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ABSTRACT 

This work presents the development of two new rate-time relations which are based on self-growth 

limiting time-cumulative relations. This self-limiting feature provides an inherent upper limit on ultimate 

reserves and eliminates the need for a terminal decline component as is required in other time-rate 

relations. Another inherent advantage of this approach is that these new models introduce EUR as a 

regression parameter instead of using the "intercept rate" as the general regression parameter (as is the 

case in the Arps' time-rate relations and most subsequent models). 

 

As validation of these two new relations we employ synthetic solutions (i.e., reservoir simulation) as well 

as field performance data taken from a well-documented tight gas case and from two North American 

shale gas cases. As a summary statement, the new relations tend to be more "conservative" estimators (like 

the power-law exponential and other statistical relations (e.g., the Logistic Growth Model)) and less like 

the Arps' hyperbolic family of relations. In general, the new models match all of the cases reasonably well, 

but (as noted), the forecasted production and estimated ultimate recovery (EUR) extrapolations tend to be 

conservative. Unfortunately, the new models do not provide any direct diagnostic characteristics where the 

parameters in these relations could be estimated directly (e.g., as in the case of using the slope and/or 

intercept of a straight-line trend). 

 

Moreover, in this work we do provide a series of "time-cumulative" plotting functions in an attempt to 

provide data diagnostics which are less affected by data noise inherent in production data. These relations 

appear to be potentially useful — however; a concern remains regarding the introduction of new data 

diagnostic functions as the "Arps'" functions (D(t) and b(t)) are the standard variables used in practice and 

it is unlikely that industry practice will embrace new functions which do not provide significant 

advantages over the Arps' relations. Furthermore, we show that definitions of these diagnostics help us 

formulate some special plotting relations for proposed Modified Wiorkowski Model, which can be used to 

determine regression parameters directly from historical production data, reducing uncertainty.  

 

Finally, we present a study to integrate time-rate model parameters with fundamental completion reservoir 

properties (i.e., fracture conductivity (Fc), fracture half length (xf), formation permeability (k) and 30 year 

EUR (EUR30yr)) using parametric correlations. Previously, work by Ilk and Askabe has shown that it is 

possible to correlate reservoir/well properties that are estimated using model-based production data 

analysis with model parameters of time-rate relations. We demonstrate the application of a methodology 

that allows formulating multivariate parametric correlations to integrate completion/reservoir parameters 

with time-rate model parameters. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

The origin of "decline curve analysis" (i.e., the estimation of ultimate producible volumes from production 

curves) appears to be from the "Manual for the Oil and Gas Industry" written as part of the Revenue Act of 

1918 by the US Internal Revenue Service (1919).  Initially, only graphical extrapolations of production 

trends were presented, but the fundamental concept of using the "area under the curve" for estimated 

ultimate recovery is evident in this work. This work presents the development of two new rate-time 

relations which are based on self-growth limiting time-cumulative relations.  

 

Modified Wiorkowski Model is inspired from the Wiorkowski cumulative production model (1981), 

which is a variant of the Richards family of "statistical" growth curves.  Wiorkowski was trying to 

develop statistically rigorous models that can be used to ultimate oil production volumes from continental 

US.  We propose a simplified form of the Wiorkowski model below.  This model and the associated 

functions derived from it are presented in Appendix A. 

 

n
ipp tD aG=tG

~
])

~
exp[~1(

~
  )(   ............................................................................................................... (1.1) 

 

Based on the empirical observation of power-law (straight line) behavior of Arps' inverse loss ratio for 

early-time and transitional flow regimes in wells from low/ultra-low permeability reservoirs, Ilk, et al. 

(2008) formulated Power Law Exponential (PLE) rate-time relation.  We propose an intuitive integral 

form of PLE as below. This model and the associated functions derived from it are presented in Appendix 

B. 

 

])exp[1(  )( n
ipp tDtDG=tG    ...................................................................................................... (1.2) 

 

We also explore the utility of diagnostics that are based on growth character of historical cumulative 

production data.  We observed that these diagnostics provide characteristics that are less influenced by the 

noise that are ever-present in oil field data.  Furthermore, we show that definitions of these diagnostics 

help us formulate special plotting relations for proposed Modified Wiorkowski Model, which can be used 

to determine regression parameters directly from historical production data, thereby reducing uncertainty.  

 

We validate our proposed relations against existing rate-time relations (i.e., the Arps Exponential decline, 

the Arps Hyperbolic decline, the PLE, the Duong, and the Logistic Growth models) and we test their 

application for a number of well/reservoir configurations. 
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Finally, we present a study to integrate time-rate model parameters with fundamental completion and 

reservoir properties (i.e., fracture conductivity (Fc), fracture half length (xf), formation permeability (k) 

and 30 year EUR (EUR30yr)) using parametric correlations.  Previously, Ilk et al. (2011) and Askabe (2012)  

have shown that it is possible to correlate reservoir/well properties that are estimated using model-based 

production data analysis with model parameters of time-rate relations.  We demonstrated the application of 

a methodology that allows formulating multivariate parametric correlations to integrate completion and 

reservoir parameters with time-rate model parameters. 

For this study we considered a number of cases for a low permeability horizontal well with multiple 

transverse factures.  The correlations developed in this work allow the estimation of completion/reservoir 

properties from time-rate model parameters (with the help of benchmark results).  We investigate para-

metric correlations for the Modified Wiorkowski Model and the Modified Ilk Model for fracture 

conductivity, formation permeability, fracture half-length and 30-year EUR values.  

1.2 Objectives 

The objectives of this work are to: 

● To propose two new rate-time relations that are based on self-limiting growth functions. 

● To propose cumulative production diagnostics for flow data characterization which are analogous to 

decline diagnostics as proposed by Johnson and Bollens (1928) and later by Arps (1945). 

● To demonstrate the applicability and comparison of proposed rate-time relations with existing rate-

time relations for selected cases. 

● To develop a methodology for integration of reservoir/well properties — specifically, to demonstrate 

the correlation of fracture conductivity, formation permeability, fracture half-length and 30 year EUR 

estimate (EUR30yr ) with time-rate model parameters, using production data generated from numerical 

simulation models. 

1.3 Statement of the Problem 

Decline Curve Analysis techniques have been employed by petroleum engineers since the introduction of 

the Manual for the Oil and Gas Industry under the Revenue Act of 1918 by the US Internal Revenue 

Service (1919), to estimate oil and gas reserves.  Their widespread applicability and acceptance is due to 

their simplicity and simple formulations.  However, historical time-rate relations are empirical in nature 

and are only (strictly) applicable to the boundary-dominated flow regime.  Production forecasts from these 

models assume that the well continues production with same operating conditions as that of the past 
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production history.  Alternatively, several statistical models have been employed since the 1950s to 

determine total amount of recoverable hydrocarbons.  The basic aim of these studies was to estimate 

remaining reserves in the conterminous U.S. and the U.S. outer continental shelf.  These efforts employed 

both decline (in discoveries and yearly volumes) and growth in cumulative production. 

 

All rate-time relations currently being used for estimation of reserves face the problem of unconstrained 

growth of reserves. The traditional Arps' relations are based on "loss-ratio" and the "derivative of the loss-

ratio" functions as proposed by Johnson and Bollens (1928) and later by Arps (1945) are strictly valid in 

conventional reservoirs for boundary-dominated flow.  

 

Definition of the Loss-Ratio: 
 

dtdq

q

D /

1
  .................................................................................................................................... (1.3) 

 

Derivative of the Loss-Ratio: 
 




















dtdq

q

dt

d

Ddt

d
b

/

1
 ............................................................................................................. (1.4) 

 

Through time, these functions have been designated as the "Arps" relations due to the presentation and use 

of these relations in the seminal paper by Arps (1945).  These functions were used to develop the 

traditional Arps' time-rate relations.  On a practical note, when the traditional Arps' hyperbolic time-rate 

and time-cumulative relations are used to forecast production and to estimate reserves, these relations 

typically overestimate the performance for low to ultra-low permeability reservoirs.  For reference, the 

Arps' hyperbolic time-rate and time-cumulative relations are: 

 

Arps' Hyperbolic Time-Rate Model: 
 

b
i

hypi

tbD

q
tq

/1

,

)1(
)(


  ........................................................................................................................ (1.5) 

 

Arps' Hyperbolic Time-Cumulative  Model: 
 

])1(1[
)1(

/11, b
i

i

hypi
p tbD

Db

q
G 


  ............................................................................................... (1.6) 

 

For the case of wells in low to ultra-low permeability reservoirs, the performance of these wells is 

characterized by a very long transient flow regime, which often dominates most of the wells productive 

life (as much as 10-15 years, or more).  Often times, the traditional boundary-dominated flow regime is 

not observed in production data from wells in ultra-low (unconventional) reservoirs.  In such cases, the 
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incorrect application of the Arps' relations (Eqs. 1.5 and 1.6) to performance data for these wells often 

yields overestimation of reserves. 

 

The issue is that of the "Arps" b-parameter (or the "loss-ratio derivative,") which is typically on the order 

of 2 (rather than b < 1 as the traditional (boundary-dominated flow) assumption) — we note that a b-

parameter of 2 corresponds (as a coincidence) to the "linear flow" regime which exists for cases where the 

fractures in an multi-fractured horizontal well (MFHW) have pressure distributions that do not interfere. 

As is well known in the pressure transient testing literature, the linear flow regime depends on the 

properties of the hydraulic fractures as well as the permeability of the formation. 

 

Various modern rate-time relations have been proposed (Ilk et al 2008, Valko 2009, Clark et al 2011, 

Mishra 2012, etc.) that address this unbounded reserves problem.  These models result in better matches 

for low and ultra-low permeability wells with a very long transient and transition flow regime (Askabe et 

al 2012).  Ilk et al. (2008) observed that D-parameter exhibits a power law behavior for early time data. 

This is characterized by a straight line behavior on log-log plot of D- parameter versus time.  During late 

times, the PLE model can yield a constant (i.e., exponential) decline and, thus, can match transient, 

transition and boundary-dominated flow regimes.  

 

Furthermore, all proposed rate-time relations present the problem of non-uniqueness, where reasonable 

matches to historical production data can be obtained for more than one set of regression parameter 

combinations.  This results in substantial uncertainty in long time forecasts of time-rate data and can lead 

to significant variations in EUR estimates.  All time-rate relations that involve regression of more than two 

parameters experience this problem.  Some efforts have been made to remove non-linearity from 

parameter matching process by proposing diagnostic plots (Clark et al. 2011, Mishra 2012), which allow 

estimation of model parameters directly from field data character using graphical parameters such as the 

slope and intercept on a specific plot.  However, these methods still involve a prior knowledge of 

"Carrying Capacity" or "Initial-Gas-In-Place."  Therefore, a need arises to remove non-linearities from the 

model matching process so that regression parameters can be estimated from data character, which reduces 

uncertainty in production forecasts. 

 

1.4 Validation and Application 

In this section, we demonstrate the performance analysis of the Modified Wiorkowski Model (MWM) and 

the Modified Ilk Model(MIM) using a numerical simulation case.  A scheme is presented to allow direct 

parameter estimation for the Modified Wiorkowski Model from historical production data through a 

specialized plot, thereby eliminating non-linearities and reducing uncertainty in the model matching 

process (this work is presented in Appendix D).  However; it should be noted that this technique does not 

yield reasonable estimates of parameters for any field case data with regular noise and distortion (because 
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of depending on first and second order derivative parameters of gas rate) and thus should be further 

improved for actual field data cases.  We perform a model match on a diagnostic plot and compare the 

EUR estimates of proposed new models and existing time-rate relations.  Finally we will introduce the 

parametric correlation study. 

Numerical Simulation Case: Synthetic low permeability well 

For this numerical simulation case, we consider a low permeability horizontal well with multiple 

transverse fractures and we have generated a production profile for 10,000 days (~ 30 years) as a means of 

validating the EUR30Yr (estimated ultimate recovery at 30 years).  The well is produced at a constant 

bottomhole pressure of 1,000 psia.  The model input parameters are provided in Table 1.1.  The historical 

flow rate and cumulative production data is shown in Fig. 1.1. 

Table 1.1 — Reservoir and fluid properties for numerical simulation case (horizontal well with 

multiple transverse fractures). 

Reservoir Properties 

Net pay thickness, h = 200 ft 

Formation permeability, k = 1 x 10
-4

 md 

Fracture conductivity, FcD = infinite 

Wellbore Radius, rw  = 0.25 ft 

Formation compressibility, cf = 3 x 10
-6  

psia
-1

 

Porosity,     = 0.05 (fraction) 

Initial reservoir pressure, pi = 5,000 psia 

Gas saturation, sg  = 0.65 fraction 

Skin factor, s   = 0 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.6 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 200 ft 

Number of fractures  = 100 

Horizontal well length, Lh = 5,000 ft 

Production parameters: 

Last tubing pressure, pwf = 1,000 psia 

Production time, t  = 10,000 days (~30 years) 
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Figure 1.1 — (Cartesian Plot): Production history plot for numerical simulation case – flow 

rate,(MSCFD) and cumulative production, (MSCF) versus production time,(Days)  

 

A summary of time-rate relations of all models used for this comparative study are presented in Table. 

1.2. The table also shows the newly derived time-rate relations.  

Table 1.2 — PLE, Duong, logistic growth model and newly derived time-rate relations. 
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We next determine the parameters for the Modified Wiorkowski Model from historical production data 

directly.  This will enable us to determine EUR by analyzing character of historical data — the 

methodology to determine the time-rate parameters for the Modified Wiorkowski Model using a special-

ized plot is presented in Appendix D 

The matched parameters are: 

Table 1.3 — Modified Wiorkowski Model matched parameters for Numerical Simulation case  

Parameter Simulation Case 

pG
~

 2.60E+06 

a~  0.999 

iD
~

 0.0001 

n~  0.56 
 

 

 

Modified Ilk Model was graphically fitted to historical production data of numerical simulation case. 

Regressed parameters are given in Table. 1.4. 

 

Table 1.4 — Modified Ilk Model matched parameters for Numerical Simulation case. 

Parameter Simulation Case 

pG  3.1 x 10
6  

 

D  9.5 x 10
-3  

 

iD  0.015 

n  0.35 
 

In Fig. 1.2, we present the "qDb-plot" plot for this case.  On the qDb-plot the following functions are 

plotted — flowrate [qg(t)], Arps' Inverse Loss Ratio [D(t)], and Arps' Loss Ratio Derivative [b(t)] versus 

production time.  In this case we plot the D(t) and b(t) data functions (symbols) as well as the D(t) and b(t) 

model functions (lines) for the Power-Law Exponential (PLE) model, the Logistic Growth Model (LGM), 

the Duong model, the Modified-Wiorkowski model (MWM), and the Modified-Ilk model (MIM). 
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Figure 1.2 — (Log-log Plot): Flow rate (qg), D- and b-parameter versus production time. PLE, 

Logistic growth, Duong, MWM and MIM time-rate model matches for numerical 

simulation case. 
 

