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ABSTRACT 

 

 

This thesis presents a method of applying “Shape Memory Alloy” (SMA) on an 

overtopping wave energy converter (OWEC). A control system which can fit all sea states 

is necessary for OWEC to adapt to a mutative wave condition and achieve an optimal 

overtopping discharge rate. Among all the parameters affecting the overtopping discharge 

rate, the crest freeboard height is the most influential one. To change the crest freeboard 

height, commonly used old methods include installation of a hinge at the bottom and 

adjustment of the floating height of the entire device. Both of them will inevitably affect 

other parameters while changing the crest freeboard height. To fill this gap, the application 

of SMA springs, which can solely adjust the crest freeboard height, will benefit the 

optimization of the OWECs.  

In a laboratory test, a scaled down physical model is placed in a water tank. The 

entire model is set to be fixed in the water tank and there are two boards, which are 

connected by the SMA springs, represent as a ramp that waves need to overcome. The 

SMA springs are able to change their length by the temperature change. A LabVIEW 

program sent spectra-wave signals to the wave maker and a pumping system is used to 

calculate the mean overtopping discharge rate.  

 The result of non-using SMA springs follows the rule of the overtopping discharge 

rate. But, there are some differences with the general formula of the OWEC which comes 

from the different experimental setups and the limitation of the water tank. However, this 
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result is useful to become the reference of the result of using SMA springs which shows 

that there is no significant change at the mean overtopping discharge rate and the errors 

are acceptable. All of the results and comparisons indicate that the concept of applying the 

SMA springs on the OWEC is proven. 
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1. INTRODUCTION 

1.1 Background and Motivation 

1.1.1 Renewable Energy 

 

Due to the awakening of the environmental awareness and the limited amount of 

the fossil fuel, oil, and gas and their environmental footprints, the development and 

utilization of renewable energy sources have become more and more popular and 

important. By the middle of 21st century, the renewable energy sources can account for 

60% of the worldwide electricity [1]. 

The non-renewable energy such as burning the coal, natural gas, and oil causes the 

carbon dioxide, a dominant type of greenhouse gas (GHG), enters the atmosphere. Indeed, 

the energy generation accounts for approximately 70% of all anthropogenic GHG 

emission [2]. The growing emission of the carbon dioxide not only deteriorates the quality 

of the atmosphere but also changes the climate. There is more and more evidence show 

that the climate change is directly related to the emission of the carbon dioxide due to 

human activities [3]. As more and more GHG is discharged, the temperature will increase 

and make the global warming worse. 

Using the renewable energy is one of the promising ways to solve these problems. 

For now, the renewable energy cannot entirely replace the non-renewable energy due to 

their higher costs and lower converting efficiencies. According to the data of the U.S 

Energy Information Administration (EIA), in 2016, most of the U.S. electricity was 

generated by using the fossil fuels. In the total of 4 trillion kilowatt-hours of electricity 
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generated, 30% and 34% was contributed by the coals and the natural gas, respectively. 

Renewable energy sources only provide 15% of the U.S electricity [4]. Figure 1 shows the 

source of the U.S. electricity generation in 2016. Currently, wind, solar, biomass, 

geothermal, and hydro power generations are called as renewable energy. They are often 

investigated as alternative methods to supply sufficient energy in the future.  

 

 

Figure 1. Source of U.S Electricity Generation reprinted from [4]  

 

Wind power, one of the most mature renewable energy, provided almost 6% of the 

U.S. electricity generation. Greenpeace indicates that the wind energy will supply about 

10% electricity by the year 2020. For decades, the wind has been used to mechanically 

rotate turbines in wind power generators and produce electricity [5]. However, the number 

of locations where strong winds continuously blow all year round is highly limited. 

Natural Gas
34%

Coal
30%

Nuclear
20%

Petroleum
1% Renewable

15%

Source of U.S Electricity Generation, 2016
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Solar power is also a widely used renewable energy. It is derived directly from the 

energy of the sun. Solar power systems have some advantages over traditional methods 

such as that they don’t produce any air pollution or noise and have fewer influences to the 

environment [6]. However, they still have some limitations. For example, the amount of 

sunlight variation depends on some reasons such as the location, the time of a day, the 

season of a year, and the weather conditions. 

Biomass is one of the earliest energy sources. Compared with other renewable 

technologies such as wind or solar, biomass has fewer problems with energy storage. The 

energy contained in biomass originally comes from the sun. Carbon dioxide in the air is 

transformed into other carbon-containing molecules in plants through photosynthesis 

process [7]. However, the biomass energy still has some environmental issues such as 

releasing mercury fly ash into the air during the combustion [8]. 

Geothermal power comes from continuous heat energy buried under the surface of 

the earth. The hot water or steam is converted to electrical energy via turbine generators 

[9].  

Hydro power holds an important status in the renewable energy. It is one of the 

oldest and biggest renewable energy sources for the electricity generation in the U.S. 

Although the percentage of other types of renewable energy continuously grow, the 

hydropower generation systems still account for 45% of all the renewable electricity 

generation in 2016. There are several kinds of hydro power generation systems: the dam, 

the tidal power, the ocean thermal energy, and the wave power. The most common one is 

the dam with hydroelectric generators. Even though the dam doesn’t produce too many 
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pollutants, the resulting reservoir might cause the change of the eco-system in impacting 

the fish migration, natural water temperature, water chemistry, river flow characteristics, 

and silt load [10]. 

Tidal power and ocean thermal conversion energy are also being used as hydro 

power. A two-way tidal power system generates electricity from both incoming and 

outgoing tides. The disadvantages of the tidal power are that a tidal range of 10 feet is 

needed to produce tidal energy economically and the eco-system at the tidal basin will be 

affected. There is no tidal power plant in the U.S. because only a little of them can generate 

power economically [11]. Ocean thermal energy conversion is based on the temperature 

difference. Due to the challenge of the technology, there is no large-scale operation of the 

ocean thermal energy conversion exists nowadays [12]. 

1.1.2 Wave Energy 

A kind of powerful and unlimited hydro power hasn’t attracted attention from the 

public which is the “Wave Energy”. Wave energy is the most promising hydro power 

since 70% of the earth surface is covered by the ocean.  Ocean wave contains tremendous 

energy. According to the data of EIA, the potential energy of waves is much more than 

the other hydro power resources. The ocean wave energy is estimated from 1.59 to 2.64 

trillion kilowatt-hours per year. It is equal to 65% of the U.S. electricity generation in 2016 

and the west coasts of the U.S. are potential sites for developing the wave energy 

technologies [13]. 

There are many approaches to convert the wave power into usable energy for the 

human. All of these approaches are in large-scales to generate powers, but the efficiencies 
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are lower and the costs are higher when comparing to the traditional power sources. Many 

projects are investigating to harness the power more efficiently. The objective of this thesis 

is to apply an innovative technology which is called “Smart Material” on a selected wave 

energy converter (WEC) and make the material changes its property to adjust to different 

wave states properly. With this new type of design, more wave power can be captured 

from the ocean. 

 

1.2 Types of Wave Energy Converter 

There are several kinds of WEC have been used in the past. All of them can roughly 

be classified into three major types: Oscillating Body, Oscillating Water Column, and 

Overtopping Wave Energy Converter [14].  

Oscillating Body (OB) devices oscillate and the relative motion between the bodies 

and the seabed or between the bodies themselves are used to drive the Power Take Off 

(PTO) systems. They often used in deep-water regions which have more powerful waves. 

