting the aquifer water levels in pumping 

tests (Moench, 1997; Ramey and Agarwal, 1972; Van Everdingen and Hurst, 1949).  

The total pumping rate, Q, is the summation of the aquifer pumping rate, Qf(t), and 

the wellbore storage pumping rate, Qw(t): ( ) ( )w fQ t Q t Q+ = . The wellbore storage 

supplies most of the initial pumped water, and Qw(t) initially equals Q and gradually 

decreases to zero when pumping continues (Streltsova, 1988).  

2 w
w c

sQ r
t

π ∂
=

∂
,        (3.14) 

where rc is the radius of the casing connected with the horizontal-well screen, and sw is 

the drawdown inside the wellbore. rc may or may not equal to the radius of the 

horizontal-well screen, rw. In contrast, Qf(t) is initially zero and gradually approaches Q 

when pumping continues. Using Darcy’s Law, the aquifer-pumping rate is proportional 

to the head difference at wellbore (Dougherty and Babu, 1984; Moench, 1997; Streltsova, 

1988):  
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(2 )( )f w s wQ r LC s fπ= − ,        (3.15)  

where L is the screen length of the horizontal well, Cs is the conductance of wellbore 

skin (Ks/ds), Ks and ds are the hydraulic conductivity and the thickness of the skin, 

respectively, and f is averaged drawdown at the outside surface of the wellbore skin.  

The skin is assumed to be infinitesimally thin when using Eq. (3.15). This 

treatment is similar to those used by Dougherty and Babu (1984), Ehlig-Economides and 

Joseph  (1987), Kabala and Cassiani (1997), and many others in studying vertical wells. 

However, it is different from the finite-thickness skin effect treatment used by 

Novakowski (1989), and Moench and Hsieh (1985). Using the similar notation 

employed by Kabala and Cassiani (1997) to define the skin effect, η , in an isotropic 

aquifer: 

( , ) ( , )w
w w w

f r tr f r t s
r

η ∂
− + =

∂
,       (3.16)  

and recall Darcy’s Law: 2 ( / )f wQ r LK f rπ= − ∂ ∂ , where K is the aquifer hydraulic 

conductivity, then the skin effect corresponding to Eq. (3.15) becomes 

w s

K
r C

η = .        (3.17) 

Using the notation of Moench and Hsieh (1985), defining sin w sr r d= + , and 

considering an infinitesimal skin, then [ ] [ ]s0 0
ln / ln ( ) / /w w s w s wd d

lim r r lim r d r d r
→ →

= + . Thus the 

skin effect given by Moench and Hsieh (1985) becomes 
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ln[ / ] s
s w

s s w w s

dK K Kr r
K K r r C

η = × = , which is identical to our Eq. (3.17). 

The dimensionless form of Eq. (3.15) becomes 

[ ( )]fD wD DQ s f tα= − ,       (3.18)  

where QfD and α  are defined in List of Symbols, and swD and fD are defined in the same 

way as the dimensionless drawdown given in List of Symbols. The dimensionless 

wellbore pumping rate is  

/wD wD DQ s tβ= ∂ ∂ ,        (3.19) 

where QwD and β  are defined in List of Symbols. 

The summation of QfD and QwD is 

1wD fDQ Q+ = .        (3.20)  

Substituting Eqs. (3.18)-(3.19) into Eq. (3.20) results in a differential equation of swD. 

Solving the equation in Laplace domain and substituting the solution of swD into Eq. 

(3.18) results in 

( ) 1 1( ) D
fD

pf pQ p
p p p

α
αβ αβ

= − + −
+ +

,      (3.21) 

where the over bar implies the Laplace transform. The average drawdown (in Laplace 

domain) at the wellbore screen face is ( ) ( ) *( )D fDf p Q p g p= , where *( )g p  is the 

surface average of the geometric function of the finite-diameter well along the wellbore 
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screen face in Laplace domain. The geometric function of the finite-diameter well in 

Laplace domain, ( , , , )D D Dg x y z p , is 

0 0 0 0
1( , , , ) ( , , ; , , , )D D D D D D D D DV

g x y z p g x y z x y z p dV
V

= ∫ ,    (3.22) 

where 0 0 0 0( , , ; , , , )D D D D D Dg x y z x y z p is the point geometric function in Laplace domain 

defined in Eq. (3.11). 

Therefore, Eq. (3.21) becomes 

( ) *( ) 1 1( ) fD
fD

pQ p g p
Q p

p p p
α

αβ αβ
= − + −

+ +
.      (3.23)  

The resultant solution of the source function in Laplace domain is 

{ }
( )

1 *( )fDQ p
p p g p

αβ
α αβ

=
+ +  

.      (3.24) 

Two special cases deserve discussion: 

1. If the well has a negligible wellbore storage, i.e., 0cr →  and β →∞ , Eq. (3.24) 

converges to ( ) 1/fDQ p p= , which yields the constant pumping rate. 

2. If the skin effect is negligible but the wellbore storage is not, i.e., 0sd → , so 

α →∞ , Eq. (3.24) becomes { }( ) / *( )fDQ p p pg pβ β→ +   , which yields the 

pumping rate without skin. 

3.3.3 Solution of a finite-diameter horizontal well  
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Eq. (3.24) indicates that if *( )g p is known, then the aquifer pumping rate is also 

known. However, a rigorous analytical deviation of *( )g p is extremely difficult for a 

finite-diameter horizontal well because of the change of head along the outside skin of 

the screened section of a wellbore. Fortunately, based on the following arguments, a 

close approximation of *( )g p can be derived: 

1. A finite-diameter horizontal well is a volume source that can be visualized as the 

superposition of many horizontal line sources. Thus the average geometric 

function of a finite-diameter horizontal well can be calculated from the average 

geometric functions of the superposed horizontal line sources. 

2. Previous investigations about the horizontal line sources indicated that the 

drawdown at /( / 2) 0.68D Dx L =  offers an excellent approximation of the average 

drawdown at the horizontal wellbore (Daviau et al., 1988; Rosa AJ, Carvalho, 

1989; Zhan et al., 2001), where DL  is the dimensionless well screen length 

defined in List of Symbols. Thus the average geometric function of a line source 

can be calculated by substituting /( / 2) 0.68D Dx L = , 0Dy = , D wDz z= , and 

DB →∞  into the line source drawdown solution (Zhan et al., 2001, Eq. (18)). 

Considering the slight difference in the definitions of dimensionless drawdown 

used in Zhan et al. (2001) and in this work, the result is 
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/ 2

0
/ 2

/ 2
2 2 2

0
1 / 2

2*( ) [ 0.34 ]

2 cos [ ] [ 0.34 ]

D

D

D

D

L

D D DD
D L

L

wD D D
n L

g p K p L x dx
L

n z K p n L x dxπ π

−

∞

= −


′ ′= −




′ ′+ + − 


∫

∑ ∫
.   (3.25) 

Eq. (3.25) can be simplified if considering the fact that the wellbore storage and 

skin effect influence the early time drawdown the most; thus the above calculation will 

be targeted for p>>1. Under that condition, using the following 

identity 00
( ) / 2

u
K u du π∫ , ifu π≥ (Hantush, 1964; Zhan et al., 2001), an approximate 

form of the average geometric function becomes 

( )2

2 2
1

1 1* 2 cos2( ) wD
nD

p n z
L p p n

g π
π

π ∞

=

  + 
+  

= ∑ .     (3.26) 

Eq. (3.26) will be used as the approximate geometric function of a finite-diameter 

well, and it will be substituted into Eq. (3.24) to obtain ( )fDQ p . The aquifer pumping 

rate ( )fD DQ t  is numerically obtained through the inverse Laplace transform of 

( )fDQ p using the Stehfest algorithm (Stehfest, 1970).  

With these preparations, one can now calculate the drawdown near a finite-

diameter horizontal pumping well by the volume integration of the point source solution:  

3

0 0 0 0 0 02

/1( ) ( ) ( )
π

= =∫ ∫
x y z

HD D D D D D D D D

w

d K K K
s t s t dx dy dz s t dx dy dz

V r L
,    (3.27) 
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where sHD is the horizontal-well dimensionless drawdown defined in List of Symbols 

with q replaced by Q. After performing the spatial integration, Eq. (3.27) becomes 

( ) ( ){ }

( ) ( ){ } ( ) ( ) ( ){ }

1 22

2 2
1 2 0 0

1

2
0

/
( )

1 2 cos cos exp

exp( ) y z

fD D

D

D D D
n

D

wD wD

wD wD

t

D wD

z r

z r

HD D

K K
t erf erf

B

erf erf n z n z n

QL r

dz d

s t ττ λ λ

µ µ π π π τ τ
∞

=

+

−

 
− − + × 

 

+ + −∑

= ∫

∫

, (3.28)  

where rwD is defined in List of Symbols; the aquifer pumping rate, ( )fD DQ t , is the inverse 

Laplace transform of Eq. (3.24); and 1

/ 2
2

D DL xλ
τ
+

= , 2

/ 2
2

D DL xλ
τ
−

= , 

2 2
0

1

( ) /

2
wD D wD z y Dr z z K K y

µ
τ

− − +
= , 

2 2
0

2

( ) /

2
wD D wD z y Dr z z K K y

µ
τ

− − −
= . 