In Figure 1.2, it can be observed that each model gives reasonable rate and cumulative matches.  More-

over, the Modified Wiorkowski Model (MWM) along with the Modified Ilk Model(MIM) yield the most 

conservative estimates of 30-year EUR for this numerical simulation case.  This can be attributed to self-

limiting growth nature of both the MWM and MIM models, which results in inherently conservative 

matches across the transient, transition and boundary-dominated flow regimes.  The D(t) and b(t) data 

functions do capture the end of linear flow observed in the flow rate data at about 700 days, but the later 

transition and apparent boundary-dominated flow regimes are not so clearly defined.  In fact, focusing 

solely on the D(t) data function, we note that this function suggests essentially only a single trend (i.e., all 

of the data shown by the green symbols could, in a practical sense, be captured by a single power-law, 

straight-line trend).  
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Table 1.5 provides a summary of the results for all of the time-rate decline model applied to the example 

numerical simulation case.  We note from Fig. 1.2 that all of the matches are reasonable.  However the 

Modified-Wiorkowski Model (MWM) and the Modified-Ilk Model (MIM) model yield the most 

conservative estimates of 30-year EUR (i.e., EUR30Yr).  We believe that this "conservative" behavior is 

attributed to the self-limiting growth capability of both the MWM and MIM models. 

 

Table 1.5 — Summary of Decline Curve Analyses (EUR) for the Numerical Simulation Case. 

(Gp,max= 1.92BSCF at 30 years from numerical simulation.) 
 

Time-rate models  Gp,max 

Duong model  2.70 BSCF 

Logistic growth model   2.49 BSCF 

Power-law exponential model (PLE)  2.74 BSCF 

Arps’ Hyperbolic Model  2.89 BSCF 

Modified Wiorkowski Model  1.79 BSCF 

Modified Ilk Model  1.93 BSCF 

 

 
Figure 1.3 — (Cartesian Plot): EUR estimates from Modified Wiorkowski and Modified Ilk 

Models and Gp,max projected from numerical simulation case. 
 

In Fig. 1.3 we show the "Continuous EUR" results versus production time for the MWM and MIM 

models.  For the numerical simulation case we observe convergence to the 30-year EUR (actually the gas 
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produced at 30 years since this is a simulation case) at around 3,000 days (or approximately 10 years), 

which is consistent with expectations for a multi-fracture horizontal well (MFHW) producing in an ultra-

low permeability formation.  We do note that the behavior of the MWM and MIM models on the 

"Continuous EUR" plot is unique in our experience.  Most models converge from above, indicating that 

reserves are reduced over time, these models converge from below, which indicates that these models 

increase reserves with time — which is a desirable aspect of a reserves prediction tool. 

 

1.5 A Parametric Correlation Study 

In this section, we present a methodology to integrate parameters from our proposed time-cumulative 

relations with completion/reservoir parameters derived from model-based production analysis (also known 

as "Rate Transient Analysis" (or RTA)).  We develop parametric correlations for the Modified 

Wiorkowski Model and the Modified Ilk Model for fracture conductivity (Fc), formation permeability (k), 

fracture half-length (xf) and the 30-year EUR (EUR30Yr) values.  We provide a theoretical consideration for 

this methodology using data generated from several different numerical simulation cases for a horizontal 

well with multiple transverse fractures in a low/ultra-low permeability reservoir.  

 

We model a horizontal well with multiple transverse fractures in a low permeability reservoir for 

numerical simulation cases.  We make a number of numerical simulation runs for varying fracture 

conductivity, formation permeability and fracture half-length while keeping all other factors constant.  A 

typical numerical simulation grid is shown in Fig. 1.4. 

 

 
 

Figure 1.4 — Diagram of the numerical simulation model showing horizontal well and multiple 

transverse fractures.  
 

For each case we make 15 simulation runs and perform time-rate analysis with the Modified Wiorkowski 

Model(MWM) and the Modified Ilk Model(MIM).  We use the Bourdet algorithm (Bourdet et al. 1989) to 

calculate the D(t)- and b(t)-parameters to help in matching the production data.  We generate log-log plots 

of gas rate qg(t), D(t)- and b(t)-parameters against production time (i.e., the "qDb" plots) to inspect the 

quality of our model matches.  
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Once we obtain satisfying matches using time-rate models, our next step is to study the relationship 

between individual model parameters and the reservoir parameter being considered along with 30 year 

EUR.  We perform a cross-plot analysis of the individual rate decline model parameters with reservoir 

parameters and identify respective correlating parametric functions. 

 

We intend to find each reservoir parameter in terms of the rate decline model parameters.  For example: 

)( pfFr   .............................................................................................................................................. (1.7) 

And 

)(30 pfEUR yr   .................................................................................................................................... (1.8) 

Where Fr is a reservoir or completion parameter being correlated, and p is the time-rate decline model 

parameter being correlated against. 

After establishing individual correlations, we developed multivariate correlating functions for various 

reservoir/completion parameters and 30 year EUR for each model by establishing a suitable combination 

of correlating functions.  This approach provide relations which can predict reservoir or completion 

parameters directly from rate decline model parameters.  

The integrating parametric correlation functions can be written as: 

...),,( rqpfFr   ..................................................................................................................................... (1.9) 

And 

...),,(30 rqpfEUR yr   .......................................................................................................................... (1.10) 

Where p, q, and r are the time-rate decline model parameter being correlated against.  Finally, we provide 

cross-plots of calculated and observed reservoir or completion parameters to assess the quality of the para-

metric correlating functions. 

In Fig. 1.5 we show the resulting correlation models for fracture conductivity (Fc) for the various 

numerical simulation cases.  This plot indicates that these functions can provide reasonable estimates of 

the reservoir/completion properties (in this case, Fc and EUR30 yr) for the case of a well within the same 

reservoir system with similar completion and production constraints. 
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Figure 1.5 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using the Modified Wiorkowski Model para-

meters versus results from model-based production analysis (or RTA). 

Fig. 1.6 shows the resulting model fits of proposed parametric correlations. 
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Figure 1.6 — Comparison of fracture half-length and 30 year EUR values calculated using 

parametric correlations developed using the Modified Wiorkowski Model para-

meters versus results from model-based production analysis (or RTA). 
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Fig. 1.7 shows the resulting model fits of proposed parametric correlations for formation permeability(k). 

It can be observed that the proposed correlating functions provide a reliable estimate of the reservoir 

properties. 

  
44.1

39.4 iDnk   nDEUR iyr 14.29]ln[26.330   

 

Figure 1.7 — Comparison of formation permeability and 30 year EUR values calculated using 

parametric correlations developed using the Modified Wiorkowski Model para-

meters versus results from model-based production analysis (or RTA). 
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CHAPTER II 

LITERATURE REVIEW 

 

Historical production data analysis techniques have received considerable attention and interest in past few 

decades because these techniques provide important tools to forecast production and remaining reserves 

for oil and gas reservoirs, and we can also use these tools to estimate reservoir characteristics.  The 

sophistication of the analysis evolved historically with the changing nature of hydrocarbon assets from 

conventional to unconventional and with the advancement in technology.  

 

Commonly these techniques can be classified as; 

 Classical Time-Rate Analysis  

 Modern Time-Rate Analysis 

 Semi-analytical and analytical methods 
 

2.1 Classical Time-Rate Analysis 

Decline curve analysis (or DCA) techniques have been employed by petroleum engineers since the 

introduction of the Manual for the Oil and Gas Industry under the Revenue Act of 1918 by the US Internal 

Revenue Service (1919) to estimate oil and gas reserves.  Their widespread applicability and acceptance is 

due to their simplicity and easy formulation.  However, historical time-rate relations are empirical in 

nature and are (strictly) only applicable to boundary-dominated flow conditions.  Johnson and Bollens 

(1927) laid the foundation of traditional time-rate decline curve methods by proposing "loss-ratio" and 

"loss-ratio derivative" as: 

 

Definition of the Loss-Ratio: 
 

dtdq

q

D /

1
  .................................................................................................................................... (2.1) 

 

Derivative of the Loss-Ratio: 
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/

1
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Through time, these functions have been designated as the "Arps" relations due to the presentation and use 

of these relations in the seminal paper by Arps (1945).  On a practical note, when the traditional Arps' 

hyperbolic time-rate and time-cumulative relations are used to forecast production and to estimate 

reserves, these relations typically overestimate the performance for low to ultra-low permeability 

reservoirs. 
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For reference, the Arps' hyperbolic time-rate and time-cumulative relations are given as: 

Arps' Hyperbolic Time-Rate Model: 
 

b
i

hypi

tbD

q
tq

/1

,

)1(
)(


  ........................................................................................................................ (2.3) 

 

Arps' Hyperbolic Time-Cumulative  Model: 
 

])1(1[
)1(

/11, b
i

i

hypi
p tbD

Db

q
G 


  ............................................................................................... (2.4) 

 

Arps (1945) used these definitions to derive exponential and hyperbolic relations which are still the most 

widely used rate-time relations.  However, (as mentioned earlier) these relations are only valid (in a 

"theoretical" sense) for boundary-dominated flow.  Arps proposed "derivative of loss-ratio," b, as a 

constant and according to Arps' definition, the b-value should vary between 0 and 1 — we note that for 

b>1, unconstrained extrapolations of Eq. 2.4 will tend to infinity, which is obviously not practical (or 

desired).  Therefore, for cases where b>1, the extrapolation must be constrained to some limiting time 

and/or limiting rate. 

 

For the case of wells in low to ultra-low permeability reservoirs, the performance of these wells are 

characterized by a very long transient flow regime, which often dominates most of the wells productive 

life (as much as 10-15 years, or more).  Often times, the traditional boundary-dominated flow is not 

observed in production data from wells in ultra-low (unconventional) reservoirs.  In such cases, the 

incorrect application of the Arps' relations (Eqs. 2.3 and 2.4) to performance data for these wells often 

yields overestimation of reserves. 

 

The issue is that of the "Arps" b-parameter (or the "loss-ratio derivative") which is typically on the order 

of 2 (rather than b < 1 — i.e., the traditional (boundary-dominated flow) assumption).  We note that a b-

parameter of 2 corresponds (as a coincidence) to the "linear flow" regime which exists for cases where the 

fractures in an multi-fractured horizontal well (MFHW) have pressure distributions that do not interfere. 

As is well known in the pressure transient testing literature, the linear flow regime depends on the 

properties of the hydraulic fractures as well as the permeability of the formation. 

 

In a model-based study, Rushing et al. (2007) observed that the incorrect application of the Arps' relations 

can result in reserve estimation errors of up to 100 percent.  Lee and Sidle (2010) also noted that 

unconstrained, the hyperbolic time-rate relation can cause reserves to have physically unreasonable 

properties (i.e., for b-parameter values greater than one, the unconstrained reserves extrapolation is infinite 

(as noted in our comments above)). 
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To address the "over-extrapolation" issues related to the hyperbolic time-rate relation, Robertson (1988) 

proposed a "modified-hyperbolic" time-rate relation.  The following variant of the "modified-hyperbolic" 

relation is the most popular formulation of the "modified-hyperbolic" time-rate relation: (Fekete, 2016) 
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While the "modified-hyperbolic" formulation given by Eq. 2.5 remains the most popular production 

forecasting/reserves extrapolation tool, this formulation has at least 2 relatively significant issues.  First, 

the selection of the "Dlim" parameter (i.e., the terminal exponential decline rate) is somewhat arbitrary, and 

it tends to vary between 5-10percent depending on the plan and the company.  Second, this formulation 

tends to provide an average to slightly high forecast/extrapolation, even accounting for the choice of a 

conservative value of Dlim.  In addition, the Arps functions (D(t) and b(t), Eqs. 2.1 and 2.2, respectively) 

do not often show the constant b(t) behavior required for a "hyperbolic" function, much less the constant 

D(t) behavior required for an "exponential" function. 

 

Fetkovich (1980) introduced type curves combining analytical solutions from infinite and closed reservoir 

models with the Arps decline curve relations.  Fetkovich provided theoretical basis for Arps' empirical 

relations by showing that a rate relation with a form identical to Arps' rate decline relations can be 

obtained by combining material balance relations with pseudosteady-state relations.  This observation 

provides theoretical basis to Arps' empirical relations.  This resulted in a matching technique similar to 

pressure transient analysis which is applicable to both the transient and boundary-dominated flow regimes 

of the data. 

 

2.2 Modern Time-Rate Analysis 

Given the nature of the modified-hyperbolic relation not rigorously modeling the performance behavior 

for unconventional reservoirs, several new models have been proposed by Ilk, et al (2008a, 2008b and 

2008c), Valko (2009), Clark, et al(2011), and Mishra (2012).  These new models generally result in more 

realistic matches for wells in low to ultra-low permeability reservoirs which have very long transient and 

transition flow regimes (Askabe, et al 2012). 

 

Specific to the "diagnostic" behavior for wells in low/ultra-low permeability reservoirs, Ilk, et al. (2008) 

observed that the D(t) function (computed from data using Eq. 2.1) exhibits a power-law (straight-line) 

behavior for early-time and transitional flow regimes (hence the name, the "power-law exponential" or 
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PLE relation).  During late times the PLE model has an imposed "constant decline" that is used to match 

late-time (i.e., boundary-dominated) flow behavior.  As such, the PLE relation can match transient, 

transition, and boundary-dominated flow behavior.  As noted by others, there is often considerable noise 

evident in field data due to production operations — and, as such, time-rate data sets must be "heavily 

edited" to yield diagnostic trends from which we can designate the respective flow regimes (e.g., transient 

linear flow, transitional flow, and boundary-dominated flow behavior). 

 

 

Figure 2.1 — (Log-log Plot): Flow rate (qg) and D-parameter versus production time— Hyper-

bolic and power law exponential rate decline and loss ratio models illustration for 

orientation purposes (SPE 116731). 

 

Valko (2009) presented the "stretched exponential decline model" (SEDM) while performing a statistical 

investigation of wells in unconventional reservoirs, where the SEDM was taken from statistical references 

which represent chaotic and natural processes.  In simple terms, the SEDM can be described as a linear 

superposition of simple exponential decay models with different characteristic times (i.e., an infinite series 

of exponential terms).  This model is identical in form to the empirically-derived power-law exponential 
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(PLE) decline model, with the exception that the SEDM does not have a terminal exponential decay term 

as the PLE does — and as such, the SEDM lacks the (specific) diagnostic behavior necessary to model 

boundary-dominated flow. 

 

Duong (2011) proposed a time-rate relation based on the observation of a straight line log-log behavior of 

q/Gp (i.e., the inverse material balance time function) versus time for fracture-dominated shale reservoirs 

(e.g., Fig 2.2).  Duong's concept was an attempt to capture the bilinear and linear flow characteristics 

typically observed in fractured shale wells. However, the Duong model characterizes transient and 

transition flow regime data only — and does not model late time, boundary-dominated flow behavior. As 

such, the Duong model tends to overestimate ultimate recovery. 

