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ABSTRACT 

The Marcellus Shale is the single largest U.S. natural gas resource, both currently 

and for the foreseeable future. Whereas the Northeast Pennsylvania Marcellus Dry Gas 

Window produces a significant portion of total Marcellus production, it is burdened by a 

phenomenon known as the “Line of Death” (LOD), a coined term referring to an undefined 

line of demarcation that forms the southernmost limit of commercial production in the NE 

PA Dry Gas Window. The noncommercial wells to the south of the LOD have XRD 

values, TOC wt%, Ro%, and mineral composition comparable to commercial wells north 

of the LOD.  However, for reasons not understood, noncommercial wells to the south of 

the LOD are characterized by very low resistivity values and lower total porosity values. 

 The hypothesis of this study is that the resistivity patterns and production trends 

observed in the NE PA Dry Gas Window suggest that some type of progressive, yet subtle, 

organic material (“OM”) transition at the nano-scale has occurred south of the LOD. This 

study characterizes portions of the NE PA Dry Gas Window on both sides of the LOD 

using 1) conventional electric logs and core analysis to prove bulk density similarity, 2) 

S/TEM, EDS and Raman Spectroscopy techniques to investigate the sources of 

conductivity in the OM, and 3) Large-scale, high-resolution SEM imaging and nitrogen 

adsorption to evaluate OM hosted pore size distributions and measure capacity to hold 

gas. 

Regarding the low resistivity to the south of the LOD, the STEM and EDS 

discovered silver dispersed throughout the OM in both porous and non-porous samples 
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south of the LOD, while the OM Raman spectra provided evidence of increased carbon 

ordering (below graphite grade) south of the LOD. Regarding porosity, the large-scale 

SEM image segmentation and the nitrogen adsorption confirms that there is a quantifiable 

difference in the micro and meso pore size distributions between the north and south sides 

of the LOD, with samples south of LOD having significantly less pore area in the 1-2nm 

pore range. This study contends that the porosity deficiencies noted south of the LOD are 

linked to its increased carbon ordering. 
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NOMENCLATURE 

 

BSE Back Scattered Electrons 

EIA Energy Information Administration 

FIB Focused Ion Beams 

He Helium 

LOD Line of Death 

LMARC Lower Marcellus  

NE PA Northeast Pennsylvania 

N2 Nitrogen 

OM Organic Matter 

PA Pennsylvania 

PCL Purcell Limestone 

PSD Pore Size Distribution 

Ro% Vitrinite Reflectance 

SE Secondary Electrons 

SEM Scanning Electron Microscopy 

SRP Shale Rock Properties 

S/TEM Scanning/Transmission Electron Microscopy 

TOC Total Organic Content 

USPR_Lm Union Springs Lime 

USPR Union Springs 
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USPR_U Union Springs Upper 

USPR_L Union Springs Lower 

UMARC Upper Marcellus 

Vol% Volume Percent 

Wt% Weight Percent 

XRD X-Ray Diffraction 

FWHM  Full Width Half Max 
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1. INTRODUCTION 

1.1 Introduction 

Since the inception of production from the Marcellus Shale in 2008 through the 

end of the 1st quarter of 2017, 20.69 Tcf of natural gas has been produced in Pennsylvania 

(Pennsylvania Department of Reporting Services, March 2017). Correspondingly, 

Pennsylvania became the second largest natural gas producing state in the U.S. starting in 

2013 (EIA, 2016). The large majority (66%) of this Pennsylvania production comes from 

six counties in the northeast corner of the state (Pennsylvania Department of Reporting 

Services, March 2017). Development of the Marcellus Shale in Northeast Pennsylvania 

(NE PA) is handicapped by an unexplained phenomenon referred to as the “Line of Death” 

(LOD), which is a vaguely defined line of demarcation within the official boundaries of 

the NE PA Marcellus Shale that represents the southernmost limit of commercial 

production. The noncommercial wells to the south of the LOD have x-ray diffraction 

(XRD) values, total organic carbon weight percentage (TOC wt%), vitrinite reflectance 

(Ro%), and mineral composition comparable to commercial wells north of the LOD. 

However, for reasons not yet understood, the noncommercial wells drilled to the south of 

the LOD are characterized by very low resistivity values (i.e. deep resistivity log curve 

responses as low as 0.08 Ohmms compared to ranges of 50 to 150 Ohmms typically found 

in wells north of the LOD) and lower total porosity values (i.e. core helium porosity values 

of ~5% south of the LOD and ~7% north of LOD).  

It was originally theorized that acreage south of the LOD is noncommercial 

because it was “overcooked”, which caused the organic material to become graphite. This 
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theory was later abandoned because graphite or crystalline proto-graphite material has 

never been found by conventional XRD investigation. A new hypothesis about the lack of 

commercial production on the south side of the LOD examines if the patterns and trends 

observed in resistivity suggest that some type of subtle, yet progressive, atomic or 

molecular scale structural change may have occurred within the organic matrix at, and to 

the south of, the observed LOD. This new theory stems from work done by Walters (2014) 

regarding the possible effects of turbostratic carbon nanostructures on electrical 

conductivity in shales, and Beyssac (2002b) regarding the effect of carbon ordering on 

nanometer scale organic porosity. Their combined work suggests nanometer structural 

ordering of the organic matter (OM) could be responsible for the conductivity and the loss 

of nanometer size OM porosity observed south of the LOD. This study characterizes 

portions of the Marcellus Shale in NE PA on both sides of the LOD using 1) conventional 

electric logs and core analysis to prove bulk density similarity, 2) Transmission Electron 

Microscopy (TEM), Scanning Transmission Electron Microscopy (S/TEM), Energy 

Dispersive Spectroscopy (EDS) and Raman Spectroscopy techniques to investigate the 

sources of conductivity in the OM, and 3) Large-scale, high-resolution Scanning Electron 

Microscopy (SEM) imaging and low pressure nitrogen (N2) adsorption to evaluate OM 

hosted pore size distributions and to measure the rock’s capacity to hold gas. 

1.1.1 Statement of Problem 

Previous inquiries have failed to explain why extremely low resistivity values exist 

on the south side of the LOD in NE PA, or establish a comprehensible correlation between 

the low resistivity and noncommercial outcomes.  As demonstrated by the wells in this 
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study’s dataset, drilling activity in areas with proximity to the estimated location of the 

LOD have been measurably less successful than drilling activity north of the LOD. 

Whereas the Marcellus Shale is considered a “known” resource, and commercially is 

considered a “development play”, drilling on acreage approaching the LOD effectively is 

characterized by a risk profile more akin to exploration than development. Accordingly, 

the lack of an operational theory to explain the cause of the LOD, along with a precise 

understanding of the LOD’s location creates an operational risk premium that impedes the 

optimal development of the NE PA Marcellus Shale. 

1.2 Importance 

Natural gas production in the U.S. is increasingly dominated by shale and tight oil 

plays (EIA, 2016) (Figure 1). The Marcellus Shale is the largest natural gas producing 

shale play in the U.S. based upon both current production (19,967 Mmcf/day as of 

September 2017) (Figure 2) and estimated future production (proved reserves of 72.7 Tcf 

of natural gas as of December 2015) (EIA, 2016). Nano-scale characterization has become 

an important tool to help industry participants evaluate unconventional resources. Further 

study of the Marcellus Shale’s reservoir characteristics in relation to resistivity and OM 

porosity on both sides of the LOD at the nano-scale could yield results that would help 

industry participants rationalize the capital spending required to develop acreage with 

proximity to the LOD.  
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Figure 1: U.S. Dry Natural Gas Production by Source -1990 through 2040 (EIA, 2016). 

 
 

 
Figure 2: U.S. Shale Natural Gas Production by Play – 2007 through 2017. The graph and table illustrate 

the size of the Marcellus Shale vis-à-vis the other major U.S. shale plays (EIA, 2017). 
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1.2.1 Marcellus Production and Extent 

According to the USGS assessment (USGS, 2011) the Marcellus Shale contains 

about 84 Tcf of undiscovered, technically recoverable natural gas and 3.4 billion barrels 

of undiscovered, technically recoverable natural gas liquids. Undiscovered, technically 

recoverable resources are those that are estimated to exist based on geologic knowledge 

and theory that can be produced using currently available technology and industry 

practices. USGS’s Marcellus Shale assessment includes areas in Kentucky, Maryland, 

New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia (USGS, 2011), 

whereas EIA’s estimates of proved reserves in the Marcellus Play of 72.7 Tcf at the end 

of 2015 only includes Pennsylvania and West Virginia (EIA, 2016). The EIA’s definition 

of proved reserves are estimated volumes of hydrocarbon resources that analysis of 

geologic and engineering data demonstrates with reasonable certainty are recoverable 

under existing economic and operating conditions. 

The state of Pennsylvania has been the second largest natural gas producing state 

in the U.S. since 2013, due primarily to the Marcellus Shale (EIA, 2016). As shown in 

Figure 3, production from the Marcellus Shale in Pennsylvania is mainly concentrated in 

the southwest and northeast portions of the state, with the southwest portion producing 

primarily wet gas (the “wet gas window”) while the northeast portion producing primarily 

dry gas (the “dry gas window”). 
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Figure 3: Map of Pennsylvania Well Pads and Cumulative Production by County. The black circles represent productive well pads, while the numbered 

boxes within each county represent cumulative production (inception to date) of natural gas in BCF (Data taken from PA Department of Reporting 
Services). The colors of these boxes denote the degree of productivity with green being the highest and red being the lowest. The purple dotted line 

represents the Marcellus Shale boundary as determined by the formation in the subsurface taken from EIA (2017) structure figure. The red dashed box 
represents the area of interest for this study. The large green dashed line is the generalized location of the LOD in NE PA. The elongated red feature 

south of the Marcellus Shale boundary is the Lackawanna Synclinorium. 
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Of the 20.69 Tcf of cumulative Pennsylvania Marcellus Shale production depicted in 

Figure 3, 66% has been produced from the six counties within the dry gas window listed 

in Table 1. The area of interest of this study is NE PA Marcellus dry gas window which 

is comprised primarily of these six counties. 

 

 
Table 1: Cumulative Production from the Counties Comprising the Area of Interest. Taken, or derived, 

from the PA Department of Reporting Services. 
 
 

Before going further, it is best to elaborate about the nature of the LOD and its 

history, and review the stratigraphic nomenclature for the Marcellus Shale that will be 

used in this study. 

1.3 Literature Review 

1.3.1 The Line of Death 

Based on our current understanding, the LOD is not a known stratigraphic 

attribute, nor is its location defined by precise surveying. Instead, the term ‘Line of Death’ 

is a nontechnical commercial catch phrase used by industry participants in the dry gas 

window of NE PA to efficiently articulate a technical anomaly. As seen in Figure 3, the 

general location of the LOD can be envisioned by plotting productive well spots. While 
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all producing areas have boundaries, usually the boundaries are defined by explainable 

variations in reservoir attributes. The conundrum in the dry gas window of NE PA is that 

the attributes of the rock south of the LOD are very comparable with the commercially 

productive rock to the north of the LOD, with the only large differences being the 

resistivity and the porosity measurements.  

The oldest, and most common hypothesis to explain the LOD focuses on the NE 

PA’s heightened thermal maturity, as correlated with the Lackawanna Synclinorium. As 

shown in Figure 3, the Lackawanna Synclinorium is a 63-mile-long anthracite basin 

located in portions of Columbia, Luzerne, Lackawanna, Wayne, and Susquehanna 

counties (Harrison, 2004). The theory related to this anthracite basin argues that natural 

gas development is threatened by the high thermal conditions necessary for the 

Lackawanna Synclinorium’s development, and the corresponding degradation of the 

surrounding strata. Generally, anthracite is the highest rated coal with over 87% carbon 

content and is associated with increased metamorphism (Harrison, 2004). It is worth 

mentioning that when the thermal maturity theory was widely accepted it was also 

believed that a maturity Ro% of ~2.5% was the ceiling for dry gas production. This belief 

has since been vacated because of significant production in Susquehanna and Wyoming 

counties that routinely has maturity Ro% values exceeding 3.00% (Repetski, 2008). 

1.3.2 Past Research 

A recent example of academic research focusing on thermal impacts in the 

Marcellus Shale was conducted by Ethan Shula at Cedarville University (Shula, 2014). 

Shula attempted to establish a causal relationship between thermal maturity and the LOD 
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via the discovery of clay diagenesis. A competing high maturity based hypothesis was 

developed by Weatherford Laboratories, which claimed that organic matter at the proto-

graphite metamorphic grade (below zeolite facies) could explain noncommercial 

outcomes and low resistivity to the south of the LOD (Laughrey, 2011).  

1.3.2.1 Ethan Shula Work 

Shula (2014) focused on identifying the composition of the Marcellus along the 

LOD using XRD analysis. Shula, like many others, hypothesized that the area along the 

LOD is very thermally mature and therefore would exhibit evidence of smectite diagenesis 

within the Marcellus clays that would retard natural gas production. The Shula Work 

included wellbore cuttings supplied by Chief Oil & Gas (three productive wells Noble 

Unit 1H, Squier Unit B-2H, Harvey Unit 6H from the north side of the LOD, and one 

noncommercial well Jerauld Unit 1H from the south side of the LOD) spanning from 

southern Susquehanna County to northern Wyoming County (Figure 4).  
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Figure 4: The Shula Work. This map illustrates Shula’s well dataset and its estimated location of 

the LOD (Modified after Shula, 2014). 
 
