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ABSTRACT 

 

 Integration of time-lapse seismic data into the reservoir model offers great 

potential in understanding reservoir flow patterns as well as reservoir properties. 

However, it also requires the solution of an inverse problem, which poses challenges in 

terms of dynamic reservoir modeling and seismic history matching to infer reservoir 

characterization.  

In this dissertation, we first present a method for assessing the inversion results 

in underdetermined problems, resulting in a multi scale data integration, Then, we 

introduce a novel history matching approach to integrate frequent seismic surveys (4D) 

using onset times.  

In the first part, an analysis of spatial resolution is incorporated into an efficient 

history matching approach, in order to indicate the reliability of the estimated solution. 

By examining the spatial resolution in seismic data integration, as a function of 

derivation type, we evaluate quantitatively the contribution of pressure and saturation 

changes on the calibrated permeability field. 

Next, we present a novel and efficient approach to integrate frequent time lapse 

(4D) seismic data into high resolution reservoir models based on seismic onset times. 

Our approach reduces multiple time-lapse seismic survey data into a single map of onset 

times, leading to substantial data reduction for history matching while capturing all 

relevant information regarding fluid flow in the reservoir. We demonstrate the practical 

feasibility of our proposed approach through the heavy oil reservoir at Pad 31 in the 
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Peace River Field (Alberta, Canada) with daily time lapse seismic surveys recorded by a 

permanently buried seismic monitoring system. 

Finally, we quantitatively investigate the effectiveness of the onset time and the 

amplitude inversion to solve the inverse problem associated with integrating 4D seismic 

data into the reservoir model. 

The results of the study demonstrate the effectiveness of the onset time approach 

for integrating a large number of seismic surveys by compressing them into a single 

map. Also, the onset times appear to be relatively insensitive to the petro elastic model 

but sensitive to the steam/fluid propagation, making it a robust method for history 

matching of time lapse surveys. 
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 CHAPTER I  

INTRODUCTION AND STUDY OBJECTIVES 

 Reconciling geologic models to the dynamic response of the reservoir, also 

known as history matching, is critical for building reliable reservoir models. This is a 

type of inverse problem in which the data misfit between observed reservoir behavior 

and calculated response from the forward simulator is minimized by calibrating the 

reservoir properties. The history matched model is then used for predicting fluid 

displacement patterns and related decision options concerning reservoir management and 

field development. 

The dynamic data could be production history, well test, tracer response, and 4-D 

seismic data. The possibility of integrating seismic surveillance data is particularly 

attractive because of the large areal coverage of the seismic data. This large quantity of 

information can be utilized to infer reservoir properties far from the wells. However, it 

poses new challenges in terms of dynamic reservoir modeling and history matching. In 

this dissertation, we focus on efficient integration of seismic data, under varying field 

conditions, to infer changes in the state of the reservoir. 

 In this chapter, we start with an overview of reservoir modeling. Then, the history 

matching problem is generally described. Finally, study objectives and the outline of this 

dissertation are summarized. 
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1.1 Overview of Reservoir Simulation 

 Reservoir simulation is the most comprehensive tool applied to describe the fluid 

movement within the reservoir. It provides a numerical solution to a set of partial 

differential equations (“PDEs”) that define the conservation laws (mass, momentum and 

energy) and a set of constitutive equations that determine the behavior of fluids in the 

formation for a given set of boundary conditions (well locations, rates, pressures, 

aquifer, gas cap, etc.) and initial conditions (oil water contacts, gas oil contact, initial 

pressure, fluids in place, etc.).  Based on the simulation response, one can design a 

production strategy to maximize recovery. 

  Reservoir modeling typically begins with the conceptual geologic model and 

the identification of regional attributes such as facies or depositional sequences, domain 

boundaries and boundary conditions, and faults. After identifying the reservoir, the 

geological model turned into a discrete system (e.g. the simulation grid) on which the 

flow equations can be solved. The geological model is typically up-scaled as its 

resolution is higher than it is practical to include in a reservoir flow simulation. The next 

step is to construct the model using early stage of production data, well logs, core data to 

infer initial fluid saturation distributions and flow properties such as permeability and 

porosity.  

Given the disparity in resolution of various types of measurements available, 

from seismic down to the core, the petrophysical properties are sampled into the 

simulation grid by utilizing geostatistical tools. The initialization of the reservoir 

equilibrium conditions occurs after the PVT data and the core analysis become available 
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from laboratory experiments. For a given production schedule, one can conduct the 

reservoir simulation in order to forecast the production of fluids at the field facilities. 

The responses of the reservoir simulation are used to select a business development plan 

which aims to maximize the oil recovery while minimizing the operational cost with 

some acceptable level of risk. 

 

1.2 Overview of History Matching 

 The reservoir model always consists of large numbers of subsurface 

uncertainties. Models derived exclusively from static data often fail to reproduce the 

observed dynamic production history and consequently will most likely give a poor 

recovery prediction. Therefore, integrating historical dynamic production data is a 

critical step to develop reliable reservoir performance models. The process is referred to 

as history matching or model calibration.  

Traditionally, history matching is performed manually on a single reservoir 

model by sequential trial-and-error adjustments of the reservoir properties(Datta-Gupta 

and King 2007). This process involves considerable subjective judgment and can create 

artificial discontinuities inside the reservoir, potentially destroying the correlation built 

into the initial geologic model. 

Recently, we are witnessing an increase in the use of assisted history matching 

(AHM) methods for the characterization of flow properties in the subsurface. The AHM 

is mainly rooted in the concept of inverse theory to minimize an appropriately defined 

misfit function to obtain a history match. The majority of the methods can be broadly 
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categorized into two classes: deterministic (Hoffman et al. 2006; Vega et al. 2004) and 

stochastic,(Granville et al. 1994; Hastings 1970). 

The stochastic methods are often used to find the global parameter. These 

methods are typically non-gradient methods such as Monte-Carlo methods and the 

Ensemble Kalman Filter. The stochastic methods usually adopt the Bayesian formulation 

that provides a convenient framework for combining data and prior information 

(Tarantola 2005). A sub-category of the stochastic methods is the heuristic methods. The 

algorithms are population-based optimization algorithms and often refer to evolutionary 

algorithms such as genetic algorithm. The genetic algorithms typically use random 

uniform sampling for mutation of parameters and search for best combinations of model 

parameters that reduce objective functions in the history matching problem. One major 

drawback with stochastic optimization methods is that they may require hundreds or 

thousands of evaluations of the reservoir model response, which can be prohibitive for 

reservoir models that are CPU-intensive.  

While the number of simulations and amount of computational resources are 

limited, history matching often needs to be carried out with a small number of reservoir 

simulations. Typically, the stochastic method are used to find the global parameters, and 

then deterministic approaches are used to update the fine scale static parameters. In the 

deterministic approaches, the efficiency of calculating the parameter sensitivities is a key 

to conduct such high resolution reservoir model updating. In order to find the parameter 

sensitivities, we have to relate between the dynamic response of the simulator and the 

flow properties where the following approaches are generally used: perturbation 
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methods, gradient-simulator methods (Anterion et al. 1989) and adjoint or optimal 

control methods (Chavent et al. 1975; Li et al. 2001). The perturbation method is 

computationally prohibitive for a large number of parameters because it requires (N+1) 

forward simulation where N is the number of parameters (e.g. grid cells). The adjoint 

method or the optimal control theory becomes more popular for accurately computing 

the gradient of a function of the state variables with respect to model variables, where 

the adjoint state variables can be interpreted as measures of importance of variables 

describing the reservoir. However, it typically requires access to the source code of the 

forward simulator, which may not be available (Rey et al. 2009). The amount of 

information and the indirect relationship between the seismic response and the reservoir 

state are major challenges for the implementation of those techniques when dealing with 

large 4D seismic data sets. 

Recently, streamline techniques have proven to be particularly efficient to 

calibrate static properties from dynamic well responses. They have also been applied for 

integrated changes using seismic data but mostly focused on amplitude and magnitude 

match (Rey et al. 2012; Watanabe et al. 2017). This approach has many advantages in 

terms of computational efficiency and applicability (Datta-Gupta and King 2007). The 

main advantage of the streamline-based method is that it requires a single forward 

simulation with a post-processing step to find parameter sensitivity by analytical 

formulation. Furthermore, data integration based on travel time sensitivities leads to a 

minimization procedure that exhibits quasi-linear properties, converging in a smaller 

number of iterations, and is less likely to trap into a local minima compared to amplitude 



 

6 

 

inversion algorithms (Cheng et al. 2005; Luo and Schuster 1991; Vasco and Datta‐Gupta 

1999). 

This research aims to provide a novel approach of seismic data integration using 

the concept of onset time (Vasco et al. 2015; Vasco et al. 2014). The proposed approach 

relates the initiation of a change in the geophysical property to the arrival time arrival 

time of a particular physical phenomenon (e.g. the saturation front and/or the pressure 

front). Such fluid phase arrival times can often be linked to flow properties and are very 

suitable to the streamline-based method. We also incorporate an efficient approach to 

indicate the reliability of the estimated solution using the analysis of spatial resolution. 

 

1.3 Research Objectives and Dissertation Outline 

 The research focuses on the development of efficient history matching methods 

for 4-D seismic data and exploring the model parameter estimation. The main objectives 

and corresponding chapters of this dissertation are as follows. 

 In Chapter II, we present the streamline-based seismic amplitude sensitivity and 

perform an analysis of spatial resolution to indicate the reliability of the estimated 

solution. We illustrate our results using both synthetic case and field applications 

of 4-D seismic and production data. 

 In chapter III, we develop and validate a novel and efficient approach to integrate 

frequent time lapse (4D) seismic data in to the reservoir model based on the 

concept of seismic onset times. 
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 In chapter III, we also apply a hierarchical history matching workflow in a real 

field application, which involves steam injection into a heavy oil reservoir with 

daily time lapse seismic surveys. 

 In chapter IV, we discuss the mathematical foundation for the measure of 

nonlinearity and its implications on the seismic-data integration. We 

quantitatively investigate the extent of nonlinearity in onset time inversion and 

amplitude inversion. We illustrate our results using both synthetic and field 

applications. 
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 CHAPTER II  

INTEGRATION OF TIME-LAPSE SEISMIC AND PRODUCTION DATA: 

ANALYSIS OF SPATIAL RESOLUTION  

2.1 Chapter Summary 

 In this chapter, an analysis of spatial resolution is incorporated into an efficient 

history matching approach with multi-scale data integration, in order to indicate the 

reliability of the estimated solution. The resolution is a measure of the degree of 

averaging the local–scale (gridblock) permeabilities. For a given set of data, it indicates 

the regions where our estimate is well constrained.  By examining the spatial resolution 

in seismic data integration, as a function of derivation type, we can evaluate 

quantitatively the contribution pressure and saturation changes on the calibrated 

permeability field. 

 We illustrate this concept using synthetic and field applications. The first 

example is a 5 spot pattern, where the seismic data is provided as pressure and saturation 

changes. The field example, involves waterflooding of a North Sea reservoir with 

multiple seismic surveys. The results demonstrate that the analysis of spatial resolution 

provide a quantitative information on our ability to estimate the subsurface heterogeneity 

based on a given set of data. It is found that integration of seismic data with respect 

pressure changes better determine the barriers to the flow (e.g. low permeability areas), 

while calibrating  the model based on  saturation provides a compliment information to 

solve the channels (e.g. high permeability areas).  
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2.2 Introduction 

 Integration of 4-D seismic acquisitions, along with the production data, improves 

the data characterization and reduces the uncertainty associated with the estimated 

model. Such information has a great potential in inferring reservoir properties, such as 

permeability and porosity through the reservoir model calibration process. Different 

algorithms of dynamic data integration have been proposed in the literature to reconcile 

the reservoir model heterogeneity with temporal changes in seismic attributes (Dong and 

Oliver 2005; Fahimuddin et al. 2010; Falcone et al. 2004; Huang et al. 1997; Mavko et 

al. 2009; Rey et al. 2012; Skjervheim et al. 2007; Vasco 2004; Watanabe et al. 2017) 

(Mavko, 1998;  Falcone et al., 2004 ;Huang et al. 1997 ;Vasco et al. 2004 Dadashpour et 

al., 2008, 2009,  2010  ; Gosselin et al. 2001 ; Dong and Oliver 2005; Skjervheim et al. 

2007; Fahimuddin et al. 2010; Rey et al. 2012; Watanabe et al.2017) .  

The integration of dynamic data (seismic, production) typically requires the 

solution of an inverse problem that can be computationally intensive. A critical issue 

here is the calculation of the sensitivity coefficients, the derivatives of dynamic data 

history with respect to the flow properties. We follow Watanabe et al.’s (2017) approach 

of an efficient history matching that simultaneously integrates 4-D seismic surveys with 

well production data, using streamline-based analytic sensitivities for fluid saturation 

and pressure data integration to calibrate the model. The possibility of incorporating 4-D 

seismic data with high spatial resolution into history matching not only enables a better 

understanding of the fluid flow away from the well locations, but also allows us to assess 

the parameters estimates and determining their reliability in a grid cell resolution.  
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  Traditionally, most of the efforts in assessing the inversion have been focused on 

quantifying the uncertainty associated with parameters estimates, while very little exist 

in the petroleum literature on the resolution analysis(Datta-Gupta et al. 1997; Datta‐

Gupta et al. 2002; Vasco et al. 1997). In this study, we are interested in exploring the 

model parameter estimation by using the concept of the model resolution analysis. The 

model resolution matrix is useful for quantifying the nonuniqueness of inversion results 

in underdetermined problems (Menke 2012). Nonuniqueness and instability of the 

inverse solutions are reflections of the illposed nature of the inverse problems, where the 

ill-posedness is a result of limited data and its associated uncertainty(Backus and Gilbert 

1968; Backus and Gilbert 1967). For large cases, it is difficult to obtain a specific value 

for each cell and one can only constrain spatial averages of the value as some 

combination of block permeabilities (Vasco et al. 1997). The concept of model 

resolution introduced by Backus and Gilbert (1967, 1968) formed a foundation for 

inverse geophysical problems to provide insight of the parameters spatial averaging. 

Further work on the model parameters resolution has been done by Tarantola 

(2005) ,Parker (1994) and Menke (2012)showing that the resolution matrix provides a 

measure of the spatial averaging inherent in our inverse modeling.  

There is a trade-off between the model resolution and the model covariance 

(Backus &Gilbert 1970; Menke ,1989; Parker, 1994). A solution with small spread 

resolution tends to have large variance and vice versa (Menke, 2014). Many inverse 

methods have a tunable parameter that defines a “trade-off curve” of allowable 

combinations of spread resolution and size of the covariance (Menke 2012; Tarantola 
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2005; Wiggins 1972).(Xia et al. 2010) consider using a proper regularization parameter 

to find a trade-off between model resolution and model covariance matrices in the 

vicinity of a regularized solution. Here, the trade-off solution, is calculated by truncated 

inverse of a data kernel (Hansen 1998; Parker 1994) with the singular value 

decomposition (SVD) (Golub and Reinsch 1970; Lanczos 1996) in order to achieve a 

meaningful solution from limited observation by combing both the data space and the 

model space. 

