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ABSTRACT 

Internet of things (IoT) devices are becoming ubiquitous in, and even essential to, 

many aspects of day-to-day life, from fitness trackers, pacemakers, to industrial control 

systems. On a larger scale, live stream of sleep patterns data recorded via fitness tracker 

devices was utilized to quantify the effect of a seismic activity on sleep. While the benefits 

of IoT are undeniable, IoT ecosystem comes with its own set of system vulnerabilities that 

include malicious actors manipulating the flow of information to and from the IoT devices, 

which can lead to the capture of sensitive data and loss of data privacy. My thesis explores 

a Privacy-Preserving ECG based Active Authentication (PPEA2) scheme that is 

deployable on power-limited wearable systems to counter these vulnerabilities. 

Electrocardiogram (ECG) is a record of the electrical activity of the heart, and it 

has been shown to be unique for every person. This work leverages that idea to design a 

feature extraction followed by an authentication scheme based on the extracted features. 

The proposed scheme preserves the privacy of the extracted features by employing a light-

weight secure computation approach based on secure weighted hamming distance 

computation from an oblivious transfer. It computes a joint set between two participating 

entities without revealing the keys to either of them. 
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CHAPTER I 

 INTRODUCTION 

1.1 Generalizations in IoT 

The world is going through a dramatic transformation, rapidly moving from 

isolated systems to internet-enabled ‘things’ which connect to a shared infrastructure and 

work in harmony with other devices. This new communication paradigm has shown 

tremendous potential in enriching everyday life, increase business productivity and 

efficiency of many processes. In this internet of things or IoT [1], all kinds of devices 

connected to the network irrespective of their computational capabilities and can be 

broadly segregated into three layers, Device Server, Smart Devices and the End Devices. 

Figure 1.1 Device layers in IoT 

Following this three-tier classification, represented in figure 1.1, is an IoT 

application in the healthcare domain, the Wireless Body Sensor Network (WBSN) [2,3] 

or Body Area Network (BAN). WBSN/BAN is a network of embedded or wearable 
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physiological sensors that stream data on the users’ health into a sink, typically a 

smartphone for processing. Physiological sensors for ECG, EEG, blood pressure, 

temperature and motion sensors, etc. continuously monitor the user in real-time. This 

stream of data allows for quicker diagnostics, comprehensive patient history, monitor 

fitness objectives, etc. 

Figure 1.2 Wireless Body Sensor Network Architecture. Reprinted from Wikimedia 

Commons [4] 

Figure 1.2 shows a typical architecture of a WBSN. The sensors here on the 

person are the end devices connected to the smartphone a smart device which is 

connected to the cloud the device server. 
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1.2 Security objectives and challenges 

The nature of data flowing through a WBSN is sensitive and private as it contains 

crucial information about the user's health and physical state. Regardless of the sensitivity 

of the data, due to the potential benefits, more and more people are getting comfortable 

with the idea. There is no denying the benefits of WBSNs or other wireless sensor 

networks, but as is the nature of wireless communication it is easy for an adversary to alter 

the transmitted messages or inject malicious data into the message stream. This intrusion 

could be fatal especially in the case of WBSNs where the data is sensitive to the user's 

health and physical state. 

In the literature, there are two proposed solution to this problem cryptography and 

authentication [5]. By using cryptographic primitives, the messages could be encrypted by 

the sender and decrypted by the receiver using a shared key. However, traditional public 

key cryptography requires storage and processing of significant number certificates which 

impractical in the sensor networks due to the constrained power and computational 

resources. Also, cryptographic techniques have inherent key management problem which 

deals with generating and sharing of the keys. The problem is exacerbated by low power 

and headless nature of these devices. 

1.3 Authentication 

Authentication is establishing and verifying the identity of an individual. It is 

applicable wherever it is required to prevent unauthorized access to information, physical 

locations, etc. With the advent of the communication paradigm IoT, where devices are 
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communicating with other devices, and more sensitive data online a secure authentication 

scheme is essential. Typically, an individual's identity can be established by a unique 

pattern of behavioral or physiological characteristics. A behavioral trait used for 

identification of a person is unique but has to be consistent and repeatable like a signature, 

a pattern of dots, password. On the other hand, there are physiological traits also known 

as biometric data like facial features, fingerprints, iris scan ECG, etc. can also be used for 

identification. In a typical authentication protocol, the server uses the information from 

the client to compare one or more of these traits to the pre-registered set which validates 

the identity. 

Traditional authentication methods rely on numerical or graphical passwords 

which are vulnerable to surfing attacks. With a weak password, an attacker can get access 

via a line-of-sight from a short distance, social engineering, phishing, etc. The user could 

also either forget or share the password as well. Masdari et al. study a potential list of 

possible security attacks against authentication schemes in body sensor networks [6]. 

Biometric authentication is more reliable than their credential based counterpart. A 

biometric system requires a physiological or behavioral characteristic of the user which is 

unique and universal [7]. Fingerprint and iris are examples of such physiological features 

whereas gait and speech are behavioral Unlike the credential based method, a biometric 

feature cannot be forgotten or shared and depending on the kind of signal used cannot be 

duplicated either. 
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1.4 Related work 

There has been a considerable amount of research in the wearable medical sensors 

space [8]. These sensors can pick up all kinds of physiological signals like beats per 

minute, perspiration, EEG, ECG, perspiration, motion, etc. Since the mid-2000s 

authentication in sensor networks has been an active research area. In 2006 Luk et al. 

proposed a list of security requirements for an ideal sensor network [9]. They showed that 

most authentication techniques at that time met only a subset of those requirements. 