 

The idea of high thermal maturity destroying gas production in acreage 

approaching the LOD would be supported by the identification of significant quantities of 

layered illite/smectite that would drastically decrease rock brittleness, porosity and 

permeability (Jiang, 2012). The results of the Shula Work were unexpected as no 

distinguishable differences in the mineralogy were noted between the four wells. The 

Marcellus Shale minerology noted by Shula was characterized by quartz, plagioclase 

(albite), calcite, dolomite, pyrite, kaolinite, illite, chlorite, and insignificant/minor 

quantities of layered illite/smectite. The largest weight percentage and volume fraction of 

the samples were comprised of quartz and carbonate material (calcite/dolomite) and illite. 

The lack of smectite diagenesis within the Marcellus clays suggest that there must be 

another explanation for the existence of the LOD that is unrelated to clay diagenesis. 
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1.3.2.2 Weatherford Laboratories Work 

Weatherford Laboratories’ research focused on comparing low resistivity values 

from two unproductive wells (Salansky #1 and Bennett #1) on the south side of the LOD 

in NE PA to a productive well (Houser) in Clearfield county in central PA. The 

Weatherford team was looking for evidence of graphitization of organic pyrobitumen as a 

possible explanation for the low resistivity values. The XRD analyses of the Bennett #1 

in Sullivan County and the Salansky #1 in Luzerne County were interpreted by a minority 

of the research team to represent graphite (Figure 5). However, others on the research team 

referred to the material as “graphic pyrobitumen” and interpreted the supposed graphite 

XRD peak as a continuum from asphalt through asphaltic pyrobitumen to graphitic 

pyrobitumen to graphite (Figure 5).  
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Figure 5: The Weatherford Laboratories Work. The upper left is a map showing the location of the wells 
in the dataset, while the upper right illustrates each well’s average resistivity value (using corresponding 
star color from the upper right map). The large graph illustrates the XRD spectra peaks related to Bennett 

#1 that notes the questionable interpretation of graphite within the quartz peak (Laughrey, 2011). 
 
 

If a true graphite peak had been discovered in the Bennett #1 and the Salansky #1, 

XRD analyses on cutting samples could be used to create a “graphite map” that would 

effectively identify the location of the LOD; not unlike how ash beds are mapped in other 

unconventional shale plays. Unfortunately, there has not been interpretable amounts of 

graphite documented from XRD analyses from wells in southern Susquehanna County and 

northern Wyoming County.  

1.3.3 Geologic Background and Stratigraphy 

The Appalachian Basin is a classic foreland basin that began its development with 

the initiation of the Taconic Orogeny around the time of the Early-Middle Ordovician 
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transition (~472 Ma) (Ettensohn, 2008). The Taconic Orogeny is responsible for the 

formation of the Taconic highlands that act as an eastern barrier for the maturing 

Appalachian Basin (Faill, 1997). By the Middle Devonian, the Acadian Orogeny, which 

followed the Taconic Orogeny, resulted in an oblique convergence along a strike-slip fault 

zone that once separated the Laurasian terrain from a microcontinent known as the Avalon 

Terrane (Williams and Hatcher, 1982). The sediments of the Middle Devonian Hamilton 

group of the Appalachian Basin are an eastward and southeastward thickening wedge of 

marine and non-marine shale, siltstone, and sandstone deposits described by Rast and 

Skehan (1993) as part of the Catskill Delta succession formed by the accumulation of 

eroded sediments from the uplifted and thrust-faulted margin of the elongated foreland 

basin that formed in the response to the Acadian Oblique collusion of the Avalonia 

microplate and Laurentia. (Ettensohn, 1985).  

The Marcellus Shale is the basal unit of the Hamilton Group and consists primarily 

of two black shale intervals separated by thin limestone intervals, grey shale, and lesser 

sandstones of variable thickness (De Witt et al., 1993). James Hall (1839) was the first 

geologist who called the organic rich black and grey shale that outcropped near the town 

of Marcellus, Onondaga County New York the “Marcellus Shale”. The Marcellus 

Formation was initially subdivided into the Unions Springs Member and the overlying 

Oatka Creek Member by Cooper (1930). This elegant and simple nomenclate became 

muddled over the next 80 years until Lash and Engelder (1989) proposed a revised 

Marcellus stratigraphy that harkened back to the original identification.  
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This study will adopt the NE PA Marcellus Shale lithostratigraphy currently used 

by operators that is correlated to the NE PA outcrop, wireline logs and the New York 

Marcellus outcrop. This study will deviate from Lash and Engelder (2011) stratigraphy by 

designating the Oatka Creek Member as the Upper Marcellus Member (UMARC), the 

Cherry Valley Member as the Purcell Limestone Member (PCL), and the Union Springs 

Member will be subdivided from bottom to top as the Union Springs Lime Member 

(USPR_Lm), Union Springs Member (USPR), and Lower Marcellus Member (LMARC) 

(Figure 6).  

 

 
Figure 6: Idealized Stratigraphic Column for the Marcellus Shale.  Gas symbols indicate 

members that are the common commercial targets for horizontal wellbore placement, and will therefore be 
the members focused upon in this study. 



 

15 

 

Most published Marcellus depositional models are based on conventional deep 

basin shale deposition, which implies that Marcellus sediments were deposited in deep, 

stratified basins and owe their organic richness to anoxic conditions and poor circulation 

existing at the deepest part of such basins (Johnson et al., 1985; Ettensohn 1992; Lash and 

Engelder, 2011). These models are patterned after the Black Sea and regard the Marcellus 

Shale successions as being mostly homogenous with only two broad shale lithofacies; 

black organic rich shale and grey organic lean shale facies. However, more recently a 

competing model has been put forth by Emmanuel (2013a) that states that the conventional 

Black Sea (driven by oxygen-budget and paleo bathymetry) depositional model may not 

necessarily be appropriate for the Marcellus Shale. Emmanuel (2013a) states that the key 

controls on the Marcellus Shale deposition in the foreland basin are a combination of local 

rapid subsidence/uplift events, seasonal variations in nutrient sourcing of algal blooms, 

changes in salinity and clastic influx rates. Thus, organic-rich laminated Marcellus Shale 

lithofacies would have been deposited during periods of algal bloom,  reduced clastic 

influx, and increased organic preservation because of changes in bottom water chemistry 

that favor the deposition of organics and siliciclastics over carbonates. The less organic-

rich Marcellus Shale lithofacies in turn were deposited during periods of episodic tectonic 

quiescence and increased dilution of organic matter as a result of increased clastic influx 

from the Acadian Mountains. In the same way, the interbedded limestone facies were 

deposited during times of reduced algal bloom, low sedimentation rates, and changes in 

bottom water chemistry that favor carbonate deposition over deposition of organics and 
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siliciclastics. This deposition model is illustrated in Figure 7, for further information 

regarding this work see Emmanuel (2013a, 2013b). 

 

 
Figure 7: Marcellus Shale Deposition Model. Distal, but bathymetrically subdued depositional 

environment. Thrust-loading induced down warping of the foreland basin toward the east and uplift of a 
peripheral bulge in the west (Cincinnati Arch) during early stages of the Acadian tectophase II of 

Ettensohn (1985), creating an eastward-oriented wedge–shaped basin. Volcanic eruption in the Acadian 
Mountains provided nutrients which led to algal bloom and the development of thermocline thereby 

creating seasonally anoxic water, 10-50 m deep (after Tyson and Pearson, 1991; Smith and Leone, 2010). 
(Taken Emmanuel, 2013a). 

 

1.4 Hypothesis 

Based upon well logs like the one included in Figure 8, it appears logical that the 

low resistivity south of the LOD relates to OM content. Are the unusually low resistivity 

values measured by open hole logs to the south of the LOD caused by conductive organic 

turbostratic nano-structures, as suggested by Walters, 2014? If so, is there a connection 

between the high conductivity inherently associated with such nano-scale structures and 

the non-commercial outcomes experienced by operators as they approach the LOD? 

Perhaps the conductive OM is losing the lower end of OM pore ranges due to structural 

ordering of the carbon as suggested by Beyssac, 2002b. 
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Figure 8: A Typical NE PA Well Log South of the LOD. The Skoronski well log illustrates why industry 

participants believe TOC is responsible for the low resistivity measurements south of the LOD. For 
example, the low resistivity in the upper PCL normalizes once TOC < 1.6 Vol%, whereas conductivity and 

TOC are positively correlated throughout the UMARC, LMARC and USPR. 
 
 

The Weatherford Work, while inconclusive, opened the door to a new theory 

regarding the source of the LOD predicated upon “graphitic pyrobitumen” graphitization, 

a process fundamentally different from smectite diagenesis (the focus of the Shula work) 

in regard to the temperatures, pressure/stress and time required for its production. The 

discovery of graphic pyrobitumen in wells south of the LOD could be used to develop an 

operable explanation for the low resistivity values on, and south of, the LOD. Given that 

identifying graphic pyrobitumen with XRD is not viable because XRD struggles to 

illuminate slight structural changes in OM, such as structural carbon ordering, the search 
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for graphic pyrobitumen would involve techniques such as S/TEM and Raman 

Spectroscopy. To evaluate how the existence of ordered structures, such as graphic 

pyrobitumen, impacts the ability of the rock to hold gas, large-scale SEM mosaic 

segmenting and N2 adsorption could be utilized to identify changes in pore size 

distributions (PSDs).The hypothesis of this study is that the resistivity patterns and trends 

observed in the NE PA Marcellus dry gas window suggest that some type of progressive, 

yet subtle, OM transition at the nano-scale has occurred south of the observed LOD which 

has impacted the rock’s ability to hold gas. 

The goals of this study are to understand the precise nature and cause of the OM 

transition that exists at the observed LOD in NE PA by comparing samples from 

conductive, noncommercial wells south of the LOD to samples from non-conductive, 

productive wells north of the LOD. 

1.5 Research Objectives 

The objective of this research is to answer the following questions: 

1. How does the nano-scale carbon structure of LMARC OM and USPR OM differ 

between the productive, normal resistivity Marcellus north of the LOD and the 

noncommercial, extremely conductive Marcellus south of the LOD? 

2. If the nano-scale carbon structure of OM differs between the north and south sides of 

the LOD, are there also quantifiable differences in the organic hosted pores that could 

explain the noncommercial outcomes experienced in the LMARC and USPR on the 

south side of the LOD? 
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2. METHODS 

The following section describes the data acquired for this study and the 

methodology behind its acquisition and analysis. 
2.1 Well and Sample Coverage 

This study includes seven NE PA wells from Susquehanna, Wyoming and Luzerne 

counties (Figure 9).  

 

 
Figure 9: Map of This Study’s Area of Interest Marked for Well Dataset.  Lackawanna 

Synclinorium, seen here in blue, taken from Pennsylvania Department of Conservation and Natural 
Resources. LOD is drawn at the border of productive wells across Susquehanna, Wyoming and Sullivan 

County as depicted in Figure 3. 
 
 

Three of the seven wells were successful commercial wells located north of the estimated 

location of the LOD, whereas the remaining four wells were noncommercial wells located 

south of the estimated location of the LOD (Table 2).  
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Table 2: Dataset Description. 

 
 
The provided well logs generally consisted of Gamma Ray, Resistivity, Density, 

Sonic, and Porosity curves, while the provided core data consisted of XRD, shale rock 

properties, and LECO TOC wt%. For this research, new core samples were taken for all 

the S/TEM, EDS, Raman Spectra, SEM and N2 Adsorption analyses, as well as for certain 

incremental XRD and LECO TOC analyses. Well data was visualized using Petrel and 

Techlog, SEM images were processed by JMicroVision, and Raman Spectra data was 

analyzed using PeakFit. 

2.2 Mudrock Composition 

The four wells with core included XRD data prepared prior to this study. The data 

provided by Cabot and Encana was processed at Weatherford Laboratories in Houston, 

while the Chesapeake data was processed in their laboratory in Oklahoma City. All 

preexisting XRD samples were milled to particle sizes <1.0 µm using McCrone 

micronizing mills. Bulk minerals were analyzed at 2-70 degrees with 0.04-degree 

increments with 1s per step spin, while clays were analyzed at 2-34 degrees with 0.04-

degree increments with 1s per step spin. XRD technicians used the Fullpat method for 

quantification (Chipera and Bish 2002), which models whole patterns and includes 

Data Contributor Well Name Logs Core Commercial Conductive
Teel 7V Yes Yes Yes No

Lopatofsky 1V Yes Yes Yes No
Nicholson 2H Yes No Yes No

Karp 2 Yes No No Yes
Skoronski 1 Yes Yes No Yes
Salansky 1H Yes No No Yes

Buda 1H Yes Yes No Yes

Cabot Oil and Gas

Chesapeake Energy

Encana Energy
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reference intensity ratios. All new samples were run using the same sample preparation 

and Fullpat quantification to maintain comparability between the new and legacy data. All 

XRD data seen in this study will be reported as volume percentages that have been 

normalized with geochemically derived TOC weight percent (wt%) values.  

Preexisting LECO TOC wt% data were derived from standard LECO procedure 

that includes washing, drying, grinding, and acid digestion before the samples are 

combusted in an oxygen rich environment to produce carbon dioxide, which flows into a 

non-dispersive infrared detection cell that quantifies the sample CO2 and converts the 

measurements into a dry sample weight of %TOC (Schumacher, 2002). All new samples 

were run using the same sample preparation and standards to maintain comparability 

between the new and legacy data. 

2.3 Resistivity Assessment 

Electrical resistivity logs are routinely used to estimate the type and abundance of 

fluids (hydrocarbons, formation water) in reservoir rocks. Generally, resistivity logs with 

low resistivity indicate zones that contain saline connate waters, whereas high resistivity 

indicates zones that contain potential hydrocarbons or low porosity (Passey, 2010).  

