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ABSTRACT 

 

This thesis formalizes and extends a prior work in the effort to create explicit solutions to directly compute 

the effects of wellbore storage and phase redistribution (phase redistribution is treated as a special case of 

the wellbore storage problem and is of secondary priority in this work).  The objectives of this work are to: 

derive approximate solutions in the Laplace domain that can be inverted directly to the real domain; validate 

these approximate solutions against the exact solutions for wellbore storage; develop correlations to improve 

approximate solutions which do not perform well in their original form; develop schemes to "deconvolve" 

the effects of wellbore storage using either a direct "inversion" to remove these effects or one of the 

approximations to determine the undistorted solution as a root-solving problem. 

 

The key element of this work is the development of the approximate solutions for the wellbore storage 

distortion case in the Laplace domain (i.e., part of the first objective).  As a starting point, we retrace the 

work of SPE 21826 and we note that these solutions hinge on the use of approximations for the constant rate 

(undistorted) solution (psD).  In this work we utilize three scenarios to approximate the psD(tD) function for 

the purpose of the Laplace transform formulation: the "constant" psD(tD) case which considers psD(tD) to be 

constant; the "linear" psD(tD) case which considers psD(tD) to be defined by a linear relationship of tD; and the 

"quadratic" psD(tD) case which considers psD(tD) to be defined by a quadratic relationship of tD. 

 

As in SPE 21826, each of these solutions has been recast and compared to the exact solution for cases of 

effects of wellbore storage and phase redistribution (the second objective). 

 

The development of correlations to improve the derived explicit (real domain) solutions has proven 

problematic, for example, the simplest case is that of the "constant" psD(tD), where the solution is given as: 
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The most interesting aspect of this result is that it is exact at very early and very late times, but has errors as 

high as 15.6 percent in terms of pwCD(tD) and as high as 25.9 percent in terms of pwCD'(tD).  The goal is to 

ensure errors less than 1.5 percent for pwCD(tD).  This led to the effort to develop correlations (the third 

objective) for an "additive" error term (), where this function would be in terms of the variable 

[tD/(psD(tD)CD)], which appears to be a unique correlation variable for wellbore storage cases.  Several 

correlations are presented in this work. 

 

The last goal of this work is to provide a wellbore storage "deconvolution" scheme (the fourth objective) 

which uses a permutation of the methodology used to derive the approximate pwCD(tD) solutions in order to 

derive the psD(tD) function in terms of the pwCD(tD) solutions, and/or uses the pwCD(tD) approximate solutions 
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as "root solutions" to solve for the input psD(tD) function.  Demonstrative cases are provided for this 

"deconvolution" process. 
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Live as if you were to die tomorrow. 

Learn as if you were to live forever. 

 

— Mahatma Gandhi 
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CHAPTER I  

INTRODUCTION 

 

1.1 Introduction 

 

The computation of wellbore pressure responses in the presence of wellbore storage, skin and/or wellbore 

phase redistribution effects requires solving the diffusivity equation that describes flow through porous 

media.  Solving the diffusivity equation for reservoir engineering purposes often requires the inversion of 

the Laplace space solutions, which can be done analytically or numerically.  Generally, these solutions are 

often impossible to invert analytically and need to be inverted numerically using algorithms such as Stehfest 

(1970) and Gaver-Wynn-Rho (2004).  Numerical inversions can be computationally intensive and time-

consuming.  Therefore, any methods of solving the various forms of the diffusivity equation that reservoir 

engineers deal with, that produces results comparable with numerical inversion solutions, without the 

attendant time and computing power, would be considered significant progress. 

 

This work leans heavily on SPE 21826 (Blasingame et al. 1991) and extends it significantly.  Blasingame et 

al. worked on the development of the methods that this thesis retraces, validates, improves on and extends.  

Ultimately this work aims to provide simple and easy-to-implement methods for obtaining approximate 

wellbore storage and phase distribution solutions that are accurate and do not require Laplace transform 

inversions in their implementation.   

 

The relations developed in this work are verified for the computation of wellbore storage and skin effects 

for unfractured wells in homogeneous reservoirs (Agarwal et al. 1970), fractured wells in homogeneous 

reservoirs (Ozkan and Raghavan, 1989), and for wells in naturally fractured reservoirs (Bourdet and 

Gringarten, 1980 and Warren and Root, 1963).  

 

Also, explicit techniques to compute pressure response in the presence of wellbore phase redistribution 

effects are validated.  This calculation uses only the wellbore storage and wellbore phase redistribution 

dimensionless pressures to compute the total wellbore dimensionless pressure.  Blasingame et al. (1991) 

opined that this result is useful in that it is possible to compute the effects of wellbore phase redistribution 

without a numerical inversion algorithm to invert the Laplace space solution and the result may provide 

insight into the analysis of pressure test data which exhibit the effects of wellbore phase redistribution. 

 

The work goes ahead to attempt to develop empirical correlations, using the above-mentioned results as a 

starting point, and compare the obtained results with those obtained from the numerical inversion of the 

Laplace space solutions.  The correlation results were an improvement on the closed-form approximate 

methods. 
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As in SPE 21826, this work does not develop methods to interpret well test data, it is expected that the 

development of several analysis techniques for wellbore storage distorted pressure data should arise from 

the computational formulae derived in this work.  In particular, the relations derived in this work should be 

useful in interpreting the “unit slope” line on a type curve plot, and some relations may be useful for 

convolution and deconvolution analysis.  In fact, deconvolution is attempted in this work based on the 

approximate methods developed and interesting results were obtained. 

 

1.2 Objectives 

 

The objectives of this work are:  

 Derive approximate solutions in the Laplace domain that can be inverted directly to the real domain. 

 Validate these approximate solutions against the exact solutions for wellbore storage. 

 Develop correlations to improve approximate solutions which do not perform well in their original 

form. 

 Develop schemes to "deconvolve" the effects of wellbore storage using either: 

— A direct "inversion" to remove these effects, or 

— Using one of the approximations to determine the undistorted solution as a root-solving problem. 

 

1.3 Basic Concepts and Dimensionless Variables 

 

For the purpose of completeness, it is important to provide some background for some of the reservoir 

engineering concepts that that are mentioned and applied throughout this work. It is also important to define 

the dimensionless variables that are used.  All units that are not dimensionless are in standard "field units" 

— i.e., pressures in psia, rates in barrels, permeability in millidarcies, time is in hours, and length in feet. 

 

Dimensionless Wellbore Pressure 

 

The dimensionless wellbore pressure, pD, for a constant rate flow system is defined as 

 

qB

pkh
pD

2.141


  .................................................................................................................................... (1.1) 

 

where the pressure drop, Δp, for drawdown tests is 

 

wfi ppp  , ....................................................................................................................................... (1.2) 

and for buildup tests, 

 

wfws ppp  . ................................................................................................................................... (1.3) 
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Where k is the reservoir permeability, h is the reservoir thickness, q is the flow rate, B is the formation 

volume factor, µ is the reservoir fluid viscosity, pi is the initial reservoir pressure, pwf is the wellbore flowing 

pressure, and pws is the wellbore shut-in pressure. 

 

Wellbore Skin 

 

Wellbore skin was described as the additional pressure in the immediate area surrounding the wellbore, due 

to a reduction in permeability, as a result of the formation damage that occurs during drilling and completion 

operations (van Everdingen, 1953).  This pressure drop is given by the equation 

 

s
kh

qB
pskin

2.141
 , ............................................................................................................................ (1.4) 

 

where s is the dimensionless Skin Factor. The skin factor was defined by Hawkins (Lee et al. 2003) as  

 



















w

s

s r

r

k

k
s ln1 , .............................................................................................................................. (1.5) 

 

for a vertical wellbore of radius rw, with two concentric zones of permeability around it –zone with altered 

permeability, ks, and a radius, rs, measured from the center of the wellbore, immediately around the wellbore, 

and zone with original reservoir permeability, k, further out.  This concept is illustrated in Figure 1.1. 

 

 
 

Figure 1.1 — Near Wellbore Zone of Altered Permeability (Reproduced from Economides et. al., 

2013) 
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Dimensionless Wellbore Pressure with Skin Effects 

 

For the constant rate solution, the skin factor has been demonstrated to be an additive function to the wellbore 

pressure response (Lee et al. 2003).  The dimensionless wellbore pressure, psD, for a constant rate flow 

system with skin effects, s, is, therefore, defined as 

 

spp DsD   ........................................................................................................................................ (1.6) 

 

Wellbore Storage 

 

Wellbore Storage is the phenomena that accounts for the difference between surface and bottomhole 

flowrates due primarily to the compressibility of the fluid within the wellbore.  Occurring immediately after 

any change in the flowrate, the expansion or compression of the fluid causes a delay in the measured rates 

of the fluid.  Wellbore storage is of significant interest due to its nature to mask reservoir behavior, at early-

time, typically during well tests (e.g., shut-in tests), but also during early flowback operations 

(Wiewiorowski, 2016). 

 

The ability of the wellbore to store or unload fluids per unit change in pressure is the wellbore storage 

coefficient, C in bbl/psi (Lee, Rollins and Spivey, 2003), and it is given as 

 

615.5

144 wbA
C  , ......................................................................................................................................... (1.7) 

 

where Awb is the wellbore area in square feet and ρ is the wellbore fluid density in lbm/ft3. 

 

Dimensionless Wellbore Storage Coefficients 

 

The dimensionless wellbore storage coefficient, CD, based on a wellbore radius, ,wr is given as 

 

2

8936.0

wt

D
hrc

C
C


 , ..................................................................................................................................... (1.8) 

 

and the dimensionless wellbore storage coefficient, CLfD, based on fracture half-length, ,fL is given as 

  

2

8936.0

ft

LfD
hLc

C
C


 ,.................................................................................................................................. (1.9) 

 

where ϕ is the reservoir porosity, and ct is the total compressibility of the reservoir and fluid system. 

 

Dimensionless Time Functions 

 

The dimensionless time, tD, based on the wellbore radius, ,wr and time, t, is given as  
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2

0002637.0

wt

D
rc

kt
t


  ............................................................................................................................... (1.10) 

 

and the dimensionless time, tLfD, based on the fracture half-length, Lf, t, is given as 

 

2

0002637.0

ft

LfD
Lc

kt
t


  ............................................................................................................................ (1.11) 

 

Dimensionless Flow Rate 

 

The dimensionless flow rate is defined as 

 

)( 00798.0 wfi
D

ppkh

qB
q





, .............................................................................................................. (1.12) 

 

Dimensionless Sandface Flow Rate Function with Wellbore Storage and Skin Effects 

 

For a well with constant wellbore storage, the dimensionless sandface flow rate, qwCD, is defined as  

 

D

wD
DwCD

dt

dp
Cq 1 , ....................................................................................................................... (1.13) 

 

where pwD is the total dimensionless pressure (Agarwal et al. 1970). 

 

Dimensionless Wellbore Pressure with Wellbore Storage and Skin Effects 

 

The dimensionless wellbore pressure, pwCD, for a constant rate flow system with wellbore storage and skin 

effects is defined as 

 

    


dtpq
d

d
p

Dt

DsDwCDwCD  

0

)(  ........................................................................................ (1.14) 

 

The right hand side of Eq. 1.14 is the convolution integral. In well test analysis, convolution was introduced 

by van Everdingen and Hurst in 1949 to provide a mechanism in which to combine the constant rate solution 

with the constant pressure solution (Wiewiorowski, 2016). 

 

Dimensionless Sandface Flow Rate Function with Wellbore Storage, Skin and Phase Redistribution 

Effects 

 

For a well with wellbore storage and wellbore phase redistribution, the dimensionless sandface flow rate, 

qwCD, is defined as  
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 1 . ..................................................................................................... (1.15) 

 

where pwD is the total dimensionless pressure with wellbore storage, skin, and wellbore phase redistribution 

effects while pφD is the dimensionless pressure with wellbore phase redistribution effects (Fair, 1981). 

 

Dimensionless Wellbore Pressure with Wellbore Storage, Skin and Phase Redistribution Effects 

 

The dimensionless wellbore pressure, pwD, for a constant rate flow system with wellbore phase redistribution 

and skin effects is defined as 

 

    


 dtpq
d

d
p

Dt

DsDDwwD  

0

)(  ........................................................................................... (1.16) 

 

Dimensionless Pressure Derivative Functions 

 

The dimensionless derivative function, pD', which is used in the type curve analysis, is defined as  

 

 D

D
D

td

dp
p

ln
' ..................................................................................................................................... (1.17) 

 

It can also be written as 

 

D

D
DD

dt

dp
tp '  ..................................................................................................................................... (1.18) 

 

We note that both forms of pD' are mathematically equivalent. 