 

 

 

Figure 2.2 — (Log-log Plot): Material-Balance time characteristic plots for Numerical 

Simulation Case — material-balance time,(Days) and inverse material-balance 

time, (1/Days) versus production time,(Days)  
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Clark, et al (2011) presented the "logistic growth model" (or LGM) to represent time-rate performance 

from oil and gas reservoirs.  The logistic growth model is taken from standard statistical references and 

has the unique characteristic that it is constrained by a "carrying-capacity" parameter, where this parameter 

limits the ultimate growth of the curve.  The LGM can match the behavior of long transient and transition 

flow periods, and to some extent boundary-dominated flow as well (Askabe 2012).  In addition, the LGM 

is similar in behavior to the power-law exponential relation (PLE).  As comment, the LGM does not have 

a specific "diagnostic" behavior where the influence of a given parameter can be observed on a fit-for-

purpose diagnostic plot (as does the power-law exponential and Duong models).  We note that one of the 

strengths of the LGM is that the ultimate recovery is a unique parameter in the relation — however, we 

also note that this feature does not make the LGM more robust as a regression model. 

 

Mishra (2012) presented another self-limited growth model that is based on Weibull growth curves (which 

are also a family of statistical functions).  Analogous to the LGM, the Weibull model constrains 

cumulative production by use of the "carrying-capacity" parameter.  As with the LGM, the Weibull model 

does not provide specific features for individual parameters (hence, there are no diagnostic plots).  Lastly, 

the Weibull model is also not particularly well-suited as a stand-alone regression model, it is recommend-

ed that the Weibull model always be used in conjunction with the LGM and PLE models. 

 

Fulford and Blasingame (2013) proposed a "transient hyperbolic" time-rate model that has as its basis a 

time-dependent relationship for the Arps' "Loss-Ratio Derivative" Function (i.e., b(t)), where bmin<b(t) 

<bmax. This model is implicitly tied to the "end of linear flow" in concept, but in practice this would be 

very difficult to establish uniquely (i.e., to tie the model parameters to the end of linear flow). This is 

another "concept model" in an evolving "family" of b(t)-based time-rate performance models. The 

flowrate form of the "transient hyperbolic" model is not written in a compact form, but rather, as an 

integral based on the defined b(t) and D(t) models. 
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Table 2.1 — Summary of Widely Used Time-Rate Relations. 
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CHAPTER III 

ANALYSIS OF TIME-RATE RELATIONS 

 

In this chapter, a detailed analysis of Modified Wiorkowski (MWM) and Modified Ilk model (MIM) is 

presented.  We perform time-rate analysis using the Modified-Wiorkowski Model (MWM) and Modified-

Ilk Model (MIM) as a means to forecast gas production from low/ultra-low permeability wells to estimate 

EUR values.  We have used production data generated from a numerical simulation as well as data 

obtained from a number of field examples including a tight gas well, an Eagle Ford shale oil well, an 

Eagle Ford shale gas well and Marcellus shale gas well. 

We compare the quality of match to specific flow regimes observed from such reservoirs.  The data match 

is conducted by taking full advantage of the characteristics of diagnostic functions including D-, b-, 

parameters, -derivative as well as the flow rate data.  We used the Bourdet et al.(1989) algorithm to 

perform the numerical differentiation required to calculate the diagnostic functions.  Moreover, we use the 

"continuous EUR" approach, where EUR is estimated dynamically, to investigate the reliability of the 

reserve estimates and rate of convergence of EUR when using these models.   

3.1 Modified Wiorkowski Model 

The Wiorkowski cumulative production model (1981) was taken as a variant from the Richards family of 

"statistical" growth curves and was used to predict ultimate oil production volumes as part of a global oil 

reserves study. In our work we present a simplified "modified-Wiorkowski" time-cumulative production 

model. This model and the functions derived from it are presented in detail in Appendix A. 

 ........................................................................... (3.1) 
 

Where the coefficients of the Wiorkowski relation are defined as: 

Y = Wiorkowski Model cumulative gas production 

 = Upper asymptote of Growth Curve 
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Where the coefficients of the Wiorkowski relation are defined as: 

Gp(t) = Cumulative gas production 

 = EUR upper limit constraint 

 = Model parameter 

 = Model parameter 

 = Model parameter 
 

This modification simplifies curve fitting process by eliminating the strong S shaped character of Eq. 3.2 

as well as by reducing the complexity of fitting parameters.  

 

From Appendix A, we provide the following subordinate functions derived from Eq. 3.2: 

 

Time-Rate Relation: (ref. Eq. A-2) 
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D(t) Function:(ref. Eq. A-13) 
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b(t) Function: (ref. Eq. A-18) 
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β(t) Function: (ref. Eq. A-21) 
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It can be seen from Eqs. 3.4 and 3.5 that there is no clear "diagnostic" trend for the D(t) and b(t) functions 

for the modified-Wiorkowski model (MWM) — i.e., it is not obvious that a plot of D(t) or b(t) versus t (in 

any particular format) will yield a "diagnostic" trend where the coefficients in these relations can be 

determined directly from graphical analysis methods.  This is not necessarily a limitation of the modified-

Wiorkowski model, but these characteristics limit our analysis to regression methods.  As will be seen in 
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later sections, the MWM model provides excellent matches to the transient, transition and boundary-

dominated flow regimes. 

3.2 Modified Ilk Model 

This model is inspired from the power law exponential rate-time relation proposed by Ilk et al. (2008).  Ilk 

et al. (2008) observed that data from the transient and transition flow regimes in unconventional low/ultra-

low permeability reservoirs are characterized by a power-law relation or a straight line on a log-log plot of 

"inverse loss-ratio", D-parameter, versus time.  To accommodate the late-time boundary-dominated flow 

data, the Modified Ilk Model (MIM) uses a constant exponential decline at late times, thus providing a 

constraint on reserves.  This constraint is represented by a constant decline parameter, D∞, which provides 

constant exponential decline at late time in the life of the well.  This parameter is approximated by 

parameter  in our cumulative-time relation. 

 

Recalling the "Ilk et al" time-rate model (2008), we have: 

 

]exp[ˆ  )( n
ii tDtDq=tq    ......................................................................................................................... (3.7) 

 

Conceptually, we believe that the form of the Modified-Ilk time-cumulative model (MIM) can be written 

intuitively from Eq. 3.7 as: 

 

])exp[1(  )( n
ipp tDtDG=tG    ............................................................................................................ (3.8) 

 

Where the coefficients of the Wiorkowski relation are defined as: 

Gp(t) = Cumulative gas production 

 = EUR upper limit constraint 

 = Model parameter 

 = Model parameter 

 = Model parameter 
 

Where we note that Eq. 3.8 is NOT the actual integral of Eq. 3.7, but rather, this is an intuitive form taken 

from the Ilk time-rate model and written in a time-cumulative formulation.  In Appendix B, we provide 

the following subordinate functions derived from Eq. 3.8: 

 

Time-Rate Relation: (ref. Eq. B-3) 
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D(t) Function: (ref. Eq. B-10) 
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b(t) Function: (ref. Eq. B-15) 
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β(t) Function: (ref. Eq. B-19) 
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For the "Modified-Ilk" D(t) relation (Eq. 3.10) we note something akin to a power-law trend (i.e., a 

possible straight line trend of D(t) versus t on a log-log plot), although it is not obvious how the 2nd and 

3rd terms in this relation will interact.  We will test this and all functions using simulated and actual 

reservoir performance later in this work.  As for the b(t) function proposed by Eq. 3.11, this behavior 

appears to be quite complicated, but it is possible that this trend may also be "nearly" power-law (i.e., b(t) 

versus t forms an approximate straight-line trend on a log-log plot). 

 

As will be seen in later sections, the Modified Ilk Model (MIM) provides an excellent match to the 

transient, transition and boundary-dominated flow regimes and provides means to self-constraint unlimited 

growth of reserves that might, otherwise, would have been the case. 

 

3.3 Time-Cumulative Diagnostics 

 

A novel aspect of this work is the development of the so-called "time-cumulative diagnostics" which are 

based on cumulative production rather than flow rate (analogous to the Arps D(t) and b(t) diagnostic 

functions). These functions are proposed as: 
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"Inverse Cumulative Loss-Ratio" Function: 
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"Derivative of the Cumulative Loss-Ratio" Function: 
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Where tmb is the "material balance" time and is defined as: 
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Figure 3.1 — (Log-log Plot) Schematic example of time-rate plotting functions for a horizontal gas 

well with multiple transverse fractures (numerical simulation case). 

 

We immediately note that the Dc(t) and bc(t) functions can be written solely as a function of the material 

balance time function (tmb) whose application in decline curve analysis are discussed by Doublet et 

al.(1994). While not a specific objective of this work, we note that these functions are uniquely defined by 

the material balance time function, which may lead to simplified diagnostic plots and interpretations. As 

noted earlier, Duong (2011) proposed a time-rate relation based on the empirical observation of a straight-

line log-log behavior of q/Gp(or 1/tmb) versus time for "fracture dominated shale reservoirs".  While it is 

not our objective to "tie" these "time-cumulative diagnostic" functions to the Duong methodology, there 

may be some relevance in that effort and we encourage others to consider such work. 

 

3.4 Validation – Synthetic & Field Examples 

In this section, we present validation of Modified Wiorkowski (MWM) and Modified Ilk (MIM) models 

using both synthetic and field data.  We use the qg(t), D(t) and b(t) functions derived from production data 
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(i.e., the "qDb" plot). We also provide a "continuous EUR" analysis (Currie et al. 2010) using the MWM 

and MIM models to establish the time-dependent nature of the EUR behavior. 

3.4.1 Field Example: Numerical Simulation (Synthetic) Case 

For this numerical simulation case, we consider a low permeability horizontal well with multiple 

transverse fractures and we have generated a production profile for 10,000 days (~ 30 years) as a means of 

validating the EUR30Yr (estimated ultimate recovery at 30 years).The well is produced at a constant 

bottomhole pressure of 1,000 psia. The model input parameters are provided in Table 3.1. The historical 

flow rate and cumulative production data is shown in Fig. 3.2. All numerical simulation production 

profiles in this work are generated using Ecrin from Kappa Engineering Softwares. 

Table 3.1 — Reservoir and fluid properties for numerical simulation case (horizontal well with 

multiple transverse fractures). 

Reservoir Properties 

Net pay thickness, h = 200 ft 

Formation permeability, k = 1 x 10
-4

 md 

Fracture conductivity, FcD = infinite 

Wellbore Radius, rw  = 0.25 ft 

Formation compressibility, cf = 3 x 10
-6  

psia
-1

 

Porosity,     = 0.05 (fraction) 

Initial reservoir pressure, pi = 5,000 psia 

Gas saturation, sg  = 0.65 fraction 

Skin factor, s   = 0 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.6 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 200 ft 

Number of fractures  = 100 

Horizontal well length, Lh = 5,000 ft 

Production parameters: 

Last tubing pressure, pwf = 1,000 psia 

Production time, t  = 10,000 days (~30 years) 
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Figure 3.2 — (Cartesian Plot): Production history plot for numerical simulation case – flow 

rate,(MSCFD) and cumulative production, (MSCF) versus production time,(Days) 

A summary of time-rate relations of all models used for this comparative study are presented in Table. 

3.2. The table also shows the newly derived time-rate relations.  

Table 3.2 — PLE, Duong, logistic growth model and newly derived time-rate relations. 
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In Fig. 3.3, we present the "qDb-plot" plot for this case.  On the qDb-plot the following functions are 

plotted —Flowrate [qg(t)], Arps' Inverse Loss Ratio [D(t)], and Arps' Loss Ratio Derivative [b(t)] versus 

production time.  In this case we plot the D(t) and b(t) data functions (symbols) as well as the D(t) and b(t) 

model functions (lines) for the Power-Law Exponential (PLE) model, the Logistic Growth Model (LGM), 

the Duong model, the Modified-Wiorkowski model (MWM), and the Modified-Ilk model (MIM). 

 

 
 

Figure 3.3 — (Log-log Plot): Flow rate (qg), D- and b-parameter versus production time. PLE, 

Logistic growth, Duong, MWM and MIM time-rate model matches for numerical 

simulation case. 

 

It can be observed that all models give reasonable rate and cumulative matches.  Moreover, the Modified 

Wiorkowski Model(MWM) along with the Modified Ilk Model(MIM) yield the most conservative 

estimates of 30-year EUR for the numerical simulation case.  This behavior can be attributed to the self-

limiting growth nature of both models which results in inherently conservative matches across transient, 
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transition and boundary-dominated flow regimes for low/ultra-low permeability wells.  The D(t) and b(t) 

data functions do capture the (apparent) end of linear flow observed in the flow rate data at about 700 

days, but the later flow transition flow and apparent boundary-dominated flow regimes are not so clearly 

defined.  In fact, focusing solely on the D(t) data function, we note that this function suggests essentially 

only a single trend (i.e., all of the data shown by the green symbols could, in a practical sense, be captured 

by a single power-law, straight-line trend). 

Table 3.3 provides a summary of the results for all of the time-rate decline model applied to the example 

(fully) numerical simulation case. We note from Fig. 3.4 that all of the matches are reasonable. However 

the Modified-Wiorkowski Model (MWM) and the Modified-Ilk Model (MIM) model yield the most 

conservative estimates of 30-year EUR (i.e., EUR30Yr). We believe that this "conservative" behavior is 

attributed to the self-limiting growth capability of both the MWM and MIM models. 

 

Table 3.3 — Summary of Decline Curve Analyses (EUR) for the Numerical Simulation Case. 

(Gp,max= 1.92BSCF at 30 years from numerical simulation.) 
 

Time-rate models  Gp,max 

Duong model  2.70 BSCF 

Logistic growth model   2.49 BSCF 

Power-law exponential model (PLE)  2.74 BSCF 

Arps’ Hyperbolic Model  2.89 BSCF 

Modified Wiorkowski Model  1.79 BSCF 

Modified Ilk Model  1.93 BSCF 
 

Fig. 3.4 shows the "Continuous EUR" results versus production time for the MWM and MIM. For the 

numerical simulation case we observe convergence to the 30-year EUR (actually the gas produced at 30 

years since this is a simulation case) at around 3,000 days (or approximately 10 years), which is consistent 

with expectations for a multi-fracture horizontal well (MFHW) producing in an ultra-low permeability 

formation. 
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Figure 3.4 — (Cartesian Plot): EUR estimates from Modified Wiorkowski and Modified Ilk 

Models and Gp,max projected from numerical simulation case. 

 

3.4.2 Field Example: East Texas Gas Well Case 

The "East Texas Gas Well" case is taken from the literature and considers the case of a vertical well with a 

single vertical fracture of finite fracture conductivity in a "tight gas" formation of approximately 0.005 md.  

This particular case has about 5000 days of production performance data available and boundary-

dominated flow is well-established. 

 

Table 3.4 shows reservoir and well parameters used to generate production data for this numerical 

simulation case. 
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Table 3.4 — Reservoir and fluid properties for East Texas Tight Gas Well 

Reservoir Properties 

Net pay thickness, h = 177 ft 

Formation permeability, k = 6µD 

Wellbore Radius, rw  = 0.33 ft 

Formation compressibility, cf = 1 x 10
-7  

psi
-1

 

Porosity,    = 0.088 (fraction) 

Initial reservoir pressure, pi = 9330 psi 

Gas saturation, sg  = 0.87 fraction 

Skin factor, s   = 0.14 (dimensionless) 

Reservoir temperature, Tr = 300 °F 

Fluid properties: 

Gas specific gravity, γg = 0.7 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 365 ft 

Production parameters: 

Production time, t  = 5,216 days 
 

We begin our diagnostic analysis by removing data points that deviate from the dominant underlying 

production trend — this action is critical because of the influence of the erratic production data the time-

rate analysis.  In Fig. 3.5 we consider the flow rate function where the "edited" points are shown by the red 

symbols and the "deleted" points are shown by the light gray symbols.  Once the editing process is 

completed, the D(t) and b(t) functions are computed using the so-called "Bourdet" algorithm used for 

computing the derivative functions in pressure transient analysis.   

