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ABSTRACT 

 

Spring floods in the Red River basin generated from melting snow have 

increasingly affected the Fargo-Moorhead metropolitan region of North Dakota and 

Minnesota within recent decades, causing serious economic damage and disturbance to 

the local community. Various local and federal government agencies have come together 

to formulate a flood management project mainly utilizing water diversion to protect the 

Fargo-Moorhead urban area from future floods. Major structural measures that alter the 

surface water flow regime would take place under the current project proposal. This 

study applied the Hydrologic and Water Quality System to set up the study watershed, 

covering the upper portion of the Red River basin with its outlet located in Fargo. The 

Soil and Water Assessment Tool Calibration and Uncertainty Procedures were used to 

perform sensitivity analysis, model calibration, and model validation on a chosen set of 

hydrologic input parameters. Results from one of the general circulation models, the 

Geophysical Fluid Dynamics Laboratory’s global coupled carbon-climate earth system 

model with vertical coordinates based on density, were coupled with the hydrologic 

model to set up predictive simulations to evaluate climate change impacts on the study 

watershed. A flood diversion channel was added into the predictive simulations in the 

form of point-source water extraction. The time durations for the predictive simulations 

were divided into two decade-long sections, 2026 to 2035 and 2036 to 2045, which 

represent the short- to medium-terms following project construction completion. Results 

of the predictive simulations indicate a significant increase in streamflow for the entire 
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simulation time span under both RCP4.5 and RCP8.5 climate change scenarios. 

Meanwhile, the implementation of a diversion channel near the Fargo-Moorhead urban 

area would have a strong impact on the flow regime of the Red River at Fargo, where a 

streamflow pattern with lower average discharge and lower flow variability is predicted 

for the flood-diversion-included simulations. The inclusion of the flood diversion 

channel in the model also significantly reduces the occurrence of large-magnitude 

streamflow events. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Flood Damage and Management 

 Floods have been a constant threat to human society throughout recorded history. 

As population pressure and human activities continue to grow in many parts of the world 

in the contemporary era, as well as alternating global climate patterns, a growing trend 

of flood magnitude and frequency has been observed in many riverine systems [Dutta et 

al., 2006]. The term “flood damage” often refers to all the negative effects created by 

flooding, normally including loss of human life, damage to private property and public 

infrastructure, and detrimental impact on local ecological systems. In most situations, the 

total amount of socioeconomic damage cannot be accurately quantified due to the 

complex nature of a flooding event and the many indirect effects it may incur [Messner 

and Meyer, 2006].  

 In many cases, flood damage caused by a specific event can become the driving 

force for formulating flood management policy and projects. Flood risk management 

often involves actions at two different levels: managing the existing flood protection 

system or planning and building a new system. The former option focuses on taking 

actions based on the currently available hydrological structures and intends to minimize 

the impact of flood disasters through mitigation efforts. Specific measures in this 

category include analyzing potential flood risk, providing reliable early warnings, 

maintaining hydrological structures like dikes and reservoirs, and preparing for 
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emergency disaster response such as evacuation or rescue. However, when the existing 

system becomes inadequate to prevent potential flooding events due to factors such as 

land use change or climate change, the latter level of action is taken to construct a new 

structural system for flood protection [Plate, 2002].   

 

1.2 Red River Flooding in the Fargo-Moorhead Metropolitan Region  

 The Red River of the North originates from the confluence of Bois de Sioux and 

Otter Tail Rivers at Wahpeton, North Dakota, draining parts of the states of South 

Dakota, Minnesota, and North Dakota and flowing northward for approximately 394 

miles within the United States before reaching the Canadian province of Manitoba 

[Stoner et al., 1993]. Climate factors in the region are the driving force for the diverse 

flow regime at the Red River. The Red River basin generally experiences cold, frozen 

winters and warm summers, with an annual mean temperature of about 40 degF. The 

main stem of the Red River often experiences flooding events during the snow-melting 

period of a year, with its tributaries having similar flooding characteristics [Miller and 

Frink, 1984]. Observed discharge data in recent decades suggest a tendency toward 

earlier flooding for the snowmelt-derived Red River due to climate warming [Stewart et 

al., 2005].  

The Fargo-Moorhead (F-M) metropolitan region of North Dakota and Minnesota 

is located within the regular flood plain of the Red River, with the river itself separating 

the city of Fargo on the west bank from the city of Moorhead on the east bank. 

Throughout recorded history, the F-M metropolitan region has been frequently affected 
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by spring floods in late March and early April caused by snowmelt of the Red River 

basin [U.S. Army Corps of Engineers, 2011]. The F-M metropolitan area is the largest 

urban area in the sparsely populated North Dakota, with a population of approximately 

200,000. It is the region’s social and economic center. Recent hydrologic records of the 

Red River have shown an increasing trend in flooding frequency and magnitude. The 

Minnesota Department of Natural Resources (MNDNR) has estimated the average 

annual economic flood damages in the F-M metropolitan area to be more than 51 million 

USD [Minnesota Department of Natural Resources, 2016]. Although no direct human 

casualty has been recorded in recent flooding events, the heavy economic loss and high 

risk of future flooding events have made flood management more imperative. 

 

1.3 Fargo-Moorhead Flood Risk Management Project 

Historically, many responsible government units (RGUs) from the states of North 

Dakota and Minnesota have overlapped in the their efforts surrounding water 

management and conservation of the Red River [Hearne, 2007]. To reduce possible 

damage to the local communities from future floods, the United States Army Corps of 

Engineers (USACE), MNDNR, and many other agencies at the local and state levels 

have worked together to propose a flood management project that would primarily 

benefit the F-M urban area. 

The initial-draft feasibility report for the flood management project prepared by 

the USACE discussed a few alternative plans, including the construction of flood 

barriers, diversion channels, and flood storage facilities, as well as taking nonstructural 
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measures by continuing the current warning and emergency response system without 

additional engineering projects. More particularly for the diversion channel, the USACE 

proposed a few options with different diversion capacities and at various geological 

locations, each emphasizing a distinct priority [2011].   

While various flood management designs and alternative projects were described 

and evaluated extensively in the initial-draft feasibility report, the RGUs working on the 

project planning came to the conclusion that nonstructural measures are insufficient for 

mitigating potential flood risk; therefore, the project formulated in the final 

environmental impact statement (EIS) involves constructing a combination of different 

hydrological structures, including an approximately 30-mile-long diversion channel on 

the west side of the F-M urban area, an additional embankment along the Red River and 

a few of its local tributaries, control structures for diverting flow from the Red River into 

the diversion channel, a staging area to the south of the urban area for flood retention 

purposes, and ring levees for protecting communities located within the staging area 

[Minnesota Department of Natural Resources, 2016]. 

 

 

1.4 Objective 

This study intends to use the Hydrologic and Water Quality System (HAWQS) to 

set up a hydrological model for the upper portion of the Red River basin, to calibrate and 

validate the model using available flow records of the modeling river basin, and to 

couple the model with climate projections from the Coupled Model Intercomparison 
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Project Phase 5 (CMIP5) to predict future flood regimes under different climate change 

scenarios after the completion of the F-M flood risk management project.  

More specifically, the objective of this study includes exploring answers to the 

following questions: 

1).  How will the hydrological process of the Red River change under different future 

climate projections? 

2). What is the effectiveness of the planned flood prevention structures, particularly 

the diversion channel, in affecting the flow regime of the Red River and reducing 

future flood magnitude? 

 

This thesis is organized into the following sections: Chapter 2 explains the 

methodology and contains a description of the study area and model, sensitivity analysis 

of model parameters, calibration and validation of the model, integration of climate 

projections, and setup of the predictive simulations. Chapter 3 includes results and 

discussion and presents the results of the projections and analysis results and limitations. 

