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ABSTRACT

Accurate measurement of the Earth’s hydrologic cycle requires a more precise under-

standing of precipitation accumulation and intensity on a global scale. While there is a

long record of passive microwave satellite measurements, passive microwave rainfall re-

trievals often fail to detect light precipitation or have light rain intensity biases because

they cannot differentiate between emission from cloud and rain water. Previous studies

have shown that AMSR-E significantly underestimates rainfall occurrence and volume

compared to CloudSat. This underestimation totals just below 0.6 mm/day quasi-globally

(60S-60N), but there are larger regional variations related to the dominant cloud regime.

This study aims to use Moderate Resolution Imaging Spectroradiometer (MODIS) and

the 94-GHz CloudSat Cloud Profiling Radar (CPR), which has a high sensitivity to light

rain, with the Advanced Microwave Scanning Radiometer for Earth Observing System

(AMSR-E) observations, to help better characterize the properties of clouds that lead

to passive microwave rainfall detection biases. CPR cloud and precipitation retrievals,

AMSR-E Level-2B Goddard Profiling 2010 Algorithm (GPROF 2010) rainfall retrievals,

and MODIS cloud properties were collocated and analyzed for 2007-2009. MODIS cloud

microphysical and macrophysical properties, such as optical thickness, particle effective

radius, and liquid water path were analyzed when precipitation is detected by CloudSat and

missed by AMSR-E. Results are consistent with past studies and show large passive mi-

crowave precipitation detection biases compared to CloudSat in stratocumulus and shallow

cumulus regimes. An examination of cases where AMSR-E failed to detect precipitation

detected by CloudSat shows that warm rain detection biases occur more frequently within

lower LWP, τ , and CTH bins, but biases at higher LWP, τ , and CTH contribute more to

the total frequency of missed precipitation. Warm rain detection biases occur more fre-
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quently and biases contribute to more of the total frequency of missed precipitation for

re > 16 µm. Cloud property-dependent thresholds were calculated and compared against

Advanced Microwave Scanning Radiometer (Earth Observing System) (AMSR-E) God-

dard Profiling Algorithm (GPROF). All cloud property-dependent brightness temperature

(TB) thresholds showed improvements in hit rate and volumetric hit rates. Cloud property-

dependent TB thresholds were investigated to determine if thresholds can be improved by

separately constraining data to environmental and cloud regimes. Descent and stratocu-

mulus regimes, which generally consist of warm clouds, showed further improvements

of warm rain detection. Results suggest that aprori knowledge of cloud property infor-

mation and environmental information could significantly improve the detection of warm

precipitation in GPROF retrievals.
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NOMENCLATURE

AMSR-E Advanced Microwave Scanning Radiometer (Earth Observing Sys-

tem)

AVHRR Advanced Very High Resolution Radiometer

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CCN Cloud condensation nuclei

CPR Cloud Profiling Radar

CRM Cloud resolving models

CSI Critical Success Index

CTH Cloud top height

DPR Dual-frequency Precipitation Radar

DSD Drop size distribution

ECMWF European Centre for Medium-Range Weather Forecasts

EOS Earth Observing System

FAR False Alarm Rate

FL Freezing level

GCOM-W1 Global Change Observation Mission-Water

GPM Global Precipitation Measurement
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GPROF Goddard Profiling Algorithm

GSFC Goddard Space Flight Center

hPa Hectopascal

HR Hit Rate

HSS Heidke Skill Score

IFOV Instantaneous field of view

IR Infrared

ITCZ Intertropical Convergence Zone

IWV Integrated water vapor

LTS Lower tropospheric stability

LWC Liquid water content

LWP Liquid water path

MISR Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautic and Space Administration

NSIDC National Snow and Ice Data Center

OCO-2 Orbiting Carbon Observatory 2

OR Odds Ratio

PIA Path integrated attenuation
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PMW Passive microwave

PR Precipitation Radar

re Effective Radius

R04 Release 4 version

RAMS Regional Atmospheric Modeling System

RF Rain fraction

RSS Remote Sensing Systems

SE Southeast

SST Sea surface temperature

TB Brightness temperature

TMI TRMM Microwave Imager

TPW Total precipitable water

TRMM Tropical Rainfall Measuring Mission

VHR Volumetric Hit Rate

VIS Visible

VOCALS-REx VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment
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1. INTRODUCTION

Precipitation is an important component of the hydrological cycle and exhibits large

spatial and temporal variations. Latent heat released by precipitation accounts for three-

fourths of the heat energy that the atmosphere receives (Simpson et al. 1996). It is the

largest source of atmospheric heating in the tropics and is significant in higher latitudes as

well (Wilheit 1986). More than two-thirds of global precipitation falls in the tropics (Hong

et al. 1999) and is the main source of energy for driving the global atmospheric circulation

(Simpson et al. 1988). Although light precipitation (< 1 mm hr−1) accounts for 10% of

the total amount of precipitation in the tropics, it accounts for 50% of total rain occurrence

in the tropics and an even higher fraction in the mid-to-high latitudes (Kidd and Joe 2007).

Warm rain is underestimated and sometimes undetected using infrared (IR) techniques

due to little variability between cloud top temperatures of raining and non-raining clouds

(Nauss and Kokhanovsky 2006). Passive microwave (PMW) techniques may fail to detect

warm rain due to a weak emission signal compared with deeper systems (Chen et al. 2011).

A definitive estimation of global warm precipitation is difficult because previous studies

(e.g., Petty 1999; Stephens et al. 2002; Rapp et al. 2009) may have different definitions

of warm rain. Uncertainties in the estimation of global precipitation, due to observational

and measurement challenges, also result in disagreements between different weather and

climate models (Simpson et al. 1996). Stephens et al. (2010) found that major biases in

model precipitation are a result of coarse resolution and uncertainties in the parameter-

ization of warm rain processes. Suzuki et al. (2011) compared CloudSat and Moderate

Resolution Imaging Spectroradiometer (MODIS) observed warm rain processes with two

cloud resolving models (CRM). The observations indicated an initial growth stage where

cloud water was present without drizzle or precipitation, but both models quickly con-
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verted cloud water into larger sized particles, consistent with the shorter timescales for

warm rain formation found by Suzuki and Stephens (2009). In addition, different cloud

microphysics parameterization for warm rain processes, mostly autoconversion and ac-

cretion processes, lead to differences amongst the models. To have a more complete

understanding of Earth’s hydrological cycle and improve representation of precipitation

processes, an accurate and continuous measurement of warm rain is necessary.

Low warm clouds generally cause Earth’s climate system to cool due to their high

albedo (Randall et al. 1984; Ma et al. 1996) and have significant effects on the radiation

budget. Light precipitation from these clouds is primarily from warm rain. Warm rain is a

result of the droplet coalescence process, occurs in liquid water clouds below the freezing

level (FL), and is often observed in stratocumuli or well-developed trade wind and mid-

latitude cumuli typically in the form of shallow (>3 km), isolated convective showers (Liu

and Zipser 2009). These clouds have an abundant amount of liquid water, a sufficient up-

draft, and a prolonged lifetime to sustain collision-coalescence growth (Schumacher and

Houze 2003). An air mass with tropical, maritime characteristics is ideal for these warm

rain process to occur. Microphysical growth processes of cloud particles also play a role

in rain rates from warm clouds (Suzuki et al. 2011). Extreme rainfall rates from the warm

rain process can arise from the help of terrain or atmospheric boundaries as a source of low

level atmospheric lift. The warm rain process is also influenced by the amount of cloud

liquid water, while entrainment and mixing act to reduce it (Blyth et al. 2013).

Generally, rain in the tropics and precipitation in mid-latitude continental convection

during cloud development originates as warm rain (Beard and Ochs III 1993). Liu and

Zipser (2009) found that rainfall from warm precipitation features occurs mainly over the

ocean, and was predominately observed in regions of large-scale subsidence, along wind-

ward coasts during the winter, and during the nighttime. It also dominates the total amount

of tropical rainfall outside the Intertropical Convergence Zone (ITCZ), while mid-latitude
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rainfall is predominately from ice clouds (Lau and Wu 2003, 2011; Lebsock and L’Ecuyer

2011). Liu and Zipser (2009) found that 20% of tropical rainfall is warm rain, however,

drizzle and light rain were not included. King et al. (2015) found that rain falls globally

from ∼ 25% of warm clouds detected by CloudSat and ∼ 27% of warm clouds simulated

using the Regional Atmospheric Modeling System (RAMS).

Precipitation over land is estimated with the use of rain gauges and ground-based radar.

Over the ocean, where ground-based radar measurements are sparse, precipitation esti-

mates come almost completely from satellites. Currently, precipitation over the ocean is

estimated with IR sensors, PMW sounders and imagers, and more recently, active mi-

crowave radars (cloud and precipitation radars). IR and visible (VIS) sensors are indirect

indicators of precipitation, with colder temperatures, brighter targets, and higher cloud

tops linked with presence of precipitation. Warmer temperatures (dimmer targets) are an

indicator of lower cloud tops, and the lowest cloud tops are generally not associated with

the presence of precipitation. These relationships between solar radiance or TB and pre-

cipitation may not be valid for different regions and seasons, have difficulties defining rain

/ no rain boundaries, cannot distinguish precipitation patterns at the mesoscale or smaller,

and have significant limitations in detecting warm rain (Behrangi et al. 2010). Also, VIS

techniques are only available during the daylight hours. Other satellite retrievals, espe-

cially scattering-based PMW, also have limitations that make it difficult to distinguish

warm-topped clouds (Petty 1999).

PMW rainfall sensors use frequencies that range from 1 to 200 GHz. Microwave radia-

tion can penetrate through non-precipitating clouds, although minor attenuation does occur

(Westwater 1972). Hydrometeors in the atmosphere provide a direct relationship between

PMW radiances observed from satellites and surface rainfall (Wilheit 1986). PMW sen-

sors estimate rainfall rates in two regimes, an absorption regime and a scattering regime.

The absorption regime estimates rainfall based upon emission from the Earth’s surface
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that is altered by the intervening atmosphere (Wilheit et al. 1977). This emission is depen-

dent upon surface emissivity through Kirchoff’s Law of thermal radiation. At microwave

frequencies, oceans have a low uniform emissivity (∼ 0.5) (Kummerow et al. 1996). The

ocean provides a radiometrically cold background to help observe the “warm” radiation

(higher TBs) emitted from hydrometeors. Over land, a much higher (∼ 0.9) and more

variable emissivity limits the use of PMW sensors to clouds with ice and requires a scat-

tering regime to estimate rainfall rates. The ice scatters terrestrial radiation back towards

the surface and creates cold areas in the imagery; however, this produces a less direct re-

lationship to rainfall rate than in the absorption regime (Wilheit 1986).

The use of PMW retrievals to estimate rainfall does not come without limitations.

PMW instruments are typically flown aboard low-altitude, polar-orbiting satellites. Polar-

orbiting satellites provide a discontinuous temporal coverage at low altitudes and precip-

itation biases can occur in regions that experience a diurnal cycle of rainfall (Morrissey

and Janowiak 1996). In addition, to offset the challenge of a weak energy source, a large

instantaneous field of view (IFOV) is needed and results in a spatial resolution that is lower

than some IR sensors (Chen et al. 2011). Small-scale showers and light precipitation can

be difficult to detect due to a large footprint that infrequently takes measurements two to

four times daily (Burdanowitz et al. 2015). Rapp et al. (2009) found that warm rain clouds

may not entirely fill the large footprints and have too weak of an emission signal for warm

rain to be detected. Biases in PMW rainfall retrievals can also arise due to assumptions

made by retrieval algorithms. PMW retrievals have difficulties distinguishing between the

emissions signals from cloud and rainwater at precipitation onset. Most retrieval algo-

rithms address this issue by using a liquid water path (LWP) threshold, which Berg et al.

(2006) and O’Dell et al. (2008) found can bias the data.