In [7] Wayman et al. show security benefits of a biometric authentication system 

and following the improvements in sensor technology it has become possible to 

authenticate users even in a sensor network biometrically. In 2002 the Fuzzy vault scheme 

was proposed by Jules and Sudan et al. [10]. In this scheme, the biometric feature vector 

is projected into polynomial which is created using a shared key. These projected values 

are mixed with random chaff points and then sent to the receiver. The receiver recreates 

those projected values using its key and the feature template, and if it has enough overlap 

with the set of values received from the source, then the authentication is successful. As 

the sender does not send its features values in the channel, this scheme preserves the 

privacy of the biometric features. In [11] Karthik et al. show the implementation of this 

fuzzy vault technique with fingerprints. 
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CHAPTER II 

BIOMETRIC AUTHENTICATION 

2.1 Introduction 

Biometric authentication is authentication using biometric data. It involves a 

biometric data capture system and an authentication protocol which matches the captured 

biometric data to a pre-registered template. There are two types of biometric features 

physiological and behavioral. Physiological features, as the name suggests are internal 

features and not in control of the user like the fingerprint and iris patterns. Voice and gait 

are examples of behavioral features. Physiological features provide better reliability and 

stronger security as they are not in control of the user and do not change significantly over 

time. Behavioral features are more susceptible to spoofing attacks. 

 There are a lot of human identification methods proposed in the literature. 

Physiological features like face, eyes, fingerprints-palm and behavioral features like voice, 

gait [12-15], have been successfully shown to identify a person from a group. These 

systems are based on quantifiable features unique to every person and do not change over 

time. The method of feature extraction varies from one method to the other depending on 

the input type and in the computation requirement, and the reliability is measured by the 

false acceptance rate (FAR), true acceptance rate (TAR) [16]. 
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2.2 ECG vs. other biometrics 

[17] The electrocardiogram(ECG) is a record of the electrical activity of the human 

heart. It is typically used extensively for diagnosing irregularities in the heart. Research 

from the last decade suggests that it is unique for everyone and could be used for 

identification. The uniqueness of ECG makes diagnosis a challenge but is an advantage 

for biometric authentication systems. An ECG based system has a distinct advantage over 

other physiological features, and that is it's an internal signal. There have been ways to 

copy a fingerprint, iris pattern of a person as they are both external signals but the ECG 

signal cannot be reproduced, and unless the health of the person is compromised it doesn't 

change. It has inherent liveness, real-time properties so it cannot be used if the user is 

deceased. Other advantages of using ECG is the cost of the sensor is cheaper compared to 

the previously mentioned methods. 

Figure 2.1 The human heart. Reprinted from Wikimedia Commons [18] 

Figure 2.1 shows chambers of the heart, the right and left atrium and the right and 

left ventricles. A group of cells initiates a heartbeat in the right atrium called the sinoatrial 

node (SA node). SA node is the natural pacemaker of the heart initiates an electrical 
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disturbance results in alternating contraction and relaxation of the heart muscles, the 

myocytes. 

Figure 2.2 Typical ECG wave representing a cardiac cycle. Reprinted from Wikimedia 

Commons [19] 

Figure 2.2 shows a typical ECG trace of a normal heartbeat. It is a one-dimensional 

time-varying signal. The electrical disturbance starts at the sinoatrial node (SA Node), the 

natural pacemaker and then radiates outwards causing the myocytes to depolarize and 

compress rapidly. Specific segments of the plot represent a different phase of the cardiac 

cycle as mentioned below: - 

• P-wave: represent atrial depolarization. It precedes the QRS complex.

• PR-interval: represent the time taken for electrical activity to move

between the atria and ventricles. 

• QRS-complex: represents depolarization of the ventricles.
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• ST segment: represents the time between depolarization and repolarization

of the ventricles (i.e., contraction). 

• T-wave: represents ventricular repolarization. It follows the QRS complex

Figure 2.3 ECG collection leads. Reprinted from Wikimedia Commons [20] 

In clinical diagnostics, ECG is collected from 12 leads from a combination of ten 

electrodes as listed below. Figure 2.3 shows the placement of all the leads. 

• Lead I: right arm – left arm

• Lead II: right arm – left leg

• Lead III: left arm – left leg

• aVR lead: right arm

• aVL lead: left arm

• aVF lead: left leg

• V1 – V6: chest leads
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The twelve leads help the diagnostician to look at the electrical conduction system 

of the user from different vantage points. In the last decade, ECG signals have shown 

potential as a physiological feature in this identification problem. The earliest work by 

Biel et al. [21] was using temporal, amplitude, and slope features from the ECG for 

identification. Israel et al. [22] proposed identification using only temporal features and 

claimed that the temporal characteristics are agnostic of the anxiety of the individual. A 

similar claim by Janani et al. [23] using a combination of accelerometer and ECG signals 

to identify people in different physical states. The above-mentioned work also indicates 

that ECG from a single lead has all the physiological parameters for it to be unique and 

we don’t need all the twelve leads for identification purposes. 

