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ABSTRACT

This thesis formalizes and extends a prior work in the effort to create explicit solutions to directly compute
the effects of wellbore storage and phase redistribution (phase redistribution is treated as a special case of
the wellbore storage problem and is of secondary priority in this work). The objectives of this work are to:
derive approximate solutions in the Laplace domain that can be inverted directly to the real domain; validate
these approximate solutions against the exact solutions for wellbore storage; develop correlations to improve
approximate solutions which do not perform well in their original form; develop schemes to "deconvolve"
the effects of wellbore storage using either a direct "inversion" to remove these effects or one of the

approximations to determine the undistorted solution as a root-solving problem.

The key element of this work is the development of the approximate solutions for the wellbore storage
distortion case in the Laplace domain (i.e., part of the first objective). As a starting point, we retrace the
work of SPE 21826 and we note that these solutions hinge on the use of approximations for the constant rate
(undistorted) solution (psp). In this work we utilize three scenarios to approximate the psp(tp) function for
the purpose of the Laplace transform formulation: the "constant” psp(to) case which considers psp(tp) to be
constant; the "linear" psp(tp) case which considers psp(tp) to be defined by a linear relationship of tp; and the

"quadratic” psp(tp) case which considers psp(tp) to be defined by a quadratic relationship of tp.

As in SPE 21826, each of these solutions has been recast and compared to the exact solution for cases of

effects of wellbore storage and phase redistribution (the second objective).

The development of correlations to improve the derived explicit (real domain) solutions has proven

problematic, for example, the simplest case is that of the "constant" psp(tp), where the solution is given as:

Pwep (tp) = Psp (tp) {1—6Xp{iﬂ ("constant” psp(to) case)
Psp(tp)Cp
The most interesting aspect of this result is that it is exact at very early and very late times, but has errors as
high as 15.6 percent in terms of puco(to) and as high as 25.9 percent in terms of pucp'(tp). The goal is to
ensure errors less than 1.5 percent for puco(tp). This led to the effort to develop correlations (the third
objective) for an "additive™ error term (¢), where this function would be in terms of the variable
[to/(psp(tp)Cpb)], which appears to be a unique correlation variable for wellbore storage cases. Several

correlations are presented in this work.

The last goal of this work is to provide a wellbore storage "deconvolution™ scheme (the fourth objective)
which uses a permutation of the methodology used to derive the approximate pwco(tp) solutions in order to

derive the psp(tp) function in terms of the puco(tp) solutions, and/or uses the pwco(to) approximate solutions



as "root solutions" to solve for the input psp(to) function. Demonstrative cases are provided for this

"deconvolution” process.
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CHAPTER I
INTRODUCTION

1.1 Introduction

The computation of wellbore pressure responses in the presence of wellbore storage, skin and/or wellbore
phase redistribution effects requires solving the diffusivity equation that describes flow through porous
media. Solving the diffusivity equation for reservoir engineering purposes often requires the inversion of
the Laplace space solutions, which can be done analytically or numerically. Generally, these solutions are
often impossible to invert analytically and need to be inverted numerically using algorithms such as Stehfest
(1970) and Gaver-Wynn-Rho (2004). Numerical inversions can be computationally intensive and time-
consuming. Therefore, any methods of solving the various forms of the diffusivity equation that reservoir
engineers deal with, that produces results comparable with numerical inversion solutions, without the

attendant time and computing power, would be considered significant progress.

This work leans heavily on SPE 21826 (Blasingame et al. 1991) and extends it significantly. Blasingame et
al. worked on the development of the methods that this thesis retraces, validates, improves on and extends.
Ultimately this work aims to provide simple and easy-to-implement methods for obtaining approximate
wellbore storage and phase distribution solutions that are accurate and do not require Laplace transform

inversions in their implementation.

The relations developed in this work are verified for the computation of wellbore storage and skin effects
for unfractured wells in homogeneous reservoirs (Agarwal et al. 1970), fractured wells in homogeneous
reservoirs (Ozkan and Raghavan, 1989), and for wells in naturally fractured reservoirs (Bourdet and
Gringarten, 1980 and Warren and Root, 1963).

Also, explicit techniques to compute pressure response in the presence of wellbore phase redistribution
effects are validated. This calculation uses only the wellbore storage and wellbore phase redistribution
dimensionless pressures to compute the total wellbore dimensionless pressure. Blasingame et al. (1991)
opined that this result is useful in that it is possible to compute the effects of wellbore phase redistribution
without a numerical inversion algorithm to invert the Laplace space solution and the result may provide
insight into the analysis of pressure test data which exhibit the effects of wellbore phase redistribution.

The work goes ahead to attempt to develop empirical correlations, using the above-mentioned results as a
starting point, and compare the obtained results with those obtained from the numerical inversion of the
Laplace space solutions. The correlation results were an improvement on the closed-form approximate

methods.



As in SPE 21826, this work does not develop methods to interpret well test data, it is expected that the
development of several analysis techniques for wellbore storage distorted pressure data should arise from
the computational formulae derived in this work. In particular, the relations derived in this work should be
useful in interpreting the “unit slope” line on a type curve plot, and some relations may be useful for
convolution and deconvolution analysis. In fact, deconvolution is attempted in this work based on the

approximate methods developed and interesting results were obtained.
1.2 Objectives

The objectives of this work are:
® Derive approximate solutions in the Laplace domain that can be inverted directly to the real domain.
® Validate these approximate solutions against the exact solutions for wellbore storage.
® Develop correlations to improve approximate solutions which do not perform well in their original
form.
® Develop schemes to "deconvolve™ the effects of wellbore storage using either:
— Adirect "inversion" to remove these effects, or

—  Using one of the approximations to determine the undistorted solution as a root-solving problem.
1.3 Basic Concepts and Dimensionless Variables

For the purpose of completeness, it is important to provide some background for some of the reservoir
engineering concepts that that are mentioned and applied throughout this work. It is also important to define
the dimensionless variables that are used. All units that are not dimensionless are in standard "field units"

— i.e., pressures in psia, rates in barrels, permeability in millidarcies, time is in hours, and length in feet.
Dimensionless Wellbore Pressure

The dimensionless wellbore pressure, pp, for a constant rate flow system is defined as

Pp = 14'1‘2% .................................................................................................................................... (L.1)
where the pressure drop, 4p, for drawdown tests is

A = P = PUE 1eeererereresmsmemesei ettt (1.2)
and for buildup tests,

AP = Pig = PIF - coeeeeeeemrerereresmeeieme sttt (1.3)



Where K is the reservoir permeability, h is the reservoir thickness, g is the flow rate, B is the formation
volume factor, p is the reservoir fluid viscosity, pi is the initial reservoir pressure, pws is the wellbore flowing

pressure, and pus is the wellbore shut-in pressure.
Wellbore Skin

Wellbore skin was described as the additional pressure in the immediate area surrounding the wellbore, due
to a reduction in permeability, as a result of the formation damage that occurs during drilling and completion
operations (van Everdingen, 1953). This pressure drop is given by the equation

141.20By

APskin = Kh

where s is the dimensionless Skin Factor. The skin factor was defined by Hawkins (Lee et al. 2003) as

s= {L—l} |n{r—5} e e et (L5)
Ks f'w

for a vertical wellbore of radius ry, with two concentric zones of permeability around it —zone with altered
permeability, ks, and a radius, rs, measured from the center of the wellbore, immediately around the wellbore,

and zone with original reservoir permeability, k, further out. This concept is illustrated in Figure 1.1.

h

Zone of altered
permeability

Figure 1.1 — Near Wellbore Zone of Altered Permeability (Reproduced from Economides et. al.,
2013)



Dimensionless Wellbore Pressure with Skin Effects

For the constant rate solution, the skin factor has been demonstrated to be an additive function to the wellbore
pressure response (Lee et al. 2003). The dimensionless wellbore pressure, psp, for a constant rate flow

system with skin effects, s, is, therefore, defined as

Wellbore Storage

Wellbore Storage is the phenomena that accounts for the difference between surface and bottomhole
flowrates due primarily to the compressibility of the fluid within the wellbore. Occurring immediately after
any change in the flowrate, the expansion or compression of the fluid causes a delay in the measured rates
of the fluid. Wellbore storage is of significant interest due to its nature to mask reservoir behavior, at early-
time, typically during well tests (e.g., shut-in tests), but also during early flowback operations
(Wiewiorowski, 2016).

The ability of the wellbore to store or unload fluids per unit change in pressure is the wellbore storage

coefficient, C in bbl/psi (Lee, Rollins and Spivey, 2003), and it is given as

o - 144Aup
5.615p

where Ay is the wellbore area in square feet and p is the wellbore fluid density in lom/ft3.
Dimensionless Wellbore Storage Coefficients

The dimensionless wellbore storage coefficient, Cp, based on a wellbore radius, ry, is given as

 0.8936C

Cp = >
geehry

and the dimensionless wellbore storage coefficient, Cip, based on fracture half-length, L+, is given as

0.8936C
Cip =———
geihl g
where ¢ is the reservoir porosity, and c; is the total compressibility of the reservoir and fluid system.

Dimensionless Time Functions

The dimensionless time, tp, based on the wellbore radius, ry,, and time, t, is given as



O, (1.10)

2
PrCthy
and the dimensionless time, t o, based on the fracture half-length, L, t, is given as

0.0002637 kt

tip = >
greel
Dimensionless Flow Rate

The dimensionless flow rate is defined as

qBu
- et 112
9D = 5.00798kN (p; — put ) (1.12)

Dimensionless Sandface Flow Rate Function with Wellbore Storage and Skin Effects

For a well with constant wellbore storage, the dimensionless sandface flow rate, qucp, is defined as

d
dwep =1-Cp %, ....................................................................................................................... (1.13)
D

where pup is the total dimensionless pressure (Agarwal et al. 1970).
Dimensionless Wellbore Pressure with Wellbore Storage and Skin Effects

The dimensionless wellbore pressure, pucp, for a constant rate flow system with wellbore storage and skin
effects is defined as

D
PwCD = (j) dir[qu(r)] PSD(ED = 7) U7 oo (1.14)

The right hand side of Eq. 1.14 is the convolution integral. In well test analysis, convolution was introduced
by van Everdingen and Hurst in 1949 to provide a mechanism in which to combine the constant rate solution

with the constant pressure solution (Wiewiorowski, 2016).

Dimensionless Sandface Flow Rate Function with Wellbore Storage, Skin and Phase Redistribution
Effects

For a well with wellbore storage and wellbore phase redistribution, the dimensionless sandface flow rate,

Quep, IS defined as



dpwp  9PgD
=1-C el PSSR 1.15
dwgD D( it dip (1.15)

where pup is the total dimensionless pressure with wellbore storage, skin, and wellbore phase redistribution

effects while pyp is the dimensionless pressure with wellbore phase redistribution effects (Fair, 1981).

Dimensionless Wellbore Pressure with Wellbore Storage, Skin and Phase Redistribution Effects

The dimensionless wellbore pressure, pup, for a constant rate flow system with wellbore phase redistribution
and skin effects is defined as

|

)
PWD = |~ [GwgD ()] DS D = 7)U7 ottt (1.16)
0

o

T

Dimensionless Pressure Derivative Functions

The dimensionless derivative function, pp', which is used in the type curve analysis, is defined as

dpp
L STV TSR 1.17
PD d(|l’ltD) ( )
It can also be written as
, d
PD'=tp dp—D ..................................................................................................................................... (118)
tp

We note that both forms of pp' are mathematically equivalent.
Numerical Laplace Transform Inversion

All numerical Laplace transform inversions done in this work were obtained using the Gaver-Wynn-Rho

algorithm, developed by Valko and Abate (2004), and implemented in Wolfram Mathematica.