When the well radius 0wDr → , Eq. (3.28) is simplified to 

( ) ( ){ }

( ) ( ) ( )

1 22

2
2 2

1

0
( )

exp 1 2 cos cos exp
4

exp( ) fD D

D

D
D wD

n

Dt

D
HD D t erf erf

B

y n z n z n

QL
d

s t π ττ λ λ

π π π τ
τ τ

τ∞

=

 
− − + × 

 
   − + −     

∑

= ∫
 .   (3.29) 

Eq. (3.29) is the line source solution including the wellbore storage, skin effect, 

and leakage. If excluding the wellbore storage, skin effect, and leakage, then Eq. (3.29) 

is identical to the solution derived by Zhan et al. (2001) if taking into account the 

slightly different definitions of the dimensionless drawdowns (we used 

4 /D x ys d K K s qπ= , and Zhan et al. (2001) used 2 /D x ys d K K s qπ= ). 
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For a confined aquifer, BD
2 goes to infinity, the second term in Eq. (3.28) 

converges to unity, and the drawdown near a horizontal well in a confined aquifer is 

obtained. 

3.4 Results and Discussion 

The integration in Eq. (3.28) is computed using a numerical integration scheme 

(Press et al., 1989).  The numerical evaluation of the drawdown is accomplished using a 

MATLAB program developed by the authors. This program, named FINHOW, together 

with the user’s manual, is available from the author’s website: 

http://park.tamu.edu/research.htm or by individual contact. This program is devised to 

calculate and plot a time-dependent drawdown curve at any measuring point in a leaky 

or confined aquifer near a horizontal well. 

The influence of the finite well radius on the flow is most significant at near fields 

defined as the regions close to the horizontal well. The influence of the wellbore storage 

is most important at the early time during which the water is withdrawn from near fields. 

Thus in the following discussion, we will focus on the drawdown change at the near 

field and/or at the early time. 
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Figure 3.2. Comparison of dimensionless semi-log type curves of a finite-diameter 

horizontal well (HW) and a fully penetrating vertical well (VW). 
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Many interesting aspects of the results are shown in Figures 3.2-3.7. If not 

specified, the following default values of parameters are used in those figures: aquifer 

thickness is 10 m; aquifer is homogeneous and isotropic with hydraulic conductivities 

equal to 0.0001 m/s; specific storativity is 0.0002 m-1; horizontal well is 100 m long and 

located at the middle elevation of the aquifer (zw=5 m); pumping rate is 0.01 m3/s; well 

radius is 0.1 m; for simplicity, the casing radius, rc, is assumed to be the same as the 

horizontal-well radius, rw, in the following discussion; conductance of the wellbore skin 

is 0.001 s-1 if skin effect is included; and monitoring point is at the same elevation as the 

horizontal well and is very close to the well at (1 m, 1 m, 5 m). For brevity of illustration, 

confined condition is used in most cases except that in section 4.5. 

Figure 3.2 is the plot of dimensionless drawdown versus dimensionless time in a 

semi-log paper, and it shows three distinct sections reflecting the early flow, where all 

the direction of the flow caused by the pumping is perpendicular to the surface of the 

screened section, the intermediate transitional flow, where the drawdown is affected by 

the upper and lower boundaries, and the later time pseudo-radial flow. This result is 

identical to those found in previous studies using a line source, and the mechanism of 

this changing flow from vertical radial to pseudo-radial is explained thoroughly in 

previous works (Daviau et al., 1988; Goode and Thambynayagam, 1987; Kuchuk and 

Habashy, 1996; Zhan et al., 2001). Leakage effect is excluded in the following figures 

except Figure 3.7. 
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Figure 3.3. Dimensionless type curves with different wellbore radii in an isotropic 

aquifer. Wellbore storage and skin effects are excluded. 
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3.4.1 Effect of well radius on geometric function 

The simulation of changing in the value of dimensionless geometric function with 

dimensionless time of different well radii in an isotropic aquifer is performed, and the 

results are shown in Figure 3.3. We tested the dimensionless well radii of 0.01, 0.04, 

0.07, and 0.1. Wellbore storage and skin effects are excluded in this section. The purpose 

here is to compare our volume source solution Eq.(3.28) to a previous line source 

solution developed by Zhan et al. (2001).  

The influence of the finite-diameter of the well on the geometric function in the 

near field case should be most profound at the early time during which water is 

withdrawn from the near field storage. When pumping time increases, the contribution to 

the geometric function comes from water withdrawn from fields with progressively 

increasing distances to the well, and the geometric function of the finite-diameter of the 

well will play a less important role. This rationale is verified in Figure 3.3, which shows 

that the finite-diameter well solution converges to the line source solution very fast in 

the isotropic case. After 2 2/( )D D Dt x y+ =0.01, the line source solution can be safely used for 

a finite-diameter well case in an isotropic aquifer. Substituting the assigned parameters 

into 2 2/( )D D Dt x y+ =0.01 results in t=0.04 sec. Thus, we prove that for any practical 

purpose, the volume-source geometric function can be safely replaced by the line-source 

geometric function, and Eq. (3.29) can be used to replace Eq. (3.28) for practical 

calculations. 

3.4.2 Effect of wellbore storage 
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Given the same skin conductance of 10-4/sec, a different well radius means a 

different wellbore storage. If the effect of wellbore storage is included, water withdrawn 

in the initial pumping is mostly from the wellbore storage and less from the aquifer 

storage; thus the drawdown at the monitoring well should be much smaller than that in 

Figure 3.3 at the early time. With increasing pumping time, the wellbore storage is 

gradually depleted and more water is withdrawn from the near field, and we should 

observe a rapid increase of drawdown. Thus, compared to the case excluding the 

wellbore storage (such as Figure 3.3), it seems that the influence of the horizontal well 

diameter on the drawdown is delayed by a period of time during which the wellbore 

storage supplies more water to the pumping than the aquifer. The largest well diameter 

has the longest delay. The masked section of the drawdown curve has almost a straight 

line with a unit slope when most of the water is deduced from wellbore. This coincides 

with previous works (Papadopulos and Cooper, 1967; Streltsova, 1988). This 

explanation is reflected in Figure 3.4. This finding is similar to those observed in 

vertical-well problems (Streltsova , 1988, p. 52, Figure 2.2).  
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Figure 3.4. Comparison of dimensionless type curves with different dimensionless 

wellbore radii and the dimensionless type curve of the line source solution derived by 

Zhan et al. (2001) in an isotropic aquifer. Wellbore storage and skin effects are included. 
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3.4.3 Effect of skin 

The wellbore storage effect deforms the early drawdown, and it depends on two 

parameters: the volume of the pumping wellbore and the conductance of the well skin 

Ks/ds. Given the same wellbore volume, a higher skin conductance implies easier flow of 

water from the aquifer to the well and the rapid transformation of water withdrawal from 

the wellbore to the water withdrawal from the aquifer.  

The sensitivity analysis of drawdown to the skin effect is tested with different skin 

conductance Ks/ds. The aforementioned effect of masking early time drawdown by the 

skin effect is observed in Figure 3.5. By the analysis, one can find that the lower 

conductance of the skin causes less drawdown and longer delay of response to the 

pumping in the aquifer at early time. That is because it is difficult for groundwater to 

penetrate a lower conductance skin. When the skin conductance increases, the drawdown 

becomes less and less sensitive to the conductance and the type curves approach the 

asymptotic limit with an infinite conductance. In fact, Figure 3.5 shows that when the 

conductance is larger than 10-4/s, the skin effect can be negligible for the given 

monitoring point. 
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Figure 3.5. Dimensionless type curves with different skin effects. α →∞  refers to the 

no-skin case. 
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3.4.4 Effect of anisotropy 

The anisotropic aquifer used in Figure 3.6(a) has horizontal hydraulic conductivity 

of 0.0001 m/s and vertical hydraulic conductivity 0.00001 m/s; while the horizontal 

hydraulic conductivity, 0.00001 m/s, and vertical hydraulic conductivity, 0.0001 m/s, are 

used in Figure 3.6(b). Both wellbore storage and skin effects are included in this section. 

The ratio of vertical versus horizontal hydraulic conductivity is commonly found in the 

range of 0.01 to 1 in many rock types (Domenico and Schwartz, 1998, p. 40).  If vertical 

fractures dominate, the vertical hydraulic conductivity could be larger than the 

horizontal hydraulic conductivity, and the ratio of vertical versus horizontal hydraulic 

conductivity could vary over a few orders of magnitude in such a fractured aquifer. 

Similarly, if horizontal fractures dominate in a certain orientation, the ratio of Kx/Ky 

could also vary over a few orders of magnitude in such a fractured aquifer.  

If vertical hydraulic conductivity is much less than the horizontal hydraulic 

conductivity, it is more difficult to drain the water vertically; thus most water flow to the 

well comes from the horizontal direction, and we should observe larger drawdowns at 

the horizontal near field at the early time if compared to the isotropic case. This is true 

by comparing Figure 3.6(a) to Figure 3.4. On the contrary, if vertical hydraulic 

conductivity is larger than the horizontal hydraulic conductivity, it is easier to drain the 

water vertically; thus we should observe smaller drawdowns at the horizontal near field 

at the early time if compared to the isotropic case. This is confirmed by comparing 

Figure 3.6(b) to Figure 3.4. Figures 3.6(a) and 3.6(b) indicate that the near field 
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drawdown curves at the early time strongly depend on the vertical anisotropy because of 

the strong vertical flow near a horizontal well. 