Chapter 4 is the conclusion, which summarizes the study. 
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CHAPTER II 

METHODOLOGY 

 

2.1 SWAT and HAWQS 

The Soil and Water Assessment Tool (SWAT) is a physical-based, continuous-

time model developed for the assessment of water quality and quantity in large river 

basins with varying soils, land uses, land cover types, and management practices [Arnold 

et al., 2012]. Watershed is divided into a few subbasins in the SWAT model; the model 

further groups lands with homogeneous slope, soil type, and land cover type into 

hydrologic response units (HRUs), which may not be spatially continuous [Licciardello 

et al., 2011; Tuppad et al., 2011]. The development of the SWAT model has spanned the 

last three decades, with new functions and routines continuously added to the model; the 

current SWAT model has been widely applied to water, sediment, agricultural 

chemicals, and contaminant yields in complex systems [K Abbaspour et al., 2015; 

Gassman et al., 2007]. Moreover, a significant amount of SWAT input data contains 

spatial information, so the SWAT model can be integrated with a geographic 

information system (GIS). For example, the popular ArcSWAT interface was developed 

based on the ArcGIS platform, which hugely enhances usability of the SWAT model 

[Jayakrishnan et al., 2005; Olivera et al., 2006; Srinivasan and Arnold, 1994].  

SWAT performs simulations based on user-defined input data [Neitsch et al., 

2011]; however, the process of setting up a new SWAT project can be cumbersome and 

time-consuming, especially when the size of input data is large, normally associated with 
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large watershed size or high resolution of the input digital elevation model (DEM), and 

computational resources are limited. 

As an alternative to ArcSWAT, HAWQS is a public-domain, web-based 

hydrological modeling system developed and maintained by Texas A&M University 

Spatial Sciences Laboratory and the United States Environmental Protection Agency 

(EPA). HAWQS uses the core engine of SWAT and has an interactive web interface that 

provides its users with preloaded maps and input data, which significantly reduces its 

initialization procedures [Fant et al., 2017]. In addition to reducing initialization 

procedures, HAWQS can continue with its tasks on its server when the user web 

interface is closed and can inform the user by email when tasks are completed [Yen et 

al., 2016].  

 In the project setup phase, HAWQS creates project watershed based on user-

identified downstream watershed; the downstream watershed can be identified by 

selecting its hydrologic unit code (HUC). Data resolution in HAWQS can be switched 

between HUC8, HUC10, and HUC12. Similar to SWAT, HAWQS enables its users to 

limit the amount of HRUs by setting threshold levels on soil type, land use, and slope 

class, either through percentage or area. After the project setup phase, the land use 

distribution and soil and slope classes for the project watershed are summarized into an 

output table or chart. More specific scenarios with user-defined weather dataset, 

simulation time duration, output time step, and SWAT model version can be created 

after the project setup [Spatial Sciences Laboratory Texas A&M AgriLife Research, 

2016].  
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2.2 Study Area Description and HAWQS Setup 

A portion of the upper Red River basin was selected as the study area (Figure 1). 

The studied watershed covers parts of Minnesota, North Dakota, and South Dakota and 

was set up in HAWQS by selecting the most downstream subbasin, HUC 

090201040504. The selected outlet subbasin overlaps the F-M metropolitan region, 

around which the flood risk management project would take place. The study watershed 

is located between 45.52˚ and 47.15˚ north latitude and 95.42˚ and 97.94˚ west 

longitude; it has a total area of 17,015.94 km2 and is divided into 178 subbasins based on 

the selected data resolution of HUC12 (Figure 2). The original number of HRUs in the 

study watershed is 10,667, and after a threshold of 5% applied to land use, soil type, and 

slope class, the number of HRUs reduces to 2,801. Summary tables of land use and soil 

type distributions for the study watershed are generated by HAWQS after project setup 

procedures. It is mentioned in the literature that the land use type of the Red River basin 

is primarily agricultural, which makes up about 74% of the land area [Stoner et al., 

1993]. Similarly, the land use distribution output table from HAWQS suggests that corn 

and soybean are the dominant crop species for the study watershed, with the corn-

soybean rotation fields covering about half of the study area, while deciduous forest, 

open water, and nonforested wetland are the major cover types apart from agricultural 

land (Table 11 in Appendix A). Major tributaries of the Red River of the North in this 

area include the Bois de Sioux River, Otter Tail River, and Wild Rice River of North 

Dakota. The Bois de Sioux River and Otter Tail River flow together at Wahpeton, North 
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Dakota, to form the Red River, while the Wild Rice River flows into the Red River 

approximately 7 miles south of the city of Fargo [Stoner et al., 1993]. 

 After delineating the study watershed, new project scenarios are created with 

specified essential information, including input weather dataset, simulation start and end 

date, the number of warmup years, and simulation time steps. In this study, the 

calibration and validation simulation was performed on a monthly time step, while the 

predictive simulation was performed on a daily time step. 

 

 

Figure 1. Location of the study area: the upper Red River basin at the border area of 

Minnesota, North Dakota, and South Dakota. 
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Figure 2. Subbasins of the study area and United States Geological Survey (USGS) 

stream gages used for calibration and validation (USGS 05051522: Red River of the 

North at Hickson, ND; USGS 05053000, Wild Rice River near Abercrombie, ND; 

USGS 0505400,: Red River of the North at Fargo, ND). 

 

2.3 SWAT-CUP and SUFI2 Procedures 

 A new project scenario using climate data from the Parameter-Elevation 

Regressions on Independent Slopes Model (PRISM) and spanning from 1989 to 2010 

was set up for model calibration and validation. The first two years of simulation were 

used as a warmup period, followed by data from 1991 to 2000 being used for the 

calibration phase and data from 2001 to 2010 being used for the validation phase. The 

simulation for the calibration phase was set on a monthly time step to reduce processing 
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time, given the example in the literature that calibrated parameters can be transferred 

across a temporal scale and can be used on a daily time step for predictive simulations 

[Daggupati et al., 2015].  

 Project files created in HAWQS were linked to SWAT Calibration and 

Uncertainty Procedures (SWAT-CUP) for sensitivity analysis and calibration 

procedures. SWAT-CUP is a public-domain software package developed for sensitivity 

analysis, calibration, validation, and uncertainty analysis for SWAT models. SWAT-

CUP can link a few different optimization algorithms to input SWAT models [K C 

Abbaspour, 2011] and can perform parallel processing on computers that have multiple 

central processing units (CPUs) with a purchased license [Rouholahnejad et al., 2012]. 

A comparison between available optimization procedures was conducted by Yang et al., 

with results indicating that the Sequential Uncertainty Fitting Version 2 (SUFI2) 

procedure could reach good prediction uncertainty ranges with the smallest number of 

model runs, which is a significant advantage for computationally demanding models 

[Yang et al., 2008]. 

 The SUFI2 procedure was used for parameter optimization for the current 

project. Uncertainty of parameters in SUFI2 is expressed as uniformly distributed 

ranges, parameter uncertainties lead to model output uncertainties, and the output 

uncertainty is quantified using the 95% prediction uncertainty (95PPU), which is 

calculated at 2.5% and 97.5% of cumulative distribution obtained through Latin 

hypercube sampling [K Abbaspour et al., 2006; Schuol et al., 2008a]. Since the result of 

the SUFI2 procedure is expressed in 95PPU band, uncertainty in the optimization 
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process cannot be quantified using traditional indices such as the Nash-Sutcliffe 

Efficiency (NSE) or coefficient of determination (𝑅2) [Rouholahnejad et al., 2012]. 

Therefore, two other indices, the P-factor and R-factor, are often used to quantify the 

quality of calibration performance. The P-factor represents the percentage of data 

bracketed by the 95PPU band and has a maximum value of 100%; the R-factor, on the 

contrary, is the average width of the band divided by the standard deviation of the 

corresponding measured variable. A P-factor approaching 100% indicates more 

measured data bracketed within the 95PPU band, while an R-factor approaching 0 

indicates a narrower band [K C Abbaspour et al., 2009]. The ideal outcome is to have the 

largest P-factor with the smallest R-factor; however in practice, the increment of P-

factor is at the expense of a larger R-factor, so the optimization procedure often needs to 

seek the best trade-off between the two factors [Schuol et al., 2008b].  