CHAPTER Il
LITERATURE REVIEW

This chapter aims to provide a brief study of wellbore storage and wellbore phase redistribution studies, as

pertinent to this work.
2.1 Pressure Buildup Analysis with Wellbore Storage Distortion

Wellbore Storage is the phenomena that accounts for the difference between surface and bottomhole
flowrates due primarily to the compressibility of the fluid within the wellbore. Occurring immediately after
any change in the flowrate, the expansion or compression of the fluid causes a delay in the measured rates
of the fluid. Wellbore storage is of significant interest due to its nature to mask reservoir behavior, at early-
time, typically during well tests (e.g., shut-in tests), but also during early flowback operations
(Wiewiorowski, 2016).

van Everdingen and Hurst (1949) first developed solutions for wellbore storage effects in their classic paper
about the application of Laplace transforms to solving the diffusivity equations that petroleum engineers
have. In that work, they posited that to obtain the relation between flowing bottomhole pressure and the rate
of production from a formation, it is necessary to correct the rate of production as measured in the flow tanks
for the amount of oil obtained from the annulus between casing and tubing. They determined that the rate
of unloading of the annulus gacm), expressed in cubic centimeters per second corrected to reservoir conditions

was given by

where Ap is the pressure drop and C is the volume of fluid unloaded from the annulus per atmosphere bottom

hole pressure drop her unit sand thickness (i.e. wellbore storage).
They defined dimensionless wellbore storage as

~ 0.8936C

Cp = >
geehry

with all parameters in field units. They also, wrote the convolution integral describing the dimensionless

bottomhole pressure affected by wellbore storage, puo, as

D d 7) |dppltp —7
bup = I {1—CD pVéD( )} pDé T (23)
0 T tp

and demonstrated how to solve for pup using Laplace transforms.



van Everdingen (1953) introduced the steady-state skin effect as an "additive™ pressure drop at the sandface
in his work explaining the effect of skin on the productive capacity of a well and proposing an exponential
model for sandface flow rate. Agarwal et al. (1970) and Wattenbarger and Ramey (1970) used the steady-
state skin effect, explained by van Everdingen, in the convolution integral equation, and developed analytical

and numerical methods for dealing with wellbore storage and skin in wells with unsteady flow.

McKinley (1971) worked on calculating wellbore transmissibility from build-up data with wellbore storage

distortion and developed type curve analysis for it.

Ramey (1965), in his work on non-Darcy flow and wellbore storage effects extended van Everdingen's work

to drawdown in gas wells.
2.2 Pressure Buildup Analysis with Wellbore Phase Redistribution

Stegmeier and Matthews (1958) described wellbore phase redistribution as a wellbore storage phenomenon
occurring when both liquid and gas flow through the tubing. When such a well is shut-in at the surface,
gravity cause the liquid to fall to the bottom and the gas to rise to the surface. The gas that rises to the
surface tries to expand and, consequently, exerts pressure on the liquid, as there is little room for expansion
and the liquid is relatively incompressible. That pressure that is temporarily exerted causes a "hump" in the

pressure profile.

Fair (1981), in his work on wellbore phase redistribution went further than Stegmeier and Matthews (1958),
carrying out analysis of wellbore phase redistribution by including it as wellbore storage in the

dimensionless diffusivity equation. The dimensionless flow rate was then given as

d dp
qD(tD):l—cD{ PwD —;”D}, ...................................................................................................... 2.4)
dp dpp

where pgp is the pressure caused by phase redistribution, given by:

DD (D) = ChpIL—€ D ED T s (2.5)

where ap is the time in which 63% of the total change has occurred,

khp¢ 26
p¢D = m ................................................................................................................................. ( . )
c th¢ ”7

¢D = M ................................................................................................................................... ( . )



_ 0.00264kt

tp D
PLCily
0.00264 ko
D) o T
Preily

with all non-dimensionless parameters in field units.



CHAPTER 111
APPROXIMATIONS FOR puco(to)

In this chapter, we follow the work done in SPE 21826 (Blasingame et al) to develop rigorous analytical
approximations for the dimensionless pressure function that includes the effects of wellbore storage and
skin, pwco(tp). As a recognition of the imperfection inherent in these approximations, correlations are
developed to create better approximations that, while not derived through a rigorous mathematical process,
are more accurate than the analytical approximations. As a special case of the wellbore storage and skin
problem, an explicit solution for the computation of the effects of wellbore storage and phase redistribution

is also developed.
3.1 Analytical Approximations of pwcp(tp)

The convolution integral for wellbore storage is given as

tp d
Pwed (tp) = | E[qWCD(T)] PSD (ED = T) AT covveeerevveoeeseevesese s (3.1)
0
where
d
gwep (tp)=1-Cp F[chD ('[D)] ................................................................................................. (3.2)
D
and
PsD (D) = PD D) S o 3.3)

Taking the Laplace transforms of Egs. 2.1 and 2.2 and rearranging gives

1

Pwep (U) = e eteeeheeteebeeneeeeseesebesiheeaeeiheeiheeibeeateeateebe e beabe e aeeesahteabesabeesreesresaraeas (3.9)
2
— +Cpu
{ psD (U) }
which can also be written as
o S - - 1 (3.5)

[1+Cpu?Psp (U)]

Appendix A details the derivation of Egs. 3.4 and 3.5.
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It is clear from these equations that the nature of pgp (u) i.e. psp(tp) determines the nature of py,cp (U) i.e.

pweo(tp). Therefore, the solutions that are developed are based on making reasonable approximations of

psp(tp) transforming those approximations into Laplace space, and solving Eq. 3.4 or 3.5.
Case 1: puco(tp) Approximation Based on Constant psp(tp)

The simplest approximation that can be made for the psp(tp) function is that it is constant near a particular

time of interest, say between two data points. This equation can be written as

where a is constant.

Appendix B develops this idea in detail and results in the approximation for pwcp(tp) given as

pucn(to)= Pepto ){pr{mﬂ .................................................................................... 37)

Eq. 3.7 states that the puwco(to), function is an exponentially increasing function of the psp(tp) relation. As
stated in SPE 21826, this is a somewhat intuitive result since we know that the pwcp(tp), function increases

monotonically over time until it is identical to the psp(tp) function.

The dimensionless pressure derivative function, pucp'(tp) can be computed by

! dpsD(tD) { tH }
t =tp ———=|1l-exp| ————— | |+
PwcD ( D) D dt p Ps (t )C

0 {pso(to)—todpSD(tD)}exp{ D }

psp(tp)Cp dtp psp(tp)Cp

.................................. (3.8)

Eq. 3.8 is good for computing the pressure derivative, pwcp'(to), but it might be more convenient to employ

numerical means for that computation.

The dimensionless sandface flow rate can be computed by

—tp
tph)=1- B i el [T USSP 3.9
qWCD( D) EXp|: psD(tD)CD:| (3.9)

In the next chapter, the results from these relations would be compared to results obtained from the numerical

Laplace transform inversion solutions.

11



Case 2: pucn(tp) Approximation Based on Linear psp(tp)

The second approximation for the psp(tp) function assumes that the psp(to) function is linear near a particular

time of interest, say between two data points. This equation can be written as
PsDED) =@ +DID i (3.10)

where are a and b are constants that can be easily determined.

Differentiating Eq. 3.10 with respect to tp gives

b :%[psD(tD)] .............................................................................................................................. (3.11)

a can, therefore, be determined by substituting b from Eq. 3.11 into Eq. 3.10. This gives

a= psD(tD)—tD %[psD(tD)] ...................................................................................................... (3.12)

Appendix B develops this idea in detail and results in the approximation for pwcp(tp) given as
z
pwep(tp) = %[1— exp(— xtp ) + — - EXP(= XED )] covvvvrreeerreseeeessseseseess s (3.13)
X

where the generalized coefficients for this case, x,y, and z, are defined as

X:1+YCD 1 b
aCp . Cp aCp

Eq. 3.12 can also be expressed without any coefficients as
q 2
PsD (tD)+CDtD{dt[psD(tD )]}
D

{uco{d;’[)[ps.)(toﬂﬂz
d

tp +CDIDL?D[DsD(tD)]} tp E[DSD&D)]_ psp(tp)

CD{psD(tD)_tD d?D[psD(tD)]} {1+ CD|:dth[psD(tD)]:H2

pwcp (tp) =

+exp| —

Appendix G details the development of Eq. 3.17. It is mathematically equivalent to Eqg. 3.13 and more

inconvenient to implement, but is presented here for the purpose of completeness.
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An expression for the dimensionless pressure derivative, pwcp'(tp), is not developed here because the
analytical differentiation of either of Eqgs. 3.13 or 3.17 would yield very complex results. It is more efficient

to find the pressure derivative by numerical methods.

The dimensionless sandface flow rate, quco(tp), can be computed by the substitution of results obtained from

the numerical differentiation of puco(tp) into Eg. 3.2.

In the next chapter, the results from these relations would be compared to results obtained from the numerical
Laplace transform inversion solutions.

Case 3: pucp(to) Approximation Based on Quadratic psp(tp)
The second approximation for the psp(to) function assumes that the psp(to) function is linear near a particular
time of interest, say between two data points. This equation can be written as
* 2
PsD(ED) =80 F 81D + 80 T D i (43)

where are ag, a1, and a;* are constants that can be determined by the process detailed in Appendix D where

the details of this approximation are documented

The complexity of this approximation suggests that it would be difficult to implement without a spreadsheet

or software package to do the calculations.

In the next chapter, the results from these relations would be compared to results obtained from the numerical

Laplace transform inversion solutions.
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3.2 Empirical Approximations of pwcp(tp)

As would be seen in the next chapter, although the approximations are good, they are not perfect. In order
to improve the accuracy of these approximations, correlations were developed for term an "additive"
discrepancy term (&), where this function would be in terms of the variable [to/(pso(to)Cp)]. This discrepancy
function would, in theory, be the difference between the actual pwco(tp) obtained from numerical methods

and the approximate pwcp(tp) obtained from Section 3.1.

The approximate pwcp(to) solution chosen for improvement is the constant psp(tp) solution given by Eq. 3.7.

pwep (tp )= psD(tD){l—exp{ ) ﬂ ........................................................................................ (3.7)
PspCp

The improved approximation would be of the form

_tD

psDCo ﬂ ) ‘{ pstDDcD H '

Plot of ¢[ty/p.pCpl VS t/PenCp for Cpe> = 10",10%,10°10°, and 10"

Pwcp (tp) = Psp (tD) Hl— eXp{

N

10 10 10° 10" 10° 10
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Figure 3.1 — Plot showing ¢ vs. to/(psp Cp) for Cpe® values of 10%, 102, 10%, 10* and 10'°
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A semilog plot of g[to/(psp Cp)] Vs. to/(pso Cp) for Cpe® values of 10%, 102, 103, 10* and 10%° is shown in
Figure 3.1. All other values of Cpe® show a similar shape. This plot suggests that €[tp/(psp Cp)] is either
normally distributed (Gaussian distribution) or distributed in a fashion that is similar in shape to the normal
distribution. This implies that a mathematical equation describing the normal distribution or one that

describes a shape such as this could accurately model g[tp/(pso Cp)].

There are several equations of varying mathematical complexity that could describe a function shaped like
this and two were chosen for this work — normal distribution and modified normal distribution. Detailed
developments of both approximate correlations can be found in Appendix F.

Normal Distribution Adjustment Correlation for pucp(tp)

The normal distribution is given by Abramowitz and Stegun (1972) as

2
szeXp{—l{x_m} } .......................................................................................................... (3.10)
oN2rx 2| o

Where p is the probability distribution function, « is a scaling factor, m is the mean of the distribution, o is

the variance of the distribution and x is value of the data point.

In our case, the normal distribution equation describing €[tp/(psp Cp)] would be

¢ 2
In[D}—m
~1] [ psDCD

2 o
tp a
g = e et et Rttt eRe et et ettt Re et et e Re b et et e Ee e Reere e eneaterenenren (3.11)
{ PspCp } ov2r
An improved approximation of pwcp(to), obtained from combining Egs. 3.8 and 3.11, can, therefore, be
written as
_ .
In{ D }—m
_1] [ psDCD
2 o
pweb (tp) = Psp (tp) | |1 exp{ i) } 2 e (3.12)
cD\p)= DD - - P N .
v ° PsoCp || ov2r

where the parameters a, m, and, o are given by the following correlations and shown in Figures 3 2 and 3.3.
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26 [1.43087InCp +1
a= exp| — +0.03772,f0rCp <1, oo (3.13a)
77.1579 9.50843
azi,forCD B TR (3.13b)
InCD +4.4
M=0.90, 0T Cp <102 oo eeeeeeseee e eseee e eessoseee e (3.14a)
M=1.00,T07 C 2102, .ooooooeeeeeeeeeeeeeeeeeeee et (3.14b)
1[In cD-1}2
58 2| 21 6
o=——¢ FOrC D <107 s (3.15a)
2127 b
G =0.94,T07 C 2100 ..ot (3.15h)

The dimensionless pressure derivative, pucp'(to) and dimensionless sandface flow rate, qwco(to), can be

computed by numerical methods.

In the next chapter, the results from these relations would be compared to results obtained from the numerical

Laplace transform inversion solutions.