Spaceborne precipitation radars have a better spatial resolution than PMW sensors and

are the most direct observation of precipitation. Precipitation radars are active microwave
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sensors that send a microwave pulse towards a target, particularly hydrometeors and the

Earth’s surface, and measure the backscattered reflectivity as a function of distance. Rain

rates are determined from profiling algorithms by utilizing the relationship between the

backscattered signal and the cloud, precipitation, and surface properties (Mitrescu et al.

2010). However, errors occur due to attenuation of the signal and in finding a correct

reflectivity-rainfall relationship (Simpson et al. 1996). The advantages of spaceborne

radars include radar reflectivity being directly related to rainfall rate, observation of the

three-dimensional structure of precipitation, and a single rain rate algorithm that works

over ocean and land (Seto et al. 2005). In contrast to ground-based radars, spaceborne pre-

cipitation radars are unobstructed by terrain. Also, a higher frequency (lower wavelength)

is used for spaceborne radars due to the smaller antenna required for space based plat-

forms. All spaceborne radars have issues with surface clutter due to the signal reflecting

off Earth’s surface, and results below ∼ 750 m to 1 km must often be screened.

There have been three spaceborne cloud and precipitation radars, the Tropical Rainfall

Measuring Mission (TRMM) Precipitation Radar (PR), Global Precipitation Measurement

(GPM) Dual-frequency Precipitation Radar (DPR), and CloudSat Cloud Profiling Radar

(CPR). While the TRMM PR has greatly improved our understanding of the tropical hy-

drological cycle, there are still issues in the detection of warm rain. The 13.8 GHz PR

has a minimum detectable signal of ∼ 17 dBZ and minimum detectable rain rate of 0.7

mm hr−1 (Simpson et al. 1996), which is significantly higher than CloudSat’s CPR low

detectable rain rate. Low liquid water contents (LWCs), small drizzle droplets, and partial

beam filling contribute to low reflectivities that may cause warm rain to go undetected by

the PR (Lebsock et al. 2011). Also, in rain rate algorithms that utilize drop size distribu-

tions, the assumed drop size distribution is derived from the large end of the distribution

causing signals from light precipitation to have significant inaccuracies. Kidd and Joe

(2007) found that 50% of the total rainfall occurence from PR is less than 1 mm hr−1.
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Short and Nakamura (2000) estimate that as much as 20% of shallow rain is missed by the

PR in the tropics. Behrangi et al. (2012) estimates that the PR detects only 40 to 60% of

the tropical rain events detected by CloudSat, and in the subtropics, where warm rain is

more dominant (Petty 1995), it is significantly lower.

The 94 GHz CloudSat CPR, launched in 2006, has a high sensitivity to cloud to help

aid in the detection of cloud vs. rain. The CPR improves the detection of light precipitation

with a minimum detectable signal of∼ -30 dBZ. Fox and Illingworth (1997) found that 80

to 90% of marine stratocumulus clouds with LWP between 1 and 20 g m−2 are detected

when a radar reflectivity threshold of -30 dBZ is used. Stephens et al. (2002) estimated that

the CPRs 94 GHz frequency should be able to detect 80% of all water clouds. Validation

of CPR rain estimates by Ellis et al. (2009) and Rapp et al. (2013) showed measurements

that are similar with ship observations well into the high latitudes. Previous studies have

also shown that the CPR improves upon the PR in areas where light precipitation occurs.

Berg et al. (2010) examined rain frequency for both the CPR and PR in the TRMM region

and found that CPR detects a rainfall frequency∼ 2.5 times larger than PR. Behrangi et al.

(2012) found that the PR misses a large fraction of rainfall in the subtropics, and particu-

larly in stratocumulus regions, when compared to CloudSat’s CPR. This study will use the

enhanced sensitivity of the CPR to better understand warm rain biases in PMW retrievals

from the AMSR-E.

PMW rainfall estimates over oceans are widely used because of the direct influence

that hydrometeors have on microwave radiances, their large spatial coverage, and the long

time series of observations. However, they have difficulties in detecting and measuring

light precipitation due to its weak emission signal, its occurrence in small, shallow clouds

that do not fill the IFOV, and difficulty in distinguishing the cloud from precipitation.

Fig. 1.1 from Behrangi et al. (2012) shows a considerable underestimation of rainfall oc-

currence and volume by AMSR-E compared to CloudSat in the extratropics where light
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precipitation is frequent.

This study focuses on trying to improve the detection and estimation of warm rain by

in the retrieval algorithms. However, as shown in Figure 3,
poleward of about 45! latitude a large fraction of precipita-
tion occurs in the form of snow and mixed phase, which
complicates the analysis. TMI is not included in Figure 2
because GPROF2010 no longer screens for raining pixels
before applying a Bayesian scheme, which leads to an unre-
alistically high rainfall frequency. While it is possible to
implement a threshold on the probability of rain occurrence
and obtain a more realistic rain fraction, selection of the
threshold is subjective.
[14] Figure 4 shows the fraction of total rain occurrences

captured by PR, AMSR-E, MHS and IR sensors across dif-
ferent latitudes. The total rain count is obtained from
CloudSat because it has the highest sensitivity to detect
rainfall. The fractions are calculated for each 3! zone using
corresponding CSl, CSb, and CSu rain fractions, yielding
three curves for each plot. Figure 4a demonstrates that PR
detects about 40% to 60% of tropical rain events detected by
CloudSat. This fraction is reduced substantially in the

subtropics where the PR captures less than 40% of rain
events. This fraction of rainfall missed by the PR is consis-
tent with Berg et al. [2010], although their calculations are
based on the older versions of PR and CloudSat rain algo-
rithms. Similarly, AMSR-E (Figure 4b) captures a higher
fraction of rain occurrences over tropical oceans than at
higher latitudes. Both the CSl and CSb curves suggest that
AMSR-E detects a higher faction of rain occurrences than
PR over the TRMM-covered zone (36!S–36!N). MHS
detects less rainfall in the tropics than both AMSR-E and
PR. However, as shown in Figure 4c, by moving poleward
of 20! latitude (especially 20!N) a rapid increase of MHS
rain fraction is observed, eventually displaying a higher rain
fraction than AMSR-E at high latitudes. The IR-based rain
retrieval shows the weakest rain detection skill across all
latitude zones, which in part can be related to the inability of
the IR-only method to detect warm rainfall [Behrangi et al.,
2010b].

Figure 2. (a, c, e, and g) Maps of CSb rain frequencies, corresponding to the footprint size of each studied
sensor. (b, d, f, and h) Maps of fraction of missed rainfall (Fmr) for each sensor, calculated from equation (1)
using its corresponding map of CSb rain fraction. From top to bottom the rows represent maps for PR,
AMSR-E, MHS, and IR, respectively. The results are based on 3 years (2007–2009) of rainfall data.

BEHRANGI ET AL.: OCEANIC RAIN QUANTIFICATION BY SATELLITE D20105D20105

5 of 14

Figure 1.1: Map of fraction of rainfall missed by AMSR-E compared to CloudSat based 
on 3 years (2007-2009) of rainfall data (adapted from Behrangi et al., 2012).

PMW sensors by using additional information about the properties of clouds. Precipita-

tion occurs when clouds have sufficient amount of water and cloud droplets become large

enough to make it to the ground before evaporating (Guo et al. 2008; Duong et al. 2011).

Because of this relationship, cloud properties have been related to the onset of precipita-

tion. Chen et al. (2011) showed that optical thickness (τ ) is highly correlated with CPR

warm rain, but it can be come saturated in deep convective systems. An optically thick

cloud with larger values of LWP will have a greater number of cloud droplets and liquid

water available to help sustain the coalescence process. Previous studies (e.g., Stephens

and Haynes 2007; Lebsock et al. 2008; L’Ecuyer et al. 2009) have suggested that larger

LWPs are more likely to produce rain in warm clouds, which is likely why most PMW

rainfall retrievals use LWP thresholds for the cloud to rain transition. Leon et al. (2008)

shows that in stratocumulus regions, LWP values of 200 g m−2 were found to be drizzling
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80 to 95% of the time. Similarly, Kubar et al. (2009) found that greater than 90% of warm

clouds contain drizzle when LWP is> 250 g/m2 and effective droplet concentration is low.

In the far southeast (SE) Pacific, where warm clouds scarcely drizzle, greater than 90%

contain drizzle if LWP > 200 g/m2. The microwave ocean retrieval algorithm by Wentz

(1997) uses a LWP precipitation threshold of 180 g m−1, while other algorithms have used

as high as 300 and 500 g m−1 (Curry et al. 1990). Wang et al. (2016) results show LWP

precipitation thresholds regionally can vary from 150 to greater than 300 g/m2, with the

global mean LWP precipitation threshold∼ 190 g/m2. Kubar et al. (2009) shows that driz-

zle frequency drastically increases with cloud top height (CTH) in all observed regions

for warm clouds with heights less than 2 km. Also, drizzle frequencies greater than 80%

are found in warm clouds with heights greater than 2 km in most regions. Warm clouds

are shown to be drizzling 90 to 100% of the time when CTH > 3 km in regions where

warm clouds can reach these heights. Snodgrass et al. (2009) stratified Multi-angle Imag-

ing SpectroRadiometer (MISR) pixels by CTH and found that the amount of detectable

rainfall rates in pixels with CTHs between 5.25 and 5.75 km is nearly twice the amount

found in pixels with CTHs between 2.25 and 2.75 km. They also found that rainfall rates

significantly increased with higher CTHs.

In addition to LWP and CTH thresholds, the presence of large droplets has also been

used to detect precipitation, since it is more likely that precipitation will develop through

coalescence. Many studies (e.g., Albrecht 1989; Rosenfeld and Gutman 1994; Lensky and

Rosenfeld 1997) have proposed using an effective radius (re) of 14-15 µm as a precipita-

tion onset threshold. Other studies (e.g., Gerber 1996; Masunaga et al. 2002; Shao and Liu

2004) have used 15 µm.

A study to determine the feasibility of using cloud properties as a predictor of warm

precipitation was performed by Chen et al. (2011). Using CPR and AMSR-E rain rates it

was estimated that AMSR-E underestimated warm rain in all clouds by 36.2%, predomi-
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nately in clouds with top heights less than 3.5 km. Also, due to warm clouds below high

clouds not being included in their study, this underestimation could be higher. Chen et al.

(2011) analyzed MODIS cloud properties and CPR rain rates to determine rain / no rain

thresholds and quantify their skill as a predictor of warm rain. LWP, τ , and re were tested

and LWP was found to display the highest potential as a predictor. Chen et al. (2011)

failed to analyze CTH, nor did they utilize AMSR-E rain estimates when determining skill

scores for each cloud property. This study will expand upon Chen et al. (2011) and analyze

missed warm rain and determine whether microphysical cloud property information can

improve the current detection of warm rain by PMW sensors.

While there is a long record of passive microwave satellite measurements, PMW rain-

fall retrievals often fail to detect light, warm precipitation or have light, warm rain inten-

sity biases because they cannot differentiate between emission from cloud and rain water.

Previous studies (Behrangi et al. 2012) have shown that AMSR-E significantly underesti-

mates rainfall occurrence and volume compared to CloudSat. This underestimation totals

just below 0.6 mm/day quasi-globally (60S-60N), but there are larger regional variations

related to the dominant cloud regime. This study aims to use the collocated measurements

of AMSR-E with the CloudSat CPR and MODIS to first characterize the properties of

clouds that lead to passive microwave rainfall detection biases and ultimately determine

their potential for use as input or constraints to improve the detection of light, warm rain.

The main goals of this study are to:

1. Analyze properties of clouds and quantify precipitation detection biases between

AMSR-E and CloudSat.

2. Create cloud property dependent TB thresholds and compare with current rainfall

retrieval thresholds (e.g., Kummerow et al. 2011; Miller and Yuter 2013; Wentz

1997)
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3. Determine whether and where cloud property information could be used to improve

the AMSR-Es detection of warm precipitation.