The mineral matrix of most reservoir rocks is non-conductive, including 

hydrocarbons (natural gas and crude oil). Under most circumstances, the primary 

component of the reservoir that conducts electricity is saline connate water in the pore 

system that includes surface and interlayered waters. However, rock resistivity can also 

be influenced by mineral content, and low resistivity may arise from very mature organic 

matter or conductive minerals like pyrite. Figure 10 is a rock model that illustrates the 
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variables that affect the conductivity of a mature organic rich gas bearing mudrock like 

those from the NE PA Marcellus Shale. A large volume proportion of OM and pyrite is 

relatively rare in conventional clastic reservoirs, but are very prevalent in mature organic 

rich gas producing mudrocks. Whereas kerogen and solid bitumen are normally 

nonconductive and yield responses like migrated petroleum, some high maturity shales, 

including those associated with natural gas production, exhibit anomalously low resistivity 

(Walters 2014, Yang 2016). Generally, these low resistivity measurements are attributed 

to the presence of pyrite or the metamorphic conversion of kerogen to conductive graphite. 

Given that graphite is not seen in XRD analysis of shales exhibiting low resistivity, if 

graphite-like structures are present, they likely exist in nano-scale domains that are 

difficult to detect by conventional petrographic methods (Passey, 2010). 

 

Figure 10: Petrophysical/Composition Rock Model for Organic Rich Mudrocks. This rock model 
illustrates the four variables that affect the conductivity of a mature organic rich natural gas bearing 

mudrock like the Marcellus Shale in NE PA. 
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The existence of nano-scale carbon ordered structures are not well documented in 

shale associated with natural gas reserves, and it is not clear that such material is 

responsible for the anomalous electrical conductivity in high maturity gas shales (Walters, 

2014). To investigate the existence of nano-scale carbon ordering within the area of 

interest of this study, two wells from this study’s well dataset (the Teel, a productive well 

north of the LOD, and the Buda, a noncommercial well south of the LOD) were subjected 

to S/TEM, EDS and Raman techniques. These analyses focused on the LMARC and 

USPR intervals because they are the common commercial targets for horizontal wellbore 

placement, and exhibit the highest conductivity south of the LOD. 

2.3.1 S/TEM 

TEM has a similar optical configuration to an optical microscope in that a flood 

beam of electrons illuminates a thin sample and the electrons transmitted through the 

sample are projected onto a viewing screen or camera for observation. Samples must be 

thin (around 100nm) and the beam energies must be high. Based upon the characteristics 

of the sample, electrons may either pass through the sample without being scattered or 

may be diffracted off axis by interaction with the sample. Electrons may also be 

backscattered in the sample to re-emerge from the top surface. The primary beam also 

interacts with the sample to produce characteristic X-rays. By choosing the position of the 

aperture, either the diffracted beam (dark field) or the unscattered electrons (bright field) 

can be used to form the image. In materials science, the combination of diffraction and 

imaging provides a unique capability for interpreting the properties of crystals and defects 
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in crystalline materials. TEM imaging is possible at the nanometer scale, and the spatial 

resolution can extend to approach the atomic level (Egerton, 2005). 

STEM operates in a very similar way to a scanning electron microscope (SEM), 

which is discussed in Section 2.4.1. A fine, highly focused beam of electrons is scanned 

over a thin specimen. Electrons which pass through the sample can be collected to produce 

a variety of transmission images, but as with the TEM, backscattered electrons and X-rays 

are also produced. Secondary electrons (SE) are also produced, giving yet another imaging 

mode (Egerton, 2005). 

To visualize the OM carbon structure, samples from the Teel and the Buda were 

imaged with S/TEM at 300 kV on Rice University’s FEI Titan Themis S/TEM. Four 

S/TEM OM samples were prepared, one porous and one non-porous for each well. All the 

samples measured approximately 10 microns across, were prepped by the lift out method 

(L/O) instead of the trench method (Gianuzzi, 2012), and were located on the ion milled 

surface of an SEM mount (see section 2.4.1 for SEM sample preparation). The OM 

samples were protected by a platinum shield and trenched-out and thinned using focused 

ion beams (FIB) with a 65nA beam current, gradually reducing the bean current to get a 

smoother finish. Final preparation was done with a 10-100pA beam to polish and incur 

less damage to the surface. Once thinned to ~100 nm, the wafer thin cross section of OM 

was detached from the SEM mounted sample and placed on a grid using a glass probe 

(Gianuzzi, 2012). Figure 11 illustrates an SEM sample before and after executing the lift 

out method on a piece of OM.  
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Figure 11: Illustration of S/TEM Sample Preparation.  A view of the porous Buda sample, prior to and 
after performing the L/O extraction method. 

 
 
2.3.2 EDS 
 
Energy Dispersive X-ray Spectroscopy (EDS) is a qualitative and quantitative X-ray 

microanalytical technique that can provide information on the chemical composition of a 

sample. An electron beam is focused on the sample in either a scanning electron 

microscope (SEM) or a scanning/transmission electron microscope (S/TEM). The 

electrons from the primary beam penetrate the sample and interact with the sample’s 

atoms. Two types of X-rays result from these interactions: background X-rays, and 

characteristic X-rays. Both kinds of X-rays are detected by an energy dispersive detector 

which displays the signal as a spectrum, or histogram, of intensity (number of X-rays or 

X-ray count rate) versus energy. The energies of the characteristic X-rays allow the 

elements making up the sample to be identified, while the intensities of the characteristic 

X-ray peaks allow the concentrations of the elements to be quantified. The underlying 

principles for generation of X-rays and detection by EDS are the same for SEM and 
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S/TEM. However, due to the differences between S/TEM and SEM microscopes, and the 

different accelerating voltages used in their operation, there are some differences in how 

EDS detectors perform based upon the two microscope types (AMMRF, 2017).  

The spatial resolution of EDS analysis in the SEM depends on the size of the 

interaction volume, which in turn is controlled by the accelerating voltage and the mean 

atomic number of the sample, Z. For EDS in the SEM, spatial resolution and depth 

resolution is on the order of a few microns. Because an S/TEM sample is a thin foil, there 

is less spreading of the electron beam at higher accelerating voltages.  Accordingly, higher 

accelerating voltages can be used which makes the spatial resolution of EDS analysis in 

the S/TEM on the order of nanometers, while the depth resolution is governed by the 

thickness of the sample (AMMRF, 2017).  

The advantage of using EDS on the S/TEM OM wafers is that it eliminates the 

interference from the material beneath the OM, unlike the standard SEM EDS process. 

The higher accelerating voltages used in S/TEM analysis allows for identification of more 

elements due to the excitation of higher energy K and L lines which further differentiates 

overlapping peak signatures from visibility of both primary and secondary peaks of an 

element (Figure 12). The S/TEM EDS analysis has a superior detection limit compared to 

the SEM EDS analysis (~0.01-0.1 wt% compared to 0.1-0.5wt%, respectively). 

Accordingly, an S/TEM EDS analysis is better suited for trace element identification, 

whereas a SEM EDS analysis is appropriate for major and minor element identification. 

(AMMRF, 2017).  

 



 

27 

 

 
Figure 12: Elements resolvable through interaction with L-line and K-line emissions (AMMRF, 2017). 
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To indentify the composition of the mineral inclusions found in the porous OM 

samples of the Teel and the Buda, S/TEM EDS was performed at Rice University (using 

voltage of 300 kV and a scan time of ~5 minutes) and SEM EDS was performed at 

Weatherford Labortories in Houston (using a Helios NanoLab 650 to produce large 

elemental maps  with  2500X magnicifaction at 25 kV with a 25 minute scan time and  an 

average point count rate of 8,000 counts per second). After the large SEM EDS maps were 

completed, certain OM and other material of interest had spot spectrums collected (at 

25kV with a 15 second scan time  and an average point count of  8,000 counts per second). 

An EDS OM spot scan can be seen in Figure 13.  

 

 
Figure 13: Illustration of SEM EDS Output. The large graph is a EDS Spot Histogram taken from a piece 
of OM (Spectrum 25). The EDS Map, in the middle, indicates the spot spectrum locations. The upper right 

is a wt% graph of OM (Spectrum 25), which contains mainly carbon with quartz and clay inclusions. 
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2.3.3 Raman Spectroscopy 
 

OM graphitization is characterized by a multi-scale organization, including 

structure (organization at the atomic scale within aromatic layers) and the microtexture 

(mutual organization in space of the aromatic layers). Raman spectroscopy provides 

indirect information on a sample’s structure through its vibrational properties, which are 

used to determine the degree of graphic ordering in OM samples. Raman spectroscopy of 

carbonaceous material occurs at two wavelength bands. The first, known as ‘first order 

bands’ occur between 1100 and 1800 cm-1 (Tuinstra and Koenig, 1970). The spectra of 

organic material in this order is characterized by two main bands; the disordered (D) band, 

which occurs ~1350 cm-1; and the ordered graphitic (G) band, which occurs at ~1600 cm-

1. However, less mature (lower grade) poorly organized OM can have additional bands 

appear in the first order region around ~1245 (D4), ~1510 (D3) and ~1620 (D2) (Figure 

14) (Lunsdorf, 2014a). 
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Figure 14: Illustration of Carbonaceous Raman Spectra. (A) Representative Raman spectra of three 

‘crystallinity levels’. (B) An example of the decomposition of a ‘Crystallinity Level 1’ Raman spectrum 
by five components according to Lahfid et al. (2010). The first order region is described by D1, D2, D3, 
D4 and G bands. D4 widens the low wavenumber side of the D1 band, while D2 appears only as a weak 

shoulder on the high wavenumber side of the G band (Taken from Lunsdorf, 2013). 
 
 

The D1 band, between 1350 and 1380 cm−1 , corresponds to the breathing mode of the 

sp2 aromatic ring within a graphitic cluster (Beyssac, 2002a) (i.e. it is the vibrational mode of 

a disordered graphitic lattice). D1 is thought to arise from heteroatoms containing units or other 

defects in graphene-layered carbon atoms that are near lattice disturbances (Katagiri, 

1988). The D1 band in poorly ordered carbon can be broader due to the contribution of the 

D4 band centered at ~1245 cm−1. The D4 band normally appears as a broad shoulder of 

the D1 band in poorly ordered OM and is related to vibrations originating from aliphatic 

(open chain) hydrocarbon chains and are not associated with aromatic or graphitic systems 

(Ferralis, 2016). In more ordered carbon, the D4 band is absent and the D1 band area 
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reduces with stiffening of the aromatic planes (Beyssac, 2002a). To learn more about these 

disordered bands, see the work done by Tuinstra & Koenig (1970), Robertson (1986), Wang 

et al. (1990), Cuesta et al. (1994), Jawhari et al. (1995), Dippel et al. (1999), Escribano et 

al. (2001), Mathews et al. (1999), and Sato et al. (2006). 

The G band, between 1580 and 1615 cm−1, is related to an in-plane sp2 bond stretching 

shear vibration within the aromatic ring of a large, graphene-like cluster (Beyssac, 2002a) (i.e. 

the in-plane vibration of aromatic carbons in carbonaceous materials that at some level have a 

graphitic structure). As disordered OM matures and becomes more ordered the G band 

shifts down to 1580 cm-1, and displays the additional peak at 1620 cm-1, called the 

disordered two peak (D2) (Beyssac 2002a).  

The significance of a D2 band is not well understood, but it is always present when 

the D1 band is present, and the intensity of D2 decreases with increasing degrees of 

maturity and organization. In lower grade disordered OM, G and D2 occur as a broad band 

at 1600 cm-1 in which the D2 shoulder cannot be resolved (Beyssac, 2002a), and a D3 

band can also be seen at ~1510 cm−1. The D3 band, a very wide band situated between the 

D1 and G bands, and is attributed to out-plane defects of non-aromatic rings such as 

tetrahedral carbons suggesting that this kind of defect is released early in the graphitization 

process (Sadezky, 2005; Beny-Bassez and Rouzaud 1985).  

The second order bands of Raman spectroscopy of carbonaceous material, which 

occur from 2700 to 3100 cm-1, include several bands which relate overtone and 

combination scattering (Wopenka and Pasteris, 1993), but are not yet clearly understood. 

Work done by Lespade et al. (1984) showed that the 2700 cm−1 band (S1 band) splits into 
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two components during the final stage of the graphitization process. This splitting was 

interpreted to be the result of the transition from a two-dimensional structure to a 

tridimensional structure. The 2900 cm−1 band (S2), which appears only in poorly ordered 

carbon, has been interpreted by Tsu et al. (1978) to be a consequence of C-H bonding, but this 

interpretation is still being debated (Beyssac, 2002a).  The second order bands from 2700 to 

3100 cm-1 were recorded for the initial samples processed in this study. Given that no 

discernable second order bands were identified in the initial samples, and because these bands 

require much longer scan times, recording for the higher order spectra was eliminated from the 

workflow.  

Different phases of ordering occur as carbonaceous material evolve from very low-

grade, highly disordered material (i.e. 150-250 degrees Celsius) to very high-grade, near 

perfect crystalized graphite (i.e. 500-600 degrees Celsius). This evolution of carbonaceous 

Raman spectra in relation to metamorphic grade is illustrated in Figure 15. 
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Figure 15: Progressive Ordering of OM at Varying Temperatures. * denotes major spectrum deviation 

signifying a significant ordering event within the OM structure. Spectra #5 marks the first major structural 
ordering shift while still maintaining the D4 shoulder but with a much more intense D band. Spectra #7 

marks the loss of D4 and D3 bands as well as the beginning of the decrease in D band intensity relative to 
the G band. Spectra #9 marks the separation of the G and D2 band as the G shifts down to 1580 cm-1 and 

D2 to 1620 -1 Lunsdorf (2014b).  
 