 

2.4 Sensitivity Analysis 

 Sensitivity analysis is the procedure analyzing the change of model output due to 

the variation of model inputs; it is normally used to identify the parameters that have a 

significant impact on model output. The sensitive parameters identified through this 

procedure are comparatively more important during the following model calibration 

phase [Chu and Shirmohammadi, 2004; Feyereisen et al., 2007; Lenhart et al., 2002].  

Two types of sensitivity analysis, global and one-at-a-time, are available in SWAT-CUP. 

One-at-a-time sensitivity analysis can only be performed for one parameter at a time, 

whereas global sensitivity analysis can be performed iteratively with a number of 



 

13 

 

simulations larger than 16 [K C Abbaspour, 2011], which is more convenient to conduct 

and was therefore applied in the current project. 

 A sensitivity analysis can be implemented through a variety of approaches. In 

SWAT-CUP, a t-test is performed to identify the significance of each parameter, and the 

larger the absolute value of the t-statistic and the smaller the p-value, the more sensitive 

a parameter is [K C Abbaspour, 2011]. Some previous studies have mentioned a lack of 

information in terms of SWAT’s performance in simulating streamflow caused by 

snowmelt; they have pointed out that the SWAT model for these northern watersheds 

has better performance for simulations with longer time steps [Ficklin and Barnhart, 

2014; Lee et al., 2011; Peterson and Hamlett, 1998; Qi and Grunwald, 2005; Wang and 

Melesse, 2005]. Helpful information about SWAT parameters that affect snowmelt 

hydrology is mentioned in the literature [Fontaine et al., 2002; Omani et al., 2016]. For 

this project, 14 parameters were selected for sensitivity analysis (Table 1) [Raghaven 

Srinivasan, personal communication, June 30, 2017]. 
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Table 1. Selected model parameters for sensitivity analysis.  

Hydrology 

Input Parameter 

Description 

CN2 SCS runoff curve number for antecedent moisture condition II 

ALPHA_BF Base flow alpha factor (days) 

GW_DELAY Delay time for aquifer recharge (days) 

GWQMN Threshold depth of water in the shallow aquifer required for return 

flow to occur (mm 𝐻2𝑂) 

GW_REVAP Groundwater "revap" coefficient 

REVAPMN Threshold depth of water in the shallow aquifer for "revap" or 

percolation to the deep aquifer to occur (mm 𝐻2𝑂) 

RCHRG_DP Deep aquifer percolation fraction 

SFTMP Snowfall temperature (degC) 

SMTMP Snowmelt base temperature (degC) 

SMFMX Maximum melt factor on June 21 in northern hemisphere (mm 𝐻2𝑂 

𝑑−1 ˚𝐶−1) 

SMFMN Minimum melt factor on December 21 in northern hemisphere (mm 

𝐻2𝑂 𝑑−1 ˚𝐶−1) 

TIMP Snow temperature lag factor 

SOL_AWC Available water capacity of the soil layer (mm 𝐻2𝑂 /mm soil) 

ESCO Soil evaporation compensation factor 
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 An iteration with 20 simulations was performed on the selected parameters using 

SWAT-CUP; results for the sensitivity analysis were obtained from the output t-statistic 

and p-value (Table 12 in Appendix A). 

 

2.5 Model Calibration and Validation 

2.5.1 Goodness-of-Fit Indicators 

 The SUFI2 procedure uses P-factor and R-factor, which both describe the 

characteristic of the 95PPU band, to quantify the uncertainty of SWAT-CUP iteration; 

therefore, the solution of each iteration is the output parameter range. However, the 

SUFI2 procedure can also find the best set of parameters within the output ranges and 

can compute the best objective function value for a current iteration using traditional 

statistic indices [K C Abbaspour, 2011].   

 Eleven traditional statistic indices are available in the SUFI2 procedure for 

pairwise comparison of measured data and the best model prediction, among which three 

commonly used goodness-of-fit indicators, coefficient of determination (𝑅2), NSE, and 

percent bias (PBIAS), were selected for presenting statistical results of this study and are 

briefly discussed in the following section.  

 The coefficient of determination (𝑅2) is often used as a measure of precision in 

predictions for general linear models; in SWAT-CUP, 𝑅2 can be represented by 

Equation 1: 

 𝑅2 =
[∑ (𝑄𝑚,𝑖 − 𝑄𝑚

̅̅ ̅̅ )(𝑄𝑠,𝑖 − 𝑄𝑠
̅̅ ̅)𝑖 ]

2

∑ (𝑄𝑚,𝑖 − 𝑄𝑚
̅̅ ̅̅ )

2
𝑖 ∑ (𝑄𝑠,𝑖 − 𝑄𝑠

̅̅ ̅)
2

𝑖

 (1) 
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where 𝑄 is the variable, m and s stand for measured and simulated, respectively, and i  

stands for the 𝑖𝑡ℎ data point [K C Abbaspour, 2011]. 𝑅2 is often used in searching for the 

regression equation between two sets of data; it has a value range from 0 to 1, and a 

larger 𝑅2 indicates an increase in predictive precision [Barrett, 1974]. 

 NSE is a dimensionless index widely applied in many hydrologic models; it is a 

normalized statistic and determines the magnitude of residual variance compared to 

measured data variance [Nash and Sutcliffe, 1970]. Some previous studies have 

suggested that NSE is better at evaluating model goodness-of-fit than 𝑅2, mainly 

because 𝑅2 is insensitive to additive and proportional differences between measured and 

simulated data; however, it has also been pointed out that NSE can be overly sensitive to 

extreme outliers because it squares the values of paired differences [R Harmel et al., 

2014; R D Harmel and Smith, 2007; Qi and Grunwald, 2005]. NSE can be represented 

by Equation 2: 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚 − 𝑄𝑠)𝑖

2
𝑖

∑ (𝑄𝑚,𝑖 − 𝑄𝑚
̅̅ ̅̅ )2

𝑖

 (2) 

where 𝑄 is the variable, m and s stand for measured and simulated, respectively, and i  

stands for the 𝑖𝑡ℎ data point [K C Abbaspour, 2011]. NSE ranges from –∞ to 1.0, with 

NSE = 1.0 representing the optimal fitting. A negative NSE value indicates that the 

mean observed value is a better fit compared to the simulated value [Moriasi et al., 

2007; X Zhang et al., 2010; X Zhang et al., 2009]. Furthermore, Moriasi et al. mentioned 

that NSEs between 0.0 and 1.0 are generally viewed as acceptable levels of model 

performance; however, an NSE larger than 0.50 is often viewed as the behavior 
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threshold for satisfactory model performance [Daggupati et al., 2015; Omani et al., 

2016]. 

 PBIAS measures the average tendency of simulated data to be larger or smaller 

than observations [Gupta et al., 1999]. The model reaches optimal prediction with a 

PBIAS of 0.0, and a lower magnitude of PBIAS indicates a more accurate model 

prediction. Furthermore, positive values indicate that the model output underestimates 

the observation, while negative values indicate overestimation [Gupta et al., 1999; 

Moriasi et al., 2007]. PBIAS is calculated by Equation 3: 

 𝑃𝐵𝐼𝐴𝑆 = 100 ∗
∑ (𝑄𝑚 − 𝑄𝑠)𝑖𝑖

∑ 𝑄𝑚,𝑖𝑖
 (3) 

where 𝑄 represents the variable, m and s stand for measured and simulated, respectively, 

and i  stands for the 𝑖𝑡ℎ data point [K C Abbaspour, 2011]. While PBIAS can clearly 

indicate poor prediction accuracy, the value of PBIAS tends to vary more compared with 

previously mentioned indicators; meanwhile, it also varies more substantially between 

wet and dry years [Moriasi et al., 2007]. An absolute value of PBIAS smaller than 25 is 

considered to be satisfactory for SWAT model calibration [Daggupati et al., 2015; 

Omani et al., 2016]. 