4. Quantify the volume of warm precipitation detected using additional cloud property

information.
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2. DATA AND METHODS

This study uses a combination of active and passive instruments onboard satellites,

shown in Table ??, that are a part of the Earth Observing System (EOS) afternoon constel-

lation, commonly referred to as the A-Train. It consists of six satellites including Orbit-

ing Carbon Observatory 2 (OCO-2), Global Change Observation Mission-Water (GCOM-

W1), EOS Aqua, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO),

CloudSat, and EOS Aura seen in Fig. 2.1. A-Train satellites are flown at an altitude of ∼

705 km with an inclination of ∼ 98.14 degrees and are spaced seconds to minutes apart

from one another. They fly in a sun-synchronous orbit where they cross over the equator

at a mean local time range of 1:30 pm and 2:00 pm. A-Train satellites can view the Earth

in an extensive range of wavelengths, and together with the simultaneous measurement of

different climate parameters and different scanning patterns of instruments, provide valu-

able information about the Earth’s changing climate (L’Ecuyer and Jiang 2010). A-Train

satellite observations are collocated and matched from 2007-2009 to better understand the

relationship between cloud properties and PMW warm rain detection biases.

2.1 CloudSat CPR

The CloudSat CPR, launched in 2006, is a 94-GHz nadir-looking active radar that mea-

sures radiation backscattered by clouds as a function of distance from the radar. It trails

CALIPSO by ∼ 103 seconds and Aqua by ∼ 3 minutes. The CPR has an along track by

across track resolution of 1.7 km X 1.4 km, respectively, and a minimum detectable reflec-

tivity of ∼ -30 dBz. The low detectable reflectivity helps aid in the detection of cloud vs

rain, but heavy rain rates can lead to an underestimation of precipitation due to a complete

saturation of the CPR surface return. Also, since the CPR is a nadir looking radar and
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Figure 2.1: The A-Train constellation. Instrument footprints are shown with dashed lines 
indicating an active instrument and solid lines indicating a passive instrument. Instrument 
swaths are color-coded based off the wavelength range it observes. Swaths operating in 
microwave wavelengths are illustrated as red-purple to deep purple, solar wavelengths as 
yellow, solar and IR wavelengths as gray, and other IR wavelengths as red.
(reprinted from https://atrain.nasa.gov/)

not a scanning radar, it can only collect a single vertical profile along the flight direction.

The CloudSat CPR data products used in this study include 1) the combined CloudSat and

CALIPSO 2B-GEOPROF-LIDAR, 2) 2C-PRECIP-COLUMN (Haynes et al. 2009), and

3) 2C-RAIN-PROFILE (L’Ecuyer and Stephens 2002).

The 2B-GEOPROF-LIDAR product combines both CloudSat’s and CALIPSOs abili-

ties to better detect the occurrence and structure of Earth’s hydrometeor layers (Mace and

Zhang 2014). The release 4 version (R04) of the combined CloudSat radar and CALIPSO
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(Winker et al. 2009) lidar 2B-GEOPROF-LIDAR (Mace and Zhang 2014) product is used

to define CTH and the number of cloud layers. Algorithm outputs from the R04 2C-

PRECIP-COLUMN product developed by Haynes et al. (2009) are listed in Table ?? and

are used to limit clouds to below the FL (warm clouds) and only include pixels with a high

certainty of warm rain (Precip flag = 3).

CPR-retrieved rain rates are from 2C-RAIN-PROFILE (L’Ecuyer and Stephens 2002)

R04 (Mitrescu et al. 2010) that was modified by (Lebsock and L’Ecuyer 2011), which

uses rainfall drop size distributions (DSDs) and vertical distribution assumptions along

with the path integrated attenuation (PIA) and observed reflectivity profile. These CPR

rain rates are used to create a rain fraction (RF) data set that indicates the fraction of

CPR pixels matched within an AMSR-E footprint that are precipitating. Ellis et al. (2009)

validated CPR rain estimates by showing measurements that are similar with ship obser-

vations well into the high latitudes. Also, Rapp et al. (2013) found CPR rain estimates

in the SE Pacific to be in good agreement with in situ radar estimates from the VAMOS

Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in both fre-

quency and distribution of precipitation. All data products are available at CloudSat data

processing center (http://www.cloudsat.cira.colostate.edu).

2.2 AMSR-E

AMSR-E, operational from 2002-2011, is a conically scanning, dual-polarized PMW

radiometer on the Aqua satellite. Earth-emitted microwave radiation is observed at fre-

quencies ranging from 6.9 to 89 GHz with vertically and horizontally polarized measure-

ments at each frequency. Spatial resolutions range from 5.4 km at 89 GHz to 56 km at

6.9 GHz. AMSR-E makes 486 observations per approximately 2000 scans at 89 GHz and

243 observations at all other frequencies. The AMSR-E data products in this study include
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Data
Sensors Data Products Variables

AMSR-E
AE RAIN Rain Rate
AE L2A TB

CloudSat CPR
2B-GEOPROF-LIDAR CloudLayers and LayerTop
2C-PRECIP-COLUMN FL and Precip Flag

2C-RAIN-PROFILE Rain Rate and Navigation Land Sea Flag
MODIS MOD06 L2 LWP, re, τ , and Cloud phase optical properties

Table 2.1: Data products

the National Snow and Ice Data Center (NSIDC) AMSR-E/Aqua L2B Global Swath Rain

Rate/Type Goddard Space Flight Center (GSFC) Profiling Algorithm (AE RAIN) Version

2 (Adler et al. 2004) and NSIDC AMSR-E/Aqua L2A Global Swath Spatially-Resampled

Brightness Temperatures (AE L2A) Version 2 (Ashcroft and Wentz 2006). AMSR-E TBs

are from the AE L2A algorithm that uses weighted coefficients to resample Level-1A an-

tenna temperatures to a set of common spatial resolutions. A matched AMSR-E TB and

CloudSat dataset was provided by Dr. Mark Kulie at Michigan Tech University. AMSR-

E rain rates from the AE RAIN retrieval algorithm were matched with this dataset over

oceans.

2.2.1 GPROF

PMW rain rates in this study are from GPROF. The GPROF algorithm uses a Bayesian

inversion methodology (Eq (2.1)) discussed in Kummerow and Ferraro (2007):

Pr(R|TB) = Pr(R)× Pr(TB|R) (2.1)
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where Pr(R) is the probability that a rain profile R will be observed and Pr(TB|R) is the

probability of observing the set of TBs given a rain profile R. The first term on the right

hand side of equation (2.1) is acquired using CRMs and the second term on the right hand

side of equation (2.1) is the TB that matches with the CRM output from radiative transfer

schemes. CRM simulations and coupled radiative transfer calculations create an a priori

database of hydrometeor profiles and associated TBs (Kummerow et al. 2001). However,

there is a not a guarantee that CRMs correctly depict the observed profile. This work uses

AE RAIN rain rates from the GPROF 2010 algorithm (Kummerow et al. 2011), which

takes advantage of an observationally based a priori database consisting of TRMM PR and

TRMM Microwave Imager (TMI) observations, including surface wind, total precipitable

water (TPW), LWP, and sea surface temperature (SST), along with CRM simulations and

radiative transfer calculations. All TRMM pixels are compared to original database, and

so rain screens and convection/stratiform separations are no longer necessary. In addition,

the database is also constrained by SST and TPW when searching for potential solutions.

2.3 MODIS

MODIS flies onboard both the Terra and Aqua satellites and takes measurements of the

atmosphere, land, and ocean. Aqua was launched into orbit by National Aeronautic and

Space Administration (NASA) in 2002. Data is collected in 36 spectral bands that range

from visible (0.4 µm) to thermal infrared (14.4 µm). MODIS has a continually rotating

double sided scan mirror that scans 2330 km swaths at ± 55◦. It has a high spatial reso-

lution of 250 m (bands 1-2), 500 m (bands 3-7), and 1 km (bands 8-36). Retrieved cloud

optical properties, including LWP, τ , and re, along with a cloud phase optical properties

variable are from the MODIS MYD06 L2 Cloud Product (King et al. 1997), and were

previously collocated to the CloudSat track. The cloud phase optical properties variable
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was used to limit the data to liquid water clouds only. The MYD06 L2 product has a 1

km pixel resolution, and the cloud optical properties are only available during the day-

time. The detection of cloud optical properties and cloud phase (determined from τ , re,

and derived LWP retrievals) comes from an algorithm that utilizes reflected solar radiation

measurements at multiple wavelengths through a combination of a lookup table approach,

interpolation, and asymmetric theory (King et al. 1997).

2.4 Methodology

2.4.1 Matching Process

A-train satellite observations are collocated and matched from 2007-2009. Each instru-

ment has a different pixel resolution and thus all pixels are matched along the CloudSat

track. A MODIS data set previously collocated to the CloudSat track was combined with

the AMSR-E AE RAIN rain rates by matching all CloudSat CPR dataset pixels to the clos-

est AMSR-E pixel utilizing geolocation and time parameters. The AMSR-E TB dataset

matched to the CloudSat track was also combined with the existing matched dataset. Be-

cause of resolution differences, each AMSR-E footprint will have multiple CPR footprints

matched to it. A RF dataset was created by calculating the percent of all matched CPR

pixels that are precipitating within an AMSR-E pixel. For every AMSR-E pixel there are

retrieved rain rates and TBs, along with matched CPR rain rates and MODIS cloud prop-

erty information.

2.4.2 Data Screening

To study precipitation detection in warm clouds, analysis of data is only performed

for water clouds over the ocean where CloudSat detects precipitation with a high certainty

(Table ??). Once the matching process is completed, data goes through a series of con-
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straints by the process shown in Fig. 2.2. A Navigation land sea flag value of 2 from

2C-RAIN-PROFILE was applied to restrict the data to only over the ocean. This criteria

helps eliminate any contamination of highly variable TBs that occur over land. Next the

dataset is screened to only include warm clouds. Criteria were applied where CTH must

be less than the FL and only a single cloud layer is being observed (CloudLayers = 1).

Also, a latitude range of 60◦ N and 60◦ S is analyzed since very few clouds outside of this

range have no ice contamination.

AMSR-E misses precipitation when it does not detect precipitation that the CPR de-

tects. Thus at least one of the CPR pixels must be precipitating to determine when AMSR-

E misses, and the data is constrained to only pixels where CPR rain rate is greater than 0.

To ensure that the CPR-estimated rain rates are the highest quality, a precipitation flag is

applied to only analyze pixels that have a high certainty of rain. A RF of 100 dataset is

created to only include data where all of the CloudSat pixels inside an AMSR-E footprint

are precipitating. AMSR-E frequently misses or underestimates precipitation cells that do

not fill the entire IFOV, and so this dataset will help mitigate some of the beamfilling error.

The RF = 100 dataset is used to create missed precipitation histograms and cloud property

dependent TB thresholds. Also, cloud property dependent thresholds are applied to the

RF = 100 dataset for statistics calculations. If data is not screened by RF = 100, then the

dataset is referred to as RF = ALL since data of all RFs are included. Cloud property de-

pendent thresholds are applied to the entire RF = ALL dataset for statistical calculations.

Also, thresholds are applied to data that is constrained by RF range using the RF = ALL

dataset.
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Matched data set
Pixel over
the ocean

CPR pixels with
one layer of
warm clouds

Pixels with
CPR-observed

rain have a high
certainty of rain

RF = ALL data set

All CPR pixels
within AMSR-

E footprint
are raining

RF = 100 data set

Figure 2.2: Flow chart of data screening process
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Criteria Summary
Navigation Land Sea Flag = 2 Data points only occur over the ocean

60◦ N to 60◦ S Data points are between 60◦ N to 60◦ S
CloudLayers = 1 A single cloud layer

CTH < FL Tops of clouds are lower than the FL
CPR rain rate > 0 CloudSat CPR pixels are precipitating

Precip Flag = 3 High certainty of warm rain from CloudSat

RF = 100
All of the CloudSat CPR pixels inside an

AMSR-E footprint are precipitating

Table 2.2: Data screening

2.4.3 Missed Warm Rain Biases

Analysis of cloud properties is performed for missed warm precipitation, which is

defined as when all matched CloudSat pixels are precipitating, but AMSR-E is not (RF

= 100). Histograms of missed precipitation frequencies were calculated to help assess

which cloud properties might be best to improve the detection of precipitation onset. To-

tal relative frequencies were calculated to show the occurrence of certain cloud property

values when precipitation is missed. For example, total relative frequencies for LWP are

calculated by the following equation:

Total Relative Frequency =

# of pixels when AMSR-E misses rain and
CPR detects rain for a specific LWP value

Total # of pixels when AMSR-E misses rain and
CloudSat detects rain

(2.2)

and total relative frequencies are also calculated for all cloud properties. In addition to the

total relative frequencies, value dependent relative frequencies were calculated to show

how often warm precipitation is missed when a specific cloud property value is observed.