Generally, the PTO systems are the issue in this type of WEC because they make the whole 

converting system more complicated. The OBs are advantageous in possessing small sizes 

and floating devices, making them very versatile [15].  

Oscillating Water Column (OWC) can be divided into two types, fixed and floating 

structures. The main concept of the OWCs is that the free sea surface will oscillate in the 

chamber to push the air go through the turbine to rotate. For fixed structures, the devices 

need to be fixed to the seabed, resulting most of them located on the shoreline or near 

shore. This kind of near shore structures have the advantages of easy installation and 
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maintenance and do not require mooring systems but in the trade-off of the lack of 

powerful waves. For the floating structures, most of them are operating in the deep-water 

regions and using slack-moored systems which are largely free to oscillate. If the OWCs 

are designed properly, the wave energy absorption can be enhanced [16].  

Overtopping Wave Energy Converter (OWEC) is closely related to the discharge 

of the waves overtop the device and the amount of the water that can be stored in a 

reservoir at the back of the structure. If water can be heavily captured at the proper wave 

states and the water level in the reservoir is higher than the sea water level (SWL), draining 

all the water out through the turbines at the bottom of the reservoir will convert the 

potential energy to the electricity [16]. The main advantage of the OWECs is their 

simplicity, i.e., they store the water and when the water level in the reservoir is high 

enough, let the water pass through the turbines [15].  Table 1 lists some of the power 

production of several WECs that have been used in the past. 
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Device Power per Unit (kW) Depth (m) Size 

Oceantec 500 30~50 medium 

Pelamis 750 50~70 medium 

P P Converter 3620 Deep large 

Seabased 15 30~50 small 

Wave Dragon 7000 30~50 large 

Aqua Buoy 250 >50 small 

AWS 2320 40~100 medium 

Langlee 1665 Deep medium 

OE Buoy 2800 Deep medium 

Wavebob 1000 Deep medium 

Table 1. Comparison of Some Basic Characteristics of the Devices reprinted from [17] 

 

1.3 Wave Dragon 

The simplicity of the OWECs would enable possible alterations in parameters to 

fulfill the objective of the research to refine the existing setups. There are three kinds of 

OWECs. The most classic and the oldest one is a floating device called “Wave Dragon 

(WD)”. Figure 2 shows the simple design of the WD which consists of a big platform as 

a reservoir, several turbines at the bottom of the reservoir, and two reflectors to collect 

waves from a wider range of directional waves, reflecting the waves toward the platform 

and focusing them in front of the ramp to make more waves overtop. A 1:4.5 scale 
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prototype has been tested at Nissum Bredning, a large inland waterway in Denmark. Based 

on the data during the operating time, the converting efficiency, the ratio of the average 

electric power generated by the operating turbines to the same theoretical incoming wave 

power, is around 10%. Some researchers are still working on improving the efficiency 

[18]. 

 

Figure 2. Original Wave Dragon with Reflectors reprinted from [19] 

 

1.4 Smart Material 

The objective of the thesis is to find an innovative way to improve the OWECs. 

Therefore, a type of smart materials is going to apply on an OWEC. Smart materials which 

are also called “Shape Memory Materials” (SMMs). They have the ability to memorize 
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their previous form after they are changed with an alter from the outer environment such 

as stresses, temperatures, moistures, pHs, electric, or magnetic fields. “Shape Memory 

Alloy (SMA)” which is one of the SMMs has been chosen. SMAs have been applied in 

several areas such as automotives, aerospaces, robotics, biomedicals, and others. The 

SMA is able to lift more than 100 times of its weight [20]. Briefly speaking, one can 

imagine a small diameter spring which is made by the SMA as human’s muscle and it can 

be transformed when alter comes in. 

Recent research works have shown that the SMAs are better than conventional 

actuators such as motors, solenoids, pneumatics, and hydraulics [21], due to their unique 

characteristics and ability to react directly to environmental stimuli [22]. Flexinol, one of 

SMA manufacturers, indicated that SMAs are cheaper, smaller and easier to use when 

doing some small motors or solenoids [21]. But, there are still some challenges need to be 

overcome such as their limitations including a relatively small usable strain, low actuation 

frequency, low controllability, low accuracy and low energy efficiency [20]. In addition, 

although it is easy to achieve a rapid heating of the SMAs, there is no good way to cool 

down the whole system without drawbacks because of the limitations of the mechanisms 

of the heat conduction and convection. Due to the multiple transformation cycles, another 

big challenge is that the durability and reliability of SMA actuators. Some of the 

applications are significantly important to be insured for long-term stability, functionality, 

and safety such as in automotives [20, 23]. According to Flexinol, if the SMA actuators 

are used in appropriate designs, then obtaining repeatable motion for tens of millions of 

cycles is reasonable [21].  



 

 10 

The spring which is made of the SMAs can be changed with its length by inducing 

a current is used in this work. The mechanism is that the spring is just like a resistant so 

that the temperature of the spring will be higher by powering on the current and cooler by 

powering off. As a result, the length will shorten or elongate to the desired length. Figure 

3 shows the concept of the SMA. Figure 4 shows that one of the spring that made by the 

SMA. 

 

Figure 3. Example of Temperature-Control SMA reprinted from [21] 

 

 

Figure 4. SMA Spring 
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 In this thesis, a novel idea is that the ability to change the length of the SMA spring 

will be applied on an old type of OWECs. With the control of the temperature, the new 

OWEC can adapt to different wave conditions and improve the capability of gathering 

water. Thus, a physical model test will be conducted to confirm that the innovative 

material can improve the working performance of capturing wave power from the ocean.   

 

1.5 Offshore Renewable Energy Station 

1.5.1 Combine wind and wave energy converter 

Because about 40% of the world population lives within 100 kilometers of the 

coast, it is reasonable to use the offshore wind and ocean energy as an alternative energy 

resource [24]. However, commercial wind or wave farms usually occupy large ocean 

space. It is more efficient to use the ocean space by combining the wind and wave energy 

converters together [25].  

The advantage of the combined energy station includes the reduction of grid 

integration requirements, offshore transmission infrastructure capacity, and the cost of 

design and operation and the increase of the renewable energy yield of per ocean space 

[24]. However, there is no this kind of combined energy station operating in the ocean. 

There are still some challenges need to be overcome. First, the combination of two kinds 

of energy converters could increase the risk of accidents or damages such as a failure of 

mooring systems. Secondly, the lack of experience in co-located projects and the site-



 

 12 

selection. Thirdly, the early stage of the development of wave energy converter 

technologies will increase the cost [15]. 

1.5.2 Combine the OWEC with existed wind turbine platform 

The objective is to make a wind turbine platform surrounded by OWECs so that 

the OWECs just like an extra part of the platform which can lower the cost without 

building another entire WEC system. The idea is that the wind turbine platform can act as 

the reservoir for the OWEC and both of them can use the same mooring system. At the 

same time, the reflectors can be uninstalled because the wave directions in the deep-water 

region don’t change a lot during the year so that the waves from the main direction can be 

gathered. Figure 5 simply shows the new idea of the combined offshore renewable energy 

station. The upper part is the wind turbine and the lower part is the OWEC with smart 

material. 