The fingerprint is the oldest and most prevalent form of biometric authentication 

used. It is an exterior characteristic, and it is possible for an adversary to capture and replay 

it for authentication resulting in a false positive. This biometric signal is also susceptible 

to damage resulting in false negatives. The article in [24] demonstrates the vulnerability 

of commercial cell phones using fingerprint-based authentication. Another approach to 

preserving the privacy of is cryptography. The sensors would transmit encrypted data, and 

the network edge would decrypt using a shared secret key. This method works for a user-

facing system it is not ideal sensor networks due to the crucial inherent agreement, and in 

the event of a breach, the system remains vulnerable unless the key is changed. Due to the 

resource limitation on the sensors we cannot use stronger encryption techniques. 
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2.3 ECG based authentication challenges 

Unlike other biometric sources, ECG signal or features extracted from the ECG 

signal contains very sensitive data to the user's health. As proposed in [22, 23] the 

extracted temporal features from the ECG signal are a function of the morphology of the 

heart. Transmitting raw features over a wireless network is a potential vulnerability. An 

adversary could gain access to the features and reverse engineer the information about the 

physical well-being of the user. The adversary could also intercept the message and add 

unwanted and malicious code into the data stream. This is also dangerous as the altered 

message could lead to faulty diagnostic information. This calls for an authentication 

mechanism which hides these features in some way without losing the potential benefits 

of identification. 

2.4 Related work 

Since it has been shown that ECG could be used to identify people in a group, there 

has been a bunch of work done to use that idea in the context of wearable sensor networks. 

In 2016, Falconi et al. proposed the idea of using extracted ECG features to authenticate 

in mobile devices [25]. In 2012, Zhang et al. proposed an algorithm based on the fuzzy 

vault scheme but without the key distribution overhead [26]. In [27-32] different feature 

extraction methods are considered for ECG based authentication. 
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CHAPTER III 

ECG BASED IDENTIFICATION 

3.1 Overview 

As mentioned in the previous chapter, it has been shown that the normalized 

temporal distance between the fiducial points in a cardiac cycle remains consistent for an 

individual and are independent of the anxiety state. Since the fiducial points indicate the 

beginning, the end and the peak of an electrical activity the temporal distance between 

them is a function of the heart's physiology and is independent of heart rate. This distance 

remains constant in a developed human heart and does not change over time. A set of 

features are calculated from the ECG wave, and then that is used for authentication. 

Based on the feature extraction techniques in the above-mentioned works they can 

be grouped as fiducial point based techniques. Identification by ECG can be classified into 

two categories fiducial point and non-fiducial point based [29]. In the fiducial point based 

method, fiducial points (P, Q, R, S, T) are identified in the ECG signal, and the features 

are extracted from those [7,8]. In the non-fiducial point based approach the feature vector 

is extracted from a signal segment. Plataniotis et al. [30] use the coefficients from a 

discrete cosine transform of an autocorrelated signal segment as the feature set. Another 

approach by Yarong et al. [31] uses coefficients from a Fourier transform for their feature 

set. Tantawi et al. [32] proposed a method for using discrete wavelet transform. The R-R 

signal segment is processed using the discrete bi-orthogonal wavelet, and the non-

informative coefficients are removed to reduce the feature set size. 
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3.2 Feature Extraction 

Figure 3.1 Taxonomy of feature extraction 

Feature extraction in ECG can be categorized into two broad categories, fiducial 

point based and non-fiducial point based. In the fiducial point method, the fiducial points 

P, Q, R, S, T, etc. of the wave are identified, and then authentication features are extracted 

from these points. The features could be the temporal distance between two fiducial points, 

a difference in amplitude or angle of the wave between two fiducial points. The non-

fiducial point method does not require identification of any points on the wave instead 

they take the coefficients of a signal transform or a neural network as the authentication 

features. Figure 3.1 shows the taxonomy of feature extraction in ECG based identification. 

Figure 3.2 Feature Extraction steps 

The feature extraction process can be split into four steps. Signal, Pre-Processing, 

Annotation, Extraction. Figure 3.2 gives a diagrammatical representation of the steps. 

Feature 

Extraction 

Fiducial point 

Time 

Non-Fiducial point 

Amplitude 

Angle 

Phase 

Frequency 

Pre-

Process 
Annotation Signal Features 
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Signal: This simulates the ECG wave from a person. It accumulates the signal over 

a period of three seconds and passes it to the next block for processing. Specifically, three 

seconds is chosen such that at least one complete cardiac cycle is recorded. The ECG 

signal is read from a file. Figure 3.3 below shows a stream of raw ECG signal sampled at 

500Hz. 

Figure 3.3 Raw ECG wave 

Pre-Process: This step is done to facilitate accurate feature extraction from the 

ECG wave. The figure showing the raw signal shows a noisy version of the actual signal. 