Pixels are collected similar to the previously mentioned LWP frequencies, but value de-
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pendent frequencies have a different calculation shown by the following equation:

Value Dependent Frequency =

# of pixels when AMSR-E misses rain and
CPR detects rain for a specific LWP value
# of pixels when CloudSat

detects rain for the same LWP value

(2.3)

and value dependent frequencies are also calculated for all cloud properties. Lastly, the

mean cloud properties when warm rain is missed for every latitude and longitude are cal-

culated and mapped. These plots are analyzed to determine where these missed warm

precipitation biases occur and the spatial variability in the different cloud properties for

missed precipitation.

2.4.4 Cloud Property Dependent TB Threshold Creation

The goal of this study is to determine if the addition of cloud property information

into GPROF can help improve warm rain detection. It is beyond the scope of this project

to create a completely new GPROF database sorted by cloud properties to test whether

they help GPROF retrievals. This study instead will create cloud property dependent TB

thresholds by modifying a simplified drizzle detection method by Miller and Yuter (2013),

that originally used TBs and integrated water vapor (IWV). Miller and Yuter (2013) found

a correlation between horizontally polarized 89 GHz TBs (T89H) and IWV that shows,

when plotted in both cloud-free and stratocumulus regions with overlaid LWP contours,

a TB threshold can be calculated that reasonably separates drizzling from non-drizzling

pixels. Their IWV dependent TB threshold can be seen as the dashed line in Fig. 2.3.

Here we will test whether using TBs together with cloud properties could potentially lead

to improvements if a PMW retrieval algorithm has the properties a priori as an input.

Cloud properties that exhibit missed warm precipitation biases are plotted as a func-

tion of TBs in 2-D histograms, like the example shown in Fig. 2.4. Each bin is calculated

by dividing CPR detected precipitation by missed AMSR-E precipitation and gives a frac-
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4 M. A. Miller and S. E. Yuter: Detection and characterization of heavy drizzle cells
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Fig. 2. (a) Scatter density plot of IWV versus T89H for cloud-free AMSR-E pixels from randomly selected scenes between 60� N and 60� S
latitude. (b) Scatter density plot of IWV versus T89H for 4 409 366 pixels from 45 randomly selected marine stratocumulus scenes containing
detectable drizzle. The contours denote the counts for the subset of points with LWP values � 200 gm�2. The dashed grey line denotes the
threshold curve for drizzle classification.

O’Conner et al. (2005) used a combination of radar and lidar
to study Atlantic stratocumulus. Their data show significant
increases in drizzle rain rates when LWP values spike above
200 gm�2. Although our algorithm identifies only the larger,
heavily drizzling cells, it is an important contribution in map-
ping the global occurrence of drizzle within marine stratocu-
mulus and its interrelations with changes in cloud fraction
(de Szoeke et al., 2010).
We sidestep the complexities of evaluating drizzle based

on a quantitative estimation of LWP by instead creating a bi-
nary heavy drizzle detection product based on a background-
adaptive threshold of T89H. Unlike the global MODIS LWP
and AMSR-E LWP products, our heavy drizzle product is
only applicable to geographic areas with strong inversions
and persistent marine stratocumulus clouds. Our binary driz-
zle detection product complements, rather than replaces,
MODIS LWP and AMSR-E LWP algorithms.

2.2.1 Drizzle detection against a variable background

Marine stratocumulus clouds can cover areas as large as 30�

of latitude and 25� of longitude. One would not expect the
background clear-sky brightness temperature to be uniform
across such large areas or among the marine stratocumulus

regions (e.g., southeast Pacific, southeast Atlantic, north-
east Pacific, and northeast Atlantic). An adaptive method is
needed for determining the background, cloud-free, bright-
ness temperatures.
Figure 2a shows the strong correlation between AMSR-

E IWV (Wentz and Meissner, 2004) and AMSR-E T89H for
a data set of more than 285 000 cloud-free AMSR-E pix-
els randomly distributed in space and time between 60� N
and 60� S latitude. Cloud-free pixels were defined as pixels
with a cloud fraction < 0.01 for MODIS MYD06 L2 data
interpolated to match the resolution of the AMSR-E 89-GHz
brightness temperature product. According to Petty’s (1994)
Eqs. (5e), (5f), and (5g), much of the remaining variation in
T89H – that is, the range of T89H values for a given IWV value
– can be explained as a function of wind speed. While wind
speed is important to precisely estimate cloud-free brightness
temperature, we found that including wind data as part of our
detection algorithm produced a negligible improvement, and
we did not include it in our method.
Liquid phase cloud, drizzle, and cloud-free pixels are

all included in the scatter density plot of AMSR-E IWV
versus AMSR-E T89H data (Fig. 2b) obtained within ma-
rine stratocumulus regions in the southeast Pacific, southeast

Atmos. Meas. Tech., 6, 1–13, 2013 www.atmos-meas-tech.net/6/1/2013/

Figure 2.3: (a) Scatter density plot of IWV versus T89H for cloud-free AMSR-E pixels
from randomly selected scenes between 60N and 60S latitude. (b) Scatter density plot of
IWV versus T89H for 4,409,366 pixels from 45 randomly selected marine stratocumulus
scenes containing detectable drizzle. The contours denote the counts for the subset of
points with LWP values ≥ 200 g m−2. The dashed grey line denotes the threshold curve
for drizzle classification (reprinted from Miller and Yuter, 2013).

tion from 0 to 1 of missed precipitation. Thus, each bin displays the fraction of missed

precipitation relative to precipitation detected by CloudSat for a given TB and cloud prop-

erty variable. The next step in creating a threshold is using a target fraction of missed

precipitation as points along the threshold line. For example, a target fraction of 0.5 was

selected in Fig. 2.4 for each column. If one point with a fraction of 0.5 is found then

it is selected as a threshold data point. If more than one point is found then an average
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(a) (b)

(c) (d)

Figure 2.4: 2-D histogram of 36H GHz TB vs. (a) LWP, (b) re, (c) τ , and (d) CTH with
missed AMSR-E precipitation fraction plotted and a target fraction of 0.5 used. Solid
black line indicates threshold created.
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of points is taken. This process is repeated for each column, and then a linear regression

is performed using a least-square polynomial fit on these data points. A cloud property

dependent TB threshold is created and the resulting equation is:

TBthreshold = a(X)2 + b(X) + c (2.4)

where a, b, and c are coefficients and X is the cloud property value. Once the threshold

is created, this procedure is repeated for other target fractions in increments of 0.05 up

to 0.95. All of the thresholds are overlaid on the 2-D histograms plots as a solid black

curve similar to Fig 2.4. Both polarizations of the 89 GHz and 36 GHz channels were

analyzed. After thresholds are created for all combinations of cloud variables and target

missed fractions, detection statistics are calculated and compared to existing techniques

and the current AMSR-E algorithm.

2.4.5 Detection Statistics

The main goal of this study is to investigate whether cloud property information can be

useful in aiding the detection of warm precipitation by PMW sensors. We aim to achieve

this by creating thresholds of TB with varying cloud properties. If a pixel with a given

cloud property value and TB is above the threshold, then the pixel is identified as pre-

cipitation. If the pixel is below the threshold it is not identified as precipitation. After

thresholds are applied it is crucial to examine detection statistics to determine whether

improvements can be made. To achieve this, a 2 × 2 contingency table is used. The 2 ×

2 contingency table, shown in Table 2.3, can be used for forecasting whether an event will

occur, and in this case, whether a threshold correctly predicts precipitation. The variables

a, b, c, and d are counts. The forecast is the threshold, with data above the threshold indi-

cating a forecast of precipitation and data below the threshold indicating a forecast of no
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Table 2.3: 2 X 2 contingency table

Event Observed Event Not Observed Total
Event Forecasted Yes a b a + b
Event Forecasted No c d c + d

Total a + c b + d n= a + b + c + d

precipitation. The event that is observed or not observed is CPR rain. Variable a is when

CPR-observed precipitation is correctly predicted by the threshold and is referred to as a

hit. Variable b is when CPR does not detect precipitation, but the threshold incorrectly

predicts precipitation, referred to as a false alarm. Variable c is when CPR-observed pre-

cipitation is not predicted by the threshold and referred to as a miss. Variable d is when

the threshold correctly predicts no precipitation and is sometimes referred to as a correct

negative. With the 2 × 2 contingency table and counts of hits, misses, and false alarms,

statistics can be computed to better understand how good of a predictor the threshold is

(Wilks 2011). First, skill scores are calculated to quantify the skill of prediction. The

Heidke Skill Score (HSS),

HSS =
2(ad− bc)

(a+ c)(c+ d) + (a+ b)(b+ d)
(2.5)

is a measure of skill of a forecast (threshold) compared with a standard forecast (chance).

HSS ranges from -∞ to 1. A score of 1 equals a perfect forecast, and thus the created

threshold perfectly predictions warm precipitation. A score of 0 indicates the skill of the

created threshold is no better than chance, and a negative score indicates that a chance

forecast would be a better predictor of warm precipitation. Critical Success Index (CSI),

CSI =
a

a+ b+ c
(2.6)
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is the number of times a threshold correctly predicts precipitation divided by the total num-

ber of occasions the threshold predicts precipitation and/or CPR observes precipitation. It

was originally called the ratio of verification by Gilbert (1884) and sometimes referred to

as the Gilbert Score. CSI can be seen as the proportion correct after removing cases in

which the threshold correctly predicts no precipitation. A score of 0 is the worst that can

be received and a score of 1 is the best.

Other statistics were also calculated to quantify the accuracy of the forecast and im-

provements of detection of precipitation occurrence and volume. The odds ratio (OR),

OR =
ad

bc
(2.7)

is the product of correct forecasts divided by the product of incorrect forecasts. It is also

the conditional odds of a hit given that the CPR predicts precipitation over the conditional

odds of a false alarm given that the CPR does not detect precipitation. Larger values

indicate a more accurate forecast. Bias,

Bias =
a+ b

a+ c
(2.8)

is the ratio of number of times the threshold predicts precipitation to the number of times

CPR observes precipitation. An unbiased predictor would have a value of 1, which indi-

cates that the threshold predicts precipitation the same amount of times that CPR observed

it. A value greater than 1 indicates that the threshold predicts precipitation more often than

CPR observes precipitation and is called over-forecasting. A value less than 1 indicates

that the threshold predicts precipitation less often than CPR observes precipitation and is
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called under-forecasting. The hit rate (HR),

HR =
a

a+ c
(2.9)

is the ratio of forecasts in which the threshold correctly predicts precipitation to the number

of times CPR observes precipitation. It is also referred to as the probability of detection.

Larger values are preferred with 0 being the worst and 1 the best. The false alarm rate

(FAR),

FAR =
b

b+ d
(2.10)

is the ratio of forecasts in which the threshold incorrectly predicts precipitation to the num-

ber of times CPR does not observe precipitation. It is also referred to as the probability of

false detection.

A volumetric hit rate (VHR) is calculated using the same formula as equation (2.9),

but instead of a count, the volume of precipitation is totaled for each variable. Volumetric

statistics are limited to hit rate because for all other statistics to be computed, a volume

is required for when CloudSat does not detect precipitation which will always be 0. HRs,

FARs, and VHRs are expressed as percentages for this study.
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3. RESULTS

Once data are matched and constrained it is plotted for comparison with Fig. 1.1. The

fraction of missed warm precipitation is calculated by finding all of the pixels where all

of the CPR rain rates in an AMSR-E footprint are greater than 0 and AMSR-E rain rate is

equal to 0, then dividing it by the total number of AMSR-E pixels where CPR indicates it

is raining. These calculations are performed in 5◦ × 5◦ boxes and plotted globally. Fig.