3.4.5 Effect of leaky aquifer 

The sensitivity analysis of drawdown to leaking parameters is tested using five 

different leakage parameters BD
2, and the results are shown in Figure 3.7. The wellbore 

storage and skin effects are included in this section. The drawdowns in leaky aquifers 

follow similar curves observed in vertical well problems (Streltsova, 1988) at the late 

time when the water across the leaking bed becomes significant. The early and the 

intermediate time stages follow the same curves as that in the confined aquifers. In the 

case of the storage of the aquitard being considered, more complicated drawdown 

mechanisms are expected on the early and intermediate time stages. Further 

investigations including the aquitard storage are needed to provide better solutions to the 

problems in which the aquitard storage cannot be neglected. If the leakage parameter, 

BD
2, goes to infinity, the leaky aquifer solution approaches that of the confined aquifer.  
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(A) 

 

Figure 3.6. Comparison of dimensionless type curves with different wellbore radii and 

the dimensionless type curve of the line source solution derived by Zhan et al. (2001) in 

an anisotropic aquifer. (A) / 0.1z xK K = ; (B) / 10z xK K = , and x yK K=  for both (A) and 

(B). Wellbore storage and skin effects are included. 
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(B) 

 

Figure 3.6. Continued 
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Figure 3.7. Comparison of dimensionless type curves with different leakage parameters 

and the dimensionless type curve of the line source solution derived by Zhan et al. 

(2001) in an isotropic aquifer. Wellbore storage and skin effects are included. 
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3.5 Summary and Conclusions 

This paper provides solutions on groundwater flow to a finite-diameter horizontal 

well including wellbore storage and skin effect. These solutions offer better physical 

insights than previous line source solutions into the hydraulics of horizontal wells in 

three-dimensionally anisotropic leaky aquifers. They are more useful for describing the 

near field drawdown behavior. 

The drawdown solution for a finite-diameter horizontal well is derived on the basis 

of volume integration of point-source solutions. A graphically integrated numerical 

MATLAB program named FINHOW is written by the authors to compute the volume 

integration using the Gaussian quadrature method (Press et al., 1989) and to provide the 

type curves of groundwater flow to a finite-diameter horizontal well. The drawdown 

solution in a confined aquifer is obtained as a special case of the solution in the leaky 

aquifer. 

Our solution shows that the finite-diameter of the well only influences the near 

field at the early flow time. The finite-diameter solution converges to the line source 

solution at 2 2/( )D D Dt x y+ =0.01 in an isotropic aquifer if excluding the wellbore storage. If 

the wellbore storage is included, it will take a much longer time for the finite-diameter 

solution to converge to the line source solution. 

The skin effect impacts flow through the conductance of the wellbore skin. A 

higher skin conductance means easier flow from the aquifer to the well and quicker 

response of the aquifer to the pumping. When the skin conductance increases, the 
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drawdown becomes less and less sensitive to the skin conductance, and the type curves 

approach the asymptotic limit that is corresponding to an infinite conductance case.  

The anisotropy controls the relative strength of vertical and horizontal flows at the 

early time, and thus shows a strong influence on the early time near-field drawdown. 

The leakage parameter influences the late pseudo-radial flow substantially but has 

limited impact on the early and intermediate flows when excluding the storage in the 

leaky confining layer.  
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CHAPTER IV 

HYDRAULICS OF HORIZONTAL WELLS IN FRACTURED SHALLOW 

AQUIFER SYSTEMS 

A general theory of groundwater flow to a fractured or non-fractured aquifer 

considering wellbore storage and skin effect is provided.  Solutions for both leaky 

confined and water table aquifers are provided.  The fracture model used in this study is 

the standard double-porosity model.  The storage of the aquitard (the leaky confining 

layer) is included in the formula.  A MATLAB program denoted FINHOW2 is written to 

facilitate the calculation of drawdowns and the generation of type curves that plot the 

dimensionless drawdowns versus the dimensionless times over the squares of the 

dimensionless radial distances in log-log scales.  Sensitivity of the solution to the 

confined versus unconfined conditions, fractured versus non-fractured conditions, and 

wellbore storage and skin effects is analyzed.  This study improves previous solution 

found by Park and Zhan (2002) that only deals with a non-fractured confined aquifer 

scenario. It also improves the previous results found by Zhan and Zlotnik (2002) that 

only deals with a non-fractured water table aquifer that excludes wellbore storage and 

skin effect.  Several findings of this study are summarized as follows.  (1) The influence 

of wellbore storage and skin effects upon the drawdown is similar to what has been 

found in a previous study of a confined aquifer (Park and Zhan, 2002).  (2) The aquitard 

storage affects the mid-time drawdown the most.  (3) There is a significant difference 

between the type curves of fractured and non-fractured confined aquifers because of the 

contribution of matrix storage.  The difference in type curves of fractured and non-
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fractured water table aquifers disappears at the later-time because the unsaturated zone is 

the dominate water source at that time, and it surpasses the difference of the storage 

water contributions from the fractured and non-fractured media.  (4) In general, the 

drawdowns are more sensitive to the hydraulic conductivity and storativity of the matrix 

in a fractured confined aquifer than in a fractured water table aquifer. 

4.1 Introduction and Background Knowledge 

The horizontal well applications in the environmental remediation are one of the 

most promising techniques.  They have been successfully applied to many field 

remediation programs combined with the remedial techniques associated with vertical 

wellbores, e.g. pump and treat, soil vapor extraction (SVE), free product recovery, 

enhanced bioremediation, air sparging, soil flushing, etc (U.S.EPA, 1994).  In most of 

these techniques, the contact area of the wellbore with the targeting zone is essential.  

Owing to its optimized contact with the targeting area through the up-to-date technology 

of the directional drilling, horizontal wells offer many advantages over vertical wells.  

By the field application reports, a horizontal well usually can substitute several to tens of 

vertical wells (Seines, 1994; Parmentier and Klemovich, 1996). 

Although horizontal wells have been applied for environmental remedial purposes, 

the supporting theories are not sufficiently developed yet.  Petroleum engineers have 

used horizontal wells for many years and have done numerous studies in this field 

(Goode and Thambynayagam, 1987; Daviau et al., 1988; Rosa and Carvalho, 1989; 

Ozkan and Raghavan, 1991).  In hydrogeological sciences, due to its relatively short 

duration of interest on horizontal wells, most of the theories have been directly borrowed 



 74

from petroleum engineering.  However, there are significant differences in terms of 

targets and the scopes of using horizontal wells in hydrogeology and in petroleum 

engineering due to different interests.  Petroleum engineers do not apply horizontal wells 

in water-table and leaky confined aquifers, which are interested by hydrogeologists. A 

water-table aquifer is most vulnerable to the contaminant generated by surface activity; a 

leaky confined aquifer also has high potential to be impacted by overlying contaminated 

water-table aquifer.  Moreover, when applying a horizontal well to a hydrogeologic 

study, the knowledge of hydrodynamics taking place near the well is crucial in a 

remediation work because the horizontal wellbore is installed directly into the 

contaminant.  The geometry of the finite diameter of the well becomes an important 

factor influencing the near field problems, where a near field means an area close to the 

pumping well.  In addition, the properties of the aquifer (i.e. porous or fractured), the 

wellbore storage and skin effects could be important for the near field and the early time 

problems, where the wellbore storage refers to water initially stored inside the well, and 

the skin effect refers to the alternation of hydraulic conductivity at a thin layer 

immediately outside the wellbore during the well-installation process.  The well skin 

serves as a barrier separating the wellbore from the aquifer. 

Hydrogeologists have studied hydraulics of horizontal wells in shallow ground 

water aquifers (Hantush and Papadopulos, 1962; Cleveland, 1994; Sawyer and 

Lieuallen-Dulam, 1998; Zhan, 1999; Zhan and Cao, 2000; Zhan et al., 2001) and in 

unsaturated zones (Falta, 1995; Zhan and Park, 2002).  In most of these studies, the 

horizontal well is treated as a line sink/source and the wellbore storage and skin effects 
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are not included.  Zhan and Zlotnik (2002) derived solutions of drawdowns in water-

table aquifers due to horizontal-well and inclined-well pumping.  By neglecting the 

wellbore storage and skin effects, their solutions may not be applied on early time and 

near field aquifer pumping data.  Most recently, Park and Zhan (2002) derived a finite-

diameter horizontal well solution that is useful for confined and leaky confined aquifer 

considering wellbore storage and skin effects.  But their solution is also limited in 

application by neglecting the aquitard storage effect.     