 

Numerical Laplace Transform Inversion 

 

All numerical Laplace transform inversions done in this work were obtained using the Gaver-Wynn-Rho 

algorithm, developed by Valko and Abate (2004), and implemented in Wolfram Mathematica.   
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CHAPTER II  

LITERATURE REVIEW 

 

This chapter aims to provide a brief study of wellbore storage and wellbore phase redistribution studies, as 

pertinent to this work. 

 

2.1 Pressure Buildup Analysis with Wellbore Storage Distortion 

 

Wellbore Storage is the phenomena that accounts for the difference between surface and bottomhole 

flowrates due primarily to the compressibility of the fluid within the wellbore.  Occurring immediately after 

any change in the flowrate, the expansion or compression of the fluid causes a delay in the measured rates 

of the fluid.  Wellbore storage is of significant interest due to its nature to mask reservoir behavior, at early-

time, typically during well tests (e.g., shut-in tests), but also during early flowback operations 

(Wiewiorowski, 2016).   

 

van Everdingen and Hurst (1949) first developed solutions for wellbore storage effects in their classic paper 

about the application of Laplace transforms to solving the diffusivity equations that petroleum engineers 

have.  In that work, they posited that to obtain the relation between flowing bottomhole pressure and the rate 

of production from a formation, it is necessary to correct the rate of production as measured in the flow tanks 

for the amount of oil obtained from the annulus between casing and tubing.  They determined that the rate 

of unloading of the annulus qΔ(T), expressed in cubic centimeters per second corrected to reservoir conditions 

was given by 

 

dT

pd
Cq T


 )( , ..................................................................................................................................... (2.1) 

 

where Δp is the pressure drop and C is the volume of fluid unloaded from the annulus per atmosphere bottom 

hole pressure drop her unit sand thickness (i.e. wellbore storage). 

 

They defined dimensionless wellbore storage as 

 

2

8936.0

wt

D
hrc

C
C


 , ..................................................................................................................................... (2.2) 

 

with all parameters in field units. They also, wrote the convolution integral describing the dimensionless 

bottomhole pressure affected by wellbore storage, pwD, as 
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
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0

)(
1 , ................................................................................... (2.3) 

 

and demonstrated how to solve for pwD using Laplace transforms.  
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van Everdingen (1953) introduced the steady-state skin effect as an "additive" pressure drop at the sandface 

in his work explaining the effect of skin on the productive capacity of a well and proposing an exponential 

model for sandface flow rate.  Agarwal et al. (1970) and Wattenbarger and Ramey (1970) used the steady-

state skin effect, explained by van Everdingen, in the convolution integral equation, and developed analytical 

and numerical methods for dealing with wellbore storage and skin in wells with unsteady flow.   

 

McKinley (1971) worked on calculating wellbore transmissibility from build-up data with wellbore storage 

distortion and developed type curve analysis for it. 

 

Ramey (1965), in his work on non-Darcy flow and wellbore storage effects extended van Everdingen's work 

to drawdown in gas wells. 

  

2.2 Pressure Buildup Analysis with Wellbore Phase Redistribution  

 

Stegmeier and Matthews (1958) described wellbore phase redistribution as a wellbore storage phenomenon 

occurring when both liquid and gas flow through the tubing.  When such a well is shut-in at the surface, 

gravity cause the liquid to fall to the bottom and the gas to rise to the surface.  The gas that rises to the 

surface tries to expand and, consequently, exerts pressure on the liquid, as there is little room for expansion 

and the liquid is relatively incompressible.  That pressure that is temporarily exerted causes a "hump" in the 

pressure profile. 

 

Fair (1981), in his work on wellbore phase redistribution went further than Stegmeier and Matthews (1958), 

carrying out analysis of wellbore phase redistribution by including it as wellbore storage in the 

dimensionless diffusivity equation. The dimensionless flow rate was then given as  

 

,...................................................................................................... (2.4) 

 

where pD is the pressure caused by phase redistribution, given by: 
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/ DDt

DDD eCtp

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 , .......................................................................................................... (2.5) 

 

where D is the time in which 63% of the total change has occurred, 
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with all non-dimensionless parameters in field units. 
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CHAPTER III 

APPROXIMATIONS FOR pwCD(tD) 

 

In this chapter, we follow the work done in SPE 21826 (Blasingame et al) to develop rigorous analytical 

approximations for the dimensionless pressure function that includes the effects of wellbore storage and 

skin, pwCD(tD).  As a recognition of the imperfection inherent in these approximations, correlations are 

developed to create better approximations that, while not derived through a rigorous mathematical process, 

are more accurate than the analytical approximations.  As a special case of the wellbore storage and skin 

problem, an explicit solution for the computation of the effects of wellbore storage and phase redistribution 

is also developed. 

 

3.1 Analytical Approximations of pwCD(tD) 

 

The convolution integral for wellbore storage is given as 

 

  
Dt

DsDwCDDwCD dtpq
d

d
tp

0

)()()( 


 ................................................................................. (3.1) 

 

where 

 

 )(1)( DwCD
D

DDwCD tp
dt

d
Ctq   ................................................................................................. (3.2) 

 

and  

 

Stptp DDDsD  )()(  ........................................................................................................................ (3.3) 

 

Taking the Laplace transforms of Eqs. 2.1 and 2.2 and rearranging gives 

 












2

)(

1

1
)(

uC
up

up

D
sD

wCD , .......................................................................................................... (3.4) 

 

which can also be written as 
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
 . ............................................................................................................ (3.5) 

 

Appendix A details the derivation of Eqs. 3.4 and 3.5. 
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It is clear from these equations that the nature of )(upsD i.e. psD(tD) determines the nature of )(upwCD  i.e. 

pwCD(tD).  Therefore, the solutions that are developed are based on making reasonable approximations of 

psD(tD) transforming those approximations into Laplace space, and solving Eq. 3.4 or 3.5. 

 

Case 1: pwCD(tD) Approximation Based on Constant psD(tD) 

 

The simplest approximation that can be made for the psD(tD) function is that it is constant near a particular 

time of interest, say between two data points. This equation can be written as 

 

atp DsD )( , ......................................................................................................................................... (3.6) 

 

where a is constant. 

 

Appendix B develops this idea in detail and results in the approximation for pwCD(tD) given as 
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Eq. 3.7 states that the pwCD(tD),  function is an exponentially increasing function of the psD(tD) relation.  As 

stated in SPE 21826, this is a somewhat intuitive result since we know that the pwCD(tD), function increases 

monotonically over time until it is identical to the psD(tD) function.  

 

The dimensionless pressure derivative function, pwCD'(tD) can be computed by 
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. .................................. (3.8) 

 

Eq. 3.8 is good for computing the pressure derivative, pwCD'(tD), but it might be more convenient to employ 

numerical means for that computation. 

 

The dimensionless sandface flow rate can be computed by  
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

 

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D
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Ctp

t
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In the next chapter, the results from these relations would be compared to results obtained from the numerical 

Laplace transform inversion solutions. 
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Case 2: pwCD(tD) Approximation Based on Linear psD(tD) 

 

The second approximation for the psD(tD) function assumes that the psD(tD) function is linear near a particular 

time of interest, say between two data points. This equation can be written as 

 

DDsD btatp )( , ............................................................................................................................. (3.10) 

 

where are a and b are constants that can be easily determined. 

 

Differentiating Eq. 3.10 with respect to tD gives 

  DsD
D

tp
dt

d
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a can, therefore, be determined by substituting b from Eq. 3.11 into Eq. 3.10.  This gives 

 

    DsD
D
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d
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Appendix B develops this idea in detail and results in the approximation for pwCD(tD) given as 
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where the generalized coefficients for this case, x,y, and z, are defined as 
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Eq. 3.12 can also be expressed without any coefficients as 
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Appendix G details the development of Eq. 3.17. It is mathematically equivalent to Eq. 3.13 and more 

inconvenient to implement, but is presented here for the purpose of completeness. 
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An expression for the dimensionless pressure derivative, pwCD'(tD), is not developed here because the 

analytical differentiation of either of Eqs. 3.13 or 3.17 would yield very complex results.  It is more efficient 

to find the pressure derivative by numerical methods. 

 

The dimensionless sandface flow rate, qwCD(tD), can be computed by the substitution of results obtained from 

the numerical differentiation of pwCD(tD) into Eq. 3.2. 

 

In the next chapter, the results from these relations would be compared to results obtained from the numerical 

Laplace transform inversion solutions. 

 

Case 3: pwCD(tD) Approximation Based on Quadratic psD(tD) 

 

The second approximation for the psD(tD) function assumes that the psD(tD) function is linear near a particular 

time of interest, say between two data points. This equation can be written as 

 

2*
210)( DDDsD tataatp   ............................................................................................................ (43) 

 

where are a0, a1, and a2* are constants that can be determined by the process detailed in Appendix D where 

the details of this approximation are documented  

 

The complexity of this approximation suggests that it would be difficult to implement without a spreadsheet 

or software package to do the calculations. 

 

In the next chapter, the results from these relations would be compared to results obtained from the numerical 

Laplace transform inversion solutions. 
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3.2 Empirical Approximations of pwCD(tD) 

 

As would be seen in the next chapter, although the approximations are good, they are not perfect.  In order 

to improve the accuracy of these approximations, correlations were developed for term an "additive" 

discrepancy term (), where this function would be in terms of the variable [tD/(psD(tD)CD)].  This discrepancy 

function would, in theory, be the difference between the actual pwCD(tD) obtained from numerical methods 

and the approximate pwCD(tD) obtained from Section 3.1. 

 

The approximate pwCD(tD) solution chosen for improvement is the constant psD(tD) solution given by Eq. 3.7. 
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The improved approximation would be of the form 
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Figure 3.1 — Plot showing ε vs. tD/(psD CD) for CDe2s values of 101, 102, 103, 104 and 1010 
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A semilog plot of ε[tD/(psD CD)] vs. tD/(psD CD) for CDe2s values of 101, 102, 103, 104 and 1010 is shown in 

Figure 3.1.  All other values of CDe2s show a similar shape.  This plot suggests that ε[tD/(psD CD)] is either 

normally distributed (Gaussian distribution) or distributed in a fashion that is similar in shape to the normal 

distribution.  This implies that a mathematical equation describing the normal distribution or one that 

describes a shape such as this could accurately model ε[tD/(psD CD)]. 

 

There are several equations of varying mathematical complexity that could describe a function shaped like 

this and two were chosen for this work – normal distribution and modified normal distribution. Detailed 

developments of both approximate correlations can be found in Appendix F. 

 

Normal Distribution Adjustment Correlation for pwCD(tD) 

 

The normal distribution is given by Abramowitz and Stegun (1972) as 
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Where p is the probability distribution function, α is a scaling factor, m is the mean of the distribution, σ is 

the variance of the distribution and x is value of the data point.  

 

In our case, the normal distribution equation describing ε[tD/(psD CD)] would be 
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An improved approximation of pwCD(tD), obtained from combining Eqs. 3.8 and 3.11, can, therefore, be 

written as 
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where the parameters α, m, and, σ are given by the following correlations and shown in Figures 3 2 and 3.3. 
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The dimensionless pressure derivative, pwCD'(tD) and dimensionless sandface flow rate, qwCD(tD), can be 

computed by numerical methods. 

 

In the next chapter, the results from these relations would be compared to results obtained from the numerical 

Laplace transform inversion solutions. 

 
 

Figure 3.2 — Plot showing the variation of α with CD. 
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Figure 3.3 — Plot showing the variation of m with CD. 
 

Modified Normal Distribution Adjustment Correlation for pwCD(tD) 

 

The modified normal distribution, developed in this work, can be written as 
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This is essentially the addition to two normal distribution equations, where p is the probability distribution 

function, α1 and α2 are the scaling factors, m1 and m2 are the means of the distributions, σ1 and σ2 are the 

variances of the distributions and x is value of the data point.  

 

In our case, the normal distribution equation describing ε[tD/(psD CD)] would be 
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An improved approximation of pwCD(tD), obtained from combining Eqs. 3.8 and 3.17 can, therefore, be 

written as 
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Where the parameters α1, α2, m1, m2, σ1, and σ2 are given by the following correlations and shown in Figures 

3.4 and 3.5. 
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Figure 3.4 — Plot showing the variation of α1 and α2 with CD. 
 