Plot showing the variation of e with C,
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Figure 3.2 — Plot showing the variation of « with Cp.
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Plot showing the variation of owith C,
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Figure 3.3 — Plot showing the variation of m with Cp.
Modified Normal Distribution Adjustment Correlation for puco(to)
The modified normal distribution, developed in this work, can be written as
a 1{Xx—m a 1{X—m 2
p= 1 exp| —= 1 + 2 exp| —= 2 e ———————— (3.16)
o127 2] o ooN27 2| oy

This is essentially the addition to two normal distribution equations, where p is the probability distribution
function, a1 and a; are the scaling factors, m; and m; are the means of the distributions, 1 and o, are the

variances of the distributions and x is value of the data point.
In our case, the normal distribution equation describing €[to/(psp Cp)] would be

2

|n|:tD:| -m |n|:tD:| —-ms
,{ ) }: o1 _1 _LpspCp a2 1| _LpspCp
oV 27w 2 o1 o2z 2 02

2
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An improved approximation of puwcp(tp), obtained from combining Egs. 3.8 and 3.17 can, therefore, be

written as

Pwcp (tp) = Psp (tp)

r 2

In[tDC}—mz
L2 exp 1 PsDYD
ooN2r7 2 02

t 2]
- In{DC}—ml
-t
1—exp{ D } S exp 1 PsD™D
PsDCD || o1vV2r 2 o1

Where the parameters a1, a2, M1, My, o1, and a2 are given by the following correlations and shown in Figures
3.4 and 3.5.

67 |0.17712654InCpp|
o exp| — +0.06176,for Cp <1, .cceiiiiiririiieeeeee e (3.19a)
46.79328048 6.491984578
725627685 S FOPC D 20 (3.19b)
InCp +4.82070369
67 0.17712654InCp |
o) =———exp| - +0.06176,Tor Cp <1, oo (3.20a)
46.79328048 6.491984578
4.02500168 OFCD 21, (3.20b)
INCp +6.45174628
my = 0.33475819erf(0.00017879C 5 ) + 3.436079L7 ,...cvvvvvevrrmmmerereeeessssssssesssssssssssssessssssssssss (3.21)
My =0.16erf(0.000038895C D )+ 144896298 ,........vuumrrrvveeerssssnsseesssessssssssessssssssssssssessssssssssns (3.22)
OL =158 oot (3.23)
G2 = 0.7 oot (3.24)
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Plot showing the variations of ¢, and «, with C,
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Figure 3.4 — Plot showing the variation of a; and a, with Cp.
Plot showing the variations of m, and m, with C,,
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Figure 3.5 — Plot showing the variation of m; and m; with Cp.
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3.3 Explicit Calculation of the Wellbore Phase Redistribution Dimensionless Pressure, pwo(tp)

In this section, we verify two formulae which can be used to explicitly compute the total dimensionless
pressure for a system with wellbore storage, skin and wellbore phase redistribution effects. These relations

are developed rigorously.

These formulae were constructed in such a way that the total dimensionless pressure, pup, is given as

pPwD (tp) = Pwep (tp) + pW¢D(tD) .................................................................................................. (3.1)

where p.yo(to) is the dimensionless wellbore storage pressure and the dimensionless wellbore phase

redistribution pressure, p.so(to) is given as

v |d o4 . .
PwgD (tp)=Cp izl{ﬁ[pw (tD,I) itg [p¢D (tD,I—l)]:| chD(tDyl_l) ....................................... (3.2

or, alternatively as

ny_d o4 . .
PwgD (tp) =Cp El{%l:pWCD(tD'I)] ity [pch(tD,|—1)]} PgD (D, i—1) -ovrvvvrriinrinns (3.3)

Also, the dimensionless phase redistribution pressure, pso(tp) is given by Fair (1981) as

Pgd (tp) = Cyp [1— exp{%ﬂ ........................................................................................................... (3.4)

Our experience suggests that, when using the model of pyo(to) given by Eq. 3.4, Eq. 3.3 will yield the most

accurate results for pyp(tp) relative to results obtained from numerical Laplace transform inversion.
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CHAPTER IV
VALIDATION OF RESULTS

In this chapter, we validate the approximations for puco(tp) developed in the previous chapter. As was done
in SPE 21826, each of these solutions are compared to the exact solutions for cases of effects of wellbore
storage and phase redistribution for chosen reservoir systems. While SPE 21826 did a qualitative
comparison for purposes of validation, this thesis goes further. Both qualitative and quantitative comparisons
are done in order to ascertain the accuracy of these approximations and correlations, and determine which

is best suited for the different reservoir systems.

In the qualitative comparisons, visual inspections of the curves are done to
e See if there is general agreement between the approximate and actual solutions.

® | ocate the areas where the solutions match up well and where they do not.

For quantitative comparisons, we quantify by how much the approximate solution is off from the actual
solution, by calculating the error. For the determination of error, we introduce the term Absolute Relative
Error (ARE), in percent, which is the absolute value of the difference between the actual solution, obtained

using numerical methods, and the approximate solution. Absolute Relative Error (ARE) is given as

pWCDAt |~ pWCDA imake
ARE = cua ik N T Y (4.1)

PwCDActyal

All of the verification cases use the infinite-acting (transient) flow solutions for the chosen reservoir system.

4.1 Validation of Analytical Approximations
Unfractured Wells in an Infinite-Acting Homogeneous Reservoir

The infinite-acting homogeneous reservoir solution with wellbore storage and skin effects is the simplest
and probably best-documented case of the convolution integral solution. There is ample discussion of the
subject and solutions by several authors, one of which is van Everdingen and Hurst (1949). The consensus
is that an analytical solution to the problem is impossible and solutions have to be obtained by numerical
methods, hence the use of numerical Laplace transform inversions. This work aims to develop
approximations and correlations, which accurately describe the pressure response distorted by wellbore

storage and skin effects, which can be utilized without the need for numerical inversions.

As was done in SPE 21826, the behavior of puco(tp) for 10 < #p/Cp < 10* for 13 values of Cpe® ranging
from 10' to 10% is plotted. These parameters will be used for all of the unfractured well cases for the

pwen(to), Pwep'(to) and guen(to) solutions.
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Case 1: pwep(tp) Approximation Based on Constant psp(to)

Case 1 hinges on the assumption that the psp(tp) function can be considered constant near a particular time
of interest. It has to be noted that this does not imply a constant psp(tp) for the well, which would make no
physical sense. The assumption applies only for a "brief" time period of interest (for instance, between two

well test data points), and is useful in obtaining the approximation.

Figure 4.1 shows the behavior of the puco(to) function, computed using Eq. 3.7. It is clear that there is
general agreement between the actual solutions and approximate solutions, especially in very early times
and late times. However between the time period 1 < /Cp < 5 x 10, there is some deviation by the
approximate solutions from the actual solutions. This can clearly be seen in the ARE plot shown in Figure
2 where when Cpe?S is 10%, the error is as high as 15.6%. For larger values of Cpe® the error drops
significantly. This shows that the case 1 approximation (linear psp(tp) assumption) can accurately predict

the pwep(to) solution.

Figure 4.3 shows the behavior of the pucp'(tp) function for case 2. This function was computed analytically,
as the closed-form of the derivative function (Eq. 3.8) is simple enough to be dealt with that way. As with
the puco(tp) function, there is general agreement between the actual and approximate solutions. Also, the
approximate derivative solutions deviates over the same parameter range as the puwco(to) function i.e. 1 <
to/Cp < 5 x 10%. In this case the deviation is more pronounced, because the errors inherent in a function are
naturally amplified in their derivative function. It will also be noted that the error is highest when the
derivative curve is about to go into radial flow stabilization, i.e. when the value of puco'(tp) is 0.5. The time
period at which this happens varies for different values of Cpe?S. Figure 4.4 shows that when Cpe?S is 101,
that error is about 25.9%. It also shows that, unlike the errors that occur in the time period 1 <#/Cp <5 x
10, the errors close to radial flow stabilization do not decrease significantly with an increase in Cpe®.
However, for all most practical uses of the derivative function, this error would be within engineering
accuracy. The results in Figures 4.3 and 4.4 suggest that the case 1 approximation (constant psp(tp)

assumption) can accurately predict the pwep(to) solution and the resulting pucep'(to) solution is also accurate

Figure 4.5 shows the behavior of the quco(tp) function for case 1, computed using Eq. 3.9. As expected,
the errors inherent in the pwco(tp) and puco'(tp) solutions are present in the qucp(to) solution. As with the
pwcp'(to) function, the quep(tp) function magnifies the errors in the puco(tp) function due to the
differentiation that is carried out in the computation. The accuracy of the the quwcp(to) function should be
considered the most sensitive test of the approximate solutions and should not detract from the use of the
pwen(to) and puco'(to) functions obtained using this approximation. The errors associated with each function

i.e. puco(to) and puco'(to) should be within the accuracy needed for most reservoir engineering applications.
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Type curve plot of p,,cp for a homogeneous reservoir
with p,cp computed using constant p,, assumption
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Figure 4.1 — Type curve plot of puco for a homogeneous reservoir. puco computed using constant
psp assumption.
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Figure 4.2 — Plot comparing the relative errors in puwco for a homogeneous reservoir with pwco

computed using constant psp assumption.
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Type curve plot of p,cp' for a homogeneous reservoir
with p,cp' computed using constant p;, assumption
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Figure 4.3 — Type curve plot of pucp' for a homogeneous reservoir. pucp' computed using constant
psp assumption.
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Figure 4.4 — Plot comparing the relative errors in pucp' for a homogeneous reservoir with puco

computed using constant psp assumption.
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Type curve plot of q,,cp for a homogeneous reservoir
with q,cp computed using constant p;, assumption
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Figure 4.5 — Type curve plot of qucp for a homogeneous reservoir. guwco computed using constant

psp assumption.

Case 2: pweo(tp) Approximation Based on Linear psp(tp)

The premise of the this approximation is the assumption that the psp(to) function can be described by the
equation of a straight line near a particular time of interest. As in case 1, this does not imply a linear psp(tp)
for the well. It applies for a "brief" time period of interest and is the simplifying assumption necessary to
develop the approximation.

Figure 4.6 shows the behavior of the pwcp(tp) function, computed using Eq. 3.13. We note that the pucp(to)
functions compare well with the numerical inversion solution even though in the period 1 < #/Cp < 10*
there is a slight deviation from the actual solutions by the approximate solutions. However, Figure 4.7
shows that these deviations are a lot smaller than those encountered in the constant psp(tp) approximation
and they diminish significantly with an increase in Cpe?. The case 2 approximation can accurately predict

the pwco(to) solution.

Figure 4.8 shows the behavior of the pucp'(to) function for case 2. This function was computed numerically,
as the closed-form of the derivative function is not a simple expression and makes for tedious computing.
As with the pwcp(to) function, there is very good agreement between the actual and approximate solutions.
Also, the approximate derivative solutions deviates over the same parameter range as the pucp(to) function

i.e. 1 <1p/Cp < 10%, and as with the constant psp(tp) case the deviation is more pronounced here than in the
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pwcp(tp) solution. The error noted in the area where the derivative curve is about to go into radial flow
stabilization, is also noticed here, but as can be seen in Figure 4.9, it is significantly less than that observed
in the constant psp(tp) case, and does not pose a problem for most reservoir engineering calculation
applications. Due to this good agreement between the approximate and numerical inversion solutions, the

case 2 approximation for pwcp(to) and pwep'(to) functions is an accurate approximation.

Figure 4.10 shows the behavior of the quwco(tp) function for case 2, which was computed using Eq. 3.2. As
we noted earlier, the qwcp(to) function is the most sensitive quantity that we can compare. As with case 1,
there is some disagreement between approximate and inverted solution and it should be noted that although
the approximate quco(to) function deviates rather significantly in some places, this should not rule out the

use of puwep(tp) and pucp'(to) function functions obtained by the use of this constant psp(to) approximation.

The errors associated with each function i.e. pwco(to), pwep'(to) and quep(to), should be should be within the

accuracy needed for most reservoir engineering applications.

Type curve plot of p,cp for a homogeneous reservoir
with p,cp computed using linear p;p assumption

10" 10’ 10’ 10° 10° 10*
10 F T T TTTTIT T T TTTTIT T T TTTTTT T T TTTTTT T L1 117g 10
o Cpe =10 c
[ Case 2: Linear p,p(tp) "
L (——)Numerical Inversion Solution b 10°—
- (- -~ )Approximate Solution 102 E
L 10"—]
I\lﬂJ 8,
10’ —10= = 10
E ’{//,,/_—‘;Tuf___—.
; e e
8 B ////‘—(;:% 10' b
3 i / T
Y
10" 5 10°
10-1 . - - 1 1 |lll||2 1 1 lllllla L Il 11111 410-1
10 10 10 10 10 10
t/Cp
Figure 4.6 — Type curve plot of pucp for a homogeneous reservoir. pwco computed using linear psp

assumption
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Plot comparing the relative errors in p,, ., fora

homogeneous reservoir with p ., computed using linear p_, assumption
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Figure 4.7 — Plot comparing the relative errors in pucp for a homogeneous reservoir with pwco
computed using linear psp assumption.
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Figure 4.8 — Type curve plot of pucp' for a homogeneous reservoir. pwco' computed using linear psp

assumption.
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Plot comparing the relative errors in p, ., fora
homogeneous reservoir with p,, ., computed using linear p, assumption
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Figure 4.9 — Plot comparing the relative errors in pucp' for a homogeneous reservoir with pwco

computed using linear psp assumption.