 

Typically tight gas wells have very low permeability (on the scale of micro-darcies) and the production 

history is often very erratic with many large fluctuations especially at early-times.  Fig. 3.5 gives a semi-

log production history plot of East Texas Tight Gas Well. 
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Figure 3.5 — (Semi-log Plot): Production history plot for East Texas Tight Gas Well – flow 

rate,(MSCFD) and cumulative production, (BSCF) versus production time,(Days)  
 

The Modified Wiorkowski and Modified Ilk Models were matched for 5,000 days of available production 

history of East Texas Tight Gas Well to obtain 30-year EUR forecasts.  In Table 3.5 we provide the match 

parameters for both models. 

 

Table 3.5 — Modified Wiorkowski and Modified Ilk Models matched parameters for East Texas 

Tight Gas Well  

Modified Wiorkowski Model 
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  1 x 10-7  
  0.53  0.01102 

       
 

In Fig. 3.6 we only utilize the Modified-Wiorkowski Model (MWM) and Modified-Ilk Model (MIM) 

time-rate models for clarity.  As the East Texas Gas Well has a production history of considerable 

duration, we can expect very strong diagnostic trends (i.e., the D(t) and b(t) functions).  In particular, we 
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note an almost perfect straight-line trend in the D(t) function, which is the defining characteristic of the 

Power-Law Exponential time-rate model.  We note excellent matches using the MWM and MIM models, 

and we can suggest, based on the extrapolations of these models, that their "self-constraining" character-

istics provide average to conservative performance predictions and EUR estimates. 

 

 
 

Figure 3.6 — (Log-log Plot): "qDb" plot — Flow rate [qg(t)], Arps' Inverse Loss Ratio [D(t)], and 

Arps' Loss Ratio Derivative [b(t)] versus production time. the Modified-Wiorkowski 

Model, Modified-Ilk Model, Arps' Hyperbolic Model, Duong Model, Power Law 

Exponential Model, and the Logistic Growth Model diagnostic function matches for 

the East Texas Tight Gas Well. 

 

In Fig. 3.7 we provide the time-rate and time-cumulative matches for all of the models considered in this 

work for the East Texas Tight Gas Well case.  As suggested above, the Modified-Wiorkowski and the 

Modified-Ilk models provide the most conservative estimates of 30-year EUR (EUR30Yr) for the East 

Texas Tight Gas Well case. And while this particular case may not establish a "preference" for the 

Modified-Wiorkowski and the Modified-Ilk models, this case does establish that these models should be 

the "more conservative" models in the comparison group. 
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In Table 3.6 we provide a summary of the results for all of the time-rate decline models for the East Texas 

Tight Gas Well — the EUR30Yr values compare extremely well, but from observations made on Fig. 3.6, 

the longer term extrapolations (i.e., > 30 years) will vary significantly— however; this is of little 

consequence as we are only interested in near-term extrapolations (i.e.,< 30 years). 

 

 

 

Figure 3.7 — (Log-log Plot): Modified Wiorkowski Model, Modified Ilk Model, Arps’ 

Hyperbolic Model, Duong Model, Power Law Exponential Model and Logistic 

Growth Model 30-year EUR forecasts for East Texas Tight Gas Well –flow 

rate,(MSCFD) and cumulative production, (MSCF) versus production time,(Days)  
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Table 3.6 — Summary of Decline Curve Analyses (EUR) for the East Texas Tight Gas Well.  

(EUR30Yr = 2.8BSCF from Rate Transient Analysis (RTA)) 
 

 

Time-Rate Models 

 EUR30Yr 

(BSCF) 

Duong Model  3.31 BSCF 

Logistic Growth Model (LGM)  3.09 BSCF 

Power-Law Exponential Model (PLE)  3.03 BSCF 

Arps' Hyperbolic Model  3.00 BSCF 

Modified-Wiorkowski Model (MWM)  3.01 BSCF 

Modified-Ilk Model (MIM)  2.96 BSCF 
 

 

Table.3.7 provides a summary of matched parameters. 

Table 3.7 — Arps' Exponential, Arps' Hyperbolic, Duong, Logistic growth, Power Law and 

Wiorkowski Model matched parameters for numerical simulation case. 
 

Arps' Hyperbolic Model 

qi 
  Di   b   

  

(MSCFD) 
 

6,000 
 

0.11 
 

2.60 
  

Logistic Growth Model 

K 
   A    n   

  

(MSCFD) 
 

2.38 x 10
7
 

 
1500 

 
0.62 

  
Duong Model 

qt1 
  A   m   

  

(MSCFD) 
 

1,200 
 

1.73 
 

1.16 
  

Modified Ilk Model 

pG  
  D    iD    

  

n  (MSCFD) 

3.04 x 10
6
 

 
8.12 x 10

-7
 

 
0.00172 

 
0.79 

PLE Model 

qi 
  Di   n   D∞ 

(MSCFD) 

900,920 
 

4.48 
 

0.0714 
 

1 x 10
-7

 

 Modified Wiorkowski Model 

pG
~

 
  a~    

iD
~

   n~  
(MSCFD) 

2.23 x 10
6
 

 
0.99 

 
0.00041 

 
0.69 
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We also generated flow rate and pressure model responses for the East Texas Tight Gas Well using an 

analytical model for a horizontally fractured well in an infinite acting homogenous reservoir after Ilk 

(2010).  A very consistent history match of flow and pressure data was obtained with the "model" solution.  

Fig. 3.8 gives a summary analysis plot of flow rate and pressure, and a 30-year forecast was generated 

using the matched model, which gave a 30-year EUR of 2.8 Bscf. 

 

 

 

Figure 3.8 — (Semi-log Plot): East Texas Tight Gas Well analysis summary plot  –f low 

rate,(MSCFD) and calculated bottomhole pressure, (psia) versus production 

time,(Days)  

 

In Fig. 3.9 we present the "Continuous EUR" results versus production time for this case showing only the 

MWM and MIM models.  In this case we use the "benchmark" 30-year EUR (EUR30Yr) obtained from 

model-based production analysis (typically referred to as "Rate Transient Analysis" or RTA).  The MWM 

and MIM models match the EUR30Yr after about 5 years, then tend to slightly exceed this estimate for the 

remainder of the production period.  This match should be considered more than sufficient given the 

conservative nature of the RTA method (RTA uses both pressure and rate data as well as a prescribed 

reservoir model, and tends to towards being conservative). 

 

  

10x10
3

8

6

4

2

0

C
a
lc

u
la

te
d

 B
o

tt
o

m
h

o
le

 P
re

s
s

u
re

, 
p

s
ia

5
0

0
0

4
0

0
0

3
0

0
0

2
0

0
0

1
0

0
00

Time, days

10
0

10
1

10
2

10
3

10
4

G
a

s
 F

lo
w

ra
te

, 
M

s
c

fd

5
0

0
0

4
0

0
0

3
0

0
0

2
0

0
0

1
0

0
0

0

Analysis Summary Plot — East Texas Gas Well

Legend:
( ) qg Data Function

( ) qg Model Function

( ) Pwf Data Function

( ) Pwf Model Function

 



 

37 

 

 

 

Figure 3.9 — (Cartesian Plot): "Continuous EUR" obtained using the Modified-Wiorkowski and 

Modified-Ilk models compared to the cumulative production (East Texas Gas 

Well). 

 

3.4.3 Field Example: Marcellus Shale Gas Well 

In this section we perform time-rate analysis of a shale gas well from the Marcellus Shale in Pennsylvania 

(USA).  This case (Well 4) is a random selection taken from 55 Marcellus shale gas wells which were 

analyzed using the Modified-Wiorkowski and Modified-Ilk time-rate models.  All of the Marcellus wells 

analyzed are horizontal wells with multiple transverse fractures.  For the specific case of Well-4, we have 

approximately 800 days of production history.  As with the East Texas Gas Well case (previous example), 

we begin our diagnostic analysis by "data editing," specifically, by removing data points that deviate from 

the dominant production trend.  
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Table 3.8 shows reservoir and well parameters used to generate production data for this numerical 

simulation case. 

 

Table 3.8 — Reservoir and fluid properties for Well-4 
 

Reservoir Properties 

Net pay thickness, h = 156 ft 

Formation permeability, k = 22µD 

Wellbore Radius, rw  = 0.35 ft 

Formation compressibility, cf = 5.64 x 10
-6  

psi
-1

 

Porosity,    = 0.07 (fraction) 

Initial reservoir pressure, pi = 3493 psi 

Gas saturation, sg  = 0.44 fraction 

Skin factor, s   = 0.0127 (dimensionless) 

Reservoir temperature, Tr = 138 °F 

Fluid properties: 

Gas specific gravity, γg = 0.568 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 124.6 ft 

Number of fractures  = 36 

Horizontal well length = 3865 ft 

Production parameters: 

Production time, t  = 800 days 
 

An inspection of historical production data of Well-4 (Fig. 3.10) shows significant anomalies in the early 

portion of the production history, most likely due to well clean-up (production of stimulation water) and 

production operations (choke management and some apparent shut-in sequences — probably due to offset 

operations and/or seasonal curtailments).  In short, Well-4 is a challenging case, and while we are confi-

dent in our diagnostic approach, this case will have more uncertainty in the analysis and interpretation of 

the production performance. 

 

Typically shale gas wells have very low permeability (on the scale of nanodarcies (nd)) and production 

histories are often very erratic with lots of large fluctuations especially in early time of well life.  Fig. 3.10 

gives a semi-log production history plot of Well-4. 
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Figure 3.10 — (Semi-log Plot): Production history plot for Well-4 – flow rate,(MSCFD) and 

cumulative production, (BSCF) versus production time,(Days)  
 

The Modified Wiorkowski and Modified Ilk Models were matched for 800 days of available production 

history of Well-4 to obtain 30-year EUR forecasts.  Table 3.9 provides the parameter estimates for both 

models obtained from regression analysis, while Fig 3.11 shows 30-year EUR forecasts. 

 

Table 3.9 — Modified Wiorkowski and Modified Ilk Models matched parameters for Well-4 
 

Modified Wiorkowski Model 

pG
~

 

(MSCF)  a~   n~   iD
~

 (D
-1

) 

3.04 x 10
6  

  1  0.69  0.000414 

 

Modified Ilk Model 

pG  

(MSCF)  D   n   iD  (D
-1

) 

2.23 x 10
6  

  8.1 x 10
-7  

  0.79  0.001719 

       
 

Relative to the diagnostic analyses based on the Modified-Wiorkowski and Modified-Ilk time-rate models 

we find reasonably good matches of qg(t), D(t), and b(t) — and we would note that Well-4 appears to have 

a strong linear flow signature, i.e., b(t) ≈ 2 for the period of 100-700 days, with the caveat that this is a 
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somewhat subjective interpretation of the b(t) data profile shown using blue symbols as shown in Fig. 

3.11. 

 

Considering this apparent linear flow behavior (i.e., b(t) ≈ 2), we would also comment that neither the 

Modified-Wiorkowski Model (MWM) nor the Modified-Ilk Model (MIM) are capable of capturing the 

b(t) ≈ 2 (and in fact, only the Arp's Hyperbolic or Modified-Hyperbolic relations are capable of doing so). 

This discussion is more to provide background and guidance on the application of the Modified-

Wiorkowski and Modified-Ilk time-rate models — the matches for qg(t) are quite good, but are in 

something of a disagreement with the diagnostic model functions; D(t), and b(t). 

 

Similar to previous comments, we note that due to the self-constraining nature of both the Modified-

Wiorkowski and the Modified-Ilk models, we again obtain "conservative" forecasts and extrapolated 

reserves estimates. 

 

 
Figure 3.11 —  (Log-log Plot): "qDb" plot — Flowrate [qg(t)], Arps' Inverse Loss Ratio [D(t)], 

and Arps' Loss Ratio Derivative [b(t)] versus production time.  The Modified-

Wiorkowski Model, Modified-Ilk Model, Arps' Hyperbolic Model, Duong Model, 

Power Law Exponential Model, and the Logistic Growth Model diagnostic 

function matches for the Marcellus Shale Gas Well (Well-4). 
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In Fig. 3.12 we provide the time-rate and time-cumulative matches for all of the models considered in this 

work for the Marcellus Shale Gas Well case (Well-4). In comparing models it is clear that the Modified-

Wiorkowski and the Modified-Ilk models yield the most conservative estimates of 30-year EUR 

(EUR30Yr). While these (very) conservative extrapolated trends match the time-rate and time-cumulative 

data quite well, the self-limiting growth nature of both the Modified-Wiorkowski and the Modified-Ilk 

models may have led to overly conservative production forecasts and estimated reserves. 

 

 

 

Figure 3.12 — (Log-log Plot): Modified-Wiorkowski Model, Modified-Ilk Model, Arps' 

Hyperbolic Model, Duong Model, Power Law Exponential Model and Logistic 

Growth Model 30-year EUR forecasts for the Marcellus Shale Gas Well (Well-4) 

— gas flowrate (MSCFD) and cumulative gas production (BSCF) versus 

production time (Days). 

 

While not an indictment of the Modified-Wiorkowski Model (MWM) and Modified-Ilk Model (MIM) 

time-rate models; the Marcellus Shale Gas Well case (Well-4) does present a scenario where these new 

models may not be representative, even considering the fact that the qg(t) match using these models is 

quite good. In short, as with all time-rate analyses, we strongly recommend the diagnostic approach using 

the qDb plot where the qg(t), D(t), and b(t) functions must be matched by the model under consideration.  
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If the proposed model does not effectively match all three functions, then some doubt/uncertainty in the 

validity of the proposed model must be stated for that particular case. 

In Fig. 3.13 we present the "Continuous EUR" results versus production time for the Marcellus Shale Gas 

Well case (Well-4) showing all time-rate models.  We again use the "benchmark" 30-year EUR (EUR30Yr) 

obtained from model-based production analysis (typically referred to as "Rate Transient Analysis" or 

RTA) as our EUR standard.  As seen in Fig. 3.13, it is difficult to discern the "convergence" of the various 

time-rate models, but each of the models appears to be "trending" towards the EUR30Yr value of 2.52 BSCF 

(with the noted exception of the Power-Law Exponential model which has exceeded this value).  In 

fairness, the "Continuous EUR" approach can be difficult to apply.  In this instance it is probably best to 

describe the nature of the Continuous EUR results as "indicative," rather than conclusive. 

 

 

 

Figure 3.13 — (Cartesian Plot): "Continuous EUR" obtained using the Modified-Wiorkowski and 

Modified-Ilk models compared to the cumulative production (Marcellus Shale Gas 

Well (Well-4)). 
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Table.3.10 provides a summary of matched parameters. 
 

Table 3.10 — Arps' Exponential, Arps' Hyperbolic, Duong, Logistic growth, Power Law and 

Wiorkowski Model matched parameters for numerical simulation case. 
 