Park and Zhan (2002) have done a detailed review of previous works on wellbore 

storage and skin effects.  The conceptual model used for dealing with a fractured aquifer 

in this study is the double-porosity approach. This concept is first introduced by 

Barenblatt et al. (1960).  Later on, it is established as a pseudo-steady state model by 

Warren and Root (1963) and as a transient model by Kazemi (1969).  The double-

porosity concept is widely applied in petroleum and groundwater literature on vertical 

wells in fractured aquifer or reservoir systems (Boulton and Streltsova, 1977; Deruyck et 

al., 1982; Moench, 1984; Cleveland, 1994).  But it is rarely used in analytical studies of 

a finite horizontal well with the consideration of wellbore storage and skin effects, 

except in a few petroleum studies (Ohaeri and Vo, 1991; Ozkan and Raghavan, 1991).  

No studies have ever been carried out before to investigate the hydrodynamics of 

horizontal wells including finite-diameter sources, wellbore storage, and skin effects in 

porous/fractured water-table aquifers and in leaky confined aquifers that consider 

aquitard storage effects. The purposes of this study are as follows. First, to derive the 

analytical solutions that consider exact aquifer boundary conditions and aquifer media 
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types, and consider the effects caused by finite diameters of the horizontal wellbores. 

Second, through sensitivity analysis, to examine the effects caused by those boundary 

conditions, media types, and finite diameters of the wellbores.  This study will meet 

these ends and provide a systematic method to analyze horizontal well pumping data. 

4.2 Mathematical Model 

The general geometry of the problem can be found from Figure 4.1(a) for a 

fractured water-table aquifer, and Figure 4.1(b) for a fractured leaky aquifer.  We 

assume that both aquifers are finite along the vertical direction and infinite along the 

horizontal directions.  The dashed lines in Figure 4.1 are fractures and the cubic boxes 

represent matrix.  We must point out that the fracture model used here is idealized in 

order to achieve closed-form solutions, and it may be very different from actual fractures 

observed in real aquifers, that could be very complicated.  Thus the derived results based 

on this simple model can be used for a screening tool of understanding flow to a 

horizontal well in a fractured aquifer, but it should not be used as the precise prediction 

of flow in a real complicated fractured aquifer system. 

Because our targeting aquifer system is shallow in terms of depth, the water 

impeding material (skin) right outside matrix is not considered in this study (Moench, 

1984).  Other assumptions about the groundwater and the horizontal wellbore used in 

this study are identical to those used by Park and Zhan (2002).  As a preliminary step to 

reach the finite-diameter horizontal well solution, we first consider the governing 

equation of ground water flow to a point sink/source in a three-dimensionally anisotropic 

fractured aquifer (Zhan et al., 2001; Park and Zhan, 2002),   
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Figure 4.1. Schematic diagrams of a finite-diameter horizontal well in (a) a fractured 

water-table aquifer, and (b) a fractured leaky confined aquifer. 
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2 2 2

1 2 0 0 02 2 2
( ) ( ) ( ) ( )x y z S f

h h h hK K K S q t x x y y z z
x y z t

δ δ δ∂ ∂ ∂ ∂
+ + − Γ − Γ − = − − −

∂ ∂ ∂ ∂
.  (4.1) 

where Kx, Ky, Kz are the principal hydraulic conductivities (m/sec) in the x-, y-, and z-

directions of the fractures, respectively; h is hydraulic head (m); Ss is specific storativity 

(m-1); t is time (sec); qf is the aquifer pumping rate for a point sink/source (m3/sec) (qf>0 

means pumping); ( )uδ is the Dirac delta function; (x0, y0, z0) is the point source location; 

Γ1 is the fracture-matrix water exchange term, or the so-called surface inter-porosity flux 

term (1/sec); and  Γ2 is the inter-aquifer flux (leakage) term (1/sec). If Г1→0, Eq. (4.1) 

converges into the governing equation of a single-porosity aquifer and if Г2→0, Eq. (4.1) 

converges into the governing equation of a confined aquifer.   

We separate the problem-solving process into two parts.  We will first get the point 

source solution and superpose them to acquire our ultimate solutions of finite-diameter 

horizontal wells.  Following Park and Zhan (2002), the finite volume horizontal wellbore 

can be visualized as superposition of many point sources, and the aquifer-pumping rate, 

Qf, can be defined as 

1( ) ( , , , )= ∫f f
V

Q t q x y z t dV
V

,       (4.2) 

where V is the volume of the horizontal wellbore and qf(x, y, z, t)/V is the point source 

strength.  To apply above equation, we assume an infinite conductivity inside the 

wellbore and the justification for this assumption can be found from Zhan et al. (2001) 

and Park and Zhan (2002). 

The outer boundary conditions along the x-axis and the y- axis are, 
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( ) 0, , ,
x

h x y z t h
=±∞

= , ( ) 0, , ,
y

h x y z t h
=±∞

= ,      (4.3) 

where, h0 is the initial head (m). The condition at the lower boundary is, 

( )
0

, , , / 0
z

h x y z t z
=

∂ ∂ = ,       (4.4) 

and at the upper boundary for a leaky confined aquifer is (Fig. 1(b)), 

( ), , , / 0
z d

h x y z t z
=

∂ ∂ = ,       (4.5) 

where d is the thickness of the aquifer (m).   

A horizontal well usually causes less interface movement compared to a vertical 

well with a given pumping rate since the pumping rate is distributed along a much longer 

screen.  Therefore, it is safe to assume a small perturbation for the water-table boundary.  

In this study we apply the model of delayed drainage from unsaturated zone for a water-

table boundary (Moench, 1997),  

( ) ( ) ( ){ }1 10
, , , / , , , / exp

t

z yK h x y d t z S h x y d t t dα τ α τ τ∂ ∂ = − ∂ ∂ − −∫ ,   (4.6) 

where α1 is an empirical constant for drainage from the unsaturated zone and Sy is the 

specific yield. 

The initial condition of the modeled domain is 

( ) 00
, , ,

t
h x y z t h

=
= .       (4.7)  
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We use a double-porosity approach to model the flux (Г1) between matrixes and 

fractures.  By taking double-porosity aquifer into consideration, the subsidiary equation 

in the sphere shaped matrix will be (Deruyck, 1982), 

2
2 S

K h hr S
r r r t
′ ′ ′∂ ∂ ∂  ′= ∂ ∂ ∂ 

,   
    

(4.8) 

where K′ is the hydraulic conductivity (m/sec), Ss′ is the specific storage (m-1), and h′ is 

the hydraulic head (m), all referring to the matrix. The inter-porosity flux is (Deruyck, 

1982), 

1
3

mm r r

K h
r r =

′ ′∂ Γ =  ∂ 
, 

      
(4.9) 

where rm is the radius (m) of the matrix block. 

The initial and boundary conditions for matrixes are, respectively, 

00t
h h

=
′ =  and 

mr r
h h

=
′ = . 

      
(4.10)  

The inter-aquifer flux (leakage) term is given by Γ2.  In case the aquifer is 

confined by an aquitard, only the vertical flux is considered and the governing equation 

for the vertical flow in the aquitard is (Hantush, 1960), 

2

2
C C

C SC
h hK S
z t

∂ ∂
=

∂ ∂
,       (4.11)  

where KC is the hydraulic conductivity (m/sec), hC is the hydraulic head (m), SSC is the 

specific storativity, all referring to the aquitard (m-1).  The inter aquifer flux is given by 
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2

C

C C

z d

K h
d z =

∂
Γ =

∂
,        (4.12)  

where dc is the thickness  of the aquitard (m). The initial, upper and lower boundary 

conditions for the aquitard are, respectively, 

00C t
h h

=
= ,  00C z

h h
=
= , and 

C
C z d

h h
=

= .
      

(4.13) 

For the convenience of calculation, we change the variable from head, h, to 

drawdown, s=h0-h, and define the dimensionless parameters in Table 4.1 where all the 

parameters are explained in the List of Symbols. The variable for subsidiary equations, 

h′ and hC are also changed into s′=h0-h′ and sC=h0-hC and converted into dimensionless 

parameters in the same way as h. 

4.2.1 Solution in the Laplace domain 

By introducing the dimensionless variables (Table 4.1) and applying Laplace 

transform, Eq. (4.1) becomes: 

2 2 2
0 0 0

1 22 2 2

4 ( ) ( ) ( ) ( )fD D D D D D DD D D
D D D

D D D

q p x x y y z zs s s ps
x y z p

π δ δ δ− − −∂ ∂ ∂
+ + − Γ − Γ − =

∂ ∂ ∂
, (4.14) 

where a term with “bar” denotes the corresponding term in Laplace domain and the 

subscript  “D” refers to a dimensionless term defined in Table 4.1. All the terms used 

hereinafter have been explained in the List of Symbols.   

By solving subsidiary equations (see Hantush, 1960; Deruyck, 1982), the main 

governing Eq. (4.14) becomes 
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Table 4.1. Dimensionless parameters. 