 

Conventional metamorphic rock studies quantify the maturity of sp2 carbonaceous 

material using the Raman parameters of R1 (the intensity ratio) and R2 (the area ratio) as 

outlined by Beyssac et al. (2002a, 2003a). Generally, R1 (Dintensity/ Gintensity) and R2 

(D1area/(Garea+D1area+D2area) decrease with increased maturity and carbon ordering. 

However, in low-grade (<300 degrees Celsius) rock with poorly ordered spectra (broad 

D4, D1, D3 bands), the traditional Beyssac 5 Voigt function method does not provide 
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unique results as the method’s parameters do not appropriately consider these variables. 

To fine-tune the application of Raman Spectroscopy to low-grade rock, like those 

examined in this study, the Lahfid (2010) method and the Kouketsu (2016) method were 

developed. Lahfid (2010) applies a 5-peak deconvolution method that uses Lorenz 

functions and two area ratio parameters; RA1=(D1+D2)/(D1+D2+D3+D4+G) and 

RA2=(D1+D4)/(D2+D3+G). Generally, both ratio’s increase with increased carbon 

ordering. To learn more about this method see Lahfid (2010).  To solve the common issue 

of how best to fit the G and D2 bands within low-grade rock spectra, Kouketsu derived a 

deconvolution method that uses a combination of fixed and unfixed pseudo-Voigt 

(Gaussian Lorentzian Sum)/Lorentzian functions depending on the G/D intensity ratio of 

the raw spectra. If G/D >1.5 then the spectrum is fit with 4 bands with a fixed D3 and D4 

band at 1510 cm-1 and 1245 cm-1 and no G band. If G/D < 1.5 the spectrum is fit with 5 

bands with a fixed G band at 1593 cm-1 and fixed D4 band at 1245cm-1 (Figure 16).  To 

learn more about this method see Kouketsu (2016). 
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Figure 16: Summary of the Kouketsu Deconvolution Method. (A) Flowchart of the seven peak fitting procedures used by 
Kouketsu (B) OM Raman spectra for several representative samples and their corresponding Kouketsu Method peak 
fittings. Asterisks in the band name in (e) to (g) signify that the center position of that band was fixed by a Kouketsu 

Method parameter. 
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Raman spectroscopy was performed at Premier Oilfield Services on their HORIBA 

LabRAM HR Raman Microscope (Figure 17) using SEM mounts. Samples were ion 

milled and were not coated. A laser excitation wavelength of 532 nm, numeric aperture 

(NA) of 0.90, 100x objective, grating size of 600 mm-1, 1-2 um focal volume were used 

for all Raman samples. The goal of this investigation was to record a clear OM Raman 

signal from the samples to investigate differences in carbon ordering between the north 

side and the south side of the LOD. 

 

 
Figure 17:  Picture of HORIBA LabRAM HR Raman Microscope. 
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At the USPR and LMARC members of Teel and Buda, five separate OM spot 

Raman spectra were produced and averaged into one OM spectra. In total, six OM 

spectrums were produced; one LMARC and two USPR from the Teel, and one LMARC 

and two USPR from the Buda. All raw spectra were fit with a standard linear baseline 

using LabSpec6 with 2 degrees and 4 max points. 

2.4 Reservoir Quality Assessment 

As the Marcellus Shale is comprised of organic rich mudrock, the porosity is 

composed mainly of organic hosted porosity (Milliken et al., 2013). Porosity was analyzed 

to determine if OM from the south side of the LOD has less capacity to hold gas than OM 

from the north side of the LOD. To better characterize these organic hosted pores, large 

SEM mosaicked images were used to capture a representative sample of the rock that 

would allow for OM and OM hosted pore segmentation. Given that the resolvable limit of 

the visual SEM images is 20nm, N2 adsorption was also performed to indirectly non-

visually characterize the area and volume contribution of pores, including those beyond 

the resolvable limit of SEM. 

2.4.1 SEM 

A scanning electron microscope (SEM) is a type of electron microscope that produces 

images of a sample by scanning the surface with a focused beam of electrons. The 

electrons interact with atoms in the sample, producing various signals that contain 

information about the sample's surface topography and composition (Egerton, 2005). The 

signals used by a SEM to produce an image result from interactions between  the electron 

beam and the sample’s atoms, at various depths, within the sample with the most common 

https://en.wikipedia.org/wiki/Electron_microscope
https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Topography


 

38 

 

signals used being secondary electrons (SE) and back-scattered electrons (BSE) (Egerton, 

2005). 

In secondary electron imaging, the secondary electrons are produced from the 

surface of the sample or topmost part of the interaction volume from inelastic scattering. 

Back-scattered electrons (BSE) are beam electrons that come from the top half of the 

interaction volume and are reflected from the sample by elastic scattering (Goldstein, 

1981). Because BSE emerge from deeper locations within the specimen, the resolution of 

BSE images is less than SE images. However, BSE are often used in analytical SEM 

because the intensity of the BSE signal is strongly related to the atomic number (Z) of the 

specimen, and BSE images can provide information about the distribution of different 

elements in the sample (Clarke, 2002). For this same reason, BSE imaging can view OM 

within mudrock with definitive contrasts, which is difficult to detect in secondary electron 

(SE) images of geologic samples (Figure 18).  

 

 

https://en.wikipedia.org/wiki/Secondary_electrons
https://en.wikipedia.org/wiki/Backscatter
https://en.wikipedia.org/wiki/Elastic_scattering
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Figure 18: SEM Imaging Mode Comparison. (A) Pyrite framboids filled with very porous OM imaged 
with BSE, (B) The same pyrite framboids filled with very porous OM imaged with SE. These images 

demonstrate BSE’s superior contrasting of key features (i.e. OM, pores, pyrite and matrix), as well as SE’s 
white halo effect around OM pores which can hinder accurate pore segmentation. 

 
 

Most published SEM work relating to organic rich mudrock are imaged at higher 

acceration voltages (10-20kV). Higher acceleration voltage can be produced faster than 

SEM imaging prepared with lower acceleration voltage because higher voltage produces 

fewer lens aberrations, thus reducing the need for frequent tool aligment. Lens aberrations 

result in a diffuse ring of scattered electrons around the probe, which degrade image 

contrast and broaden the probe size (Asahina, 2012). The disadvantages however of using 

10-20kV is that it results in deeper sample penetration and surface feature fuzziness that 

can limit the capability of accurate 2D surface image segmentation. A skilled SEM 

technician can image at lower acceleration voltages and reduce the occurances of  lens 

aberations by actively managing hardware alignment, but at the expense of  longer image 

aquistion times. Given that edge clarity and greyscale contrast are critical to the image 
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segmentation required for this study, a voltage of 2kV was utilized for imaging (Figure 

19).  

 

 
Figure 19: SEM Image Voltage Comparison. These SEM images of a OM sample with pyrite were 

processed at multiple voltages to illustrate the resulting differences in greyscale and edge sharpness. 1kv 
lacks the greyscale contrast necessary to accurately distinguish OM from other grains, but produces 

superior edge sharpness. Both the 5 kV and the 10 kV exhibit the appropriate grey scale contrast, but lack 
edge sharpness. 2 kV is a happy medium, having both grey scale contrast and edge sharpness. 

 
 

SEM sample surfaces were prepared by argon-ion cross section milling at 

Weatherford Laboratories in Houston by using an accelerating voltage of 4kV, a sample 
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current of 20µA per beam (two beams), and a milling time of 8 Hrs. A conductive coating 

of iridium is applied to the sample surface to assist in the control of charging during high 

resolution imaging on the SEM, which was a Helios NanoLab 650.  

SEM imaging was performed on the LMARC and USPR intervals of the Teel (a 

productive well on the north side of the LOD) and Buda (a noncommercial well on the 

south side of the LOD). At each interval, five separate mosaics, each covering 

approximately 24,032 µm2, were prepared from twenty-five 39.8 µm wide BSE images 

(each taken at a magnification of 2500X at 2kV). For each interval, the five separate 

mosaics cover approximately 120,160 µm2 (0.12 mm2) of the sample surface area, which 

offers a representative sample of the Teel and the Buda at these intervals (Figure 20). 
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Figure 20: Examples of this Study’s SEM Imaging. (A) Reflected light image of a SEM sample. (B) Magnified image of slide (A) with mosaic images 
for each landmark dot. (C) View of the coverage provided by Mosaic M4. (D) 1-micron view of M4, which demonstrates how the crisp edges, distinct 

grey-scale, and high pixel density of SEM imaging facilitates OM segmentation. 
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Mosaics from the Teel and Buda were imported into JMicroVision for global and 

local segmentation. Before segmentation, the mosaics are spatially calibrated using the 

known mosaic width. The OM and pores are then globally segmented using the object 

extraction tool with their defined grey scale ranges. The OM objects extracted are then 

manually examined to illuminate any non-OM objects that have grey scale similar to OM, 

such as plucked pieces of the surfaces and interparticle porosity. Once OM has been 

globally segmented and manually verified as OM, the data is sorted and all large OM 

ranging from 1 um2 to the largest resolved OM are locally segmented to quantify their 

organic hosted pores. To segment only organic hosted pores, each OM object requires a 

new 2D boundary polygon to run the automatic object extraction tool on the single OM 

object itself. All 20 mosaics (five from Teel LMARC, five from TEEL USPR, five from 

Buda LMARC, and five from Buda USPR) were subjected to global segmentation of all 

OM and all pores at their set grey scale ranges. Additionally, one mosaic from LMARC 

and USPR for each well was subjected to local pore segmentation of all large (≥1µm2) 

OM (Figure 21). 
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Figure 21: This Study’s SEM Segmentation Workflow. 

 
 

As seen in Figure 22 the mosaics can be automatically segmented using the 

JMicroVision object extraction tool with a great deal of accuracy. To image a large field 

of view that provides a representative sample while still maintaining high pixel density, 

the mosaics were made up of 2500X images, which allows for confident resolvable pore 

size down to 20nm. To mitigate the 20nm resolvable limit of the SEM imaging, N2 

adsorption was performed at the same sampled intervals to quantify volume/area 

contributions of pore sizes below 20 nm.  
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Figure 22: Images from Mosaic Global Pore Segmentation. This 1-micron field of view substantiates the 
claim that the 2kV 2500X mosaic has adequate grey scale contrast and edge crispness needed to facilitate 

the automatic extraction of pores by the JMicroVision using the object extraction tool. 
 
 

2.4.2 N2 Adsorption 
 

To quantify the volumes and areas of the upper end of micro pores (<2nm), 

mesopores (2-50 nm in diameter) and macropores (>50nm in diameter), low pressure N2 

adsorption was performed at Premier Oilfield Laboratories. Samples from Teel and Buda 

were crushed to 32-90 microns and de-watered in a vacuum dry oven at 125C overnight 

and data was taken with a Micrometrics ASAP 2020 Surface Area and Porosity analyzer.  

The analysis, which is run at the temperature of liquid nitrogen (77.2 K), slowly 

increases the partial pressure of the adsorbate and nitrogen gas. The nitrogen condenses 

or adsorbs on the surface at different partial pressures as a function of pore size. Figure 23 

shows an example of adsorption/desorption isotherms analysis optimized to return high 

pore-size resolution on shales.  
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Figure 23: N2 Absorption Apparatus and Output Example. (A) Micrometrics ASAP 2020 Surface Area 
and Porosity Analyzer (B) Output from an optimized Adsorption/Desorption isotherm analysis which 

provides information on pore volume, surface area, and pore size distribution. 
 
 

N2 attraction and adsorption of gas molecules on the surface of a sample occurs in 

four distinct stages due to the three pore modal domains present in the rocks (micro, meso, 

and macro) (Figure 24). At low pressures, single molecules begin to adsorb on the sample, 

then as the pressure is increased monolayer molecules begin to form on the surface which 

is an indication of the presence of micro pores. At relative pressures greater than 0.9, 

capillary and condensation of N2 occurs in larger mesopores and macropores leading to 

remarkable adsorption with multi-layer coverage. Finally, gas saturation is reached with 

complete surface coverage. However, there is no observable plateau of adsorption even at 

the maxima of the experimental relative pressure (0.995), indicating that some larger 

macropores are still not fully filled by N2 at the maximum relative pressure (Sing, 1985). 

A B 
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Figure 24: Summary of N2 Adsorption Process. The four distinct stages of N2 attraction and adsorption of 

gas molecules onto sample surface (Micrometrics modified by Premier). 
 
 

Nitrogen adsorption isotherms have historically been modeled using the BET 

(Brunauer-Emmett-Teller) model which determines surface area on a model of adsorption 

that incorporates multilayer coverage. While the BET model is reliable for materials with 

a Type II or Type IV isotherm that have sufficient levels of interaction between the 

adsorbate gas and the surface (Sing, 2001), for materials with other types of isotherms the 

BET model may not apply for various reasons and therefore should be treated with caution 

(Sing, 2001). Because most shales have a wide PSDs that extend down into the 

microporous range, when subjected to low pressure N2 adsorption testing they exhibit 

Type I (micropores) and Type IV (mesopores/macropores) isotherms. Accordingly, the 

BET model was not considered appropriate for this study. Another model for modeling 

nitrogen adsorption named the BJH (Barrett-Joyner-Halenda) model calculates pore size 

distributions from experimental isotherms using the Kelvin model of pore filling. 
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However, the BJH model is also a poor fit for mudrock samples, like those in this study, 

because the BJH model also does not account for micropores (Mroczkowska, 2015).  