 

2.5.2 Model Calibration Procedure 

 Application of a multisite and multivariable method can significantly improve 

model calibration by highlighting the hydrological processes associated with spatial 

variation [Cao et al., 2006; X-s Zhang et al., 2008]. The current study sought to evaluate 



 

18 

 

a flood management project that considers discharge the major issue; therefore, 

discharge was used as the only variable in the calibration process. On the other hand, 

given the relatively large spatial extent of the study watershed, discharge data from three 

USGS gage stations were obtained for calibration and validation. The surface water 

gages include USGS 05054000, Red River of the North at Fargo, ND, USGS 05053000, 

Wild Rice River near Abercrombie, ND, and USGS 05051522, Red River of the North at 

Hickson, ND (Figure 2). The calibration and validation procedures were conducted in a 

monthly time step to reduce computational time in SWAT-CUP. Monthly average 

discharge for the three stations from 1991 to 2010 was obtained from the USGS National 

Water Information System (https://waterdata.usgs.gov/nwis/monthly/). 

 Among the 14 parameters selected for sensitivity analysis, 10 parameters with a 

comparatively larger impact on model output were selected for model calibration. Rank 

of parameter sensitivity and initial parameter adjustment range are presented in Table 2. 

Changes made to the parameters during the calibration procedure should follow their 

physical meaning, so for most parameters in Table 2, the existing parameter value is to 

be replaced by the given value; however, for parameters that have spatial variability, 

such as curve number or soil parameters, the often applied types of change are relative, 

which means multiplying the existing parameter value by 1 plus the given value, or 

absolute, meaning the given value is added to the existing parameter [K C Abbaspour, 

2011].  

 

 

https://waterdata.usgs.gov/nwis/monthly/
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 Table 2. Selected Parameters for Model Calibration 

Hydrology Input 

Parameter 

Sensitivity 

Rank 

File 

Extension 

Method of 

Change 

Value Range 

CN2 1 .mgt Relative –0.1, 0.1 

SMFMN 2 .bsn Replace 0.0, 2.5 

SOL_AWC 3 .sol Relative –0.05, 0.05 

RCHRG_DP 4 .gw Absolute –0.05, 0.05 

GWQMN 5 .gw Absolute –1000, 1000 

ESCO 6 .hru Replace 0.6, 0.95 

SFTMP 7 .bsn Replace –2.0, 1.0 

SMFMX 8 .bsn Replace 2.5, 4.5 

ALPHA_BF 9 .gw Replace –0.0, 1.0 

TIMP 10 .bsn Replace –0.0, 1.0 

 

 NSE was used as the objective function for the calibration procedure with its 

behavior threshold set to 0.50. SUFI2 is an iterative procedure with each iteration 

containing a number of simulations; for this reason, the SWAT-CUP user manual 

recommends around 500 simulations for each iteration and repeating the iteration to find 

better statistical results; usually, less than five iterations is sufficient to reach an 

acceptable solution. However, the user manual also mentions that fewer numbers of 

simulations, 200 to 300 for instance, could be acceptable if a SWAT project is 

overwhelming for the available computational resource [K C Abbaspour, 2011]. For this 

project, four iterations, each with 300 simulations, were performed for the calibration 
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phase spanning from 1991 to 2000, in which output parameter ranges of an iteration 

were used to update the input parameter range of the next iteration. After the calibration 

procedure, the output parameter ranges of the last iteration were used as the input 

parameter ranges of model validation. In the meantime, the observed discharge data 

were updated to the years 2001 to 2010. Model validation was performed afterward 

through an iteration with 300 simulations making the above-mentioned changes.  

 

2.5.3 Calibration and Validation Results 

 The objective of model calibration was reached, given that the overall output of 

objective function for both calibration and validation period are above the 0.50 behavior 

threshold. The weighted best NSE for the study watershed has the value 0.774 for the 

calibration period and 0.766 for the validation period (Table 3). 
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Table 3. Calibration and validation statistic results for the study watershed. 
Period  Objective 

Function 

(NSE) 

USGS 

Gage 

P-

factor 

R-

factor 

Coefficient of 

Determination 

(R2) 

NSE PBIAS 

Calibration 

(1991 to 

2000) 

0.774 05051522 0.52 0.42 0.82 0.74 19 

05054000 0.56 0.4 0.86 0.86 7.1 

05053000 0.22 0.36 0.77 0.72 –31.8 

Validation 

(2001 to 

2010) 

0.766 05051522 0.43 0.41 0.76 0.72 5.6 

05054000 0.47 0.39 0.76 0.76 0.7 

05053000 0.34 0.31 0.84 0.82 –1.8 

 

Meanwhile, results from the goodness-of-fit indicators show that model 

prediction reached satisfactory levels for each calibrated subbasin during both the 

calibration and validation periods [Moriasi et al., 2007]. During the calibration period, 

the Red River of the North at the Fargo (USGS 05054000) gage station, which is also the 

outlet of the entire study watershed, reached the best statistical results among the three 

calibrated sites. However, for the validation period, the Wild Rice River near 

Abercrombie (USGS 05053000) showed the best statistical performance (Table 3).  
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Figure 3. Measured versus simulated discharge during the model calibration period. 
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Figure 4. Measured versus simulated discharge during the model validation period. 

 

 Graphic comparison between the measured and simulated monthly average 

discharge indicates that for both the calibration and validation periods, the HAWQS 

output can generally predict the trend of streamflow in the study watershed and can also 

capture the period with extremely large discharge. However, a wider uncertainty band 

was observed for the months with relatively high discharge, as well as a narrower band 

for the low discharge months, indicating that the model has more accurate representation 
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for low streamflow during dry seasons, yet is less confident in predicting large discharge 

events during rainfall or snowmelt seasons (Figure 3 and Figure 4). The final results for 

the calibration and validation process are the range of parameters generated from the last 

calibration iteration, yet only the “best values” giving the optimal objective function 

value in the last iteration were used for the predictive simulations. The solution 

parameter ranges and the best parameter set, along with the corresponding method of 

change for each hydrological parameter, are documented in Table 4. 

 

Table 4. Output hydrology parameters of calibration and validation periods. 

Hydrology 

Parameter 

Method of 

Change 

Minimum 

Value 

Maximum 

Value 

Best 

Value 

CN2 Relative –0.02603 0.026317 0.000756 

ALPHA_BF Replace 0.442177 0.807037 0.537649 

GWQMN Absolute –989.505 –426.971 –561.042 

RCHRG_DP Absolute –0.00351 0.035731 0.003361 

SFTMP Replace 0.279737 0.894913 0.680627 

SMFMX Replace 4.029216 4.5 4.246561 

SMFMN Replace 0.885622 1.513742 1.447789 

TIMP Replace 0.517077 0.804303 0.518513 

SOL_AWC Relative 0.027779 0.047675 0.028011 

ESCO Replace 0.620969 0.781543 0.713834 
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2.6 Predictive Simulation Setup 

2.6.1 Climate Change and General Circulation Models 

 Anthropogenic climate change induced by greenhouse effects has been widely 

discussed during recent decades; it is widely accepted that the increase in greenhouse 

gas, mainly 𝐶𝑂2, since the Industrial Revolution has incurred significant impact on the 

global climate pattern, and warming of the climate system is now evident based on the 

observed increase in global average surface temperature [Solomon et al., 2007]. The 

2007 Intergovernmental Panel on Climate Change (IPCC) report further pointed out that 

climate change is expected to have a more distinct impact on weather patterns in mid- 

and high-latitude regions in the northern hemisphere, and snowmelt and runoff in 

western North America has occurred at increasingly earlier times of a year since the late 

1940s; some studies have even predicted that streamflow in colder climate zones is 

projected to change from the current snowmelt-driven, spring-flood-dominated flow 

regime to a dampened flow regime dominated by a large winter streamflow  [Parry et 

al., 2007; Teutschbein and Seibert, 2012].  