4 x y
D

K K d
s s

q
π

=  
3

2

4 x y S

z c

K K S d
K r

β =  

z
D

x

x Kx
d K

= , z
D

y

y Ky
d K

= , D
zz
d

=  
C

z

K
K

φ =  

2
z

D
s

Kt t
S d

=  s

y

S d
S

θ =  

3

1 1

4 x y
D

z

d K K
qK

π
Γ = Γ  

SC z

S C

S K
S K

γ =  

3

2 2

4 x y
D

C

d K K
qK

π
Γ = Γ  

3

mD z

K
r K

µ
′

=  

D
rr
d

= , mD
rr
d

= , wD
rr
d

=  S

z S

K S
K S

ω
′

=
′

 

C
CD

dd
d

=  S

S

S
S

σ
′

=  

2
w s

x y

r LC
d K K

α =  1 y

z

S d
K

α
η =  

 



 83

0 0 02 2 4 ( ) ( ) ( ) ( )fD D D D D D D
D D

q p x x y y z z
s s

p
π δ δ δ− − −

∇ −Ψ =     (4.15) 

where 

( ) 1coth cothCD mD

mD

p pp d p r p
r

φ γ γ µ
ω ω

   Ψ = + − +      
,    (4.16) 

where the first term inside the square root sign is related to the leakage through the 

aquitard, and the second term inside the square root sign is related to the flow between 

matrix and fracture. 

By applying dimensionless parameter conversion (Table 4.1) and Laplace 

transform, Eqs. (4.3)-(4.7) become 

( ), , , 0
D

D D D D x
s x y z p

=±∞
= , ( ), , , 0

D
D D D D y

s x y z p
=±∞

= .    (4.17) 

( )
0

, , , / 0
D

D D D D D z
s x y z p z

=
∂ ∂ = .       (4.18) 

The upper boundary condition can be either no-flow boundary (leaky confined 

aquifer) 

( )
1

, , , / 0
D

D D D D D z
s x y z p z

=
∂ ∂ = ,       (4.19) 

 or free boundary (water-table aquifer) (Moench, 1997) 

( ) ( ), ,1, , ,1,D D D D D D

D

h x y p ph x y p
z p

η
ηθ

∂
= −

∂ +
       (4.20) 
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The solutions for Eqs. (4.15) and (4.17)-(4.20) are derived in Appendix and is given 

below. 

( ) ( ) ( ) ( )
0

2 2 2
0 0 0

1

( , , , )

2 4 cos cos

fD
D D D V

fD
D D D DV

n

Q
s x y z p g dV

V
Q

K r n z n z K r n dV
V

π π π
∞

=

=

= Ψ + Ψ +

∫

∑∫
,  (4.21) 

for a leaky confined aquifer, and 

( ) ( )
( ) ( )0 2 2

0
0

( , , , )
1 0.5sin 2 /

4cos cosfD m D m D
D D D D mV

m m m

Q z z
s x y z p K r dV

V
ε

ε ε
ε ε

∞

=

= Ψ +
+∑∫ ,  (4.22) 

for a water-table aquifer, where 

( )tanm m
p

p
ηε ε
ηθ

=
+

. 

4.2.2 Aquifer pumping rate 

The wellbore storage is one of the important parameters that mask the early time 

or the near field pressure data.  In most horizontal well applications, fairly long 

wellbores are used to enlarge the contact area with the targeting aquifer systems.  

Therefore, the effect of disturbing the early time aquifer response is much severe in 

horizontal well applications than that in vertical wells.  The analytical approach of 

wellbore storage effect of a finite-diameter horizontal well is well introduced in the 

previous study (Park and Zhan, 2002).  In the present study, our interests are about leaky 

confined aquifer with aquitard storage and water-table aquifer in fractured or non-

fractured aquifers, and we need to develop new solutions considering different aquifer 
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conditions.  Park and Zhan (2002) have given the aquifer-pumping rate by a finite 

diameter horizontal wellbore in the Laplace domain,QfD, as 

{ }
( )

1 *( )fDQ p
p p g p

αβ
α αβ

=
+ +  

,      (4.23) 

for a monitoring piezometer outside of the wellbore.  The aquifer-pumping rate inside 

the wellbore is independent of the location within the wellbore and based on the work of 

Park and Zhan (2002) [Eq. (18)], it is given by, 

( ){ }
( ){ }

1 *

1 *fD

g p
Q

p p g p
β

α αβ

+
=

 + + 
.      (4.24) 

The skin is assumed to be infinitesimally thin when using Eqs. (4.23)-(4.24).  This 

treatment is similar to those used by Dougherty and Babu (1984), Kabala and Cassiani 

(1997), and many others in studying vertical wells.  The arguments with and relationship 

between the infinitesimal and the finite thickness skins are well defined by Moench and 

Hsieh (1985) and Park and Zhan (2002). 

In this study, the surface average of the geometric functions,g*, differs from the 

previous case of a leaky confined aquifer without aquitard storage.  The point source 

solutions derived through this study, Eqs. (4.21)-(4.22), are the foundation for the 

following work.  The relationship between the point source solution and the surface 

average of the geometric function is defined in the following Eq. (4.25). 

( )0 0 0 0
1*( ) , , ; , , ,D D D D D DA V

g p g x y z x y z p dVdA
VA

= ∫ ∫ ,    (4.25) 
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where V is the volume of the horizontal wellbore and A is the area right outside of the 

wellbore. 

For most of the horizontal well applications, the lengths of the wellbores are 

reasonably long and the wellbore storages and skin effects are profound during the early 

time.  Under those conditions, we can approximate Eq. (4.25) by employing several 

identities used in previous studies (Hantush, 1964; Zhan et al, 2001; Park and Zhan, 

2002).  For leaky confined and confined aquifers, we can approximate the surface 

average of the geometric function as 

( )2

2 2 2 2
1

1 1*( ) 2 cos2
wD

nD

g p n z
L p p n

π
π

π ∞

=

  ≈ + 
+Ψ +Ψ +  

∑ ,   (4.26) 

and for water-table aquifers, it is 

( )
( ){ }

2
0

2 2
*( )

1 0.5sin 2 /

4 cos D

D

z
g p

L p

π ε
ε ε ε

≈
+ +Ψ +

.      (4.27) 

The derivations of Eqs. (4.26)-(4.27) follow the same procedure presented in Park and 

Zhan (2002).   

For most of the practical calculations, we can simplify the geometric function of a 

finite diameter horizontal wellbore by reducing the dimension of the integration (Park 

and Zhan, 2002).  Park and Zhan (2002) point out that the finite-diameter geometric 

function is computationally demanding but its effect only exists during very early time 

and converges to the line geometric function at 2 2/( )D D Dt x y+ =0.01 in an isotropic aquifer 

if excluding the wellbore storage.  Therefore, we can safely substitute the finite-diameter 
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geometric function by the line geometric function.  The numerical evaluation of the 

analytical solutions is accomplished using a MATLAB script developed by the authors.  

This numerical algorithm is used to conduct the Laplace inversion to get the drawdowns 

in real time (Stehfest, 1970; de Hoog et al, 1982; Hollenbeck, 1998).  The MATLAB 

script used for this study is denoted FINHOW2 and is available by individual contact.  

This program can handle six types of aquifer conditions: confined, leaky confined, 

and water-table aquifers, and each of them can be either fractured or non-fractured. This 

program uses up to twenty-one controllable hydrogeologic parameters: d, dc, Kx, Ky, Kz, 

K′, Kc, rm, Ss, Sy, Ss′, Ssc, α1, and well parameters Cw, L, rw, Q, x, y, z, zw.  All these 

parameters are explained in the List of Symbols. 

4.3 Sensitivity Analyses 

In the following, we conduct sensitivity analyses of the theoretical model.  The 

default parameter values used in the sensitivity analyses are presented in Table 4.2.  For 

all the sensitivity analyses, the monitoring piezometer is located at (1 m, 1 m, 5 m). 
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Table 4.2. Hypothetical default parameters used for sensitivity analyses. 

Parameter Default value 

D 10 m 

Kx, Ky, Kz 0.0001 m/sec (isotropic if not specified) 

Ss 0.00002 m-1 

Q 0.001 m3/sec 

L 100 m 

zw 5 m 

rw 0.1 m 

Cs 0.0001 sec-1 

Fractured aquifer 

K′ 0.00001 m/sec  (if not specified) 

SS′ 0.001 m-1 (if not specified) 

rm 1 m 

Leaky aquifer 

KC 0.000001 m/sec 

SSC 0.0001 m-1 
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Table 4.2. Continued 

Parameter Default value 

dC 1 m 

Water-table aquifer 

Sy 0.2 

α1 100 m/sec 
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4.3.1 Comparison of hydraulics between confined and water-table aquifers 

The hypothetic response of confined and water-table aquifers considering fractured 

and non-fractured aquifer media is presented in Figure 4.2.  Notice that the drawdowns 

in a fractured aquifer always refer to those in the fractures, not in the matrixes. As 

expected, horizontal well pumping in a water-table aquifer causes much less drawdown 

especially after the mid-time when the water is supplied from the unsaturated zone.  In a 

confined aquifer that is either fractured or non-fractured, there is an appreciable 

difference between a fractured aquifer and a non-fractured aquifer in later time 

drawdown history.  That is because water is extracted from the storage in a confined 

aquifer; a fractured confined aquifer has extra storage water from the matrixes in 

additional to the fractures, thus should has less drawdowns compared with a non-

fractured confined aquifer.  In a water-table aquifer, the drawdowns for both fractured 

and non-fractured cases converge in later time and no appreciable effect of matrix flow 

can be found.  The reason for this is that after the mid-time, the unsaturated zone plays 

its role as a main reservoir that supplies water to the aquifer. Such a main water source 

substantially surpasses any difference of storage water contributions from a fractured or 

non-fractured aquifer. Therefore, the difference caused by matrix flow during the early 

time disappears after the mid-time and the two curves, one for fractured and one for non-

fractured merge at the later time. 
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Figure 4.2. Comparison of dimensionless drawdowns versus dimensionless times in a 

log-log scale (type curves) for different aquifer types and media.  Non-fractured 

confined aquifer is bold solid line; fractured confined aquifer is thin solid line; Non-

fractured water-table aquifer is bold dash line; and fractured water-table aquifer is thin 

dash line.   
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4.3.2 Wellbore storage and skin effects 

To verify the wellbore storage effects, we test several different dimensionless radii 

of horizontal wellbores of 0.001, 0.01, 0.02, 0.03, and 0.1 with a given skin conductance 

of 0.0001 sec-1 in a fractured confined aquifer and a fractured water-table aquifer (Figure 

4.3).  We find that the wellbore storage effects in both fractured confined aquifers and 

fractured water-table aquifer are very similar to what we have seen in non-fractured 

confined aquifers (Park and Zhan, 2002). That is: the wellbore storage effects mask the 

early time responses and a larger dimensionless wellbore radius represents a greater and 

longer lasting wellbore storage effect.  This finding indicates that the wellbore storage 

effect substantially surpasses the matrix-fracture flow effect at the early pumping stage. 