Given that neither the BET model nor the BJH model were appropriate for the 

Marcellus mudrock samples in this study, the N2 adsorption isotherms were processed 

using Non-Local Density Function Theory (NLDFT), which is a form of the Density 

Function Theory (DFT) model. In general, the DFT model is based on the molecular 

statistical thermodynamics equation that calculates the specific adsorption amount in an 

individual pore range at a given experimental temperature and pressure by solving the 

function of grand thermodynamic potential in terms of the distribution of gas density in a 

specific pore space (Seaton, 1989). The NLDFT was applied to obtain pore size 

distributions, pore surface areas and pore volumes. The adsorption isotherms were 

predicted by NLDFT for individual slit pores and were correlated as a function of pressure 

and pore width. The pore size distribution was then calculated by fitting this correlation 

to the experimental adsorption isotherm of the sorbent (Seaton 1989).  

A drawback of the NLDFT method is that it does not consider chemical and 

geometrical heterogeneity of the pore walls, but instead assumes a structureless, 

chemically and geometrically smooth surface model. The consequence of this mismatch 

between the theoretical assumption of smooth and homogeneous surfaces and the inherent 

molecular scale heterogeneity of real adsorbents is that the theoretical NLDFT adsorption 

isotherms exhibit multiple steps, with a step for each layering transition (i.e. a step for the 

formation of the initial monolayer, a step for the second adsorbed layer, and so on). In 

microporous carbon materials exhibiting broad PSDs, these artificial layering steps cause 
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artificial gaps in the calculated PSDs around 1nm and 2nm (Ravikovitch, 2000; Olivier, 

1998). For more details about DFT methods, read Landers (2013).  

Recently, the NLDFT method was advanced to consider the molecular level 

surface roughness that is typical to most carbonaceous and siliceous materials as well as 

other materials including hybrid organic–inorganic hierarchical structures (Ravikovitch, 

2006a). This technique, named the quenched solid density functional theory (QSDFT), 

was shown to be more practical then NLDFT for the analysis of microporous and 

mesoporous carbons (Neimark, 2009; Gor, 2012) due to the lack of artificial gaps at 1 and 

2nm. Unfortunately, this technique could not be implemented for this study. For more 

details about DFT methods, read Landers (2013). 
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3. RESULTS 

This study confirmed that many of the attributes which characterize 

noncommercial wells on the south side of the LOD are similar to the attributes of 

productive wells on the north side of the LOD. However, this study’s investigation and 

testing of the nanometer domain of the Marcellus identified several remarkable 

differences, and noted other findings that require further research.  

3.1 Mudrock Composition Comparison 

Most petrophysical methods applied to organic rich mudrock reservoirs seek to 

understand their organic richness and geomechanic behaviors to optimize hydraulic 

fracturing. The presence of clay minerals within mudrocks result in plasticity and ductility, 

which are not conducive to fracking. Alternatively, mudrocks with high silica and 

carbonate content result in zones of brittleness and high elastic moduli which are optimal 

targets for fracking and horizontal well bores.  

The Marcellus Shale in NE PA does not suffer from swelling clays or high clay 

content zones except for a few very thin ash beds at the base of the USPR at the top of the 

Onondaga limestone (Klapper, 1971). Figure 25, which is based upon the four wells in the 

dataset with core samples, illustrates the overall siliceous nature of the NE PA Marcellus 

with high carbonate content only seen in the PCL and USPR* (USPR and USPR_Lm). 

Figure 25 also illustrates that the UMARC tends to have more clays relative to the 

LMARC and the USPR*. 
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Figure 25: Dataset Composition Comparison. (A) XRD Vol% for each member across all four wells with 
USPR and USPR_Lm combined into USPR*. (B) Averaged XRD Vol% for each member across all four 
wells. All four wells appear comparable, with no massive disparity in composition between the north and 

south sides of the LOD. 
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As seen in Table 3, TOC content generally increases in the NE PA Marcellus as you move 

down section. Table 3 also illustrates that the TOC content within the three members of 

the NE PA Marcellus does not significantly vary between the north side and south side of 

the LOD.  

 

 
Table 3: Dataset Average He Porosity% and TOC Vol% by Member. Porosity values are from core He 

porosity values and TOC Vol% is from LECO TOC normalized with XRD data. The USPR and the 
USPR_Lm have been combined into USPR*. Lopatofsky did not have a cored UMARC member. 

 
 

Whereas Table 3 illustrates that TOC content does not materially vary on either 

side of the LOD, the He Porosity% is notably different between the two sides. For 

example, an average of all the He Porosity% data in Table 3 bifurcated between north and 

south (which ignores the inherent differences in the different members) results in a 6.70% 

for the north and a 4.60% for the south. Thus, on a relative basis, the two wells on the 

south of the LOD have a 31% lower porosity value than the two wells on the north of the 

LOD. Or said differently, the two wells on the north of the LOD have a 45% higher 

porosity value than the two wells on the south of the LOD. Regardless of the calculation 

methodology, the porosity attributes of wells on the south side of the LOD are markedly 

Well Variable UMARC LMARC USPR*
Porosity % 7 7 6

TOC % 6 10 14
Porosity% N/A 7 7
TOC % N/A 10 13

Porosity % 5 6 4
TOC % 6 10 11

Porosity % 4 5 3
TOC % 6 10 12

Lopatofsky
(North of LO D)

Skoronski
(South of LO D)

BUDA
(South of LO D)

Teel
(North of LO D)
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different than those on the north side. This finding is a conundrum because generally there 

is a correlation between TOC and porosity in unconventional resources (i.e. the higher the 

TOC the higher the porosity) (Milliken et al., 2013). The TOC/Porosity data used to create 

Table 3 is graphically demonstrated in Figure 26, which clearly depicts the porosity 

advantage the north side of the LOD enjoys over the south of the LOD. Is the inferior 

porosity in wells on the south side of the LOD due to a decrease in interparticle porosity 

or degradation of organic hosted porosity? Given the similarity in XRD values on either 

side of the LOD it is unlikely that interparticle porosity is varying significantly, which 

then logically infers that the organic hosted porosity must be different between the two 

sides of the LOD. Could the difference in conductivity observed between the north side 

and the south side of the LOD be connected to the difference in OM porosity? The first 

step in this thought process is to perform an electric log assessment to better characterize 

the rock seen across the LOD. 
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Figure 26: Dataset TOC/Porosity Relationships.  

 
 

3.2 Electric Log Comparison 

The electric logs from the seven wells in the dataset, as depicted in Figure 27, 

identify the various Marcellus Shale members. Generally, the NE PA Marcellus maintains 

its thickness as you move south of the LOD. The LMARC and USPR have the highest 

Gamma Ray (GR) signatures, with the difference between them being attributed to an 

increase in carbonate content in the USPR. The USPR_Lm also contains carbonate, but is 

identified by a much lower GR signature. 
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Figure 27: Dataset Log Curves. The tracks, from left to right, are GR, RHOB, Porosity, Sonic, Resistivity, Conductivity, TOC/Pyrite Vol%, and Helium 

Porosity. Resistivity (Track 6) decreases as you move south, but drops drastically south of Karp 2. Conductivity (Track 7) increases inversely to the 
resistivity. Only wells with core have TOC/pyrite Vol% and He Porosity%. The Teel exhibits a repeated faulted in LMARC /PCL section.
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Figure 28, which was derived from the seven electric well logs, illustrates average 

Bulk Density, Compressional Slowness, Deep Resistivity and Deep Conductivity for the 

LMARC and the USPR. A slight increase in average bulk density (RHOB, g/cc3) values 

in the LMARC can be seen moving south across the LOD with values increasing from 

2.57 to 2.64, whereas RHOB in the USPR remains consistently around ~2.50. Average 

compression slowness values (DTC, us/ft) for both the LMARC and USPR decrease (i.e. 

the rock is faster) as you move to the south with a decrease of ~13 us/ft for the LMARC 

and ~7 us/ft for the USPR. Deep resistivity (Ohmm) decreases drastically from 62 to 0.13 

in the LMARC and 101.1 to .06 in the USPR as you move south. Deep conductivity (S/m) 

values increase from 0.02 to 8.19 in the LMARC and from 0.01 to 17.05 in the USPR as 

you move south. 

Given the increases in bulk density and the decreases in compressional slowness 

that are noted as you move south, it is not surprising that the He Porosity% measurements 

(see Table 3) are lower south of the LOD in both the LMARC and the USPR. However, 

the cause of these changes (i.e. bulk density, compressional slowness, and He Porosity %), 

and the drastic decrease in resistivity seen in the LMARC and USPR as you move south 

cannot be easily explained. The remainder of this chapter will cover the results related to 

the investigation of the low resistivity and the porosity degradation seen south of the LOD.  
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Figure 28: Dataset Log Attributes. Average values of Bulk density (g/cc3), Compressional Slowness (us/ft), Deep Resistivity 
(Ohmm), and Deep Conductivity (S/m). 
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3.3 Resistivity Assessment 

This section will report the results of the S/TEM EDS imaging, the S/TEM 

nanometer scale investigation, and the Raman spectra analysis performed on samples from 

the Teel and the Buda, which act as the book ends of the dataset used in this study. 

3.3.1 S/TEM EDS 

In mature organic mudrock like that found in NE PA Marcellus there are two 

distinct populations; OM with pores and normal inclusions, and OM without SEM scale 

pores with few to no visible inclusions. Accordingly, S/TEM samples from both 

populations are represented in the samples used in this study. 

3.3.1.1 Buda Porous OM and Non-Porous OM 

Figure 29 is a 2-micro field of view STEM image of the cross-section of the Buda 

porous OM sample.  

 

 
Figure 29:  STEM Cross Sectional View of Buda Porous OM at Multiple Magnifications. Inclusions, 

including one large clast, can be seen throughout the sample.  
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Inclusions appear evenly spaced throughout the entire Buda porous OM sample. To 

identify the composition of the OM inclusions, the OM was analyzed with EDS (Figure 

30).  

 

 
Figure 30: STEM EDS Map of Buda Porous OM. 

 
 

As expected, carbon, seen in red, represents most of the OM matrix. The large inclusion 

in the lower right sector of the image is composed of a silicate (SiO4), as seen by its silica 

(green) and oxygen (orange) signature and some carbonate material in blue can also be 

seen to the left of the large silicate inclusion. The most interesting elemental spectra 

analyzed however is silver (Ag), seen in purple and strongly associated with Fe-K (blue). 

Silver is the most conductive metal found on earth (Hammond, 2004), and is an interesting 

discovery given the high conductivity observed in Buda and all areas south of the LOD. 

Prior to this study, silver had not been documented in Marcellus Shale OM and therefore 
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had not been considered a possible source of high conductivity south of the LOD. After 

this discovery, further scouting of the Buda sample was performed and amorphous silver 

was confirmed to be present evenly throughout the entire sample. Silver was not used in 

any of the sample preparation, and all possible sources of silver contamination have been 

eliminated. While the actual minerology cannot be deduced from EDS spectra, it appears 

that some type of mineral that includes silver is present within the porous Buda OM 

sample. 

Figure 31 shows the STEM cross sectional view of the Buda non-porous OM 

sample. At 2um field of view inclusions cannot be seen. However, at the nanometer field 

of view some very small nano-inclusions can be visualized that could not be seen in the 

initial SEM investigation. 

 

 
Figure 31: STEM Buda Non-Porous OM at Different Magnifications. Nanometer inclusions are not 

readily seen at the 2um field of view but become visible at the nanometer field of view. 
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Figure 32 is the same Buda non-porous OM seen in Figure 31 above, but analyzed 

with EDS. This procedure was performed to visualize the existence of silver as seen in the 

porous OM sample.  

 

 
Figure 32: STEM EDS Map of Buda Non-Porous OM. 

 
 

Carbon, seen in red, comprises most of the OM matrix. Nanometer sized silicate material, 

represented by silica (green) and oxygen (orange) is peppered throughout the OM along 

with some carbonate material seen in blue. Consistent with the porous OM sample, silver, 

this time seen in green, can be seen throughout the non-porous sample with slight 

association with Fe-L (red). Further scouting was performed on Buda non-porous sample 

and nano-silver was confirmed to be present evenly throughout the entire sample. 
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3.3.1.2 Teel Porous OM and Non-Porous OM 

Figure 33 shows the STEM cross sectional view of the Teel porous OM sample. 

Inclusions are evenly spaced throughout the porous OM with a few larger pieces consistent 

with the Buda porous OM sample. 

 

 
Figure 33:  STEM Cross Sectional View of Teel Porous OM at Different Magnifications. Inclusions can 

be seen throughout the samples with a few larger clasts. 
 
 

Figure 34 is the same Teel porous OM seen in Figure 33, but analyzed with EDS. Carbon, 

as seen in red, comprises most of the matrix of the OM, which is also peppered with 

Silicate material, represented in green and orange, and carbonate material represented in 

blue. The aluminosilicates, seen in yellow, are likely composed of illite. While silver was 
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not seen anywhere within the Teel porous sample a good amount of Titanium can be seen, 

which may be attributed to alteration mineral titanite. 

 

 
Figure 34: STEM EDS Map of Teel Porous OM. 

 
 
Figure 35 shows the STEM cross sectional view of the Teel non-porous OM sample. 

Inclusions are not seen in micron or nanometer field of view. 
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Figure 35: STEM Cross Sectional View of Teel Non-Porous OM. Inclusions cannot be seen in any of the 

magnifications. The pyrite and other material at the base of the sample are not part of the OM. The 
platinum shield strip can be seen to the right. 

 
 

Figure 36 is the same Teel non-porous OM seen previously in Figure 35, but 

analyzed with EDS. At this scale, no nanometer size inclusions can be seen to the right of 

the pyrite framboid. Carbon, seen in red, comprises the entire OM matrix to the right of 

the framboid with no evidence of nanometer inclusions. Pyrite is seen clearly from the 

iron (orange/red) and sulfur (turquoise) signature and framboidal texture. Aluminosilicate 

can be seen between the OM and pyrite represented by silica (green), aluminum (yellow) 

and oxygen (orange). A few pieces of carbonate material can be seen, in purple around the 

pyrite and clay. Consistent with the EDS of the Teel porous sample, no silver was found 

in the EDS analysis of the Teel non-porous sample. 
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Figure 36: STEM EDS Map of Teel Non-Porous OM. 