It has both high and low-frequency components. The primary source of the high-frequency 

noise is the 50Hz or 60Hz power to which the ECG collection system is connected. The 

low frequency is probably due to the variation in the baseline voltage of the contacts. We 

remove these noise components using a bandpass filter. This step increases the efficiency 

of the following annotation step adding robustness to the design. 
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Figure 3.4 Filtered ECG wave 

Figure 3.4 shows the filtered ECG signal along with the with the raw signal 

overlay. Both the high frequency and the low-frequency noise components are 

significantly reduced. 

Annotation: In this step, the fiducial points in the signal are identified. Continuous 

wavelet transform and fast wavelet transform are used for identifying the fiducial points. 

The annotation is done in two phases, in the first phase the high frequency QRS complex. 

The QRS complex is the representation of ventricular contraction, and it is distinctively 

high as the contraction of the ventricles requires the highest energy. In the second phase, 
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the low-frequency P and T waves are identified between the R-R intervals extracted from 

the first phase. 

Figure 3.5 Amplified QRS 

QRS detection [33]: A continuous wavelet transform is applied 13Hz with an 

inverse wavelet. The resultant spectrum is filtered again to remove any frequency 

component below 30 Hz. This amplifies the QRS complex removes all the low-frequency 

components. 

𝑆(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)Ψ∗ (

𝑡 − 𝑏

𝑎
) 𝑑𝑡

+∞

−∞

 

Where Ψ∗ is the complex conjugate of the inverse wavelet function, and 𝑎

dilation parameter and 𝑏 the location of the wavelet. This operation amplifies the QRS 

complex and attenuates the P and the T wave. As shown in figure 3.5  
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After CWT, we perform a fast wavelet transform (FWT) is used remove all the 

frequency components below 30 Hz by making all the corresponding coefficients zero. 

Another round of filtration leaves us with a signal which only has the QRS complex. The 

diagram below shows the transformations and the result for a sample ECG wave. 

Figure 3.6 QRS identification result 

Figure 3.6 shows the reconstructed signal from the filtration. It has non-zero values 

at the location of QRS complex and zeroes everywhere else. 

P and T wave detection: After calculating the positions of the QRS signal the signal 

is segmented between R-R intervals. An R-R interval has precisely one T wave for the 

depolarization of the ventricles followed by a single P wave for the polarization and 

depolarization of the atriums. A transformation using CWT with a 3Hz inverse wavelet 

gives a spectrum with min and max values corresponding to the T wave boundary. The 
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peak is then identified as the highest voltage between this limit. Similarly, a transformation 

using 9Hz inverse wavelet identifies the P wave.  

Now that we have the locations of the Q, R, S points on the signal. The next stage 

is the detection of the T wave. Considering the most extended possible duration of the T 

wave, it can be analyzed by CWT at the 3 Hz frequency. The peak of the T wave is shown 

as zero in the CWT spectrum, and the min and max values correspond to the beginning 

and end respectively. A similar thing is done to extract the P waves at 9Hz. The following 

figure shows the original signal with all the labels. Figure 3.7 shows all the annotated 

points on the filtered signal for sour subjects. 

Features: The feature extraction process for both fiducial point based and non-

fiducial point based methods is same till the QRS detection. In the non-fiducial point-

based features we need to isolate individual cardiac cycles. The following section gives 

details about the features extracted in both scenarios. 
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Figure 3.7   Annotation results
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3.3 Fiducial points based vs. non-fiducial point-based features 

Israel et al. [22] showed successful identification using a set of 15 temporal 

features. They proposed that the temporal distance between fiducial points, as shown in 

figure 3.8 below, is the time it takes for the ions to move from one place to the other 

(atriums to ventricles or vice versa).  The time taken by the ions to move inversely 

proportional to the distance which ultimately makes the temporal features a function of 

the physiological properties of the heart. A significant advantage of this approach is the 

extracted features are agnostic of the mental state of the person. 

Figure 3.8 Identified fiducial points on the ECG 

Following the above-mentioned method, the number the following features are 

extracted: 

1. R-Q

2. S-R

3. R-P2

4. R-P1

5. R-P3

6. T2-R

7. T1-R

8. T3-R

9. P3-P1

10. T3-T1

11. T2-S

12. Q-P2

13. T2-P2

14. Q-P1

15. T3-S
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All the fifteen values are non-negative and are normalized by dividing each value by 

the length of the entire beat T3-P1 and clamped to a 16-bit value. The normalization 

steps also make the features independent of the heartbeat as shown in [22]. This set of 15 

16-bit values constitute the feature vector for an individual. 

Figure 3.9 Parallel coordinates plot of feature templates from six individuals 

The mean feature vector extracted from six different individuals is shown as a 

parallel coordinate plot in figure 3.9. Since none of the lines overlap, it shows that these 

feature vectors could be used as for identifying a specific person. 

For the non-fiducial point-based approach, we need to isolate individual cardiac 

cycles from the original signal. As the signal contains repetition of the cardiac cycle 

isolating them improves the feature extraction. Any cardiac cycle starts with the P wave 

followed by the QRS complex and at the end the T wave. Straightforward partitioning of 

the signal between the start of P wave and at the end of the T wave results in a set of 

samples that vary in length.  A linear interpolation of these isolated beats leads to too much 
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variation in the wave. To resolve this problem, we center the isolated wave around R by 

taking the maximum of the difference between T3R and RP1 and taking that many samples 

around R. As the QRS complex is the most distinct portion of the heartbeat this approach 

generates fixed size signal template consistent for an individual. 