3.1 shows a large fraction of missed warm precipitation in the areas where a large fraction

of AMSR-E misses are shown in Fig. 1.1 suggesting that warm precipitation is a large

contributor to the global amount of missed rain. These misses mostly occur in subsidence

regimes off the western coasts of the continents where stratocumulus clouds and light,

warm precipitation are prominent.

Mean CPR rain rates when AMSR-E misses precipitation are calculated for each 5◦

× 5◦ bin and plotted in Fig. 3.2. Fig. 3.2 shows that when AMSR-E misses warm pre-

cipitation, low precipitation rates are measured in the same subsidence and stratocumulus

regimes where AMSR-E has a high fraction of misses. This is consistent with what we

would expect since AMSR-E has difficulties in distinguishing the difference between the

emission signal for cloud and precipitation at precipitation onset.

3.1 Cloud Property Histograms

Figures 3.1 and 3.2 show that AMSR-E frequently misses warm precipitation in re-

gions where stratocumulus clouds are prominent and rain rates are low, and thus, AMSR-E

often fails to determine precipitation onset. Previous literature suggests that cloud proper-

ties, such as LWP and re, can be used as possible thresholds for precipitation onset. Cloud

properties that are physically linked with precipitation and show large fractions of missed
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Figure 3.1: Map of fraction of warm precipitation missed by AMSR-E. It is based on 3
years (2007-2009) of rainfall data and RF = 100.

precipitation can help determine which, if any, would be best suitable to be used as a

threshold for precipitation onset. An initial examination of missed warm precipitation was

performed for selected cloud properties. In addition to LWP and re, CTH and τ were also

used for this study. To accomplish this, two different histograms were calculated for each

cloud property. A histogram of seasonal and total relative frequencies of MODIS cloud

properties and CloudSat-CALIPSO CTHs when AMSR-E misses precipitation is shown

in Fig. 3.3. The frequency of a given cloud property value is calculated when AMSR-E

misses warm precipitation and then cloud property histogram bins are divided by the total

number of pixels when AMSR-E misses. Thus, frequencies reflect how often the cloud

property value occurs when precipitation is missed and together bins should add to 1. Re-

sults labeled total are calculated using all available data and results labeled seasonal are

calculated by only using data from the months indicated.

Fig. 3.3 shows the range of cloud properties typical for warm clouds where AMSR-

E missed warm precipitation. When AMSR-E misses precipitation, greater than 65% of

misses occur for LWP from 150-400 g/m2, ∼ 70% for re between 18 and 28 µm, greater

28



Figure 3.2: Map of global mean rain rates when AMSR-E misses precipitation and RF =
100.

than 65% for optical thicknesses between 10 and 30, and∼ 70% for CTH less than 2.5 km.

There is little seasonal variability in the frequency of cloud properties when precipitation

is missed. Frequencies of 0 for CTHs less than 1 km in Fig. 3.3d are most likely due to

a lack of CPR precipitation retrieval because of surface clutter contamination; however,

Rapp et al. (2013) suggest this is a relatively infrequent occurrence. These figures suggest

that the greatest improvement in the detection of AMSR-E missed precipitation should

focus on moderate LWP and optical thicknesses, re > 16 µm, CTH between 1.5 and 3 km.

Together with cloud property frequencies when precipitation is missed, frequencies

of missed precipitation for specific cloud properties can give additional insight into which

properties would best improve warm rain detection. A histogram of value dependent fre-

quencies of missed warm precipitation within a given cloud property range is shown in

Fig. 3.4. Each histogram bin is calculated by dividing the number of pixels within a cloud

property bin where AMSR-E misses precipitation by the total number of pixels where

CloudSat detects precipitation for that cloud property bin. Thus, frequencies reflect the

occurrence of AMSR-E misses given an observed cloud property bin. Analysis of Fig.
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(a) (b)

(c) (d)

Figure 3.3: Seasonal and total relative frequencies of MODIS (a) LWP, (b) re, (c) τ , and
(d) CloudSat-CALIPSO CTH when AMSR-E misses precipitation.

3.4 shows that missed warm precipitation is most frequent for lower LWPs, CTHs, and

τ , and higher re. As LWP increases the frequency of AMSR-E misses tends to decrease.

CTH and τ are analogous to LWP with the frequency of AMSR-E misses decreasing as

values increase. re has an inverse relationship with AMSR-E misses, increasing as values

increase. For LWP between 50 and 100 g/m2, 150 and 200 g/m2, CTH less than 2 km, and

optical thicknesses between 5 and 10, precipitation is missed more than 40% of the time.

Also, with a CTH between 1 and 1.5 km, precipitation is missed greater than 80% of the

time. Clouds with a LWP between 0 and 450 g/m2, τ between 35 and 40 and less than 25,

CTH less than 2.5 km, or re between 16 and 28 µm have precipitation missed greater than

20% of the time. Fig. 3.4 suggests that warm rain detection biases occur frequently in low

LWPs, optical thicknesses, and CTHs, and re > 16 µm.
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(a) (b)

(c) (d)

Figure 3.4: Frequency of missed AMSR-E precipitation relative to the total number of
precipitating clouds per (a) LWP, (b) re, (c) τ , and (d) CTH bin.

Comparing Figures 3.3 and 3.4 help locate the best cloud property ranges for possible

precipitation detection improvements. Warm rain detection biases occur more frequently

within lower LWP, τ , and CTH bins, but biases at higher values of these properties con-

tribute more to the total frequency of missed precipitation. Warm rain detection biases

occur more frequently and biases contribute to more of the total frequency of missed pre-

cipitation for re > 16 µm. These findings suggest that AMSR-E warm rain detection biases

vary as a function of the cloud properties and indicate that a priori cloud property infor-

mation could help improve GPROF retrievals.
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(c) (d)

Figure 3.5: Map of global mean (a) LWP, (b) re, (c) τ , and (d) CTH when AMSR-E misses
precipitation and RF = 100.

3.2 Global Mean Cloud Properties

Now that precipitation misses are calculated for each cloud property, the next step is to

observe the spatial distribution of the cloud properties for missed precipitation and, thus,

better understand where and in which cloud regimes improvements can possibly be made.

Figures 3.3 and 3.4 display the frequency of cloud properties for missed precipitation.

By mapping mean values of cloud properties when precipitation is missed, we can better

determine which regions show the cloud macrophysical and microphysical characteristics

where precipitation is missed most often. Fig. 3.5 is created by calculating the mean for

each cloud property when precipitation is missed for each 5◦ × 5◦ bin. Results show that

in stratocumulus regions off the western coasts of the continents, where AMSR-E had the

highest fraction of missed precipitation and CPR-observed rain rates were low, CTH is

very low. Also, this cloud regime exhibits higher LWPs, re, and τ . In shallow cumulus and

deep convective regimes, particularly the Pacific warm pool, missed precipitation occurs at

higher cloud tops, low LWPs, low re, and low optical thicknesses. Low re and high optical
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thicknesses off the eastern coast of the continents suggest that they might be influenced by

industrial emissions (Sekiguchi et al. 2003).

Results show a distinct relationship between the four observed cloud properties and

AMSR-Es warm rain detection biases. So far all four cloud properties look feasible for

improving detection. A way to test the potential of cloud properties as a means of improv-

ing detection includes modifying a simplified drizzle detection method to test whether

combining TBs, which are a direct measure of emission from rainfall, and cloud proper-

ties could potentially lead to improvements.

3.3 Cloud Properties vs. Brightness Temperature

To better evaluate the potential of cloud properties to improve detection, TBs and cloud

properties are analyzed together. Investigating the correlations between TBs and cloud

properties may show if possible thresholds can be implemented to better improve detec-

tion. In the absence of ice, TB is a direct measure of emission from liquid hydrometeors

in the observed footprint. Cloud properties are plotted vs TB and results are shown in

Fig. 3.6. Data for all observed warm clouds (both precipitating and non-precipitating) are

plotted. Contours of detected rain and missed rain are then overlaid. The horizontally po-

larized 36 GHz channel was used in Fig. 3.6, but both polarizations of the 36 GHz and 89

GHz channels were analyzed. Fig. 3.6 shows a strong correlation between TBs and cloud

properties. There is a noticeable offset between detected warm precipitation and missed

warm precipitation for 36 GHz TBs as a function of cloud property. This offset allows

for an empirically-derived curve fit threshold that could be used to include detected warm

precipitation and a high concentration of missed warm rain. Fig. 2.4 showed an example

of these empirically-derived curves. Similar to Miller and Yuter (2013), a threshold could

be applied to the plots in Fig. 3.6 to help separate raining from non-raining cases while
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(a) (b)

(c) (d)

Figure 3.6: 2-D histogram of 36H GHz TB vs. (a) LWP, (b) re, (c) τ , and (d) CTH for all
warm clouds and all RF. Colored contours indicate areas of missed warm rain and black
dashed contours indicate areas of detected warm rain.
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also trying to capture as much missed precipitation as possible. The threshold curves in

Fig. 2.4 use a target missed precipitation fraction to perform a linear regression using a

polynomial fit. The target missed precipitation fraction is systematically increased to try

and capture the highest frequency of missed precipitation without adding too many false

alarms. All plots in Fig. 3.6 display a feasible case for a threshold to be applied. These

thresholds can be tested against current threshold methods and statistically compared to

see if cloud property dependent TB thresholds can better detect warm precipitation, while

limiting the additional detection errors.

3.4 Threshold Results and Comparisons

Fig. 3.6 shows that a curved fit threshold could be derived to separate the dashed con-

tour raining pixels from the non-raining pixels. Similar to Miller and Yuter (2013), the

threshold can be shifted to capture a large amount of missed precipitation without captur-

ing too many non-raining pixels. Cloud property dependent TB thresholds are calculated

by modifying a simplified drizzle detection method by Miller and Yuter (2013). A main

goal of this study is to determine if additional cloud property information can be used to

improve the detection of warm precipitation by the current AMSR-E GPROF algorithm

and other established precipitation onset thresholds. Precipitation onset thresholds include

the 89 GHz TB threshold in Miller and Yuter (2013), a simple 180 g/m2 LWP threshold

implemented by Remote Sensing Systems (RSS) (Wentz 1997), and 15µm threshold used

by many previous studies. Miller and Yuter (2013) created a curve fit between cloud-free

89 GHz TBs and IWV values that was adjusted to separate a local maximum of AMSR-E

LWP values greater than 200 g/m2 from the cloud-free values. After other refinements to
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the curve were made, the final threshold equation was

T89H,threshold = −0.008875(IWV )2 + 1.542(IWV ) + 220 (3.1)

where T89,threshold is the threshold value in K and IWV is the vertically integrated wa-

ter vapor value in kg m−2. Their threshold was originally created only for stratocumulus

regimes; however, the detection statistics and results shown in Table 3.1 are computed

by applying the threshold to all warm clouds for our dataset. Wentz (1990) analyzed

38 northeast Pacific storm systems and found LWPs > 180 g/m2 likely indicate driz-

zle. Thus, Wentz (1997) uses a LWP threshold of 180 g/m2 to determine precipitation.

Albrecht (1989) found that increases in cloud condensation nuclei (CCN) concentration

lead to decreases in mean particle droplet size and drizzle production. Also, re ≥ 15 µm

were observed in shallow, warm cumulus that had low concentrations of CCN. Rosenfeld

and Gutman (1994) compared Advanced Very High Resolution Radiometer (AVHRR) re-

trieved cloud top properties with ground radar data and showed that re greater than 14 µm

matched well with areas that did have radar echoes, and thus deemed to be precipitating.

For this study 15 µm was used as the precipitation onset threshold to compare against.