 
 

The original work flow included imaging the S/TEM OM samples with TEM to 

visualize ordered carbon stacking at the sub nanometer level. Multiple attempts using all 

samples were made to view atomic carbon ordered stacking with TEM at 300 kV, but the 

resulting images were inconclusive because carbon alignments, aromatic rings or stacking 

could not be confirmed. Accordingly, it was determined that sub nanometer investigation 

using TEM imaging performed at 300 kV was not a viable method to identify increased 

aromatic carbon structure in this study’s OM samples as their highly heterogeneous nature 

precludes the ability to produce reliable, repeatable imaging. 

While the sub nanometer TEM imaging did not successfully identify higher carbon 

ordered stacking, the discovery of silver in the Buda sample, and the lack of silver in the 

Teel sample, is a very interesting discovery. While the mere existence of silver alone 
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cannot explain the high conductivity phenomenon, if the OM hosting this silver is 

somehow ordered and conductive, the combination of silver within ordered OM needs to 

be pursued as a potential explanation of the conductivity seen at, and to the south of, the 

LOD.  Raman Spectroscopy was also implemented to build a dataset that would indirectly 

visualize the atomic structure of the OM to compare carbon ordering on both sides of the 

LOD. 

3.3.2 Raman Spectroscopy 

There are distinguishable differences between the Raman spectra of the Teel and 

Buda at both the LMARC and USPR intervals. The raw spectra can be seen in Figure 37. 

 

 
Figure 37: Raw Raman Spectra for Teel and Buda. 
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While both wells exhibit broad D bands, the Buda’s D band intensity is comparable 

to its G band intensity for all three intervals, whereas the Teel’s D band intensity is much 

lower than its G band intensity for all three intervals (i.e. a G/D intensity ratio greater than 

1.5). A high G/D intensity ratio associated with a broad D band is indicative of immature 

disordered material (Temperatures <300 degrees Celsius), whereas a low G/D intensity 

ratio associated with a broad D band is indicative of more mature higher ordered material 

(Temperatures 300-350 degrees Celsius) (Lunsdorf, 2014b) (Figure 15). Based solely on 

the raw Raman spectra, it appears that the Buda OM is more ordered than the Teel OM. 

To further compare Raman signatures between the two wells, Raman spectra peak 

deconvolution was performed. 

Raman spectra peak deconvolution, or curve fitting, of high-grade metamorphosed 

OM is well documented and understood in academia. However, peak deconvolution of 

low grade and transitional OM material (like that found in the Marcellus Shale) is not as 

well understood. As a result, several methods of deconvolution and interpretation were 

considered. The most well-known method of deconvolution was derived by Beyssac 

(2002) for high-grade sediment. Given that the Marcellus Shale mudrock is not a high-

grade sediment, the Beyssac method would appear not to be the best method to use in this 

study. Regardless, the Beyssac method was applied to samples from the LMARC and 

USPR members of Teel and Buda to document why the Beyssac method is not suited for 

these samples. As expected, the Beyssac method did not yield meaningful results in this 

study’s low-grade OM samples. Figure 38 shows the fitted spectra for Teel and Buda using 

the Beyssac 5 free floating Voigt function peaks, while Table 4 depicts the Beyssac 
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method R1 and R2 ratios for the Teel and Buda. Per the Beyssac method, R1 and R2 ratios 

should decrease as OM becomes more ordered. Thus, based on the Beyssac method R1 

and R2 ratios it appears that Teel is more ordered than Buda; which is opposite of what is 

suggested by the raw spectra. Given that the inferences provided from the Beyssac method 

R1 and R2 ratios are inconsistent with the inferences provided by the broad D band and 

G/D intensity ratio, it was concluded that the standard Beyssac method should not be used 

for the samples in this study.  

 

 
Figure 38: Beyssac Deconvolution for Samples in the LMARC and USPR. The dashed red line 

represents a summation of the 5 derived fitting bands. 
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Table 4: Beyssac Deconvolution Ratios for Samples in the LMARC and USPR.  

 
 

Because the Beyssac method was determined to be inapplicable, the Lahfid 

method, which uses five free floating Lorentzian function curves, was used to fit the raw 

data from Teel and Buda for the LMARC and the USPR members (Lahfid, 2010). The 

fitted peaks can be seen in Figure 39 and the RA1 and RA2 values are displayed in Table 

5.  

 

 
Figure 39: Lahfid Deconvolution for Samples in the LMARC and USPR.  

  

Sample R1 R2
Teel LMARC_Lower 1.94 0.68
TEEL USPR_Lower 1.99 0.67

BUDA LMARC_Lower 3.38 0.70
BUDA USPR_Lower 3.34 0.70

R1 = (D1/G)
R2 = (D1/D1+G+D2)

As OM becomes more ordered, R1&R2 decrease
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Table 5: Lahfid Deconvolution Ratios for Samples in the LMARC and USPR. 

 
 

Applying the Lahfid's deconvolution method to the Raman data indicates that Buda 

is more ordered than Teel across all three intervals. This conclusion is consistent with the 

fact that the Teel is further north of the coal basin to the south, and has a higher raw spectra 

G/D intensity ratio. A further comparison between the two wells can be made in terms of 

temperature. TRA1 and TRA2 were derived from Lahfid’s linear regression equations of 

temperature (derived from vitrinite reflectance, illite crystallinity, or fluid inclusions from 

his samples in the Helvetic zone of the Glarus Alps) cross plotted against RA1 and RA2 

Raman parameters. Using Lahfid’s equations, the Buda temperature range is ~340 to 366 

Celsius and the Teel temperature range is ~284 to 307 Celsius, which places the Buda 

within the transitional carbon phase and the Teel within a lower-grade amorphous phase. 

While Lahfid’s method of deconvolution concludes that the Buda is more ordered than the 

Teel, which is consistent with the raw spectra G/D ratio interpretation, the Lahfid method 

still contains ambiguity in regard to the fitting of the G and D2 peaks (Figure 39) in that 

the size and position of these peaks infer attributes to the rock that appear contrary to 

physical reality. For example, the fitted peaks for the Teel under the Lahfid method include 

Sample RA1 RA2 TRA1 TRA2
Teel LMARC_Lower 0.60 1.65 285 307
Teel USPR_Upper 0.60 1.64 284 305
Teel USPR_Lower 0.62 1.64 306 305

Buda LMARC_Lower 0.65 1.91 343 365
Buda USPR_Upper 0.65 1.90 344 362
Buda USPR_Lower 0.65 1.92 340 366

    

RA1 = (D1+D2)/(D1+D2+D3+D4+G) 
RA2 = (D1+D4)/(D2+D3+G)

TRA1 = (RA1 - 0.3758)/.0008
TRA2 = (RA2 -0.27)/.0045

As OM becomes more ordered, RA1&RA2 increase
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a substantial G peak (representing graphic structure) that is already more intense than the 

D2 peak (representing non-graphic structure) even though the Lahfid method assigns a 

temperature range to the Teel that is consistent with lower-grade amorphous material. 

Given that it is very unlikely that such low-grade material would have such an intense G 

band so early in its graphitization evolution, there is still something askew with the fitting 

method of these low-grade rocks. To improve the interpretation of low-grade OM, the 

Kouketsu method was also implemented. 

To address the problem noted by Beyssac regarding unresolvable D2 bands in 

poorly ordered OM (see Section 2.3.3), which is illustrated in the results of applying the 

Lahfid method described in the preceding paragraph, Kouketsu (2013) introduced a fixed 

parameter that eliminates the G peak in any spectra with a raw Gintensity/Dintensity > 1.5. 

Kouketsu reasoned that any spectra with such a high Gintensity/Dintensity should not have 

interpretable amounts of graphic structure and the inclusion of a G band would hinder 

meaningful deconvolution of this lower-grade disordered OM spectra. For more 

explanation, see the appendix to Kouketsu (2013). The summary of the Kouketsu method 

previously provided in Figure 15 is repeated here as Figure 40. Note that the existence of 

a D4 band in both the Teel and Buda forces these samples to the left side of the Kouketsu 

work flow. Also note that the raw spectra for Teel and Buda from Figure 37 resemble the 

low to medium grade spectra from the Kouketsu method in Figure 40, with the Teel 

corresponding to Kouketsu’s samples Kr6 and NB02 and with the Buda corresponding to 

Kouketsu’s sample RS9.  
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Figure 40: Summary of the Kouketsu Deconvolution Method. (A) Flowchart of the seven peak fitting procedures used by Kouketsu (B) 

OM Raman spectra for several representative samples and their corresponding Kouketsu Method peak fittings. Asterisks in the band name in (e) to 
(g) signify that the center position of that band was fixed by a Kouketsu Method parameter. 
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Figure 41 displays the fitted peaks that result from the Kouketsu (2013) 

methodalogy, with the Teel deconvultion lacking the G band and Buda deconvulution 

including the G band based upon their respective  raw Gintensity/Dintensity ratios. The various 

values associated with the Kouketsu method are displayed in Table 6. 

 

 
Figure 41: Kouketsu Deconvolution for Samples in the LMARC and USPR. Bands marked with 

* are those that are fixed by a Kouketsu method parameter. 
 
 

 
Table 6: Kouketsu Deconvolution Values for Samples in the LMARC and USPR. TD1 is the 

temperature derived from D1 FWHM Temperature regression equation. TD2 is the temperature derived 
from the D2 FWHM temperature regression equation 

 
 

Sample D1 Center D1 FWHM D2 Center D2 FWHM D2/D1 Intensity
Temperature
(D1 FWHM)

Temperature
(D2 FWHM)

Teel LMARC_Lower 1336.8 98.3 1603.6 36.8 1.69 267 285
Teel USPR_Upper 1336.7 95.4 1604.3 35.9 1.69 273 292
Teel USPR_Lower 1335.8 97.3 1602.8 37.1 1.67 269 283

Buda LMARC_Lower 1339.2 80.5 1608.0 32.7 0.71 305 313
Buda USPR_Upper 1338.4 83.1 1607.8 31.9 0.70 299 319
Buda USPR_Lower 1340.1 82.1 1608.2 33.1 0.75 302 310

       

As the OM becomes more ordered D1 FWHM decreaes , 
D2 center shifts right, D2 FWHM decreases, D2/1 intensity decreases

TD1 = -2.15*(D1 FWHM) + 478; (R2 = 0.970)
TD2 = -6.78*(D2 FWHM) + 535; (R2 = 0.968)
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The results of the Kouketsu method indicate an increase in OM ordering from the Teel to 

the Buda within all key parameters (D1 FWHM, D2 Center, D2 FWHM, and D2/D1). D1 

FWHM decreases, D2 center shifts right, D2 FWHM decreases, D2/D1 intensity 

decreases. There are some important differences between the Lahfid method and the 

Kouketsu method. Under the Kouketsu method the Teel does not have an interpretable G 

band and its D2 band is more intense, while the Buda has a smaller interpretable G band 

and a less intense D2 band. As OM matures and begins to become more ordered the G 

band should intensify and shift left while the D2 band continues to decrease and shift right. 

Thus, the parameters within the Kouketsu method aimed at low-grade material allow the 

Kouketsu method to avoid the ambiguity created by the Lahfid method, and results in an 

interpretation of these lower maturity OM samples that is more consistent with the overall 

evolution of the OM spectra demonstrated in Figure 15.  

A further comparison between the two wells can be made in terms of temperature. 

TD1 and TD2 were derived from Kouketsu's linear regression equations of temperature 

(derived from vitrinite reflectance, illite crystallinity, mineral assemblage, or thermal 

modeling from his samples in southwest Japan) cross plotted against D1 FWHM and D2 

FWHM parameters. Using Kouketsu’s equations, the Buda temperature range is ~299-319 

degrees Celsius and the Teel temperature range is ~267-292 degrees Celsius. An 

application of the temperature scale included in Figure 39 puts the Buda squarely within 

the medium-grade transitional category while the mid-point of the Teel range puts it at the 

top of the low-grade amorphous category, but very close to the medium-grade transitional 

category.  
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In Summary, both the Lahfid method and the Kouketsu method indicate that Buda 

is higher ordered than the Teel, and that Buda's OM spectra is consistent with medium-

grade transitional material while Teel’s OM is more consistent with lower-grade 

amorphous material. Given that conductivity is positively correlated with carbon ordering 

(Chung, 2002), this Raman analysis creates a reputable presumption that the resistivity on 

the south side of the LOD should be lower than the north side of the LOD. Further, given 

that the Teel is considered an amorphous material and the Buda is considered only a 

transitional material, it is not surprising that graphite was not confirmed by the samples in 

this study (or in the Weatherford work) because the OM has not entered crystalline 

graphitic phase. The next step is to correlate this higher level of ordering seen across the 

LOD with a possible decrease in OM hosted porosity across the LOD. 

3.4 Reservoir Quality Assessment 

This section will present the results from large scale SEM mosaic segmentation 

and N2 Adsorption of the LMARC and UPRS members of the Teel and Buda, which act 

as the end members of the dataset used in this study. 

3.4.1 Average SEM OM and Pore Segmentation Data 

The SEM segmentation analysis in this study sought to take a non-biased sample 

of the rock and measure a broad range of OM sizes so that the derived distributions and 

geometric values would be scalable to other analyses, such as nitrogen adsorption. One 

method to assure that the samples properly represent the underlying rock is to compare the 

AVG SEM TOC % values to the TOC Vol% values derived from traditional LECO TOC 

wt% integrated with XRD wt%. As illustrated in Table 7, the samples used in this research 
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have very comparable values, except for the Teel 7005’ which is likely due to OM 

distribution anisotropy in that sample.  