Figure 3.10 Non-fiducial point based feature template for six people. 

Figure 3.10 shows the translated individual beats for six individuals. The beat in 

downsampled to a vector of size 100 and as evident from the plot the wave of a cardiac 

cycle does not change for an individual, and it is unique. In the following section, we 

analyze the consistency and the uniqueness of these features using histogram plots.  This 

vector of size 100 is used as a feature vector.  
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3.4 Analysis 

For an accurate authentication or identification, we want the features from the 

same individual to be as consistent as possible and as different as possible from others. 

Figure 3.11 Histogram plot of pairwise distance between the features of the same 

individual for six people. 

Figure 3.12 Histogram plot done between the feature template of different people. 
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The mean normalized Euclidean distance between features from the same 

individual is between 0 and 0.2 calculated for 40 people. Figure 3.11 shows a histogram 

plot of the first four subjects. The same distance among the feature templates of 30 people 

was found between 0.6 and 1.0 as shown in figure 3.12. Although more samples will result 

in a better analysis this group of 40 people shows that the extracted features are unique 

and consistent enough for an authentication system. 

Although the non-fiducial based approach is less computationally intensive, it 

generates a lot more features. The excess number of features translates to more number of 

messages in the authentication, and more messages come at the increased cost of power. 

The following chapter presents an authentication protocol based on a privacy-preserving 

set intersection protocol by Amar et al. [34]. 
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CHAPTER IV 

AUTHENTICATION PROTOCOL 

4.1 Introduction 

This section presents the next half of the work in which the extracted features from 

ECG are used to authenticate the user. In the context of IoT, a Body Area Network (BAN) 

is a wireless network of wearable devices or physiological sensors.  BANs have been 

proposed to provide real-time health information for the user through wearable or 

embedded sensors. They offer quicker diagnostics, granular health information by tracking 

movements, sleep patterns, eating habits, etc. In 2015, Gia, Tuan Nguyen, et al. propose 

the idea of fog computing in healthcare systems [35]. The idea is that the data collected 

by BAN's gets processed by a network edge, typically a smartphone for processing the 

data and to the cloud for synchronization. The middle tier devices like the smartphone are 

not as resource constrained as they used to be, hence having them process the stream of 

data from the sensors would result in faster results and reduced the load on the cloud. 

In 2016, Yeh et al. introduce a secure IoT based health care system which operates 

through BSN (Body Sensor Network) architecture [36]. The proposed system is designed 

to work with public communication infrastructure and uses robust crypto-primitives to 

ensure transmission confidentiality and entity authentication of devices in all three layers 

of the device stack. It is pointed out that the security approach must be IoT specific for 

optimal performance as the existing security measures work best for high-level traffic 
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through the internet. Ex. Firewalls were containing management control protocols which 

do not work for end devices. 

Luk et al. [9] propose a list of seven desired seven properties in a network broadcast 

authentication. It is also claimed that none of the existing network broadcast authentication 

strategies has all seven of these fundamental properties. 

1. Resilience against node compromise: Isolating a compromised node. One of the

solutions is Asymmetric authentication. 

2. Low computation overhead: Since we are dealing with sensor nodes, typically they

are computationally constrained. The authentication scheme has to be aware of this. 

3. Low communication overhead: This talks about the sensor nodes being power

constrained as radio signals consume a lot of power and an authentication scheme with 

very high MAC would become impractical. 

4. Robustness to packet loss: This is a network problem which could also be the work

of an attacker. The man in the middle attack. 

5. Immediate authentication: Some sensor network applications require instant validity

as it may contain critical information which should not be delayed. This is an application 

constraint.  

6. Messages sent at irregular times

7. High message entropy.

In the following sections, an authentication mechanism is demonstrated which satisfies 

all the criteria. 
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4.2 Privacy-preserving set intersection protocol 

Privacy-preserving set intersection protocols are algorithms that involve two 

systems holding a set of inputs and want to compute a set intersection of their inputs 

without revealing the inputs to each other. Consider a two people 𝐴, 𝐵 each having 𝑋, 𝑌 

amount of money respectively. They want to know who is more prosperous but don't want 

to reveal their net worth. To do this calculation, they would have to use privacy preserving 

operation on their private values and obtain the result for themselves. These algorithms 

are based on the work done by Yao [37] for secure computations on data sets.  

Oblivious transfer (OT) is cryptographic primitive where a sender sends one out 

of many inputs to the receiver but remains oblivious as to which inputs are transferred. A 

more practical flavor OT is the 1-2 oblivious transfer proposed by Even et al. in [38]. In 

this method, the sender sends two values to the receiver each with a probability of ½ of 

transferring. 

Amar et al. [34] proposed a set intersection protocol that enables two agents to 

jointly compute the Hamming distance between their keys without revealing the actual 

keys, the distributed set intersection protocol. The protocol utilizes secure hamming 

distance computation from oblivious transfer to compute a joint set between two system’s 

input datasets of length 𝑛. The proposed protocol achieves full security in the semi-honest 

model and preserves the privacy of the input data set. The approach combines hamming 

distance and oblivious transfer technique. 
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4.3 Proposed algorithm 

Figure 4.1 Distributed Set Intersection flow. 