 
 

Figure 3.5 — Plot showing the variation of m1 and m2 with CD. 
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3.3 Explicit Calculation of the Wellbore Phase Redistribution Dimensionless Pressure, pwD(tD) 

 

In this section, we verify two formulae which can be used to explicitly compute the total dimensionless 

pressure for a system with wellbore storage, skin and wellbore phase redistribution effects.  These relations 

are developed rigorously. 

 

These formulae were constructed in such a way that the total dimensionless pressure, pwD, is given as 
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where pwϕD(tD) is the dimensionless wellbore storage pressure and the dimensionless wellbore phase 

redistribution pressure, pwϕD(tD) is given as 
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or, alternatively as 
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Also, the dimensionless phase redistribution pressure, pϕD(tD) is given by Fair (1981) as  
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Our experience suggests that, when using the model of pϕD(tD) given by Eq. 3.4, Eq. 3.3 will yield the most 

accurate results for pϕD(tD) relative to results obtained from numerical Laplace transform inversion. 
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CHAPTER IV 

VALIDATION OF RESULTS 

 

In this chapter, we validate the approximations for pwCD(tD) developed in the previous chapter.  As was done 

in SPE 21826, each of these solutions are compared to the exact solutions for cases of effects of wellbore 

storage and phase redistribution for chosen reservoir systems.  While SPE 21826 did a qualitative 

comparison for purposes of validation, this thesis goes further. Both qualitative and quantitative comparisons 

are done in order to ascertain the accuracy of these approximations and correlations, and determine which 

is best suited for the different reservoir systems. 

 

In the qualitative comparisons, visual inspections of the curves are done to  

 See if there is general agreement between the approximate and actual solutions. 

 Locate the areas where the solutions match up well and where they do not.   

 

For quantitative comparisons, we quantify by how much the approximate solution is off from the actual 

solution, by calculating the error.  For the determination of error, we introduce the term Absolute Relative 

Error (ARE), in percent, which is the absolute value of the difference between the actual solution, obtained 

using numerical methods, and the approximate solution.  Absolute Relative Error (ARE) is given as 
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ActualwCD

eApproximatwCDActualwCD

p

pp

ARE . ................................................................................ (4.1) 

 

All of the verification cases use the infinite-acting (transient) flow solutions for the chosen reservoir system. 

 

4.1 Validation of Analytical Approximations 

Unfractured Wells in an Infinite-Acting Homogeneous Reservoir 

 

The infinite-acting homogeneous reservoir solution with wellbore storage and skin effects is the simplest 

and probably best-documented case of the convolution integral solution.  There is ample discussion of the 

subject and solutions by several authors, one of which is van Everdingen and Hurst (1949).  The consensus 

is that an analytical solution to the problem is impossible and solutions have to be obtained by numerical 

methods, hence the use of numerical Laplace transform inversions.  This work aims to develop 

approximations and correlations, which accurately describe the pressure response distorted by wellbore 

storage and skin effects, which can be utilized without the need for numerical inversions.   

 

As was done in SPE 21826, the behavior of pwCD(tD) for 10-1 ≤ tD/CD ≤ 104 for 13 values of CDe2S ranging 

from 101 to 1060 is plotted.  These parameters will be used for all of the unfractured well cases for the 

pwCD(tD), pwCD'(tD) and qwCD(tD) solutions. 
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Case 1: pwCD(tD) Approximation Based on Constant psD(tD) 

 

Case 1 hinges on the assumption that the psD(tD) function can be considered constant near a particular time 

of interest.  It has to be noted that this does not imply a constant psD(tD) for the well, which would make no 

physical sense. The assumption applies only for a "brief" time period of interest (for instance, between two 

well test data points), and is useful in obtaining the approximation. 

 

Figure 4.1 shows the behavior of the pwCD(tD) function, computed using Eq. 3.7.  It is clear that there is 

general agreement between the actual solutions and approximate solutions, especially in very early times 

and late times. However between the time period 1 ≤ tD/CD ≤ 5 x 101, there is some deviation by the 

approximate solutions from the actual solutions.  This can clearly be seen in the ARE plot shown in Figure 

2 where when CDe2S is 101, the error is as high as 15.6%.  For larger values of CDe2S the error drops 

significantly. This shows that the case 1 approximation (linear psD(tD) assumption) can accurately predict 

the pwCD(tD) solution. 

 

Figure 4.3 shows the behavior of the pwCD'(tD) function for case 2.  This function was computed analytically, 

as the closed-form of the derivative function (Eq. 3.8) is simple enough to be dealt with that way.  As with 

the pwCD(tD) function, there is general agreement between the actual and approximate solutions.  Also, the 

approximate derivative solutions deviates over the same parameter range as the pwCD(tD) function i.e. 1 ≤ 

tD/CD ≤ 5 x 101.  In this case the deviation is more pronounced, because the errors inherent in a function are 

naturally amplified in their derivative function.  It will also be noted that the error is highest when the 

derivative curve is about to go into radial flow stabilization, i.e. when the value of pwCD'(tD) is 0.5.  The time 

period at which this happens varies for different values of CDe2S.  Figure 4.4 shows that when CDe2S is 101, 

that error is about 25.9%.  It also shows that, unlike the errors that occur in the time period 1 ≤ tD/CD ≤ 5 x 

101, the errors close to radial flow stabilization do not decrease significantly with an increase in CDe2S.  

However, for all most practical uses of the derivative function, this error would be within engineering 

accuracy.  The results in Figures 4.3 and 4.4 suggest that the case 1 approximation (constant psD(tD) 

assumption) can accurately predict the pwCD(tD) solution and the resulting pwCD'(tD) solution is also accurate 

 

Figure 4.5 shows the behavior of the qwCD(tD) function for case 1, computed using Eq. 3.9.  As expected, 

the errors inherent in the pwCD(tD) and pwCD'(tD) solutions are present in the qwCD(tD) solution.  As with the 

pwCD'(tD) function, the qwCD(tD) function magnifies the errors in the pwCD(tD) function due to the 

differentiation that is carried out in the computation.  The accuracy of the the qwCD(tD) function should be 

considered the most sensitive test of the approximate solutions and should not detract from the use of the 

pwCD(tD) and pwCD'(tD) functions obtained using this approximation.  The errors associated with each function 

i.e. pwCD(tD) and pwCD'(tD) should be within the accuracy needed for most reservoir engineering applications. 
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Figure 4.1 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using constant 

psD assumption. 
 

 
 

Figure 4.2 — Plot comparing the relative errors in pwCD for a homogeneous reservoir with pwCD 

computed using constant psD assumption. 
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Figure 4.3 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD' computed using constant 

psD assumption. 
 

 
 

Figure 4.4 — Plot comparing the relative errors in pwCD' for a homogeneous reservoir with pwCD 

computed using constant psD assumption. 
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Figure 4.5 — Type curve plot of qwCD for a homogeneous reservoir. qwCD computed using constant 

psD assumption. 
 

Case 2: pwCD(tD)  Approximation Based on Linear psD(tD) 

 

The premise of the this approximation is the assumption that the psD(tD) function can be described by the 

equation of a straight line near a particular time of interest.  As in case 1, this does not imply a linear psD(tD) 

for the well. It applies for a "brief" time period of interest and is the simplifying assumption necessary to 

develop the approximation. 

 

Figure 4.6 shows the behavior of the pwCD(tD) function, computed using Eq. 3.13.  We note that the pwCD(tD) 

functions compare well with the numerical inversion solution even though in the period 1 ≤ tD/CD ≤ 101 

there is a slight deviation from the actual solutions by the approximate solutions.  However, Figure 4.7 

shows that these deviations are a lot smaller than those encountered in the constant psD(tD) approximation 

and they diminish significantly with an increase in CDe2S.  The case 2 approximation can accurately predict 

the pwCD(tD) solution. 

 

Figure 4.8 shows the behavior of the pwCD'(tD) function for case 2.  This function was computed numerically, 

as the closed-form of the derivative function is not a simple expression and makes for tedious computing.  

As with the pwCD(tD) function, there is very good agreement between the actual and approximate solutions.  

Also, the approximate derivative solutions deviates over the same parameter range as the pwCD(tD) function 

i.e. 1 ≤ tD/CD ≤ 101, and as with the constant psD(tD) case the deviation is more pronounced here than in the 
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pwCD(tD) solution.  The error noted in the area where the derivative curve is about to go into radial flow 

stabilization, is also noticed here, but as can be seen in Figure 4.9, it is significantly less than that observed 

in the constant psD(tD) case, and does not pose a problem for most reservoir engineering calculation 

applications.  Due to this good agreement between the approximate and numerical inversion solutions, the 

case 2 approximation for pwCD(tD) and pwCD'(tD) functions is an accurate approximation. 

 

Figure 4.10 shows the behavior of the qwCD(tD) function for case 2, which was computed using Eq. 3.2.  As 

we noted earlier, the qwCD(tD) function is the most sensitive quantity that we can compare.  As with case 1, 

there is some disagreement between approximate and inverted solution and it should be noted that although 

the approximate qwCD(tD) function deviates rather significantly in some places, this should not rule out the 

use of pwCD(tD) and pwCD'(tD) function functions obtained by the use of this constant psD(tD) approximation.  

 

The errors associated with each function i.e. pwCD(tD), pwCD'(tD) and qwCD(tD), should be should be within the 

accuracy needed for most reservoir engineering applications. 

 

 
 

Figure 4.6 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using linear psD 

assumption 
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Figure 4.7 — Plot comparing the relative errors in pwCD for a homogeneous reservoir with pwCD 

computed using linear psD assumption. 
 

 
 

Figure 4.8 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD' computed using linear psD 

assumption. 
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Figure 4.9 — Plot comparing the relative errors in pwCD' for a homogeneous reservoir with pwCD 

computed using linear psD assumption. 
 

 
 

Figure 4.10 — Type curve plot of qwCD for a homogeneous reservoir. qwCD computed using linear psD 

assumption. 
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Case 3: pwCD(tD)  Approximation Based on Quadratic psD(tD) 

 

This approximation is based on the assumption that the psD(tD) function varies as a quadratic function of 

time near a particular time of interest, say between three adjacent well testing data points.  As in cases 1 and 

2, this only applies for a "small" time period of interest and is the simplifying assumption necessary to 

develop the approximation. 

 

Figure 4.11 shows the behavior of the pwCD(tD) function, computed using the procedure given in Appendix 

D.  It can be observed that the pwCD(tD) functions compare very well with the numerical inversion solution 

even though in the period 1 ≤ tD/CD ≤ 101 there is a very slight deviation from the actual solutions by the 

approximate solutions.  Figure 4.12 shows that these deviations are small and they diminish significantly 

with an increase in CDe2S.  This agreement between numerical solutions and the approximation suggests that 

the case 3 approximation can accurately predict the pwCD(tD) solution. 

 

Figure 4.13 shows the pwCD'(tD) function.   The pwCD'(tD) functions are computed numerically, as the closed-

form derivative function would be difficult to compute otherwise.  There is generally an excellent agreement 

of approximate and numerically inverted pwCD'(tD) functions.  The  slight deviation that occurs during the 

time period 1 ≤ tD/CD ≤ 101 is barely perceptible  The error noted in the area where the derivative curve is 

about to go into radial flow stabilization, is also noticed here, but as can be seen in Figure 4.14, it is 

significantly less than that observed in cases 1 and 2.  Due to this good agreement between the approximate 

and numerical inversion solutions, the case 3 approximation for pwCD(tD) and pwCD'(tD) functions is an 

accurate approximation. 

 

Figure 4.15 shows the behavior of the qwCD(tD) function for case 3, computed using Eq. 3.2 and the numerical 

differentiation of the pwCD(tD) function.  As was noted in case 2, the errors inherent in the pwCD(tD) function 

are amplified in the qwCD(tD) function, and the disagreement in this case is identical to that of case 2.  This 

agreement between numerical solutions and the approximation suggests that the case 3 approximation can 

accurately predict the pwCD(tD) solution and the errors associated with each function i.e. pwCD(tD), pwCD'(tD) 

and qwCD(tD), should be should be within the accuracy needed for most reservoir engineering applications. 
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Figure 4.11 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using qudaratic 

psD assumption. 
 

 
 

Figure 4.12 — Plot comparing the relative errors in pwCD for a homogeneous reservoir with pwCD 

computed using quadratic psD assumption. 
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Figure 4.13 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD' computed using qudaratic 

psD assumption. 
 

 
 

Figure 4.14 — Plot comparing the relative errors in pwCD' for a homogeneous reservoir with pwCD 

computed using quadratic psD assumption. 
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Figure 4.15 — Type curve plot of qwCD for a homogeneous reservoir. qwCD computed using qudaratic 

psD assumption. 
 