Arps' Hyperbolic Model 

qi 
  Di   b   

  

(MSCFD) 
 

6,000 
 

0.11 
 

2.60 
  

Logistic Growth Model 

K 
   a    n   

  

(MSCFD) 
 

2.38 x 10
7
 

 
1500 

 
0.62 

  
Duong Model 

qt1 
  a   m   

  

(MSCFD) 
 

1,200 
 

1.73 
 

1.16 
  

Modified Ilk Model 

pG  
  D    iD    

  

n  (MSCFD) 

3.04 x 10
6
 

 
8.12 x 10

-7
 

 
0.00172 

 
0.79 

PLE Model 

qi 
  Di   n   D∞ 

(MSCFD) 

900,920 
 

4.48 
 

0.0714 
 

1 x 10
-7

 

Modified Wiorkowski Model 

pG
~

 
  a~    

iD
~

   n~  
(MSCFD) 

2.23 x 10
6
 

 
0.99 

 
0.00041 

 
0.69 

 

We also generated flow rate and pressure model responses of Well-4 for a horizontally fractured well in an 

infinite acting homogenous reservoir.  A very consistent history match of flow and pressure data was 

obtained using these "model" solutions.  Fig. 3. 14 gives a summary analysis plot of flow rate and pres-

sure.  A 30-year forecast of matched model was performed which gave a 30-year EUR of 2.52 Bscf. 

 



 

44 

 

 

 

Figure 3.14 — (Semi-log Plot): Well-4 analysis summary plot — flow rate,(MSCFD) and 

calculated bottomhole pressure, (psia) versus production time,(Days)  

 

3.4.4 Field Example: Eagle Ford Gas Well 

 

In this section we perform time-rate analysis of an Eagle Ford Gas Well.  Typically shale gas wells are 

horizontal wells with multiple transverse fractures and for this particular well, we have approximately 970 

days of production data. 

 

Table 3.11 shows reservoir and well parameters used to generate production data for this numerical 

simulation case. 
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Table 3.11 — Reservoir and fluid properties for Eagle Ford Gas Well 

 

Reservoir Properties 

Net pay thickness, h = 100 ft 

Wellbore Radius, rw  = 0.3 ft 

Porosity,    = 0.1 (fraction) 

Initial reservoir pressure, pi = 7,000 psi 

Gas saturation, sg  = 1.0 fraction 

Skin factor, s   = 0.001 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.7 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 192ft 

Number of fractures  = 30 

Horizontal well length = 3417 ft 

Production parameters: 

Production time, t  = 980 days 
 

We again "edit" the flowrate data as shown in Fig. 3.15.  As comment, these data are generally well-

behaved, with some production operations (most likely choke management) evident at early times.  We 

again perform "diagnostic" time-rate analysis using the Modified-Wiorkowski and Modified-Ilk time-rate 

models — we note that the qg(t), D(t), and b(t) data trends (symbols) are matched very well by their 

corresponding model trends (lines) — and although we do observe some discrepancies in the D(t), and b(t) 

data trends for times > 700 days, these discrepancies are minor and could be attributed to derivative 

calculations (and/or slight data noise in the flowrate). 

 

Typically shale gas wells have very low permeability (on the scale of nanodarcies) and production history 

is often very erratic with lots of large fluctuations especially in early time of well life. Fig. 3.15 gives a 

semi-log production history plot of Eagle Ford Gas Well. 
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Figure 3.15 — (Semi-log Plot): Production history plot for Eagle Ford Gas Well – flow 

rate,(MSCFD) and cumulative production, (BSCF) versus production time,(Days)  

 

Modified Wiorkowski and Modified Ilk Models were matched for 970 days of available production history 

of Eagle Ford Gas Well to obtain 30-year EUR forecasts. Table 3.12 gives matched parameters for both 

models. 

 

Table 3.12 — Modified Wiorkowski and Modified Ilk Models matched parameters Eagle Ford 

Gas Well  

Modified Wiorkowski Model 

pG
~

 

(MSCF)  a~   n~   iD
~

 (D
-1

) 

6.1 x 106    1  0.51  0.000131 

 

Modified Ilk Model 

pG  

(MSCF)  D   n   iD  (D
-1

) 

9.2 x 106    1 x 10-7    0.55  0.00565 

       
 

Fig. 3.16 shows that the Modified Ilk Model provides more conservative EUR estimates as compared with 

the Modified Wiorkowski Model.  From Fig. 3.16, we observe that the Eagle Ford Gas Well appears to be 

producing in the linear flow regime (see b- parameter trend). 
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Figure 3.16 — (Log-log Plot): Flow rate , D- and b-parameter versus production time.  Modified 

Wiorkowski Model and Modified Ilk Model matches for Eagle Ford Gas Well.  
 

In short, we believe that the Modified-Wiorkowski and Modified-Ilk time-rate models match the data 

trends well in Fig. 3.16, we would also note that the D(t) data trend is essentially a straight-line trend, 

which corresponds to the concept of the Power-Law Exponential time-rate model.  In addition, the self-

constraining nature of the Modified-Wiorkowski Model (MWM) and Modified-Ilk Model (MIM) time-

rate models suggests that these may again be overly conservative. 

In Fig. 3.17 we provide the time-rate and time-cumulative matches for all of the models considered in this 

work for the Eagle Ford Gas Well case.  We note that the Modified-Wiorkowski and Modified-Ilk time-

rate models are quite comparable to the Arps' Hyperbolic, the Duong, and the Logistic Growth time-rate 

models.  We believe that the Power-Law Exponential time-rate and time-cumulative model match 

probably needs revision as we note that this model does not match the production performance at late 

times. 
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Figure 3.17 — (Log-log Plot): Modified-Wiorkowski Model, Modified-Ilk Model, Arps' 

Hyperbolic Model, Duong Model, Power Law Exponential Model, and the 

Logistic Growth Model time-rate model matches for the Eagle Ford Gas Well case 

— gas flowrate (MSCFD) and cumulative gas production (BSCF) versus 

production time (Days). 
 

 

 

Table 3.13 — Summary of Decline Curve Analyses (EUR) for the Eagle Ford Gas Well case. 
 

 

Time-Rate Models 

 EUR30Yr 

(BSCF) 

Duong Model  4.80 BSCF 

Logistic Growth Model (LGM)  6.50 BSCF 

Power-Law Exponential Model (PLE)  3.40 BSCF 

Arps' Hyperbolic Model  6.20 BSCF 

Modified-Wiorkowski Model (MWM)  5.32 BSCF 

Modified-Ilk Model (MIM)  5.55 BSCF 
 

Table.3.14 provides a summary of the matched parameters for this case. 
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Table 3.14 — Arps' Exponential, Arps' Hyperbolic, Duong, Logistic growth, Power Law and 

Wiorkowski Model matched parameters for Eagle Ford Gas Well. 
 

Arps' Hyperbolic Model 

qi 
  Di   b   

  

(MSCFD) 
 

13,821 
 

0.653 
 

1.84 
  

Logistic Growth Model 

K 
   a    n   

  

(MSCFD) 
 

3.4 x 10
8
 

 
4028 

 
0.47 

  
Duong Model 

qt1 
  a   m   

  

(MSCFD) 
 

5,447 
 

1.55 
 

1.17 
  

Modified Ilk Model 

pG  
  D    iD    

  

n  (MSCFD) 

9.2 x 10
6
 

 
1 x 10

-7
 

 
0.00565 

 
0.55 

PLE Model 

qi 
  Di   n   D∞ 

(MSCFD) 

11.598 
 

0.248 
 

0.345 
 

1 x 10
-7

 

 Modified Wiorkowski Model 

pG
~

 
  a~    iD

~
   n~  

(MSCFD) 

6.13 x 10
6
 

 
1 

 
0.000131 

 
0.51 

 

As noted, the results are comparable for all cases (with the exception of the Power-Law Exponential 

Model).  Also, Rate Transient Analysis (RTA) was not performed for this case due a lack of reservoir-

specific data. 

We also generated flow rate and pressure model responses for the Eagle Ford Gas Well case using a 

horizontally fractured well in an infinite acting homogenous reservoir.  A very consistent history match of 

flow and pressure data was obtained with the "model" solution.  Fig. 3.18 provides a summary analysis 

plot of flow rate and pressure.  A 30-year using the RTA model gave an EUR of 2.52 Bscf. 
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Figure 3.18 — (Semi-log Plot):Eagle Ford Gas Well analysis summary plot –flow rate, (MSCFD) 

and calculated bottomhole pressure, (psia) versus production time,(Days)  
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CHAPTER IV 

PARAMETRIC CORRELATIONS OF WELL/RESERVOIR PROPERTIES AND 

PRODUCTION METRICS 

 

This section presents a methodology to integrate parameters from proposed time-rate relations with 

completion/reservoir parameters from model based production analysis. We investigate parametric 

correlations for Modified Wiorkowski Model and Modified Ilk Model for fracture conductivity, formation 

permeability, fracture half-length and 30 year EUR values. We provide a theoretical consideration to the 

methodology using data generated from different numerical simulation cases for flow from a horizontal 

well with multiple transverse fractures in a low/ultra-low permeability reservoir. 

 

For this study, we assume that all other completion and reservoir parameters are kept fairly constant for all 

cases. For all cases considered, we use the same reservoir parameters and production constraints like 

initial reservoir pressure and temperature, saturations, flowing bottomhole pressure, number of fractures, 

drainage area, well-length etc. to narrow the unknown parameter to fundamental reservoir/completion 

parameters being investigated for parametric correlations with time-rate relations. 

 

4.1 General Methodology 

 

We model a horizontal well with multiple transverse fractures in a low permeability reservoir for 

numerical simulation cases. A typical numerical simulation grid is shown in Fig. 4.1. 

 

Figure 4.1 — Diagram of the numerical simulation model showing horizontal well and multiple 

transverse fractures.  
 

For each case we make 15 simulation runs and perform time-rate analysis with Modified Wiorkowski and 

Modified Ilk models. We use Bourdet algorithm (Bourdet et al. 1989) to calculate the D- and b-parameters 

to help in matching the production data. We provide log-log plots of gas rate qg, D- and b-parameters 

against production time to show the quality of model matches.  
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Once we obtain satisfying matches of time-rate models, the next step is to study the relationship between 

individual model parameters and the reservoir parameter being considered along with 30 year EUR. We 

perform a cross-plot analysis of the individual rate decline model parameters with reservoir parameters 

and identify respective correlating parametric functions. 

We intend to find each reservoir parameter in terms of the rate decline model parameters. For example: 

)(pfFr   ............................................................................................................................................ (4.1) 

And 

)(30 pfEUR yr   .................................................................................................................................. (4.2) 

Here, Fr is the reservoir parameter and p is the rate decline model parameter under consideration. 

After establishing individual correlating functions we find multivariate correlating functions for reservoir 

parameter and 30 year EUR for each case by finding suitable combinations of the correlating functions. 

This serves to provide relations which can predict reservoir parameters directly from rate decline model 

parameters.  

The integrating parametric correlation functions can be written as: 

...),,( rqpfFr   ................................................................................................................................. (4.3) 

And 

...),,(30 rqpfEUR yr   ........................................................................................................................ (4.4) 

p, q, and r are sample rate decline model parameters being considered. 

Finally we provide cross-plots of calculated and observed reservoir parameters to assess the quality of 

parametric correlating functions. 

4.2. Fracture Conductivity – Parametric Correlations 

In this section we will investigate the parametric correlation between two proposed models and fracture 

conductivity for 15 numerical simulation cases with fracture conductivity varying between 0.005-0.7 md-

ft. The model input parameters for numerical simulation case are given below. 
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Table 4.1 — Reservoir and fluid properties for numerical simulation case (horizontal well with 

multiple transverse fractures) with varying fracture conductivity. 
 

Reservoir Properties 

Net pay thickness, h = 160 ft 

Formation permeability, k = 0.5 µD 

Fracture conductivity = 0.005 – 0.7 md-ft 

Wellbore Radius, rw  = 0.1 ft 

Formation compressibility, cf = 3 x 10
-6  

psi
-1

 

Porosity,    = 0.05 (fraction) 

Initial reservoir pressure, pi = 5000 psi 

Gas saturation, sg  = 1.0 fraction 

Skin factor, s   = -5 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.7 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 164.0 ft 

Number of fractures  = 15 

Horizontal well length = 6561.7 ft 

Production parameters: 

Flowing pressure, pwf  = 500 psia 

Production time, t  = 10,950 days (~30 years) 
 

In the following two sections, we present parametric correlations for both models respectively. 

4.2.1 Modified Wiorkowski Model – Parametric Correlations 

In this section we investigate parametric correlating functions between parameters of Modified 

Wiorkowski Model and 15 numerical simulation cases with varying fracture conductivities.  The gas 

flowrate qg, D- and b-parameter plots are given below in Figs. 4.2, 4.3, and 4.4 respectively.  The 

diagnostic functions indicate transient and transition flow regimes followed by boundary-dominated flow 

in late time part of data.  However, in this analysis, we focus on the behavior of the linear flow regime. 

Fig.4.3 shows a plot of b- parameter values for various fracture conductivity cases. For a typical low 

permeability well, b- parameter has a value of 2 for transient flow regime for large fracture conductivity 

cases. For our study, we have considered relatively low fracture conductivity values which give a b-

parameter value of 3 (0.7 md-ft) for highest fracture conductivity case while a value of 10 (0.005 md-ft) 

for lowest fracture conductivity case. Fig. 4.3 shows a dominant transient/transition flow regime 

characterized by a negative slope straight line decline of D- parameter on a log-log plot. We observe a 

slight deviation of trend and change in slope at around 1,000 days. It should be noted that for all cases 

Modified Wiorkowski Model D- parameter approaches a constant value at around 20,000 days. This 

feature exhibits the inherent self-growth limiting feature of Modified Wiorkowski Model that makes this 
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model suitable to match boundary-dominated flow regime.  Table 4.2 shows a constant value of unity of 

parameter a~  for all varying fracture conductivity cases which leads us to its subsequent exclusion from 

parameter correlation process. 

 

Figure 4.2 — (Log-log Plot): Flow rate (qg) versus production time. Modified Wiorkowski 

model matches of 15 numerical simulation cases. 

 

Figure 4.3 — (Log-log Plot): b-parameter versus production time. Modified Wiorkowski model 

model matches of 15 numerical simulation cases. 
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Figure 4.4 — (Log-log Plot): D- parameter versus production time. Modified Wiorkowski model 

matches of 15 numerical simulation cases. 

Table 4.2 shows the matching model parameters.  
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Table 4.2 — Modified Wiorkowski Model parameters. Model matches to 15 numerical 

simulation cases. 