In this chapter, we start with the mathematical background of the streamline-

based analytic sensitivities for fluid saturation and pressure data integration. Next, we 

derived the resolution and the covariance matrices for the flow properties of the 

subsurface. We illustrate an analysis of spatial resolution for history matching 

application of time-lapse data to evaluate the reliability of the estimated solution. We 

also outline the relative contribution of pressure and saturation on the seismic integration 

and discus the sequence order of seismic integration. Finally, we apply the proposed 

approach to the Norne field, where the time-lapse acoustic impedance change derived 

from the post-stack seismic amplitude data. 

 

2.3 Background and Methodology 

 In this section, we discuss our theoretical and computational framework for 

inversion and analysis of dynamic reservoir response: production and time lapse seismic 

using the streamlines approach. First, we demonstrate the relations of the reservoir 

properties to the dynamic reservoir response, as known as the sensitivities. This includes 
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time of flight sensitivity, saturation front arrival time sensitivity, water saturation 

sensitivity, and pressure drop sensitivity. In the second stage we show the spatial 

resolution analysis using SVD approach in order to evaluate the inversion process. 

 

2.3.1 Time of Flight Sensitivity Calculation 

The time of flight (TOF) is defined as the travel time of a neutral tracer along a 

streamline trajectory (Datta-Gupta,& King, 2007) , 

( ) ( )s x dr


     
(2.1) 

where   is the streamline trajectory, r is distance along the streamline, and 𝑠 is the 

slowness defined by the reciprocal of the interstitial velocity 

 
 

 

 
1

 
rt

s
k P




 



x
x

xx
. (2.2) 

Using Darcy’s law, here rt   is the total relative mobility,
rt ro rw rg        and P   

is the pressure gradient along the streamline. Because slowness is a composite quantity 

involving reservoir properties, its first order variation, assuming a fixed pressure 

gradient, will be given by 

 
 

 
 

 

 
 

s s
s k

k
  



 
 
 

x x
x x x

x x
. (2.3) 

From Eq. 2.2, the partial derivatives are then simply computed as the following 

 

 

 

  

 

 2
 

rt

s s

k kk P





 
  

 

x x x
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, (2.4) 
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 

   

 

 
1

 
rt

s s

k P  


 

 

x x

x x x
, (2.5) 

In Eq. 2.4 and Eq. 2.5, we assume that local perturbations in permeability or porosity 

generated by pressure changes can be neglected. This means that streamlines do not shift 

because of these small perturbations. By integrating along each streamline trajectory, the 

relationship between the change in the TOF ( ) and the change in slowness can be 

written as 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

s x s x
s x dr k x x dr

k x x
 

    


  
   

  
  . (2.6) 

The tracer travel time sensitivity along a single streamline, 𝜓 with respect to 

permeability and porosity at location 𝒙 follows Eq. 2.6 by integrating from the inlet to 

the outlet of the streamline within the gridblock, 

 

 

 

 

 

 

outlet

inlet

Δs
dr

k k k

  



 
    

 


x x

x x x
, (2.7) 

 

 

 

 

 

 

outlet

inlet

Δs
dr

  

  

 
  

 


x x

x x x
. (2.8) 

Here ( )x is the time-of-flight across the gridblock at location x . 

2.3.2 Saturation Front Arrival Time Sensitivity 

We now relate the time of flight sensitivity to the travel time sensitivity of the water 

saturation. Consider two phase incompressible flow of oil and water described by the 

Buckley-Leverett equation written using the streamline time of flight as the spatial 

coordinate (Datta-Gupta,& King, 2007) ,   
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0w wS F

t 

 
 

 
. (2.9) 

The velocity of a given saturation wS  along a streamline  is given by the slope of the 

fractional flow curve, 

w

w

S w

dF

t dS

 
 

 
. (2.10) 

This equation relates the travel time of a saturation,  ,   ;wt S    to the TOF   .We can 

now compute the sensitivity of the saturation arrival time using that of the streamline 

TOF as follows 

 

 

 

 

,   ;
/

w w

w

t S dF

k k dS

    

 


x x
, (2.11) 

 

 

 

 

,   ;
/

w w

w

t S dF

dS

    

 


x x
. (2.12) 

After water breakthrough on a streamline, these arrival times are evaluated at the total 

time of flight,    , for the streamline. 

2.3.3 Water Saturation Sensitivity Calculation 

Our goal here is to derive expressions for the sensitivity of water saturation with respect 

to variations in permeability. In two phase flow, water saturation is a function of the 

streamline TOF, ,and time, t  . We consider a self-similar solutions to Eq.2.9, where the 

saturation is a function of the dimensionless ratio / t  . This allows us to relate the 

derivative of saturation with respect to time to the derivative with respect to   can be 

written as: 
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 

 2

τ /

τ /

ww
dS tS

t t d t


 


 (2.13) 

 
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τ /1
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dS tS

t d t





, (2.14) 

hence 

w wS St

t 

 
 

 
, (2.15) 

leads us to the water saturation sensitivity: 

 

     

,w w w
S t S St

k x k x t k x

   

    

 
  
 

. (2.16) 

We calculated the partial derivative of water saturation with respect to time in Eq. 2.16 by 

using a backward time difference as 

     , , , Δ

Δ

w w wS t S t S t t

t t

    



. (2.17) 

here t  is the timestep size. This requires saving the saturation information for the time 

step immediately prior to the time lapse survey time. Therefore, the saturation sensitivity 

at location  at a given time 𝑡 can be calculated by: 

 

 

   

 

, , , Δ

Δ

w w wS t S t S t tt

k x t k x

    

  

 
  , (2.18) 

where the last partial derivative of travel time, with respect to permeability, can be 

obtained from Eq. 2.7.In this paper we calibrate against the changes in saturation, rather 

than the saturation itself. The generalization of the sensitivity calculation to account for 

these effects can be found in Watanabe et al. (2017). 



 

16 

 

2.3.4 Pressure Data Integration 

The streamlines are traced using pressure gradient generated by injector or producer. 

Normally, pressure is solved on 3D grid space however, in order to calculate pressure 

sensitivities we construct pressure equation along streamline and take the derivative with 

respect to reservoir parameters. That is, we evaluate the pressure drop along the 

streamlines and relate it a particular gridblock.Figure 2.1 demonstrates the process, 

where i is a particular location with pressure of ip  , the red line is the streamline passing 

through location i and leading to the producer with bottom hole pressure   wP  . The 

pressure drop, |iwP   along the streamline can be written as: 

i

i w w
P P P  . (2.19) 

If  the distributed time lapse pressure data and well bottom hole pressure, we can 

compute the pressure drop from Eq. 2.19 and use it as our observation data, 

, ,,

i

i obs w obsw obs
P P P   . (2.20) 

The data misfit between the simulation response and observation can be written as 

   

   

, , , ,, ,

, , , ,

 
i i

i i obs w obs i cal w calw obs w cal

i obs i cal w obs w cal

d P P P P P P

P P P P

       

   
. (2.21) 

The first term is the pressure difference at location i, and the second term is the bottom 

hole pressure difference at well.  
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2.3.5 Pressure Drop Sensitivity Calculation 

This can be computed by simply summing up the pressure drop across the grid blocks 

that intersect the streamline as shown in Figure 2.1. Further, we can express the local 

pressure drop along a streamline using Darcy’s law as 

 
   

   rt

q L
P

A k


 

x x
x

x x
, (2.22) 

where ( )A x is the cross sectional area, ( )q x  is the flow rate along a streamline, rt  is the 

total relative mobility, and  L x is the arc length of the streamline within the 

gridblock. The pressure drop is a composite quantity involving reservoir properties. We 

assume that the streamline trajectories, flow rate along streamline and the total mobility 

do not change because of small perturbations in permeability. We can now relate the 

change in local pressure drop to a small change in permeability as 

 
 

 
 

P
P k

k
 


 



x
x x

x
, (2.23) 

where the partial derivative is 

 
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

x x x x

x xx x
. (2.24) 

The pressure drop to a location i , |iwP  will be given by integration along the streamline 

trajectory passing through i  to well w ,  
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 
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and the pressure drop sensitivity for a particular gridblock at location 𝒙 follows from Eq. 

2.25, 

 

 

 

 

 

 
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x x

x x x
. (2.26) 

 

 

 

Figure 2.1 Pressure drop along the streamline. 

 

 

 

2.3.6 The Inverse Problem and Analysis of Spatial Resolution 

In this section, we describe the concept of the resolution and the solution of the inverse 

problem through the minimization of a penalized misfit function. Our goal is to reconcile 

high resolution geologic model to a given set of observation. In such a case, there are 

many more parameters describing the reservoir than there are observations. Furthermore, 

the relationship between the subsurface properties and the observations is highly 

nonlinear, which introduce another source of non-uniqueness. To overcome these 
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limitations, we use some form of regularization or penalty term into the inversion. We 

start with a prior knowledge about our model and solve the regularized inverse problem 

which minimize the sum 

  1 2o m d G m m mL          . (2.27) 

Here, d  is the misfit between the observed data and the values estimated from the 

reservoir model. The matrix G contains the sensitivities of model responses with respect 

to reservoir parameters, m  is the vector of reservoir model parameter updates, and L is 

a second spatial difference operator matrix. The first term ensures the differences 

between the observed data and calculated model predictions are minimized. The second 

term, called a norm penalty, penalizes deviations from the prior model. The third term, 

referred to as a roughness penalty, constrains the model changes to be spatially smooth, 

in line with the resolution provided by the data. The weights 1  and 2   determine the 

relative strengths of the prior model and roughness conditions. An iterative sparse matrix 

solver, the LSQR algorithm (Paige and Saunders 1982) is used for solving the 

augmented linear system efficiently. 

The next logical step is to determine the uncertainty associated with the estimates 

and the spatial averaging of the estimated model. For nonlinear problems, once the 

solution has been reached, the model parameters can be further assessed using the 

concept of the resolution analysis, based on a local linearization of the obtained solution.  

The resolution and the covariance matrices are derived from the sensitivities 

matrix (G), which relates variation in the permeability to change in a specific 
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observation. The columns of the matrix present the gridblocks of the model and each 

row represents different observe data. In the matrix form we write as: 

G k d   (2.28) 

where G is the sensitivity matrix, k  is the change in the paremeter we wish to solve and 

𝛿𝑑 is the difference between the observed data and the simulated data. There is a true, 

but unknown set of model parameters truek  that solve  

trueG k d   (2.29) 

Now, our estimated model estk  can be described by looking at the general inverse 

form: 

est gk G d   (2.30) 

Substituting Eq.2.29 into Eq.2.30 gives 

[ ] est g true truek G G k R k     (2.31) 

Here R is the 𝑀 × 𝑀  model resolution matrix (Menke 2012; Tarantola 2005). The 

resolution matrix can be interpreted as a linear filter through which we view the actual 

spatial distribution of our model (Datta‐Gupta et al. 2002; Vasco et al. 1997). The 

diagonal elements’ values are between 1 to zero. They indicate whether the estimation of 

a specific cell in the model is well or poorly constrained, with respect to the true model. 

1 means that it is perfectly resolved and zero means that it cannot be resolved with the 

observation that we have. The diagonal is called the resolution of our model. The rows 

of the resolution matrix are averaging coefficients indicating the contribution of various 

other parameters to our estimate of a property in a given cell.  We use SVD method to 

assess the model parameter estimates. In history matching problems most of the time the 
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number of unknowns is much higher than the number of equations. In the sense of our 

problem, this simply means that the number of columns in the sensitivity matrix is 

higher than the number of rows. The SVD provides us with a decomposition for a 

rectangular, rather than a square, matrix. The sensitivity matrix can be written as the 

following product: 

TG USV  (2.32) 

U is an 𝑀 × 𝑀  orthogonal matrix with columns that are unit basis vectors spanning the 

data space, V is an 𝑁 × 𝑁  orthogonal matrix with columns that are basis vectors 

spanning the model space and S is an m by n diagonal matrix with diagonal elements 

called singular values.The general inverse is 

1g TG VS U  , (2.33) 

substituting Eq.2.32 and 2.33 into Eq.2.31 leads to 

1 T T TR VS U USV VV  , (2.34) 

where R is the model resolution matrix as shown in Eq.2.31.  

In order to estimate the uncertainties associated with our model we investigate the model 

parameter covariance. Under the assumption of independent and normally distributed 

measurement errors with constant standard deviation (Aster et al. 2013), the model 

parameter covariance for the generalized inverse would be 

 2 2
T

g g T

m dCov G cov G VS V      , (2.35) 

  is the standard deviation of the data. The covariance of the model parameters depends 

on the covariance of the data 𝑐𝑜𝑣𝑑 and the way in which error is mapped from data to 
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model parameters. This mapping is a function of only the data kernel and the generalized 

inverse, not of the data itself (Menke 2012). 

2.3.7 Resolution–Covariance Trade-off 

 There is a trade-off between model resolution and covariance (Backus and 

Gilbert 1968; Backus and Gilbert 1967; Menke 2012; Parker 1994). Theoretically, if we 

set all the elements of data covariance to zero, we could achieve the resolution matrix as 

identity matrix. Where this is the case, the covariance of the model becomes large and 

every small error in our data has a huge effect in our model. In our approach, we adopt a 

truncation level 
cut offP 

  of the SVD for eliminating those singular vectors, columns of U 

and V, associated with elements that are close to zero. For this truncation level, Eq. 34 

becomes 

1 T T T

p p p p p p p pR V S U U S V V V  , (2.36) 

where the subscript denotes that only p columns of U and V are retained. At the same 

time we investigate the trace of the model covariance associated with truncation level 

cut offP 
 

 
1

N

p p ii
i

trace COVm COVm


       . (2.37) 

As we use more eigenvectors, the resolution increases and at the same time the trace of 

the model covariance increases. As noted previously, our goal is to have the best 

resolution possible but at the same time to keep the covariance reasonable. Figure 2.2 

shows the relationship between the number of eigenvectors used to generate the model 

resolution and the trace of the associated covariance model for a synthetic 2-D model 
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case. The model has a total of 2295 eigenvectors. As can be seen, the trace of the 

covariance increases when the cut-off level is getting bigger. For this case we used a 

value of p=700.  

 

 

 

Figure 2.2 Trade-off curve. The blue dots are the singular values. The orange dots are the 
trace of the covariance associated with those values. 
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2.4 History Matching Applications 

2.4.1 Five–Spot Synthetic Case - Order of Integration 

 Since our history matching follows a sequential approach, an important aspect 

that we have to consider when preforming history matching is the hierarchical frame of 

integrating the data. That is, we need to decide which property we account for first, the 

pressure or the saturation changes. In the first example, we will examine two hierarchical 

frames to calibrate the model: (1) our hierarchical frame first integrates the pressure 

effects follows by the saturation and (2) integration of saturation changes follows by 

pressure. Our synthetic 2-D model containing 50 x 50 x 1 cells. It is a five spot model 

with one injector at the center and four producers at the corners. Wells are constrained 

by the historical reservoir flow rates. Table 2.1 shows the rock and fluid properties. 