 
 

Figure 4.16 — Plot showing pwCD and pwCD' responses obtained using numerical inversion and 

approximate solutions for an unfractured well in an infinite-acting homogeneous 

reservoir for CDe2S = 101. 
 

From the foregoing, it is clear that although the three cases are good approximations, there is a difference in 

their accuracies.  Figure 4.16 shows the pwCD and pwCD' responses from the three approximations compared 



 

33 

 

to the numerical responses for CDe2S = 101.  Figures 4.17 and 4.18 compare the differences in Absolute 

Relative Error in the approximations for pwCD(tD) and pwCD'(tD) respectively, for when CDe2S is 101.  It is 

noted that there is a significant difference in accuracy between the case 1 approximation and the cases 2 and 

3 approximations.  The difference between cases 2 and 3 is less significant, although, case 3 is slightly more 

accurate.  Figures 4.19 and 4.20 show the same trends for when CDe2S is 1020, and Figures 4.21 and 4.22 

do the same for when CDe2S is 1060. 

 

In SPE 21826, Blasingame et al. (1991) recommended the use of the case 2 approximation due to the fact it 

is computationally easier than case 3 and they yield similar results.  The author agrees with this analysis as 

the increased difficulty in the implementation of case 3 is not concomitant with the marginal improvement 

of its results from the case 2 results 

 

 
 

Figure 4.17 — Plot comparing the relative errors in pwCD resulting from the different approximation 

methods in an unfractured homogeneous reservoir for CDe2S = 101. 
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Figure 4.18 — Plot comparing the relative errors in pwCD' resulting from the different approximation 

methods in an unfractured homogeneous reservoir for CDe2S = 101. 

 
 

Figure 4.19 — Plot comparing the relative errors in pwCD resulting from the different approximation 

methods in an unfractured homogeneous reservoir for CDe2S = 1020. 
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Figure 4.20 — Plot comparing the relative errors in pwCD' resulting from the different approximation 

methods in an unfractured homogeneous reservoir for CDe2S = 1020. 

 
 

Figure 4.21 — Plot comparing the relative errors in pwCD resulting from the different approximation 

methods in an unfractured homogeneous reservoir for CDe2S = 1060. 



 

36 

 

 
 

Figure 4.22 — Plot comparing the relative errors in pwCD' resulting from the different approximation 

methods in an unfractured homogeneous reservoir for CDe2S = 1060. 
 

Fractured Wells in an Infinite-Acting Homogeneous Reservoir 

 

This section considers the case of a well with a vertical fracture of infinite conductivity in an infinite-acting 

homogeneous reservoir.  In SPE 21826 the Laplace space solution for this problem obtained by Ozkan and 

Raghavan (1989) was used in the to determine the actual and approximate pwCD(tLfD) solutions.  In this 

section, we rework that problem at to determine the most accurate and consistent model of the pwCD(tLfD) 

function for an unfractured well in an infinite-acting homogeneous reservoir. 

 

As was done in SPE 21826, the behaviors of pwCD(tLfD) for 10-2 ≤ tLfD /CfD ≤ 103 for 6 values of CfD ranging 

from 3 x 10-3 to 1 are plotted.  These parameters will be used for all of the unfractured well cases for the 

pwCD(tLfD), pwCD'(tLfD) and qwCD(tLfD) solutions. 

 

Case 1: pwCD(tLfD) Approximation Based on Constant psD(tLfD) 

 

Figure 4.23 shows the behavior of the pwCD(tLfD) function, computed using the case 1 approximation (Eq. 

3.7).  For the time period tLfD /CfD ≤ 101 and for all CfD, the does not accurately predict the pwCD(tLfD) solution 

for the.  This is can also be seen in Figure 4.24 that shows high error values for all CfD in that time period.  

As explained by Blasingame et al., this is likely due to this period being the linear flow region for the no 
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wellbore storage case, and the assumption of a constant psD(tLfD) function is insufficient for this period.  This 

disagreement suggests that the linear psD(tLfD) is not a good approximation of the pwCD(tLfD) function. 

 

Figure 4.25 shows the behavior of the pwCD'(tLfD) function and there is a significant deviation between the 

actual and the approximate solutions for tLfD /CfD ≤ 101 and for all CfD.  This behavior is as expected, because 

of the significant errors that were observed in the pwCD(tLfD) solution in the same time period.  Figure 4.26 

confirms these observations, showing significant errors for all CfD. 

 

Figure 4.26 shows the behavior of the qwCD(tLfD) function, and embodies the same lack of accuracy observed 

in the pwCD(tLfD) and pwCD'(tLfD) solutions. 

 

For all practical purposes, therefore, the case 1 approximation cannot be be used for the description of the 

fractured well in a homogeneous reservoir problem in the time period tLfD /CfD ≤ 101. 

 

 
 

Figure 4.23 — Type curve plot of pwCD for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir pwCD computed using constant psD assumption. 
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Figure 4.24 — Plot comparing the relative errors in pwCD for a vertically fractured well (infinite 

conductivity fracture) with pwCD computed using constant psD assumption. 
 

 
 

Figure 4.25 — Type curve plot of pwCD' for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir pwCD' computed using constant psD assumption. 
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Figure 4.26 — Plot comparing the relative errors in pwCD' for a vertically fractured well (infinite 

conductivity fracture) with pwCD computed using constant psD assumption. 
 

 
 

Figure 4.27 — Type curve plot of qwCD for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir qwCD computed using constant psD assumption. 
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Case 2: pwCD(tLfD) Approximation Based on Linear psD(tLfD) 

 

Figure 4.28 shows the behavior of the pwCD(tLfD) function computed using the case 2 approximation (Eq. 

3.13).  We note that there is excellent agreement between the actual and approximate pwCD(tLfD) results.  The 

maximum deviation is about 6.1% for when CfD is 1 and diminishes as the value of CfD decreases, according 

to Figure 4.29.  This is a significant improvement from the case 1 approximation, strongly suggests that the 

case 2 approximation is an accurate approximation for the fractured well pwCD(tLfD) function. 

 

Figure 4.30 shows the behavior of the pwCD'(tLfD) function estimated using numerical differentiation 

methods.  There is slightly more deviation in this function than in the pwCD(tLfD) function, with an error of 

about 7.5% according to Figure 4.31.  These increased deviations are expected.  They are most significant 

in the time range 10-1 ≤ tLfD /CfD ≤ 102 for when CfD is 1 and diminish rapidly as the value of CfD decreases.  

Case 2 proves to be an accurate approximation of the actual pwCD'(tLfD) solution. 

 

Figure 4.32 shows the behavior of the qwCD(tLfD) function and though the slight deviations in the pwCD(tLfD) 

solutions are magnified here, the accuracy of these results is adequate for most reservoir engineering 

applications.  The case 2 approximation is, therefore, a good approximation for fractured well in a 

homogeneous reservoir problem. 

 

 
 

Figure 4.28 — Type curve plot of pwCD for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir pwCD computed using linear psD assumption. 
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Figure 4.29 — Plot comparing the relative errors in pwCD for a vertically fractured well (infinite 

conductivity fracture) with pwCD computed using linear psD assumption. 
 

 
 

Figure 4.30 — Type curve plot of pwCD' for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir pwCD' computed using linear psD assumption. 
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Figure 4.31 — Plot comparing the relative errors in pwCD' for a vertically fractured well (infinite 

conductivity fracture) with pwCD computed using linear psD assumption. 
 

 
 

Figure 4.32 — Type curve plot of qwCD for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir qwCD computed using linear psD assumption. 



 

43 

 

Case 3: pwCD(tLfD) Approximation Based on Quadratic psD(tLfD) 

 

Figure 4.33 shows the behavior of the pwCD(tLfD) function computed according to the procedure given in 

Appendix D.  We note that there is excellent agreement between the actual and approximate pwCD(tLfD) 

results.  The maximum deviation is about 5.5% for when CfD is 1 and diminishes as the value of CfD 

decreases, according to Figure 4.34.  There is a strong similarity to the results from the case 2 

approximation, although it is noted that the case 3 approximation is slightly better approximation.  The case 

3 approximation is an accurate approximation for the fractured well pwCD(tLfD) function. 

 

The same can be said for the the pwCD'(tLfD) and qwCD(tLfD) functions, as shown in Figures 4.35 – 4.38.  The 

case 3 approximation is, therefore, an excellent approximation for fractured well in a homogeneous reservoir 

problem. 

 

 
 

Figure 4.33 — Type curve plot of pwCD for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir pwCD computed using quadratic psD assumption. 
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Figure 4.34 — Plot comparing the relative errors in pwCD for a vertically fractured well (infinite 

conductivity fracture) with pwCD computed using quadratic psD assumption. 
 

 
 

Figure 4.35 — Type curve plot of pwCD' for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir pwCD' computed using quadratic psD assumption. 
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Figure 4.36 — Plot comparing the relative errors in pwCD' for a vertically fractured well (infinite 

conductivity fracture) with pwCD computed using quadratic psD assumption. 
 

 
 

Figure 4.37 — Type curve plot of qwCD for a vertically fractured well (infinite conductivity fracture) 

in a homogeneous reservoir qwCD computed using quadratic psD assumption. 
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We note that the case 1 approximation is poor for the vertically fractured well in a homogeneous reservoir. 

However, cases 2 and 3 are good approximations, with case 3 having a slightly better accuracy.  Figure 4.38 

shows the pwCD and pwCD' responses from the three approximations compared to the numerical responses for 

CfD = 1.  Figures 4.39 and 4.40 compare the differences in Absolute Relative Error in the approximations 

for pwCD(tD) and pwCD'(tD) respectively, for when CfD is 1.  It is noted that there is a significant difference in 

accuracy between the case 1 approximation and the cases 2 and 3 approximations.  The difference between 

cases 2 and 3 is almost nonexistent, although, case 3 is slightly more accurate.  Figures 4.41 and 4.42 show 

the same trends for when CfD is 0.3. 

 

Like in the unfractured well in an infinite-acting homogeneous reservoir, SPE 21826, recommended the use 

of the case 2 approximation due to the fact it is computationally easier than case 3 and they yield similar 

results.  The author agrees with this analysis as there is no difference between the results obtained from these 

methods in practical terms in this case.  It is also important to mention that while the case 1 approximation 

might be used in for an unfractured well in an infinite-acting homogeneous reservoir, it should not be used 

for a vertical well in a homogeneous reservoir. 

 

 
 

Figure 4.38 — Plot showing pwCD and pwCD' responses obtained using numerical inversion and 

approximate solutions for a vertically fractured well in a homogeneous reservoir for 

CfD = 1. 
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Figure 4.39 — Plot comparing the relative errors in pwCD resulting from the different approximation 

methods in a vertically fractured well homogeneous reservoir for CfD = 1. 
 

 
 

Figure 4.40 — Plot comparing the relative errors in pwCD' resulting from the different approximation 

methods in a vertically fractured well homogeneous reservoir for CfD = 1. 
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Figure 4.41 — Plot comparing the relative errors in pwCD resulting from the different approximation 

methods in a vertically fractured well homogeneous reservoir for CfD = 0.03. 
 

 
 

Figure 4.42 — Plot comparing the relative errors in pwCD' resulting from the different approximation 

methods in a vertically fractured well homogeneous reservoir for CfD = 0.03. 
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Wells in an Infinite-Acting Naturally Fractured Reservoir 

 

This section considers the application of the explicit relations for wellbore storage and skin effects to a 

naturally fractured reservoir system.  This study considers the pseudosteady-state and transient interporosity 

flow models.  Bourdet and Gringarten (1980) developed a solution for the transient interporosity flow and 

Warren and Root (1963) developed the pseudosteady-state interporosity flow solution.  These solutions were 

used, in SPE 21826, to generate the actual and approximate pwCD(tD) solutions.  In this work we do the same 

thing to determine the most accurate and consistent model of the pwCD(tD) function in the case of an infinite-

acting naturally fractured reservoir. 

 

Naturally Fractured Reservoirs: Transient Interporosity Flow Case 

(CD = 1, S = 10, λ = 10-6, and ω = 10-3)  

 

Figure 4.43 shows the comparison of the three pwCD(tD) relations to the actual solution obtained by numerical 

inversion for the transient interporosity flow case.  All three cases yield accurate approximations of the 

pwCD(tD) function.  As was done in SPE 21826, the constant rate solutions, psD(tD) and psD'(tD) are represented 

in Figure 4.41 to show the agreement of the psD(tD) and pwCD(tD) and psD'(tD) and pwCD'(tD) solutions once 

wellbore storage effects have diminished.  We note that there is no discernible deviation between the actual 

and approximate pwCD(tD) functions and Figure 4.44 shows that the largest error is less than 2%. 