Type curve plot of q,,cp for a homogeneous reservoir
with q,cp computed using linear p,, assumption
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Figure 4.10 — Type curve plot of quco for a homogeneous reservoir. qwco computed using linear psp
assumption.
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Case 3: pweo(tp) Approximation Based on Quadratic psp(tp)

This approximation is based on the assumption that the psp(tp) function varies as a quadratic function of
time near a particular time of interest, say between three adjacent well testing data points. As in cases 1 and
2, this only applies for a "small" time period of interest and is the simplifying assumption necessary to

develop the approximation.

Figure 4.11 shows the behavior of the puco(tp) function, computed using the procedure given in Appendix
D. It can be observed that the puep(to) functions compare very well with the numerical inversion solution
even though in the period 1 < p/Cp < 10? there is a very slight deviation from the actual solutions by the
approximate solutions. Figure 4.12 shows that these deviations are small and they diminish significantly
with an increase in Cpe?S. This agreement between numerical solutions and the approximation suggests that

the case 3 approximation can accurately predict the puco(tp) solution.

Figure 4.13 shows the pwcp'(to) function. The pucp'(tp) functions are computed numerically, as the closed-
form derivative function would be difficult to compute otherwise. There is generally an excellent agreement
of approximate and numerically inverted pwcp'(tp) functions. The slight deviation that occurs during the
time period 1 < p/Cp < 10! is barely perceptible The error noted in the area where the derivative curve is
about to go into radial flow stabilization, is also noticed here, but as can be seen in Figure 4.14, it is
significantly less than that observed in cases 1 and 2. Due to this good agreement between the approximate
and numerical inversion solutions, the case 3 approximation for puco(to) and puwcp'(tp) functions is an

accurate approximation.

Figure 4.15 shows the behavior of the quco(to) function for case 3, computed using Eq. 3.2 and the numerical
differentiation of the pwco(tp) function. As was noted in case 2, the errors inherent in the pucp(tp) function
are amplified in the qucp(tp) function, and the disagreement in this case is identical to that of case 2. This
agreement between numerical solutions and the approximation suggests that the case 3 approximation can
accurately predict the pwep(tp) solution and the errors associated with each function i.e. puco(tp), pwcp'(tp)

and gweo(to), should be should be within the accuracy needed for most reservoir engineering applications.
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Type curve plot of p,,cp, for a homogeneous reservoir
with p,cp computed using quadratic p,, assumption
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Figure 4.11 — Type curve plot of pucp for a homogeneous reservoir. pwco computed using qudaratic
psp assumption.

Plot comparing the relative errors in p ., fora
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Type curve plot of p,,cp' for a homogeneous reservoir
with p,cp' quadratic using constant p,, assumption
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Figure 4.13 — Type curve plot of pucp' for a homogeneous reservoir. puwcp' computed using qudaratic
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Plot comparing the relative errors in p, ., for a
homogeneous reservoir with p ., computed using quadratic p,, assumption
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Figure 4.14 — Plot comparing the relative errors in puco' for a homogeneous reservoir with pwcop
computed using quadratic psp assumption.
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Type curve plot of q,,cp, for a homogeneous reservoir
with gq,cp computed using quadratic p,, assumption
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Figure 4.15 — Type curve plot of quco for a homogeneous reservoir. gwco computed using qudaratic
psp assumption.
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Figure 4.16 — Plot showing puco and pucp' responses obtained using numerical inversion and
approximate solutions for an unfractured well in an infinite-acting homogeneous
reservoir for Cpe?s = 10%.

From the foregoing, it is clear that although the three cases are good approximations, there is a difference in
their accuracies. Figure 4.16 shows the pwcp and pucp' responses from the three approximations compared
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to the numerical responses for Cpe?® = 10'. Figures 4.17 and 4.18 compare the differences in Absolute
Relative Error in the approximations for puco(tp) and puwcp'(to) respectively, for when Cpe? is 10 It is
noted that there is a significant difference in accuracy between the case 1 approximation and the cases 2 and
3 approximations. The difference between cases 2 and 3 is less significant, although, case 3 is slightly more
accurate. Figures 4.19 and 4.20 show the same trends for when Cpe? is 10%°, and Figures 4.21 and 4.22

do the same for when Cpe® is 10,

In SPE 21826, Blasingame et al. (1991) recommended the use of the case 2 approximation due to the fact it
is computationally easier than case 3 and they yield similar results. The author agrees with this analysis as
the increased difficulty in the implementation of case 3 is not concomitant with the marginal improvement

of its results from the case 2 results
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Figure 4.17 — Plot comparing the relative errors in pucp resulting from the different approximation
methods in an unfractured homogeneous reservoir for Cpe® = 102,
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Plot comparing the relative errors in p, ¢’ resulting

from the different approximation methods for C,,ezs =10'
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Figure 4.18 — Plot comparing the relative errors in puco' resulting from the different approximation
methods in an unfractured homogeneous reservoir for Cpe? = 10,
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Figure 4.19 — Plot comparing the relative errors in pucp resulting from the different approximation
methods in an unfractured homogeneous reservoir for Cpe? = 10%.
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Plot comparing the relative errors in p ., resulting

from the different approximation methods for CDe“ =10
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Figure 4.20 — Plot comparing the relative errors in pucp' resulting from the different approximation
methods in an unfractured homogeneous reservoir for Cpe® = 10%,
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Figure 4.21 — Plot comparing the relative errors in pucp resulting from the different approximation
methods in an unfractured homogeneous reservoir for Cpe? = 100,
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Plot comparing the relative errors in p, .’ resulting
from the different approximation methods for CDe2s =10%
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Figure 4.22 — Plot comparing the relative errors in pucp' resulting from the different approximation
methods in an unfractured homogeneous reservoir for Cpe? = 10,

Fractured Wells in an Infinite-Acting Homogeneous Reservoir

This section considers the case of a well with a vertical fracture of infinite conductivity in an infinite-acting
homogeneous reservoir. In SPE 21826 the Laplace space solution for this problem obtained by Ozkan and
Raghavan (1989) was used in the to determine the actual and approximate pwco(tuo) solutions. In this
section, we rework that problem at to determine the most accurate and consistent model of the pwco(tii)

function for an unfractured well in an infinite-acting homogeneous reservoir.

As was done in SPE 21826, the behaviors of pucp(tip) for 102 <t /Cip < 103 for 6 values of Cp ranging
from 3 x 103 to 1 are plotted. These parameters will be used for all of the unfractured well cases for the

pwen(tu), pwep'(tuip) and guep(tip) solutions.
Case 1: pwep(tLp) Approximation Based on Constant psp(tLm)

Figure 4.23 shows the behavior of the pwcp(tiip) function, computed using the case 1 approximation (Eq.
3.7). For the time period t ;o /Cipo < 10* and for all Csp, the does not accurately predict the pwco(tiip) solution
for the. This is can also be seen in Figure 4.24 that shows high error values for all Cip in that time period.

As explained by Blasingame et al., this is likely due to this period being the linear flow region for the no
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wellbore storage case, and the assumption of a constant psp(tiip) function is insufficient for this period. This
disagreement suggests that the linear psp(tipo) is not a good approximation of the pucp(tu) function.

Figure 4.25 shows the behavior of the pwcp'(tip) function and there is a significant deviation between the
actual and the approximate solutions for t ;o /Cip < 10* and for all Cp. This behavior is as expected, because
of the significant errors that were observed in the pwco(tLp) solution in the same time period. Figure 4.26

confirms these observations, showing significant errors for all Crp.

Figure 4.26 shows the behavior of the quco(tLo) function, and embodies the same lack of accuracy observed

in the puco(tumo) and pwep'(tum) solutions.

For all practical purposes, therefore, the case 1 approximation cannot be be used for the description of the

fractured well in a homogeneous reservoir problem in the time period .o /Cip < 10%.

Type curve plot of p,,cp for a vertically fractured well (infinite
conductivity fracture) in a homogeneous reservoir with
Pwcp computed using constant p,, assumption
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Figure 4.23 — Type curve plot of pucp for a vertically fractured well (infinite conductivity fracture)
in a homogeneous reservoir puco computed using constant psp assumption.
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Plot comparing the relative errors in p, ., for a vertically fractured well
in a homogeneuos reservoir with p, ., computed using constant p_, assumption
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Figure 4.24 — Plot comparing the relative errors in pucp for a vertically fractured well (infinite
conductivity fracture) with pwcpo computed using constant psp assumption.
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Figure 4.25 — Type curve plot of pucp' for a vertically fractured well (infinite conductivity fracture)
in a homogeneous reservoir pycp' computed using constant psp assumption.
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Plot comparing the relative errors in p,_ ., for a vertically fractured well
in a homogeneuos reservoir with p ., computed using constant p_, assumption
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Figure 4.26 — Plot comparing the relative errors in pucp' for a vertically fractured well (infinite
conductivity fracture) with pwco computed using constant psp assumption.
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Figure 4.27 — Type curve plot of guco for a vertically fractured well (infinite conductivity fracture)
in @ homogeneous reservoir guweco computed using constant psp assumption.
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Case 2: pwep(tLfp) Approximation Based on Linear psp(tLp)

Figure 4.28 shows the behavior of the puco(tuio) function computed using the case 2 approximation (Eq.
3.13). We note that there is excellent agreement between the actual and approximate puwco(tim) results. The
maximum deviation is about 6.1% for when Crp is 1 and diminishes as the value of Cip decreases, according
to Figure 4.29. This is a significant improvement from the case 1 approximation, strongly suggests that the

case 2 approximation is an accurate approximation for the fractured well pwco(tip) function.

Figure 4.30 shows the behavior of the pucp'(tup) function estimated using numerical differentiation
methods. There is slightly more deviation in this function than in the pwco(tuio) function, with an error of
about 7.5% according to Figure 4.31. These increased deviations are expected. They are most significant
in the time range 10 <ty /Cip < 102 for when Cyp is 1 and diminish rapidly as the value of Cp decreases.

Case 2 proves to be an accurate approximation of the actual pwco'(tLp) solution.

Figure 4.32 shows the behavior of the quep(tiio) function and though the slight deviations in the puco(tiip)
solutions are magnified here, the accuracy of these results is adequate for most reservoir engineering
applications. The case 2 approximation is, therefore, a good approximation for fractured well in a

homogeneous reservoir problem.

Type curve plot of p,cp for a vertically fractured well (infinite
conductivity fracture) in a homogeneous reservoir with
Pwcp computed using linear p,, assumption
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Figure 4.28 — Type curve plot of pucp for a vertically fractured well (infinite conductivity fracture)
in a homogeneous reservoir pwco computed using linear psp assumption.
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Plot comparing the relative errors in p, ., for a vertically fractured well
in a homogeneuos reservoir with p, ., computed using linear p_, assumption
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Figure 4.29 — Plot comparing the relative errors in puco for a vertically fractured well (infinite
conductivity fracture) with pwcp computed using linear psp assumption.

Type curve plot of p,cp' for a vertically fractured well (infinite
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Pwcp computed using linear p,, assumption
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Figure 4.30 — Type curve plot of pucp' for a vertically fractured well (infinite conductivity fracture)
in @ homogeneous reservoir pwcp' computed using linear psp assumption.
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Plot comparing the relative errors in p .’ for a vertically fractured well
in a homogeneuos reservoir with p, ., computed using linear p_, assumption
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Figure 4.31 — Plot comparing the relative errors in pucp' for a vertically fractured well (infinite
conductivity fracture) with pwco computed using linear psp assumption.
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Figure 4.32 — Type curve plot of qucp for a vertically fractured well (infinite conductivity fracture)
in @ homogeneous reservoir guco computed using linear psp assumption.
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Case 3: pwcp(tLp) Approximation Based on Quadratic pso(tL)

Figure 4.33 shows the behavior of the pwco(tiio) function computed according to the procedure given in
Appendix D. We note that there is excellent agreement between the actual and approximate pwco(tii)
results. The maximum deviation is about 5.5% for when Cip is 1 and diminishes as the value of Cip
decreases, according to Figure 4.34. There is a strong similarity to the results from the case 2
approximation, although it is noted that the case 3 approximation is slightly better approximation. The case

3 approximation is an accurate approximation for the fractured well pwco(tiio) function.