Table 2.2 represents the simulation specifications. The relative permeability curves are 

shown in Figure 2.3. We use a sequential Gaussian simulation to generate both the 

reference permeability (Figure 2.4a) and the prior permeability models (Figure 2.4b), but 

we use different geostatistical parameters in order to create the prior model. We 

generated the observation data using a commercial reservoir simulator. The seismic 

observation data is provided as 2-D maps of pressure and saturation changes between 

260 days and 1560 days from the start of the production (Figure 2.5).In addition, the 

well production data is available as water-cut and bottom-hole -pressure at the well 

locations. 
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Table 2.1 Rock and fluid properties 

 

  Porosity   0.25   

  Rock compressibility,  
1

psi
   8.10E-06   

  Oil density,  
lb

cf
   52.1   

  Water density, 
lb

cf
   63.3   

  Oil viscosity, 𝑐𝑝   0.29   

  Water viscosity, 𝑐𝑝   0.31   

  Oil formation volume factor   1.305   

  Water formation volume factor 1.04   

 

 

 

Table 2.2 Simulation specifications of the synthetic case 

 

  Grid number  50x50x1   

  Grid size, 𝑓𝑡  32.8x32.8x32.8 

  Initial pressure, 𝑝𝑠𝑖  5863.8   

  Injector location  (25,25,1)   

  
Injector rate, 

𝑏𝑏𝑙

𝑑𝑎𝑦
 

 2515   

  Producer locations  (1,1,1),(1,50,1) 

    (50,1,1),(50,50,1) 

  
Producer rate,  

𝑏𝑏𝑙

𝑑𝑎𝑦
 

 628   

  Total simulation time, 𝑑𝑎𝑦𝑠  2080   

  Time step size, 𝑑𝑎𝑦𝑠  260   
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Figure 2.3 Relative permeability curves. 

 

 

 

 
Figure 2.4 Permeability fields. (a) Reference model, and (b) Initial model. 
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Figure 2.5 Time-lapse data between 260 days and 1560 days. (a) Reference model 
pressure changes, (b) Initial model pressure changes, (c) Reference model saturation 

changes, and (d) Initial model saturation changes. 

 

 

 

A comparison of the misfit reduction for case 1 and 2, shown in Figure 2.6, displays a 

notable reduction for both cases. The fit to the time-lapse pressure and saturation 

changes is improved significantly for both cases (Figure 2.7 and Figure 2.8), showing 

almost identical results. In addition, water cut data of the wells for both cases shows 

good agreement as shown in Figure 2.9. These results suggest that we do not have 

enough information to uniquely constrain our solution.  
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Thus, the solution of the inverse problem is not unique, and we get multiple solutions 

that satisfy the objective function.   

 

 

 

Figure 2.6 Objective function as a function of iterations for a synthetic 2D model. Blue 
color represents case 1 first integrates the pressure effects followed by the saturation. 

Red color represents case 2, where integration of saturation changes followed by 
pressure. 

 

 

 

Figure 2.7 Pressure Time-lapse data between 260 days and 1560 days. (a) Case1-first 
integrates the pressure effects followed by the saturation. (b) Case 2- integration of 

saturation changes followed by pressure. 
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Figure 2.8 Saturation Time-lapse data between 260 days and 1560 days. (a) Case1-first 
integrates the pressure effects followed by the saturation. (b) Case 2- integration of 

saturation changes followed by pressure. 

 

 

 

 

Figure 2.9 Water cut results for the producing wells. Blue line- first integrates the 
pressure effects followed by the saturation. Red line- integration of saturation changes 

followed by pressure. 

 



 

30 

 

We use the analysis of spatial resolution as a quantitative knowledge to provide insight 

into our ability (or inability) to estimate our model based on a given set of data. The 

updates of the permeability models from seismic data for both cases, the associated 

resolution model, and covariance model are shown in Figure 2.10. Based on the analysis 

of spatial resolution, both cases appear to identify the low permeability barrier located in 

the right lower corner of the model. The resolution model, shows high value for those 

regions, indicating that our estimate is well constrained. The associated covariance 

model, having low values, emphasizes the importance of choosing an appropriate 

truncation level to the trade-off between the covariance and the model resolution. The 

averaging kernel, for two different cells (case 1), is shown in Figure 2.11. We observed 

that as our resolution value in a specific cell closer to 1, our spatial averaging to infer the 

permeability in the cell is more constrained. It is of equal importance to indicate the 

areas where our estimates are poorly constrained. The updated permeability model of 

case 2 shows two relatively high permeability regions, labeled A and B in Figure 2.10. 

The associated model resolution shows low value for those regions, implying that the 

estimates are poorly constrained and confidence should not be placed on those updates. 

This post-process analysis is a useful tool for quantifying the nonuniqueness of inversion 

results in underdetermined problems. It also shows that time-lapse pressure match, 

followed by a match of the saturation changes, leads to a more constrained estimated 

model. This sequence is analogous to the structured approach to history matching that is 

widely practiced in the industry (Williams et al. 1998; Cheng et al. 2008). 



 

31 

 

 

Figure 2.10 Updated permeability field, resolution model and model covariance for the 
two cases. (a) Case1-first integrates the pressure effects followed by the saturation. (b) 

Case 2- integration of saturation changes followed by pressure. 

 

 

 

Figure 2.11 Kernel averaging of two different cells (black) in the model. (a) Cell number 
1084 with a resolution model value of 0.94 and (b) Cell number 1075 with a resolution 

model value of 0.6. 
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Besides being a measure of accuracy and reliability of estimates, model resolution has 

important significance in determining the relative worth of different data types (Datta-

Gupta, 1997). Specifically, we examine the relative contribution of pressure and 

saturation on integrating the seismic data. Figure 2.12, shows the permeability updated, 

the associated model resolution, and model covariance after integrating the seismic data 

with respect to pressure. The cells with high value at the model resolution are associated 

with the low permeability regions in the updated permeability fields. In our sensitivity 

calculation, the pressure drop sensitivity for a particular gridblock is the derivative of the 

pressure drop along the streamline with respect to gridblock permeability. The pressure 

drop at low-permeability regions is relatively large (Figure 2.5) and makes those 

gridblocks to be more sensitive to pressure changes. The results seem to imply that 

pressure better captures the barriers to flow compared to channels to flow.   

Next, saturation changes are integrated into the updated model from the pressure 

updates (Figure 2.13).The saturation changes provides us with complimentary 

information about the permeability field, particularly in the flow units. It can be seen 

from Figure 2.13, that those updates reduce some of the overestimated high permeability 

regions, as we received it from the pressure updates. In addition, it solves some of the 

unphysical high permeability channels that appear after the pressure updates.  

The model resolution shows that integrating both pressure and saturation increases the 

number of cells that are well constrained in term of our estimation.  
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Finally, the generalized travel time inversion is applied to match the well- by- well 

water- cut data as shown in Figure 2.14. The production updates are well suited to 

capture local variation. Since, in this case, we only have 4 wells, the resolution is poor, 

and it cannot provide valuable information regarding the relative influence of this type of 

data. However, when it comes after the seismic data updates, it gives us local changes 

specifically in the high perm areas. These results show that the resolution of the model 

can provide us with an efficient tool to know how well our estimated model is. In 

addition, it points out the importance of accounting for both saturation and pressure 

changes to constrain the parameter estimation. 

 

 

Figure 2.12 Updated permeability field after integrating the seismic pressure changes. (a) 
Updated model, (b) Resolution model and (c) Model covariance. 
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Figure 2.13 Updated permeability field after integrating the seismic pressure and 
saturation. (a) Updated model, (b) Resolution model and (c) Model covariance. 

 

 

 

 

Figure 2.14 Water cut history matching results. Reference model responses are plotted as 
dot points, initial model responses are in blue lines, model responses after accounting 

the pressure changes are in purple lines, model responses after accounting the 
saturation changes are in green lines and final updated model responses are in red lines. 
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2.4.2 Field Application –The Norne Field Case 

The field was discovered in December 1991. Oil production started in November 1997 

and gas production in 2001. The faulted reservoir model consists of 44431 active cells 

and, it has 9 injectors and 27 producers as shown in Figure 2.15. The field has high 

quality sets of 4-D seismic data (2001-2003, 2003-2004, 2004-2006) and production data 

used as observation for the history matching process. The production data include water, 

oil, and gas rates and bottom-hole pressures at the producers. The seismic data provided 

for the model calibration as near, mid, far, and full offset stacked 3-D volumes of the 

reflection amplitude together with the corresponding horizons for the top and base of the 

reservoir. More details of the data set can be found in Rwechungura, R.W. et al. (2012) . 
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Figure 2.15 Structure of the Norne field. (a) Well locations producers in red, injectors in 
black, and (b) Internal faults in the reservoir.  

 

 

 

A fundamental challenge is to relate the seismic data to the static flow properties in the 

reservoir simulator. From data integration standpoint, the seismic volumes of reflection 

has to be inverted from amplitude to changes in acoustic (p-wave) impedance (AI). This 

process involved a genetic inversion of the seismic amplitude (Veeken et al. 2009). 

In this work only near-offset stacking data set has been used, because the acoustic (p-

wave) impedance changes are more evident in the small angle reflection waves in AVO 

analysis (Aki and Richards 2002) .Using commercial software, we conduct seismic data 

processing which consists of (1) time to depth data conversion, (2) well log quality 
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check and acoustic impedance log calculation, and (3) genetic inversion for generating 

an acoustic impedance map from the seismic amplitude data. Figure 2.16 shows the 

observe seismic data as a change in the AI for each time-lapse in different layers in the 

model. Further details about the seismic data processing can be found in Watanabe et al. 

(2017).  

From a reservoir simulation point of view, we must rely on a petro-elastic model 

to relate the static and the dynamic response of the reservoir (pore volume, pore fluid 

saturations, reservoir pressures and rock composition) to seismic rock elastic parameters 

(the seismic wave’s velocity).  We adopt the Gassmans equation (1951) and Hertz-

Mindlin contact theory (Mindlin, 1949) to account for the changes in the elastic 

parameters caused by fluid saturation and reservoir pressure variations. 
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Figure 2.16 The observed seismic data as a change in the AI for selected layers in the 
model. 
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Table 2.3 Input parameters for petro-elastic model-Norne Field 

 

Send properties 

Garn Formation (layer1-3) 

Frame bulk modulus,Gpa 𝐾𝑓𝑟 18.8-36.8 φ 

Frame shear modulus,Gpa 𝐺𝑓𝑟 11.8-21.4 φ 

Matrix  bulk modulus,Gpa 𝐾𝑚𝑎 37 

Matrix density, kg/m³ 𝜌𝑚𝑎 2650 

Garn Formation (layer 5-22) 

Frame bulk modulus,Gpa 𝐾𝑓𝑟 18.5-27.4φ 

Frame shear modulus,Gpa 𝐺𝑓𝑟 10.9-13.0 φ 

Matrix  bulk modulus,Gpa 𝐾𝑚𝑎 37 

Matrix density, kg/m³ 𝜌𝑚𝑎 2650 

Fluid properties 

Fluid bulk modulus 

Oil bulk modulus, Gpa 𝐾𝑜 1.35 

Water bulk modulus, Gpa 𝐾𝑤 2.79 

Gas bulk modulus, Gpa 𝐾𝑔 6.49x10-2 

Fluid density 

Oil density ,kg/m³ 𝜌𝑜 860 

water density ,kg/m³ 𝜌𝑤 1000 

Gas density ,kg/kg/m³ 𝜌𝑔 190 

 

 

The Hertz-Mindlin model to relate the seismic rock elastic parameter to pressure 

changes (Mavko et al, 1998) 

 HM ma eff ext i/nK K P P P  , (2.38) 

where HMK   is the bulk modulus at critical porosity (Dadashpour 2009, 2010) and  maK   

is the bulk modulus of the matrix. effP  is the effective pressure, extP   is lithostatic pressure 

which depends upon on the true vertical depth (TVD) , as can be seen in Eq.38 and ip   

is the initial pressure , here set to 270 [bar.]  n  is the coordination number set up to be 5 

in this study, the effective pressure is given as 
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 5

ext 0.0981. 9 10 TVD 1.7252 TVDP      . (2.39) 

The Gassmann’s equation (1951) is adopted to relate the bulk modulus of the fluid 

saturated rock. 

 
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f HM
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 
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 

, 
(2.40) 

where   is the effective porosity of the medium and the bulk modulus of the pore fluids 

(oil, water, and gas). HMK   is the bulk modulus of the mineral matrix calculated from 

Eq.38, 
frK  is the bulk modulus of the porous rock frame and  fK  is the bulk modulus of 

the pore-filling fluids.We consider the lower bound on the moduli given as (Reuss, 

1929)  

go w

f o w g

1 SS S

K K K K
   . (2.41) 

Here 𝑆o, 𝑆w and 𝑆g are oil, water and gas saturations, respectively, and 𝐾o,  𝐾w, and 𝐾g 

are bulk moduli for oil, water, and gas, respectively. The physical meaning of using that 

bound is that the compression is in a direction perpendicular to layers of pure 

components. Then, the weakest layer determines the modulus (Vasco et al. 2014). This 

will be discussed in more details in the next chapter. Table 2.3 summarizes the rock 

elastic properties. The density of the saturated rock is given by the weighted average of 

the densities of the components 

   sat ma o o w w g g1 S S S           , (2.42) 
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where 𝜌o, 𝜌w, 𝜌g and 𝜌ma are the densities of oil, water, gas and the rock matrix, 

respectively. The compressional (p-wave) velocity can be calculated by using the 

saturated rock bulk modulus, and the shear modulus 𝐺fr, which is not affected by fluid 

saturations and density. Given  as (Kennett 2013)  

sat fr

p

sat

4

3
K G

V




 . 
(2.43) 

The acoustic impedance can be computed as 

p sat p sat sat fr

4

3
Z V K G 

 
   

 
, (2.44) 

 

2.4.2.1 Sensitivity of the Acoustic Impedance with Respect to Permeability 

In this section we relate the changes in the acoustic impedance to the changes in the grid 

block permeability. We assume that changes in porosity because of compaction in Eq.6 

are not significant. As demonstrated in the previous section, the PEM is depended on the 

pressure and saturation. By implementing the chain rule we can generate the sensitivity 

of the acoustic impedance with respect to grid block permeability as. 

p

p

        

   

P

P

Z p p g pw
Z

w g
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k S k S k k

  

   

   
    

    

, (2.45) 

Here the partial derivatives of acoustic impedance, 

     

w g

, ,     
S S P

p p pZ Z Z  

  
 are computed by 

numerical perturbation from the current saturation and pressure grid block values using 

Eq. 45, and water saturation sensitivity and pressure drop sensitivity are computed by 
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Eq. 18 and Eq. 26, respectively. The gas saturation sensitivity is calculated using the 

same equation as we use for the water 

 

 

   

 

, , , Δ

Δ

s s sS t S t S t tt

k x t k x

    

  

 
  , (2.46) 

2.4.2.2 Norne Field –History Matching and Analysis of Spatial Resolution 

Our objective is to update the permeability model using the streamline based sensitivity 

and to indicate the reliability of our updated model by applying the analysis of spatial 

resolution. The data integration is consistent with the synthetic cases. First, the AI 

changes with respect to pressure changes are collaborated into the model, then AI 

changes with respect to saturation changes of water and gas are integrated into the 

model. For each level of the data integration, an analysis of the spatial resolution has 

been performed. Figure 2.17 shows the observed, the initial and the updated AI changes 

maps for different times in different layers. Overall, the misfit associated with the time-

lapse acoustic impedance change are reduced from the initial misfit calculated using the 

prior model. At the same time, we can clearly see the effect of the second term in Eq.27 

(norm penalty), that penalizes deviations from the prior model.  
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Figure 2.17 The acoustic impedance changes for selected layers.  