In regard to the skin effect, the results of fractured confined aquifers and fractured 

water-table aquifers are also very similar to those in non-fractured confined aquifers 

(Park and Zhan, 2002).  Figure 4.4 compares the solutions of different skin effects (α) 

with an ideal case solution of Zhan and Zlotnik (2002) that does not account for the 

wellbore storage and skin effects in water-table aquifers. This figure shows that the type 

curves depart from that of Zhan and Zlotnik (2002) at early and intermediate times, but 

converge to that of Zhan and Zlotnik (2002) at the late time. Furthermore, the smaller the 

α, the longer it takes to converge.  
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Figure 4.3. Comparison of different wellbore radius in a fractured water-table aquifer.  

Ideal response of the aquifer (bold line) is compared with several different finite 

wellbore solutions (thin line) with different dimensionless wellbore radius (rwD=0.001, 

0.01, 0.02, 0.03, and 0.1). 
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Figure 4.4. Comparison of different skin parameters (α) in porous water-table aquifer.  

Ideal response of the aquifer (bold line) and the previous study (bold dash line) is 

compared with several different dimensionless skin parameters of this study (α=0.01, 0.1, 

1, and 10). 
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For instance, for α=100 and 10-2, the type curves converge to the type curve of Zhan and 

Zlotnik (2002) at approximately at 2/ DD rt =10 and 103 respectively.  Using the 

parameters in Table 4.1, these are corresponding to t=4 sec and 400 sec, respectively. 

This indicates that after the first several minutes of pumping, the Zhan and Zlotnik 

(2002) can be safely used for practical purpose.  

4.3.3 Specific storativity of the aquitard 

We make sensitivity analysis on dimensionless aquitard storage parameters (γ), 

which is proportional to the aquitard specific storativity.  In a case that the aquitard 

storage is non-negligible (silt/clay), the water supply from the aquitard storage plays a 

role during the mid-time of the type curve when compared to the case excluding the 

aquitard storage (See Figure 4.5).  The highest value of dimensionless aquitard storage 

parameter shows the greatest deviation from negligible aquitard storage model. It is 

interesting to find out that at the late time, the storage water from the aquitard is depleted 

and the type curves corresponding to different aquitard storage coefficients merge to the 

type curve of the case excluding the aquitard storage.   
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Figure 4.5. Comparison of different aquitard storage parameters (γ).  No aquitard storage 

case (bold line) (Park and Zhan, 2002) is compared with several different dimensionless 

aquitard storage parameters (γ=5,000,000, 500,000, and 50,000). 
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4.3.4 Hydraulic conductivity of the matrix 

We test several hydraulic conductivity ratios (ν) of 10-1, 10-3, 10-5, and 10-7 under 

S′s/Ss=50.  Figure 4.6 shows a few interesting results for a confined aquifer. First, the 

higher hydraulic conductivity of the matrix (higher ν value) results in the lower 

drawdown at a given time. Second, the type curves with different ν values converge at 

the late time, and the smaller the ν value, the longer it takes to converge. Third, the type 

curves with different ν values depart from the non-fractured type curve developed by 

Park and Zhan (2002), and the larger the ν value, the earlier it starts to depart.   

Using the same hydraulic conductivity ratios and S′s/Ss as that used in Figure 4.6, 

Figure 4.7 shows the result for a water-table aquifer.  In Figure 4.7, one can see that the 

trends are similar to that of a fractured confined aquifer. However, the effect caused by 

the hydraulic conductivity of the matrix is more prominent at the early time, but less 

prominent at the late time.  That is because at the late time, most of the water is supplied 

from the unsaturated zone, thus the contribution from the matrix becomes much less 

important.  Figure 4.7 shows that one can apply the non-fractured aquifer solution to the 

fractured aquifer system in a water-table aquifer if the contrast of the hydraulic 

conductivity between fracture and matrix is very large (ν 510−≤ ). According to this 

analysis, we generally cannot ignore the water flow from matrix to fracture even if the 

hydraulic conductivity of the matrix is almost negligible compare to that of fracture.   
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Figure 4.6. Comparison of different hydraulic conductivities of the matrix in fractured 

confined aquifer system.  Non-fractured aquifer solution (bold line) (Park and Zhan, 

2002) is compared with several different hydraulic conductivity ratios between matrix 

and fracture (ν=10-1, 10-3, 10-5, and 10-7). 



 99

 

Figure 4.7. Comparison of different hydraulic conductivities of the matrix in fractured 

water-table aquifer system.  Non-fractured aquifer solution (bold line) is compared with 

several different hydraulic conductivity ratios between matrix and fracture (ν=10-1, 10-3, 

10-5, and 10-7). 
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4.3.5 Specific storativity of the matrix 

We test several specific storativity ratios (σ) of 5,000, 500, 50, and 5 under 

K′/Kz=10-5.   In Figure 4.8, one can see that after a certain time, drawdown curves start to 

depart from the early single porosity curve. One can see that the departing times and 

depressions of the drawdown curves depend on specific storativity ratios.  Our analysis 

shows that when the specific storativity of the matrix is very small, the fractured aquifer 

solution converges into the non-fractured aquifer solution. However, in many real cases, 

the matrix systems have much higher capabilities to store water than fracture systems, 

thus the fractured aquifer solutions are substantially different from the non-fractured 

aquifer solutions.  On the contrary, in a fractured water-table aquifer system, the solution 

is much less sensitive to the specific storativity ratio. This is because the drawdown 

depends more on the water from the unsaturated zone than from the matrix after the mid-

time.   
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Figure 4.8. Comparison of different specific storativity of the matrix in fractured 

confined aquifer system.  Non-fractured aquifer solution (bold line) is compared with 

several different specific storativity ratios between matrix and fracture (ν=5,000, 500, 50, 

and 5). 
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4.4 Conclusions 

Three-dimensional semi-analytical solutions for finite-diameter horizontal wells in 

fractured shallow aquifer systems, i.e. water-table aquifers and leaky confined aquifers, 

are derived through this study.  They have more applicability on many realistic aquifer 

systems including fractured/non-fractured aquifers.  The derived solutions improve 

previous finite diameter aquifer solutions (Park and Zhan, 2002) by considering 

fractured media and also including aquitard storage.  Also, the solutions improve 

previous horizontal well solutions for water-table aquifers (Zhan and Zlotnik, 2002) by 

including wellbore storage and skin effects.     

The solutions are derived base on the method of superposition by integrating the 

point-source solutions.  A graphically integrated numerical MATLAB program named 

FINHOW2 is developed to facilitate the input and output handling.  This program can 

handle six types of aquifer conditions and twenty-one controllable hydrogeologic and 

well parameters. 

In general, the drawdowns are more sensitive to the hydraulic conductivity and 

storativity of the matrix in a fractured confined aquifer than that in a fractured water-

table aquifer. 

In a confined aquifer that is either fractured or non-fractured, there is an 

appreciable difference between a fractured aquifer and a non-fractured aquifer at the 

later time.  In a water-table aquifer, the drawdowns for both fractured and non-fractured 

cases converge at the later time and no appreciable effect of matrix flow can be found. 
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We find that the wellbore storage effects in both fractured confined aquifers and 

fractured water-table aquifer are very similar to what we have seen in non-fractured 

confined aquifers (Park and Zhan, 2002). This finding indicates that the wellbore storage 

effect substantially surpasses the matrix-fracture flow effect at the early pumping stage 

in a fractured aquifer.  In regard to the skin effect, the results of fractured confined 

aquifers and fractured water-table aquifers are also very similar to those in non-fractured 

confined aquifers (Park and Zhan, 2002).  We find that for practical purpose, the skin 

effect is usually negligible after the first several minutes of pumping in a water-table 

aquifer. 

In a case that the aquitard storage is non-negligible (silt/clay), the water supply 

from the aquitard storage plays a role during the mid-time of the type curve when 

compared to the case excluding the aquitard storage. 