 

Figure 4.43 shows good agreement with the numerical inversion solution for pwCD'(tD), for all three cases 

except in the region 5 x 101 ≤ tLfD /CfD ≤ 103.  However, the cases 2 and 3 approximation for pwCD'(tD) are 

closer to the numerical inversion solution than the case 1 approximation, with the case 3 approximation 

reading slightly higher, while the case 2 approximation reads lower than the numerical inversion solution.  

Also, from Figure 4.45, we can see that the error in some areas is lower for the case 2 approximation than 

for case 3, while in some other areas, the reverse is the case.  This suggests that either the case 2 method or 

case 3 could be the general explicit model for wellbore storage and skin effects.  However, it would be 

computationally easier to use case 2. 
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Figure 4.43 — Type curve plot of pwCD approximations for a well in a naturally fractured reservoir 

(transient interporosity flow, (CD = 1, s = 10, λ = 1x10-6, and ω = 1x10-3). 
 

 
 

Figure 4.44 — Type curve plot of pwCD approximations for a well in a naturally fractured reservoir 

(transient interporosity flow, (CD = 1, s = 10, λ = 1x10-6, and ω = 1x10-3). 
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Figure 4.45 — Type curve plot of pwCD' approximations for a well in a naturally fractured reservoir 

(transient interporosity flow, (CD = 1, s = 10, λ = 1x10-6, and ω = 1x10-3). 
 

Naturally Fractured Reservoirs: Pseudosteady-State Interporosity Flow Case 

(CD = 1, S = 10, λ = 10-6, and ω = 10-3) 

 

Figure 4.46 shows the comparison of the three pwCD(tD) relations to the actual solution obtained by numerical 

inversion for the pseudosteady-state interporosity flow case.  All three cases yield accurate approximations 

of the pwCD(tD) function.  As was done in SPE 21826, the constant rate solutions, psD(tD) and psD'(tD) are 

represented in Figure 4.41 to show the agreement of the psD(tD) and pwCD(tD) and psD'(tD) and pwCD'(tD) 

solutions once wellbore storage effects have diminished.  We note that there is no discernible deviation 

between the actual and approximate pwCD(tD) functions and Figure 4.47 shows that the largest error is less 

than 2%. 

 

Figure 4.46 shows good agreement with the numerical inversion solution for pwCD'(tD), for all three cases 

except in the region 5 x 101 ≤ tLfD /CfD ≤ 103.  However, transient interporosity flow case, the cases 2 and 3 

approximation for pwCD'(tLfD) are closer to the numerical inversion solution than the case 1 approximation.  

Also, from Figure 4.48, we can see that the error in some areas is lower for the case 2 approximation than 

for case 3, while in some other areas, the reverse is the case.  This suggests that either the case 2 method or 

case 3 could be the general explicit model for wellbore storage and skin effects.  However, like in the 

transient interporosity flow case, it would be easier to use the case 2 approximation. 
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Figure 4.46 — Type curve plot of pwCD approximations for a well in a naturally fractured reservoir 

(pseudosteady-state interporosity flow, (CD = 1, s = 10, λ = 1x10-6, and ω = 1x10-3). 
 

 
 

Figure 4.47 — Type curve plot of pwCD approximations for a well in a naturally fractured reservoir 

(transient interporosity flow, (CD = 1, s = 10, λ = 1x10-6, and ω = 1x10-3). 
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Figure 4.48 — Type curve plot of pwCD' approximations for a well in a naturally fractured reservoir 

(transient interporosity flow, (CD = 1, s = 10, λ = 1x10-6, and ω = 1x10-3). 
 

4.2 Validation of Explicit Calculation of the Wellbore Phase Redistribution Dimensionless Pressure, 

pwD 

 

Figure 4.49 is presented as validation for the formula generated from the explicit calculation of wellbore 

phase redistribution dimensionless pressure (Eq. 3.3).  This plot assumes an unfractured well in an infinite-

acting homogeneous reservoir with the properties: CD = 102, CαD = 20, CϕD = 102, and S = 0, as was done in 

SPE 21826.  It can be observed that the numerical inversion solution and the explicit computation (Eq. 3.3) 

yield identical results for the pwϕD(tD) function.  Figure 4.50 shows the error in the pwD(tD) solution is quite 

low.  This result which shows that the total dimensionless pressure, pwϕD(tD), can be computed without 

inversion of Laplace space relations (for pϕD(tD), given in explicit form by Eq. 3.4).  The advantages of using 

the explicit calculation also include the prospect for de-coupling of the wellbore storage and wellbore phase 

redistribution solutions which may lead to a rigorous analysis method for pressure data distorted by wellbore 

phase redistribution. 

 

Figure 4.49 also shows that the explicit and numerical inversion calculations of the derivative function, 

pwD'(tD), agree almost exactly.  This agreement of derivatives suggests that for any case of well phase 

redistribution, the numerical inversion and explicit calculations should agree very well. 
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Figure 4.49 — Comparison of numerical inversion solution and results computed using the explicit 

phase redistribution calculation.  Line source (radial flow) solution (CD = 102, CαD = 

20, CφD = 102, and s = 0). 
 

 

 

Figure 4.50 — Comparison of numerical inversion solution and results computed using the explicit 

phase redistribution calculation.  Line source (radial flow) solution (CD = 102, CαD = 

20, CφD = 102, and s = 0). 
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4.3 Validation of Empirical Approximations 

 

The need to reduce the errors in the analytical approximations i.e cases 1, 2 and 3, and make them more 

accurate necessitated the development of empirical equations.  The aim is to obtain pwCD(tD) functions that 

are accurate and retain all the properties of the pwCD(tD) in terms of shape and consistent behavior when used 

in reservoir engineering calculations.   

 

The correlations that would be validated are the pwCD(tD) approximations based on constant psD(tD) with 

normal distribution adjustment and modified normal distribution adjustment.  They would be validated 

based on an acceptable level of error between the actual pwCD(tD) results obtained from numerical inversion 

and those obtained from the correlation. An ARE ≤ 1.5% is considered acceptable 

 

All validations are done for an infinite-acting homogeneous reservoir.  The plots are made for the time 

period 10-1 ≤ tD/CD ≤ 104 for 13 values of CDe2S ranging from 101 to 1060. 

 

Validation of Normal Distribution Adjustment Correlation for pwCD(tD) 

 

Figures 4.51 shows the type curve plots of pwCD(tD) comparing results obtained numerically to those 

obtained using the Normal Distribution Adjustment Correlation (Eq. 3.12).  We note that there is excellent 

agreement between both sets of solutions, with one almost lying perfectly on top of the other. 

 

Figures 4.52 shows the type curve plots of pwCD'(tD) comparing results obtained numerically to those 

obtained using the Normal Distribution Adjustment Correlation and numerical differentiation.  We note that 

there is good agreement between both sets of solutions, with one almost lying perfectly on top of the other 

in early and late time.  It is important to note that the shape of the derivative curve in Figure 4.52 is not as it 

ought to be, because the transition from wellbore storage and skin effect to radial flow stabilization is not 

smooth. There is an extra point of inflection as the derivative moves towards radial flow stabilization 

(pwCD'(tD) = 0.5). Figures 4.53 and 4.54 show the pwCD(tD) and pwCD'(tD) results respectively, obtained from 

the correlation without the exact pwCD(tD) and pwCD'(tD) plotted alongside them and that anomalous inflection 

can be seen.  

 

Figures 4.55, 4.57 and 4.59 show the errors in the pwCD(tD) solutions for CDe2s  =101, 106, and, 1020 with a 

maximum error of about 1%.  Figures 4.56, 4.58 and 4.60 also show the errors in the pwCD'(tD) solutions for 

the same time period, and the maximum error is about 9%, which is better than the 25.9% obtained from the 

case 1 approximation.  This shows that the correlation has succeeded in improving the case 1 approximation 

in terms of error.  

 

A noteworthy point is that while this correlation may be useful in certain applications, as it accurately models 

pwCD(tD), it is not an accurate representation of pwCD'(tD). 
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Figure 4.51 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the normal 

distribution adjustment. 
 

 
 

Figure 4.52 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the normal 

distribution adjustment. 
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Figure 4.53 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the normal 

distribution adjustment showing only the approximate solution. 
 

 
 

Figure 4.54 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the normal 

distribution adjustment showing only the approximate solution. 
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Figure 4.55 — Plot showing the relative error in pwCD for CDe2s = 101 for a homogeneous reservoir 

with pwCD computed using the normal distribution adjustment correction. 
 

 
 

Figure 4.56 — Plot showing the relative error in pwCD' for CDe2s = 101 for a homogeneous reservoir 

with pwCD computed using the normal distribution adjustment correction. 
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Figure 4.57 — Plot showing the relative error in pwCD for CDe2s = 106 for a homogeneous reservoir 

with pwCD computed using the normal distribution adjustment correction. 
 

 
 

Figure 4.58 — Plot showing the relative error in pwCD' for CDe2s = 106 for a homogeneous reservoir 

with pwCD computed using the normal distribution adjustment correction. 
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Figure 4.59 — Plot showing the relative error in pwCD for CDe2s = 1020 for a homogeneous reservoir 

with pwCD computed using the normal distribution adjustment correction. 
 

 
 

Figure 4.60 — Plot showing the relative error in pwCD' for CDe2s = 1020 for a homogeneous reservoir 

with pwCD computed using the normal distribution adjustment correction. 
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Validation of Modified Normal Distribution Adjustment Correlation for pwCD(tD) 

 

Figures 4.61 shows the type curve plots of pwCD(tD) comparing results obtained numerically to those 

obtained using the Modified Normal Distribution Adjustment Correlation (Eq. 3.18).  We note that there is 

excellent agreement between both sets of solutions, with one almost lying perfectly on top of the other. 

 

Figures 4.62 shows the type curve plots of pwCD'(tD) comparing results obtained numerically to those 

obtained using the Normal Distribution Adjustment Correlation and numerical differentiation.  We note that 

there is good agreement between both sets of solutions, with one almost lying perfectly on top of the other 

from early to late time.  It is important to note that the shape of the derivative curve in Figure 4.62 is as it 

ought to be, with a smooth transition from wellbore storage and skin effect to radial flow stabilization.  

Figures 4.63 and 4.64 show the pwCD(tD) and pwCD'(tD) results respectively, obtained from the correlation 

without the exact pwCD(tD) and pwCD'(tD) plotted alongside them.  

 

Figures 4.65, 4.67 and 4.69 show the errors in the pwCD(tD) solutions for CDe2s  =101, 106, and, 1020 with a 

maximum error of about 1%.  Figures 4.66, 4.68 and 4.70 also show the errors in the pwCD'(tD) solutions for 

the same time period, and the maximum error is about 9%, which is better than the 25.9% obtained from the 

case 1 approximation.  This shows that the correlation has succeeded in improving the case 1 approximation 

in terms of error and is better than the Normal Distribution Adjustment Correlation as it models 

pwCD'(tD).accurately 

 

 
 

Figure 4.61 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment. 
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Figure 4.62 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment. 
 

 
 

Figure 4.63 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment showing only the approximate solution. 
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Figure 4.64 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment showing only the approximate solution. 
 

 
 

Figure 4.65 — Plot showing the relative error in pwCD for CDe2s = 101 for a homogeneous reservoir 

with pwCD computed using the modified normal distribution adjustment correction. 
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Figure 4.66 — Plot showing the relative error in pwCD' for CDe2s = 101 for a homogeneous reservoir 

with pwCD computed using the modified normal distribution adjustment correction. 

 
 

Figure 4.67 — Plot showing the relative error in pwCD for CDe2s = 106 for a homogeneous reservoir 

with pwCD computed using the modified normal distribution adjustment correction. 
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Figure 4.68 — Plot showing the relative error in pwCD' for CDe2s = 106 for a homogeneous reservoir 

with pwCD computed using the modified normal distribution adjustment correction. 
 