 

 

Figure 2.18 shows the permeability field, the associated resolution model and covariance 

model for seismic calibration based on pressure change between 2001 and 2003 for 

different layers. Figure 2.19 shows the permeability field, the associated resolution 

model and covariance model for seismic calibration based on saturation change between 

2001 and 2003 for different layers. The resolution model clearly determines the regions 

that are more constrained to the physics that is followed (e.g. pressure, saturation). For 

example, in layer 1 the north right part of the reservoir (Figure 2.18), the updated model 

is more constrained when calibrating the AI changes with respect to pressure. On the 

other hand, Figure 2.19 shows that the seismic integration is more constrained at the 
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bottom part of the reservoir (layer 10 and 16), when calibrating the AI changes with 

respect to saturation.  

 

 

 

Figure 2.18 The updated permeability model, the model resolution and the model 
covariance in selected layers, after integrating the seismic data (2001-2003) with respect 

to pressure. 
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Figure 2.19 The updated permeability model, the model resolution and the model 
covariance in selected layers, after integrating the seismic data (2001-2003) with respect 

saturation. 

 

 

Figure 2.20 demonstrates how one can use the analysis of spatial resolution to provide 

insight into our ability to estimate our model based on a given set of data. Specifically, 

we plot the permeability changes and the associated resolution model. The high value is 

seen at the north right part of the reservoir in the resolution plat, suggesting that the 

associated permeability updates with those cells are well constrained and more 

confidence should be placed there. These updates also leads to a significant reduction in 

the acoustic impedance change data misfit as shown in Figure 2.16. Contrarily, poor 

resolution regions indicate that the local permeability cannot be resolved as the degree of 

averaging associated with our estimates becomes larger and caution must be exercised.  
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Figure 2.20 Permeability model change, resolution model and covariance model for 
selected layers. Seismic data is integrated with respect to pressure (Top), and Seismic 

data is integrated with respect to saturation 

 

 

The analysis of spatial resolution also provides valuable information regarding the 

relative influence of the pressure and the saturation in our sequential data integration. 

Figure  2.21 shows the permeability field, and the associated resolution model for 

pressure and saturation updates. In particular, within the red dash line, it can be seen that 

the pressure appears to better resolve the barriers to the flow (low-permeability and 

faults), where the saturation provides a complimentary information about reservoir 

quality inside the flow units. 
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Figure 2.21 A resolution model comparison of pressure and saturation between 2004-2006 

in layer 14. (a) Updated permeability field, (b) Model resolution of partial derivative of AI 
with respect to pressure, and (c) Model resolution of partial derivative of AI with respect 

to saturation 

 

 

2.5 Chapter Conclusions 

 In this chapter, we described a method to quantify the resolution and the spatial 

averaging associated with estimated permeabilities derived through an efficient history 

matching approach of multi-scale data integration, accounting for both pressure and 

saturation effects. By applying techniques from geophysical inverse theory, we 

demonstrated how one can assess the ability of seismic and production data to constrain 

permeability variations in heterogeneous porous media and assessing the inversion 

results in underdetermined problems. 

 In seismic data, the spatial resolution points out the importance of accounting for both 

saturation and pressure changes to constrain the parameter estimation. However, the 

saturation and pressure changes within a reservoir are not the only factors that affect the 
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relationship between the reservoir properties and the variations in geophysical 

properties. The analysis presented here, shows the contribution of the saturation and 

pressure changes in to our estimated model. It appears that pressure is more sensitive to 

barriers to flow in global, whereas in the flow unit the barriers to flow and small 

variations in permeability are better determined by saturation. Based on the model 

resolution and the results of all cases, it seems that the low permeability areas in the high 

permeability zones are the locations where the most confidence should be placed. In 

practice, assessing the estimated model using the approach presented here, provides us 

with a cell-by-cell information about the quality of the estimation constraint. In history 

matching, when the problem is highly underdetermined, this information is as critical as 

the estimated value itself. 
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 CHAPTER III  

INTEGRATION OF TIME LAPSE SEISMIC DATA INTO RESERVOIR MODELS 

USING ONSET TIMES 

3.1 Chapter Summary 

 In this chapter, we present a novel and efficient approach to integrate frequent time 

lapse (4D) seismic data into high resolution reservoir models based on seismic onset times, 

defined as the calendar time when the seismic attribute crosses a pre-specified threshold 

value at a given location. Our approach reduces multiple time-lapse seismic survey data 

into a single map of onset times, leading to substantial data reduction for history matching 

while capturing all relevant information regarding fluid flow in the reservoir. Hence, the 

proposed approach is particularly well suited when frequent seismic surveys are available 

using permanently embedded sensors. 

    Our history matching workflow consists of two stages: global and local. At the global 

stage of history matching, large-scale features such as regional permeabilities, pore 

volumes, temperature and fluid saturations are adjusted to match seismic and bottomhole 

pressure data using a Pareto-based multi-objective history matching workflow. Rather 

than an artificial subdivision of the domain, the history matching regions are naturally 

defined based on an eigen-decomposition of the grid Laplacian and a spectral clustering 

                                                 

  Part of this section is reprinted with permission from “History Matching of Frequent 

Seismic Surveys Using Seismic Onset Times at the Peace River Field, Canada” by G. 

Hetz, H. Kim, A. Datta-gupta, M.J. King, J.K. Przybysz-Jarnut, J.L. Lopez, D. Vasco, , 

2017. Paper 187310 prepared for presentation at the SPE Annual Technical Conference 

and Exhibition held in San Antonio, Texas, USA, 7 October –12 October. 
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of the second eigenvector (fiedler vector). The global updating is followed by local history 

matching whereby cell permeabilities are adjusted to further refine the history match using 

semi-analytic, streamline-based model parameter sensitivities. The power and efficacy of 

our proposed approach is illustrated using synthetic and field applications. 

    The field example involves steam injection into a heavy oil reservoir at Pad 31 in the 

Peace River Field (Alberta, Canada) with daily time lapse seismic surveys recorded by a 

permanently buried seismic monitoring system(Lopez et al. 2015). In our specific 

application, we have used time lapse data (in terms of two-way travel time) from a Cyclic 

Steam Stimulation (CSS) cycle in the pad with a total of 175 seismic surveys. With a 

single onset time map derived from this data we were able to capture the propagation of 

pressure and saturation fronts and significantly improve the dynamic model through the 

estimation of permeability distribution, fluid saturation evolution and swept volume. With 

this methodology we correctly identified and further refined the location of stimulated 

zones as inferred before from reservoir engineering judgement and manual adjustments 

aiding better understanding of CSS behavior in the studied field. The results clearly 

demonstrate the effectiveness of the onset time approach for integrating large number of 

seismic surveys by compressing them into a single map. Also, the onset times appear to 

be relatively insensitive to the petro elastic model but sensitive to the steam/fluid 

propagation, making it a robust method for history matching of time lapse surveys. 
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3.2 Introduction 

Reservoir monitoring is an integral part of reservoir management during 

enhanced oil recovery, where for example, steam (Eastwood et al. 1994) and 
2CO  (Arts 

et al. 2000) are injected, to ensure injectant conformance and flood front management, 

maximizing recovery and minimizing operational costs. The availability of dense areal 

information from frequent 4D seismic offers a great opportunity to achieve these goals. 

It enables better understanding of reservoir sweep and flow patterns, reduction of the 

uncertainty in the reservoir properties and adjustment of the operational strategy to 

restore conformance and optimize recovery (Foster 2007; Przybysz-Jarnut et al. 2015; 

Watanabe et al. 2017). However, it also poses new challenges in terms of dynamic 

reservoir modeling and seismic history matching to infer changes in the state of the 

reservoir. The underlying issues for successful monitoring of reservoir fluid-flow 

systems using time-lapse data were reviewed by Lumley (2001) and Behrens et al. 

(2002).   

Traditionally, time-lapse seismic techniques for inferring flow properties have 

been focused on amplitude, traveltime, and waveform changes. For example, Tura and 

Lumey (1999) and Landrø et al. (2001) used the inverted seismic responses and 

amplitude versus offset inversion to discriminate between the pressure and saturation 

changes. Arenas et al. (2001) used the compressional velocity to calibrate the 

permeability field. Vasco et al. (2005) used reflection amplitude to update the flow 

properties, where the sensitivity of seismic amplitude is analytically computed. 

(Dadashpour, M. et al. 2010; Dadashpour et al. 2009; Dadashpour et al. 2008) applied 
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the propagator-matrix method (Stovas and Arntsen 2006)  to generate the seismic traces 

from a stack of plane layers and calibrate reservoir properties by a Gauss-Newton 

optimization technique. Rey et al. (2012) applied a streamline-based sensitivity 

calculation to integrate the seismically derived water saturation changes and the acoustic 

impedance differences and demonstrated field-scale applications. Watanabe et al. (2017) 

used the time-lapse changes in acoustic impedance to update grid cell permeability with 

a hierarchical approach involving global and local updates.  

Although such methods can often detect changes in geophysical quantities and 

were successfully applied to field cases, relating geophysical changes to quantified 

changes in the fluid flow properties remains a fundamental challenge (Vasco et al. 

2014). The connection between the current state of the reservoir and the geophysical 

observations relies on underlying rock physics model that can have considerable 

uncertainty. One of the main uncertainties comes from the fact that these models are 

built based on laboratory measurements that may not be representative of the field 

conditions. This makes seismic history matching difficult as the estimation results highly 

depend on the saturation mapping chosen and can be quite different, while originating 

from the same seismic measurement. Another difficulty is integrating the data from 

Permanent Reservoir Monitoring systems (PRM), where tens to hundreds time-lapse 

seismic surveys may be available. 

To deal with the above-mentioned issues we present a novel and computationally 

efficient approach for frequent time lapse seismic integration using the concept of onset 

time (Vasco et al. 2015; Vasco et al. 2014). The onset times are defined as the calendar 
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times at which geophysical observations begin to deviate from their initial or 

background values above a pre-defined threshold value. It allows compression of 

multiple seismic surveys into a single map of front propagation, which can be used to 

effectively guide history matching and for dynamic model updating.  The onset time can 

be related to the arrival time of a particular physical phenomenon (e.g. saturation front 

and/or pressure front). We demonstrate the power and the utility of the onset time 

methodology for history matching using synthetic study and field application. In the first 

instance, we compare the traditional seismic integration based on matching the 

magnitudes of seismic observations with the onset time approach. The second example 

involves steam injection into a heavy oil reservoir at Pad 31 in the Peace River Field 

(Alberta, Canada) with daily time lapse seismic surveys (in terms of two-way travel 

time) recorded by a permanently buried seismic monitoring system. We update our 

model based on onset time derived from the continuous seismic land monitoring using a 

hierarchical approach involving global and local updates. 

 

3.3 Approach 

 In this section, we introduce our proposed approach of integrating time lapse 

seismic into the reservoir model using onset-times. We start with an explanation of the 

data integration workflow and illustrate the concept of onset time in a stepwise manner 

using a simple synthetic example.  
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3.3.1 From Multiple Surveys to a Single Map of Onset-times 

The traditional approach to time lapse seismic data integration uses multiple seismic 

surveys and integrates seismic attributes (amplitudes or travel times) or changes thereof 

via dynamic modelling and history matching. In contrast, the onset time methodology 

collapses multiple seismic surveys into a single map of changes propagating in the 

reservoir. The onset times (Vasco et al. 2015) are defined as the calendar times at which 

measured time-lapse attributes begin to deviate from their initial values above a pre-

defined threshold value. The magnitude and sign of the threshold value depends on the 

signal-to-noise ratio of the seismic dataset and the particular physical phenomenon that 

is being tracked (e.g. saturation front and/or pressure front). 

3.3.2 Time Lapse Seismic Data and Petro Elastic Model (PEM) 

In order to connect between the state of the reservoir and the geophysical 

observation, we have to rely on a PEM to calculate the elastic properties of the rock that 

vary in time as a result of changes in the dynamic reservoir properties: fluid saturations, 

reservoir pressure, and temperature etc. The relationship between the seismic properties 

and the rock elastic properties can often be described by Gassmann’s equations 

(Gassmann 1951) for calculating the effective bulk modulus of the entire saturated rock. 

The model relates the bulk modulus of a rock to its pore, frame, and fluid properties. The 

Gassmann’s relation is valid in most practical cases; however, it can have considerable 

uncertainty, particularly in the model used to describe how the fluids are arranged within 

the pore space. The onset time, as opposed to magnitude matching, seems to be 
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insensitive to the specific model used for mapping the fluid saturations (Vasco et al. 

2015), and thus more robust against uncertainties in the underlying rock physics model. 

 

3.4 Background and Methodology 

In this section, we relate the onset time of time lapse seismic to the flow properties. Our 

inversion approach relies on the use of streamlines to relate small changes in reservoir 

properties to variations in the time lapse seismic response. Establishing these 

relationships, known as sensitivities, is crucial to the data integration process. The 

streamline approach allows us to derive analytical relationship between the arrival time 

of a propagating front in the reservoir and the flow properties, e.g., porosity and 

permeability, through which the propagation front traverses (Vasco et al. 2014). While 

the concept of the streamline method discussed in details in the previous chapter, here 

we focus on relating the onset of a change in a time-lapse attribute to the flow properties 

of a porous medium. 

3.4.1 Time Lapse Seismic and Onset Time Sensitivity Calculation 

In order to connect the dynamic responses of the simulator to the seismic observations, 

we need to translate the former into seismic domain using a rock-physics model. A 

petro-elastic model is a set of equations relating reservoir properties (pore volume, pore 

fluid saturations, reservoir pressures and rock composition) to seismic rock elastic 

parameters ( P -wave and S-wave velocities, pV   and sV  , respectively).  

The Gassmans equation (1951) is adapted to estimate the changes in elastic parameter 

caused by fluid substitution and reservoir pressure variations. 
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(3.1) 

frK  is the bulk modulus of the porous rock frame, 𝜙 is the effective porosity of the 

medium and the bulk modulus of the pore fluid, the bulk modulus of the mineral matrix 

HMK   is calculated based on Hertz-Mindlin contact theory (Mindlin 1949), and fK   is 

the bulk modulus of the pore-filling fluids. 

In order to calculate fK   we need to specify (1) the volume fraction of the 

phases, (2) the elastic moduli of the various phases, and (3)how the fluids are arranged 

relative to each other within the porous medium (Mavko et al. 2009). From the 

simulation response and the PEM, we can specify only the volume fractions and the 

constituent moduli. Currently, there is no universally accepted method of saturations 

mapping for an arbitrary distribution of fluids within the reservoir (Vasco et al. 2015). In 

such a case, one can only predict the upper and the lower bounds to describe the bulk 

modulus of the pore-filling fluids. The Reuss lower bound is given by  
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where iS   is the saturation of the i-th fluid and iK   is the bulk modulus of the i-th fluid. 