The same can be said for the the puco'(tip) and quep(tip) functions, as shown in Figures 4.35 — 4.38. The

case 3 approximation is, therefore, an excellent approximation for fractured well in a homogeneous reservoir

problem.
Type curve plot of p,cp for a vertically fractured well (infinite
conductivity fracture) in a homogeneous reservoir with
Pwcp computed using quadratic pgp assumption
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Figure 4.33 — Type curve plot of pucp for a vertically fractured well (infinite conductivity fracture)
in a homogeneous reservoir pyco computed using quadratic psp assumption.
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Plot comparing the relative errors in p, ., for a vertically fractured well
in a homogeneuos reservoir with p_ -, computed using quadratic p_, assumption
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Figure 4.34 — Plot comparing the relative errors in pucp for a vertically fractured well (infinite
conductivity fracture) with pwco computed using quadratic psp assumption.

Type curve plot of p,cp' for a vertically fractured well (infinite
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Figure 4.35 — Type curve plot of puco' for a vertically fractured well (infinite conductivity fracture)
in a homogeneous reservoir pwcp' computed using quadratic psp assumption.
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Plot comparing the relative errors in p, ..’ for a vertically fractured well
in a homogeneuos reservoir with p ., computed using quadratic p,, assumption
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Figure 4.36 — Plot comparing the relative errors in pucp' for a vertically fractured well (infinite
conductivity fracture) with pwco computed using quadratic psp assumption.
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Figure 4.37 — Type curve plot of qucp for a vertically fractured well (infinite conductivity fracture)
in a homogeneous reservoir guwco computed using quadratic psp assumption.
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We note that the case 1 approximation is poor for the vertically fractured well in a homogeneous reservoir.
However, cases 2 and 3 are good approximations, with case 3 having a slightly better accuracy. Figure 4.38
shows the pwco and pwcp' responses from the three approximations compared to the numerical responses for
Cip = 1. Figures 4.39 and 4.40 compare the differences in Absolute Relative Error in the approximations
for puco(to) and pwco'(to) respectively, for when Cip is 1. It is noted that there is a significant difference in
accuracy between the case 1 approximation and the cases 2 and 3 approximations. The difference between
cases 2 and 3 is almost nonexistent, although, case 3 is slightly more accurate. Figures 4.41 and 4.42 show

the same trends for when Cip is 0.3.

Like in the unfractured well in an infinite-acting homogeneous reservoir, SPE 21826, recommended the use
of the case 2 approximation due to the fact it is computationally easier than case 3 and they yield similar
results. The author agrees with this analysis as there is no difference between the results obtained from these
methods in practical terms in this case. It is also important to mention that while the case 1 approximation
might be used in for an unfractured well in an infinite-acting homogeneous reservoir, it should not be used

for a vertical well in a homogeneous reservoir.

Plot showing p,cp, and p,cp' responses obtained using numerical inversion and
approximate solutions for a vertically fractured well in a homogeneous reservoir for C;5 =1
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Figure 4.38 — Plot showing pwco and puwcp' responses obtained using numerical inversion and
approximate solutions for a vertically fractured well in a homogeneous reservoir for
CfD = 1
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Plot comparing the relative errors in p, ., resulting
from the different approximation methods for C,, = 1
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Figure 4.39 — Plot comparing the relative errors in pucp resulting from the different approximation
methods in a vertically fractured well homogeneous reservoir for Cip = 1.
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Figure 4.40 — Plot comparing the relative errors in pucp' resulting from the different approximation
methods in a vertically fractured well homogeneous reservoir for Cip = 1.
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Plot comparing the relative errors in p,, . resulting
from the different approximation methods for Cp, = 3x1 0?
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Figure 4.41 — Plot comparing the relative errors in pucp resulting from the different approximation
methods in a vertically fractured well homogeneous reservoir for Cip = 0.03.
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Figure 4.42 — Plot comparing the relative errors in pucp' resulting from the different approximation
methods in a vertically fractured well homogeneous reservoir for Cip = 0.03.
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Wells in an Infinite-Acting Naturally Fractured Reservoir

This section considers the application of the explicit relations for wellbore storage and skin effects to a
naturally fractured reservoir system. This study considers the pseudosteady-state and transient interporosity
flow models. Bourdet and Gringarten (1980) developed a solution for the transient interporosity flow and
Warren and Root (1963) developed the pseudosteady-state interporosity flow solution. These solutions were
used, in SPE 21826, to generate the actual and approximate pwco(to) solutions. In this work we do the same
thing to determine the most accurate and consistent model of the pwco(to) function in the case of an infinite-
acting naturally fractured reservoir.

Naturally Fractured Reservoirs: Transient Interporosity Flow Case
(Cp=1,5=10,2=10% and w = 10?)

Figure 4.43 shows the comparison of the three puco(to) relations to the actual solution obtained by numerical
inversion for the transient interporosity flow case. All three cases yield accurate approximations of the
pwen(tp) function. As was done in SPE 21826, the constant rate solutions, psp(tp) and psp'(to) are represented
in Figure 4.41 to show the agreement of the psp(tp) and pwco(to) and pso'(to) and pwco'(to) solutions once
wellbore storage effects have diminished. We note that there is no discernible deviation between the actual

and approximate pwco(tp) functions and Figure 4.44 shows that the largest error is less than 2%.

Figure 4.43 shows good agreement with the numerical inversion solution for pucp'(tp), for all three cases
except in the region 5 x 10 <t /Crp < 10%. However, the cases 2 and 3 approximation for pucp'(tp) are
closer to the numerical inversion solution than the case 1 approximation, with the case 3 approximation
reading slightly higher, while the case 2 approximation reads lower than the numerical inversion solution.
Also, from Figure 4.45, we can see that the error in some areas is lower for the case 2 approximation than
for case 3, while in some other areas, the reverse is the case. This suggests that either the case 2 method or
case 3 could be the general explicit model for wellbore storage and skin effects. However, it would be

computationally easier to use case 2.
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Pp and pp’ Functions

Type curve plot of p,,cp approximations for a well in a naturally

fractured reservoir (transient interporosity flow)
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Figure 4.43 — Type curve plot of puco approximations for a well in a naturally fractured reservoir
(transient interporosity flow, (Cpo =1, s =10, A = 1x10®, and w = 1x1073).
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Figure 4.44 — Type curve plot of puco approximations for a well in a naturally fractured reservoir
(transient interporosity flow, (Cpo =1, s =10, A = 1x10®, and w = 1x1073).
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Plot comparing the relative errors in p .’ resulting

from the different approximation methods for a well in
a naturally fractured reservoir (transient interporosity flow)
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Figure 4.45 — Type curve plot of pwco' approximations for a well in a naturally fractured reservoir
(transient interporosity flow, (Cp =1, s =10, A = 1x10®, and e = 1x1073).
Naturally Fractured Reservoirs: Pseudosteady-State Interporosity Flow Case
(Cpb=1,5=10,4=10% and w = 10%)

Figure 4.46 shows the comparison of the three pucpo(to) relations to the actual solution obtained by numerical
inversion for the pseudosteady-state interporosity flow case. All three cases yield accurate approximations
of the puco(tp) function. As was done in SPE 21826, the constant rate solutions, psp(tp) and psp'(to) are
represented in Figure 4.41 to show the agreement of the psp(tp) and puwco(tp) and pso'(to) and puwco'(to)
solutions once wellbore storage effects have diminished. We note that there is no discernible deviation
between the actual and approximate pwco(tp) functions and Figure 4.47 shows that the largest error is less
than 2%.

Figure 4.46 shows good agreement with the numerical inversion solution for pucp'(to), for all three cases
except in the region 5 x 10 <t /Cip < 10%. However, transient interporosity flow case, the cases 2 and 3
approximation for pwcp'(tLip) are closer to the numerical inversion solution than the case 1 approximation.
Also, from Figure 4.48, we can see that the error in some areas is lower for the case 2 approximation than
for case 3, while in some other areas, the reverse is the case. This suggests that either the case 2 method or
case 3 could be the general explicit model for wellbore storage and skin effects. However, like in the

transient interporosity flow case, it would be easier to use the case 2 approximation.
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Type curve plot of p,,cp approximations for a well in a naturally
fractured reservoir (pseudosteady-state interporosity flow)
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Figure 4.46 — Type curve plot of puco approximations for a well in a naturally fractured reservoir
(pseudosteady-state interporosity flow, (Cp = 1, s = 10, A = 1x10, and w = 1x10°3).

Plot comparing the relative errors in p,, ., resulting
from the different approximation methods for a well in
a naturally fractured reservoir (pseudosteady-state interporosity flow)
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Figure 4.47 — Type curve plot of puco approximations for a well in a naturally fractured reservoir
(transient interporosity flow, (Cpo =1, s =10, A = 1x10®, and w = 1x1073).
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Figure 4.48 — Type curve plot of puco' approximations for a well in a naturally fractured reservoir
(transient interporosity flow, (Cp =1, s = 10, 2 = 1x10%, and = 1x107%).
4.2 Validation of Explicit Calculation of the Wellbore Phase Redistribution Dimensionless Pressure,

PwD

Figure 4.49 is presented as validation for the formula generated from the explicit calculation of wellbore
phase redistribution dimensionless pressure (Eq. 3.3). This plot assumes an unfractured well in an infinite-
acting homogeneous reservoir with the properties: Cp = 102, C,»p= 20, C4p = 102, and S = 0, as was done in
SPE 21826. It can be observed that the numerical inversion solution and the explicit computation (Eq. 3.3)
yield identical results for the p.4o(to) function. Figure 4.50 shows the error in the pwp(to) solution is quite
low. This result which shows that the total dimensionless pressure, pwgo(tp), can be computed without
inversion of Laplace space relations (for pso(tp), given in explicit form by Eq. 3.4). The advantages of using
the explicit calculation also include the prospect for de-coupling of the wellbore storage and wellbore phase
redistribution solutions which may lead to a rigorous analysis method for pressure data distorted by wellbore

phase redistribution.

Figure 4.49 also shows that the explicit and numerical inversion calculations of the derivative function,
pwo'(tp), agree almost exactly. This agreement of derivatives suggests that for any case of well phase

redistribution, the numerical inversion and explicit calculations should agree very well.
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Comparison of numerical solution and results computed
using the explicit phase redistribution calculation
for radial flow in a homogeneous reservoir
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Figure 4.49 — Comparison of numerical inversion solution and results computed using the explicit
phase redistribution calculation. Line source (radial flow) solution (Cp = 102, Cop =

20, C,p =102 and s = 0).

Plot comparing the relative errors in p, and p,’

resulting from using the explicit wellbore phase
redistribution calculation for radial flow in a homogeneous reservoir
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Figure 4.50 — Comparison of numerical inversion solution and results computed using the explicit
phase redistribution calculation. Line source (radial flow) solution (Cp = 102, Cop =

t/Cp

20, C,p=10? and s = 0).
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4.3 Validation of Empirical Approximations

The need to reduce the errors in the analytical approximations i.e cases 1, 2 and 3, and make them more
accurate necessitated the development of empirical equations. The aim is to obtain puco(tp) functions that
are accurate and retain all the properties of the pucn(tp) in terms of shape and consistent behavior when used

in reservoir engineering calculations.

The correlations that would be validated are the pwco(to) approximations based on constant psp(tp) with
normal distribution adjustment and modified normal distribution adjustment. They would be validated
based on an acceptable level of error between the actual pwep(to) results obtained from numerical inversion

and those obtained from the correlation. An ARE < 1.5% is considered acceptable

All validations are done for an infinite-acting homogeneous reservoir. The plots are made for the time

period 107 < p/Cp < 10* for 13 values of Cpe?s ranging from 10 to 10%.
Validation of Normal Distribution Adjustment Correlation for puco(to)

Figures 4.51 shows the type curve plots of puco(tp) comparing results obtained numerically to those
obtained using the Normal Distribution Adjustment Correlation (Eg. 3.12). We note that there is excellent

agreement between both sets of solutions, with one almost lying perfectly on top of the other.

Figures 4.52 shows the type curve plots of pwco'(tp) comparing results obtained numerically to those
obtained using the Normal Distribution Adjustment Correlation and numerical differentiation. We note that
there is good agreement between both sets of solutions, with one almost lying perfectly on top of the other
in early and late time. It is important to note that the shape of the derivative curve in Figure 4.52 is not as it
ought to be, because the transition from wellbore storage and skin effect to radial flow stabilization is not
smooth. There is an extra point of inflection as the derivative moves towards radial flow stabilization
(pwep'(tp) = 0.5). Figures 4.53 and 4.54 show the pucp(tp) and pwcp'(to) results respectively, obtained from
the correlation without the exact pwco(to) and pucp'(to) plotted alongside them and that anomalous inflection
can be seen.