 

Figure 5. New Concept of Combined Renewable Energy Station 
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Another advantage of this new kind of energy station is that the wind turbine 

platform is pretty heavy so that the response when the wave across the structure and the 

design of the mooring system need not be concerned too much. The movement of the 

device will induce a different phase with the wave. This will possibly reduce the amount 

of the overtopping discharge. A laboratory test has indicated that the overtopping 

discharge will be reduced by up to 50% because of the movement of the floating structure 

[26]. At the same time, by reducing the oscillation of the device will prevent the water in 

the reservoir from spilling out. However, an extra WEC is just the simplest idea. Other 

kinds of renewable energy device can also be installed on this new kind of energy platform 

such as solar power, current power, and so on. 

However, the most challenge thing is the early stage of wave energy converter 

technologies. This thesis will present a new idea to improve the work efficiency of the 

OWECs with using the SMA and the result of the physical model test is also presented. 
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2. LITERATURE REVIEW 

2.1 Concepts of Overtopping Structure  

 

During the past several decades, original overtopping structures were made to 

protect humans and their properties at coastal regions so that the goal is focused on 

minimizing the overtopping discharge which means that it was built to prevent the water 

from overtopping the dikes. Figure 6 shows that the overtopping structure at a coastal area 

as a dike. 

 

Figure 6. Overtopping Structure as a Dike at Coastal Region 

 

2.1.1 General Formulae for Overtopping Structure 

There are many experiments have been conducted with different kinds of setup. 

Most of them have come out with exponential equations to express the overtopping 

discharge. The one of them which is widely used is 

𝑄 = 𝑎𝑒−𝑏𝑅 
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where 𝑄 (−) is the dimensionless overtopping discharge, 𝑅 (−) is the dimensionless crest 

freeboard height which is also called relative crest freeboard height, and coefficient 𝑎 and 

𝑏 will be determined by conducting experiments.  

According to Van der Meer and Janssen, a general formula can be expressed to 

descript the overtopping discharge with an impermeable, smooth, rough straight, and 

bermed slope [27, 28]. 

𝑄 =
𝑞

√𝑔𝐻𝑠
3

= 0.2𝑒
−2.60

𝑅𝑐
𝐻s

1
𝛾 

where 𝑞 (𝑚3 𝑠⁄ ) is the mean overtopping discharge, 𝑅c (𝑚) is the crest freeboard height, 

𝐻𝑠 (𝑚) is the significant wave height, and 𝛾 (−) is the reduction coefficient which is 

introduced by the influence of berms, shallow foreshores, roughness, angles of wave 

attack, and etc. If there is no berm, no shallow foreshore, smooth slope, and head-on wave, 

𝛾 should be 1.0. This equation is typically used when a breaker parameter is bigger than 2 

because the overtopping discharge is reduced when the breaker parameter is smaller than 

2 for the same wave situation.  

 

2.1.2 Scale Effects on Overtopping 

All the coefficients are determined by conducting experiments. For a scaled model 

test, scale effects should be concerned and investigated [29]. Because the wave 

overtopping phenomenon is dominated by the wave motion, a Froude modeling law 

governs. In the overtopping process, only a thin layer of fluid that viscous effect will 
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become important. This means that the influence of scale appears when small overtopping 

discharges occur. 

 

2.2 Overtopping Wave Energy Converter 

2.2.1 Concept of Overtopping Wave Energy Converter 

Due to the different purposes of the coastal structure and the OWEC, there are still 

some differences between the two. The main purpose of the OWEC is to gain more water 

to harvest the power from the ocean. 

In order to characterize the power that can be harvested from the OWEC, the 

structure can easily be described as the following picture. Figure 7 shows the concept of 

the OWEC and some of the parameters that will influence the overtopping discharge. The 

obvious difference from the defensive overtopping structure is that the OWEC doesn’t 

extend to the seabed. This will affect the energy which can be got. The amount of water 

can be caught depends on several parameters such as significant wave height (𝐻𝑠), peak 

period (𝑇𝑝), crest freeboard height (𝑅𝑐), ramp slope (𝛼), draft (𝑑𝑟), breaker parameter 

(𝜉𝑜), and etc. The parameters which can be determined by the construction are 𝑅𝑐, 𝛼, and 

𝑑𝑟. In 1991, researchers have already indicated that the 𝑅𝑐 is more important than the 𝛼 

when lower and larger overtopping discharges occur [30]. 
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Figure 7. Concept of Overtopping Wave Energy Converter reprinted from [31] 

 

In order to estimate how much power can be captured and to design the wanted 

structure, there are four steps that can be used to predict the final energy can be harvested 

[31]. First, the time-averaged potential energy of the overtopping waves (𝑃𝑐𝑟𝑒𝑠𝑡) is 

𝑃𝑐𝑟𝑒𝑠𝑡 = 𝜌 ∙ 𝑔 ∙ 𝑞 ∙ 𝑅𝑐 

where 𝜌 (𝑘𝑔 𝑚3⁄ ) is the water density and 𝑔 (𝑚 𝑠2⁄ ) is the gravity acceleration. This 

formula means that the power of the wave needs to overcome the crest freeboard height 

to stay in the reservoir. Secondly, after the water is stored, the time-averaged potential 

energy which is the hydraulic power (𝑃ℎ𝑦𝑑) and passes through the turbines at the bottom 

of the reservoir can be expressed as 

𝑃ℎ𝑦𝑑 = 𝜌 ∙ 𝑔 ∙ 𝑞𝑇𝑢𝑟𝑏𝑖𝑛𝑒 ∙ ℎ𝑡 
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where 𝑞𝑇𝑢𝑟𝑏𝑖𝑛𝑒 (𝑚3 𝑠⁄ ) is the actual water pass through the turbines and ℎ𝑡 (𝑚) defined 

as the difference between the water level in the reservoir and the mean water level (MWL). 

In addition, the ℎ𝑡 is necessarily lower than the 𝑅𝑐 otherwise the water will drain back to 

the sea which means that the 𝑅𝑐 also affects the capability of storing the water. Thirdly, 

the power produced by the turbines working at their optimal speed (𝑃𝑒𝑠𝑡) is 

𝑃𝑒𝑠𝑡 = 𝑃ℎ𝑦𝑑 ∙ 𝜂𝑡𝑢𝑟𝑏 

where 𝜂𝑡𝑢𝑟𝑏 (−) is the turbines’ efficiency. The turbines’ optimal speed can be derived 

from their characteristic curve by knowing ℎ𝑡. Finally, the actual power (𝑃𝑎𝑐𝑡), the power 

delivered to the grid, can be expressed as 

𝑃𝑎𝑐𝑡 = 𝑃𝑒𝑠𝑡 ∙ 𝜂𝑃𝑀𝐺 ∙ 𝜂𝑓𝑐 

where 𝜂𝑃𝑀𝐺  (−) is the efficiency of the generators and 𝜂𝑓𝑐 (−) is the efficiency of the 

frequency converters. 