This bound can represent a scenario where the gas saturation is homogeneous distributed 

and determines the modulus. This curve (Figure 3.1) is achieved when the fluid phases 

are mixed at the finest scales and the seismic wave velocity is a nonlinear function of the 

gas saturation (Mavko et al. 1998). 
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 On the other hand, the Voigt upper bound is used to describe a case where the gas 

saturation is spatially nonuniform and given by   
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This model (blue curve in Figure 3.1) predicts a monotonic, almost linear increase in 

velocity from the dry to saturated values. It is achieved when there is the greatest 

separation of phases. Within this framework, at any given volume fraction of 

constituents, the bulk modulus of the pore-filling fluids will fall between the upper and 

the lower bounds. For example, the Hill estimate of the fluid bulk modulus (Mavko et al. 

2009) is the arithmetic average of the Voight and Reuss bounds 
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which represents a certain scenario of linear interpolation between the models to obtain 

different curves of saturations mapping (green curve in Figure 3.1). 

 

 

 

Figure 3.1 The velocity of a compressional wave as a function of the saturations for 
different models to describe the bulk modulus of the pore-filling fluids. 

 

 

 

Vasco et al. (2015) showed that the onset time, as opposed to the time-lapse amplitude, 

is less sensitive to varying between the upper and the lower bounds. In this study, we 

also explore the onset time response with respect to the specific method used to map the 

saturation. This will be discussed in more detail in the applications. We use Eq.2.42 to 

calculate the density of the saturated rock. The compressional (p-wave) velocity is 

generated using Eq. 2.43 and the acoustic (p-wave) impedance is computed using Eq. 

2.44. 
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In the previous chapter, we have shown how the streamlines approach can be 

used to compute sensitivities relating perturbations in flow properties to perturbations in 

saturation changes. Assuming onset time to be function of fluid saturation and pressure 

and implementing the chain rule, we can generate the sensitivity of the onset time with 

respect to permeability at a given location using the differential form of Eq. 2.44 as 

p
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. (3.5) 

  In this research, we study waterflooded and steam injected reservoirs where our 

focus is on water/steam front movement and therefore consider only the contribution of 

the changes in water front movement to the changes in onset time. In general, the 

seismic attribute depends upon coupling deferent physical phenomenon however, the 

fact that we use a threshold to define the onset time allows us to decuple those physics. 

In particular, the magnitude and sign of the threshold value depends on the signal to 

noise ratio of the seismic dataset and a particular physical phenomenon that is being 

tracked. In the above equation, the partial derivatives of onset times(OT),  OT / wS   is 

computed by numerical perturbation from the current saturation grid block values using 

Eq. 2.44, and saturation sensitivity    

 /wS k   is computed by Eq. 2.17.   

 

3.5 Application 

3.5.1 Five –Spot Synthetic Case 

 We first illustrate the major steps involved in the onset time data integration 

procedure using a two-dimensional synthetic application. The model is composed of a 50 
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x 50 grid of cells and involves reservoir production in a 5-spot pattern with four 

producers located at the corners and one central injector. The description of the model is 

given in section 2.4.1. The observed 4D seismic data were generated from the 

permeability model using a commercial reservoir simulator and a petro-elastic model. 

Over an interval of 2080 days, a total of 8 time-lapse seismic surveys (260 days each) in 

the form of acoustic impedance maps, are available for integration.  

In our onset time approach, the first step is to define a threshold value that allows 

a meaningful conversion of multiple attribute maps to a single map of onset time. The 

pre-defined threshold has two main roles: (1) to ensure that the magnitude of seismic 

observation is above the noise level, which determines the value of the threshold, (2) to 

define the physical phenomenon that is being tracked, which specifies the sign of the 

threshold value. Time-lapse seismic data are typically noisy due to non-repeatable noise, 

environmental noises, sensors spacing, and changes in near surface propagation due to 

variations in the water table or in the overlying water column. These variations lead to 

seismic signals even when there are no dynamic changes within the reservoir, and thus a 

need for threshold value to distinguish between noise and meaningful signal. In this 

example, we define the threshold to be 5% above the acoustic impedance of the baseline 

survey (that is, before the injection started). This increase above the threshold 

corresponds to an increase in the bulk density and velocity of the seismic waves, which 

results from replacement of “softer” for “harder” reservoir fluids (e.g. oil or gas being 

displaced by the injected water).  Figure 3.2 illustrates the procedure of converting the 

time-lapse magnitude data to onset time map. For each cell in our model we indicate the 
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calendar time at which the measured time-lapse amplitude data crosses the threshold 

value. This time (day), will be recorded in the onset time map. Thus, data from multiple 

attribute maps reduce to a single onset time map (Figure 3.2C). The contours of the onset 

time provide a display of the changes propagating in the reservoir.  

 

 

 

Figure 3.2 Conversion of multiple attribute maps (AI) to onset time map. (a) A sample of 6 
attribute maps (AI) out of 8 that are available for integration.(b) A plot of the seismic 

response of a specific cell (black dot in (a)) to indicate the onset time. (c) The onset time 
map after converting from seismic attribute to time. The contours display the front 

progression. 

 

 

   To examine the sensitivity of the onset time to the PEM, we consider two sets of 

observations. In the first set, the acoustic impedance maps were calculated using the 

Reuss lower bound (Eq.3.2) to describe the bulk modulus of the pore-filling fluids. In 
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the second set, the acoustic impedance maps were calculated using the Voigt upper 

bound (Eq.3.3) to describe the bulk modulus of the pore-filling fluids. As indicated 

above, the velocity changes resulting from the saturation changes will vary, depending 

upon the specific bound we use to describe the bulk modulus of the pore-filling fluids. 

For each data set, we convert the multiple attribute maps (e.g. acoustic impedance) to an 

onset time map. Figure 3.3 shows the seismic response as a function of the method we 

use to describe the bulk modulus. In particular, in Figure 3.3a and Figure 3.3b we plot 

the acoustic impedance amplitude changes over the interval for both cases. The acoustic 

impedance amplitude changes seems to be very sensitive to the selected averaging 

method that we use to describe the bulk modulus of the pore-filling fluids. On the other 

hand, the onset times (Figure 3.3c and Figure 3.3d) appear to be relatively insensitive to 

the model used to estimate the fluid bulk moduli. Figure 3.4 shows the AI amplitude 

over the injection interval for two points in the model. There are clear differences in the 

magnitudes of the calculated amplitude changes depending upon which averaging 

technique is used. However the onset time is consisted for both bounds.  Similar 

conclusions were arrived by Vasco et.al (2015).  
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Figure 3.3 Calculated seismic response using different bounds to describe the bulk 
modulus of the pore-filling fluids. (a) Acoustic impedance changes based on the Voigt 
bound. (b) Acoustic impedance changes based on the Reuss bound. (c) Onset Time 

based on the Voigt bound, and (d) Onset Time based on the Reuss bound.    

 

 

 

 

Figure 3.4 The AI response of two points (a and b in the onset time map) 
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In order to illustrate the different sources of dynamic data in the time lapse integration, 

we consider two different examples. In the first case, the inversion is based on acoustic 

impedance amplitude changes. We break up the entire period into three increments, 

shown in Figure 3.5, to achieve a reasonable resolution over the observation period and 

calibrate the model against acoustic impedance changes. In the second case, the 

inversion is based on the onset time integration which converts multiple time-lapse 

seismic survey data into a single map of onset times.  

 

 

 

Figure 3.5 The seismic observations for the AI change inversion. (a) AI change between 0 
and 780 days (b) AI change between 780 and 1560 days, and (c) AI change between 1560-
2040 days. 
 

 

 

To emphasis the dependence of the PEM on seismic response, in both cases, the 

bulk modulus of the pore-filling fluids is calculated based on the Hill estimate (Eq.3.4) 

for the observation set, while we purposely used the Reuss lower bound (Eq.3.2) for the 

simulated data.  
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The history matching results are shown in Figure 3.6, where reductions in 

objective function values are compared for both cases. Note the reduction of the onset 

time objective function as compared to the acoustic impedance change implies that the 

onset time is less sensitive to the petro elastic model. In addition, a significant 

improvement of the calculation time is achieved by compressing the data in to a single 

map of onset times. Figure 3.7 shows the fit to time lapse seismic for both cases, with a 

significant improvement in onset time map. Finally, the updated permeability field for 

both cases is shown in Figure 3.8, it appears that the onset time is able to better identify 

the low permeability barrier located in the right lower corner of the model.      

 

 

 

 

Figure 3.6 Objective function as a function of the number of iterations of the inversion 
algorithms. 
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Figure 3.7 Seismic response for different inversion algorithm. (a) Onset Time of the 
reference model, (b) Onset Time of the initial model, and (c) Onset Time of the updated 

model. (d) AI changes of the reference model, (b) AI changes of the initial model, and (c) 
Onset Time of the updated model. (d) AI changes of the reference model, (b) AI changes 

of the initial model, and (c) AI changes of the updated model. 

 

 

 

 
Figure 3.8 Permeability fields for the five-spot synthetic test. (a) Reference model, (b) 

Initial model, and (c) updated model based on Onset Time data integration, (d) updated 
model based on AI changes data integration. 
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3.5.2 The Peace River Case Seismic Monitoring at Pad 31 

The Peace River is a heavy oil field in Alberta, Canada. The field has been under several 

thermal recovery schemes including Cyclic Steam Stimulation (CSS) and Steam 

Assisted Gravity Drainage (SAGD) to increase the recovery of the bitumen deposits. 

These processes led to limited recovery of the bitumen originally in place, partly due to 

insufficient stimulation of the reservoir volume. Recently, one of the production pads, 

Pad 31, was re-developed with six new horizontal steam injectors (in green, Figure 3.9) 

and operated as a Top Down Steam Drive (TDSD). This new development was 

monitored with a permanent seismic monitoring system (the monitoring period was 

between May 2014 and May 2016) that provides snapshots of reservoir state on a daily 

basis (Hetz et al. 2017; Lopez et al. 2015). In addition to the ongoing TDSD, one of the 

producers (31-08 well, Figure 3.9) has undergone CSS to promote communication with 

the northern part of the pad.    
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Figure 3.9 Pad 31 horizontal production wells (red), injection wells (green), and 
observation well (blue). Also shown are seismic sources (red dots) and receivers (blue 

dots). Producer 31-08 underwent CSS and is the focus of this study. 

 

 

 

Our objective is to understand the fluid movements and pressure propagation 

using the time lapse seismic data and to calibrate reservoir models to the seismic data 

acquired over a CSS cycle in well 31-08 using an assisted history matching process. At 

the same time, we would like to reproduce the bottomhole pressure (BHP) response at 

this well. The fact that the well under consideration is relatively isolated from the rest of 

the pad and did not seem to be influenced by the ongoing TDSD, allows one to use a 

sector model for dynamic modeling on a fine grid (Przybysz-Jarnut et al. 2016). The 

seismic data is translated into time shift maps, expressing the travel time changes in the 
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seismic wave propagation across the reservoir between a chosen baseline survey (e.g. the 

start of the cycle) and subsequent monitor surveys. Over the CSS cycle, a total of 175 

time lapse seismic surveys are available for integration (Figure 3.10).  

 

 

 

Figure 3.10 Seismic observations in well 31-08. 18 samples of time shift maps are shown 
out of 175 time shift maps that are available for integration.  
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Figure 3.11 The Normalized BHP over the CSS cycle 

 

 

 

We use the model derived by (Barker and Xue 2016) to convert the dynamic 

simulation response to elastic properties. The sensitivity of the petro elastic model is 

presented in Figure 3.12. The interpretation of the time shift maps can be done based on 

the suggested rock physics model. For example, time shift increasing (red color in Figure 

3.10) is generated by an increase in temperature, pressure or when gas phase replaces 

water phase. On the other hand, temperature or pressure decreasing as well as water 

phase replaces gas phase would lead to a decrease in time shift (blue color in Figure 

3.10).   

The amount and the nature of the recorded time shift data, which combine the 

effects of temperature, pressure and phase saturation changes in the reservoir, make it 

extremely challenging and time consuming for history matching. To overcome these 
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problems, we use our onset time approach to integrate the time lapse seismic data into 

the model.  

 

 

 
Figure 3.12 Sensitivity of the rock physics model. (a) Velocity of a compressional wave as 
a function of pressure for different gas saturation where temperature and water saturation 
are fixed. (b) Velocity of a compressional wave as a function of temperature for different 

gas saturation where pressure and water saturation are fixed. (c) Velocity of a 
compressional wave as a function of the saturations. All velocity estimates are computed 
by Gassmann’s approach but using different methods for calculating the composite fluid 

bulk modulus.  

 

 

 

Based on the signal to noise ratio of the seismic dataset, we define the threshold 

as a decrease of 0.1[mS] in the time-shift. At the first part of the cycle (e.g. the 

injection), the onset time is associated with water phase replacing gas phase as a result of 

steam injection. In the second part (e.g. soak), the onset is related to pressure diffusion 

after the injection ceases.  
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For the field application, the first step is to sample the seismic observations into 

the reservoir model grid to be able to compare it with the simulation response. As shown 

in Figure 3.13, first, inline/crossline data is converted to XY coordinate system. Then, 

we create a surface on the seismic grid by interpolating the values between the points. 

Finally, this surface is sampled into the simulation grid.      

 

 

 

Figure 3.13 Sampling the seismic observations into the reservoir model grid. (a) A 2D map 
(on the seismic grid), expressing the travel time changes in the seismic wave propagation 
across the reservoir between a chosen baseline survey (e.g. the start of the cycle) and 
subsequent monitor surveys. (b) The sampling procedure 
 

 

 

 After the seismic data was sampled into the simulation grid, we follow the same 

procedure we presented in the synthetic case (Figure 3.2) to generate the onset time map 

(Figure 3.14). The onset time map provides an alternative representation of the 
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propagating changes and, by collapsing the data into one single map, makes it attractive 

to calibrate the reservoir model using an assisted history matching process. 

 

 

 

Figure 3.14 Conversion of multiple attribute maps (time shift) to onset time map. (a) A 
sample of 7 attribute maps (time shifts) out of 175 that are available for integration.(b) A 

plot of the seismic response of a specific cell (label as black dot in Figure 2(a)) to indicate 
the onset time. (c) The onset time map after converting from seismic attribute to time. The 

contours display the front progression. 

 

 

 

As previously observed in the synthetic case, the onset time not only leads to a 

significant data reduction, but also seems to be less sensitive to the unknowns in the 

petro elastic model. In an effort to examine the sensitivity of the onset time to variations 

in the method used to map the fluid saturations in the field application, in Figure 3.12C 

we plot the P- wave velocity as a function of saturation for different models to describe 
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the bulk modulus of the pore-filling fluids. We observed that the P-wave velocity is very 

sensitive to the selected model. In Figure 3.15 we plot the time shift changes over the 

injection period (e.g. the first 82 surveys), calculated using the presented models in 

Figure 3.12C. At the same time, we generate the corresponding onset time maps for this 

period as shown in Figure 3.16. While significant differences are seen in the magnitudes 

of seismic attribute maps, the onset times appear to be relatively insensitive to the petro-

elastic model and properly captures areal propagation of changes related in this 

particular case to steam/fluid propagation. 