 

Num. Sim. Cases                              MW Model Parameters 

Fc 

(md-ft) 

 
Gp, max (30 yr) 

(BSCF) 

 
pG

~
 

(MSCF) 

 
a~  

(d.less) 

 
n~  

(dless) 

 
iD

~
 

(D
-1

) 

 
EURMW 

(BSCF) 

0.005  2.24  1.8E+07  1  0.924  9.86E-06  2.23 

0.007  2.59  1.9E+07  1  0.910  1.10E-05  2.58 

0.010  2.98  1.9E+07  1  0.895  1.23E-05  2.97 

0.015  3.46  1.9E+07  1  0.877  1.37E-05  3.44 

0.020  3.82  2.0E+07  1  0.865  1.48E-05  3.80 

0.030  4.36  2.0E+07  1  0.847  1.64E-05  4.32 

0.050  4.09  2.0E+07  1  0.823  1.86E-05  4.02 

0.070  4.60  2.0E+07  1  0.808  2.01E-05  4.51 

0.100  6.15  2.1E+07  1  0.791  2.16E-05  6.01 

0.150  6.76  2.1E+07  1  0.771  2.30E-05  6.57 

0.200  7.16  2.1E+07  1  0.756  2.38E-05  6.93 

0.300  7.67  2.1E+07  1  0.734  2.45E-05  7.39 

0.400  7.98  2.2E+07  1  0.718  2.47E-05  7.67 

0.500  8.18  2.2E+07  1  0.706  2.46E-05  7.87 

0.700  8.43  2.2E+07  1  0.688  2.43E-05  8.13 
 

 

 

 
 

]
~

6-14exp[1E3E pc GF   ]
~
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Figure 4.5 — Cross-plots showing relationship between Modified Wiorkowski model 

parameters and numerical simulation case fracture conductivity (Fc) and 30 year 

EUR estimates. 

Fig. 4.5 shows the cross-plots of each considered parameter of Modified Wiorkowski Model parameter for 

15 simulation cases against fracture conductivity and 30-year EUR respectively. We also fit a simple 

parametric function to cross-plot to determine the underlying correlating function for individual 

parameters. Fig. 4.5 shows the cross-plots along with respective correlating functions. 

Finally, we relate reservoir parameters with Modified Wiorkowski model parameters by proposing 

parametric correlations based on the correlating functions we identified in Fig. 4.4. Fig.4.5 shows that 
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fracture conductivity can be correlated to model parameters by a combination of power and exponential 

functions. We propose the correlating function as: 

]
~

exp[~~
040302

01 i

aaa

pc DnGaF   .......................................................................................................... (4.5) 

Here, a01, a02, a03 and a04are coefficients to be determined through least square regression.  Similarly we 

propose the following correlating function to estimate the 30 year EUR (EUR30yr). 

]~ln[
~~

0402

030130 nGaDaEUR
a

p

a

iyr   ...................................................................................................... (4.6) 

Fig. 4.6 shows the resulting model fits for proposed parametric correlations. It can be observed that the 

proposed correlating functions provide a reliable estimate of the reservoir properties (Fc and EUR30 yr) for 

the case of a well within the same reservoir system with similar completion and production constraints.  

  

]
~

712.8exp[~~
105.4 2.1691.0

ipc DnGEF   ]~ln[
~

106.8
~

0207.1
3.122.10

30 nGEDEEUR piyr


  

 

Figure 4.6 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using Modified Wiorkowski model parameters 

versus numerical simulation models. 
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4.2.2 Modified Ilk Model – Parametric Correlations 

In this section we investigate parametric correlating functions between parameters of Modified Ilk Model 

and 15 numerical simulation cases with varying fracture conductivities.  The gas flowrate qg, D- and b-

parameter plots are given below in Figs. 4.7a, 4.7b, and 4.8 respectively.  The diagnostic functions 

indicate transient and transition flow regimes followed by boundary-dominated flow in late time part of 

data.   

Fig. 4.7 shows a plot of b- parameter values for various fracture conductivity cases. Fig. 4.7 also shows a 

dominant transient/transition flow regime characterized by a negative slope straight line decline of D- 

parameter on a log-log plot. We observe a slight deviation of trend and change in slope at around 1,000 

days. It should be noted that for all cases Modified Ilk Model D- parameter approaches a constant value at 

around 20,000 days. This feature exhibits the inherent self-growth limiting feature of Modified Ilk Model 

that makes this model suitable to match boundary-dominated flow regime. Table 4.3 shows a constant 

value of zero of parameter D  for all varying fracture conductivity cases which leads us to its subsequent 

exclusion from parameter correlation process. 

 

 

Figure 4.7a — (Log-log Plot): Flow rate (qg) versus production time. Modified Ilk matches of 15 

numerical simulation cases. 
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Figure 4.7b — (Log-log Plot): b-parameter versus production time. Modified Ilk model matches 

of 15 numerical simulation cases. 

 
Figure 4.8 — (Log-log Plot): D-parameter versus production time. Modified Ilk model matches 

of 15 numerical simulation cases. 
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The resulting model parameters are given in Table 4.3. 

Table 4.3 — Modified Ilk Model parameters. Model matches to 15 numerical simulation cases. 
 

Num. Sim. Cases                              Modified Ilk Model Parameters 

Fc 

(md-ft) 

 
Gp, max (30 yr) 

(BSCF) 

 
pG  

(MSCF) 

 
D  

(d.less) 

 
n  

(dless) 

 
iD  

(D
-1

) 

 
EURMI 

(BSCF) 

0.005  2.24  2.0E+07  0.000  0.926  2.14E-05  2.23 

0.007  2.59  2.1E+07  0.000  0.912  2.74E-05  2.59 

0.010  2.98  2.1E+07  0.000  0.897  3.56E-05  2.983 

0.015  3.46  2.2E+07  0.000  0.880  4.75E-05  3.457 

0.020  3.82  2.2E+07  0.000  0.868  4.82E-05  3.814 

0.030  4.36  2.3E+07  0.000  0.851  7.73E-05  4.346 

0.050  4.09  2.3E+07  0.000  0.830  1.10E-04  4.066 

0.070  4.60  2.3E+07  0.000  0.815  1.38E-04  4.564 

0.100  6.15  2.4E+07  0.000  0.800  1.75E-04  6.092 

0.150  6.76  2.4E+07  0.000  0.781  2.28E-04  6.669 

0.200  7.16  2.4E+07  0.000  0.767  2.73E-04  7.054 

0.300  7.67  2.5E+07  0.000  0.747  3.48E-04  7.546 

0.500  8.18  2.6E+07  0.000  0.721  4.62E-04  8.056 

0.700  8.43  2.6E+07  0.000  0.704  4.49E-04  8.332 

 

 

 

1057.577146
2
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Figure 4.9 — Cross-plots showing relationship between Modified Ilk model parameters and 

numerical simulation cases fracture conductivity (Fc) and 30 year EUR values. 

Fig. 4.9 shows the cross-plots of each considered parameter of Modified Ilk Model parameter for 15 

simulation cases against fracture conductivity and 30-year EUR respectively. These plots show the 

individual correlating relationship of each model parameter with considered reservoir parameters (Fc and 

EUR30yr). We also fit a simple parametric function to cross-plot to determine the underlying correlating 

function for individual parameters. Fig. 4.9 shows the cross-plots along with respective correlating 

functions. 

Finally, we relate reservoir parameters with Modified Ilk model parameters by proposing parametric 

correlations based on the correlating functions we identified in Fig. 4.9. Fig. 4.9 shows that fracture 
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conductivity can be correlated to model parameters by a combination of exponential and second degree 

polynomial functions. We propose the correlating function as: 

iipc DaDanaGaF 04

2

030201 ]exp[]exp[   ............................................................................... (4.7) 

Here, a01, a02, a03 and a04are coefficients to be determined through least square regression.  Similarly we 

propose the following correlating function to estimate the 30 year EUR (EUR30yr). 

]~ln[
~~

0402

030130 nGaDaEUR
a

p

a

iyr   ...................................................................................................... (4.8) 

Fig. 4.10 shows the resulting model fits for proposed parametric correlations. It can be observed that the 

proposed correlating functions provide a reliable estimate of the reservoir properties (Fc and EUR30 yr) for 

the case of a well within the same reservoir system with similar completion and production constraints.  

  

iipc DDEnGEF 19560.2]23exp[]72exp[
2
  ]ln[801.632.1

99.08.194
30 nGEDEUR piyr


  

 

Figure 4.10 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using Modified Ilk model parameters versus 

numerical simulation models. 
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4.3. Fracture Half Length – Parametric Correlations 

In this section we will investigate the parametric correlation between two proposed models and fracture 

half-length for 15 numerical simulation cases with fracture half-length varying between 50 and 400 ft. The 

model input parameters for numerical simulation case are given below. 

Table 4.4 — Reservoir and fluid properties for numerical simulation case (horizontal well with 

multiple transverse fractures) with varying fracture half-lengths 

 

Reservoir Properties 

Net pay thickness, h = 160 ft 

Formation permeability, k = 0.5 µD 

Fracture conductivity = 0.005 md-ft 

Wellbore Radius, rw  = 0.1 ft 

Formation compressibility, cf = 3 x 10
-6  

psi
-1

 

Porosity,    = 0.05 (fraction) 

Initial reservoir pressure, pi = 5000 psi 

Gas saturation, sg  = 1.0 fraction 

Skin factor, s   = -5 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.7 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 50– 400 ft 

Number of fractures  = 15 

Horizontal well length = 6561.7 ft 

Production parameters: 

Flowing pressure, pwf  = 500 psia 

Production time, t  = 10,950 days (~30 years) 
 

In the following two sections we present parametric correlations for both models respectively. 

4.3.1 Modified Wiorkowski Model – Parametric Correlations 

We investigate parametric correlating functions between parameters of Modified Wiorkowski Model and 

15 numerical simulation cases with varying fracture half-lengths.  The gas flowrate qg, D- and b-parameter 

plots are given below in Figs. 4.11, 4.12, and 4.13 respectively.  The diagnostic functions indicate 

transient and transition flow regimes followed by boundary-dominated flow in late time part of data. 

Fig. 4.13 shows a plot of b- parameter values for various fracture conductivity cases. We observe a slight 

deviation of trend and change in slope at around 1,000 days. It should be noted that for all cases Modified 

Wiorkowski Model D- parameter approaches a constant value at around 20,000 days. 
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For the case of varying fracture half-lengths it can be readily observed that we have a much lesser spread 

for all parameters. Table 4.6 shows a constant value of unity of parameter a~  for all varying fracture 

conductivity cases which leads us to its subsequent exclusion from parameter correlation process. 

 
 

Figure 4.11 — (Log-log Plot): Flow rate (qg) versus production time. Modified Wiorkowski 

model matches of 15 numerical simulation cases with varying fracture half-

lengths. 

 
 

Figure 4.12 — (Log-log Plot): b-parameter versus production time. MWM model matches of 15 

numerical simulation cases with varying fracture half-lengths, 



 

66 

 

 

 

Figure 4.13 — (Log-log Plot): D-parameter versus production time. MWM model matches of 15 

numerical simulation cases with varying fracture half-lengths. 

Table 4.5 shows the matching model parameters.  
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Table 4.5 — Modified Wiorkowski Model parameters. Model matches to 15 numerical 

simulation cases with varying fracture half-lengths. 

 

Num. Sim. Cases                              MW Model Parameters 

xf 

(ft) 

 
Gp, max (30 yr) 

(BSCF) 

 
pG

~
 

(MSCF) 

 
a~  

(d.less) 

 
n~  

(dless) 

 
iD

~
 

(D
-1

) 

 
EURMW 

(BSCF) 

50  2.24  2.8E+07  1  0.644  8.50E-06  4.850 

70  2.59  2.8E+07  1  0.645  9.78E-06  6.420 

90  2.98  2.6E+07  1  0.645  1.28E-05  6.900 

110  3.46  2.4E+07  1  0.646  1.54E-05  7.300 

130  3.82  2.4E+07  1  0.648  1.78E-05  7.680 

150  4.36  2.3E+07  1  0.650  2.02E-05  8.020 

170  4.09  2.3E+07  1  0.653  2.23E-05  8.340 

190  4.60  2.2E+07  1  0.656  2.44E-05  8.630 

220  6.15  2.2E+07  1  0.661  2.72E-05  9.050 

250  6.76  2.2E+07  1  0.666  2.99E-05  9.440 

280  7.16  2.2E+07  1  0.671  3.25E-05  9.830 

310  7.67  2.2E+07  1  0.677  3.49E-05  10.200 

350  7.98  2.2E+07  1  0.683  3.78E-05  10.670 

400  8.18  2.3E+07  1  0.691  4.12E-05  11.240 
 

 

 

 

 
-6.663~

512 pGExf   
1.2478~

081 iDExf   
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Figure 4.14 — Cross-plots showing relationship between Modified Wiorkowski model 

parameters and numerical simulation case fracture half-length (xf) and 30 year 

EUR estimates. 

Fig. 4.14 shows the cross-plots of each considered parameter of Modified Wiorkowski Model parameter 

for 15 simulation cases against fracture half-length and 30-year EUR respectively. We also fit a simple 

parametric function to cross-plot to determine the underlying correlating function for individual 

parameters. Fig. 4.14 shows the cross-plots along with respective correlating functions. 
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Fig. 4.14 shows that fracture half-length can be correlated to model parameters by a combination of power 

and second degree polynomial functions. We propose the correlating function as: 

)~~(
~

03

2

01
0302 nanDaxf aa

i   ............................................................................................................ (4.9) 

Here, a01, a02  and a03are coefficients to be determined through least square regression.  Similarly we 

propose the following correlating function to estimate the 30 year EUR (EUR30yr). 

)~~(
~

04

2

03020130 nanaaDaEUR iyr   ................................................................................................... (4.10) 

Fig. 4.15 shows the resulting model fits for proposed parametric correlations. It can be observed that the 

proposed correlating functions provide a reliable estimate of the reservoir properties (xf and EUR30 yr) for 

the case of a well within the same reservoir system with similar completion and production constraints.  

 
 

)~3.515~(
~

0834.1 219.1
nnDExf i   )~5.84~148(258.0

~
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Figure 4.15 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using Modified Wiorkowski model parameters 

versus numerical simulation models. 
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4.3.2 Modified Ilk Model – Parametric Correlations 

In this section we investigate parametric correlating functions between parameters of Modified Ilk Model 

and 15 numerical simulation cases with varying fracture lengths.  The gas flowrate qg, D- and b-parameter 

plots are given below in Figs. 4.16, 4.17, and 4.18 respectively. The diagnostic functions indicate transient 

and transition flow regimes followed by boundary-dominated flow in late time part of data.   

Fig. 4.17 shows a plot of b- parameter values for various fracture conductivity cases. It should be noted 

that for all cases Modified Ilk Model D- parameter approaches a constant value at around 20,000 days. For 

the case of varying fracture half-lengths it can be readily observed that we have a much lesser spread for 

all parameters. 

 Table 4.6 shows a constant value of zero of parameter D for all varying fracture conductivity cases 

which leads us to its subsequent exclusion from parameter correlation process. 

 

 

Figure 4.16 — (Log-log Plot): Flow rate (qg) versus production time. Modified Ilk matches of 15 

numerical simulation cases with varying fracture half-lengths. 
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Figure 4.17 — (Log-log Plot): b-parameter versus production time. Modified Ilk model matches 

of 15 numerical simulation cases with varying fracture half-lengths. 

 
 

Figure 4.18 — (Log-log Plot): D- parameter versus production time. Modified Ilk model matches 

of 15 numerical simulation cases with varying fracture half-lengths. 



 

72 

 

The resulting model parameters are given in Table 4.6. 

Table 4.6 — Modified Ilk Model parameters. Model matches to 15 numerical simulation cases 

with varying fracture half-lengths. 
 