Several interesting results are found with different matrix/fracture hydraulic 

conductivity ratios (ν) in a confined aquifer. The type curves with different ν values 

depart from the non-fractured type curve developed by Park and Zhan (2002).  In a 

fractured water-table aquifer, the effect caused by the hydraulic conductivity of the 

matrix is more prominent at the early time, and less prominent at the late time.  We can 

apply the non-fractured aquifer solution to the fractured aquifer system in a water-table 

aquifer if the contrast of the hydraulic conductivity between fracture and matrix is very 

large (ν 510−≤ ). We generally cannot ignore the water flow from matrix to fracture even 

if the hydraulic conductivity of the matrix is almost negligible compare to that of 

fracture. 
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In a fractured confined aquifer, the solution is sensitive to the specific storativity 

ratio; but in a fractured water-table aquifer, the solution is much less sensitive to the 

specific storativity ratio.   
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CHAPTER V 

SUMMARY AND FUTURE WORKS 

5.1 Summary 

In this dissertation, we have investigated the contaminant transport problems from 

finite sources in a finite thickness aquifer with consideration of point, line, area, and 

volume sources.  We have also studied well hydraulics of finite diameter horizontal 

wells in finite thickness confined, leaky confined, and water table aquifers with 

consideration of porous or fractured media.   

In Chapter II, we generated analytical solutions of multidimensional concentration 

fields originated from one- two-, and three-dimensional, finite sources within finite-

thickness aquifers using the Green’s function method.  Based on our findings, a library 

of analytical solutions for different source shapes is compiled.  To facilitate the 

calculation, a computational code integrated with the library of many different source 

shapes and the graphical user interface is developed.  The derived analytical solutions 

show that the upper and lower aquifer boundaries have a profound influence upon the 

concentration distribution. We also find that the concentration at a near field point is 

sensitive to the source geometry when the dispersion coefficients are anisotropic; it is 

less sensitive to the source geometry when the dispersion coefficients are isotropic.  The 

concentration at a far field is found to be almost independent of the source geometry.  

In Chapter III, we provided solutions on groundwater flow to a finite-diameter 

horizontal well including wellbore storage and skin effect.  These solutions offer better 
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physical insights than previous line source solutions into the hydraulics of horizontal 

wells in three-dimensionally anisotropic leaky aquifers.  They are more useful for 

describing the near field drawdown behavior.  A graphically integrated numerical 

MATLAB program FINHOW is written to evaluate the developed semi-analytical 

solutions and to provide the type curves of groundwater flow to a finite-diameter 

horizontal well.   

Our solution shows that the finite-diameter of the well only influences the near 

field at the early flow time.  The finite-diameter solution converges to the line source 

solution at very early dimensionless time in an isotropic aquifer if excluding the 

wellbore storage.  If the wellbore storage is included, it will take a much longer time for 

the finite-diameter solution to converge to the line source solution.  The skin effect 

impacts flow through the conductance of the wellbore skin.  A higher skin conductance 

means easier flow from the aquifer to the well and quicker response of the aquifer to the 

pumping.  When the skin conductance increases, the drawdown becomes less sensitive 

to the skin conductance, and the type curves approach the asymptotic limit that is 

corresponding to an infinite conductance case.  The anisotropy controls the relative 

strength of vertical and horizontal flows at the early time, and thus shows a strong 

influence on the early time near-field drawdown.  The leakage parameter influences the 

late pseudo-radial flow substantially but has limited impact on the early and intermediate 

flows when excluding the storage in the leaky confining layer.  

In Chapter IV, three-dimensional semi-analytical solutions for finite-diameter 

horizontal wells in fractured shallow aquifer systems, i.e. water-table aquifer and leaky 
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confined aquifer, are derived.  They have more applicability on many realistic aquifer 

systems including fractured/non-fractured aquifers.  The derived solutions improve 

previous finite diameter aquifer solutions developed in the Chapter III by considering 

fractured media and also including aquitard storage.  Also, the solutions improve 

previous horizontal well solutions for water-table aquifers by including wellbore storage 

and skin effects.  A graphically integrated numerical MATLAB program named 

FINHOW2 is developed to facilitate the input and output handling.  This program can 

handle six types of aquifer conditions and twenty-one controllable hydrogeologic and 

well parameters. 

In general, the drawdowns are more sensitive to the hydraulic conductivity and 

storativity of the matrix in a fractured confined aquifer than that in a fractured water 

table aquifer.  In a confined aquifer that is either fractured or non-fractured, there is an 

appreciable difference between a fractured aquifer and a non-fractured aquifer in later 

time drawdown history.  In a water-table aquifer, the drawdowns for both fractured and 

non-fractured cases converge in later time and no appreciable effect of matrix flow can 

be found.  We find that the wellbore storage effects in both fractured confined aquifers 

and fractured water table aquifer are very similar to what we have seen in non-fractured 

confined aquifers. This finding indicates that the wellbore storage effect substantially 

surpasses the matrix-fracture flow effect at the early pumping stage in a fractured aquifer.  

In regard to the skin effect, the results of fractured confined aquifers and fractured water 

table aquifers are also very similar to those in non-fractured confined aquifers.  We find 

that for practical purpose, the skin effect is usually negligible after the first several 
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minutes of pumping in a water table aquifer.  In a case that the aquitard storage is non-

negligible (silt/clay), the water supply from the aquitard storage plays a role during the 

mid-time of the type curve when compared to the case excluding the aquitard storage.  

Several interesting results are found with different matrix/fracture hydraulic conductivity 

ratios in a confined aquifer.  The type curves with different matrix-fracture hydraulics 

conductivity ratio, ν, values depart from the non-fractured type curve developed by 

Chapter III.  In a fractured water table aquifer, the effect caused by the hydraulic 

conductivity of the matrix is more prominent in the early time, and less prominent in the 

late time.  We can apply the non-fractured aquifer solution to the fractured aquifer 

system in a water-table aquifer if the contrast of the hydraulic conductivity between 

fracture and matrix is very large.  We generally cannot ignore the water flow from 

matrix to fracture even if the hydraulic conductivity of the matrix is almost negligible 

compare to that of fracture.  In a fractured confined aquifer, the solution is sensitive to 

the specific storativity ratio; but in a fractured water table aquifer, the solution is much 

less sensitive to the specific storativity ratio.  

Finally, I expect our works will be used for many practical problems related with 

contaminant transport, and application of horizontal wells in environmental and 

hydrological problems.  Our ultimate goal are keeping our invaluable resources, 

groundwater, from deteriorations and depletions and finding better ways to manage 

groundwater resources. 
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5.2 Future Works 

Based on this study, the finite contaminant source model in contaminant transport 

theory will be improved to be closer to reality.  The mixed type boundary condition will 

be considered to simulate more realistic contaminant solute effluent phenomenon from 

source zone.   

The horizontal wells have very high potential to be experienced the heterogeneity 

of the aquifer system due to its long wellbore.  On the basis of this study, the new 

methods to figure out field heterogeneity using horizontal wells will be developed.  Also, 

in analytical simulation, horizontal wells have been treated as constant flux boundary 

with no internal impedance of water flow but, in reality, we need to consider it as a 

constant head boundary and also need to consider the internal impedance of water flow.  

In the following study, all the problems mentioned will be addressed. 
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NOMENCLATURE 

1. CHAPTER II 

C    concentration of point at time (kg/m3) 

d    aquifer thickness (m) 

Kx, Ky, Kz  longitudinal, transverse horizontal and vertical dispersion 

coefficients (m2/day) 

G    Green’s function 

q0    constant source strength (kg/(m3⋅day)) 

qa   area source strength function (kg/(m2⋅day)) 

qf    line source strength function (kg/(m⋅day)) 

qp    point source strength function (kg/day) 

qv    volume source strength function (kg/(m3⋅day)) 

S(M,t)   source function 

t   time (day) 

v   velocity of groundwater (m/day) 

x, y, z   coordinates of the point where concentration is measured (m) 

x0, y0, z0, z1  sources dimensions along the x, y-, and z-axis (m) 

δ( ),   Dirac Delta function 

λ   first-order decay factor (day-1) 
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2. CHAPTER III 

BD   Dimensionless leakage coefficient 

 Cs   Conductance of wellbore skin (sec-1) 

 d   Thickness of leaky confined aquifer (m) 

 d′     Thickness of leaky confining layer (m) 

 ds   Thickness of skin (m) 

 f   Averaged drawdown outside of the skin (m) 

 fD   Dimensionless averaged drawdown outside of the skin 

fD Dimensionless averaged drawdown outside of the skin in Laplace 

domain 

 g0   Dimensionless point geometric function 

g Dimensionless geometric function of horizontal well in Laplace 

domain 

g0   Dimensionless point geometric function in Laplace domain 

g* Dimensionless averaged geometric function of horizontal well in 

Laplace domain 

 h   Hydraulic head (m) 

 h0   Initial hydraulic head (m) 

K   Hydraulic conductivity of an isotropic aquifer (m/sec) 

 K′   Hydraulic conductivity of leaky confining layer (m/sec) 

 K0( )   Modified Bessel function second kind zero order 
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 Ks   Hydraulic conductivity of skin zone (m/sec) 

 Kx, Ky, Kz Principal hydraulic conductivities along x-, y-, and z- axis, 

respectively (m/sec) 