 

 

 

 

Figure 3.15 Time shift changes, calculated using the models presented in figure 6, after 82 
days of steam injection 
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Figure 3.16 Onset tine maps, calculated using the models presented in figure 6, after 82 
days of steam injection 

 

 

 

3.5.3 Uncertain Parameters and Sensitivity Analysis  

Since the heavy oil field has been under production for more than ten years with different 

thermal recovery schemes, the significant uncertainty lies in the initial conditions and the 

flow properties of the reservoir at the beginning of the cycle. Table 3.1 summarizes the 

initial reservoir conditions. While most of the parameters were initialized based on the 

geologic model or uniformly distributed, the initial temperature distribution was 

interpolated from the tubing head temperature (THT) within the observed onset time 

map region at the beginning of the cycle, as illustrated in      
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Table 3.1 Simulation specification peace river 

Parameter  Initial condition 

Initial pressure  40[bar] 

Initial gas saturation Uniformly distributed (4%) 

Initial water saturation Based on geologic model 

Initial temperature Interpolated from the THT 

 

 

 

 

Figure 3. 17 The initial temperature of the CSS interpolated from the THT and the onset 
time map. (a) The interpolated region and (b) the onset time map for the full field. 

  

 

 

We performed a sensitivity analysis to identify the parameters to be updated in the history 

matching process. Table 3.2 lists the uncertain parameters with the base values and ranges 

used for the sensitivity study. 
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Table 3.2 Parameter uncertainties for sensitivity and history matching 

Parameter Base Low High 

Initial gas saturation 1.0 0.7 1.3 

Initial temperature 1.0 0.7 1.3 

Completion interval 1.0 0.7 1.3 

Permeability 1.0 0.7 1.3 

Pore Volume 1.0 0.7 1.3 

Relative Permeability 0.75 0.5 1 

 

 

 

For the sensitivity study, the objective function was defined as the summation of misfits 

in the onset time seismic response and the BHP 

( ) ln OT ln BHP
Timestep

i i
i

f      m  (3.6) 

where m  is a set of reservoir parameters and    represents the misfit from the observed 

data. Figure 3.18 shows a tornado diagram of the objective function with respect to 

reservoir parameters listed in Table 3.2. Based on the sensitivity analysis we found that 

all of parameters have significant influencing on the objective function but the 

completion interval is the most impacting parameter indicating the need to adjust the size 

of stimulated zone.  
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Figure 3.18 Sensitivity analysis of individual uncertain parameter. Low and high cases are 
colored in blue and orange, respectively. 

 

 

 

3.5.4 History Matching First Stage 

The CSS cycle can be divided into two periods (Figure 3.11). The injection part, which 

involves steam injection over three months and the soak part, where the fluids naturally 

flow back to the well after the injection stops. The history matching was carried out 

following the method outlined by (Zhang et al. 2016), which utilized the Genetic 

Algorithm (GA) facilitated by use of experimental design and response surface 

modelling (Yin et al. 2011). For validation purpose, we preformed history matching on 

the first part of the cycle (82 seismic surveys are available for integration) and used the 

second part of the cycle to validate the BHP response. The observed onset map and the 

simulated onset map of the initial model are illustrated in Figure 3.19. Note the large 

mismatch of propagation time of the initial model. Figure 3.20 shows the BHP of the 

observed, the initial model and the first 10 simulations. Note that the variation of the 
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simulated pressure response in the initial 10 models caused by sampling from large 

range of parameter uncertainties.    

 

 

Figure 3.19 Onset time map over the injection interval (A total of 82 seismic surveys are 
available for integration). (a) Observed data. (b) Initial model. 

 

 

 

Figure 3.20 Simulated BHP of the initial 10 simulations compared with the observation 
(dot black line) and the initial model (pink line). 
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The BHP simulated with 10 models selected based on the objective function were 

compared with the observed data as shown in Figure 3.21. The selected models were 

able to closely match pressure behavior in the well for the history matching part and 

naturally following on the right trend at the validation (e.g. the production period). The 

onset time map improved significantly as shown in Figure 3.22 compared to the initial 

model. 

 

 

 

 

Figure 3.21 Simulated BHP after the history matching compared with the observed data 
(dot line).  



 

81 

 

 

Figure 3.22 Onset time map over the injection interval after the history matching. (a) 
Observed data, (b) Initial model, and (c) the best model 

 

 

 

The model parameters range of the initial generation and the selected model is illustrated 

in Figure 3.23. Overall we observe a notable reduction in the parameter range. One 

notable feature is the significant reduction of the completion interval range. To gain 

some insight into this variation, we plot in Figure 3.24 the onset time map of the upper 

outlier, the best model, and the lower outlier. The upper outlier represents a case where 

most of the horizontal part of the well is open for injection. On the other hand, the lower 

outlier represents a scenario where only the vertical part is open. Note the footprint of 

the radial flow at the onset time map. The variation of the onset time maps (Figure 3.24) 

suggesting that the onset time is very sensitive to completion interval. Still even with 

underestimation of propagation time we were able to reduce the parameters uncertainty 

range and indicate that most of the injection occurs in the near vertical part.  
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These initial results show the added value of using onset time to constrain and calibrate 

reservoir models. The next section will focus on the use of multi-objective optimization 

to obtain an improved representation of reservoir sweep through identification of stream 

saturation distribution and steam override.           

 

 

 

Figure 3.23 Box plots of the parameters range. (a) Initial generation and (b) the best 15 
models. 
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Figure 3.24 The effect of the well completion on the onset time map. 

 

 

 

3.5.5 Global to Local Hierarchical History Matching Workflow 

After indicating the sensitive parameters and adjusting the completion interval we apply 

a hierarchical history matching workflow that consists of two stages (Yin et al. 2011): a 

global update and a local update. Our objective is to calibrate the initial saturations, 

initial temperature, porosity, and the permeability field to the 4D seismic and the 

pressure data acquired to understand the unexpected reservoir behavior during CSS cycle 

in 31-08 well with much less injected volume and higher than expected injection 

pressure. In the global update, the geological model is first parameterized using an 

Adjacency-based Transformation, referred to as the ABT (Bhark et al. 2011). It is a 
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linear transformation characterized by the spectral modes of the adjacency-based 

Laplacian, AL  , as  

   

D AAL     (3.7) 

D is a diagonal matrix with a degree of A, known as the adjacency matrix, where the 

components are calculated as 
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(3.8) 

here 
,i jx   is the cell center coordinates and 

,i jp   is the cell property values. Each 

component represents the similarities between two cells. If the distance between two 

cells is larger than  r , Euclidean cutoff distance, its similarity is defined as zero. P  and 

X   determine the weights of the property differences and distances. The eigenvectors 

of the adjacency-based Laplacian are defined as basis functions which transform the 

spatial domain to spectral domain, and vice versa using its orthogonality as 

 Tv Φ u u Φv   ,  (3.9) 

 

where u  is N×1 dimension property field in the spatial domain and v  is M-length 

column vector which consists parameter set in the spectral domain. Φ is a (N×M) matrix, 

containing M-columns ,that defines the discrete basis functions of each length N. Since, 
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most of spatial information is compressed only in a small number of leading basis 

vectors, M is much smaller than N. Thus, it is possible to perform a history matching 

with much smaller number of parameters, making it more efficient and relaxing a ill-

posed problem. For model calibration, a spatial multiplier field has been posed in the 

multiplicative formulation as follows, 

0   u u Φv   (3.10) 

where 0   u  is the prior property field, also called initial model, and Φv  defines the 

multiplier field in the spatial domain and   ⃘ signifies element-wise multiplication (Schur 

product). This enables it to honor0 the prior property heterogeneity during the model 

updates.  

A Pareto-based multi-objective evolutionary algorithm (Kam et al. 2016) is used 

to simultaneously integrate the BHP response and the onset time data to update the ABT 

coefficients. This algorithm is particularly well suited for minimizing multiple, and 

potentially conflicting, objectives and in this study defined as, 

 
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and, 
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    (3.12) 

 

Here is timeN   the total number of timesteps and obsN  is the total number of seismic 

observation points. 
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In the local update, the gridblock permeability is calibrated to match the onset time data 

using the streamline approach, as demonstrated in the synthetic case, followed by BHP 

matching at the well. The entire CSS cycle can be divided into two periods. The injection 

part, which involves steam injection over three months and the soak part, to allow for heat 

exchange after which fluids are naturally flown back to the well. We preformed history 

matching on the first part of the cycle (82 seismic surveys are available for integration) 

and used the second part of the cycle to validate the BHP response.  

 The observed onset time map and the simulated onset time map of the initial 

model are illustrated in Figure 3.25. Note the large mismatch of propagation time of the 

initial model.    

 

 

 

Figure 3.25  Top view of onset time map over the injection interval (a total of 82 seismic 
surveys are available for integration). (a) Observed data and (b) Initial model. 
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The first step in our data calibration procedure is to parameterize the initial saturations, 

initial temperature, porosity and permeability using ABT parameterization. While most 

of the parameters were initialized based on the geologic model or uniformly distributed, 

the initial temperature distribution was interpolated from the tubing head temperature 

(THT) at the beginning of the cycle, within the observed onset time map region. Since 

the gas saturation was uniformly distributed we use the observed onset time to calculate 

its adjacency matrix for the ABT parameterization. A Total of 50 basis functions (10 per 

each property) and corresponding basis coefficients are used to modify the initial 

properties in the course of model calibration. The ABT basis functions of layer 17 are 

shown in Figure 3.26. Note that the variations in the ABT basis functions are as a results 

of the property heterogeneity. 
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Figure 3.26 Parameterization of the parameters multiplier field at layer 17 (Top view) using 
ABT basis function 

 

 

 

The Pareto-based evolutionary algorithm is solved using a genetic algorithm over 

30 generations with papulation of 150 members per generation. The large number of 

simulations allows us to test different combinations of the model parameters and 

alternative dynamic realizations. The resulting multi-objective function for the initial and 

final generation is shown in Figure 3.27. 
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Figure 3.27 Multi-objective function comparisons between initial generation and the final 
generation in the global step model calibration. (a) Initial model and (b) Final generation. 
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  While an overall reduction is observed for both the seismic data and the BHP, the 

trade-off between the objectives is clearly shown at the Pareto-fronts. By applying a 

cluster analysis, we further investigate the objective space as shown in Figure 3.28. 

Figure 3.29, Figure 3.30and Figure 3.31 show the updated onset time maps of selected 

models for cluster 1cluster 2 and cluster 3, respectively. For all clusters, we observed a 

notably improvement from the initial onset time map calculated using the prior model. In 

Figure 3.32 we plot the pressure response of 40 updated models, from all cluster, over 

the entire CSS cycle. There is marked improvement in the match quality that results 

from the integration of global step where the selected models from cluster 1 tend to 

overestimate the pressure.  One notable feature is the consistent pressure match to the 

soak part (validation), where we used the history matched models to predict the pressure 

behavior indicating that the models are able to adequately represent the saturation 

propagation in the reservoir.  
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Figure 3.28 cluster analysis results for the last generation of the global history matching 
step. 
 
 
 
 
 
 
 

 
Figure 3.29 Onset time maps for selected models in cluster 1. (a) Observed onset time map, 
(b) initial onset time map ,(c) model 4425 (d) model 4712 and (e) model 3480 
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Figure 3.30 Onset time maps for selected models in cluster 2. (a) Observed onset time map, 
(b) initial onset time map ,(c) model 4430 (d) model 4633 and (e) model 4122 

 

 

 

 

 
Figure 3.31 Onset time maps for selected models in cluster 3. (a) Observed onset time 

map, (b) initial onset time map, (c) model 4770 (d) model 4638 and (e) model 4492 
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Figure 3.32 Pressure response of 40 models from the final generation. pink line is the 
initial model, black dots are the observed pressure response and color lines are the 
selected models from the final generation. 

 

 

 

By looking on the change of the parameters over the global step we can gain 

some insight on the different physical mechanisms that are associated with the clusters. 

Figure 3.33 shows the change in the reservoir description for a selected model in each 

cluster. For example, it is observed that the permeability near the well decreases in 

cluster 1. Also, the water saturation in the bottom water zone increases compared to 

clusters 2 and 3. This can explain the overestimate of the pressure matching the 

associated with cluster1 (Figure 3.32). Similarly, in clusters 2 and 3, the change in the 

temperature and gas saturation distribution around the well resulting different spatial 
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flow patterns that reflect from the onset time maps with underestimation of propagation 

time. The relationship between the clusters can be further investigate by looking on the 

conflicting regions between the onset time and the BHP for each parameter. The 

conflicting regions (CR) is defined as 

K Konset t B Pe HimCR     , (3.13) 

where  Konset time    is the average parameter change that leads to smaller onset time 

mismatch ( cluster 1) and KBHP   is the average parameter change resulting smaller 

mismatch in the BHP (cluster 2). Negative values for CR in a specific region, indicates 

that the objective functions are conflicting with respect to a given parameter.Figure 3.34 

shows the conflicting regions for the parameters that have been updated in the global 

step. For example it observed that the conflicting region for the initial gas saturation is 

around the vertical part of the well.    
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Figure 3.33 The change in the updated parameters over the global step for a selected 
model in each cluster. 
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Figure 3.34 Conflicting reigns (red color) between the seismic updates and the BHP 
updates. (a) Initial gas saturation, (b) permeability, (c) porosity, (d) initial water saturation 
and (e) initial temperature.   

 

 
 

 

 
3.5.5.1 Local Step Onset Time and BHP Data Integration 

 

The matching of the propagation time can by further improved by applying our local 

step to update the permeability field on a cell-by-cell basis. Based on the cluster analysis 

we select several candidate models for the local step. Our history matching here 

calibrates the gridblock permeability to the onset time data and follows the same 

procedure as illustrated in the synthetic case. The reduction in the onset time misfit 

through the local inversion workflow for one of the models is shown in Figure 3.35 
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Figure 3.35 Seismic data misfit as a function of the number of iterations of the inversion 
algorithms 

 

 

 

Figure 3.36 and Figure 3.37 show the results of the onset time response for a selected 

model in cluster 1 and cluster 2. The updated onset time response from the local step 

significantly improves the results due to local adjustments of reservoir flow properties. 

 

 

 

 

Figure 3.36 Top view of the onset time map after the history matching to a selected model 
from cluster 1. (a) Observed data, (b) after global, and (c) the final updated model 
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Figure 3.37 Top view of the onset time map after the history matching to a selected model 
from cluster 2. (a) Observed data, (b) after global, and (c) the final updated model 
 

 

 

 

The changes made to permeability field resulting from the local update step are 

shown in Figure 3.38 and Figure 3.39 emphasizing the ability of the local updates to 

further improve the match to the data. These updates imply that the stimulated zones are 

located mostly arounds the vertical part of the well. Figure 3.40 and Figure 3.41 show 

the results of the model calibration procedure, comparing the pressure response before 

and following the local step data integration. Notable results of the inversion procedure 

are a matched pressure behavior over the injection interval (history matching), but more 

importantly we were able to closely match pressure behavior in the well at the validation 

period (e.g. the soak part).  
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Figure 3.38 Permeability model change (final-prior) for a selected model in cluster 1. (a) 
Top view of layer 14, (b) Top view of layer 17 and (c) top view of layer 20 

 

 

 

 

Figure 3.39 Permeability model change (final-prior) for a selected model in cluster 2. (a) 
Top view of layer 14, (b) Top view of layer 17 and (c) top view of layer 20. 
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Figure 3.40 The BHP response of well 31-08 over the CSS cycle after the local updates for 
a selected model in cluster 1. 