Among all the formulas, both of the first and the second equations dominate the 

power which can be harvested from the ocean wave. For the first equation, once the power 

of the wave crest is known, the relation between the 𝑞 and the 𝑅𝑐 can be obtained. The 

larger the 𝑞, the faster the reservoir can be filled. The second equation is related to the 

ability that the device can keep the water in the reservoir. The more water can be stored, 

the bigger value of the ℎ𝑡 can be got which means the higher 𝑃ℎ𝑦𝑑 it can be. The third and 

last equations are about the actual electricity generation which depends on several 

efficiencies and is not the main concern of this research. 
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2.2.2 Maximize the Overtopping Rate of Overtopping Wave Energy Converter 

As the result from the first two equations of the previous section, if the water level 

in the reservoir is much lower than the crest freeboard, the energy is lost as the overtopping 

water has a lower potential energy. However, if the water level in the reservoir almost 

reaches the crest freeboard, the water volume from a large wave is unable to be kept and 

will flow back to the ocean, a loss of energy. Figure 7 shows the condition of the water 

spill out and the inflows and outflows for the OWEC [19]. Therefore, the total discharge 

that can be transformed to energy can be expressed as 

𝑞𝑇𝑢𝑟𝑏𝑖𝑛𝑒 = 𝑞 − 𝑞𝑆𝑝𝑖𝑙𝑙 

where 𝑞𝑆𝑝𝑖𝑙𝑙 is the spilling discharge. The hydraulic power mentioned before is  

𝑃ℎ𝑦𝑑 = 𝑔 ∙ 𝜌 ∙ 𝑞𝑇𝑢𝑟𝑏𝑖𝑛𝑒 ∙ ℎ𝑡 

and the ℎ𝑡 can be rewritten as 

ℎ𝑡 = 𝑅𝑐 + ℎ − ℎ𝑅 

where ℎ𝑅  (𝑚) represents the distance between the crest freeboard and the bottom of the 

reservoir and ℎ (m) represents the distance between the water level in the reservoir and 

the sea water level (SWL). The hydraulic efficiency, the ratio of the hydraulic power and 

the incoming wave power, can be expressed as 

𝜂ℎ𝑦𝑑 =
𝑃ℎ𝑦𝑑

𝑃𝑐𝑟𝑒𝑠𝑡
=

𝑞𝑇𝑢𝑟𝑏𝑖𝑛𝑒(𝑅𝑐 + ℎ − ℎ𝑅)

𝑞𝑅𝑐
= 1 −

ℎ𝑅 − ℎ

𝑅𝑐
−

𝑞𝑆𝑝𝑖𝑙𝑙(𝑅𝑐 + ℎ − ℎ𝑅)

𝑞𝑅𝑐
 

where 𝑞𝑆𝑝𝑖𝑙𝑙 (𝑚3 𝑠⁄ ) is the spilling discharge from the reservoir and flow back to the ocean. 

To maximize this hydraulic efficiency, it is desired to fulfill the following things. 

First is to ensure that the reservoir is close to be filled up which means that to minimize 
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the second term at the right-hand side (i.e., ℎ𝑅 − ℎ = 0) because the energy will lose if 

the water head in the reservoir is not high enough. Second is to prevent too much volume 

from spilling out from the reservoir (i.e. 𝑞𝑆𝑝𝑖𝑙𝑙 ≅ 0,).  

In addition, from these equations, the amount of the overtopping discharge highly 

depends on the 𝑅𝑐. If the 𝑅𝑐 is large which also means a larger capacity of the reservoir, 

more water can be stored but it will make waves harder to overtop. In contrast, if the 𝑅𝑐 

is small which also means a smaller capacity of the reservoir, it will make waves easier to 

overtop but less water can be stored. Thus, the perfect condition is that the 𝑅𝑐 is adjustable 

to fit different wave conditions. Figure 8 shows the result of different wave conditions 

with different 𝑅𝑐. 

 

Figure 8. Different Wave Conditions with Different 𝑅𝑐  

 

The best conditions are to have either large 𝑅𝑐 for large waves or small 𝑅𝑐 for small waves. 
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2.3 Effect on Overtopping Discharge 

From the previous sections, the 𝑅𝑐 is one of the most important parameters which 

dominates the overtopping discharge rate. However, there are many other parameters 

affect the discharge as well. All of them can be divided into two categories which are 

determined by the environment and the construction. 

2.3.1 Effect of the Wave Climate 

One of the environment effects is the wave condition. For an oblique wave, the 

influence of the angle of the wave attack is getting more important when the crest 

freeboard is higher. Most of the cases will get the maximum overtopping discharge when 

the head–on waves occurs which means an increase in the angle of the wave attack will 

decrease the overtopping rate [32]. 

The multidirectional waves give smaller overtopping rate than unidirectional 

waves for the normal incident condition [33].  

Also, different spectral shapes will provide different wave conditions. Generally, 

the model tests for overtopping investigations use standard wave spectra such as 

JONSWAP which apply to offshore conditions or conditions with simple foreshores [34, 

35]. From Schuttrumpf, he concluded that the multi-peak wave spectra which is based on 

the influence of the complex morphology. Therefore, the peak period is useless for the 

description of the wave run-up and wave overtopping and more meaningful to use the 

mean period instead when discussed the multi-peak wave spectra [36]. 

2.3.2 Effect of the Wind 



 

 22 

Another environment effect is the wind condition. Wind effects can be negligible 

when an extreme overtopping happens, but the wind plays an important role when the 

small overtopping discharge occurs. Wind effects are more evident on steeper slopes [37]. 

In addition, according to J. A. Gonzales, a strong wind cause wind effects and the 

overtopping rate at logarithmic scale is proportional to the square of the wind velocity [38]. 

From recent research, the overtopping rate with the wind effect is 1.2 – 6.3 times of the 

one without the wind effects for sloped structures [39]. 

2.3.3 Effect of the Roughness and Permeability 

There are several constructive factors will affect the overtopping phenomenon. 

Obviously, the introduction of the roughness and permeability of the slope will decrease 

the overtopping rate. Several investigations have been presented. Different kinds of armor 

unit will provide different roughness and porosity which need to be tested to get further 

information. The reduction coefficient will be taken into account when describing the 

overtopping rate [27, 28, 40-42].  

2.3.4 Effect of the Crest Width 

Generally, an increasing crest width will reduce the overtopping discharge. In 

some studies, the effects of the crest width have been introduced to the equations of the 

overtopping rate [32, 43]. From a recent test, sloped crest widths were investigated and 

the result showed the steeper the crest, the more discharge rate will be reduced [44]. 

2.3.5 Effect of the Slope Angle 
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Even though the slope angle becomes less important when the crest freeboard 

heights are lower or larger overtopping discharges occur, this parameter still influences 

the overtopping discharge all the time [30].  

A wave run-up phenomenon is important when discussing the wave overtopping. 

The wave run-up will become the wave overtopping if the wave run-up is big enough. The 

maximum run-up occurs when the slope angle equals to 30° [45]. Most of the slopes are 

linear, but there are some studies for curving slopes. A convex slope increases the run-up 

height [46]. When the slope angle is smaller than about 35°, the effect of the slope angle 

is rather small [47]. For a limited draft and floating structure, Kofoed and Nielsen found 

that there is no significant variation with four different angles (35°, 40°, 45°,50°). None 

of the geometries were superior to a linear slope [48].  

 

2.4 General Formulae for the Overtopping Discharge of OWEC 

In order to predict the overtopping rate at different wave conditions, a predicted 

formula should be placed and concerned. Due to the complex and the non-linear nature of 

the wave overtopping phenomenon, overtopping flow predictions are normally based on 

empirical methods, mainly derived from experimental tests of reduced physical scale 

models. There are many studies are related to overtopping structure but few of them are 

related to the OWECs. 

However, there is an empirical predicted formula that can be widely applied to the 

OWEC at different wave conditions and different geometries of the structures [34]. The 
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relative crest freeboard is ranged from 0.15 to 2.0. The geometry of the structure which is 

the slope of the ramp is ranged from 𝑐𝑜𝑡 𝛼 = 0.58 to 𝑐𝑜𝑡 𝛼 = 2.75 (about 20° to 60°). 