 L   Screen length of horizontal wellbore (m) 

 LD   Dimensionless Screen length of horizontal wellbore 

 L-1( )   Inverse Laplace transform, respectively 

 p   Laplace transform variable with respect to dimensionless time 

 Q   Total pumping rate (m3/sec) 

 Qf   Total aquifer pumping rate (m3/sec) 

 Qw   Total wellbore storage pumping rate (m3/sec) 

 QfD   Dimensionless total aquifer pumping rate 

 QwD   Dimensionless total wellbore storage pumping rate 

QfD Dimensionless total wellbore storage pumping rate in Laplace 

domain 

 q   Reference pumping rate (m3/sec) 

 qf   Aquifer pumping rate (m3/sec) 

 qfD    Dimensionless aquifer pumping rate  

q′fD     Modified dimensionless aquifer pumping rate in Laplace domain 

 q′fD     Modified dimensionless aquifer pumping rate in real time domain 

rc   Radius of the casing connected with the horizontal well screen (m) 

rD Dimensionless horizontal distance from point source to 

monitoring location 
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rs   =rw+ds, outer radius of the skin (m) 

 rw   Wellbore radius (m) 

 rwD   Dimensionless wellbore radius 

 Ss   Specific storativity (m-1) 

 s   Drawdown outside wellbore (m) 

 sD   Dimensionless drawdown outside wellbore 

sHD   Dimensionless drawdown caused by a horizontal well 

 s′D     Modified dimensionless drawdown outside wellbore 

s′D   Modified dimensionless drawdown outside wellbore in Laplace 

domain 

 sw   Drawdown inside wellbore (m) 

 swD   Dimensionless drawdown inside wellbore 

 t   Time (sec) 

 tD   Dimensionless time 

V   Volume of finite diameter horizontal wellbore (m3) 

x, y, z Longitudinal, transversal, and vertical coordinates, respectively 

(m) 

 x0, y0, z0  Coordinates of the point source along the x-, y-, and z- axis (m) 

 x0D, y0D, z0D Dimensionless coordinates of the point source along the x-, y-, and 

z- axis 

xD, yD, zD Dimensionless coordinates of the monitoring point along the x-, y-, 

and z-axis 
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zw Depth from the central axis of the horizontal well to the lower 

boundary (m) 

 α   Dimensionless skin conductance coefficient 

 β   Dimensionless wellbore storage coefficient 

 δ( ) Dirac delta function 

η Skin effect parameter 

 

3. CHAPTER IV 

A,   area along outside of the horizontal wellbore (m2) 

d,   thickness of the aquifer (m) 

dc,   thickness of the aquitard (m) 

Cw,   conductance of wellbore skin (s-1) 

g0 Dimensionless point geometric function in Laplace domain 

g* Dimensionless averaged geometric function of horizontal well in 

Laplace domain 

h,   hydraulic head (m) 

h′,   hydraulic head in the matrix (m) 

h0,   initial hydraulic head (m) 

hC,   hydraulic head in the aquitard (m) 

K0( ),   second kind zero-order modified Bessel function 

Kx, Ky, Kz, principal hydraulic conductivities along x-, y-, and z- axis, 

respectively (m/s) 
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K′,   hydraulic conductivity of the matrix (m/s) 

Kc,   hydraulic conductivity of the aquitard (m/s) 

L,    screen length of horizontal wellbore (m) 

p,   Laplace transform variable with respect to dimensionless time 

Q,    total pumping rate (m3/s) 

QfD Dimensionless total wellbore storage pumping rate in Laplace 

domain 

r,   variable in spherical coordinate (m) 

rD,   dimensionless horizontal radial distance  

rm,    radius of the matrix (m) 

rw,    well radius (m) 

Ss,    specific storativity (m-1) 

Sy,   specific yield 

Ss′,    specific storativity of the matrix (m-1) 

Ssc,    specific storativity of the aquitard (m-1) 

s,    drawdown (m) 

s′,   drawdown in matrix (m) 

sC,   drawdown in aquitard (m) 

t,   time (s) 

V,    volume of finite diameter horizontal wellbore (m3) 

x, y, z,  longitudinal, transversal, and vertical coordinates, respectively (m) 

x0, y0, z0,   coordinates of the point source along x-, y-, and z- axis (m) 
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zw, depth from the central axis of the horizontal well to the lower 

boundary (m) 

α,   dimensionless skin conductance coefficient 

β,    dimensionless wellbore storage coefficient 

α1,   empirical constant for drainage from the unsaturated zone (s-1) 

δ( ),   Dirac Delta function 

Γ1,   inter-porosity flux between matrixes and fractures (s-1) 

Γ2,   leakage flux from adjacent aquifer (s-1) 
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APPENDIX A 

 

Eqs. (3.5)- (3.8) are solved using the procedure described in the Appendix of Zhan 

et al. (2001). The solution satisfying boundary conditions (3.6) and (3.7) can be written 

(eg. Dougherty DE, Babu (1984) and Moench (1997)): 

0
( ) ( , , )cos( )ω

∞

=

′ = ∑D n D D n D
n

s p H x y p z .      (A.1) 

where nH  is a function depending on the horizontal coordinates and p, and nω is the 

spatial frequency term. The solution is (Zhan et al., 2001): 

0 02 ( ) ( )fD DH q p K r p′= ,              (A.2) 

2 2
0 04 ( )cos( ) ( )π π′= +n fD D DH q p n z K r n p ,  n>0,      (A.3) 

where 2 2 1/ 2
0 0[( ) ( ) ]= − + −D D D D Dr x x y y  is the dimensionless horizontal radial distance 

between the source point and measuring point, and K0(u) is the second kind, zero order 

modified Bessel function. Substituting (A.2) and (A.3) into (A.1) results in the solution 

of ′
Ds .  Applying inverse Laplace transform to the solution of ′

Ds  and using the following 

identities (Hantush, 1964, p. 303) 

( )
2

1
0

1( ) exp( )
2 4

D
D

D D

rL K r p
t t

− = − , ( )
2

1 2 2 2 2
0

1( ) exp( )
2 4

D
D D

D D

rL K r p n n t
t t

π π− + = − − , (A.4) 

and the convolution theorem,  where L-1 is the inverse Laplace operator, one obtains  
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2
2 2

0
10

( )( ) exp 1 2 cos[ ]cos[ ]exp
4

τ
τ
τπ π π τ

τ
∞

=

    −        
= − + −′ ′ ∑∫ fD D

Dt
D

D D D D
n

t
r ds t q n z n z n . (A.5) 

Combining (A.5) and definitions of Ds′  and fDq′ in List of Symbols, one obtains the 

dimensionless drawdown 

2
2 2

2 0
10

( )( ) exp 1 2 cos[ ]cos[ ]exp4τ
τ

τ τπ π π τ
τ

∞

=

    − −       
= − + −∑∫ fD D

Dt
D

D D D D
nD

t
r ds t q n z n z nB

. (A.6) 
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APPENDIX B 

 

Eq. (4.15) can be solved based on the boundary conditions, Eqs. (4.17)-(4.20).  

According to previous studies (Dougherty and Babu, 1984; Moench, 1997; Zhan et al., 

2001; Park and Zhan, 2002), the proposed solution that satisfies the boundary conditions 

is 

0 0
0

( ) ( , ; , , ) cos( ), , ,D n D D D D n D
n

D D Ds p f x y x y p zx y z ε
∞

=

= ∑ ,     (B.1) 

wheresD is the dimensionless drawdown in Laplace domain, fn is the function that 

depends on the horizontal coordinate and p, and εn is the spatial frequency term.  For the 

boundary conditions given by Eqs. (4.17)-(4.19), the solution procedure is same as Park 

and Zhan (2002). For the boundary conditions given by Eqs. (4.17)-(4.18) and (4.20), by 

applying Eq. (B.1) into Eq. (4.20), one has 

( )tann n
p

p
ηε ε
ηθ

=
+

,         (B.2) 

and from Eq. (B.2), one can find the value of εm by a simple root finding routine. 

By applying Eq. (B.1) into Eq. (4.15), multiplying cos(εmz0D), and integrating from 

dimensionless location of lower (zD=0) to upper (zD=1) boundaries along z-axis, one has 

  

( ) ( )
2 2

0 0 02 2

2 2

8 ( ) ( ) ( )cos( )
1 0.5sin 2 /

fD D D D D n DD D
n D

D D n n

q p x x y y zf ff
x y

π δ δ ε
ε

ε ε
− −∂ ∂

Ψ + = + +
∂ ∂ +

.   (B.3) 
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The solution for Eq. (B.3) is  

( ) ( )
( ) ( )0 2 2

0 0 0 0
0

0 , , ; , , ,
1 0.5sin 2 /

4cos cos( ) n D n D
D D D D D D D n

m
n n

z z
g y z y z p K rx x ε

ε ε
ε ε

∞

=
Ψ +

+
∑= , (B.4) 

where 2 2 1/ 2
0 0[( ) ( ) ]D D D D Dr x x y y= − + −  is the dimensionless horizontal radial distance 

between the source point, (x0D, y0D, z0D), and the measuring point, (xD, yD, zD), and K0( ) 

is the second kind, zero order, modified Bessel function. 
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