To determine if cloud property information can improve detection, current algorithm and

threshold detection statistics are calculated for comparison. Statistics are calculated for

the current AMSR-E GPROF algorithm (Kummerow et al. 2001), Miller and Yuter (2013)

TB threshold, RSS LWP threshold, and 15 µm re threshold, and are shown in Table 3.1.

GPROF has reasonable skill scores and a high OR, but has a bias significantly less than

one. Also, GPROF only captures 32% of precipitation occurrences, 67% of total rain vol-

ume, and has a FAR of 1%. Table 3.1 shows that the threshold created by Miller and Yuter

(2013) and 15 µm re threshold both have low skill scores while the 180 g/m2 RSS LWP

threshold has a high skill score. All three of these thresholds have relatively high biases,
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which suggests that they predict precipitation significantly more often than it occurs. They

have high HRs, but at the expense of larger FARs. However, higher FARs may be ac-

ceptable if skill score is high, HR is substantially improved, and a larger amount of total

precipitation is captured. Cloud property dependent TB thresholds are compared to Table

3.1, and the best results will be defined by thresholds with HRs higher than GPROF and

FARs lower than RSS.

Table 3.1: GPROF and other commonly used precipitation onset thresholds

AMSR-E
Miller and Yuter

RSS LWP re
GPROF (180 g/m2) (15 µm)

HSS 0.40 0.21 0.49 0.17
CSI 0.28 0.19 0.37 0.17
OR 32.86 6.12 26.40 15.91
Bias 0.46 3.18 1.66 5.10
HR 32% 66% 72% 91%

(RF=100) (54%) (79%) (90%) (94%)
FAR 1 % 24% 9% 41%
VHR 67% 86% 93% 93%

(RF=100) (75%) (89%) (96%) (94%)

3.4.1 re

The presence of large droplets has been associated with precipitation and warm rain

detection biases occur for re > 16 µm. Re-dependent 36 GHz TB thresholds are created,

while detection statistics are calculated and compared with Table 3.1. Table 3.2 shows

results for a re-dependent 36 GHz TB threshold. Other frequencies and polarizations were

also tested. Skill scores are high and ORs are moderate, but are lower than RSS. Biases

indicate that precipitation is predicted less often than it occurs until at target fraction of
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Figure 3.7: 2-D histogram of 36H GHz TB vs. re with missed AMSR-E precipitation frac-
tion plotted and target fraction of 0.85 used. Solid black line indicates threshold created.

0.75. Skill scores are similar to GPROF, but higher as target fraction is increased, and are

much higher than both Miller and Yuter (2013) and re > 15 µm. HRs and FARs are above

GPROF, but FARs stay below RSS up until a target fraction of 90%. HRs and VHRs are

shown to increase as the fraction target is increased, but FARs increase as well. HRs and

VHRs for RF=100 dataset show the best detection that could be achieved if beam-filling

was not an issue. A target fraction of 85% shows the best results as HR and VHR are

significantly improved above GPROF while keeping FAR equivalent to RSS, and is shown

in Fig 3.7. The equation for this threshold is:

TB36Hthreshold = −0.0473104(re)2 + 1.55737(re)) + 161.646 (3.2)

where TB36Hthreshold is threshold value in K and re values are in µm.
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Table 3.2: re-dependent TB threshold results

re
TB 36H 36H 36H 36H 36H 36H 36H 36H 36H 36H

Fraction Target 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
HSS 0.41 0.42 0.43 0.44 0.45 0.43 0.43 0.39 0.37 0.36
CSI 0.29 0.30 0.31 0.32 0.33 0.32 0.32 0.29 0.28 0.28
OR 25.39 24.38 21.26 20.53 21.83 17.41 16.84 13.44 13.10 14.20
Bias 0.56 0.61 0.74 0.83 0.82 1.05 1.22 1.58 1.96 2.20
HR 35% 37% 41% 45% 45% 50% 54% 59% 66% 71%

(RF=100) (57%) (59%) (64%) (67%) (67%) (71%) (75%) (78%) (83%) (86%)
FAR 2% 2% 3% 3% 3% 5% 6% 9% 12% 14%
VHR 71% 73% 77% 80% 80% 83% 86% 88% 91% 93%

(RF=100) (79%) (80%) (84%) (86%) (86%) (88%) (90%) (92%) (94%) (96%)

3.4.2 τ

Table 3.3: τ -dependent TB threshold results

τ
TB 36H 36H 36H 36H 36H 36H 36H 36H 36H 36H

Fraction Target 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
HSS 0.39 0.42 0.44 0.43 0.44 0.44 0.43 0.42 0.42 0.37
CSI 0.27 0.29 0.31 0.31 0.32 0.32 0.32 0.31 0.32 0.29
OR 30.28 27.45 23.86 24.00 22.66 19.76 16.69 15.79 16.59 14.59
Bias 0.46 0.56 0.68 0.68 0.76 0.91 1.17 1.36 1.55 2.12
HR 31% 35% 40% 40% 43% 47% 53% 57% 62% 70%

(RF=100) (54%) (59%) (63%) (63%) (66%) (69%) (74%) (77%) (81%) (85%)
FAR 1% 1% 2% 2% 3% 4% 6% 7% 9% 14%
VHR 71% 75% 78% 78% 80% 83% 86% 88% 89% 91%

(RF=100) (78%) (82%) (84%) (85%) (86%) (89%) (91%) (92%) (92%) (93%)

Optically thick clouds are associated with precipitation and warm rain detection biases

occur for moderate τ . τ -dependent 36 GHz TB thresholds are created, while detection

statistics are calculated and compared with Table 3.1. Table 3.3 shows results for a τ -

dependent 36 GHz TB threshold. Other frequencies and polarizations were also tested.

Skill scores and ORs are high, but skill score is lower than RSS. Biases indicate that for
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Figure 3.8: 2-D histogram of 36H GHz TB vs. τ with missed AMSR-E precipitation
fraction plotted and a target fraction of 0.9 used. Solid black line indicates threshold
created.

target fractions below 80% precipitation is predicted less often than it occurs. Skill scores

are similar to GPROF, but higher as target fraction is increased, and higher than both

Miller and Yuter (2013) and re > 15 µm. Also, ORs are much lower as target fraction is

increased. τ has the lowest starting HR of all the cloud properties, but its best threshold has

the highest HR of all the cloud properties. HRs and FARs are above GPROF after a target

fraction of 55%, but FARs stay below RSS up until a target fraction of 95%. HRs and

VHRs are shown to improve as the fraction target is increased, but FARs increase as well.

A target fraction of 90% shows the best results as HR is increased ∼ 30% above GPROF

and VHR is increased ∼ 22%, while keeping FAR equivalent to RSS, and is shown in Fig

3.8. The equation for this threshold is:

TB36Hthreshold = 0.0138362(τ)2 + (−0.895954(τ)) + 180.970 (3.3)
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where TB36Hthreshold is threshold value in K and τ values are unitless.

3.4.3 CTH

Figure 3.9: 2-D histogram of 36H GHz TB vs. CTH with missed AMSR-E precipitation
fraction plotted and a target fraction of 0.85 used. Solid black line indicates threshold
created.

Higher cloud tops are associated with precipitation and warm rain detection biases oc-

cur for mostly CTH less than 2.5 km. CTH-dependent 36 GHz TB thresholds are created,

while detection statistics are calculated and compared with Table 3.1. Other frequencies

and polarizations were also tested. Table 3.4 shows results for a CTH-dependent 36 GHz

TB threshold. Skill scores are high, but lower than RSS, and ORs are lower than GPROF,

RSS, and other cloud properties. Biases indicate that precipitation is predicted less often

than it occurs until a target fraction of 0.75. CTH has a high starting HR, but as target

fraction is increased HR and VHR are the lowest of all the cloud properties. HRs and
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Table 3.4: CTH-dependent TB threshold results

CTH
TB 36H 36H 36H 36H 36H 36H 36H 36H 36H 36H

Fraction Target 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
HSS 0.40 0.41 0.42 0.43 0.43 0.42 0.41 0.40 0.37 0.35
CSI 0.28 0.29 0.30 0.31 0.32 0.31 0.31 0.30 0.28 0.27
OR 22.89 21.35 20.44 20.18 18.47 15.84 15.12 14.38 12.83 12.67
Bias 0.59 0.64 0.72 0.78 0.92 1.19 1.28 1.41 1.87 2.16
HR 35% 37% 40% 42% 46% 52% 54% 56% 64% 68%

(RF=100) (56%) (58%) (61%) (64%) (67%) (72%) (74%) (75%) (81%) (83%)
FAR 2% 2% 3% 3% 4% 6% 7% 8% 12% 14%
VHR 71% 72% 75% 78% 81% 84% 85% 86% 89% 90%

(RF=100) (78%) (79%) (82%) (84%) (86%) (89%) (90%) (90%) (92%) (93%)

FARs are above GPROF, but FARs stay below RSS up until a target fraction of 90%. A

target fraction of 85% shows the best results as HR is increased significantly from GPROF

while decreasing FAR just below RSS, and is shown in Fig 3.9. When the CTH-dependent

TB threshold is applied to the RF = 100 dataset, HR and VHR are increased to 75% and

90%, respectively. The equation for this threshold is:

TB36Hthreshold = 4.20960(CTH)2 + (−18.3734(CTH)) + 192.517 (3.4)

where TB36Hthreshold is threshold value in K and CTH values are in km.

3.4.4 LWP

Higher LWPs are associated with precipitation and warm rain detection biases occur

for moderate LWPs. LWP-dependent 36 GHz TB thresholds are created, while detection

statistics are calculated and compared with Table 3.1. Other frequencies and polarizations

were also tested. Table 3.5 shows results for a LWP-dependent 36 GHz TB threshold.

LWP skill scores become similar to RSS and are much higher than GPROF, Miller and

Yuter (2013), and re > 15 µm as target fraction is increased. LWP has the highest skill
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Figure 3.10: 2-D histogram of 36H GHz TB vs. LWP with missed AMSR-E precipitation
fraction plotted and a target fraction of 0.9 used. Solid black line indicates threshold
created.

scores and ORs of all the cloud properties. Biases indicate that precipitation is predicted

less often than it occurs for target fractions lower than 85%. FARs stay below RSS for

all target fractions, but VHR actually decreases for a target fraction of 95%. When the

LWP-dependent threshold is applied to the RF = 100 dataset, VHR also decreases for a

target fraction of 95%. A target fraction of 90% shows the best results as HR is increased

significantly from GPROF, VHR is maximized, and FAR is held just below RSS, and it is

shown in Fig 3.10. The equation for the 90% target fraction threshold is:

TB36Hthreshold = 6.77347e−5(LWP )2 + (−0.0663133(LWP )) + 183.443 (3.5)

where TB36Hthreshold is threshold value in K and LWP values are in g/m2.
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Table 3.5: LWP-dependent TB threshold results

LWP
TB 36H 36H 36H 36H 36H 36H 36H 36H 36H 36H

Fraction Target 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
HSS 0.41 0.42 0.43 0.45 0.47 0.48 0.48 0.48 0.47 0.46
CSI 0.28 0.29 0.31 0.32 0.34 0.35 0.36 0.35 0.35 0.35
OR 37.54 35.11 25.35 31.93 29.19 27.81 25.38 22.35 20.66 20.78
Bias 0.44 0.48 0.64 0.59 0.70 0.76 0.87 1.05 1.26 1.45
HR 32% 33% 39% 39% 44% 46% 49% 54% 59% 64%

(RF=100) (56%) (58%) (63%) (64%) (68%) (71%) (73%) (76%) (79%) (81%)
FAR 1% 1% 2% 2% 2% 3% 3% 5% 6% 8%
VHR 72% 73% 79% 77% 81% 84% 84% 86% 88% 86%

(RF=100) (81%) (81%) (86%) (83%) (87%) (90%) (89%) (91%) (91%) (88%)

3.4.5 Best Results

All cloud property dependent TB thresholds showed promising results, as summarized

in Table 3.6. All cloud properties produced similar HRs and VHRs compared to Miller

and Yuter (2013) and re > 15 µm, and FARs were noticeably lower. Also, all cloud prop-

erties produced more hits and captured more rain volume than GPROF. Some false alarms

were added compared to GPROF, but HRs and VHRs were increased significantly, and

FARs stayed below or at RSS’s 9%. When compared against one another τ and LWP have

some noticeable advantages. τ produces a higher HRs and VHRs than the other proper-

ties. Also, when cloud property dependent thresholds are applied to the RF = 100 dataset,

τ has a higher HR and VHR. While exhibiting a lower, but similar HR and VHR than τ ,

LWP exhibits a higher skill score, larger OR, and a lower FAR. Maximizing VHR may be

considered one the most important goals, and while τ exhibits the largest VHR, all other

cloud properties are similar.