𝑄 =
𝑞

√𝑔𝐻𝑠
3

= 𝜆𝑑𝑟𝜆𝛼𝜆𝑠0.2𝑒
−2.60

𝑅𝑐
𝐻𝑠

1
𝛾 

where all the 𝜆 terms are the correction coefficients. 𝜆𝑑𝑟 is the coefficient at a different 

draft.  

𝜆𝑑𝑟 = 1 − 𝜅

𝑠𝑖𝑛ℎ (2𝑘𝑝𝑑 (1 −
𝑑𝑟

𝑑
)) + 2𝑘𝑝𝑑 (1 −

𝑑𝑟

𝑑
)

𝑠𝑖𝑛ℎ(2𝑘𝑝𝑑) + 2𝑘𝑝𝑑
 

where 𝑘𝑝 is the wave number based on the wave length of the peak period, 𝐿𝑝, 𝑑𝑟 is the 

draft of the structure, and 𝜅 is found to be 0.4 by best fit. This is the largest difference with 

the coastal protective structure because the OWECs don’t extend to the seabed. The energy 

flux which can be captured from the water column will be affect by the draft. The larger 

the draft, the more energy flux can be caught from the water column.  

𝜆𝛼 is related to the slope angle of the device. 

𝜆𝛼 = (𝑐𝑜𝑠(𝛼 − 𝛼𝑚))𝛽 

where 𝛼𝑚 = 30° is the optimal slope angle and 𝛽 is a coefficient equals to 3. 

𝜆𝑠 is varying with crest freeboard. 

𝜆𝑠 = {
0.4 𝑠𝑖𝑛 (

2𝜋

3
𝑅) + 0.6    𝑓𝑜𝑟 𝑅 < 0.75

1                                       𝑓𝑜𝑟 𝑅 ≥ 0.75
 

From the above equations, overtopping discharge can be enlarged by setting the 

parameters in the equations. There are three ways to make the goal. For the first equation 

is to increase the draft so that the device can get more energy during the wave go through 
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the area under the structure. For the second equation is to match the optimal slope angle 

which is 30°. For the third equation is to increase the relative crest freeboard to 0.75. By 

determining these equations and parameters, a structure with different demands can be 

designed by using different methods. 

 

2.5 Previous Experimental Result of Overtopping Discharge 

From the previous sections, the physical scale model test still needs to be done to 

determine the coefficients such as 𝑎, 𝑏, and 𝛾. 

One of the review papers shows that they have already done the test to collect the 

database with a floating model and three kinds of arms which are no arms, moving arms, 

and rigid arms. The model was scaled down from a prototype which operated in the North 

Sea. The model was designed to scale 1:51.8 [49]. The device was combined with a main 

body, a doubled-curve ramp, and two reflectors. The data was collected under irregular 

2D waves from JONSWAP spectra-wave with a peak enhancement factor equals to 3.3, 

corresponding to the North Sea condition. Figure 9 shows the exponential lines of the 

model test. It is easy to see that with the help of two reflectors, the overtopping discharge 

will have a positive effect. However, all the three equations follow the general formula in 

Section 2.1.1 with different 𝑎 and 𝑏. 
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Figure 9. Overtopping Discharge from Borgarino reprinted from [49] 

 

The equations are 

𝑄𝑁𝑜 𝑎𝑟𝑚𝑠 = 0.12𝑒−3.27𝑅 

𝑄𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑟𝑚𝑠 = 0.05𝑒−1.467𝑅 

𝑄𝑅𝑖𝑔𝑖𝑑 𝑎𝑟𝑚𝑠 = 0.07𝑒−1.40𝑅 

The range for these equations is 0.5 < 𝑅 < 1.5. 

From the visual observation, 𝑅 between 0.6 and 0.9 is the best region for the water 

gathering. In this range, there is no important motion, no sinking, and no discharge 

spilling. There are different phenomena for different 𝑅. For a larger 𝑅, the waves are 

difficult to overtop the ramp and cause a less overtopping discharge. On the other hand, a 
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smaller 𝑅 has a very large overtopping flow, the capacity of the reservoir and discharge 

pipes may be insufficient and the water will spill out. 
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3. NEW IDEA OF USING SMART MATERIAL ON THE OWEC 

3.1 Apply SMA on the OWEC 

 

In order to conquer the low efficiency of the OWECs, some innovative ideas 

should be applied to the systems. Because the OWECs have been chosen as the foundation 

of this thesis, some important parameters which are mentioned in Chapter 2 need to be 

more controllable to improve the efficiency.  

Because the 𝑅𝑐 is the most influential parameter which will affect the overtopping 

discharge rate, the most reasonable way is to adjust the 𝑅𝑐 to fit different wave conditions. 

There are some methods that can change the 𝑅𝑐  of the device. The easier and most 

common way is to change the slope angle by applying a hinge at the bottom of the slope 

and it will come with a changed  𝑅𝑐, but there is no good way to change crest freeboard 

height individually without changing the α which may also influence the discharge [50]. 

Another way is applied on the prototype in Nissum Bredning which is called 

Programmable Logic Controller (PLC). PLC controls the blowers and the valves under 

the device to regulate the buoyancy. The floating height of the platform can be changed 

by around 20 cm every hour. The regulation allows the ramp to rise in the storm so that 

the power capture can be improved [19]. However, the method also comes with a changed 

𝑑𝑟 which means that the energy can be caught from the water column will be affected. 

Also, in the wind turbine platform, the 𝑑𝑟 doesn’t change all the time due to the heavy 

weight of the structure. It is hard to apply the PLC system to the combined offshore 



 

 29 

renewable energy station so that there should be another way to change the 𝑅𝑐 without 

changing the slope angle and the draft. 

Therefore, the application of the SMA is to change the 𝑅𝑐 solely. Changing the 

length of the ramp is one of the methods which can combine with the SMA spring by using 

its property of elongation and shorten. For instance, if there is a larger wave coming which 

means that the OWEC needs to have a higher 𝑅𝑐, all of the two old ways and the new way 

are compared as follow. The wanted 𝑅𝑐 is 1.5m. 

 

Figure 10. Change the Length of the Ramp (Left), Change the Angle (Middle), and 

Change the Buoyancy Height (Right) 

 

In Figure 10, the right one shows that the changed 𝑅𝑐 by changing the buoyancy height. 

The middle one shows the changed 𝑅𝑐 by changing the angle of the slope and the left one 

shows the changed 𝑅𝑐 by changing the ramp length. The advantage of changing the ramp 

length is that the angle is still fixed and the draft doesn’t change. For the method of 
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changing the slope angle, the correction coefficient of the angle, 𝜆𝛼, reduce from 0.955 to 

0.361. For the method of changing the draft, the correction coefficient of the draft, 𝜆𝑑𝑟, 

reduce from 0.999 to 0.947. These will cause the overtopping discharge reduced by 37.8% 

and 94.8% respectively which will result in less overtopping discharge rates. Thus, the 

new method of changing the length of the ramp is more reasonable and efficient than the 

old methods.  

The process is that during the operational time, the incoming wave data is collected 

and analyzed away from the device. After getting the analyzed wave data such as the 𝐻𝑠, 

the corresponding 𝑅𝑐 will be determined to get the higher efficiency of the entire device. 