Num. Sim. Cases                              Modified Ilk Model Parameters 

xf 

(ft) 

 
Gp, max (30 yr) 

(BSCF) 

 
pG  

(MSCF) 

 
D  

(d.less) 

 
n  

(dless) 

 
iD  

(D
-1

) 

 
EURMI 

(BSCF) 

50  4.60  6.2E+07  0.000  0.650  2.21E-04  4.82 

70  6.23  4.5E+07  0.000  0.652  3.54E-04  6.44 

90  6.69  3.7E+07  0.000  0.654  4.71E-04  6.970 

110  7.23  3.3E+07  0.000  0.657  4.60E-04  7.420 

130  7.78  3.1E+07  0.000  0.661  6.29E-04  7.830 

150  8.12  2.9E+07  0.000  0.665  6.83E-04  8.200 

170  8.50  2.8E+07  0.000  0.670  7.24E-04  8.550 

190  8.93  2.7E+07  0.000  0.674  7.56E-04  8.880 

220  9.54  2.6E+07  0.000  0.681  7.89E-04  9.340 

250  9.95  2.5E+07  0.000  0.687  8.11E-04  9.770 

280  10.50  2.5E+07  0.000  0.694  8.22E-04  10.200 

310  10.94  2.5E+07  0.000  0.700  8.26E-04  10.600 

350  11.60  2.5E+07  0.000  0.707  8.25E-04  11.100 

400  12.20  2.5E+07  0.000  0.717  8.13E-04  11.700 
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73 

 

  

1.1524]ln[2.3388  nxf  
798.0

30 068


 pyr GEEUR  

 

 

]5.1155exp[005.430 iyr DEUR   624.33]ln[31.6330  nEUR yr  

 

Figure 4.19 — Cross-plots showing relationship between Modified Ilk model parameters and 

numerical simulation cases fracture half-length (xf) and 30 year EUR values. 

Fig. 4.19 shows the cross-plots of each considered parameter of Modified Ilk Model parameter for 15 

simulation cases against fracture conductivity and 30-year EUR respectively. We also fit a simple 

parametric function to cross-plot to determine the underlying correlating function for individual 

parameters. Fig. 4.19 shows the cross-plots along with respective correlating functions. 
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Fig. 4.19 shows that fracture half-length can be correlated to model parameters by a combination of 

exponential and logarithmic functions. We propose the correlating function as: 

]exp[]ln[ 0201 iDanaxf   ............................................................................................................... (4.11) 

Here, a01and a02are coefficients to be determined through least square regression.  Similarly we propose 

the following correlating function to estimate the 30 year EUR (EUR30yr). 

]exp[]ln[ 03020130 iyr DanaaEUR   ...................................................................................................... (4.12) 

Fig. 4.20 shows the resulting model fits for proposed parametric correlations. This indicates that these 

correlating functions can provide reasonable estimates of the reservoir properties (xf and EUR30 yr) for the 

case of a well within the same reservoir system with similar completion and production constraints.  

  

]exp[352.1]ln[338.3 iDEnExf   ]291.5exp[]86.1ln[8.2530 iyr DEnEUR   

 

Figure 4.20 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using Modified Ilk model parameters versus 

numerical simulation models. 
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4.4. Formation Permeability – Parametric Correlations 

In this section we will investigate the parametric correlation between two proposed models and 

permeability for 15 numerical simulation cases with formation permeability varying between 0.0001-0.005 

md. The model input parameters for numerical simulation case are given below. 

Table 4.7 — Reservoir and fluid properties for numerical simulation case (horizontal well with 

multiple transverse fractures) with varying formation permeability. 
 

Reservoir Properties 

Net pay thickness, h = 160 ft 

Formation permeability, k = 0.0005-0.005 md 

Fracture conductivity = infinite 

Wellbore Radius, rw  = 0.1 ft 

Formation compressibility, cf = 3 x 10
-6  

psi
-1

 

Porosity,    = 0.05 (fraction) 

Initial reservoir pressure, pi = 5000 psi 

Gas saturation, sg  = 1.0 fraction 

Skin factor, s   = 0.01 (dimensionless) 

Reservoir temperature, Tr = 212 °F 

Fluid properties: 

Gas specific gravity, γg = 0.7 (air = 1) 

Hydraulically fractured well model parameters: 

Fracture half-length, xf = 164.0 ft 

Number of fractures  = 15 

Horizontal well length = 6561.7 ft 

Production parameters: 

Flowing pressure, pwf  = 500 psia 

Production time, t  = 10,950 days (~30 years) 
 

It should be noted that for Modified Wiorkowski Model, a reasonable match of formation permeabilities 

with time-rate model parameters could not me obtained. Therefore, we present multivariate correlations of 

Modified Ilk Model only for this case.  

4.4.1 Modified Ilk Model – Parametric Correlations 

In this section we investigate parametric correlating functions between parameters of Modified Ilk Model 

and 15 numerical simulation cases with varying formation permeabilities.  The gas flowrate qg, D- and b-

parameter plots are given below in Figs. 4.21, 4.22, and 4.23 respectively 

Fig. 4.23 also shows a dominant transient/transition flow regime characterized by a negative slope straight 

line decline of D- parameter on a log-log plot. We observe a slight deviation of trend and change in slope 
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at around 100 days. Table 4.9 shows a constant value of zero of parameter D  for all varying fracture 

conductivity cases which leads us to its subsequent exclusion from parameter correlation process. 

 
 

Figure 4.21 — (Log-log Plot): Flow rate (qg) versus production time. Modified Ilk matches of 15 

numerical simulation cases with varying formation permeability. 

 
 

Figure 4.22 — (Log-log Plot): b-parameter versus production time. Modified Ilk model matches 

of 15 numerical simulation cases with varying formation permeability. 
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Figure 4.23 — (Log-log Plot): D-parameter versus production time. Modified Ilk model matches 

of 15 numerical simulation cases with varying formation permeability. 

The resulting model parameters are given in Table 4.8. 
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Table 4.8 — Modified Ilk Model parameters. Model matches to 15 numerical simulation cases 

with varying formation permeability. 
 

Num. Sim. Cases                              Modified Ilk Model Parameters 

k 

(md) 

 
Gp, max (30 yr) 

(BSCF) 

 
pG  

(MSCF) 

 
D  

(d.less) 

 
n  

(dless) 

 
iD  

(D
-1

) 

 
EURMI 

(BSCF) 

0.0050  11.24  1.1E+07  0.000  0.622  1.24E-02  11.18 

0.0045  11.17  1.1E+07  0.000  0.624  1.15E-02  11.15 

0.0040  11.08  1.1E+07  0.000  0.627  1.05E-02  11.103 

0.0035  10.97  1.1E+07  0.000  0.630  9.54E-03  11.035 

0.0030  10.81  1.1E+07  0.000  0.633  8.53E-03  10.900 

0.0025  10.59  1.1E+07  0.000  0.637  7.49E-03  10.700 

0.0020  10.24  1.1E+07  0.000  0.640  6.42E-03  10.400 

0.0018  10.02  1.1E+07  0.000  0.640  6.42E-03  10.400 

0.0015  9.73  1.1E+07  0.000  0.642  4.26E-03  9.870 

0.0013  9.34  1.1E+07  0.000  0.642  4.65E-03  9.455 

0.0010  8.83  1.1E+07  0.000  0.644  3.99E-03  8.927 

0.0008  8.11  1.1E+07  0.000  0.644  3.24E-03  8.182 

0.0005  7.04  1.1E+07  0.000  0.647  2.42E-03  7.040 

0.0003  4.23  1.1E+07  0.000  0.655  1.48E-03  4.230 

0.0001  3.27  1.0E+07  0.000  0.667  7.96E-04  3.240 

 

 

  

]63exp[166 pGEEk   
4192.1

5422.2 iDk   
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274.184.39.2 2  nnk  1.954]ln[34.5130  pyr GEUR  

  

87.24]ln[97.230  iyr DEUR  117138593149 2

30  nnEUR yr  

 

Figure 4.24 — Cross-plots showing relationship between Modified Ilk model parameters and 

numerical simulation cases formation permeability (k) and 30 year EUR values. 

Fig. 4.24 shows the cross-plots of each considered parameter of Modified Ilk Model parameter for 15 

simulation cases against formation permeability and 30-year EUR respectively. These plots show the 

individual correlating relationship of each model parameter with considered reservoir parameters (k and 

EUR30yr). We also fit a simple parametric function to cross-plot to determine the underlying correlating 

function for individual parameters 

Fig.4.24 shows that formation permeability can be correlated to model parameters by a combination of 

linear and logarithmic functions. We propose the correlating function as: 
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02

01

a

iDnak   .................................................................................................................................. (4.13) 

Here, a01and a02are coefficients to be determined through least square regression.  Similarly we propose 

the following correlating function to estimate the 30 year EUR (EUR30yr). 

naDaEUR iyr 020130 ]ln[   ................................................................................................................ (4.14) 

Fig. 4.25 shows the resulting model fits for proposed parametric correlations. It can be observed that the 

proposed correlating functions provide a reliable estimate of the reservoir properties.  This indicates that 

these correlating functions can provide reasonable estimates of the reservoir properties (k and EUR30 yr) for 

the case of a well within the same reservoir system with similar completion and production constraints.  

  
44.1

39.4 iDnk   nDEUR iyr 14.29]ln[26.330   

 

Figure 4.25 — Comparison of fracture conductivity and 30 year EUR values calculated using 

parametric correlations developed using Modified Ilk model parameters versus 

numerical simulation models. 
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CHAPTER V 

SUMMARY, CONCLUSIONS AND  

RECOMMENDATIONS FOR FUTURE WORK 

 

5.1 Summary 

This work documents the proposal and validation of two new "time-cumulative" relations (along with their 

respective time-rate relations) for the analysis and interpretation of production performance behavior for 

unconventional reservoirs (i.e., low/ultra-low permeability reservoirs).  These relations are taken from the 

statistical literature and are based on "self-growth limiting" behavior.  The self-growth limiting feature 

provides an inherent upper limit on recoverable reserves and (should) eliminate the need of a terminal 

decline as currently required for Arps' time-rate relations. 

We also explore the utility of diagnostic functions that are based on growth character of historical 

cumulative production data (analogous to production rate diagnostic methods).  The goal of developing 

"time-cumulative" diagnostics is to provide characteristic functions which are less influenced by data 

noise. We provided a methodology to provide specialized diagnostic plots for Modified Wiorkowski 

Model that allows determination of regression parameters through data character without use of non-linear 

regression. We tested the methodology for the numerical simulation case. 

We have applied the proposed "self-growth limiting" cumulative-time relations and their respective time-

rate relations for the analysis and interpretation of a number of synthetic and field cases for low/ultra-low 

permeability (unconventional) reservoir cases.  These proposed models provide reasonable matches to 

historical production data and estimates of EUR.  We also presented a performance comparison of 

proposed new models with widely used rate-time relations found in literature to demonstrate their 

applicability for matching of transient, transition and boundary-dominated flow regimes.  Moreover, we 

performed Continuous EUR analysis for different wells/completion configurations to determine the rate of 

convergence to 30-year EUR values (from model based Production analysis) of proposed (MWM and 

MIM) models. 

We also demonstrated the application of a methodology that allows formulating multivariate parametric 

correlations to integrate completion/reservoir parameters with time-rate model parameters.  For this study 

we considered a number of cases for a low permeability horizontal well with multiple transverse factures. 

The developed correlations allow estimation of completion/reservoir properties from time-rate model 

parameters (with the help of benchmark results).  We investigated parametric correlations for Modified 
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Wiorkowski Model and Modified Ilk Model for fracture conductivity, formation permeability, fracture 

half-length and 30 year EUR values. 

5.2 Conclusions 

● In this work we present the development of two new "time-rate" relations (i.e., the "Modified-

Wiorkowski" and "Modified-Ilk" rate-time and time-cumulative models), both of which are based on 

self-growth limiting relations. This self-growth limiting feature provides an inherent upper limit on 

recoverable reserves and eliminates the need for a terminal decline component as required in other 

time-rate relations (e.g., the modified Arps' models). 

● We present the validation and application of the "Modified-Wiorkowski" and "Modified-Ilk" time-

rate and time-cumulative models.  We validate these models against existing time-rate relations (the 

Arps Exponential decline model, the Arps Hyperbolic decline model, the Power-Law Exponential 

(PLE) model, the Logistic Growth model (LGM), and the Duong model) using synthetic performance 

data (i.e., reservoir simulation cases) and field performance data. 

● Diagnostics based on cumulative gas production provide smoother diagnostic plots that are 

comparatively less affected by noise and poor field data. 

● In cases where we remove non-linear regression from the model matching process, we can reduce 

uncertainty in production forecasting and the reserve estimation process. 

● Parametric correlations can be formulated to estimate completion/reservoir properties from time-rate 

model parameters.  The established correlations appear to be unique and distinct for corresponding 

cases. 

5.3 Recommendations for Future Work 

● Efforts should be made to derive diagnostic relations for proposed new models as well as other 

existing models to determine regression parameters directly from historical production data to 

eliminate non-linearity and reduce uncertainty. 

● Parametric correlation methodology should be expanded to include more well/completion/reservoir 

parameters.  The resulting parametric correlations should be validated on a large number of different 

field data examples. 
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NOMENCLATURE 

 

Variables: 
 

a~  = Wiorkowski model parameter 

b(t) = Loss ratio derivative 

b = Model parameter 

c = Model parameter 

cf = Formation compressibility, psia
-1

 

D = inverse loss ratio 

DG = inverse gain ratio 

iD
~

 = Wiorkowski model parameter 

D  = Proposed new model parameter 

iD  = Proposed new model parameter 

Di = Initial decline parameter (t=0) 

Gp = Cumulative gas production, MSCF 

Gp,max = Maximum gas production, MSCF 

pG
~

 = EUR, Wiorkowski model parameter, MSCF 

pG  = EUR, New proposed model parameter, MSCF 

q = Gas production rate, MSCF/D 

qi = Initial Gas production rate, MSCF/D or STB/D 

k = Average reservoir permeability, md 

Lh = Horizontal well length, ft 

n~  = Wiorkowski model parameter 

n  = Proposed new model parameter 

nf = Number of fractures 

pwf = Average reservoir pressure, psia 

rw = Wellbore radius, ft 

s = Skin factor, dimensionless 

Sg = Gas saturation, fraction 

t = Production time, days 

tmb = Material-balance time, days 

Tr = Reservoir temperature, °F 
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Y = Wiorkowski Model cumulative gas production, MSCF 

 

Dimensionless Variables: 

 

FcD = Dimensionless fracture conductivity 

 

Greek Symbols: 

 

γg = Reservoir gas specific gravity (air = 1) 

γW = Model parameter 

λW = Model parameter 

αW = Model parameter 

 = Porosity, fraction 

 

 

Subscripts: 

 

i = Integral function or initial value 

p = Produced value 

mb = Material balance 
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APPENDIX A 

MODIFIED WIORKOWSKI MODEL — DERIVATIONS 

This model is inspired from the work of Wiorkowski (1981).  For matching cumulative oil production 

data, Wiorkowski proposed a variant of the extended Richards family of growth curves: 
 

  WλW
WW

Wλ
WWWW  tC C+  C=tY

1
 

 ]exp[1   )(  


   

 

This is an S-shaped model, and repeated attempts showed that at late-times this model flattens and 

underestimates the reserves.  For unconventional reservoirs, virtually all data are in the transient or 

transition flow regimes. During boundary-dominated flow we believe that this S-shape feature may act as 

a self-growth limiting feature.  
 