 
 

Figure 4.69 — Plot showing the relative error in pwCD for CDe2s = 1020 for a homogeneous reservoir 

with pwCD computed using the modified normal distribution adjustment correction. 
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Figure 4.70 — Plot showing the relative error in pwCD' for CDe2s = 1020 for a homogeneous reservoir 

with pwCD computed using the modified normal distribution adjustment correction. 
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CHAPTER V 

DECONVOLUTION 

 

Up to this point, this thesis has dealt with the convolution problem — i.e., attempting to determine pwCD(tD) 

from psD(tD) for a given CD.  This is a somewhat straightforward problem as we have the convolution integral 

given in Eq. 3.1 to work with.  Deconvolution is the reverse process, where the distortion from wellbore 

pressure distorted by wellbore storage and skin is reversed or "inverted" to obtain the undistorted constant 

rate pressure solution.  In other words, it is the determination psD(tD) from pwCD(tD) for a given value of CD.  

Convolution is an inherently stable mathematical formulation (in its simplest form it is a forward 

summation).  In contrast, deconvolution is inherently unstable as it would be a sort of recursion-type of 

calculation (as opposed to a forward calculation), as such, any errors/inaccuracies become amplified in a 

deconvolution process.  Our goal is to leverage the approximations and correlations developed in Chapter 3 

to attempt a deconvolution process.  The aim is to set up the deconvolution as a root-finding problem, since 

we now have relationships between psD(tD) and pwCD(tD) that are easier to tackle than the convolution integral.  

 

We choose the Modified Normal Distribution Adjustment Correlation and the Linear psD(tD) Assumption 

Approximation (Case 2) for the convolution attempt.  The choice of these two approximation methods is 

because they have accurately modeled the pwCD(tD) and pwCD'(tD) functions and can be set up in such a manner 

as to find psD(tD) given pwCD(tD) and CD. 

 

5.1 Deconvolution Using the Modified Normal Distribution Adjustment Correlation 

 

Recall that the Modified Normal Distribution Adjustment Correlation is given as 
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Using actual pwCD(tD) values for an infinite-acting homogeneous reservoir, obtained from numerical 

inversion for 13 values of CDe2S ranging from 101 to 1060 we solve for psD(tD) in Eq. 3.8.  Figure 5.1 shows 

the type curve plot psD(tD) solutions obtained for the time period 10-1 ≤ tD/CD ≤ 104 and Figure 5.2 shows 

the both actual and calculated psD(tD) solutions.. We note that there is a lack of agreement between these 
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solutions, especially in early times.  Also, the shape of the calculated psD(tD) curves is not as smooth as the 

actual and has some "bumps". This is not an accurate deconvolution of pwCD(tD) function. 

 

 
 

Figure 5.1 — Type curve plot of psD for a homogeneous reservoir. pwCD computed using the modified 

normal distribution adjustment and deconvolution, showing only the approximate 

solution. 
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Figure 5.2 — Type curve plot of psD for a homogeneous reservoir. pwCD computed using the modified 

normal distribution adjustment and deconvolution. 
 

5.2 Deconvolution Using the Linear psD(tD) Assumption Approximation (Case 2) 

 

Recall that the Linear psD(tD) Assumption Approximation (Case 2) is given as  

 

    

  

  

    

    

  
























































































































2

2

2

1

exp

1

)(

DsD
D

D

DsDDsD
D

D

DsD
D

DDsDD

DsD
D

DDD

DsD
D

D

DsD
D

DDDsD

DwCD

tp
dt

d
C

tptp
dt

d
t

tp
dt

d
ttpC

tp
dt

d
tCt

tp
dt

d
C

tp
dt

d
tCtp

tp

 ........... (5.2) 

 

We note that it is impossible to solve this equation for psD(tD) without specifying a value for or an expression 

of the derivative of psD(tD) with respect to tD.  For the purpose of this work, we use utilize the log 

approximation solution to the diffusivity equation for the unfractured well in a homogeneous reservoir.  

Appendix G shows the details of this calculation. 
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Figure 5.3 shows the type curve plot of psD(tD) comparing results obtained from the numerical Laplace 

transform inversion and the solution of the calculated results.  There is disagreement between the results in 

the region tD/CD ≤ 101. Figures 5.4 and 5.5 show the psD'(tD) functions obtained by numerical Laplace 

transform inversion and our calculations respectively. It is clear that these two plots do not match each other.  

 

This shows that we have been unable to successfully carry out deconvolution for a vertical well in an 

infinitely-acting homogeneous reservoir using the Linear psD(tD) Assumption Approximation. 

 

 
 

Figure 5.3 — Type curve plot of psD for a homogeneous reservoir comparing psD computed using the 

explicit pwCD equation, the linear psD approximate solution and the log approximation 

solution to that computed using numerical laplace transform inversion. 
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Figure 5.4 — Type curve plot of psD' for a homogeneous reservoir, computed using numerical 

Laplace transform inversion. 

 
 

Figure 5.5 — Type curve plot of psD' for a homogeneous reservoir, computed using the explicit pwCD 

equation, the linear psD approximate solution and the log approximation solution 
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CHAPTER VI 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

6.1 Summary 

 

In an effort to validate and extend prior work to create explicit solutions for the computation of the effects 

of wellbore storage and phase redistribution, we have derived three approximate solutions.  These approxi-

mations are based on "imposing" a particular behavior in time on between the undistorted constant rate 

pressure function, psD(tD).  These behaviors include: 

● The "constant" psD(tD) case which considers: atp DsD )(  

● The "linear" psD(tD) case which considers: DDsD btatp )(  

● The "quadratic" psD(tD) case which considers: 2*
210)( DDDsD tataatp   

 

With these simplifying assumptions, the Laplace domain forms of the convolution integral were solved and 

inverted into real space to obtain closed-form expressions for pressure that is affected by wellbore storage 

distortions, pwCD(tD). 

 

The approximations were validated by applying them to different reservoir systems and comparing the 

results to the actual solutions both qualitatively, by visual inspection, and quantitatively, by computation of 

the error between the results.  Of the three approximate solutions, the case which assumes that the constant 

rate psD(tD) is quadratic in time gives the most accurate.  However, the linear case is very close to the 

quadratic in accuracy and consistency, and is significantly easier to implement, even on a spreadsheet 

application. 

 

From the quantitative validation done on the approximate solutions, it was clear that further work could be 

done to improve them. In that light, two correlations were developed to reduce the errors in the approximate 

solutions, thereby increasing their accuracy.  These correlations tried to improve the constant case by 

modeling the error and "adding" that error to the approximate solution.  The correlations developed were:  

● The normal distribution adjustment correlation. 

● The modified normal distribution adjustment correlation. 
 

Validation of these correlations was done in the manner as the analytical approximate solutions i.e. 

qualitatively and quantitatively.  The normal distribution adjustment correlation accurately modeled the 

pwCD(tD) function but failed to do the same for the derivative, pwCD'(tD).  The modified normal distribution 

adjustment correlation accurately modeled both the pwCD(tD) and pwCD'(tD) functions, achieving the aim of 

improving the approximate solutions.  Also, both of these correlations are easy to implement in a direct 

computer solution or spreadsheet calculation. 
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For the special case of the wellbore storage problem, the total wellbore dimensionless pressure with 

distortion effects was derived such that the wellbore storage effect and wellbore phase redistribution effect 

were de-coupled.  This means that explicit relations can be written for the total wellbore dimensionless 

pressure, pwD(tD), which includes the effects of wellbore storage, skin and wellbore phase redistribution 

effects.  Validation, similar to that done for the approximate solutions and correlations, was done on these 

explicit relations for pwD(tD).  The results show that these explicit expressions are accurate and compare very 

well with the numerical inversion solutions. 

 

Finally, using the approximate solutions and correlations developed, attempts are made to derive the psD(tD) 

function from the pwCD(tD).  Two attempts were made using the linear psD(tD) approximate solution and the 

modified normal distribution adjustment correlation.  While these deconvolution attempts ultimately proved 

unsuccessful, they give some insight into what might be done to produce a better outcome in the future.  

 

6.2 Conclusions 

 

● Three closed-form expressions were analytically developed for the computation of the dimensionless 

wellbore pressure with wellbore storage and skin effects, pwCD(tD). 

● These approximate solutions were validated for fractured and unfractured wells in homogeneous 

reservoirs and for unfractured wells in naturally fractured (dual porosity) reservoirs. 

● The linear and quadratic psD(tD) approximate solutions show good accuracy and consistency and could 

be used for any of the well and reservoir scenarios for which they are validated, but the linear psD(tD) 

approximate solution is (much) easier to implement. 

● Two correlations were developed for the improvement of the analytical approximate solutions. 

● These solutions were validated for an unfractured well in an infinite-acting homogeneous reservoir. 

● The normal distribution adjustment correlation showed good accuracy in modeling the pwCD(tD) 

function, but this correlation did not yield accurate results for the pwCD'(tD) function. 

● The modified normal distribution adjustment correlation excellently modeled both the pwCD(tD) and 

pwCD'(tD) functions, and showed significantly better accuracy than the approximate solutions. 

● The explicit relations developed for the computation of the dimensionless wellbore pressure which 

includes wellbore storage, skin effects, and the effect of wellbore phase redistribution (pwD(tD)) have 

been verified to be on the same order of accuracy as the Laplace transform numerical inversion solutions 

for this problem. 

● Deconvolution using the linear psD(tD) approximate solution and the modified normal distribution 

adjustment correlation for an infinite-acting homogeneous reservoir were attempted, but ultimately 

these solutions are not viable in terms of accuracy or form, and are provided only as a "proof-of-

concept" for the deconvolution of the pwCD (tD) function. 
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6.3 Recommendations 

 

● Develop and validate correlations that cover well and reservoir types other than the vertical well in an 

infinite-acting homogeneous reservoir. 

● Develop an improved pwCD(tD) correlation that provides accuracy, consistency in results and is of such 

simple formulation that it gives stable psD(tD) results in the "root-finding" deconvolution calculations. 
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NOMENCLATURE 

 

Dimensionless Variables 

CαD = Dimensionless “apparent” wellbore storage coefficient for wellbore phase redistribution model 

CD = Dimensionless wellbore storage coefficient 

CLfD = Dimensionless wellbore storage coefficient based on fracture half-length 

CϕD = Dimensionless coefficient for wellbore phase redistribution model 

pD = Dimensionless pressure 

psD = Dimensionless pressure with skin effects 

pwD = Total dimensionless pressure with wellbore storage, skin and wellbore phase redistribution 

effects 

pwCD = Dimensionless pressure with wellbore storage and skin effects 

pwϕD = Dimensionless pressure with wellbore storage, skin and wellbore phase redistribution effects  

pϕD = Dimensionless pressure with wellbore phase redistribution effects 

pD' = Dimensionless pressure derivative function 

qwCD = Dimensionless sandface flowrate with wellbore storage and skin effects 

qwϕD = Dimensionless sandface flowrate with wellbore storage, skin and wellbore phase redistribution 

effects  

S = Dimensionless skin factor 

tD = Dimensionless time based on wellbore radius 

tLfD = Dimensionless time based on fracture half-length 

u = Laplace transformation variable 

αϕD = Dimensionless parameter for wellbore phase redistribution model 

 

Field Variables (Pressure Functions) 

pi = Initial reservoir pressure, psia 

pwf = Flowing bottomhole pressure, psia 

pws = Shut-in bottomhole pressure, psia 

Δp = Pressure drop, psi 

 

Field Variables (Formation and Fluid Properties) 

B = Formation volume factor, RB/STB 

C = Wellbore storage coefficient, BBL/psi 

ct = Total compressibility, psia-1 

h = Total formation thickness, ft 

k = Permeability, md 
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Lf = Fracture half-length, ft 

pi = Initial reservoir pressure, psia 

pwf = Flowing bottomhole pressure, psia 

pws = Shut-in bottomhole pressure, psia 

q = Flowrate, STB/D 

rw = Wellbore radius, ft 

αϕD = Porosity, fraction 

ϕ = Porosity, fraction 

λ = Interporosity flow coefficient (natural fracture system parameter) 

µ = Viscosity, cp 

ω = Storativity ratio (natural fracture system parameter) 

 

Dimensionless Correlation Variables 

ARE = Absolute relative error, percent 

α = Normal distribution scaling parameter  

ε = Discrepancy parameter 

m = Normal distribution mean parameter 

 = Normal distribution standard deviation parameter 

ct = Flowing bottomhole pressure, psia 
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APPENDIX A 

DERIVATION OF LAPLACE TRANSFORM IDENTITIES FOR WELLBORE STORAGE 

DISTORTION 

 

It has been shown that the constant rate bottomhole pressure affected by wellbore storage and skin effects 

can be written as a convolution integral given by 
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dtpq
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d
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DsDwCDDwCD  
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where 
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D

DDwCD tp
dt

d
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and 
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Taking the Laplace transforms of Eqs. A.1 and A.2 gives 
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and 