Figures 4.55, 4.57 and 4.59 show the errors in the puco(tp) solutions for Cpe® =10%, 106, and, 10%° with a
maximum error of about 1%. Figures 4.56, 4.58 and 4.60 also show the errors in the pucp'(tp) solutions for
the same time period, and the maximum error is about 9%, which is better than the 25.9% obtained from the
case 1 approximation. This shows that the correlation has succeeded in improving the case 1 approximation

in terms of error.

A noteworthy point is that while this correlation may be useful in certain applications, as it accurately models

pwepn(tp), it is not an accurate representation of puco'(tn).
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Type curve plot of p,cp for a homogeneous reservoir with
Pwcp computed using the normal distribution adjustment
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Figure 4.51 — Type curve plot of pucp for a homogeneous reservoir. pweco computed using the normal
distribution adjustment.

Type curve plot of p,,cp" for a homogeneous reservoir with
Pwco computed using the normal distribution adjustment
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Figure 4.52 — Type curve plot of pucp' for a homogeneous reservoir. puco computed using the normal
distribution adjustment.
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Type curve plot of p,cp for a homogeneous reservoir with
Pweo computed using the normal distribution adjustment
showing only the approximate solution
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Figure 4.53 — Type curve plot of pucp for a homogeneous reservoir. pwco computed using the normal
distribution adjustment showing only the approximate solution.

Type curve plot of p,,cp" for a homogeneous reservoir with
Pwep computed using the normal distribution adjustment
showing only the approximate solution
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Figure 4.54 — Type curve plot of pucp' for a homogeneous reservoir. puco computed using the normal
distribution adjustment showing only the approximate solution.
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Plot showing the relative error in p,cp for

2s 1 . .
Cpe =10 for a homogeneous reservoir with p,cp
computed using the the normal distribution adjustment correlation
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Figure 4.55 — Plot showing the relative error in pwcp for Cpe? = 10! for a homogeneous reservoir
with pwco computed using the normal distribution adjustment correction.
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Figure 4.56 — Plot showing the relative error in pucp' for Cpe? = 10! for a homogeneous reservoir
with pwco computed using the normal distribution adjustment correction.
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Plot showing the relative error in p,¢p for

6 i
Cpe”" = 10° for a homogeneous reservoir with p,cp
computed using the the normal distribution adjustment correlation
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Figure 4.57 — Plot showing the relative error in pwcp for Cpe® = 10° for a homogeneous reservoir
with pwco computed using the normal distribution adjustment correction.

Plot showing the relative error in p,,¢cp' for

CDe2s =10 fora homogeneous reservoir with p,,cp
computed using the the normal distribution adjustment correlation
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Figure 4.58 — Plot showing the relative error in pucp' for Cpe? = 108 for a homogeneous reservoir
with pwco computed using the normal distribution adjustment correction.

59



Plot showing the relative error in p, ¢, for

2s 20 " .
Cpe =10 for a homogeneous reservoir with p,cp
computed using the the normal distribution adjustment correlation
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Figure 4.59 — Plot showing the relative error in pucp for Cpe?s = 10% for a homogeneous reservoir
with pwco computed using the normal distribution adjustment correction.

Plot showing the relative error in p,cp' for
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Cpe =10 for a homogeneous reservoir with p,,cp
computed using the the normal distribution adjustment correlation
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Figure 4.60 — Plot showing the relative error in puco' for Cpe? = 102 for a homogeneous reservoir
with pwco computed using the normal distribution adjustment correction.
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Validation of Modified Normal Distribution Adjustment Correlation for pwcp(to)

Figures 4.61 shows the type curve plots of puco(to) comparing results obtained numerically to those
obtained using the Modified Normal Distribution Adjustment Correlation (Eq. 3.18). We note that there is

excellent agreement between both sets of solutions, with one almost lying perfectly on top of the other.

Figures 4.62 shows the type curve plots of pwcp'(tp) comparing results obtained numerically to those
obtained using the Normal Distribution Adjustment Correlation and numerical differentiation. We note that
there is good agreement between both sets of solutions, with one almost lying perfectly on top of the other
from early to late time. It is important to note that the shape of the derivative curve in Figure 4.62 is as it
ought to be, with a smooth transition from wellbore storage and skin effect to radial flow stabilization.
Figures 4.63 and 4.64 show the puwco(tp) and pwcp'(to) results respectively, obtained from the correlation

without the exact pwep(tp) and pwcp'(to) plotted alongside them.

Figures 4.65, 4.67 and 4.69 show the errors in the puco(tp) solutions for Cpe® =10, 108, and, 10%° with a
maximum error of about 1%. Figures 4.66, 4.68 and 4.70 also show the errors in the pucp'(tp) solutions for
the same time period, and the maximum error is about 9%, which is better than the 25.9% obtained from the
case 1 approximation. This shows that the correlation has succeeded in improving the case 1 approximation
in terms of error and is better than the Normal Distribution Adjustment Correlation as it models

pwcp'(to).accurately

Type curve plot of p,cp, for a homogeneous reservoir with
Pwco computed using the modified normal distribution adjustment
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Figure 4.61 — Type curve plot of puco for a homogeneous reservoir. puco computed using the
modified normal distribution adjustment.
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Type curve plot of p,cp' for a homogeneous reservoir with
Pwco computed using the modified normal distribution adjustment
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Figure 4.62 — Type curve plot of pwcp' for a homogeneous reservoir. pwco computed using the
modified normal distribution adjustment.

Type curve plot of p,,c, for a homogeneous reservoir with
Pwcp COmputed using the modified normal distribution
adjustment showing only the approximate solution
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Figure 4.63 — Type curve plot of pucp for a homogeneous reservoir. pwco computed using the
modified normal distribution adjustment showing only the approximate solution.
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Type curve plot of p,cp' for a homogeneous reservoir with
Pwcp computed using the modified normal distribution
adjustment showing only the approximate solution
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Figure 4.64 — Type curve plot of pwcp' for a homogeneous reservoir. pwco computed using the
modified normal distribution adjustment showing only the approximate solution.

Plot showing the relative error in p, ¢ for CDe25 =10’
for a homogeneous reservoir with p,,cp computed using
the the modified normal distribution adjustment correlation
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Figure 4.65 — Plot showing the relative error in pwcp for Cpe? = 10! for a homogeneous reservoir
with pwco computed using the modified normal distribution adjustment correction.
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Plot showing the relative error in p ' for CDezs = 101
for a homogeneous reservoir with p,,-, computed using
the the modified normal distribution adjustment correlation
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Figure 4.66 — Plot showing the relative error in pycp' for Cpe® = 10' for a homogeneous reservoir
with pwco computed using the modified normal distribution adjustment correction.
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Plot showing the relative error in p,,cp for Cpe *=10
for a homogeneous reservoir with p ., computed using
the the modified normal distribution adjustment correlation
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Figure 4.67 — Plot showing the relative error in pucp for Cpe? = 106 for a homogeneous reservoir
with pwco computed using the modified normal distribution adjustment correction.
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Plot showing the relative error in p,cp' for CDeZs =10
for a homogeneous reservoir with p, ., computed using
the the modified normal distribution adjustment correlation
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Figure 4.68 — Plot showing the relative error in pucp' for Cpe? = 108 for a homogeneous reservoir
with pwco computed using the modified normal distribution adjustment correction.

Plot showing the relative error in p,,gp for Cpe>" = 10"
for a homogeneous reservoir with p,., computed using
the the modified normal distribution adjustment correlation
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Figure 4.69 — Plot showing the relative error in pucp for Cpe?s = 10% for a homogeneous reservoir
with pwco computed using the modified normal distribution adjustment correction.
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2
Plot showing the relative error in p,,cp' for CDezs =10”
for a homogeneous reservoir with p,, ., computed using
the the modified normal distribution adjustment correlation
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Figure 4.70 — Plot showing the relative error in puco' for Cpe® = 10%° for a homogeneous reservoir
with pwco computed using the modified normal distribution adjustment correction.
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CHAPTER V
DECONVOLUTION

Up to this point, this thesis has dealt with the convolution problem — i.e., attempting to determine puco(tp)
from psp(tp) for a given Cp. This is a somewhat straightforward problem as we have the convolution integral
given in Eq. 3.1 to work with. Deconvolution is the reverse process, where the distortion from wellbore
pressure distorted by wellbore storage and skin is reversed or "inverted" to obtain the undistorted constant
rate pressure solution. In other words, it is the determination psp(tp) from pucp(tp) for a given value of Cp.
Convolution is an inherently stable mathematical formulation (in its simplest form it is a forward
summation). In contrast, deconvolution is inherently unstable as it would be a sort of recursion-type of
calculation (as opposed to a forward calculation), as such, any errors/inaccuracies become amplified in a
deconvolution process. Our goal is to leverage the approximations and correlations developed in Chapter 3
to attempt a deconvolution process. The aim is to set up the deconvolution as a root-finding problem, since

we now have relationships between psp(to) and pweo(to) that are easier to tackle than the convolution integral.

We choose the Modified Normal Distribution Adjustment Correlation and the Linear psp(tp) Assumption
Approximation (Case 2) for the convolution attempt. The choice of these two approximation methods is
because they have accurately modeled the pwco(to) and pucp'(to) functions and can be set up in such a manner

as to find psp(tp) given puwco(to) and Cop.
5.1 Deconvolution Using the Modified Normal Distribution Adjustment Correlation

Recall that the Modified Normal Distribution Adjustment Correlation is given as

t 2]]
- In{DC}—ml
—1p gal 1 PsDCD
1-exp - exp| —=
[ {psD Cp 1 o127 2 o1
Pwed (tp) = Psp (tp) ) e P (5.1)
In{tD}—mz
L S, 1] [PspCp
o927 2 02

Using actual pwcp(tp) values for an infinite-acting homogeneous reservoir, obtained from numerical
inversion for 13 values of Cpe? ranging from 10! to 10%° we solve for psp(tp) in Eq. 3.8. Figure 5.1 shows
the type curve plot psp(tp) solutions obtained for the time period 10 < #/Cp < 10* and Figure 5.2 shows

the both actual and calculated psp(tp) solutions.. We note that there is a lack of agreement between these
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solutions, especially in early times. Also, the shape of the calculated psp(tp) curves is not as smooth as the
actual and has some "bumps". This is not an accurate deconvolution of puco(tp) function.

Type curve plot of pg, for a homogeneous reservoir with p,,cp
computed using the modified normal distribution adjustment
and deconvolution, showing only the approximate solution
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Figure 5.1 — Type curve plot of psp for a homogeneous reservoir. pwco computed using the modified
normal distribution adjustment and deconvolution, showing only the approximate
solution.
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Type curve plot of py, for a homogeneous reservoir with p,cp
computed using the modified normal distribution adjustment and deconvolution
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Figure 5.2 — Type curve plot of psp for a homogeneous reservoir. puco computed using the modified

normal distribution adjustment and deconvolution.

5.2 Deconvolution Using the Linear psp(tp) Assumption Approximation (Case 2)

Recall that the Linear psp(tp) Assumption Approximation (Case 2) is given as

2
psp(tp)+ CDtDL?D[psD (tD)]}

PwcD (tp) =—— 2
d

1+Cp 7[psD(tD)]

L {dto ﬂ P S (5.2)
tp +CDtD{dth[psD(tD)]} tp d?D[psD(tD)]_ psp(tp)

+exp| —
CD{psD(tD)—thth[PsD(tD)]} |:1+CD{d?[psD(tD)]H2
i 1 D ]

We note that it is impossible to solve this equation for psp(tp) without specifying a value for or an expression
of the derivative of psp(tp) with respect to tp. For the purpose of this work, we use utilize the log
approximation solution to the diffusivity equation for the unfractured well in a homogeneous reservoir.

Appendix G shows the details of this calculation.
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Figure 5.3 shows the type curve plot of psp(to) comparing results obtained from the numerical Laplace
transform inversion and the solution of the calculated results. There is disagreement between the results in
the region tp/Cp < 10%. Figures 5.4 and 5.5 show the psp'(to) functions obtained by numerical Laplace

transform inversion and our calculations respectively. It is clear that these two plots do not match each other.

This shows that we have been unable to successfully carry out deconvolution for a vertical well in an

infinitely-acting homogeneous reservoir using the Linear psp(tp) Assumption Approximation.