In this section, the algorithm for authentication is described as shown in figure 4.1. 

Let’s consider two entities 𝑅 𝑎𝑛𝑑 𝑆 for receiver and sender respectively where the sender 

gets the ECG signal and extracts the feature vector in real-time. The receiver 𝑅 has a 

feature vector of 𝑚-bit values, and size n, Y= [𝑦1, 𝑦2. . 𝑦𝑛]  and the sender has extracts a 

feature vector of similar dimensions X= [𝑥1, 𝑥2. . 𝑥𝑛]. We want to calculate how similar 

is X to Y without revealing any part of X to the receiver and Y to the sender and the result 

of that computation tells us if the sender is the valid user or not. 

The algorithm in [34] outputs a hamming distance between X and Y. Hamming 

distance between two vectors only gives the information about the number of bit-positions 

the value is different between them. A difference in the bit value of the most significant 

bit (MSB) or least significant bit (LSB) has no consequence on the result. This would 

suffice when we try to match exact vectors, but as ECG is a real-time, the feature values 
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remain close to each other but never the same. This results in a not so ideal scenario of 

lower false negatives and higher true negatives hence that algorithm cannot be used as it 

is. The following paragraph shows the modification which returns a weighted Hamming 

distance measurement. 

The algorithm has three phases, in the first phase the sender S generates a set R 

with 𝑛 ∗ 𝑚, 𝑚-bit random values such that 

𝑅 = [[𝑟11, 𝑟12. . 𝑟1𝑚], [𝑟21, 𝑟22. . 𝑟2𝑚]. . [𝑟𝑛1, 𝑟𝑛2. . 𝑟𝑛𝑚]]

and the key RK is calculated by 

𝑅𝐾 = ∑ ∑ 𝑟𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 

Next step is garbling the bits of X into two matrices the R0 and R1 such that 

𝑅0 = {𝑅:  ∀𝑟𝑖,𝑗 ∈ 𝑅,  𝑟𝑖𝑗 = (𝑟𝑖𝑗 +  (𝑥𝑖 𝐴𝑁𝐷 (1 ≪  𝑗 − 1)))} 

𝑅1 = {𝑅:  ∀𝑟𝑖,𝑗 ∈ 𝑅,  𝑟𝑖𝑗 = (𝑟𝑖𝑗 +  (𝑥𝑖̅ 𝐴𝑁𝐷 (1 ≪  𝑗 − 1)))} 

Where 𝑖 ∈ [1, 𝑛], and 𝑗 ∈ [1, 𝑚]. The sender sends these garbled values to the 

receiver followed by the RK and the first phase of the protocol concludes. The original 

protocol only adds the bit 𝑥𝑖 to the LSB position of 𝑟𝑖𝑗  and does not consider the 

significance of the bits. In the second phase of the algorithm, the receiver on receiving R0 

and R1 calculates a 𝑅𝐾
′  by: 

𝑅𝐾
′ = ∑ ∑ {

𝑅0𝑖𝑗 ⊕ 𝑦𝑖  𝐴𝑁𝐷 (1 ≪  𝑗 − 1),   𝑖𝑓  0 = (𝑦𝑖 𝐴𝑁𝐷 (1 ≪  𝑗 − 1))

𝑅1𝑖𝑗 ⊕ 𝑦𝑖 𝐴𝑁𝐷 (1 ≪  𝑗 − 1),    𝑖𝑓 1 = (𝑦𝑖 𝐴𝑁𝐷 (1 ≪  𝑗 − 1))

𝑚

𝑗=1

𝑛

𝑖=1

This step essentially calculates (𝑟𝑖𝑗 + (𝑦𝑖𝑗 ⨁ 𝑥𝑖𝑗)), where 𝑦𝑖𝑗 , 𝑥𝑖𝑗 are 𝑗th position

bits of the 𝑖th value in the set Y and X respectively. If the bits are same, the correct random 
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value gets added else an increased value corresponding to the significance of the bit is 

added to key 𝑅𝐾
′ . 

The last phase of the protocol is a simple step of comparing the key to the 

calculated key at the receiver. If the difference of between them is less than a certain 

threshold, then the sender is genuine.  

𝐴𝑢𝑡ℎ = {
1, (𝑅𝐾

′ − 𝑅𝐾 < 𝑡ℎ𝑟𝑒𝑠ℎ) 
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The receiver can authenticate the sender without any actual exchange of keys. In 

the following sections, we experiment with ECG data from 40 different individuals and 

find the ideal threshold to get the highest accuracy. A comparison of the accuracy using 

the original protocol is also presented. 

4.4 Security analysis 

In this section, we analyze how the proposed algorithm measures up to the list of 

requirements of a sensor network authentication. 

1. Resilience: The authentication is not based on any key hence if a node is

compromised it does not affect the other nodes. 

2. Low computation overhead: The complexity if the algorithm is O(n) where n

is the number of bits of the feature vector. The most demanding step is the 

calculation of the garbled data (R0, R1). 

3. Low communication overhead: The message complexity is also similar to the

time complexity of the algorithm and is linearly dependent on the number of 

bits in the feature vector. 
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4. Robustness to packet loss: Although packet loss in phase 2 of the algorithm

would lead to a false rejection the low computation overhead of the system 

allows for a restart again. This in conjunction with a real-time ECG signal 

makes the authentication robust to packet loss. 