 The general circulation models (GCMs) are numerical models that simulate the 

impacts of increasing greenhouse gas concentration on the global climate system. The 

GCMs depict physical processes in the atmosphere using a three dimensional grid over 

the globe, which has a relatively coarse resolution that often cannot properly model 

physical processes on small local scales [Parry et al., 2007]. One of the key uncertainties 

in climate projection is the uncertainty in future emissions, climate modelers apply 

several different emission scenarios to represent the emission related uncertainty. It is 
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pointed out in a previous study that the selection of climate scenarios in impact and 

adaptation assessments has often been arbitrary, and the selected scenarios rarely capture 

the entire range of uncertainties [Ruosteenoja et al., 2003]. However, two future 

projection simulations with specified representative concentration pathways (RCPs), 

namely the high emission scenario (RCP8.5) and the midrange mitigation emission 

scenario (RCP4.5), are core set of scenarios that often conducted in the GCM 

experiments and used for long-term hydrological impact assessments [Taylor et al., 

2012].  

 Previous studies have used general circulation models on trends assessment of 

streamflow in North America, results of the studies generally indicate the rising global 

temperature could lead to increase of precipitation on the local scale [Douglas et al., 

2000]. Studies conducted by Groisman and Easterling [1994],  and Karl and Knight 

[1998] also provide the similar prediction that precipitation amount and intensity across 

the US and Canada increased in the recent decades. More specifically on the region 

where the study area of this project is located, Lettenmaier et al. [1994] found strong 

increases in monthly streamflow during November through April from 1948 to 1988 in 

north central region of the United States, and an assessment of streamflow records from 

36 USGS gage stations in Minnesota suggests that while the peak flow due to snowmelt 

does not appear to change at a significant rate, average discharge in the region have 

shown clear increase [Novotny and Stefan, 2007].  
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2.6.2 Description of Change Factor Methodology 

 Results from one of the general circulation models were applied as input climate 

signals for the predictive models in this project. Studies analyzing the hydrological 

response to the impacts of climate change are often conducted by coupling a regional 

climate model with a hydrological model. Transferring the changing signals from 

climate models to hydrological models requires an interface [Andréasson et al., 2004]. 

Although more sophisticated methods are now available for climate signal transferring, a 

popular and straightforward approach is to apply change factor methodology (CFM). 

General procedures for applying CFM include three steps: (1) establishing a baseline 

climatology for the weather variables in a study area, (2) calculating changes of the 

weather variables for the study area obtained from a climate model, and (3) adding the 

changes to the baseline time series [Arnell and Reynard, 1996; Diaz-Nieto and Wilby, 

2005]. 

 Based on the number of change factors (CFs), the CFM can be categorized into 

single and multiple CFs. Values of the interested weather variables are calculated 

identically for single CFs, while multiple CFs provide more variability that enables 

approximation of more complex climate scenarios and are calculated separately for 

different magnitudes of the interested variables [Akhtar et al., 2008; Anandhi et al., 

2011; Hay et al., 2000]. Two types of mathematical formulations are used to apply 

CFM: (1) addictive CFM, where the arithmetic difference between current climate data 

and future climate prediction for a variable is obtained from a GCM grid location, and 

the difference is then added to observed local weather data to generate future weather 
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data and (2) multiplicative CFM, where the ratio between current and predicted 

simulations is multiplied with observed local data [Anandhi et al., 2011]. 

 This study applied the single CF procedure for climate change assessment; 

moreover, both additive and multiplicative approaches were used. The additive approach 

calculates temperature data, and the multiplicative approach is used for precipitation.  

 The first step of the single CF procedure calculates the mean values of GCM 

baseline and future climate variables and can be represented by Equations 4 and 5: 

 𝐺𝐶𝑀𝑏̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝐺𝐶𝑀𝑏𝑖/𝑁𝑏

𝑁𝑏

𝑖=1

 (4) 

 𝐺𝐶𝑀𝑓̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝐺𝐶𝑀𝑓𝑖/𝑁𝑓

𝑁𝑏

𝑖=1

 (5) 

where 𝐺𝐶𝑀𝑏𝑖 and 𝐺𝐶𝑀𝑓𝑖 are the values of baseline and future scenarios, 𝐺𝐶𝑀𝑏̅̅ ̅̅ ̅̅ ̅̅  and 

𝐺𝐶𝑀𝑓̅̅ ̅̅ ̅̅ ̅̅  are the mean values for the given period, and 𝑁𝑏 and 𝑁𝑓 stand for the number of 

data points for each variable [Anandhi et al., 2011], which in this study represents a 

number of days.  

 The second step calculates the additive (𝐶𝐹𝑎𝑑𝑑) and multiplicative (𝐶𝐹𝑚𝑢𝑙) CF 

using Equations 5 and 6: 

 𝐶𝐹𝑎𝑑𝑑 = 𝐺𝐶𝑀𝑓̅̅ ̅̅ ̅̅ ̅̅ − 𝐺𝐶𝑀𝑏̅̅ ̅̅ ̅̅ ̅̅  (6) 

 𝐶𝐹𝑚𝑢𝑙 = 𝐺𝐶𝑀𝑓̅̅ ̅̅ ̅̅ ̅̅ /𝐺𝐶𝑀𝑏̅̅ ̅̅ ̅̅ ̅̅  (7) 

 Step three obtains the future climate data by applying CF to the observed local 

data, which can be represented using Equations 8 and 9: 
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 𝐿𝑓𝑎𝑑𝑑,𝑖 = 𝐿𝑂𝑏𝑖 + 𝐶𝐹𝑎𝑑𝑑 (8) 

 𝐿𝑓𝑚𝑢𝑙,𝑖 = 𝐿𝑂𝑏𝑖 ∗ 𝐶𝐹𝑚𝑢𝑙 (9) 

where 𝐿𝑓𝑎𝑑𝑑,𝑖 and 𝐿𝑓𝑚𝑢𝑙,𝑖 are the values of future scenarios obtained from additive and 

multiplicative CFs and 𝐿𝑂𝑏𝑖 is the observed local climate time series [Anandhi et al., 

2011]. 

 

2.6.3 Weather Input Setup 

 Results from one of the GCMs, the Geophysical Fluid Dynamics Laboratory’s 

global coupled carbon-climate earth system model with vertical coordinates based on 

density (GFDL-ESM2G) [Dunne et al., 2012], were used to calculate CF in this project. 

The GFDL-ESM2G is a part of the CMIP5, which is conducted by 20 modeling groups 

around the world to produce a new set of coordinated climate model experiments 

[Sheffield et al., 2013]. Assessments conducted in previous studies have confirmed that 

GFDL-ESM2G output has achieved sufficient fidelity for meaningful perturbation 

studies [Dunne et al., 2012; Sillmann et al., 2013].  

 Climate data obtained from the GCMs are often downscaled for application at the 

local scale [Wilby and Wigley, 1997]. In this project, the 1-degree observed climate data 

and 1-degree bias-corrected GCM projections of the GFDL-ESM2G were obtained from 

the "Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections" online archive 

(http://gdo-dcp.ucllnl.org). The archive enables its users to define a tributary area as the 

spatial extent for the requested climate data by entering longitude and latitude values of 

a watershed outlet. Daily observed and projected data of RCP4.5 and RCP8.5 scenarios 
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for the study area with calculated spatial mean were downloaded from the archive, 

observed data from 1980 to 1999 were used as the baseline, and projected data from 

2026 to 2045 were used as the future scenario for CF calculation.  