 

 

 

 

Figure 3.41 The BHP response of well 31-08 over the CSS cycle after the local updates for 
a selected model in cluster 2. 
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The onset-time map is not only a useful tool for better matching the model, but 

also gives additional insight of the physics that occurs in the reservoir. We plot the water 

saturation changes over the injection period for the initial model and the updated models, 

as shown in Figure 3.42 and Figure 3.43. This figure shows that the adjustments in the 

injected fluid distribution as a results of updating the flow properties based on the seismic 

observation.    

 

 

 

 

 

Figure 3.42 Water saturation change over the injection cycle for the initial and the 
updated models. The transparent cells in the updated models represent the water 
saturation changes observed in the initial model. (a) Water saturation changes after 45 
days. (b) Water saturation changes after 85 days. 
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Figure 3.43 Top view of water saturation change after 45 days in the initial and the 
updated models for selected layers. (a) Layer 17, (b) layer 20, and (c) layer 21. 

 

 

 

In addition, the onset-time maps help us to identify the steam override which is a 

common phenomenon in steam injection processes. The reason for this phenomenon is 

that mobility of displaced fluid is much lower than that of the displacing fluid (steam). 

Due to the differences in density between steam and oil, steam override occurs. Figure 

3.44 shows the water saturation along the streamlines over the injection period. At the 

beginning of the cycle (Figure 3.44a) the steam starts moving upward as soon as it is 

injected inside the model. This movement is captured by the onset time map. The gravity 

override phenomenon becomes less severe in the course of time, as the fluid moves 

downward at later times (Figure 3.44b).  
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Figure 3.44 Cross view of the water saturation along the streamlines over the injection 
interval. (a) Water saturation along the streamlines after 5 days, and (b) water saturation 
along the streamlines after 80 days. 

 

 

 

Overall our hierarchical history matching approach significantly reduced the misfit 

associated with 4D seismic and pressure data and provided an improved representation of 

reservoir sweep through identification of fluid saturation distribution and steam override. 

 

3.6 Conclusions 

 In this chapter, we have proposed a novel approach to integrate frequent time 

lapse seismic data into high resolution reservoir models based on the seismic onset 

times. The technique is able to reconcile the model heterogeneity by compressing 

multiple seismic surveys into a single map of onset times that represents the propagation 

of changes in the reservoir.  

Some of the conclusions from this study are the following: 
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• We propose a novel and computationally efficient approach for time lapse 

seismic integration using the onset time which is able to efficiently display the 

front propagation in order to update the flow properties. 

• Our synthetic and field applications show that unlike seismic impedance, the 

onset times appear to be relatively insensitive to the petro elastic model but 

sensitive to the steam/fluid propagation, temperature and pressure.  

• The onset time leads to a significant data reduction and provides practical and 

faster approach that allows testing alternative dynamic realizations, making the 

algorithm suitable for large field applications with frequent seismic surveys. 

• The Peace River application demonstrates the feasibility and the robustness of 

the hierarchical workflow to integrate onset times and pressure data. Unlike the 

manual history matching (Przybysz-Jarnut et al, 2016), in the global step our 

approach updates the parameters simultaneously, which allows testing different 

combinations of parameters uncertainty range.   The compression of the frequent 

seismic surveys into a single set of onsets assists efficient history matching using 

the population-based technique that requires a large number of simulation runs. 

In the local stage, where the flow properties were adjusted on a cell by cell basis, 

the algorithm was able to improve the location of the water/steam front and 

identified the location of increased permeabilities which in case of steam 

injection in heavy oil is equivalent with stimulated zones. With this technique, 

through initial conditions and local permeability updates, we were able to 
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identify the injectivity profile along the horizontal well, which was crucial for 

further development considerations.   

• The results clearly show the importance of accounting for both the global and the 

local updates to match the data, as seen through improved estimation of the 

permeability distribution, fluid saturation evolution and swept volume. 
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  CHAPTER IV ONSET TIME VS. AMPLITUDE MATCHING                               

FOR SEISMIC DATA INTEGRATION  

4.1 Chapter Summary 

 In this chapter, we explore the effectiveness of the onset time and the amplitude 

inversion to solve the inverse problem associated with integrating 4D seismic data into 

the reservoir model. By applying the geometric concept of curvature(Bates and Watts 

1980), we quantitatively investigate the nonlinearity associated with each of the 

inversion methods. A high degree of nonlinearity usually leads to problems in 

convergence and instability of the solution, resulting in an inadequate history matched 

model. It is found that integration of seismic data using the amplitude inversion can be 

orders of magnitude more nonlinear compared to the onset time inversion. Also, the 

onset time inversion has a much less dense matrix of sensitivities that properly captures 

the front propagation as a result of the injection.  

We demonstrate the results using synthetic and field applications. The synthetic 

case involves gas injection in a five spot well configuration. The field example involves 

steam injection into a heavy oil reservoir at Pad 31 in the Peace River Field (Alberta, 

Canada) presented in the previous chapter. The results clearly show that inversion for the 

flow properties based upon onset time is more robust and less nonlinear.  
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4.2 Introduction  

 Reservoir model calibration, also known as history matching, is an essential tool 

for the prediction of fluid displacement patterns and related decisions concerning 

reservoir management and field development. Recently, the use of time-lapse 

geophysical data for the characterization of flow properties in the subsurface has been 

increased significantly, and a number of successful field experiences of reservoir 

management have used time-lapse seismic information (Behrens et al. 2002; Fahimuddin 

et al. 2010; Landrø et al. 2001; Landrø et al. 1999; Watanabe et al. 2017). The 

integration of time-lapse seismic data usually involves least-squares-based minimization 

to match the observed and calculated response (Dadashpour, Mohsen et al. 2010; 

Dadashpour et al. 2009; Falcone et al. 2004; Gosselin et al. 2003; Gosselin et al. 2001; 

Rey et al. 2009; Rey et al. 2012; Rwechungura, R.W. et al. 2012; Vasco 2004; Watanabe 

et al. 2017), where the objective function mostly focuses on amplitude, traveltime, and 

waveform matching (Vasco et al. 2015).The solutions of such inverse problems, 

however, known to define an ill-posed such that the solution of geologic parameters is 

always non-unique and potentially unstable. While this problem can be partially 

mitigated by including additional regularization terms, penalizing attributes of the model 

such as its spatial roughness or its vector norm (Menke 2012), a fundamental challenge 

remains in specifying the relationship between the geophysical properties and reservoir 

properties, which still can be highly nonlinear. This can cause the solution to converge to 

a local minimum, leading to an inadequate history match (Cheng et al. 2005). 
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Recently, the onset time based method has shown a great potential for 

incorporating seismic data into high-resolution reservoir models (Hetz et al. 2017; Vasco 

et al. 2015; Vasco et al. 2014). The onset times are defined as the calendar times at 

which geophysical observations begin to deviate from their initial or background values 

above a pre-defined threshold value. It allows the compression of multiple seismic 

surveys into a single map of front propagation, which can be used for dynamic model 

updating (Hetz et al, 2017). As noted in the previous chapter it is also less sensitive to 

the unknowns in the petro elastic model. The onset time approach is analogous to 

“arrival-time match.” Instead of matching the amplitude change of a geophysical 

observation directly, we relate the change in the geophysical property to the arrival time 

of a saturation/pressure front.  

Such arrival times can often be linked to flow properties(Vasco et al. 2014). For 

example, (Vasco and Datta-Gupta 2001) have shown that the saturation arrival time can 

be related directly to the permeability, and it seemed to be more robust even when the 

initial model deviates strongly from the final solution. (Vasco 2011) derived an 

expression for the velocity of the saturation and pressure front and showed that it has a 

direct relationship to the reservoir flow properties. Several papers (Datta‐Gupta et al. 

2002; He et al. 2002; Vasco and Datta‐Gupta 1999; Vasco et al. 1998)  derived an 

expression that relates the trace arrival time to variations in permeability. In those 

papers, the integration of dynamic data is curried out using a two-step iterative inversion 

that involves travel-time matching followed by a conventional amplitude match. The 

showed that the major part of the production data misfit reduction occurs during the 
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traveltime inversion. In the field of flow properties history matching, Cheng et al. (2005) 

used quantitative measures of nonlinearity to compare the travel-time inversion and 

amplitude inversion for production-data integration. This study found that the travel time 

problem is quasi-linear and thus converges more readily than the highly nonlinear 

amplitude matching problem. (Luo and Schuster 1991) and (Zhou et al. 1997)arrived at 

the same conclusion in the context of seismic inversion. 

In this chapter, the benefits of onset time inversion for seismic data integration in 

terms of nonlinearity and convergence properties is examined. We discuss the 

mathematical foundation for the measure of nonlinearity and its implications on the 

seismic-data integration. We quantitatively investigate the extent of nonlinearity in 

onset-time inversion and amplitude inversion. In particular, we show that the 

nonlinearity in onset-time inversion is smaller than that of the amplitude inversion. This 

leads to better convergence properties and a robust method for seismic-data integration. 

We illustrate our results using both synthetic and field applications. The field example 

involves steam injection into a heavy oil reservoir at Pad 31 in the Peace River (Alberta, 

Canada) with daily time lapse seismic surveys (in terms of two-way travel time) 

recorded by a permanently buried seismic monitoring system. In our specific application, 

we have used time lapse data from a Cyclic Steam Stimulation (CSS) cycle in the pad 

with a total of 45 seismic surveys. The results clearly demonstrate the benefits of the 

onset time inversion to handle large number of seismic surveys by compressing them 

into a single map. In particular, the onset inversion appears to outperform the amplitude 

inversion in reconciling the geologic model to the seismic data response. 



 

110 

 

4.3 Background and Approach 

4.3.1 Onset Time Inversion and Amplitude Inversion 

 As discussed in chapter 3, the traditional approach to time lapse seismic data 

integration uses multiple seismic surveys (whenever available) and integrates seismic 

magnitude (or change in the magnitude) thereof via dynamic modelling and history 

matching. For a given location and time the amplitude inversion attempts to match the 

observed seismic response (e.g. acoustic impedance) and the simulated seismic response 

directly, as shown in Figure 4.1a.  In contrast, the onset time inversion attempts to 

match, for a given location, the time at which measured time-lapse attributes begin to 

deviate from their initial values above a pre-defined threshold value, illustrated in Figure 

4.1b. As mentioned in the introduction, the onset time inversion is analogous to the 

travel time inversion. 

  Such an approach removes the requirement that we map a change in a 

geophysical property to a specific change in fluid saturation and/or pressure (Vasco et al. 

2014). The advantages of travel-time inversion are well documented in geophysics 

literature. For example, (Luo & Schuster, 1991) showed that travel-time inversion is 

quasilinear as opposed to amplitude inversion, which can be highly nonlinear. Amplitude 

inversion typically works well when the prior model is close to the solution. In this 

section, we will quantitatively investigate the relative merits of the different methods in 

terms of nonlinearity and convergence properties.  
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Figure 4.1 Seismic response at a given location as a function of time, (a) amplitude 
inversion (b) onset time inversion 

 

 

 

4.3.1 Measure of Nonlinearity 

Here, our goal is to characterize and assess the nonlinearity of the inverse problem to 

gain insight about the robustness and efficiency of seismic data integration approaches. 

There are several methods for quantifying the degree of nonlinearity in parameter 

estimation problems. In this study, the geometric framework for studying nonlinear least 

squares models was proposed by Bates and Watts (1980).(Grimstad and Mannseth 

2000), used this method to investigate the relationship between nonlinearity, scale, and 

sensitivity in parameter-estimation problems. Cheng et al. (2005) applied this measure to 

examine the nonlinearities in travel-time and amplitude inversion of production data 

integration. In this study, the measure of the curvature is used to quantitatively measure 
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the nonlinearities in onset time and amplitude inversion. If the seismic response is given 

by F , then a measure of the curvature is given by 

2

mm

m

F

F
   , (4.1) 

where 
mF is the vector of the first-order derivatives with respect to the parameter vector 

m , 
mmF  is the vector of second-order derivatives.   represents the inverse of a radius 

of the circle that best approximates the outcome locus F in the direction of 
mF  at m . 

Smoother and more linear outcome will have smaller curvature (larger radius) and thus a 

smaller measure of nonlinearity, as illustrated in Figure 4.2. 

 

 

 

 

Figure 4.2 Geometric meaning of the measure of nonlinearity 
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In our application, we measure the nonlinearity at each iteration during the 

inversion. Since we usually have large numbers of physical observation points (e.g. the 

location where the seismic data observed), we plot the nonlinearity at the observed 

location for a given iteration. 

 Bates and Watts (1980) separate the nonlinearity measures into parameter-effect 

curvature and intrinsic curvature; thus, they decompose the second-order derivative Fmm 

into one component parallel to the tangent plane defined by Fm for all directions and 

another component normal to that plane. Here, the  tangent vector Fm and the second-

order derivative Fmm are essentially obtained from the sensitivity calculations. The 

sensitivity computation to relate perturbation in the geophysical observation to a 

perturbation in the flow properties is described in detail in the previous chapters.  

For the amplitude inversion, the sensitivity is given as 

1 2
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i i i
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 , (4.2) 

 where we use Eq.2.45 to calculate the sensitivity of the acoustic impedance with respect 

to grid block permeability 
AI

k




 . 

The sensitivity of the onset time inversion can be given as  

1 2

( ) ( ) ( )
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n
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 . (4.3) 

Here Eq.3.5 is used to relate perturbations in flow properties to perturbations in the 

onset time,
OT

k




 . 
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To account the variation in units order, we need to normalize the parameters or 

use a linear transformation to obtain a meaningful solution. Simply expressing the 

parameters in the original units can be a bad choice because parameters of different 

types can be of different numerical orders(Duijndam 1988a, 1988b). There are several 

options to achieve that: (1) to express the parameters in units that correspond with the 

parameter ranges of interest for the problem; (2) to take the a priori standard deviations 

as units; and (3) to statistically normalize the parameters with the transformation so that 

the transformed parameters have the identity matrix as a priori covariance matrix. Here 

we use option 3 to express the tangent vector Fm and second-order derivative Fmm 
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 , (4.4) 

in which G is the sensitivity, nC  is the data covariance and xC  is the model parameter 

covariance.  The second-order derivative Fmm 

can be written as the sum  

( )mm i x yF t H H   , (4.5) 

where yH  is the contribution of the data, 

T

y y yH J J   (4.6) 

and xH  is due to the a priori information 

1T

x x x xH J J C   . (4.7) 
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We use the statically normalizing 
1

2
xD C   to obtain  

1 1

2 2T

mm x y xF D H D C H C I        . (4.8) 

Now we can calculate the nonlinearity measure using Eq.4.5 according to the theory of 

Bates and Watts (1980). 

 

4.4 Applications 

4.4.1 Five–Spot Synthetic Case 

 We now consider a two-dimensional synthetic application to demonstrate the 

procedure. This is a three-phase reservoir model with a five spot pattern. The model of 

initial and reference permeability is the same as the one we used in chapter III. PVT 

properties are in Figure 4.3 and Figure 4.4. This case has a gas injector at the center of 

the reservoir , and thus, the reservoir has not only dissolved gas but also free gas from a 

gas injector. 