5. Immediate authentication: Once the algorithm concludes the results are valid

for the next set of features arrive from the ECG feature extraction module. The 

algorithm does not have any delay modules and would be able to authenticate 

as soon as it receives all the messages. The only part where delay could be 

introduced is the communication channel. 

6. Message sent at irregular times: If all the messages arrive at the receiver the

receiver should be able to run the authentication algorithm. The order of 

messages does not matter. 

7. High message entropy: For every authentication cycle the ender calculates a

new set R and the values from ECG are never the same as well. This increases 

the entropy of the messages in the system. 
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CHAPTER V 

 SIMULATION 

5.1 Overview 

Figure 5.1 Overview of the simulation 

In this section, the simulation is described for testing the proposed feature 

extraction techniques and the authentication protocol. Figure 5.1 shows the flow of 

information from sensors to the smart device. The ECG data is read from a file and 

partitioned into 3 sec worth of samples. From an empirical constant of the min bpm 20 

beats per minute, a 3 sec ECG wave will have at least one cardiac cycle. This three second 

of the signal is then filtered and passed to a feature extractor module which extracts the 

feature vector and initiated the communication protocol. The garbled data is transmitted 

the to the receiver with a message id. The message id and the key remain valid the next 

three seconds. If the receiver computed key is received back from the receiver, and the 
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weighted hamming distance is less than the threshold, then the receiver is authenticated. 

Otherwise, the authentication failed. 

5.2 Omnetpp 

For the network simulation, the Omnetpp network simulator was used. It is an open 

source and generic discrete event simulation environment. It has proven to be useful in 

numerous domains from queuing network simulations to wireless and ad-hoc network 

simulations, from business process simulation to peer-to-peer network, optical switch and 

storage area network simulations. The main advantage of using Omnetpp is that it abstracts 

out the underlying infrastructure and allows us to focus on the main problem. It's based on 

C++ and allows for fine-grained control of the entire system. 

Figure 5.2 Device model in Omnetpp 
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Figure 5.3 Simple network model in Omnetpp 

We model two device categories the sensor which collects the ECG and other 

physiological data and the smart device. Figure 5.2 shows the model of the device. The 

subcomponents in the device model are made for implementation simplicity. Figure 5.3 

shows a simple network model where a device is connected to a smart device. Every 

device type object is linked to a binary file which has the ECG data. The smart device is 

also linked to an ECG data file and can accept multiple input connections and queues the 

messages for processing. 

5.3 Physionet database 

For the simulation of the ECG signals, we will use the ‘mit-bh’ and ‘ecgid’ databases 

from www.physionet.org. PhysioBank hosted within physionet.org is a large and growing 

archive of well-characterized digital recordings of physiological signals and related data 

for use by the biomedical research community. 
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The data from Physionet is stored in a binary format to save space. A C++ wrapper 

was developed with the Omnetpp to extract the files from the binary files. The testing was 

done on ECG collected for 40 different people. Every person has at least two 20 seconds 

recordings. 

5.4 Experiments 

To calculate the accuracy of the system in authenticating the people, two 

experimental configurations were used one to calculate the false acceptance ratio (FAR) 

and false rejection ratio (FRR) and another configuration to calculate the true acceptance 

rate (TAR) and true rejection rate (TRR). The false acceptance ratio is the ratio between 

the number of people who were wrongly identified and the total number of authentication 

requests. FRR or false rejection ratio is the inverse of FAR that is the total number of 

people correctly denied authentication vs. the total number of authentication requests. 

TAR is the measure of people who were authenticated successfully, and TRR is the ratio 

between the number of people incorrectly denied access. 

A good authentication system should have high TAR, FRR, and low TRR and 

FAR. These ratios depend on the threshold value used in the last step of the authentication 

protocol. The following experimental setups are designed to calculate these ratios at 

different threshold values, and the results of the experiment would tell us the accuracy of 

the system. 
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Figure 5.4 Network model for testing FAR and FRR 

To measure the FAR and FRR we connect multiple devices to the smart device 

and make sure that none of them are linked to the same ECG file as shown in figure 5.4. 

The TAR and TRR can be tested with a relatively simpler network in which every smart 

device is connected to a device, and both are linked to the same ECG file. Both these 

configurations were tested with the algorithm proposed, and the distributed set intersection 

protocol and the following chapter shows the results. 
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CHAPTER VI 

CONCLUSION AND RESULTS 

6.1 Simulation Results 

This section presents the results calculated by simulating the fiducial point based 

technique for feature extraction of ECG and the authentication protocol which outputs the 

weighted hamming distance. The results from the simulation of the original Distributed 

Set Intersection Protocol (DSIP) is also presented as a comparison to the proposed 

protocol. 

Figure 6.1 FRR and TAR using DSIP 

Figure 6.1 shows the hamming distance vs. the false negatives on the left and 

hamming distance vs. true positives on the right for six different individuals. The ideal 
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value of the hamming distance would maximize both TAR and FRR, and from the plots, 

we can see that it would be somewhere between 50 and 150 

Figure 6.2 FRR and TAR using modified DSIP 

 As the previous figure, figure 6.2 shows FRR (left) and TAR (right) with weighted 

hamming distance obtained from the modified protocol. This plot indicates an ideal 

threshold value somewhere between 50000 to 300000. 