Type curve plot of p,, for a homogeneous reservoir
based on the explicit p,cp equation, linear p,p approximate solution
and log approximation solution to the radial flow diffusivity equation
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t/Cp
Figure 5.3 — Type curve plot of psp for a homogeneous reservoir comparing pso computed using the

explicit puwco equation, the linear psp approximate solution and the log approximation
solution to that computed using numerical laplace transform inversion.
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Type curve plot of p,,' for a homogeneous reservoir obtained by
numerically solving the cylindrical solution to the radial flow diffusivity equation
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Figure 5.4 — Type curve plot of psp' for a homogeneous reservoir, computed using numerical
Laplace transform inversion.
Type curve plot of p,,’ for a homogeneous reservoir
based on the explicit p,cp equation, linear p,p approximate solution
and log approximation solution to the radial flow diffusivity equation
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Figure 5.5 — Type curve plot of psp' for a homogeneous reservoir, computed using the explicit pwcp

equation, the linear psp approximate solution and the log approximation solution
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CHAPTER VI
SUMMARY, CONCLUSIONS AND FUTURE WORK

6.1 Summary

In an effort to validate and extend prior work to create explicit solutions for the computation of the effects
of wellbore storage and phase redistribution, we have derived three approximate solutions. These approxi-
mations are based on "imposing" a particular behavior in time on between the undistorted constant rate
pressure function, psp(tp). These behaviors include:

e The "constant” psp(tp) case which considers: pgp(tp)=a

e The "linear" psp(tp) case which considers: psp (tp) =a+btp

e The "quadratic" psp(tp) case which considers: pgp (tp) =ag +aitp + az*tD2
With these simplifying assumptions, the Laplace domain forms of the convolution integral were solved and
inverted into real space to obtain closed-form expressions for pressure that is affected by wellbore storage

distortions, pwco(tp).

The approximations were validated by applying them to different reservoir systems and comparing the
results to the actual solutions both qualitatively, by visual inspection, and quantitatively, by computation of
the error between the results. Of the three approximate solutions, the case which assumes that the constant
rate psp(tp) is quadratic in time gives the most accurate. However, the linear case is very close to the
quadratic in accuracy and consistency, and is significantly easier to implement, even on a spreadsheet

application.

From the quantitative validation done on the approximate solutions, it was clear that further work could be
done to improve them. In that light, two correlations were developed to reduce the errors in the approximate
solutions, thereby increasing their accuracy. These correlations tried to improve the constant case by

modeling the error and "adding" that error to the approximate solution. The correlations developed were:

e The normal distribution adjustment correlation.

e The modified normal distribution adjustment correlation.

Validation of these correlations was done in the manner as the analytical approximate solutions i.e.
qualitatively and quantitatively. The normal distribution adjustment correlation accurately modeled the
pwen(tp) function but failed to do the same for the derivative, pwco'(tp). The modified normal distribution
adjustment correlation accurately modeled both the pwco(tp) and pwcp'(to) functions, achieving the aim of
improving the approximate solutions. Also, both of these correlations are easy to implement in a direct
computer solution or spreadsheet calculation.

72



For the special case of the wellbore storage problem, the total wellbore dimensionless pressure with
distortion effects was derived such that the wellbore storage effect and wellbore phase redistribution effect
were de-coupled. This means that explicit relations can be written for the total wellbore dimensionless
pressure, pwo(tp), which includes the effects of wellbore storage, skin and wellbore phase redistribution
effects. Validation, similar to that done for the approximate solutions and correlations, was done on these
explicit relations for pup(to). The results show that these explicit expressions are accurate and compare very

well with the numerical inversion solutions.

Finally, using the approximate solutions and correlations developed, attempts are made to derive the psp(tp)
function from the pwcp(tp). Two attempts were made using the linear psp(tp) approximate solution and the
modified normal distribution adjustment correlation. While these deconvolution attempts ultimately proved

unsuccessful, they give some insight into what might be done to produce a better outcome in the future.

6.2 Conclusions

e Three closed-form expressions were analytically developed for the computation of the dimensionless
wellbore pressure with wellbore storage and skin effects, pwco(to).

e These approximate solutions were validated for fractured and unfractured wells in homogeneous
reservoirs and for unfractured wells in naturally fractured (dual porosity) reservoirs.

e The linear and quadratic psp(tp) approximate solutions show good accuracy and consistency and could
be used for any of the well and reservoir scenarios for which they are validated, but the linear psp(to)
approximate solution is (much) easier to implement.

e Two correlations were developed for the improvement of the analytical approximate solutions.

e These solutions were validated for an unfractured well in an infinite-acting homogeneous reservoir.

e The normal distribution adjustment correlation showed good accuracy in modeling the pwcp(to)
function, but this correlation did not yield accurate results for the pucp'(tp) function.

e The modified normal distribution adjustment correlation excellently modeled both the puco(to) and
pwco'(to) functions, and showed significantly better accuracy than the approximate solutions.

e The explicit relations developed for the computation of the dimensionless wellbore pressure which
includes wellbore storage, skin effects, and the effect of wellbore phase redistribution (pwo(to)) have
been verified to be on the same order of accuracy as the Laplace transform numerical inversion solutions
for this problem.

e Deconvolution using the linear psp(tp) approximate solution and the modified normal distribution
adjustment correlation for an infinite-acting homogeneous reservoir were attempted, but ultimately
these solutions are not viable in terms of accuracy or form, and are provided only as a "proof-of-
concept” for the deconvolution of the puco (to) function.
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6.3 Recommendations

e Develop and validate correlations that cover well and reservoir types other than the vertical well in an
infinite-acting homogeneous reservoir.

e Develop an improved pucp(tp) correlation that provides accuracy, consistency in results and is of such
simple formulation that it gives stable psp(tp) results in the "root-finding" deconvolution calculations.
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NOMENCLATURE

Dimensionless Variables

Cwp =
Cb =
Cio =
Cop =
Po =
Po =

wa -

Pwco =
Pwpp =
Pep =
Po =

Quwco =

q w¢D

S =
to =
o =
u =

OC¢D -

Dimensionless “apparent” wellbore storage coefficient for wellbore phase redistribution model
Dimensionless wellbore storage coefficient

Dimensionless wellbore storage coefficient based on fracture half-length

Dimensionless coefficient for wellbore phase redistribution model

Dimensionless pressure

Dimensionless pressure with skin effects

Total dimensionless pressure with wellbore storage, skin and wellbore phase redistribution
effects

Dimensionless pressure with wellbore storage and skin effects

Dimensionless pressure with wellbore storage, skin and wellbore phase redistribution effects
Dimensionless pressure with wellbore phase redistribution effects

Dimensionless pressure derivative function

Dimensionless sandface flowrate with wellbore storage and skin effects

Dimensionless sandface flowrate with wellbore storage, skin and wellbore phase redistribution
effects

Dimensionless skin factor

Dimensionless time based on wellbore radius

Dimensionless time based on fracture half-length

Laplace transformation variable

Dimensionless parameter for wellbore phase redistribution model

Field Variables (Pressure Functions)

Pi

Pwf
Pws
Ap

Initial reservoir pressure, psia
Flowing bottomhole pressure, psia
Shut-in bottomhole pressure, psia

Pressure drop, psi

Field Variables (Formation and Fluid Properties)

B =
C =

Ct =

Formation volume factor, RB/STB
Wellbore storage coefficient, BBL/psi
Total compressibility, psia™

Total formation thickness, ft

Permeability, md
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Lt = Fracture half-length, ft

pi = Initial reservoir pressure, psia
pwi = Flowing bottomhole pressure, psia
pws = Shut-in bottomhole pressure, psia
q = Flowrate, STB/D

rw = Wellbore radius, ft

agp = Porosity, fraction

= Porosity, fraction
Interporosity flow coefficient (natural fracture system parameter)

= Viscosity, cp

T E > S
1

= Storativity ratio (natural fracture system parameter)

Dimensionless Correlation Variables

ARE = Absolute relative error, percent

a = Normal distribution scaling parameter

& = Discrepancy parameter

m = Normal distribution mean parameter

o = Normal distribution standard deviation parameter
Ct = Flowing bottomhole pressure, psia
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APPENDIX A
DERIVATION OF LAPLACE TRANSFORM IDENTITIES FOR WELLBORE STORAGE
DISTORTION

It has been shown that the constant rate bottomhole pressure affected by wellbore storage and skin effects

can be written as a convolution integral given by

o)
pwep (tp)= | ;_T[qWCD (T)] pSD(tD —T)dz’, ................................................................................. (A1)
0
where
gwep (tp)=1-Cp %[prD(tD)] ............................................................................................... (A2)
D
and
PSDED) = PD D) 45 - i (A.3)

Taking the Laplace transforms of Eqgs. A.1 and A.2 gives

PweD (W) =UTWeD (U) PSD (U) oo (A.4)
and
dweh (U)Z%—CDU PIWCD (U) ettt (A.5)

Combining Egs. A.4 and A.5 and solving for pucp(u) gives

1

PwcD (U) = N (AG)
|: — +C pu 2 :|
psD (U)
or alternatively
P S - 1 C (A7)

+Cpu?Pep (U)

Egs. A.6 and A.7 are mathematically equivalent. More importantly, they convenient simplifications when
used with certain relations of pgp(u). These relations will be discussed as they arise in the subsequent

derivations.
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APPENDIX B
DERIVATION OF APPROXIMATIONS FOR puwep(to) BASED ON CONSTANT psp(tp)

The assumption in this method is not that psp(tp) is constant for all tp. It is that psp(tp) can be approximated

as being constant near a particular time of interest. Proceeding along this theme

PSD (D) S8+t (B.1)

Taking the Laplace transform of Eq. B.1 gives

The Laplace transform identity for bottomhole pressure with wellbore storage and skin effects is given as
1

+CDu2}

Y (B.3)

Pwep (U) =
|:F_)SD (u)
Substituting Eq. B.2 into Eq. B.3 gives

1

ﬁWCD (U) = [u P P PP (B.4)

2
—+Cpu
oo’

Factoring the denominator of Eq. B.4 and rearranging gives

_ 1 1
PwepU) = — "=
CD 1
ulu+
aCD
or
Pwep () = e (B.5)
u[u + y]
where
1
DR B.6
o (B.6)
and
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The inverse Laplace transform of Eq. B.5 is

I T Y R | (B.8)
y

Substituting Egs. B.6 and B.7 into B.8, we obtain

pwed (tp) = a[l— exp[ ;é'; ﬂ e (B.9)

Recall Eq. B.1

Combining Egs. B.1 and B.9 gives

_ _ “'p
pPweD (tp) = PsD (tD)|:1 eXp|: 00 (0)Cp :|:| PP (B.10)

We differentiate Eq. B.10 with respect to tp. We have two options. First, we will “blindly” differentiate
Eq. B.10 assuming that psp(tp) is constant. This gives

d 11 -tp
R[pWCD(tD)]_{l eXp|:—pSD(tD)CD:|:| .................................................................................... (B.11)

Second, assuming

psp(tp) = f(tp).

we differentiate Eq. B.10. This gives

i lueotol- 1-ew] -0 [l o)

dt tp)C
D PsD(D)Co It = (B.12)
| Potto)-to e otto e 0 |
Psp(tp)Cp dtp Psp(tp)Cp
Rearranging Eq. B.11 gives
exp{ “p }:1— Pwcp (o) e (B.13)
psp(tp)Ch psp(tp)

81



Combining Egs. B.11 and B.13 gives

d 1 pWCD(tD):|
_ B L RO SRRRN B.14
dt [pWCD(tD)] C { Ps (t ) ( )

Combining Egs. B.10, B.12 and B.13 gives

= lpucoliol]- 2220(0) 4 oo )

1{1 LL[DSD@D)]}P_F’WL@D)} ..........................................................................

Cp|  pspltp)dip psp(tp)

The purpose of obtaining the derivative function is to generate plotting functions for type curve analysis and

for use in the computation of dimensionless sandface flow rates, qucp, as given by
d
gwep (tp) =1-Cp E[chD(tD)] ............................................................................................... (B.16)

Combining Egs. B.10 and B.16 gives

~tp
tp)=1- B el IR B.17
qWCD( D) eXp|: psD(tD)CD:| ( )

which is of the form

adweb (tp) =1—exp[—ﬂvEDtD]. ....................................................................................................... (B.18)
where
PUED = — 7 ettt bbb bR bR b bRt bbbt b bbb (B.19)
' Psp(tp)Cp

Eq. B.17 was proposed originally by van Everdingen, and used by Ramey for well test analysis. van
Everdingen proposed Eq. B.17 based on empirical observations of field data. In this work, however, Eq.
B.17 is proposed based on analytical considerations. The significance of the derivation done here is not that
it proves van Everdingen’s observations, rather it shows that the form of Eg. B.17 can be developed
rigorously. The applicability of Eq. B.17 must be determined via comparison of Egs. B.16 and B.18 using

simulated data.