 The description of the model is given in Table 4.1.  
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Table 4.1 General parameters of 2D model for history matching 

  Parameters   Input Values 

  Grid number   (nx,ny,nz) = (50,50,1) 

 DX  30 [ft] 

 DY  30 [ft] 

 DZ  10 [ft] 

 Porosity  0.15 

  Rock compressibility   3.8 E-06 [1/psi] 

  Oil density   49.1 [lb/cf] 

  Water density   64.79 [lb/cf] 

 Gas density  0.065 [lb/cf] 

  Water viscosity   1.0 [cp] 

  Water formation volume factor  1.0 [rb/stb] 

 Initial reservoir pressure  3000 [psi] 

 Injection constrain  3200 [psi] 

 Production constrain  200 [rb/day] 
*Values for water and rock are at the reference pressure of 3000 psi 

*Density is surface condition (14.7 psi) 

 

 

 

 

Figure 4.3 Oil and gas PVT properties 
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Figure 4.4 Three-phase relative permeability data  

 

 

 

Our amplitude inversion is based on acoustic impedance changes over the gas 

injection interval. The observed seismic data were generated from the reference model 

using a commercial reservoir simulator and the petro elastic model. Over an interval of 

450 days, a total of 15 time-lapse seismic surveys (30 days each) in the form of elastic 

acoustic impedance maps, are available for integration. To examine the effects of 

amplitude perturbations, we added 7% Gaussian noise to the amplitudes before 

estimating the onset times. The magnitude of the noise is specified with respect to the 

amplitude at a specific location. Figure 4.5 shows the acoustic impedance change (that 

is, the observation) over the injection interval with and without the noise. Figure 4.6 

shows the acoustic impedance response over the interval with the added Gaussian noise 

from two points at the model.  



 

118 

 

 

 

Figure 4.5 The seismic observations for the AI change inversion. (a) AI change over the 
interval (noise-free). (b)  AI change over the interval (with 7% added Gaussian noise). 
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Figure 4.6 Time series of the acoustic impedance response for points A and B (a) 
Permeability model used to generate the observed data. (b) The acoustic impedance 
response of point A over the entire interval. (c) The acoustic impedance response of point 
B over the entire interval  

 

 

 

The random amplitude deviations, shown in Figure 4.6, lead to seismic signals 

even when there are no dynamic changes within the reservoir and thus a need for a 

threshold value to distinguish between noise and meaningful signal. In this example, we 

define the threshold to be 7% below the acoustic impedance of the baseline survey (e.g. 

before the injection started). This decrease above the threshold corresponds to a decrease 

in the bulk density and velocity of the seismic waves, which results from replacement of 
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“harder” for “softer” reservoir fluids. The observed onset map inferred from the 

observed acoustic impedance is shown in Figure 4.7. 

 

 

 

Figure 4.7 The seismic observations for the onset time inversion. (a) Onset time map over 
the interval (noise-free). (b)  Onset time map over the interval (with 7% added Gaussian 
noise). 

 

 

 

In this example, we compare the relative performance of onset time and 

amplitude inversion. In addition, we investigate the nonlinearities inherent in these 

approaches.  

The normalized misfit reduction is shown in Figure 4.8 for both inversion methods as a 

function of the number of iterations. The reduction of the onset time objective function 

as compared to the acoustic impedance change implies that the onset time approach 
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properly capture the gas propagation in the reservoir. Figure 4.9 and Figure 4.10 show 

the fit to time lapse seismic for both cases, with a significant improvement in the onset 

time map. The updated permeability field for both cases is shown in Figure 4.11. It 

appears that the onset time approach is able to better identify the low permeability 

barrier located in the right lower corner of the model. 

 

 

 

 

Figure 4.8 Objective function as a function of the number of iterations of the inversion 
algorithm 
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Figure 4.9 The acoustic impedance changes over the injection interval. (a) AI changes of 
the reference model, (b) AI changes of the initial model, and (c) AI changes of the updated 
model. 

 

 

 

 

 

Figure 4.10 The onset time map over the injection interval. (a) Onset time map of the 
reference model, (b) onset time map of the initial model, and (c) onset time map of the 
updated model. 
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Figure 4.11 Permeability fields for the five-spot synthetic test. (a) Reference model, (b) 
Initial model, and (c) updated model based on Onset Time data integration, (d) updated 

model based on AI changes data integration. 

 

 

 

In Figure 4.12 we compare the overall measure of the nonlinearity at each 

iteration for both inversion methods. It is observed that the magnitude of nonlinearity of 

the amplitude inversion is two to three order of magnitude more nonlinear than the onset 

time inversion. This is partly the reason for the better conversion results, shown in 

Figure 4.8.   
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Figure 4.12 Measure of nonlinearity for the gas injection example  

 

 

 

To emphasize the differences of the nonlinearity measurement between the 

amplitude and onset time inversion, in Figure 4.13 and Figure 4.14 we plot the measure 

of the nonlinearity for each method as a function of the physical location at which the 

seismic measurement was observed. Note that the nonlinearity of the onset time is one 

order smaller than of the amplitude inversion.  
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Figure 4.13 Measure of nonlinearity of the amplitude inversion for the gas injection 
example as a function of the physical location. 

 

 

 

 
Figure 4.14 Measure of nonlinearity of the onset time inversion for the gas injection 
example as a function of the physical location. 
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It is observed that the amplitude inversion displays notably higher measure of the 

nonlinearity with a significantly large number of locations (red color). To gain some 

insight into the variation of the nonlinearity, in Figure 4.15 we plot the updated time 

lapse seismic together with the partial derivatives of each of the methods (e.g. onset 

time, acoustic impedance) with respect to gas saturation. The partial derivatives of the 

onset time (Figure 4.15a) are at the locations where the contours of the onset time 

change, which clearly show the gas front propagation throughout the injection interval. 

On the other hand, the partial derivatives of the acoustic impedance do not seem to 

indicate a clear underlying physics. In fact, the nature of the acoustic impedance maps, 

which couple the effects of different physics, make the amplitude inversion to be more 

nonlinear with significantly a dense sensitivity matrix.      
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Figure 4.15 Updated seismic response and the partial derivatives of the seismic with 
respect to gas saturation at the last iteration. (a) Onset time and (b) acoustic impedance 
changes    

 

 

 

 4.4.2 The Peace River Cases  

Our field application is a heavy oil reservoir at Pad 31 in the Peace River Field (Alberta, 

Canada) with daily time lapse seismic surveys recorded by a permanently buried seismic 

monitoring system(Lopez et al. 2015). The description of the field and the seismic 

observations is given in chapter III. As we showed in the synthetic case, our goal is to 

compare the relative performance of the onset time and the amplitude inversion by 
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investigating the nonlinearities inherent in these approaches. The amount and the nature 

of the recorded time shift data make it extremely challenging and time consuming for 

amplitude inversion. Thus, for this demonstration we will focus on the first 45 days of 

the injection interval. In the amplitude inversion, our seismic data integration is based on 

the travel time changes in the seismic wave propagation across the reservoir between the 

start of the cycle and 45 days of steam injection, as shown in Figure 4.16. 

 

 

 

Figure 4.16 The time shift map over the first 45 days of injection. (a) Observed data 
,(b)initial model.  

 

 

 

 For the onset time inversion, we follow the same procedure we presented in the 

synthetic case to generate the onset time map, as shown in Figure 4.17.  
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Figure 4.17 The onset time map over the injection interval. (a) Onset time map of the 
reference model, (b) onset time map of the initial model 

 

 

 

The data misfit reduction from the prior model is shown in Figure 4.18. Still even when 

we started with an initial model after the global update, the amplitude inversion was not 

able to resolve or calibrate the model. Figure 4.19and Figure 4.20 show the fit to time 

lapse seismic for both inversion methods. The updated onset time response significantly 

improved from the initial model due to local adjustments of the permeability. On the 

other hand, the time shift map (Figure 4.19) shows a small improvement from the prior 

model. The fact that the time shift is very sensitive to the petro elastic properties, as 

described in detail in the previous chapter, leads to high degree of nonlinearity in the 

amplitude inversion. The updated permeability fields for both cases are shown in Figure 

4.11Figure 4.21 and Figure 4.22. The amplitude inversion seems to increase the 

permeability around the well. On the contrary, the permeability updates based on the 

onset time inversion suggest an increase in the permeability around the vertical part and 

decrease at the east part of the horizontal well. The onset time was able to identify the 
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injectivity profile along the horizontal well, which in the case of steam injection in heavy 

oil, is shown by the increased permeabilities. 

 

 

 

Figure 4.18 The comparison of normalized objective function for amplitude (time shift) 
inversion, and onset time inversion 

 

 

 

 

Figure 4.19 Top view of the time shift map after the history matching (a) Observed data, 
(b) after global update, and (c) the final updated model 
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Figure 4.20 Top view of the onset time map after the history matching (a) Observed data, 
(b) after global update, and (c) the final updated model 

 

 

 

 

Figure 4.21 Permeability model change (final-prior) for the amplitude inversion (time 
shift). (a) Top view of layer 15, (b) Top view of layer 18 and (c) top view of layer 20 

 

 

 

 

 

Figure 4.22 Permeability model change (final-prior) for the onset time inversion. (a) Top 
view of layer 15, (b) Top view of layer 18 and (c) top view of layer 20 
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As we illustrated in the synthetic case, in Figure 4.23 and Figure 4.24 we plot the 

measure of the nonlinearity for each method as a function of the physical location at 

which the seismic measurement was observed. Note that the nonlinearity of the onset 

time is two orders smaller than that of the amplitude inversion.  

 

 

 

 

Figure 4.23 Top view of the measure of nonlinearity of the amplitude (time shift) inversion 
for the field example as a function of the physical location 
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Figure 4.24 Top view of the measure of nonlinearity of the onset time inversion for the 
field example as a function of the physical location 

 

 

 

 

The measure of the nonlinearities shows that an inversion based on amplitude is 

orders of magnitude more nonlinear compared to the onset time inversion. In addition, 

unlike the onset time inversion, the nonlinearity region of the amplitude inversion seems 

to be spread out from the well. One of the reasons for this nonlinearity comes from the 

fact that the amplitude inversion accounts for seismic signals that are not directly related 

to steam propagation. Finally, we plot the partial derivatives of each of the methods (e.g. 

onset time and time shift) with respect to water saturation in Figure 4.24 and Figure 

4.25. As we observed in the synthetic case, the partial derivatives of the onset time 

(Figure 4.26) are at the locations where the contours of the onset time change, which 



 

134 

 

clearly show the steam front propagation throughout the injection interval. On the other 

hand, the partial derivatives of the time shift do not seem to indicate a clear underlying 

physics, resulting in a significantly dense sensitivity matrix. 

 

 

 

Figure 4.25 The partial derivatives of the time shift with respect to water at the last 
iteration (a) Top view of layer 15, (b) Top view of layer 18 and (c) top view of layer 20 

 

 

 

 

Figure 4.26 The partial derivatives of the onset time with respect to water at the last 
iteration (a) Top view of layer 15, (b) Top view of layer 18 and (c) top view of layer 20 
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4.5 Conclusions  

 In this chapter we compared the ability of the onset time inversion and the 

amplitude inversion to integrate time lapse seismic data. By applying the geometric 

concept of curvature, we examined their relative merits using the measures of 

nonlinearity. The onset time inversion found to be more stable and robust than amplitude 

inversion for reservoir characterization when frequent seismic surveys are available. 

 Some of the conclusions from this study are the following: 

 We have quantitatively investigated the nonlinearities associated with onset time 

and amplitude inversion.  

 Both the synthetic and field applications show that the nonlinearity of the onset 

time inversion is orders of magnitude smaller than the amplitude inversion, 

leading to a better match of the data and an adequate history matched model. 

Similar conclusions were arrived at by Cheng et al (2005). 

 The onset time sensitivities appear to be notably less dense than the amplitude 

sensitivities. In addition the onset time better identifies the propagation of 

changes in the reservoir and seems to have quasilinear properties, which leads to 

improved convergence properties. 
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CHAPTER V CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

 The study summarize the developments and applications of an integrated 

approach for model calibration using time lapse seismic data. We present a novel 

approach that integrate frequent time lapse (4D) seismic data into high resolution 

reservoir models based on seismic onset times. We also show how to indicate the 

reliability of the estimated solution using an analysis of spatial resolution. Throughout 

this dissertation we illustrated our methods using synthetic and field applications.       

The main findings are listed below: 

 We presented a method to quantify the resolution and the spatial averaging 

associated with estimated permeabilities derived through an efficient history 

matching approach of multi-scale data integration, accounting for both pressure 

and saturation effects. 

 The model resolution matrix is useful for assessing the inversion results in 

underdetermined problems. 

 In seismic data, the spatial resolution points out the importance of accounting for 

both saturation and pressure changes to constrain the parameter estimation. It 

appears that pressure is more sensitive to barriers to flow in the global updates, 

whereas in the flow unit the barriers to flow and small variations in permeability 

are better determined by saturation. 
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 We propose a novel and computationally efficient approach for time lapse 

seismic integration using the onset time which is able to efficiently display the 

front propagation in order to update the flow properties. 

 Our synthetic and field applications show that unlike seismic impedance, the 

onset times appear to be relatively insensitive to the petro elastic model but 

sensitive to the steam/fluid propagation, temperature and pressure.  

 The onset time leads to a significant data reduction and provides a practical and 

faster approach that allows testing alternative dynamic realizations, making the 

algorithm suitable for large field applications with frequent seismic surveys. 

 The Peace River application demonstrates the feasibility and the robustness of 

the hierarchical workflow to integrate onset times and pressure data.  

 The compression of the frequent seismic surveys into a single set of onsets assists 

efficient history matching using the population-based technique that requires a 

large number of simulation runs.  

 In the local stage, where the flow properties were adjusted on a cell by cell basis, 

the algorithm was able to improve the location of the water/steam front and 

identified the location of increased permeabilities, which in case of steam 

injection in heavy oil is equivalent with stimulated zones.  

 We have quantitatively investigated the nonlinearities associated with onset time 

and amplitude inversion.  
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 Both the synthetic and field applications show that the nonlinearity of the onset 

time inversion is orders of magnitude smaller than the amplitude inversion, 

leading to a better match of the data and an adequate history matched model.  

 The onset time sensitivities appear to be notably less dense than the amplitude 

sensitivities. In addition the onset time better identifies the propagation of 

changes in the reservoir and seems to have quasilinear properties, which leads to 

improved convergence properties. 

 

5.2 Recommendations  

 The use of seismic data for quantitative calibration of reservoir models is an 

extremely difficult task. Although our workflow works well, there is still large room for 

improvement when applied to complex reservoir conditions. 

Several recommendations are listed below: 

 Indicating the reliability of the estimated solution is an important tool in history 

matching. We recommend implementing an adaptive adjustment algorithm that 

accepts/ rejects updates based on the analysis of spatial resolution. 

 We have observed that the onset time is sensitive to both the permeability and the 

porosity. We recommend implementing streamline-based inversion methods that 

involves updates of the permeability and porosity. 

 In our field application we integrate the seismic and the BHP data in a sequential 

order. We suggest to try a joint inversion with a multiscale approach that 

integrate the onset time and the production data simultaneously. 
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 Our streamline based onset time sensitivity is a reasonable approximation for the 

history matching. However, in case of steam injections we recommend 

developing a new algorithm that accounts for temperature changes along the 

streamline.   
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