The length of the ramp can be adjusted by using the temperature-induced SMA. Therefore, 

the 𝑅𝑐  is changed by deciding the temperature of the springs which is made of 

temperature-induced SMA to make them longer or shorter. At different temperatures, the 

springs can have different lengths so that the 𝑅𝑐 can fit different wave conditions. For this 

thesis, the new kind of OWEC which is combing the old OWEC and the SMA will be 

tested. 
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4. EXPERIMENTAL SETUP 

4.1 Experimental Device and Condition 

4.1.1 Water Tank 

 

The water tank for the physical model test is located at Civil Engineering 

Laboratory Building at Texas A&M University. The dimension of the tank is 0.9m wide 

and 36m long. The water depth can be filled up to 1.2m and the water tank is equipped 

with a flap type wave maker at one end and wave sponges at the other end. 

A deep-water condition is assumed and the water depth is set to be 0.8m for the 

test. Based on the linear wave theory, 𝑘ℎ  need to be bigger than 3.2 which is 

dimensionless. Therefore, the period for the laboratory condition to fit the deep-water 

simulation is less than 1.01s.  

4.1.2 Wave Maker 

The wave maker is flap type and the wave period that can be generated is from 0.7 

seconds to 4 seconds and the maximum amplitude is 1.2 volt. The calibration of the wave 

maker will be indicated in the following section. The device for sending an output signal 

to the wave maker and collecting input data of the wave elevation is an NI USB-6259 

DAQ board. The programs for both output and input are programmed by the author. 

4.1.3 Overtopping Wave Energy Converter 

In order to conduct the physical model test, a scaled down model is built to fit into 

the water tank. Due to the limitation of the size of the tank, the reflectors of the OWEC 

are abandoned and make the device as big as possible to reduce the reflection from the 
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wall of the tank. The width of the device is built to be 0.85m and the length is 1.2m. Both 

sides have a gap with 0.025m. The draft for the case is 0.225m. Because of combing the 

OWEC with the heavy wind turbine platform, the structure is set to be fixed condition so 

that the motion of the device is not considered. Figure 11 shows that a rectangular base 

steel angle is put in the water tank to make the OWEC model fix on it. Figure 12 shows 

that the overtopping scaled down model which is made of acrylic sheets and sit on the 

steel angle.  

 

Figure 11. Steel Angle in the Water Tank 
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Figure 12. Scaled Overtopping Structure Model 

 

The objective of the thesis is to confirm the feasibility of the SMA so other 

parameters need to be fixed except the temperature of the SMA. The angle of the ramp is 

fixed at 40°  which has been widely used in other researches. They have already 

investigated that slopes between 35° and 60° and found that slopes between 35° and 50° 

do not have significant effects, but a slope of 60° only gives about 70% ~ 80% of the 

overtopping of a slope of 40° [34]. Figure 13 shows the sketch of the structure in the water 

tank and the location of the device. 
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Figure 13. Sketch of the Water Tank and the Location of the Structure 

 

After the water is harvested, there is a submersible pump at the reservoir of the 

device and the water will be pumped outside the wave flume into a box which is placed 

outside the water tank. By calculating the difference of the height in the box, the total 

discharge can be got. Then, the water will be pumped back to the water tank for the next 

experiment. Figure 14 and Figure 15 show the pumping system. 

 

Figure 14. Submersible Pump in the Reservoir 
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Figure 15. Submersible Pump Outside the Water Tank 

 

4.1.4 Smart Material 

The main purpose is to test the feasibility of the application of the SMA on the 

OWEC of changing the 𝑅𝑐 by controlling the temperature of the SMA spring. In order to 

control and detect the temperature of the SMA spring, two power supplies, one contractor, 

and one temperature controller are used. Two sides of the springs are connected to two 

different rulers and one ruler is placed on the top of the fixed board, the other one is placed 

on the bottom of the movable board. The rulers are made of aluminum and the springs are 

welded to them. When heating up, the springs will shorten and bring the movable board 

up. When cooling down, the springs will elongate and bring the movable board down. 

Figure 16 shows the concept of the installation of the SMA spring. 



 

 36 

 

Figure 16. Concept of the Movable Board and the Fixed Board with SMA Springs   

  

In order to make the electric current contribute to each spring more evenly, some copper 

foil tapes are used. The method is to control the springs at the desired temperature to get 

the wanted 𝑅𝑐. Figure 17 shows the power system which can control the SMA springs. 

Figure 18 shows the picture of the installation of the spring. Figure 19 shows that the 

temperature sensor is placed in the middle of one of the springs so that the sensor can 

detect the temperature more accurately. Figure 20 shows that there are rails between the 

boards so that the movable board can move with a lower friction force.   
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Figure 17. Power Supplies and Temperature Controller 

 

 

Figure 18. SMA Springs Installed on OWEC 
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Figure 19. Temperature Sensor 

 

 

Figure 20. The Rails between Two Boards 
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After the springs are installed on the device, the sealing is going to be done to 

prevent the temperature from changing by the water. A small pumping system is applied 

to confirm that there is no water to disturb the springs. Figure 21 shows the device after 

sealing. Figure 22 shows the front view of the structure in the water tank. 

 

Figure 21. Sealed OWEC 
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Figure 22. Front View of the OWEC 

 

4.1.5 Experimental condition 

For the wave conditions, the waves are irregular waves (i.e., JONSWAP spectra-

wave). Thus, 𝐻𝑠 is varied and based on the linear wave theory and the water depth in the 

water tank, the 𝑇𝑝 equals to 1s to represent a deep-water condition. There are two kinds of 

conditions need to be done and compared. First one is to test with fixed 𝑅𝑐. The second 

one is the most important which is to test with switching on the smart material which 

means 𝑅𝑐 can have different values. In the laboratory test, because of the limitation of the 

length of the flume, it is hard to place a wave gauge far away from the model to calculate 

the incoming wave property. Alternatively, one needs to send the wanted wave conditions 

to the wave maker and test the SMA springs function well at every condition, every 𝑅𝑐. 
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4.2 LabVIEW for Sending and Acquiring Data 

All the tasks for sending output signals and acquiring input data are functioned by 

LabVIEW. 

4.2.1 Output Signal to the Wave Maker 

To trigger the wave maker, a new LabVIEW VI is programmed to send a time 

signal to the wave maker with an analog voltage output. In this VI, the regular wave (i.e. 

sinusoidal wave) is created by setting the duration time, the amplitude, and the period. 

There are two kinds of spectra-wave can be generated by setting the duration time, the 

significant wave height, and the peak period. In addition, a text file with digital signals 

can also be loaded to the VI. Figure 23 shows the VI is generating a JONSWAP spectra-

wave. 

 

Figure 23. VI for Generating Output Signal 
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4.2.2 Data Acquisition and Spectrum Analysis 

In order to know the parameters, 𝐻𝑠 and 𝑇𝑝, in front of the device, the wave gauges 

are used to acquire the analog input of the time signal. The only parameter needed to be 

set is the duration time. In the VI, the program will receive the time signals and conduct a 

real-time spectrum analysis to get the 𝐻𝑠 and the 𝑇𝑝. After getting the time signals, the 

data can be saved for future use. Figure 24 shows that the program is receiving the data 

from the wave gauge in the water tank. 

 

Figure 24. VI for Acquiring Input Signal 

 

4.3 Wave Condition in the Laboratory  

After the wave maker is calibrated, a table should be created which includes the 

wave heights in meters under different voltages and periods. In order to test the 

consistency of the wave maker, the regular waves are generated. Figure 25 shows that the 
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wave maker is more reliable for a period between 0.7 seconds to 2 seconds. Beyond this 

region, the wave maker will start to generate unreliable data and horrible noises which is 

due to the age of the machine.  