 

)(
1

)( upuC
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Combining Eqs. A.4 and A.5 and solving for pwCD(u) gives 
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or alternatively 
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
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Eqs. A.6 and A.7 are mathematically equivalent. More importantly, they convenient simplifications when 

used with certain relations of )(upsD .  These relations will be discussed as they arise in the subsequent 

derivations. 
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APPENDIX B 

DERIVATION OF APPROXIMATIONS FOR pwCD(tD) BASED ON CONSTANT psD(tD) 

 

The assumption in this method is not that psD(tD) is constant for all tD.  It is that psD(tD) can be approximated 

as being constant near a particular time of interest.  Proceeding along this theme 

 

atp DsD )( . ........................................................................................................................................ (B.1) 

 

Taking the Laplace transform of Eq. B.1 gives 

 

u

a
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The Laplace transform identity for bottomhole pressure with wellbore storage and skin effects is given as 
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Substituting Eq. B.2 into Eq. B.3 gives 

 












2

1
)(

uC
a

u
up

D

wCD . ................................................................................................................... (B.4) 

 

Factoring the denominator of Eq. B.4 and rearranging gives 
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and  

 



 

81 

 

DCa
y

1
  .............................................................................................................................................. (B.7) 

 

The inverse Laplace transform of Eq. B.5 is 
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Substituting Eqs. B.6 and B.7 into B.8, we obtain 

 



















 


D

D
DwCD

Ca

t
atp exp1)( . ......................................................................................................... (B.9) 

Recall Eq. B.1 
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Combining Eqs. B.1 and B.9 gives 
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We differentiate Eq. B.10 with respect to tD.  We have two options.  First, we will “blindly” differentiate 

Eq. B.10 assuming that psD(tD) is constant.  This gives 
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Second, assuming  
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we differentiate Eq. B.10. This gives 
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Rearranging Eq. B.11 gives 
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Combining Eqs. B.11 and B.13 gives 
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Combining Eqs. B.10, B.12 and B.13 gives 
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The purpose of obtaining the derivative function is to generate plotting functions for type curve analysis and 

for use in the computation of dimensionless sandface flow rates, qwCD, as given by  
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Combining Eqs. B.10 and B.16 gives 
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which is of the form 
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where 
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Eq. B.17 was proposed originally by van Everdingen, and used by Ramey for well test analysis.  van 

Everdingen proposed Eq. B.17 based on empirical observations of field data. In this work, however, Eq. 

B.17 is proposed based on analytical considerations.  The significance of the derivation done here is not that 

it proves van Everdingen’s observations, rather it shows that the form of Eq. B.17 can be developed 

rigorously.  The applicability of Eq. B.17 must be determined via comparison of Eqs. B.16 and B.18 using 

simulated data. 

 

Similar results for qwCD could be obtained by combining Eqs. B.16 and B.12 (or B.15).  However, for the 

purposes of the present discussion, we only wished to verify the van Everdingen model for qwCD. 
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APPENDIX C 

DERIVATION OF APPROXIMATIONS FOR pwCD(tD) BASED ON LINEAR psD(tD) 

 

The assumption in this method is not that psD(tD) is linear for all tD.  It is that psD(tD) can be approximated as 

being linear near a particular time of interest.  Proceeding along this theme, 
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Taking the Laplace transform of Eq. C.1 gives 
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The Laplace transform identity for bottomhole pressure with wellbore storage and skin effects is given as 
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Substituting Eq. C.2 into Eq. C.3 gives 
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Expanding and simplifying gives 
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where 
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The inverse Laplace transform of Eq. C.5 is 
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For convenience, we leave our result in the form given by Eq. C.9.  Now we must consider a scheme to 

determine the coefficients a and b in the psD(tD) model.  Recall Eq. C.1 

 

DDsD btatp )(  ............................................................................................................................... (C.1) 

 

Differentiating Eq. C.1 with respect to tD gives 
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d
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Combining Eqs. C.1 and C.10 and solving for the a coefficient gives 

 

    DsD
D

DDsD tp
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d
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In conclusion, we have developed Eq. C.9 based on the assumption of psD(tD) behaving in a linear fashion, 

at least locally.  Although a closed form derivative of Eq. 40 could be developed, this expression is so 

complex (recall x, y and z are functions of time) that numerical differentiation would be more efficient. 
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APPENDIX D 

DERIVATION OF APPROXIMATIONS FOR pwCD(tD) BASED ON QUADRATIC psD(tD) 

 

The assumption in this method is not that psD(tD) is quadratic for all tD.  It is that psD(tD) can be approximated 

as being quadratic near a particular time of interest.  Proceeding along this theme, 

 

Starting with the quadratic model 
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Taking the Laplace transform of Eq. D.1 gives 
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which can be expressed as 
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where 

 

*
22 2aa  . ............................................................................................................................................. (D.4) 

 

The Laplace transform identity for bottomhole pressure with wellbore storage and skin effects is given as 
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Substituting Eq. D.3 into Eq. D.5 gives 

 























3
2

2
102

3
2

2
10

1

)(

u

a

u

a

u

a
uC

u

a

u

a

u

a

up

D

wCD . ............................................................................................ (D.6) 

 

Rearranging Eq. D.6 gives 
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where 
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For the purpose of mathematical convenience, the terms v and w are defined as 
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And finally, 
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Taking the inverse Laplace transform of Eq. D.7 gives 
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where 
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Although Eq. D.8 is a bit tedious for hand calculations, it should be relatively easy to program into a 

calculator or spreadsheet application software package.  We are, however, left with the problem of 

determining the coefficients of Eq. D.8.  We recommend the use of a quadratic collocation polynomial over 

a 3-point grid.  The computational procedure is initiated by calculating the collocation coefficients.  For a 

3-point grid, collocation coefficients are 
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APPENDIX E 

DERIVATION OF EXPLICIT FORMULAE FOR THE COMPUTATION OF WELLBORE 

PHASE REDISTRIBUTION EFFECTS 

 

The purpose of this derivation is to provide explicit means to compute wellbore phase redistribution effects.  

Previously, the effects have only been computed using Laplace space solutions.  This appendix provides a 

rigorous derivation of convolution identities which use the dimensionless wellbore storage pressure, pwCD(tD) 

and the dimensionless phase redistribution pressure, pϕD(tD). 

 

The dimensionless sandface flow rate, qwϕD(tD) for this case is given by Fair (1981) as 
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The convolution integral for this case is 
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The Laplace transform of Eq. E.1 is 
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Taking the Laplace transform of Eq. E.2, we have 
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Rearranging Eq. E.3 gives 
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Rearranging Eq. E.4 gives 
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Equating Eqs. E.5 and E.6 gives 

 

 )()(1
)(

)( 2 upupCu
up

up
wDwDD

sD

wD
 . .......................................................................................... (E.7) 

 

Rearranging  
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or  
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where 
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We recognize that Eq. E.10 is the relation for wellbore storage that was derived in Appendix A. 

 

Eq. E.9 can be rewritten as 
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where 
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The inverse Laplace transform of Eq. E.11 is given as 
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E.13 suggests that we can express the effect of distortion due to wellbore phase redistribution as a component 

term added to the existing wellbore storage solution.  The application of this method will depend on our 

ability to obtain the inverse Laplace transform of Eq. E.12. 

 

Taking the inverse Laplace transform, we obtain the following using the convolution identity 
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or alternatively 
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Recalling that the convolution integral for wellbore storage is given as 
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van Everdingen and Hurst (1949) give the discretized form of Eq. E.16 as 
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By analogy of Eqs. E.14, E.15, E.16and E.17, we obtain 
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and 
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We note that Eqs. E.18 and E.19 are general in nature and only require knowledge of the dimensionless 

wellbore storage coefficient, CD, the dimensionless wellbore storage pressure, pwCD(tD), and the 

dimensionless phase redistribution pressure, pϕD(tD). 

 

Citing physical observations, Fair (1981) proposed the following model for the dimensionless phase 

redistribution pressure, pϕD(tD). 
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Taking the first derivative of Eq. E.20 with respect to tD we obtain 
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In practice, the αϕD parameter is rarely used. More commonly, the “apparent” wellbore storage coefficient, 

CαD, is specified.  The relationship of αϕD and the variables CD, CαD and CϕD, is 
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Our computations suggest that, when using the model of pϕD(tD) given by Eq. E.20, Eq. E.19 and E.20 will 

yield the most accurate results for pwϕD(tD) relative to the numerical inversion of Eq. E.12, as opposed to 

using Eqs. E.18 and E.21.  However, further investigation is recommended. 
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APPENDIX F 

DERIVATION OF DECONVOLUTION APPROXIMATION FOR psD(tD)  

BASED ON pwCD(tD) DERIVED USING THE CONSTANT psD(tD) ASSUMPTION  

 

It has been shown that the constant rate bottomhole pressure affected by wellbore storage and skin effects 

can be written as a convolution integral given by 
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Eq. F.1 can be approximated as 
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where psD(tD) is the constant rate bottom hole pressure with only skin effects. 

 

A comparison of pwCD(tD) values obtained using Eqs. F.1 and F.4 shows a difference, ΔpD(tD), between them.  

Actual pwCD(tD) can therefore be modeled as 

 

)(
)(

exp1)()( DD
DDsD

D
DsDDwCD tp

Ctp

t
tptp 



















 
  ............................................................ (F.5) 

 

where pwCD(tD) is obtained by convolution and the numerical inversion of the cylindrical source solution and 

ΔpD(tD) is the difference between the actual and approximate pwCD(tD). 

 

Eq. F.5 can also be rewritten as 
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where 
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Rearranging Eq. F.6, we obtain 
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A semilog plot of ε[tD/(psD CD)] vs. tD/(psD CD) for CDe2s values of 101, 102, 103, 104 and 1010 is shown in 

Figure F.1.  All other values of CDe2s show a similar shape.  This plot suggests that ε[tD/(psD CD)] is either 

normally distributed (Gaussian distribution) or distributed in a fashion that is similar in shape to the normal 

distribution.  This implies that a mathematical equation describing the normal distribution or one that 

describes a shape such as this could accurately model ε[tD/(psD CD)].  There are several equations of varying 

mathematical complexity that could describe a function shaped like this.  

 

 
 

Figure F.1 — Plot showing ε vs. tD/(psD CD)for CDe2s values of 101, 102, 103, 104 and 1010 
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F.1 Deconvolution with Normal Distribution adjustment 

 

The normal distribution is given by Abramowitz and Stegun (1972) as 
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Where p is the probability distribution function, α is a scaling factor, m is the mean of the distribution, σ is 

the variance of the distribution and x is value of the data point.  

 

In our case, the normal distribution equation describing ε[tD/(psD CD)] would be 
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where the values of α, m, and, σ vary based on CD. 

 

An improved approximation of pwCD(tD) obtained from combining Eqs. F.6 and F.10 can, therefore, be 

written as 
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While the choice of the normal distribution equation is based on the shape of ε[tD/(psD CD)], the parameters 

of the normal distribution equation that provide a good fit for a particular value of CD are determined by 

 A good visual match of a plot that compares ε[tD/(psD CD)] obtained from Eq. F.8 and ε[tD/(psD CD)] 

obtained from the normal distribution equation (Eq. F.10), and 

 An acceptable level of error between ε[tD/(psD CD)] obtained from Eq. F.8 and ε[tD/(psD CD)] obtained 

from the normal distribution equation (Eq. F.10). 
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For the determination of error, we introduce the term Absolute Relative Error (ARE), in percent, which is 

the absolute value of the difference between pwCD(tD) obtained from solving Eq. F.1 using numerical methods 

and pwCD(tD) obtained using Eq. F.6.  It is given as,  

 

100





ActualwCD

eApproximatwCDActualwCD

p

pp

ARE  ............................................................................... (F.12) 

 

An acceptable level of error would be one with an ARE ≤ 1.5%.  

 

 
 

Figure F.2 — Plot showing the variation of α with CD. 
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Figure F.3 — Plot showing the variation of m with CD. 
 

Figures F.4 – F.11 show match plots and ARE plots for selected values of CDe2s.  These plots show good 

fits and acceptable ARE.  By this process of matching and error determination, relationships between the 

parameters α, m, and, σ and CD, were determined empirically to be given as 
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Table F.1 shows the empirical values of α, m, and, σ for various values of CD. 
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Table F.1— Empirical values of α, m, and, σ for various values of CD. 