 

 
Table 7: Comparison of TOC Vol% to Average Mosaicked SEM TOC%. 

 
Table 8 shows He Porosity% and porosity values derived from SEM pore 

segmentation. While the AVG SEM Porosity% values are not comparable to the He 

Porosity% values, the SEM Large OM Porosity% values (taken from mosaic of locally 

segmented OM) demonstrate porosity values much closer to He Porosity%.  Figure (42) 

includes images of the four mosaics whose large OM were locally segmented.  

 

 
Table 8: Comparison of He Porosity % to SEM Derived Porosity Values. 

 

TOC Vol% AVG SEM TOC%
Teel 6973' 12% 10.10%
Buda 7910' 11% 10.39%

Teel 7005' 16% 22.05%
Buda 7933' 13% 13.75%

Sample

LMARC_L

USPR

Formation
TOC Data

He Porosity% AVG SEM Porosity% SEM Large OM Porosity%
Teel 6973' 6.70% 0.90% 6.22%
Buda 7910' 5.90% 1.13% 3.71%

Teel 7005' 2.80% 0.56% 1.28%
Buda 7933' 6.00% 0.81% 3.77%

Sample Formation

LMARC_L

USPR

Porosity Data
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Figure 42: Large OM Porosity SEM Images of LMARC and USPR Mosaics.  

 
 

3.4.2 Local OM Hosted Pore Segmentation 

As mentioned in Section 3.1, to understand why the normal correlation between 

TOC and porosity is not seen south of the LOD it is important to analyze PSDs. The 

following section will display the results of the local large OM segmentation in the 

LMARC and USPR in both the Teel and Buda. 

3.4.2.1 Lower Marcellus 

The large OM local segmentation data from the Lower Marcellus for both Teel and 

Buda can be seen in Figure 43. Each graph in this figure clearly confirms the 20nm 
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resolvable limit. Regardless of the resolvable limit issue, the pore frequency graphs of the 

two wells are nearly identical, while the pore surface area trends are similar. The Buda has 

25% more large OM objects locally segmented than the Teel, while Buda’s SEM TOC% 

is 19% higher than the Teel. Whereas the Teel’s He Porosity is 13% higher than the Buda, 

the Teel’s cumulative pore area of 59 um2 is 31% higher than the Buda’s cumulative pore 

area of 45 um2. The comparison of the two well’s pore size contributions within the 

sampled interval (20-400nm), indicates the Buda has a higher meso pore contribution and 

a lower macro pore contribution. This data does not provide enough evidence to evaluate 

a PSD shift to larger pore values because the resolvable limit issue precludes the 

recognition of all the micropores and the smaller portion of the mesopores. 

 

 
Figure 43: Porosity Distributions and Cumulative Pore Area for Samples in the Lower LMARC.  

Red line indicates resolvable limit of the SEM technique implemented. 
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3.4.2.2 Union Springs  

The large OM local segmentation data from the USPR for both Teel and Buda can 

be seen in Figure 44. Each graph in this figure clearly confirms the 20nm resolvable limit. 

Regardless of the resolvable limit issue, the pore frequency graphs of the two wells are 

nearly identical, while the pore surface area trends are similar. There is a material 

difference between the number of large OM objects between Teel and Buda, with the Teel 

having 122% more large OM objects locally segmented. Correspondingly, the SEM 

TOC% value for the Teel is 57% higher than the Buda. Despite having much fewer large 

OM objects, the Buda has a slightly higher cumulative pore surface area than the Teel, 

even though Buda’s He Porosity% value is 113% higher than the Teel. Within the sampled 

interval (20-400nm), the Buda has a lower meso pore contribution and a higher macro 

contribution than the Teel. The sampled pore intervals are not wide enough to conclude 

whether this clear evidence that the PSD is shifting to larger pore sizes. 
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Figure 44: Porosity Distributions and Cumulative Pore Area for Samples in the USPR. Red line indicates 

resolvable limit of the SEM technique implemented. 
 
 

3.4.3 Global Pore Segmentation 

The large local OM segmentation does not have a consistent basis to compare the 

two wells because of the small sample size (i.e. one mosaic per interval) and the fact that 

only large OM pores where extracted. Below are the results of the global pore 

segmentation from all 20 mosaics (five per well at both the LMARC and USPR). This 

larger sample size should create a better basis from which the two wells can be compared. 
3.4.3.1 Lower Marcellus  

Figure 45 depicts all pores segmented across all five LMARC mosaics from the 

Teel and Buda. The pie charts depict the distribution of each well’s OM object size by 

three categories; large (> 1um2) medium (1-0.20 um2), and small (0.20-0.02 um2). The 

OM size distribution is very similar between the two wells. 
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Figure 45: Averaged Global Pore Segmentation Data for Samples in the LMARC.  

  
 

There are several notable differences between the local large OM segmentation 

data reported in Section 3.4.2 and this global pore segmentation data. For example, 

whereas the Teel had the higher cumulative pore surface area in the large OM 

segmentation data, the global segmentation data indicates that Buda has the higher 

cumulative pore surface area despite maintaining lower He Porosity% measurements, 

which infers that the Teel’s higher He Porosity% must be contributed by pore sizes outside 

the bounds of 20-400nm. Another notable difference between the two sources of 

segmentation data relates to pore size composition. In the large OM segmentation data, 

the Teel has a higher percentage of macropores, while the global segmentation data shows 

that the Buda has a higher percentage of macropores. In other words, the Buda 

demonstrates a higher proportion of macropores within the observed range of 20-400nm. 
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3.4.3.2 Union Springs  

Figure 46 depicts all pores segmented across all five USPR mosaics from both Teel 

and Buda. The USPR samples for both wells have relatively more large-OM (>1um2) than 

demonstrated by the LMARC data shown in Figure 45. More notable, is the significantly 

larger number of large OM (> 1um2) seen in the Teel USPR compared to the Buda USPR, 

which corresponds with the Teel’s much higher SEM TOC% value. 

 

 
Figure 46: Averaged Global Pore Segmentation Data for Samples in the USPR.  

  
 

Whereas a comparison between the large OM segmentation data and the global 

segmentation data for the LMASC yielded several notable differences, the USPR data 

between the two sources are relatively comparable. Buda has the larger cumulative pore 

surface area in both segmentation data sources, which corresponds with its higher He 

Porosity% value. The pore size contribution is also consistent between the two data 
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sources, with the Buda having a larger surface area contribution from macropores (i.e. on 

average for the given PSD of 20-400nm the Buda has more macropores).  

Although the globally segmented pores allowed for a larger sample of data, it lacks 

data pertaining to the lower mesopores and micropores, which are a very large 

compartment of an organic rich mudrocks capacity to hold gas. To further investigate the 

difference between the two wells, the contribution of the smaller pore ranges below 20nm 

was examined with N2 adsorption.  

3.4.4 N2 Adsorption 

To better understand the PSDs and the different area and volumetric contributions 

of different pore sizes across the LOD, especially in the lower mesopore and micropore 

ranges, N2 adsorption was performed on the Lower Marcellus and Union Springs intervals 

using the four samples described in Section 3.4.1, with two additional samples (one apiece 

from the Teel and the Buda) from the upper USPR. 

3.4.4.1 Lower Marcellus 

Figure 47 contains the incremental pore area and incremental pore volume of the 

LMARC_L interval for both the Teel and Buda. 
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Figure 47: N2 Absorption Pore Surface Area and Volume for Samples in the LMARC. 

 
 

It is clear from the graphs in Figure 47 that the Teel has more incremental area and 

volume contributed from micro pore sizes 1-2nm relative to the Buda, whereas the Buda 

has more incremental area and volume contribution from the meso (2-50) and macro (>50) 

pore sizes relative to the Teel. Due to the large difference in area allotment coming from 

the micropore level, the Teel’s cumulative pore surface area of 5.1 m3/g is 42% higher 

than the Buda’s 3.6 m2/g cumulative pore surface area. The difference between the well’s 

cumulative pore surface area is directionally consistent with their He Porosity% values, 

where the Teel has a 13% advantage. Even though the Teel has a much larger contribution 

from the micropore range, the Buda enjoys a slightly higher cumulative pore volume 

value.  
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3.4.4.2 Union Springs 

Figure 48 contains the incremental pore area and incremental pore volume of the 

Upper USPR interval for both the Teel and Buda. 

 

 
Figure 48: N2 Adsorption Pore Surface Area and Volume for Samples in the USPR_U. 

 
 

The same themes described above for the LMARC_L are basically repeated in the 

USPR_U. The Teel has more incremental area and volume contributed from micropore 

sizes 1-2 nm relative to the Buda, whereas the Buda has more incremental area and volume 

contribution from the meso (2-50) and macro (>50) pore sizes relative to the Teel. Thus, 

the takeaway continues to be that the Teel is much more impacted by micropores than the 

Buda and has a significantly higher cumulative pore surface area (57% higher than the 

Buda), while the two wells have similar He Porosity% values and cumulative volume 

values. 
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 Figure 49 contains the incremental pore area and pore volumes of the Lower 

USPR interval for both the Teel and Buda. 

 

 
Figure 49:  N2 Adsorption Pore Surface Area and Volume for Samples in the USPR_L. 

 
 

The trend seen above in the LMARC_L and USPR_U regarding pore size 

contribution carries forward into the USPR_L, with the Teel being much more impacted 

by micropores than the Buda, while the Teel continues to report a higher cumulative pore 

surface area (14% higher than the Buda). However, the differences between the two well’s 

He Porosity% and cumulative pore volume values in the USPR_L are much larger than 

the differences in the other two intervals, with Buda’s He Porosity% and cumulative pore 

volume values being 113% and 31% higher, respectively.   

 

 



 

87 

 

4. DISCUSSION 

4.1 Resistivity Assessment 

As seen from the open hole logging data in Figure 28, the Buda (a noncommercial 

well south of the LOD) displays exceptionally low resistivity (0.06-0.13 Ohmms), while 

the Teel (a commercial well north of the LOD) has normal organic mudrock resistivity 

values (62-101 Ohmms). This study postulates two variables, that when combined, could 

explain the different conductivity measurements between the north and the south side of 

the LOD; the first being the discovery of silver in the Buda STEM samples (see Section 

3.3.1.1) and the corresponding lack of silver in the Teel STEM samples (see Section 

3.3.1.2), and the second being the carbon ordering evidence provided by the Raman 

Spectroscopy (see Section 3.3.2) which indicates that the two wells have markedly 

different carbon ordering attributes with the Teel OM being classified as low-grade 

amorphous material while the Buda OM is classified as medium-grade transitional 

material.  

4.1.1 Silver Discovery 

Silver is the most electrically conductive metal on earth (Hammond, 2004). In fact, 

silver’s conductivity is the measurement standard used to determine the conductive 

capabilities of all other elements. The conductive superiority of silver is due to its valence 

and crystal structure that allows its electrons to move freer than the other elements. When 

OM becomes more ordered, electrons begin moving freely from connected aromatic 

carbon rings, which in turn makes the rock hosting the OM become more conductive. 

Thus, the higher conductivity south of the LOD could be the result of a combination of 
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the rock’s higher ordered structure and the fact that the rock contains an inherently 

conductive element.  

As evidence of silver in the Marcellus had never been noted prior to this study, this 

study’s workflow did not include procedures directly related to determining the source of 

the silver located in the Buda OM. However, if it is confirmed that silver does play a part 

in the LOD conundrum it will ultimately be very important to understand the source of 

that silver. In the spirit of sowing the seeds for future research, the following paragraphs 

will advance some thoughts regarding potential sources of the silver discovered in this 

research. 

When initiating a thought experiment concerning the source of the silver 

discovered in the Buda OM, hydrothermal activity quickly comes to mind as it is a 

common enrichment driver for silver in surrounding strata. However, there is no evidence 

of Mississippi Valley type hydrothermal activity in the Marcellus. However, the exclusion 

of hydrothermal activity does not preclude other diagenetic processes. For example, the 

SEM EDS investigation in this study also identified several rare phosphate mineral 

inclusions (monzonite or churchite) which were interpreted via the elemental discovery of 

Uranium (U), Gadolinium (Gd), and Dysprosium (Dy). With that said even common 

minerals such as feldspars have compositions close to the fundamental K-Na-Ca plane, 

and cations, such as Rubidium (Rb), Caesium (Cs), Lead (Pb), Barium (Ba), Strontium 

(Sr), and Silver (Ag), can be substitutes for the alkali earth elements in feldspar structures. 

Published low-temperature (ca. 300oC) ion-exchange experiments have produced pure 

end-member silver feldspar (AgAlSi3O8) from a natural sanidine starting material 
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(Clarke, 2008). As a result, diagenetic silver enrichment cannot be ruled out as the possible 

source of the silver in the Buda OM, especially when much of the surrounding sediments 

were derived from weathered igneous volcanic sources of the Acadian orogenic belt 

(Hosterman and Whitlow, 1981) that are known to include trace and rare earth elements 

(Lipin and Mckay, 1989). Thus, it is not impossible that these sediments could have acted 

as sources of silver mobilization in the subsurface. 