 

Figure 25. Regular Wave Test 

 

For testing the stability of the wave maker under irregular waves, generating 600 

seconds JONSWAPS spectra-waves with 𝑇𝑝 equals to 1s at different voltages and find out 

the quasi-state times. As a result, in Figure 26, the signal will reach quasi-state after around 
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Figure 26. Wave Height for 600 second 
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between the wave gauge and the wave sponges is 19m. Although there are wave sponges 

to dissipate the wave power, the waves still reflect and cause the wave condition 
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around 30 seconds. The longer the duration time, the more complicated the wave condition 

it will be.  

 

Figure 27. Wave Condition without the Structure 

 

4.3.1 Real wave condition with structure in the water tank 

Eventually, the output time for one dataset is determined by the location of the 

device which is 18m and the duration time is the time before the re-reflection wave hit the 

device and influence the data. Based on the group velocity, for 1-second peak period 

waves, the duration time until the re-reflection wave hit the structure is 68 second. After 

the structure is put in the water tank, the reflected phenomenon will be amplified because 

of the impenetrability of the device and the wave condition will be more unpredictable 

and complicated. In Figure 28, the wave condition with the structure is detected by the 

wave gauge and the figure shows that the wave elevation which is detected in the tank is 

much bigger than the signal which is calculated and sent to the wave maker. Therefore, it 

is not reasonable to use the detected wave elevation as the real wave condition. The 
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alternative way is to use the signal which is sent to the wave maker to calculate the real 

wave condition. 

 

Figure 28. Wave Condition with the Structure 

 

4.3.2 Error between output and theoretical value  

However, one 68-second spectra-wave is too short to represent a good spectrum 

analysis so several 68-second spectra-waves will be generated to represent a longer 

spectra-wave.  In order to compare the real output voltage to the theoretical voltage for the 

spectra-wave, a MATLAB file is used to calculate the error for the 1-second wave. Several 

68-second spectra-waves are generated and combined together. With a longer-time signal, 

two methods are used to get 𝐻𝑠, one is the zero up-crossing method and the other one is 

spectrum analysis method. Both of them are done for 30 times and take average and 

standard error. In Table 2, the average of error and standard error for three 68-second, 

204-second, spectra-waves are both below 5% which is generally acceptable for the 
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physical model test. As a result, three 68-second spectra-waves are generated to represent 

a longer wave which will be closer to the theoretical 𝐻𝑠.   

# of spectra-wave 1 2 3 

Average of Error (%) Zero up-crossing -3.1 -4.2 -2.6 

Spectrum Analysis 0.1 -1.0 -0.6 

Standard Error (%) Zero up-crossing 8.4 6.8 4.1 

Spectrum Analysis 8.3 6.4 4.1 

Table 2. Error between Theoretical and Real 𝐻𝑠 

 

4.4 Calibration of the SMA Spring 

To get the exact 𝑅𝑐 at the wanted temperature, the calibration of the SMA springs 

need to be done. The 𝑅𝑐 have been recorded at different temperatures. The test has been 

done for several times to ensure that the SMA works. 

4.4.1 Reliability of the SMA Spring 

The first kind of tests is to gradually increase and decrease the temperature and 

record the 𝑅𝑐. Figure 29 shows that the trend of the location is similar for both heating up 

conditions and cooling down conditions. Compared with the strain data provided by the 

manufacturer of the SMA which shows in Figure 30. It shows that the tendency is similar 

but with some offsets. The result has a lower operating temperature and a larger operating 

strain. These differences come from the extra loading of the boards and other equipment. 

The test indicated that the function of the SMA spring is reliable. However, there is still a 
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little bit difference between each test. The difference comes from the friction force on the 

rail.  

 

Figure 29. 𝑅𝑐 for Gradually Heat Up and Cool Down 
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Figure 30. Compare the Strain with the Data from Manufacturer reprinted from [21] 
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4.4.2 Exact 𝑅𝑐 at Different Temperature 

The second kind of tests is to find out the exact 𝑅𝑐 at different temperatures. This 

test is for that though the temperature of the springs has reached the wanted value, the air 

which surrounds the springs will make the springs’ temperature fluctuate till the air 

temperature become stable and closed to the temperature of the springs. The test has been 

done in two different ways. The first three tests are set to be started from around 30℃ to 

the wanted temperature until it is a stable condition. The last three tests are set to be started 

from random temperature to the wanted temperature. Figure 31 shows that the first three 

tests are more reliable and consistent. The unreliability of the last three tests is caused by 

the different friction force at the different temperatures and different locations on the rails. 
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Figure 31. 𝑅𝑐 at Different Temperatures 
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5. EXPERIMENTAL RESULT AND DISCUSSION 

 

In order to compare the fixed and the adjustable 𝑅𝑐 in the real physical model test, 

two kinds of experiments have been conducted. Because the water depth is 0.8m, from 

dispersion relationship for a deep-water condition, the wave period needs to lower than 

1.01s. Thus, a peak period of 1 second has been selected. The wave pattern is JONSWAP 

spectra-waves. For each data point, the total overtopping discharge rate are gathered from 

three 68-second spectra-waves. The range of the experiments depends on  𝑅 . The 

overtopping discharge rate is too small to accurately calculate when the 𝑅 is bigger than 

2.0. On the other hand, the overtopping discharge rate is too large to completely gather 

when the 𝑅 is smaller than 0.5. 

  

5.1 Fixed Crest Freeboard Height 

For the fixed condition, which is the control group, 𝑅𝑐  has been chosen to be 

0.075m. The result of the fixed condition is compared with previous empirical formula 

(Borgarino 2007) and the general formula of the floating overtopping device (Kofoed 

2002) [34, 49].  
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Figure 32. Overtopping Discharge at Fixed Condition 
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For the general expression from Kofoed in 2002, the correction coefficients are 

determined by the dimension of the device. Thus, the 𝜆𝑑𝑟 is 0.919 and the 𝜆𝛼 is 0.955. In 

addition, the reduction factor for the general formulae is assumed to be 1 which means 

there is no penetration and roughness on the ramp. The purple line (general formula with 

γ equals to 1) and the blue line (the fixed condition) still have some differences. Reasons 

for the reducing and fluctuating discharge are following.  

First, the phenomenon of the fluctuation of the same 𝑅 is due to the run-down and 

run-up of the wave. The overtopping phenomenon is highly related to the wave run-up 

and run-down. For the wave which doesn’t have enough run-up height to overtop the ramp, 

the run-down phenomenon occurs. After the wave reaches its maximum run-down point, 

a secondary run-up starts. This secondary run-up is much smaller than the first one, for 

the major portion of the wave has been reflected by the steep slope [51]. If the following 

wave has a same phase with the secondary run-up, it will increase the possibility of the 

upcoming wave overtops. In contrast, if the following wave has a different phase with the 

secondary run-up, it will decrease the possibility of the upcoming wave overtops. In 

addition, by observing, the water which doesn’t overtop the ramp will flow back to the 

water tank and caused the water level set-down. The set-down will make the next incoming 

wave harder to overtop the ramp. The possibility of this phenomenon is determined by the 

randomness and the form of the random wave. Figure 33 and Figure 34 show the run-

down and the run-up during the overtopping phenomenon.  
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Figure 33. Run-down of the Wave 

 

 

Figure 34. Run-up of the Wave 
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Second, because of the surface roughness of the ramp, vortices and bubbles will 

be created and dissipate the wave power. Figure 35 shows that when the wave rushed on 

the slope, the vortices and the bubbles will be generated. 