 Monthly CFs were calculated using Equations 4 to 9. For the two projection 

scenarios (RCP4.5 and RCP8.5) being analyzed, two sets of CFs were calculated on 

divided periods, CF for 2026 to 2035 used observations from 1980 to 1989 as its 

baseline, and CF for 2036 to 2045 used observations from 1990 to 1999. CF for 

precipitation was calculated using the multiplicative approach, with its results presented 

as percentages (Table 5). While for the temperature data an additive approach was 

applied, CF for maximum and minimum daily temperature was calculated separately and 

averaged to obtain the overall CF for temperature (Table 6).  
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Table 5. Monthly CF for precipitation, in percentage. 
Period 2026 to 2035 2036 to 2045  

Emission 

Scenario 

Monthly 

Precipitation of 

Baseline Period 

(mm) 

RCP4.5 RCP8.5 Monthly Precipitation 

of Baseline Period 

(mm) 

RCP4.5 RCP8.5  

Jan 16.265 0.26 –13.47 20.860 –9.04 –16.71  

Feb 11.815 41.25 39.04 13.886 –37.25 –1.23  

Mar 29.183 –13.34 59.15 30.941 8.28 –20.79  

Apr 35.715 60.51 65.78 45.634 55.72 26.00  

May 64.410 9.29 22.85 74.329 16.04 35.12  

Jun 84.946 37.84 27.16 109.850 27.87 –2.99  

Jul 83.018 5.07 14.97 102.674 1.43 –6.29  

Aug 83.901 12.32 11.37 72.758 -5.65 10.97  

Sep 61.977 41.87 28.89 62.184 6.54 4.01  

Oct 50.253 5.37 –2.12 54.637 –28.79 –26.54  

Nov 23.951 15.72 12.43 25.098 –9.78 –4.90  

Dec 11.494 69.96 78.29 12.740 21.00 32.29  
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Table 6. Monthly CF for temperature, in degC. 
Period 2026 to 2035 2036 to 2045 

Emission 

Scenario 

Average Monthly 

Temperature of 

Baseline Period 

(degC) 

RCP 

4.5 

RCP 

8.5 

Average Monthly 

Temperature of 

Baseline Period (degC) 

RCP  

4.5 

RCP 

8.5 

Jan –12.31 0.640 2.624 –13.36 1.925 2.002 

Feb –9.55 0.872 0.663 –8.59 0.315 0.790 

Mar –2.42 0.739 0.026 –2.67 2.205 0.948 

Apr 7.25 0.486 0.312 5.58 0.892 1.538 

May 14.44 –0.756 –1.296 13.55 0.364 –0.207 

Jun 18.45 –0.175 0.453 18.76 –0.842 –0.189 

Jul 22.08 –0.456 –0.089 20.13 0.570 1.759 

Aug 20.28 0.104 1.971 20.15 0.822 1.512 

Sep 13.98 1.287 1.969 14.90 0.597 3.011 

Oct 7.06 1.816 2.575 7.41 2.330 2.601 

Nov –2.18 2.342 0.992 –2.69 1.550 2.654 

Dec –10.98 2.967 3.184 –8.86 1.565 0.784 

 

 Despite the fact that HAWQS possesses most of the functions and capabilities of 

SWAT and enables its users to edit commonly sensitive hydrological parameters, it still 

lacks the option to edit all existing parameters, a feature that SWAT has. In addition, the 

operations for conducting climate variability analysis are comparatively limited in 

HAWQS at the current stage. Thus, another SWAT model interface, SWAT-Editor, was 

used to set up the predictive simulations. SWAT-Editor is a standalone application for 
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editing parameters and the SWAT database; it can run SWAT models without the 

support of ArcGIS. SWAT-Editor requires the input of a SWAT parameter geodatabase 

and a SWAT project database [Winchell and Srinivasan, 2012]. 

In this study, daily simulations from 1980 to 1999 of the study area were 

conducted using HAWQS; the output project files from HAWQS, which contains the 

unique project database, were used as the input for SWAT-Editor. The fitted parameters 

from the calibration procedure were adjusted in SWAT-Editor, and the calculated CFs 

for each month (Tables 5 and 6) were integrated into the model by adjusting the 

correlated subbasin parameters (Table 7). Four climate change predictive simulations 

were set up and run after these procedures (i.e., RCP4.5 from 2026 to 2035, RCP8.5 

from 2026 to 2035, RCP4.5 from 2036 to 2045, and RCP8.5 from 2036 to 2045). 

Table 7. Adjusted climate variability parameters [Arnold et al., 2012]. 

SWAT Input 

Parameter 

File 

Extension 

Description 

RFINC 

(mon) 

.sub Rainfall adjustment (% change). Daily rainfall within 

the month is adjusted by the specified percentage. 

TMPINC 

(mon) 

.sub Temperature adjustment (degC). Daily maximum and 

minimum temperatures within the month are raised or 

lowered by the specified amount. 

2.6.4 Flood Diversion Channel Setup in SWAT-Editor 

Among the hydrological structures planned in the final EIS for the F-M flood risk 
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management project, the flood diversion channel plays the most significant role in 

reducing the flood risk of the F-M urban area. The diversion channel of the Red River 

starts near Horace, North Dakota, and is designed to extend 30 miles northward on the 

west side of the F-M urban area; an outlet of the diversion channel would meet the Red 

River near Georgetown, Minnesota (Figure 9 in Appendix A) [Minnesota Department of 

Natural Resources, 2016]. 

In evaluating the flood reduction capability of the flood management project for 

the urban area, discharge downstream the Red River is not a major concern given the 

low population density of the downstream area, so this study focused on assessing the 

projected streamflow of the Red River’s main channel at the F-M urban area. Point-

source loadings were applied in SWAT-Editor to represent the diversion channel. The 

diversion channel is designed to receive at maximum 566.34 m3/s (20,000 ft3/s) of 

discharge; the control structure at the diversion channel inlet enables artificial control of 

actual discharge in the channel. Additionally, although it is not clear right now how the 

local authority will manage the amount of discharge in the diversion channel, it is 

mentioned in the final EIS that the diversion channel would only be put to use when 

discharge in the Red River main channel could induce flood risk [Minnesota Department 

of Natural Resources, 2016]. 

Therefore, this study used a few simplified procedures to represent the complex 

nature of the real scenario for the diversion channel. After conducting the climate change 

predictive simulations in SWAT-Editor, the daily output discharge data of the subbasin 
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at the F-M urban area were queried to find the days with discharge larger than 631.46 

m3/s (22,300 ft3/s). The 631.46-m3/s discharge corresponds to 11.16 m (36.6 ft) of stage 

height for the USGS gage at Fargo (USGS 05054000), which is stated in the EIS as the 

amount of discharge at which significant flood damage can occur (Table 13 in Appendix 

A). The daily point-source files for each period and emission scenario were created 

based on the query conducted on the discharge output of the climate change predictive 

simulations, in which all the days with larger than 631.46-m3/s discharge are applied 

with a daily total water extraction of 48,931,511.62 m3, which matches the maximum 

diversion capability of 566.34 m3/s.  
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CHAPTER III 

RESULTS AND DISCUSSION 

 

3.1 Results 

 Figure 5 shows the simulated and measured daily streamflow of the Red River at 

Fargo between 1980 and 1999, which is further divided into two periods, each with a 

decade-long record. Local weather input of these two periods was used as the baseline of 

the predictive simulations and was added or multiplied with the single CFs. Graphic 

comparison of the measured and simulated time series shows that model-simulated data 

on a daily time step generally capture the trend of observed streamflow; however, the 

comparison generally suggests overestimation for the entire modeling period. 