Since these results show that using cloud property information can help in the detec-

tion of warm precipitation, HR and FAR differences are plotted globally. Figure 3.11

shows HR and FAR differences between AMSR-E GPROF and LWP dependent 36H GHz
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Table 3.6: Best threshold results

re τ CTH LWP
TB 36H 36H 36H 36H

Fraction Target 85% 90% 85% 90%
HSS 0.39 0.42 0.40 0.47
CSI 0.29 0.32 0.30 0.35
OR 13.44 16.59 14.38 20.66
Bias 1.58 1.55 1.41 1.26
HR 59% 62% 56% 59%

(RF=100) (78%) (81%) (75%) (79%)
FAR 9% 9% 8% 6%
VHR 88% 89% 86% 88%

(RF=100) (92%) (92%) (90%) (91%)

TB threshold to help determine the regions where improvements can be made. Calculated

HRs and FARs for AMSR-E and the LWP-dependent 36H GHz TB threshold are averaged

for each 5◦ × 5◦ bin and the AMSR-E GPROF results are subtracted from LWP-dependent

TB threshold results. Figures 3.11a and 3.11b show that the use of cloud property infor-

mation can help improve warm rain HRs in the tropics and Indo-Pacifc warm pool, where

shallow cumulus and mostly deep convection are found, for the LWP dependent 36H GHz

TB threshold. However, the addition of cloud property information shows little to no im-

provement of HRs in stratocumulus regions where warm rain is prominent. In the tropics,

where HRs are improved, FARs are also increased. Also, slight increases of FAR are seen

in stratocumulus regimes. These results suggests that the addition of LWP information

does not necessarily improve hit rates in stratocumulus regions, but does help better detect

warm rain in regions most associated with shallow cumulus and deep convection. A simi-

lar pattern is seen for all other cloud property dependent thresholds. Together they provide

results that vary depending on region, and thus improvements to thresholds might occur if

stratified by different environmental and cloud regimes.
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(a)

(b)

Figure 3.11: Global (a) HR and (b) FAR differences between AMSR-E GPROF and LWP
dependent 36H GHz TB threshold.

3.5 Regime Dependent Thresholds

Cloud property dependent TB thresholds are applied to the entire globe and the im-

provement of HRs and FAR can vary regionally as seen in Figure 3.11. Fig. 3.10 shows

that, depending on the region and cloud morphology, the threshold does not always work.

Regime specific cloud property dependent TB thresholds are tested within different cloud
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regimes to determine whether detection statistics can be improved. Data is partitioned by

environmental and cloud regimes, and then thresholds are calculated similar to the process

discussed in section 2.4.4, but the data is constrained to particular environmental charac-

teristics to define specific environmental and cloud regimes.

3.5.1 Dynamical Regimes

TBs are dependent upon the amount of energy received by the PMW sensor, and so

thresholds will benefit from clouds that produce large areas of heavier precipitation. Large

scale ascent regimes are associated with deeper convective systems and other cumuli-

form clouds that produce larger rain rates and a stronger emission signal (Bony et al.

2004). Large scale subsidence regimes are associated with a large fraction of stratocu-

mulus clouds and other low-level boundary layer clouds that, while they are widespread,

have very low rain rates and produce a weaker emission signal (Bony et al. 2004). Also, a

smaller amount of shallow cumulus clouds can be associated with subsidence regimes, and

they can produce larger rain rates, but these smaller cells are isolated. When determining

if environmental and cloud regimes can improve cloud property dependent TB thresholds,

we would expect that constraining the data by dynamical regimes might improve thresh-

olds due to a larger fraction of signatures that produce a larger emission signal. Ascent

and subsidence regimes are separated by using 500 hectopascal (hPa) vertical velocity (ω)

thresholds as a proxy for large scale ascending and descending motions as in Bony and

Dufresne (2005). Six-hourly 500 hPa ω data is from European Centre for Medium-Range

Weather Forecasts (ECMWF) ERA-Interim reanalysis data (Dee et al. 2011). Data with ω

values less than 0 indicates an ascent regime and ω values greater than 0 indicate a subsi-

dence regime. Cloud property dependent TB thresholds are calculated for both regimes.

Also, the best thresholds, shown in Table 3.6, are applied to the constrained data and com-

pared with regime threshold results to determine if improvements are made. Results for
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the global thresholds applied to dynamical regime-dependent data are shown in Table 3.7.

Results for ascent regimes are shown in Table 3.8, and results for subsidence regimes are

shown in Table 3.10.

Results show that improvements to cloud property dependent TB threshold HRs can be

Table 3.7: Global thresholds applied to dynamical regimes

re τ CTH LWP re τ CTH LWP
Ascent Regime Subsidence Regime

HSS 0.39 0.41 0.41 0.48 0.38 0.42 0.39 0.46
CSI 0.31 0.33 0.32 0.37 0.28 0.32 0.29 0.34
OR 13.65 19.67 14.32 20.31 13.46 19.39 14.50 21.20
Bias 1.87 2.15 1.65 1.50 1.43 1.82 1.27 1.13
HR 68% 79% 65% 68% 54% 68% 51% 54%

(RF=100) (85%) (92%) (82%) (85%) (74%) (87%) (71%) (75%)
FAR 13% 16% 11% 9% 8% 10% 6% 5%
VHR 92% 97% 90% 91% 85% 94% 83% 85%

(RF=100) (95%) (98%) (93%) (93%) (90%) (97%) (88%) (89%)

made if data is constrained by descent regimes. re shows the biggest improvements in HR

and VHR (RF=100 statistics as well) at the expensive of only adding 2% to the FAR. The

95% target fraction LWP threshold was considered the best result since it did not increase

FAR above RSS, but the significant increase in HR and VHR allowed the 90% target

fraction re threshold to be chosen. In ascent regimes, all cloud properties significantly

decreased FARs, but they did not see improvements from ascent-dependent thresholds as

HRs and VHRs decreased. In subsidence regimes LWP, re, and CTH-dependent thresholds

improve warm rain detection. LWP and re increase both HR and VHR, while CTH only

increases HR. In ascent regimes, all cloud properties failed to make any improvements.

Results show that in regions where warm rain is prominent, a regime-dependent cloud

property-dependent threshold can improve warm rain detection. This is most likely due
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Table 3.8: Ascent regimes

re τ CTH LWP
TB 36H 36H 36H 36H

Fraction Target 80% 80% 75% 75%
HSS 0.46 0.45 0.42 0.51
CSI 0.35 0.34 0.32 0.39
OR 17.56 16.24 13.70 24.56
Bias 1.45 1.40 1.44 0.94
HR 64% 62% 60% 54%

(RF=100) (83%) (81%) (78%) (77%)
FAR 9% 9% 9% 4%
VHR 90% 90% 86% 88%

(RF=100) (94%) (94%) (91%) (92%)

to the low rain rates that are prominent in subsidence regimes that cause TBs to be lower,

which can be accounted for in regime-dependent thresholds. In regions with deeper con-

vection, results suggest that regime-dependent thresholds do not improve detection over

the global cloud property-dependent thresholds. Results show that τ does not see any im-

provements with dynamical regime dependent thresholds. LWP, re, and CTH-dependent

horizontally polarized 36 GHz TB thresholds exhibit the most promising results in descent

regimes. Thresholds are shown in Fig. 3.12 and the equations for these thresholds are:

TB36Hthreshold = −0.00103199(re)2 + (−0.177245)(re) + 174.437 (3.6)

TB36Hthreshold = 11.3531(CTH)2 + (−49.5681)(CTH) + 221.980 (3.7)

TB36Hthreshold = 6.91527e− 05(LWP )2 + (−0.0601593)(LWP ) + 179.610 (3.8)

where TB36Hthreshold is threshold value in K and re values are in µm, CTH values are

in km, and LWP values are in g/m2. Next, this process is repeated and thresholds are

examined for cloud regimes.
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Table 3.9: Subsidence regimes

re τ CTH LWP
TB 36H 36H 36H 36H

Fraction Target 90% 90% 90% 95%
HSS 0.36 0.40 0.38 0.43
CSI 0.27 0.29 0.28 0.32
OR 12.73 14.93 13.18 18.26
Bias 1.70 1.54 1.51 1.39
HR 58% 58% 55% 58%

(RF=100) (77%) (77%) (72%) (77%)
FAR 10% 8% 8% 7%
VHR 88% 87% 81% 86%

(RF=100) (92%) (91%) (85%) (90%)

3.5.2 Stratocumulus vs. Shallow Cumulus

In section 3.5.1 we constrained the data solely by dynamical environmental character-

istics. Multiple types of clouds can be found in such regimes, and so, this section will

focus on adding a thermodynamic constraint to help separate of cloud regimes. The warm

cloud population is mostly comprised of stratocumulus and shallow cumulus. Medeiros

and Stevens (2011) used both 500 hPa ω and 700 hPa ω greater than 10 hPa day−1 to de-

fine low clouds. They also found that in addition to using ω, a lower tropospheric stability

(LTS) threshold of 18.55 K can be used to help distinguish different low cloud regimes.

Values greater than or equal to 18.55 K are generally associated with stratocumulus clouds.

Values less than 18.55 K distinguish areas of shallow cumulus. LTS is calculated by taking

the potential temperature at the surface and subtracting from the potential temperature at

700 hPa seen as:

LTS = θ700hPa − θsfc (3.9)
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(a) (b)

(c)

Figure 3.12: 2-D histogram of 36H GHz TB vs. (a) re (target fraction of .9), (b) CTH (tar-
get fraction of .9), and (c) LWP (target fraction of .95) with missed AMSR-E precipitation
fraction plotted for descent regimes. Solid black line indicates threshold created.
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where LTS, θ700hPa, and θsfc are in K. Six-hourly potential temperature is from ECMWF

ERA-Interim reanalysis data. A 500 hPa ω threshold is used to define low clouds by lim-

iting data to values greater than 10 hPa day−1. Results for the global thresholds applied

to cloud regime-dependent data are shown in Table 3.10. Cloud property-dependent TB

thresholds are calculated for both cloud regimes and results are shown in Tables 3.11 and

3.12.

The cloud regime-dependent re, LWP, and CTH-dependent TB thresholds show im-

Table 3.10: Global thresholds applied to cloud regimes

re τ CTH LWP re τ CTH LWP
Shallow Cumulus Regime Stratocumulus Regime

HSS 0.37 0.43 0.38 0.46 0.30 0.34 0.30 0.34
CSI 0.30 0.35 0.31 0.36 0.19 0.23 0.19 0.22
OR 9.77 15.85 10.45 16.00 21.60 19.16 24.55 27.34
Bias 1.61 1.84 1.44 1.24 0.69 1.67 0.57 0.68
HR 60% 73% 58% 60% 27% 50% 25% 31%

(RF=100) (78%) (90%) (76%) (79%) (50%) (74%) (46%) (55%)
FAR 13% 15% 11% 8% 1% 5% 1% 1%
VHR 87% 95% 85% 87% 66% 74% 64% 69%

(RF=100) (92%) (98%) (90%) (90%) (77%) (92%) (74%) (78%)

provements when data is constrained by stratocumulus regimes. re shows the biggest im-

provements in HR and VHR (RF=100 statistics as well) at the expensive of only adding

6% to the FAR. Also, LWP and CTH saw large improvements in HR with smaller improve-

ments in VHR. In stratocumulus regimes, τ did not see an improvement in HRs or VHRs.