CD a m s 

10-4 0.1200 0.90 1.000 

10-3 0.1550 0.90 1.020 

10-2 0.2020 0.90 1.075 

10-1 0.2800 0.90 1.095 

100 0.3680 0.90 1.100 

101 0.2700 0.90 1.100 

102 0.2000 0.90 1.090 

103 0.1560 1.00 1.040 

104 0.1270 1.00 1.020 

106 0.0900 1.00 0.940 

108 0.0685 1.00 0.940 

1010 0.0570 1.00 0.940 

1015 0.0401 1.00 0.940 

1020 0.0310 1.00 0.940 

1030 0.0215 1.00 0.940 

1040 0.0165 1.00 0.940 

1050 0.0133 1.00 0.940 

1060 0.0112 1.00 0.940 
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Figure F.4 — Plot comparing ε[tD/(psD CD)] and the Normal Distribution for CDe2s = 101. 
 

 
 

Figure F.5 — Absolute Relative Error Plot for CDe2s = 101. 



 

99 

 

 
 

Figure F.6 — Plot comparing ε[tD/(psD CD)] and the Normal Distribution for CDe2s = 103. 
 

 
 

Figure F.7 — Absolute Relative Error Plot for CDe2s = 103. 
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Figure F.8 — Plot comparing ε[tD/(psD CD)] and the Normal Distribution for CDe2s = 104. 
 

 
 

Figure F.9 — Absolute Relative Error Plot for CDe2s = 104. 
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Figure F.10 — Plot comparing ε[tD/(psD CD)] and the Normal Distribution for CDe2s = 1010. 
 

 
 

Figure F.11 — Absolute Relative Error Plot for CDe2s = 1010. 
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Figures F.12 and F.13show type curve plots of pwCD(tD).  While Figure F.12 shows a type curve plot of 

pwCD(tD) obtained numerically compared with that obtained from Eq. F.13, Figure F.13 shows a type curve 

plot of pwCD(tD) obtained from Eq. F.13.  It can be observed that the match is good, as corresponding CDe2s 

curves lie on top of each other almost perfectly. 

 

Figures F.14 and F.15 show type curve plots of pwCD'(tD).  While Figure F.14 shows a type curve plot of 

pwCD(tD) obtained numerically compared with that obtained from the numerical differentiation of the pwCD(tD) 

in Eq. F.13, Figure F.15 shows a type curve plot of pwCD(tD) obtained from Eq. F.13.  It can be observed that 

the shape of the derivative curve in Figure F.15 is not as it ought to be. There is an extra point of inflection 

as the derivative moves towards radial flow stabilization (pwCD'(tD) = 0.5).  

 

This implies that this approximation is not an accurate representation of pwCD(tD).  Attempting to carry out a 

deconvolution calculation aimed at determining psD(tD) from this flawed pwCD(tD) cannot yield accurate 

results. 
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Figure F.12 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the 

normal distribution adjustment. 
 

 
 

Figure F.13 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the 

normal distribution adjustment showing only the approximate solution. 
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Figure F.14 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the 

normal distribution adjustment. 
 

 
 

Figure F.15 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the 

normal distribution adjustment showing only the approximate solution. 
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F.2 Deconvolution with Modified Normal Distribution adjustment 

 

The modification of the normal distribution could be written as 
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This is essentially the addition to two normal distribution equations, where p is the probability distribution 

function, α1 and α2 are the scaling factors, m1 and m2 are the means of the distributions, σ1 and σ2 are the 

variances of the distributions and x is value of the data point.  

 

In our case, the normal distribution equation describing ε[tD/(psD CD)] would be 
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where the values of α1, α2, m1, m2, σ1, and σ2 vary based on CD. 

 

An improved approximation of pwCD(tD) obtained from combining Eqs. F.6 and F.10 can, therefore, be 

written as 
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While the choice of the modified normal distribution equation is based on the shape of ε[tD/(psD CD)], the 

parameters of the normal distribution equation that provide a good fit for a particular value of CD are 

determined by 

 A good visual match of a plot that compares ε[tD/(psD CD)] obtained from Eq. F.8 and ε[tD/(psD CD)] 

obtained from the modified normal distribution equation (Eq. F.17), and 
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 An acceptable level of error between ε[tD/(psD CD)] obtained from Eq. F.8 and ε[tD/(psD CD)] obtained 

from the modified normal distribution equation (Eq. F.17) i.e. an Absolute Relative Error (ARE) ≤ 

1.5%. 

 

 
 

Figure F.16 — Plot showing the variation of α1 and α2 with CD. 
 

 
 

Figure F.17 — Plot showing the variation of m1 and m2 with CD. 



 

107 

 

Figures F.18 – F.25 show match plots and ARE plots for selected values of CDe2s.  These plots show good 

fits and acceptable ARE.  By this process of matching and error determination, relationships between the 

parameters α1, α2, m1, m2, σ1, σ2 and CD, were determined empirically to be given as 
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  43607917.300017879.0erf33475819.01  DCm , ........................................................................ (F.21) 

  44896298.1000038895.0erf16.02  DCm , .................................................................................. (F.22) 

58.11  , ............................................................................................................................................. (F.23) 

79.02  . ........................................................................................................................................... (F.24) 

 

Table F.2 shows the empirical values of α, m, and, σ for various values of CD. 
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Table F.2— Empirical values of α, m, and, σ for various values of CD. 

CD a1  m1 s1 a2  m2 s2 

10-4 0.989677 3.436079 1.58 0.612319 1.448963 0.79 

10-3 1.096792 3.436079 1.58 0.613858 1.448963 0.79 

10-2 1.216340 3.436080 1.58 0.615751 1.448963 0.79 

10-1 1.349764 3.436086 1.58 0.618231 1.448964 0.79 

100 1.505232 3.436147 1.58 0.623862 1.448970 0.79 

101 1.018669 3.436755 1.58 0.459773 1.449033 0.79 

102 0.769825 3.442832 1.58 0.364026 1.449665 0.79 

103 0.618690 3.502901 1.58 0.301284 1.455982 0.79 

104 0.517159 3.767002 1.58 0.25699 1.515799 0.79 

106 0.389364 3.770837 1.58 0.198596 1.608963 0.79 

108 0.312214 3.770837 1.58 0.161826 1.608963 0.79 

1010 0.260581 3.770837 1.58 0.136544 1.608963 0.79 

1015 0.184359 3.770837 1.58 0.098193 1.608963 0.79 

1020 0.142637 3.770837 1.58 0.076662 1.608963 0.79 

1030 0.098193 3.770837 1.58 0.053291 1.608963 0.79 

1040 0.074866 3.770837 1.58 0.04084 1.608963 0.79 

1050 0.060494 3.770837 1.58 0.033106 1.608963 0.79 

1060 0.050752 3.770837 1.58 0.027834 1.608963 0.79 
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Figure F.18 — Plot comparing ε[tD/(psD CD)] and the Modified Normal Distribution for CDe2s = 101. 
 

 
 

Figure F.19 — Absolute Relative Error Plot for CDe2s = 101 (Modified Normal Distribution). 
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Figure F.20 — Plot comparing ε[tD/(psD CD)] and the Modified Normal Distribution for CDe2s = 103. 
 

 
 

Figure F.21 — Absolute Relative Error Plot for CDe2s = 103 (Modified Normal Distribution). 



 

111 

 

 
 

Figure F.22 — Plot comparing ε[tD/(psD CD)] and the Modified Normal Distribution for CDe2s = 104. 
 

 
 

Figure F.23 — Absolute Relative Error Plot for CDe2s = 104 (Modified Normal Distribution). 
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Figure F.24 — Plot comparing ε[tD/(psD CD)] and the Modified Normal Distribution for CDe2s = 1010. 
 

 
 

Figure F.25 — Absolute Relative Error Plot for CDe2s = 1010 (Modified Normal Distribution). 
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Figures F.26 and F.27show type curve plots of pwCD(tD).  While Figure F.26 shows a type curve plot of 

pwCD(tD) obtained numerically compared with that obtained from Eq. F.27, Figure F.27 shows a type curve 

plot of pwCD(tD) obtained from Eq. F.27.  It can be observed that the match is good, as corresponding CDe2s 

curves lie on top of each other almost perfectly. 

 

Figures F.28 and F.29 show type curve plots of pwCD'(tD).  While Figure F.28 shows a type curve plot of 

pwCD(tD) obtained numerically compared with that obtained from the numerical differentiation of the pwCD(tD) 

in Eq. F.27, Figure F.29 shows a type curve plot of pwCD(tD) obtained from Eq. F.27.  It can be observed that 

both the pressure and derivative curves are very good matches. 

 

This implies that this approximation is an accurate representation of pwCD(tD) and a deconvolution aimed at 

determining psD(tD) from this pwCD(tD) can be attempted. 

 

Deconvolution, in this case, means the determination of psD(tD) from Eq. F.18.  This cannot be done by hand 

and requires the use of some software package.  Wolfram Mathematica was used in the deconvolution 

calculations in this work.   

 

Figures F.30 and F.31 show type curve plots of psD(tD).  While Figure F.30 shows a type curve plot of 

psD(tD) obtained numerically compared with that obtained from Eq. F.18, Figure F.31 shows a type curve 

plot of psD(tD) obtained from Eq. F.27.  It is clear that the psD(tD) determined using deconvolution does not 

match the one obtained numerically.  The attempted deconvolution has not yielded an accurate psD(tD) 

approximation. 
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Figure F.26 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment. 
 

 
 

Figure F.27 — Type curve plot of pwCD for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment showing only the approximate solution. 
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Figure F.28 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment. 
 

 
 

Figure F.29 — Type curve plot of pwCD' for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment showing only the approximate solution. 
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Figure F.30 — Type curve plot of psD for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment and deconvolution. 
 

 
 

Figure F.31 — Type curve plot of psD for a homogeneous reservoir. pwCD computed using the 

modified normal distribution adjustment and deconvolution, showing only the 

approximate solution.  
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APPENDIX G 

DERIVATION OF DECONVOLUTION APPROXIMATION FOR psD(tD)  

BASED ON pwCD(tD) DERIVED USING THE LINEAR psD(tD) ASSUMPTION 

 

It has been shown that the constant rate bottomhole pressure affected by wellbore storage and skin effects 

can be written as a convolution integral given by 
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Eq. G.1 can be approximated as 
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Substituting Eqs. G.8 and G.9 into Eqs. G.5, G.6 and G.7, we obtain 
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Therefore, Eq. G.4 becomes 
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The type curve plot, shown in Figure G.1, comparing pwCD(tD) obtained using Eq. G.16 (explicit pwCD 

equation) and that obtained from applying Eqs. G.4 to G.9 (linear psD approximation solution) directly shows 

that the results are one and the same.  Therefore, pwCD(tD) obtained using the explicit equation is an accurate 

approximation for pwCD(tD). 
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Figure G.1 — Type curve plot of pwCD for a homogeneous reservoir comparing pwCD computed using 

the explicit pwCD equation and the linear psD approximation solution. 
 

Deconvolution of pwCD(tD) for an unfractured well in an infinite-acting homogeneous reservoir  

 

The deconvolution of Eq. G.1 is the determination of psD(tD) from Eq. G.16.  This would be impossible to 

achieve without specifying a value for or an expression of the derivative of psD(tD) with respect to tD.   

 

For a vertical, unfractured well in a homogenous reservoir, the log approximation solution to the diffusivity 

equation for radial flow is given as 
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Differentiating Eq. G.17 with respect to tD, 
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Substituting Eq. G.18 into G.16, we obtain, 
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Simplifying Eq. G.19, 
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Eq. G.20 can be solved iteratively for psD(tD) with the help of spreadsheet packages. 

 

 

Figure G.2 — Type curve plot of psD for a homogeneous reservoir comparing psD computed using the 

explicit pwCD equation, the linear psD approximate solution and the log approximation 

solution to that computed using numerical laplace transform inversion. 
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Figure G.3 — Type curve plot of psD' for a homogeneous reservoir, computed using numerical 

Laplace transform inversion. 
 

 
 

Figure G.4 — Type curve plot of psD' for a homogeneous reservoir, computed using the explicit pwCD 

equation, the linear psD approximate solution and the log approximation solution 
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Figure G.2 shows the type curve plot of psD(tD) comparing results obtained from the numerical Laplace 

transform inversion and Eq. G.20. While at mid to late times the match is good, at early times, the match is 

not very good. Figures G.3 and G.4 show the derivatives of psD(tD) obtained by numerical Laplace transform 

inversion and Eq. G.20 respectively. It is clear that these two plots do not match each other.  

 

This shows that we have been unable to successfully carry out deconvolution for a vertical well in an 

infinitely-acting homogeneous reservoir. 
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