 

 

Figure 5. Two periods (1980 to 1989 and 1990 to 1999) of simulated and measured 

discharge of the Red River of the North at Fargo, ND. 
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 Figure 6 and Figure 7 present the projected streamflow for 2026 to 2035 and 

2036 to 2045. Four projected scenarios are included in each figure: the RCP4.5 and 

RCP8.5 without the flood diversion channel indicate future projections under the two 

emission scenarios without considering the effects of the flood management project, 

while the RCP4.5 and RCP8.5 with the diversion channel indicate the results when the 

diversion channel is included in the simulations in the form of point-source extraction. 

Graphic comparisons between the time series in Figure 6 and Figure 7 generally show 

that the diversion channel is effective at reducing the extremely large discharges of the 

Red River at Fargo. Furthermore, although not directly discernable from the figures, for 

the diversion-channel-included time series, daily discharge for the days without direct 

water extraction also sees a slight decrease. 

 

 

Figure 6. Predicted Daily Streamflow of the Red River at Fargo from 2026 to 2035 

under four possible scenarios (RCP4.5 with diversion channel, RCP4.5 without diversion 

channel, RCP8.5 with diversion channel, RCP8.5 without diversion channel). 
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Figure 7. Predicted Daily Streamflow of the Red River at Fargo from 2036 to 2045 

under four possible scenarios (RCP4.5 with diversion channel, RCP4.5 without diversion 

channel, RCP8.5 with diversion channel, RCP8.5 without diversion channel). 

 

 Statistics of the projected time series were calculated to investigate the variability 

of simulated streamflow. For the discharge of each projected scenario, mean, variance, 

coefficient of variation (CV, the standard deviation divided by the mean), and skewness 

were calculated. The CV accounts for the changes in streamflow variability associated 

with changes in the mean, whereas a positive skewness indicates a tendency of lower-

streamflow days outnumbering higher-streamflow days [Pagano and Garen, 2005].  
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Table 8. Statistical results of the baseline and projected daily streamflow scenarios for 

2026 to 2035 and 2036 to 2045, units in m3/s. 
Period 2026 to 2035 

Scenario Baseline 

Scenario 

(1980-1989) 

RCP4.5 Without 

Flood Diversion 

RCP8.5 Without 

Flood Diversion 

RCP4.5 

With Flood 

Diversion 

RCP8.5 

With 

Flood 

Diversion 

Mean 44.87 95.75 101.82 88.90 93.85 

Variance 3343.07 15657.89 18149.37 9362.16 10357.35 

Coefficient of 

Variation 

1.29 1.31 1.32 1.09 1.08 

Skewness 4.16 4.03 4.12 2.69 2.76 

Period 2036 to 2045 

Scenario Baseline 

Scenario 

(1990-1999) 

RCP4.5 Without 

Flood Diversion 

RCP8.5 Without 

Flood Diversion 

RCP4.5 

With Flood 

Diversion 

RCP8.5 

With 

Flood 

Diversion 

Mean 73.97 96.81 80.13 90.73 76.85 

Variance 9730.80 15413.55 9591.17 9208.27 6230.34 

Coefficient of 

Variation 

1.33 1.28 1.22 1.06 1.03 

Skewness 6.80 4.48 4.62 2.80 2.66 

 

 

The statistical results (Table 8) generally demonstrate that, overall, the projected 

streamflow under each period and emission scenario is wetter than the corresponding 
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baseline scenario. More specifically, the RCP8.5 scenarios are wetter (higher mean) 

from 2026 to 2035, but drier (lower mean) in the following decade compared with 

RCP4.5 scenarios. Furthermore, the drier period has always been associated with lower-

streamflow variability (lower mean corresponds with lower variance and CV). Lower 

variance and CV were observed for the scenarios that include the diversion channel, 

indicating that the flood diversion project can significantly reduce the streamflow 

variability of the Red River at Fargo. Positive skewness was observed for all the 

projected streamflow scenarios, suggesting that the flow regime of the Red River would 

still be dominated by relatively low-streamflow days for the majority of the simulation 

time; however, a few extremely large discharge predictions will heavily influence the 

shape of the time series distribution. 

To further assess the effectiveness of the F-M flood diversion project, the number 

of days for different magnitudes of flood recurrence intervals of the Red River at Fargo 

was queried from the simulation output of each scenario. The original discharge 

threshold data for each magnitude of recurrence intervals (Table 9) were obtained from 

the Federal Emergency Management Agency (FEMA) Clay County Flood Insurance 

Study and were documented in the final EIS for the F-M flood risk management project 

[Minnesota Department of Natural Resources, 2016]. Results of the query are displayed 

in Figure 8. For the decade between 2026 and 2035, RCP8.5 scenarios predict more 

flood events than RCP4.5 scenarios, whereas the situation reverses for the following 

decade. In the predictive simulations, the diversion channel is only added into the model 

when discharge exceeds 631.46 m3/s (22,300 ft3/s; i.e., 50-year FEMA), the number of 
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flood events with high magnitude (i.e., 50-, 100-, and 500-year FEMA) is significantly 

reduced when the diversion channel is included; however, the number of low-magnitude 

flood events (i.e., 10-year FEMA) slightly increases (Figure 8 and Table 14 in Appendix 

A).  

More specifically, the predictive simulations indicate that extracting water 

through the diversion channel during high-flow days completely eliminates occurrence 

of a 500-year flood and eliminates occurrence of a 100-year flood under drier projections 

(i.e., RCP4.5 from 2026 to 2035, RCP8.5 from 2036 to 2045), whereas under wetter 

projections, an 88% reduction in 100-year flood events is predicted under scenario 

RCP8.5 from 2026 to 2035, with three daily flow events exceeding the 100-year 

recurrence interval predicted to occur. An 88.89% reduction of 100-year flood events is 

predicted under scenario RCP8.5 from 2036 to 2045, with another two daily flow 

projections exceeding the 100-year recurrence interval. The 50-year flood is eliminated 

under RCP8.5 scenarios from 2036 to 2045, whereas for the other three predictive 

scenarios, the number of 50-year floods is reduced by around 85%. The number of 

occurrences for the 10-year flood sees a slight increase ranging from 6.83% to 10.84% 

(Table 10).  
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Table 9. FEMA Peak flow and stage data of USGS gage at Fargo, data obtained from 

Clay County Flood Insurance Study [Minnesota Department of Natural Resources, 

2016]. 

Event Discharge 

(ft3/s)  

Stage (ft)  Discharge 

(m3/s) 

Stage (m)  

10-year FEMA 10,300 29.5 291.66 9.0 

50-year FEMA 22,300 36.6 631.46 11.2 

100-year FEMA 29,300 39.3 829.68 12.0 

500-year FEMA 50,000 43.5 1415.83 13.3 

 

 

 

Figure 8. The number of days from (a) 2026 to 2035 and (b) 2036 to 2045 with 10-, 50-, 

100-, and 500-year flood magnitudes under four projected discharge scenarios (RCP4.5 

with flood diversion, RCP4.5 without flood diversion, RCP8.5 with flood diversion, and 

RCP8.5 without flood diversion). 
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Table 10. Percent change of the number of different-magnitude flood events when 

diversion channel is included. 

Period 2026 to 2035 2036 to 2045 

Scenario RCP4.5  RCP8.5  RCP4.5  RCP8.5  

50-year  –85.19 –85.19 –85.00 –100.00 

100-year  –100.00 –88.00 –88.89 –100.00 

500-year  NA NA –100.00 NA 

 

 

3.2 Discussion 

The streamflow output from projected climate change scenarios shows that from 

2026 to 2035, the RCP4.5 emission scenario predicts a wetter condition for the study 

area compared with the RCP8.5 scenario, whereas from 2036 to 2045, the RCP4.5 

scenario predicts a drier condition. The diversion channel on the west side of Fargo is 

the most important structural measure of the F-M flood management project and is 

simplified as a point source, which is added into the model using SWAT-Editor. The 

diversion channel is only included on selected days with fairly large discharge; output of 

the model scenarios with water extraction in this manner indicates that the diversion 

channel is effective at reducing the number of large-magnitude streamflow events (50-, 

100-, and 500-year recurrence intervals). 