We propose the following as a practical form of the Wiorkowski model: 
 

n
ipp tD aG=tG

~
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~
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The modified form of the Wiorkowski model given by Eq. A-1 simplifies the curve fitting process by 

reducing the number of fitting parameters.  The detailed development of the cumulative-time, rate-time, 

rate-cumulative relations, and the D-, b- and β-derivative functions are given below. 
 

Eq. A-1 can be re-written as follows: 
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Rearranging Eq. A-1, we can write this expression as: 
 

n
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Raising both sides of Eq. A-3 to the power of 
n~
1

, we obtain: 
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Rearranging further, and solving for the exponential term, we have: 
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Expanding Eq. A-5 yields: 
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Rearranging this result gives us: 
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Substituting Eq. A-6 into Eq. A-2, we obtain: 
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Substituting Eq. A-5 into Eq. A-7 yields: 
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Simplifying Eq. A-8, yields the final form the rate-cumulative form for Modified-Wiorkowski Model: 
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The definition of the Arps "inverse loss-ratio" is: 
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Substitution of Eq. A-2 into Eq. A-10 yields: 
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Recalling the product rule: 
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And continuing the differentiation: 
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Simplifying Eq. A-12, we have: 
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The definition of the Arps "loss-ratio derivative" is: 
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Substituting Eq. A-13 into Eq. A-14, we obtain the following as a starting point: 
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Recalling the quotient rule;  
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Continuing the differentiation: 
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Simplifying Eq. A-17, we have: 
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The so-called β-derivative function is defined as: 
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Substituting Eq. A-10 into Eq. A-19 yields an alternative definition: 
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Substituting Eq. A-13 into Eq. A-20 we have the final result for the β-derivative function: 
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APPENDIX B 

MODIFIED ILK MODEL: DERIVATIONS 

The proposed time-cumulative model is a variant of the power-law exponential time-rate relation proposed 

by Ilk, et al (2008) were the Ilk result was derived by observing that the "inverse loss-ratio" function (D(t)) 

is represented by a power-law function for essentially the entire production period.  Using the time-rate 

form of the Ilk result it was demonstrated that this model matches both transient and transitional flow 

regimes in low/ultra-low permeability reservoirs.  In addition, a constant (terminal) decline parameter (D∞) 

was added to power law relation to match boundary-dominated flow behavior. 
 

Based on the Ilk, et al time-rate model, we propose the following time-cumulative form by induction: 
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Its derivative can be written as 
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Where the most compact form of this expression is given as: 
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Where Eq. B-3 is the preferred time-rate form of the Modified-Ilk Model. Dividing Eq. B-3 (time-rate 

model) by Eq. B-1 (time-cumulative model), we have: 
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Simplifying Eq. B-4 to yield the most compact form, we obtain: 
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The definition of the Arps "inverse loss-ratio" is: 
 

 )(
)(

1
 )( tq

dt

d

tq
=tD   ......................................................................................................................... (B-6) 

 



 

92 

 

]][ ][exp[
][ ]exp[

1
       

]][ ]exp[[
][ ]exp[

1
 )(

1
1

1
1





















n
i

n
in

i
n

i

n
i

n
ipn

i
n

ip

tDnDtDtD
dt

d

tDnDtDtD
=

tDnDtDtDG
dt

d

tDnDtDtDG
=tD

 

 .............................................................................................................................................................. (B-7) 
 

Recalling the product rule: 
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Continuing the differentiation: 
 

][

)(

][

2

][
       

)]]1(1[2 [ 
][

1
      

])(2[
][

1
       

]][])1([[ 
][

1
       

]][exp[][

])1([ ]exp[

][ ]exp[

1
       

]][exp[][

][ ]exp[

][ ]exp[

1
 )(

1

21

1

12

1

222

122

2112222
1

212
1

21

2

1

1

1

1

































































































































n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
in

i

n
i

n
i

n
i

n
in

i

n
i

n
in

i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

n
i

tDnD

tDn

tDnD

tDDnD

tDnD

tDntDn
=

tDntnDtnDDtD
tDntDt

=

tDntDDnDtDntDn
tDnD

=

tDnDtDnn
tDnD

=

tDtDtDnD

tDnntDtD

tDnDtDtD
=

tDtD
dt

d
tDnD

tDnD
dt

d
tDtD

tDnDtDtD
=tD

 

 .............................................................................................................................................................. (B-9) 
 

Reducing to the most compact algebraic form, we have: 
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The definition of the Arps "loss-ratio derivative" is: 
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The definition of the Arps "loss-ratio derivative" is: 
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Recalling the quotient rule;  
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Continuing the differentiation: 
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Simplifying Eq. B-14, we have: 
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The so-called β-derivative function is defined as: 
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Substituting Eq. B-6 into Eq. B-16 yields an alternative definition: 
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Substituting Eq. B-10 into Eq. B-17 we have the final result for the β-derivative function: 
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Multiplying through by t on a term-by-term basis yields our final result: 
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APPENDIX C 

DEVELOPMENT OF TIME-CUMULATIVE PRODUCTION DIAGNOSTICS 

Analogous to diagnostics D-, b- and β-derivative, which are essentially decline functions, we propose 

diagnostics derived for cumulative-time relations as cumulative production diagnostics. As the nature of 

cumulative function is 'incremental' over time, these diagnostics can be stated in terms of "gain-ratio", 

instead of "loss-ratio".  

 

These functions are proposed as, 
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And, 
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Eq. C-1 can be rewritten as, 
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Or in terms of the material balance time, tmb, we have: 
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Similarly, Eq. C-2 can be rewritten as, 

 mb
c

c t
dt

d

tDdt

d
=tb 









 )(

1
  )(  ................................................................................................................ (C-5) 

Note that both Dc(t) and bc(t) can be described solely as a function of material-balance time(tmb). Dc(t) or 

rather Dc(tmb) exhibit same straight-line behavior for transient data as D-parameter for our numerical 

simulation Base Case. This parameter is basically driven by cumulative relation which is not as sensitive 

to variations or noise as rate relations. Therefore, for the test case we plotted, it shows comparatively less 

deviation from the normal transient trend than that of D- parameter. This shows that new cumulative 

production diagnostics provide comparatively smoother diagnostic functions which are less affected by 

noise in production data. Thus, the underlying character of the data is stronger for cumulative production 

diagnostics. 
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Figure C-1 — (Log-log Plot): Schematic example of time-rate plotting functions for a 

horizontal gas well with multiple transverse fractures (numerical simulation case). 
 

C.1 Development of Traditional Decline Diagnostics In Terms of Cumulative Production Diagnostics 

In this section, we attempt to investigate that whether we can express "loss-ratio" diagnostic functions in 

terms of "cumulative loss-ratio" diagnostic functions. Also, it should be noted that since all 'cumulative 

loss-ratio' diagnostics can be expressed as functions of material-balance time (tmb), such a relation would 

result in expressing loss-ratio diagnostics as a function of material-balance time (tmb) as well. 

 

From Eq. C-3, we can write, 
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 'inverse loss-ratio' is defined as, 
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Substituting flow rate from Eq. C-7 we get, 
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Using product rule; 
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Using Eq. C-4, we get 
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Using definition of material balance time as, 
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Thus, we get, 
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Note that above equation describes D(t) as function of material-balance time only. 

 

Similarly, 'loss-ratio derivative' can be defined as,  
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From Eq. C-14, we can write 
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Thus, Eq. C-15 becomes, 
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By quotient rule, 
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Eq. C-17 becomes, 
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Again, using product rule as in Eq. C-9, we get 
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Eq. C-23 is the derived form of 'loss-ratio derivative' as a function of material-balance time only. 

 

Alternatively, Eq. C-14 and Eq. C-23can be written in terms of 'cumulative loss-ratio' and 'cumulative 

loss-ratio derivative' as, 
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APPENDIX D 

A METHODOLOGY TO REDUCE UNCERTAINTY IN EUR ESTIMATION FOR 

MODIFIED WIORKOWSKI MODEL 

In this section, we will derive 'gain-ratio' diagnostic functions for Modified Wiorkowski Model. Moreover, 

we will express a methodology by which model parameters b and c can be determined from historical 

production data directly without regression. This will enable us to determine EURs by analyzing character 

of historical data and thereby, reducing uncertainty and non-uniqueness in EUR estimation. 

Recall cumulative-time relations for Modified Wiorkowski Model as, 
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Where pG
~

, a~ , 
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~
and n~  are fit parameters obtained by least squares regression. 

Definitions of 'inverse gain-ratio', Dc(t), and 'gain-ratio derivative', bc(t), for Modified Wiorkowski Model 

can be given as  
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It was observed that with a little mathematical manipulation, the decline and growth diagnostic parameters 

can be used to independently determine parameters of Modified Wiorkowski Model. This will effectively 

make all parameters of this model an original character of historical data. The result is an estimation of 

EUR independent of non-linear regression for each data set. It should be noted that earlier it was observed 

that parameter a has only fine tuning effects on model match, and thus it can be set equal to unity for most 

cases. For parameter 
iD

~
and n~ , we propose this relation, 
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To derive the relation in Eq. D-4, let's start with Eq. D-3. With little mathematical manipulation, it can be 

rewritten as 
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Formulating to separate )(tDc out of Eq. D-5, we can write, 
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By using Eq. D-2, Eq. D-6 becomes 
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With a little mathematical manipulation, we can rewrite Eq. D-8 as, 

n

tD
D=tbtD c
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Using definitions of Dc(t) and bc(t)as given in Eq. D-2 and Eq. D-3, we get 

i
mbmb

mb D
tnt

dtdt ~1
~
1/
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Thus, a plot of
mb

mb

t

dtdt /
vs 

mbt

1
or )(tDc  gives 1/ n~ as slope and

iD
~

 as intercept. With these two 

parameters determined, and a equal to unity, we can visually match historical rate-time and cumulative-

time production data with rate-time and cumulative-time relations of Modified Wiorkowski Model as 

given in Eq. D-1, by adjusting EUR values. It is recommended to get best match by visual inspection of 

both rate-time and cumulative time matches. 

From Eq. D-10, parameter n~  can be defined from the definition of slope as, 
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Or,  
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Using Eq. D-10 and Eq. D-12, parameter iD
~

 can be written as, 
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Or, 
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Fig. D-1 gives a plot of material-balance time and inverse material-balance time versus time. Note that 

inverse material-balance time is effectively, )(tDc . 

 

Figure D-1 — (Log-log Plot): Material-Balance tome characteristic plots for Numerical 

Simulation Case  – material-balance time,(Days) and inverse material-balance 

time, (1/Days) versus production time,(Days)  
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Legend:

(  )Material-Balance time (tmb)

( )Inverse Material-Balance time(1/tmb)

Numerical Simulation — Base Case
Horizontal Well with Multiple Transverse Fractures

Material-Balance and Inverse Material-Balance time vs time



 

101 

 

Numerical Simulation Case: Synthetic low permeability well 

Next, we determine Modified Wiorkowski Model parameters from historical production data directly. This 

will enable us to determine EURs by analyzing character of historical data, thereby, reducing uncertainty 

and non-uniqueness in EUR estimation. 

A plot of
mb

mb

t

dtdt /
vs 

mbt

1
or )(tDc  gives n~/1  as slope and

iD
~  as intercept. With these two parameters 

from the specialized plot and a~   being equal to unity for this case, we can visually match historical time-

rate and time-cumulative production data with Modified Wiorkowski Model by adjusting EUR values as 

given in Table D-1 It is recommended to get best match by visual inspection of both time-rate and time-

cumulative matches. 

Fig. D-2 gives a plot of

mb

mb

t

dtdt /
vs 

mbt

1
or )(tDc . Calculations for Slope and y-intercept are also shown 

in Fig. D-2. For this plot we have edited the data to remove any points corresponding to time less than 1 

day.  

 

Figure D-2 — (Cartesian Plot) Estimation of parameters iD
~

 and n~  of Modified Wiorkowski 

Model for Numerical Simulation Case – )(tDc )(tbc versus )(tDc , (1/Days)  
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Numerical Simulation — Base Case
Horizontal Well with Multiple Transverse Fractures

Dc(t)bc(t) vs 1/tmb Plot

TrendLine Parameters:
slope=1.7792
y-intercept =0.0001
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The matched parameters are: 

Table D-1 — Modified Wiorkowski Model matched parameters for Numerical Simulation case  

Parameter Simulation Case 

pG
~

 2.60E+06 

a~  0.999 

iD
~

 0.0001 

n~  0.56 
 

For numerical simulation case, we used the above described technique to estimate EUR.  
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APPENDIX E 

INVENTORY OF qDb PLOTS FOR THIS WORK 

 

We present the qDb analysis plots for the Modified Wiorkowski Model and Modified Ilk Model rate-

decline models. 

 

Figure E-1 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 1. 
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Figure E-2 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 2. 
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Figure E- 3 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 3. 
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Figure E-4 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 4. 
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Figure E-5 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 5. 
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Figure E-6 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 6. 
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Figure E-7 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 7. 
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Figure E-8 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 8. 
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Figure E-9 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 9. 
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Figure E-10 —  (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 10. 
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Figure E-11 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 11. 
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Figure E-12 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 12. 
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Figure E-13 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 13 
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Figure E-14 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 14. 
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Figure E-15 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 15. 
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Figure E-16 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 16. 



 

119 

 

 

Figure E-17 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 17. 



 

120 

 

 

Figure E-18 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 18. 
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Figure E-19 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 19. 
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Figure E-20 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 20. 
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Figure E-21 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 21. 
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Figure E-22 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 22. 
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Figure E-23 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 23. 
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Figure E-24 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 24. 
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Figure E-25 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 25. 
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Figure E-26 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 26. 
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Figure E-27 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 27. 
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Figure E-28 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 28. 
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Figure E-29 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 29. 



 

132 

 

 

Figure E-30 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 30. 
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Figure E-31 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 31. 
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Figure E-32 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 32. 
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Figure E-33 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 33. 
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Figure E-34 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 34. 
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Figure E-35 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 35. 
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Figure E-36 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 36. 
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Figure E-37 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 37. 
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Figure E-38 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 38. 
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Figure E-39 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 39. 
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Figure E-40 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 40. 
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Figure E-41 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 41. 
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Figure E-42 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 42. 
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Figure E-43 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 43. 
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Figure E-44 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 44. 
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Figure E-45 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 45. 
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Figure E-46 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 46. 
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Figure E-47 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 47. 
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Figure E-48 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 48. 
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Figure E-49 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 49. 
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Figure E-50 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 50. 
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Figure E-51 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 51. 
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Figure E-52 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 52. 
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Figure E-53 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 53. 
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Figure E-54 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 54. 
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Figure E-55 — (Log-log Plot): qDb plot — gas flow rate (qgi), D- and b-parameters versus 

production time and Modified Wiorkowski Model and Modified Ilk Model 

matches for Well 55. 

 