To calculate both the ideal threshold of the hamming distance and the 

weighted hamming distance we calculate the FRR, FAR, TRR, TAR for all the feature 

vectors from all the 40 individuals. For every individual, we have two records worth 10 

seconds each which means ~160 feature vectors considering a mean of 60 beats per minute 

(BPM) which results in total number of authentications ~20000  
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Figure 6.3 Aggregated plot with hamming distance using DSIP 

Figure 6.4 Aggregated plot with secured hamming distance using the proposed algorithm 
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Figure 6.3 and 6.4 showed the aggregated plots of TAR, TRR, FAR, FRR for 

21832 authentication attempts vs. hamming distance and weighted hamming distance 

respectively. From figure 6.3 the ideal threshold hamming distance is calculated at 106, 

and the accuracy of the protocol using that threshold value is given by: 

Accuracy = 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

Here (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)  are the correct results with true 

positives indicating a correct person rightfully granted access and the false negatives 

indicating the wrong person rightfully denied access divided by the all the total results. 

For hamming distance=106, accuracy=91.2% 

Similarly, for the weighted hamming distance case, the ideal threshold is found at 

203200 

For weighted hamming distance=203200, accuracy=99.2% 

This shows the advantage of the modified protocol which has a gain of ~8% in 

accuracy. Now, we check the individual accuracy for the 40 subjects at the calculated 

threshold to see the spread. Ideally, the accuracy for an individual should not vary at all 

otherwise it would mean that the algorithm works only for a certain set of individuals and 

lose generality. The following plots give an idea about the spread of the accuracy using 

both hamming and weighted hamming distance. 
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Figure 6.5 Accuracy vs. person index for DSIP 

Figure 6.6 Accuracy vs. person index for the proposed protocol 

Figure 6.5 and 6.6 showed the spread of the accuracy using the Hamming distance 

from the DSIP and weighted hamming distance from the proposed protocol respectively. 

In figure 6.5, showing the hamming distance approach, the accuracy varies between 0.82-
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1.0 and the mean as indicated by the red line at 0.91. For figure 6.6 the accuracy between 

0.95-1.0 with the mean at 0.992. This shows that the results are consistent across 

individuals with irrespective of the protocol being used. 

Figure 6.7 Receiver operating characteristics for DSIP 

Figure 6.8 Receiver operating characteristics for modified DSIP 
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Another plot that shows the accuracy of the system is the Receiver operating 

characteristics curve or the (ROC). The ROC plot was historically used in radar to indicate 

the performance of radar to successfully identify the target object. The ROC plots the 

number of true positives per every false positive at different thresholds. Figure 6.7 shows 

the ROC curves for both the original DSIP protocol and figure 6.8 shows the modified 

DSIP. A straight line (y=x) indicate that the system is essentially guessing and the number 

of false positives = number of true positives. As expected from above the figure shows 

that the modified DSIP offers more accuracy without any extra computational overhead. 

6.2 Conclusion 

The presented work is a complete end-to-end authentication system between the 

bottom and middle tier of the IoT ecosystem particularly wireless body sensor networks. 

All the steps including filtration, feature extraction, and the authentication protocol are 

covered. It shows the potential of using ECG signal for biometric authentication data in 

the context of sensor networks. 

As discussed, the temporal features extracted from the fiducial points provide a 

smaller set of unique features than any non-fiducial point based method. The experiments 

also indicate that the fiducial point based features were more accurate as they had 

relatively high Signal to Noise Ratio (SNR) compared to the non-fiducial point based 

method. However, this comes at the cost of computational complexity of detecting the 

fiducial points. Due to the non-stationary nature of ECG using CWT for detecting the 

fiducial point gives robust and accurate results as continuous wavelet transform gives good 
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time resolution and poor frequency resolution at higher frequencies and vice-versa. The 

computational complexity of CWT is 𝑂(𝑛2) , where n is the number of samples being 

processed, it is still manageable in the computationally constrained sensors as n is very 

small. The minimum sampling rate for an ECG is 150 Hz which puts n in the order of 450 

for 3 seconds or 1 cardiac cycle. Moreover, with new developments in the wearable sensor 

space, the sensors are not as resource constrained as they used to be. 

The proposed protocol offers privacy preserving and secure set intersection 

calculation which could be used with ECG features to authenticate. The modification of 

the algorithm has no overhead regarding computational complexity or message 

complexity but improves the accuracy of the system. Also, the algorithm is generic and 

could be used where just the Hamming distance between the set does not provide a good 

measure of the distance between the sets. 

The entire proposed scheme is deployable on a wireless body sensor network with 

an ECG sensor, and any wireless medium with sufficiently low loss rate like Bluetooth, 

Internet Protocol (IP) based like the Transmission Control Protocol (TCP) or User 

Datagram Protocol (UDP), etc. Depending on the type of the application the presented 

scheme could be integrated with other forms of identification methods like an 

accelerometer-based to detect gait etc. to get a multi-modal authentication scheme for 

stronger guarantees. 
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