 

Figure 35. Vortex and Bubble at the Ramp 

 

Therefore, it is more reasonable to take the roughness into account. For the green line in 

the Figure 32, the reduction coefficient is assumed to be 0.925. In order to compare which 

line is closer to the fixed condition, the averages of error are calculated from the 𝑅 equals 

to 0.5 to the 𝑅 equals to 1.5 because when a smaller 𝑅 occurs, the scale effects should be 

concerned. The average of error for the purple line (no roughness) is -21.3% but for the 

green line (with roughness) the average reduces to -0.1%. This means that the green line 

is closer to the result of the fixed condition. 
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Third, another phenomenon is that when the 𝑅 is big, the result is well fit but when 

the 𝑅 is small, the difference is obvious. Because of the constraint of the experimental 

devices and the property of the random wave, waves are easier to break for bigger 

amplitude at a relative lower period. The energy will be dissipated after the wave breaks 

which means that the wave height will decrease and cause the wave hard to overtop the 

ramp. The bigger the 𝐻𝑠, the higher the possibility of the breaking waves occur. That is 

the reason why there is a bigger reducing discharge when a smaller 𝑅 occurs. Figure 36 

shows that the wave breaks just before the structure. Figure 37 shows that the wave breaks 

near the wave maker. Both of the conditions will lead to a reducing discharge.  

 

Figure 36. Wave Breaks in front of the Device 

 



 

 58 

 

Figure 37. Wave Breaks far from the Device 

 

Even though the result does not completely match with the results from others’ 

studies, the trend of the result is consistent with the general formulae in Section 2.4. Thus, 

the fixed condition is reliable so that the next section will use this result to compare and 

determine that whether the application of the SMA spring is reasonable or not. 

 

5.2 Adjustable Crest Freeboard Height 

As mentioned in Section 4.1.4, it is hard to put a wave gauge far away from the 

device to detect the properties of the incoming waves. The alternative method is to test the 

overtopping discharge rate at different 𝑅𝑐  at every wave condition. The result of this 

section is expected to follow the result of the fixed  𝑅𝑐 condition. Therefore, in this section, 

the SMA springs are powered on and nine different temperatures have been chosen which 
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means that there will be nine different 𝑅𝑐 , which are 0.068m (30℃), 0.071m (35℃), 

0.078m (40℃), 0.090m (47.5℃), 0.096m (55℃), 0.102m (45℃), 0.103m (50℃), 0.111m 

(60℃), and 0.116m (65℃). From Figure 38 to Figure 42 show that all the night conditions. 

Figure 43 shows the 𝑅𝑐 versus the temperature. 

 

Figure 38. 𝑅𝑐 = 0.068m for 30℃(Left), 𝑅𝑐 = 0.071m for 35℃(Right)  

 

 

Figure 39. 𝑅𝑐 = 0.078m for 40℃(Left), 𝑅𝑐 = 0.102m for 45℃(Right) 
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Figure 40. 𝑅𝑐 = 0.090m for 47.5℃(Left), 𝑅𝑐 = 0.103m for 50℃(Right) 

 

 

Figure 41. 𝑅𝑐 = 0.096m for 55℃(Left), 𝑅𝑐 = 0.111m for 60℃(Right) 

 

 

Figure 42. 𝑅𝑐 = 0.116m for 65℃ 
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Figure 43. 𝑅𝑐 at Different Temperatures 

 

In Figure 43, the line shows that it is not smooth when the temperature comes to 

around 45℃. This is caused by the transition temperature of the SMA which means that a 

small difference of the temperatures will cause a different result in this region. Also, the 

setup and the condition of the device affect the data. The friction force on the rail varies 

from time to time and location to location. The factors that affect the friction force contain 

the room temperature, the humidity, the lubricant, and etc. If the installation of the rails 

can be improved to a perfect state, the relation between the 𝑅𝑐 and the temperature can be 
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𝑅𝑐 without violating the rule of the overtopping phenomenon. Figure 44 shows the result 

of the adjustable condition. The result also follows an exponential line. 

 

Figure 44. Adjustable Condition 
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the 58 adjustable experiment points surround the exponential line of the fixed condition. 

Some of them are a little away from the line so that another kind of comparison should be 

done to justify the feasibility. 

y = 0.0416e-1.562x

R² = 0.9304
0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

0.014000

0.016000

0.018000

0.020000

0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10

Q

R

Adjustable Condition

Adjustable Expon. (Adjustable)



 

 63 

 

Figure 45. Adjustable Condition Data Points Surround the Fix Condition 

 

In order to compare the difference between the fixed and the adjustable condition, 

the exponential lines of the adjustable condition and the fixed condition are compared and 

the errors are calculated. Figure 42 shows that two lines of two different conditions are 

close to each other which means that the application of the SMA spring will not affect the 

trend of the overtopping discharge.  
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Figure 46. Comparison the Exponential Formulae of Two Conditions 
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Figure 47. Error Compared with the Fixed Condition 

 

Data Points Average of Error (%) Standard Error (%) 

58 -6.70 2.36 

Table 3. Average of Error and Standard Error 

 

 All these results indicate that the application of the SMA springs on the 

overtopping device is promising. The 𝑅𝑐 can be adjusted to the desired value with different 

wave conditions. With proper 𝑅𝑐, the OWEC can be improved by either have more water 

being stored or more waves overtop. 

 

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90 2.10

Er
ro

r

R

Error regards to the fixed condition

30℃ 35℃ 40℃ 45℃ 47.5℃ 50℃ 55℃ 60℃ 65℃



 

 66 

6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

 

 This thesis represents a new concept to adapt to mutative wave conditions to obtain 

more wave power from the ocean. Therefore, the SMA springs are tested and installed on 

the OWEC model. The experiments only confirm the feasibility of the idea of using the 

SMA to change the crest freeboard height. The results have been divided into two parts, 

one without SMA springs and one with SMA springs. The result without SMA springs is 

compared with other’s result and the general overtopping discharge formulae for OWECs. 

The comparison shows that the different experimental setup and the limitation of the water 

tank will cause the different overtopping discharge rate, but the tendency of the 

overtopping discharge rate is reasonable.     

For the result of the application of the SMA springs, the result of non-using the 

SMA springs, the fixed condition, is regarded as the reference. The result shows that the 

installation of the SMA springs doesn’t influence the trend of the overtopping discharge 

rate which is an exponential function. The comparison with the fixed condition also shows 

that there is no significant difference and the error which is caused by the nonlinearity of 

the overtopping phenomenon is acceptable. The concept of using the SMA to fit the 

different wave conditions is proven, but still have some issues need to be investigated and 

overcome in the future. 

 

6.2 Future Work 
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Although the feasibility of the installation of SMA on the OWEC is proven, there 

are still some limitations need to be further considered. From the calibration of the SMA 

springs, the lack of consistency of the spring is shown. If the concept is going to be used 

in the prototype, the crest freeboard height should be more predictable so that the 

consistency of the function of the SMA springs should be taken into account. It can 

combine with other mechanical devices which make the SMA easier to keep the property 

in a stable state in a mutative environment.  

Eventually, the concept of synchronizing the data of the upcoming waves with the 

control of the crest freeboard height with the SMA springs need to be applied. The goal is 

that a detecting system can calculate wave conditions meters away from the OWEC device 

and send a feedback to the SMA control system to change the crest freeboard height 

immediately and have the maximum efficiency of harvesting the wave power. This idea 

should be proven in a larger water tank and in real sea. 
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