While assessing the results of simulations, it is important to point out that some 

limitations in the methodology can induce potential errors for the predictions of this 

study. Given the relatively large number of subbasins created in the HAWQS for the 
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study area and limited computational resources, the HAWQS was calibrated in a 

monthly time step, and the calibrated parameters were transferred temporally to produce 

daily predictions for future scenarios. As shown in Figure 5 where the simulated daily 

streamflow generally overestimates the observed data, the error can be transmitted into 

the predictive simulations and can cause overestimation of future floods.    

In addition, the structural measures of the F-M flood management project were 

oversimplified in the predictive simulation designs in this study. Although the flood 

diversion channel was included in the analysis, other structure measures, such as 

additional embankments and staging area for flood storage were not incorporated into 

the evaluation. Moreover, the approach of simulating the diversion channel in this study 

is to only apply water extraction on days with discharge exceeding the 50-year 

recurrence interval, whereas in a practical situation, the amount of water diverted from 

the Red River can be artificially manipulated through the inlet control structure, thereby 

creating much more complex scenarios of flood diversion than the model simulations.  

The approach for incorporating future climate variation can introduce error to the 

output as well. In this study, results from only one GCM were used for the calculation of 

CFs. Future analysis on this topic can use more GCMs to generate scenarios for 

comparison purposes. Another limitation associated with weather input is a common 

disadvantage of applying single CFM, in which the temporal sequencing of wet and dry 

days generally remains unchanged between baseline simulation and predictive 

simulation [Anandhi et al., 2011]. In this study, the predictive daily time series (Figure 6 
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and Figure 7) also followed the temporal sequence of the baseline time series from 1980 

to 1999 (Figure 5). 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

 The objective of this study was to analyze the streamflow regime variation of the 

Red River of the North at Fargo under different future climate projections and to 

evaluate the effectiveness of the F-M flood diversion project in reducing the magnitude 

of potential flood events. The upper Red River basin was selected as the study 

watershed, with its outlet overlay within the F-M urban area. HAWQS was used to set 

up the hydrologic simulations for the study area, and a simulation with a monthly time 

step was performed for sensitivity analysis, model calibration, and model validation, 

which were conducted using the SWAT-CUP SUFI2 procedure. After the calibration 

process, HAWQS was used to set up a new simulation with a daily time step. The daily 

simulation project database generated using HAWQS was connected to SWAT-Editor, 

in which the calibrated parameter and the future climate projections from a GCM were 

edited. Predictive simulations were set up under RCP4.5 and RCP8.5 emission scenarios 

for two separate periods, 2026 to 2035 and 2036 to 2045, which represent the short- to 

medium-terms following completion of the flood diversion project. After setting up the 

climate change scenarios, the diversion channel was added to each scenario in the form 

of point-source water extraction.  

Results from this study show that the Red River of the North would experience 

wetter conditions under all projected climate change scenarios for the entire time span of 

the predictive simulations. Meanwhile, the implementation of the diversion channel near 
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the F-M urban area would have a significant impact on the flow regime of the Red River 

in this area, and a streamflow pattern with lower average discharge and lower flow 

variability is predicted for the simulations when flood diversion is included. The 

effectiveness of the flood diversion channel was further evaluated by querying the 

number of days of different-magnitude flood events for each predictive scenario. Results 

of the query show a clear reduction in large-magnitude events. 

Some important limitations of this study include the model calibration and 

validation being performed on a monthly time step and the predictive simulations being 

performed on a daily time step, as well as the procedure of transferring parameters 

through a temporal scale potentially leading to errors in the predictive model. In the 

future climate projections produced from single CFM, the temporal sequencing of wet 

and dry days in the predictive simulations generally remains unchanged. In addition, the 

oversimplification of the flood diversion channel in the model simulations cannot 

realistically represent the complex situation when the flood diversion project is put into 

actual use. For future works on this topic, it is preferable to have the calibration and 

validation process performed on a daily time step. Moreover, results from more GCMs 

could be incorporated to create additional predictive scenarios for verification purposes, 

and the time span for the predictive simulations could be extended to a longer period in 

order to achieve more thorough evaluation for the F-M flood diversion project. 
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APPENDIX A 

 

Table 11. Land use distribution of the study watershed. 

Land Use Area % of Total Area Description 

SOYC 3,351.80 km2 19.7 Soybean-Corn rotation 

CSOY 3,213.07 km2 18.88 Corn-Soybean rotation 

FRSD 1,789.63 km2 10.52 Forest-Deciduous 

WATR 1,394.10 km2 8.19 Water 

SOYB 1,099.00 km2 6.46 Soybean 

CORN 1,010.31 km2 5.94 Corn 

WETN 953.00 km2 5.6 Wetlands-Nonforested 

URLD 652.37 km2 3.83 Residential-Low Density 

RNGE 848.90 km2 4.99 Range-Grasses 

HAY 894.74 km2 5.26 Hay 

SYSW 766.54 km2 4.5 Soybean-Spring Wheat rotation 

SWSY 448.99 km2 2.64 Spring Wheat-Soybean rotation 

SWHT 329.36 km2 1.94 Spring Wheat 

SWCR 14.35 km2 0.08 Spring Wheat-Corn rotation 

ALFA 87.91 km2 0.52 Alfalfa 

URMD 67.43 km2 0.4 Residential-Medium Density 

WETF 19.72 km2 0.12 Wetlands-Forested 

FRSE 22.74 km2 0.13 Forest-Evergreen 
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Table 11. Continued. 

Land Use Area % of Total Area Description 

URHD 30.34 km2 0.18 Residential-High Density 

RNGB 10.39 km2 0.06 Range-Brush 

CRSW - - Corn-Spring Wheat rotation 

UIDU 11.25 km2 0.07 Industrial 

SWRN - - Southwestern US (Arid) Range 

WWHT - - Winter Wheat 

SFSW - - Sunflower-Spring Wheat 

rotation 

SWSF - - Spring Wheat-Sunflower 

rotation 

FRST - - Forest-Mixed 

SWCA - - Spring Wheat-Canola rotation 
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Table 12. T-test results for the sensitivity analysis.  

Parameter Name t-Stat P-Value 

9:V__SMTMP.bsn 0.04 0.97 

6:A__REVAPMN.gw 0.08 0.94 

3:A__GW_DELAY.gw 0.26 0.80 

5:V__GW_REVAP.gw –0.34 0.75 

12:V__TIMP.bsn –0.54 0.61 

2:V__ALPHA_BF.gw 0.89 0.42 

10:V__SMFMX.bsn –0.89 0.41 

8:V__SFTMP.bsn 1.06 0.34 

14:V__ESCO.hru 1.54 0.18 

4:A__GWQMN.gw –1.55 0.18 

7:A__RCHRG_DP.gw –1.59 0.17 

13:R__SOL_AWC(..).sol –1.78 0.13 

11:V__SMFMN.bsn 2.06 0.09 

1:R__CN2.mgt –3.58 0.02 
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Table 13. The number of days of different flood recurrence intervals of the Red River at 

Fargo. 
Period 2026 to 2035 

Scenario RCP4.5 Without 

Flood Diversion 

RCP8.5 Without 

Flood Diversion 

RCP4.5 With 

Flood Diversion 

RCP8.5 With 

Flood Diversion 

10-year  161 182 172 199 

50-year  27 27 4 4 

100-year  17 25 0 3 

500-year  0 0 0 0 

Period 2036 to 2045 

Scenario RCP4.5 Without 

Flood Diversion 

RCP8.5 Without 

Flood Diversion 

RCP4.5 With 

Flood Diversion 

RCP8.5 With 

Flood Diversion 

10-year  147 83 157 92 

50-year  20 11 3 0 

100-year  18 10 2 0 

500-year  1 0 0 0 

 