All four properties did not see improvements from shallow cumulus-dependent thresholds

as HRs and VHRs decreased. Results suggest that in regions where warm rain is promi-

nent, a regime-dependent cloud property-dependent threshold can improve warm rain de-

tection. In regions with shallow cumulus, results show that regime-dependent thresholds
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Table 3.11: Shallow cumulus regimes

re τ CTH LWP
TB 36H 36H 36H 36H

Fraction Target 85% 80% 85% 90%
HSS 0.44 0.43 0.40 0.43
CSI 0.34 0.33 0.32 0.34
OR 13.89 13.51 11.55 13.36
Bias 1.19 1.07 1.25 1.36
HR 56% 52% 55% 60%

(RF=100) (76%) (72%) (73%) (79%)
FAR 8% 7% 9% 10%
VHR 85% 83% 83% 87%

(RF=100) (90%) (88%) (88%) (91%)

do not improve detection and suggest that it would be better to use global cloud property-

dependent thresholds. Results show that τ does not see any improvements with cloud

regime dependent thresholds. CTH, re, and LWP dependent horizontally polarized 36 GHz

TB thresholds exhibit the most promising results in stratocumulus regimes. Thresholds are

shown in Fig. 3.13 and the equations for these thresholds are:

TB36Hthreshold = −0.0408363(re)2 + 1.93246(re) + 145.177 (3.10)

TB36Hthreshold = 8.67569e− 05(LWP )2 + (−0.0607493)(LWP ) + 176.949 (3.11)

TB36Hthreshold = −8.97435(CTH)2 + (−35.0792)(CTH) + 202.636 (3.12)

where TB36Hthreshold is threshold value in K and re values are in µm, LWP values are in

g/m2, and CTH values are in km.

Cloud property dependent thresholds are shown to increase the detection of warm

precipitation globally. LWP, re, and CTH-dependent TB thresholds can generally be im-

proved for descent regimes and in stratocumulus regimes. Ascent and shallow cumulus
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(a) (b)

(c)

Figure 3.13: 2-D histogram of 36H GHz TB vs. (a) re (target fraction of .95), (b) LWP
(target fraction of .95), and (c) CTH (target fraction of .85) with missed AMSR-E pre-
cipitation fraction plotted for stratocumulus regimes. Solid black line indicates threshold
created.
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Table 3.12: Stratocumulus regimes

re τ CTH LWP
TB 36H 36H 36H 36H

Fraction Target 95% 85% 85% 95%
HSS 0.21 0.37 0.33 0.34
CSI 0.15 0.20 0.22 0.22
OR 8.67 16.35 21.70 20.30
Bias 2.18 1.13 0.89 1.70
HR 41% 35% 34% 38%

(RF=100) (61%) (58%) (55%) (58%)
FAR 7% 3% 2% 2%
VHR 77% 74% 71% 70%

(RF=100) (84%) (83%) (79%) (76%)

regimes failed to improve TB threshold global statistics. Globally, these cloud property-

dependent TB thresholds perform better than AMSR-E GPROF and are best utilized in

ascent regimes, shallow cumulus regimes, and regions with deeper convection. Warm

rain detection can be further improved in descent and stratocumulus regimes by utilizing

regime-separated cloud property-dependent thresholds. Global cloud property-dependent

thresholds perform well in regimes with upward motion and with clouds that provide a

large emission signal. In regimes where warm rain is prominent and emission signals are

generally weaker, detection can be improved by utilizing regime-dependent TB thresholds.

All calculated cloud property-dependent TB thresholds show large increases in HRs and

VHRs when thresholds are applied to only the RF = 100 data. Although it is rare for all

precipitation signatures to fill the entire AMSR-E footprint, it is important to analyze RFs

and determine the impact that cloud morphology has on detection results.
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3.6 Rain Fraction and Precipitation Detection

In previous sections, cloud property-dependent TB thresholds were applied to the RF

= ALL dataset. HRs and VHRs are significantly improved cloud property-dependent TB

thresholds are applied to RF = 100 dataset. Utilizing only data where precipitation features

completely fill AMSR-Es footprint would be ideal, but such a perfect case rarely occurs in

nature. PMW retrievals have difficulties in detecting and measuring light precipitation in

shallow clouds that do not fill the IFOV. Miller and Yuter (2013) found that based upon a

study done by Lafont and Guillemet (2004), heavy drizzle was most likely to be missed by

their retrieval algorithm when precipitation features comprised less than 80% of the foot-

print. Analyzing cloud property dependent TB thresholds where the data is constrained

by RF ranges can show the lowest RF that can be used before detection is significantly

affected. Cloud property dependent TB threshold results are computed as in Section 3.4.

RF ranges of 15% are examined to determine how the morphology of the rain system as

indicated by the RF impacts precipitation detection. Detection statistics are calculated as

in the cloud property dependent horizontally polarized 36 GHz TB thresholds shown in

Table 3.6 and plotted for a given RF range in Figure 3.14.

Figure 3.14 displays the change in HR, VHR, and FAR when lower RFs are added to

the data. Figures 3.14a and 3.14b show a sharp decrease in HR and VHR when allowing

lower RFs. As expected, both display the best warm rain detection statistics when uti-

lizing RFs = 100%. HR and VHR begin decreasing fast when allowing RF < 100. HR

continually decreases when allowing lower RFs, while VHR quickly decreases for RFs <

100, slows down for RFs < 60%, and then sharply decreases again for RFs < 45%. When

allowing RFs lower than 45%, 18% lower HRs, 3% less rain volume, and∼ 0.5% increase

in FAR is observed. All other cloud property dependent TB thresholds display similar

results. Results are consistent with Miller and Yuter (2013) findings and suggest a higher
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(a) (b)

(c)

Figure 3.14: (a) Hit Rate, (b) Volumetric Hit Rate, and (c) False Alarm Ratio vs. RF range
for LWP dependent horizontally polarized 36 GHz TB threshold (target fraction of 0.9).

fractional footprint coverage to improve warm precipitation detection.
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4. SUMMARY AND CONCLUSIONS

PMW rainfall retrievals often fail to detect light, warm precipitation or have light,

warm rain intensity biases because they cannot differentiate between emission from cloud

and rain water. AMSR-E significantly underestimates warm rain frequency compared to

CloudSat. Collocated and matched A-Train satellite observations from 2007-2009 are used

to understand the relationship between cloud properties and PMW warm rain detection bi-

ases with the ultimate goal of determining the potential of cloud property information to

aid in the detection of warm rain from PMW sensors. A high fraction of missed warm

precipitation is seen in stratocumulus regions off the western coasts of continents where

warm rain is prominent. Low mean rain rates are also found in these regions when warm

precipitation is missed. The low rain rates are a big factor in the high fraction of misses

because they give a weak emission signal for the PMW sensor.

Previous studies have linked LWP, CTH, re, and τ to the onset of precipitation and

each property was examined for warm rain detection biases. Warm rain detection biases

occur more frequently within lower LWP, τ , and CTH bins, but biases at higher LWP,

τ , and CTH contribute more to the total frequency of missed precipitation. Missed warm

rain occurs more frequently and contributes to more of the total frequency of missed pre-

cipitation for re > 16 µm. These findings suggest that AMSR-E has warm rain detection

biases and it implies that a priori cloud property information could help improve GPROF

retrievals. Analysis of warm rain distributions show the potential for using cloud property

dependent TB thresholds to capture warm rain. Since it is beyond the scope of this study to

create a new GPROF database sorted by cloud properties to test whether they help GPROF

retrievals, cloud property-dependent TB thresholds were created using a technique similar

to Miller and Yuter (2013) to attempt to improve warm rain detection. Cloud property-
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dependent thresholds were compared to several existing methods. All cloud property de-

pendent TB thresholds showed potential improvements, with HRs and VHRs significantly

increased over AMSR-E GPROF. FARs rates were higher than AMSR-E GPROF, but

promising results included FARs at or below RSS. All four cloud properties had a similar

HR and VHR, but FAR was the lowest for LWP. Also, VHR was the highest for τ , which

may be the most important variable since it captures more of the overall rain volume.

Cloud property dependent TB threshold HRs and VHRs varied globally, with improved

HRs in regions where shallow cumulus and deeper convection is found. Little to no im-

provement was seen in stratocumulus regimes where warm rain is most frequently missed.

Cloud property-dependent TB thresholds were investigated to determine if thresholds can

be improved by constraining data to environmental and cloud regimes. ω thresholds were

used to separate data into ascent and subsidence regimes. A LTS threshold, together with

a ω threshold, was used to divide low clouds into two separate cloud regimes. LWP and

re-dependent TB thresholds improved HRs and VHRs in subsidence regimes, while CTH

improved HR, but not VHR. All cloud properties failed to improve over the global thresh-

olds in ascent regimes. LWP, re, and CTH increased HRs and VHRs in stratocumulus

regimes, but none exhibited additional improvements over the globally-driven TB thresh-

olds in shallow cumulus regimes. In stratocumulus and subsidence regimes, where warm

rain is most frequently missed, a regime-dependent TB threshold would perform best.

Results suggest that regions that generally have larger emissions signals perform best

with global cloud property-dependent TB thresholds and regions that generally have weaker

emission signals can be improved with regime-dependent TB thresholds. However, cloud

property-dependent TB threshold results are limited by the method in which the thresh-

old is created and are not necessarily physcial. Lower missed precipitation fractions are

generally found at higher TBs and cloud property values because it becomes less likely

that a cloud with higher LWPs, higher cloud tops, and larger particles does not have some
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precipitation. Higher missed precipitation fractions are generally found at lower TBs and

cloud property values because there is a smaller emission signal and PMW sensor have

a hard time distinguishing between cloud and rain. By using target missed precipitation

fractions to create these thresholds, results are skewed towards higher missed precipitation

fractions and are atypical to what would be physically expected. Lower TB thresholds

are seen at cloud property values where emission signals are typical stronger. This may

cause the global cloud property-dependent TB thresholds to perform better in regimes with

stronger emission signals.

These results suggest that aprori knowledge of cloud property information and environ-

mental information might improve the detection of warm precipitation in PMW retrievals.

With this information the next step would be to analyze the feasibility of adding cloud

property information into GPROF. The difference in resolution between MODIS cloud

properties and AMSR-E TB data makes it difficult to accurately portray cloud properties

in the a priori database. Cloud properties can vary throughout an AMSR-E footprint and

would need to be averaged to a signal value for the entire footprint. Also, re, τ , and LWP

MODIS data is only available during the day and so diurnal variation in cloud properties

would not be included. With the conclusion that cloud property information can improve

the detection of warm precipitation in PMW retrievals, further studies must be conducted

to determine if it can be operationally performed.

Warm precipitation biases and threshold statistics in stratocumulus regimes could be

underestimated since MODIS cloud properties limits the analysis to the daytime and ma-

rine stratocumulus are found to drizzle more frequently and intensely at night (Miller and

Yuter 2013). Another limitation of this study is the common beam filling error associated

with PMW retrievals. Results show that when thresholds are applied to RF = 100 dataset

detection is significantly improved, however CloudSat is nadir-only and thus RF = 100

still does not actually sample the entire AMSR-E IFOV. Data was examined to determine
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how much RF impacted warm rain detection and possibly determine a RF threshold that

would limit the large addition of false alarms. Results show a significant decrease in HR

and VHR when allowing lower RFs to be used. FAR is increased the most for RFs lower

than 45%, along with a significant decrease in HR and VHR. Results are consistent with

Miller and Yuter (2013) findings that a higher fractional footprint coverage to improve

warm precipitation detection, and allowing RFs below 45% significantly decreases warm

rain detection.

PMW sensors have warm precipitation detection biases that have a strong relationship

with cloud properties. By using TBs combined with cloud properties, this study created

cloud property-dependent TB thresholds and compared detection statistics against current

GPROF detection statistics. It is shown that the addition of cloud property information

into PMW rainfall retrievals could aid in the detection of warm precipitation. Also, the

removal of pixels with RFs below 45% could significantly improve warm rain detection.
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