Another potential explanation regarding the source of the silver contained within 

the Buda OM is that the silver is autochthonous in nature and was taken from the 

surrounding water as OM flocculated out of the water column. This mechanism is 

explained in the work of McKay (2008) related to the accumulation of silver in marine 

sediments and suggests that silver can be enriched in decaying organic particles, and that 

within these enriched particles anoxic microenvironments develop as the result of organic 

degradation leading to the formation of dissolved sulfide and the rapid precipitation of 

silver; most probably as Ag2S. Further, McKay suggests that sedimentary redox conditions 

are not the primary controlling factor for Ag accumulation, nor do variations in the 

lithogenic and anthropogenic fluxes control Ag accumulation.  Instead, McKay 

hypothesizes that the differences in sedimentary Ag accumulation are related to changes 

in the biogenic and/or scavenged flux to the sediment. According to McKay’s theory, the 

trend of increasing sedimentary Ag concentrations going downslope most probably 

reflects the longer residence time of organic particles in the water column (i.e., more time 

for Ag scavenging), possibly enhanced by higher concentrations of dissolved Ag in deeper 

waters. Per McKay, the scavenging efficiency of Ag by organic particles appears to be 
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related to oxygen levels in the water column; which merely reflects the fact that settling 

organic particles become anoxic more rapidly when oxygen is limited, allowing more time 

for Ag scavenging. Accordingly, scavenging results in higher sedimentary Ag 

concentrations when an environment is characterized as an oxygen minimum zone (OMZ).  

4.1.2 Carbon Ordering Evidence 

It is widely accepted that after deposition and early diagenesis, the organic content 

of sedimentary rocks constitutes a heterogeneous mixture of organic compounds. During 

organic maturation, mainly O, H, N, and to a lesser degree C, are expelled from the organic 

material, changing the chemical composition and structure of the residual organic 

material. This process leads to an enrichment of aromatic species (Vandenbroucke and 

Largeau 2007) and the formation of basic structural units (BSU) of polyaromatic (4–10 

cycles) layers that are either isolated or piled up by 2–3 units (Oberlin 1989). The 

nanometer sized BSU is described by the mean stacking height (Lc) and the mean basal 

plane diameter (La). During the early stages of diagenesis and catagenesis, the BSUs are 

randomly oriented, but start to synchronize their orientation to form molecular orientation 

domains (Bustin et al. 1995, Vandenbroucke and Largeau 2007). During graphitization, 

Lc and La progressively increase, while at the same time, the number of defects and the 

interplanar spacing between the graphene layers is reduced (Buseck and Huang 1985, 

Wopenka and Pasteris 1993). Thus, highly ordered graphitic material has few structural 

defects, larger La and Lc values and lower interplanar spacing. In other words, the carbon 

structure is highly oriented and connected, which allows for ease of electron transfer. 
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The Raman work, with the aid of the Lahfid and Kouketsu deconvolution methods, 

illustrates that the Buda is more ordered than the Teel. To relate this ordering to the 

graphitization process described in the previous paragraph, the Buda’s OM is 

characterized by larger and more connected aromatic layers with fewer defects outside the 

plane of aromatic layers, resulting in a higher capacity for connectivity and electrical 

conductivity. If early graphitization is occurring in the Buda then, how would this carbon 

ordering be impacting OM hosted pores? Using TEM on very high maturity graphite 

samples Beyssac (2002b) observed that as carbon aromatic layers begin to become aligned 

the PSD shifts to the right with micropores coalescing into mesopores and macropores; 

which is precisely what this study’s pore surface area and pore volume analysis found in 

the Buda OM samples, as documented in sections 3.4.2 and 3.4.3.  

4.2 Reservoir Quality Assessment 

As seen from the global pore segmentation results in section 3.4.3 and the N2 

adsorption results in section 3.4.4, there are quantifiable PSD differences between the Teel 

and the Buda. This section will expand on these findings and discuss their implications 

considering the carbon ordering discussion from section 4.1. 

The global SEM pore segmentation results and the N2 NLDFT results highlight 

two interesting differences between the Teel (a commercial well from the north side of the 

LOD) and the Buda (a noncommercial well from the south side of the LOD); the Buda has 

significantly less pores in the lower pore range 1-2nm than does the Teel, and the Buda 

has significantly more pores in the meso and macro ranges than does the Teel. This PSD 

shift is especially interesting when considered in the light of Raman Spectroscopy results. 
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The works of Beyssac (2002b), Bonijoly (1982) and De Fonton (1980) describe the effects 

on carbon material when subjected to temperature and pressure, and propose the existence 

of a new carbon phase (the macroporous phase) that is texturally and structurally 

macroporous and turbostratic (conductive). The macroporous phase results from the 

coalescence of micropores in the OM due primarily to the effects of pressure, and 

secondarily from temperature. More precisely, the graphitization in a macroporous phase 

is caused when pore walls break due to the stress and shear pressure that develop in a 

porous phase submitted to hydrostatic pressure. Can the Buda’s strangely high 

conductivity and its scarcity of micropores, as compared to the Teel, be explained by a 

macroporous phase? The size and scope of this study precludes definitively linking the 

LOD phenomena to a macroporous carbon phase. However, given the dearth of other 

operational theories to explain the LOD it seems very reasonable to consider the findings 

of this study sufficient evidence to assert that a macroporous carbon phase qualifies as a 

working hypothesis to explain the LOD phenomena. Said differently, given the lack of 

another scientifically supportable theory to explain the LOD, it would be very 

unreasonable to ignore the findings in this study and conclude that a macroporous carbon 

phase does not explain the LOD phenomena.  

4.3 Ramifications of This Study to Future Research 

To confirm the discovery of silver south of the LOD (and the lack of silver on the 

north side of the LOD), and to determine the role, if any, silver plays in the very low 

resistivity levels south of the LOD, more core and cutting samples from areas on both 

sides of the LOD should be examined specifically for the existence of silver. Given that 
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STEM EDS is excessively time consuming, SEM EDS is likely the more appropriate 

method to identify silver in samples taken from a larger representative sample of NE PA 

Marcellus OM. To evaluate if the theories within the McKay work can be used to explain 

the source of the silver found in the Buda OM samples, an extensive chemo stratigraphic 

paleo shelf study of NE PA would be needed. It would also be useful to study Marcellus 

outcrops across Southern NY and Eastern PA in search of silver content. 

To augment the findings in this study that the south side of the LOD exhibits 

characteristics of higher ordering, Raman Spectroscopy, which is inexpensive, needs to be 

applied to many more NE PA Marcellus wells at, or around, the LOD. There also should 

be attempts to visualize ordered carbon stacking and aromatic rings using darkfield TEM 

imaging on a rotating stage with the appropriate aperture to produce an image that displays 

stacked ordered rings as bright spots (Oberlin, 1980a).  Such images would allow direct 

comparison of the rock north and south of the LOD, with the expectation being that the 

conductive noncommercial rock would have a higher frequency of bright spots as 

compared to the productive nonconductive rock. 

To advance this research’s findings concerning the PSD differences between the 

north side and the south side of the LOD, the SEM resolvable limit needs to be reduced to 

single digits using higher magnification SEM mosaics which would optimize the 

integration of the SEM segmentation data and the N2 adsorption surface area calculations. 

Reductions in the SEM resolvable limit will also serve to reduce the fit degradation 

between global pore segmentation data and N2 adsorption data that was experienced in 

this study, as illustrated in Figure 50. Extending the fit into the single digits will require 
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mosaics made up of 7500X or 10000X images, and segmented pore data from such 

mosaics should allow for a better understanding of the parameters associated with OM 

hosted porosity and allow for extensive research in the fine tuning of DFT models to better 

characterize the PSDs of organic rich mudrocks. Lastly, if the adsorption testing was 

conducted with CO2 as well as N2, a wider PSDs could be obtained that could be resolvable 

down to the sub nanometer pore range. 

 

 
Figure 50: Buda Pore Area Comparison. Derived from globally segmented 5000X mosaic and DFT N2 

absorption data. 
 
 

4.4 Ramifications of This Study to Operators in the NE PA Dry Gas Window 
 

Whereas this study was successful in providing a legitimate working theory to 

explain what could be causing the noncommercial drilling outcomes that are commonly 

experienced as the LOD is approached from the north, this study does not provide 
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methodology to specifically identify the location of the LOD. As noted in section 4.3, the 

findings in this study suggest that more OM samples need to be subjected to SEM EDS 

(regarding identifying silver) and Raman Spectroscopy (regarding identifying evidence of 

carbon ordering). While this additional data will not be determinative in locating the exact 

location of the LOD, it appears reasonable that such data will be useful when added to 

existing data sources that are considered when evaluating acreage with proximity to the 

LOD.  

While this study advances a theory that increased carbon ordering south of the 

LOD can explain the low resistivity and the porosity degradation seen south of the LOD, 

it is not asserting the existence of a linear relationship between resistivity and porosity that 

rises to the level of actionable data to be used in the evaluation of drilling locations. In 

fact, higher silver content within OM could cause lower resistivity values that are not 

solely derived from the conductive carbon alone. Said differently, if an operator is making 

drilling location decisions solely on resistivity levels, they may be passing over 

commercial well sites.  

Operators in the NE PA Dry Gas Window sometimes experience higher production 

from laterals that approach the LOD, which on its face appears contrary to the impacts of 

the carbon ordering theory described and proposed by this study.  However, a logical 

application of the carbon ordering process can be used to create a very plausible theoretical 

explanation; early shifts in PSD caused by the ordering process can provide short term 

improvements to the OM hosted porosity. As micropores coalesce due to carbon ordering, 

at some point an optimal PSD will exist that maintains the appropriate surface area needed 
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for commercial quantities of gas and large enough pore sizes to allow optimal gas flow to 

the wellbore. However, like everything in this world, this optimum PSD for commercial 

volumes of gas and ease of flow has a tipping point, after which the micropore surface 

area is degraded, along with the gas production.   
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5. CONCLUSIONS 

5.1 Conclusions 

The Marcellus Shale is the single largest natural gas producing resource in the 

U.S., both currently and for the foreseeable future, which has resulted in Pennsylvania 

becoming the second largest natural gas producing state in the U.S (EIA, 2017). The 

majority of the production in Pennsylvania comes from the Marcellus Shale Dry Gas 

Window comprising the six counties in NE PA (Pennsylvania Department of Reporting 

Services, March 2017). Despite its impressive production volume, the NE PA Dry Gas 

Window is plagued by the “Line of Death” (LOD); a term coined by producers to describe 

a misunderstood, and ever changing, line of demarcation that forms the southernmost limit 

of commercial production in the NE PA Dry Gas Window. Noncommercial wells on, or 

to the south of, the LOD are characterized by very low resistivity values (i.e. as low as 

0.08 Ohmm based upon deep resistivity log curve response) and lower total porosity 

values (i.e. helium porosity measurements decreasing from ~7% north of LOD to ~5% 

south of the LOD), while other attributes such as minerology, TOC, Ro% and thickness 

remain very comparable between the two sides of the LOD. Previous research aimed at 

developing a plausible explanation of the precise nature and cause of the LOD have been 

inconclusive.  

This study’s Resistivity Assessment and Reservoir Quality Assessment together 

articulate a plausible explanation of the LOD phenomenon. The Resistivity Assessment 

presents arguments of two possible sources of the unusually high conductivity found at, 

and to the south of, the LOD in NE PA; the discovery of silver in OM south of the LOD 
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(and lack thereof north of the LOD), and evidence of increased carbon ordering south of 

the LOD. The Reservoir Assessment presents arguments that the increased carbon 

ordering south of the LOD is also responsible for a progressive shift of the PSD, which in 

turn has diminished the rocks ability to hold gas.  

While the discovery of silver in this study’s STEM EDS workflow is interesting, 

this study does not conclude that its presence alone is determinative in regard to the source 

of the low resistivity south of the LOD. Instead, this study argues that the primary source 

of the low resistivity south of the LOD relates to its higher carbon ordering, which was 

observed by this study’s Raman Spectroscopy workflow, and that it is the combined 

impact of a highly conductive element within a higher ordered material that is responsible 

for the exceptionally low resistivity values recorded south of the LOD.  

This study was predicated upon a hypothesis that the source of the LOD was due 

to graphic pyrobitumen graphitization that could not be identified through XRD analysis. 

Accordingly, this study’s reservoir assessment included large scale mosaic SEM imaging 

and N2 adsorption which, when combined, illustrates that the PSDs between the north side 

and south side of the LOD are not comparable, most notably because the south side of the 

LOD has lost micropores and gained meso and macro sized pores.  

The common thread in this study’s findings regarding the low resistivity and low 

porosity found south of the LOD is the evidence pertaining to levels of carbon ordering 

across the LOD. This study argues it would be an understatement to interpret these 

findings as merely suggesting that the low resistivity and low porosity rock on the south 

side of the LOD is due to being a bit more ordered than the rock north of the LOD. Instead, 
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this study asserts that the south side of the LOD has entered a macroporous carbon phase 

that causes its OM to be characterized as transitional carbon material whereas the OM on 

the north side of the LOD remains amorphous material. The south’s higher ordered carbon 

phase is not only more turbostratic, but is texturally and structurally macroporous due to 

coalescence of micropores in the material caused by the effects of temperature and 

pressure (below graphite grade metamorphism). As a result of this macroporous phase, the 

OM south of the LOD has drastically decreased pore surface area, which translates into 

the noncommercial outcomes experienced by operators as they approach the LOD. 

Whereas this study has succeeded in developing a plausible working hypothesis 

for the high conductivity and lack of commercial production south of the LOD, more 

research is required. Just as the Weatherford Laboratories Work (section 1.3.2.2) opened 

the door for this study, the thought processes advanced in this study have opened the door 

to more research on various fronts (see section 4.3).  Whereas this study provided evidence 

for silver, it does not provide operators a silver bullet to identify precisely how far to the 

south they can drill before experiencing noncommercial outcomes. However, this study 

does provide operators with some targeted testing techniques (see section 4.3) that, if 

systematically applied to a larger population of OM samples, will illuminate the extent 

and effects of the carbon ordering process, which should be helpful to operators as they 

rationalize future exploitation and development activities on acreage with proximity to the 

LOD.  
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