Similar results for qucp could be obtained by combining Egs. B.16 and B.12 (or B.15). However, for the

purposes of the present discussion, we only wished to verify the van Everdingen model for guco.
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APPENDIX C
DERIVATION OF APPROXIMATIONS FOR pwecp(to) BASED ON LINEAR psp(tp)

The assumption in this method is not that psp(tp) is linear for all tp. It is that psp(tp) can be approximated as

being linear near a particular time of interest. Proceeding along this theme,

PSD D) =@ DED o (C.1)

Taking the Laplace transform of Eq. C.1 gives

a b
R Y (L) T TR C.2
Psp (U) U+u2 (C.2)

The Laplace transform identity for bottomhole pressure with wellbore storage and skin effects is given as

ESD (U) - (C3)

Puep ()= EH Cpu®Psp (U)J

Substituting Eq. C.2 into Eq. C.3 gives

a_b
u y2

PICD (U) = o s (C4)
2la b
1+Cpu {+}
u y2
Expanding and simplifying gives
_ a b
Pwcp (U) = > = 3 >
u+Cpau“+Cpbu u“+Cpau”+Cpbu
Puco (1) 2 + d
cb\4)=
v u(Cpau+1+Cpb) y2?(Cpau+1+Cpbu)
D w 1 1 N b 1
wCD ==
C aC
D, +1+CDb D 2 u+1+CDb
CDa CDa
1 1
PwcpW) =y o ettt e et e nen (C.5)
v ulu +x] uz[u+x]
where
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= e et e et e e e e s s e et s st e et r e r et C.6
Con (C6)
1
D ettt et et e et e e ee st ee s et e s et et e et e et ee e e e s e et ee s eeseeeseeeseeerereren C7
y o (C.7)
b
Z S o ettt e et e et ee et e s e r e e e s een s c.8
o (C8)

The inverse Laplace transform of Eq. C.5 is

pwep (tp) = % [L—exp(- xtp )]+ xiz [exp(= XtD )+ XtD = 1] ccosoeereeeeereeereeeeeee e (C.9)

For convenience, we leave our result in the form given by Eq. C.9. Now we must consider a scheme to

determine the coefficients a and b in the psp(tp) model. Recall Eq. C.1

PsDAD) =@ 4+DED coii (C.1)

Differentiating Eq. C.1 with respect to tp gives

%[pSD(tD)]: D ettt (C.10)
D

Combining Egs. C.1 and C.10 and solving for the a coefficient gives

a= pSD(tD)—tD %[psD(tD)] ..................................................................................................... (C.11)

In conclusion, we have developed Eq. C.9 based on the assumption of psp(tp) behaving in a linear fashion,
at least locally. Although a closed form derivative of Eq. 40 could be developed, this expression is so

complex (recall x, y and z are functions of time) that numerical differentiation would be more efficient.
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APPENDIX D
DERIVATION OF APPROXIMATIONS FOR pwep(to) BASED ON QUADRATIC psp(tp)

The assumption in this method is not that psp(tp) is quadratic for all tp. It is that psp(tp) can be approximated

as being quadratic near a particular time of interest. Proceeding along this theme,

Starting with the quadratic model

psp (tp)=ag +aitp +a» tD2 .......................................................................................................... (D.1)

Taking the Laplace transform of Eq. D.1 gives

— ap a 28.2*
Psp(U)=—+—+ PP R U TP VPP PRUPRPT (D.2)
u oy 3
which can be expressed as
_ ag a1 2ap
DD (U) = A o o e (D.3)
u u? oyl
where
as = 2a2* .............................................................................................................................................. (D.4)

The Laplace transform identity for bottomhole pressure with wellbore storage and skin effects is given as

pucp @) =2 (D.5)

b-+CDU255D(U)J

Substituting Eq. D.3 into Eq. D.5 gives

a a a
0 8  a
u o 2 3

— u
PwcD (U) = a N a PP (D.6)
2| 40 1 2
1+Cpu {++}
u y? 8
Rearranging Eq. D.6 gives
— c c c
Pwep (U) = F 3 0 1t 13 0 1t 515 0 S TSNSV PTPT ST (D.7)
u +xu+yJ ulu +xu+yJ u [u +xu+yJ

where
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co=ap/b
cp=a/by
Cr=a/ly
bo :1+CDa1
b =Cpag
b2 :1+CDa2
and
X =y /b
y=hp/by

For the purpose of mathematical convenience, the terms v and w are defined as

w=x/2
And finally,

1

A=—
2v

B=w-v

C=w+v

Taking the inverse Laplace transform of Eq. D.7 gives

pWCD(tD):COfO(tD)"'lel(tD)"'CZ f2(tD) .................................................................................. (D.8)
where

fo(tp )= AlEXP(— BED ) —JEXD(= CED ) crrvvvveveveeeeeemmmmssmsssssssssee e sessessssssssesssssssssss s (D.9)

f1(tp) = A{%[l—exp(— BtD)]—%l—exp(— CtD)} ......................................................................... (D.10)

ato)= A 3= 2o | - 2y |- ot sto)- Ly Ctp) o o)
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Although Eqg. D.8 is a bit tedious for hand calculations, it should be relatively easy to program into a
calculator or spreadsheet application software package. We are, however, left with the problem of
determining the coefficients of Eq. D.8. We recommend the use of a quadratic collocation polynomial over
a 3-point grid. The computational procedure is initiated by calculating the collocation coefficients. For a
3-point grid, collocation coefficients are

Yo = Psp (tpo)

_ Psp(tp1) - Psp(tpo)
;1 —tpo

Y1

_ Psb(tp2) — Yo~ Yiltp2 ~tpo)
2(tp2 ~tpo)(tp2 ~tp1)

And the a coefficients are

Y2

ap =Yo —Yitpo + Y2tpotp1

a1 =Y1-Y2(tpo +tpy)

*

az =Yy2
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APPENDIX E
DERIVATION OF EXPLICIT FORMULAE FOR THE COMPUTATION OF WELLBORE
PHASE REDISTRIBUTION EFFECTS

The purpose of this derivation is to provide explicit means to compute wellbore phase redistribution effects.
Previously, the effects have only been computed using Laplace space solutions. This appendix provides a
rigorous derivation of convolution identities which use the dimensionless wellbore storage pressure, puwco(to)

and the dimensionless phase redistribution pressure, pgo(tp).

The dimensionless sandface flow rate, g.4o(tp) for this case is given by Fair (1981) as

qW¢D(tD):1_CD{%[pWCD(tD)]_%[p@(tD)ﬂ .................................................................. (E.1)

The convolution integral for this case is

tp d
pwD (D)= | F[qu (T)] PsD (tD —Z')dZ'. ................................................................................... (E.2)
0 YD

The Laplace transform of Eq. E.1 is
PwD (U) =UTwgD (U) PSD (U) - oo (E.3)

Taking the Laplace transform of Eq. E.2, we have

_ 1 _ _
g ()= ~Cp [BSD (U) = By (W) st (E.4)
Rearranging Eq. E.3 gives

Pwp (U) —ud
Psp (U)

Rearranging Eq. E.4 gives

UTgD (1) = 1= U2C D [BuD () = BgwD (U)] (E.6)
Equating Egs. E.5 and E.6 gives

Pwb (1)

—1-ulc~ls _5
5.5 (1) =1-u CD[wa(u) p¢wD(u)] ........................................................................................... (E.7)

Rearranging
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Pwp (U) = ! +u2CDﬁ¢D(u){_ ! +U2CD:| .................................................... (E.8)
{ +U2CD} Psp ()
Psp(U)
or
Pwb (U) = Pwep (W) +u2CD DD (U) PWCD (U) oo (E.9)
where
Buch (U) :{ES;(U) + UZCD} .......................................................................................................... (E.10)

We recognize that Eq. E.10 is the relation for wellbore storage that was derived in Appendix A.

Eq. E.9 can be rewritten as

PwD )= PweD )+ F_)W¢D (U] ettt (E.12)
where
gD (1D) ZUZC D gD (U) PUCD (U) v (E.12)

The inverse Laplace transform of Eq. E.11 is given as

pwD (tp) = PwcD (tp) + pW¢D (ED)) coverreree ettt (E.13)

E.13 suggests that we can express the effect of distortion due to wellbore phase redistribution as a component
term added to the existing wellbore storage solution. The application of this method will depend on our

ability to obtain the inverse Laplace transform of Eq. E.12.

Taking the inverse Laplace transform, we obtain the following using the convolution identity

D 42
d

Pwgd D) =Cp | d—z[pw(r)]chD(tD—r)dr, ...................................................................... (E.14)

o a7
or alternatively

D 42

pW¢D(tD):CD I d_z[pWCD(T)]%D(tD ST AT s (E.15)
o ar

Recalling that the convolution integral for wellbore storage is given as

89



tD
pwep (tp) =Cp (j) %[qwCD(z')]psD(tD L £SO (E.16)

van Everdingen and Hurst (1949) give the discretized form of Eq. E.16 as

pwep (tp) =Cp _gl[qWCD (tp,i) —dwecb (tD,i—l)] PsD (ID —tD,i—1) rerverrerrmrrmres (E.17)
i=

By analogy of Egs. E.14, E.15, E.16and E.17, we obtain

PwgD (tp)=Cp i%l{% [p¢D (tp,i )]—%[pw (tD,i—l)]:| PwCD (tD —tD,i—1) v (E.18)
and

Pugd (0)=Cb 2 |~ [Pwco (t,1)]- ~—[puco to,i-)] | Po (to ~to,i 1) (E19)

wgD \'D Di:l dtp wCD\!'D,i dtp wCD\'D,i-1 DD TID,i—1) wererrerrreereeeens .

We note that Egs. E.18 and E.19 are general in nature and only require knowledge of the dimensionless
wellbore storage coefficient, Cp, the dimensionless wellbore storage pressure, puwco(to), and the

dimensionless phase redistribution pressure, pso(to).

Citing physical observations, Fair (1981) proposed the following model for the dimensionless phase
redistribution pressure, pyo(tp).

Py (tD) =Cyp {1— exp[%ﬂ ........................................................................................................ (E.20)

Taking the first derivative of Eq. E.20 with respect to tp we obtain

d RRY> -t
R[pw (tDl|)]—%exp[%] ................................................................................................... (E21)

In practice, the ayp parameter is rarely used. More commonly, the “apparent” wellbore storage coefficient,
Can, is specified. The relationship of a4p and the variables Cp, Cop and Cyp, is
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Our computations suggest that, when using the model of pyo(to) given by Eq. E.20, Eq. E.19 and E.20 will
yield the most accurate results for p.4p(tp) relative to the numerical inversion of Eq. E.12, as opposed to

using Egs. E.18 and E.21. However, further investigation is recommended.
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APPENDIX F
DERIVATION OF DECONVOLUTION APPROXIMATION FOR pso(to)
BASED ON pucn(to) DERIVED USING THE CONSTANT psp(to) ASSUMPTION

It has been shown that the constant rate bottomhole pressure affected by wellbore storage and skin effects

can be written as a convolution integral given by

tp
pwep(tp)= | di‘[[qWCD (‘L’)] PsD (tD —T)dz' e (F.2)
0
where
dweb (tp) =1-Cp dti[pww(tD)], .............................................................................................. (F.2)
D
and
PSD D) = PD D) 5 - o (F.3)

Eq. F.1 can be approximated as

~tp
= (3o | e S F.4
Pwcp (tp) = Psp ( D){ exp{ 55 (0)Co ﬂ (F.4)

where psp(tp) is the constant rate bottom hole pressure with only skin effects.

A comparison of pucp(tp) values obtained using Egs. F.1 and F.4 shows a difference, App(tp), between them.

Actual pwep(to) can therefore be modeled as

~tp
tp) = (T o) B e T F5
Pwep (tp) = Psp ( D){ exp{ psD(tD)CDﬂ pp (tp) (F.5)

where puco(tp) is obtained by convolution and the numerical inversion of the cylindrical source solution and

Apop(tp) is the difference between the actual and approximate pwco(tp).

Eq. F.5 can also be rewritten as

—-tp tp
= 1- - F et e e e e e e e eaaaas F.6
Pwcb (tp) = PsD (tD)”: EXP{ 5o Co ﬂ «9{ 50 Co ﬂ (F.6)

where
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App (tp) =psp (tp) |:6‘|:ptL:|:| .................................................................................................... (F.7)

Rearranging Eqg. F.6, we obtain

.{L}:{l—exp{ i) ﬂ— PweD D) e (F.8)
PsDCp PsDCp PsD (tp)

A semilog plot of €[to/(pso Cp)] Vs. to/(pso Cp) for Cpe? values of 10%, 10, 108, 10* and 10%° is shown in

Figure F.1. All other values of Cpe? show a similar shape. This plot suggests that [tp/(pso Cp)] is either

normally distributed (Gaussian distribution) or distributed in a fashion that is similar in shape to the normal
distribution. This implies that a mathematical equation describing the normal distribution or one that
describes a shape such as this could accurately model g[to/(psp Cp)]. There are several equations of varying
mathematical complexity that could describe a function shaped like this.

Plot of £[t,/p.pCpl VS ty/P.pChp for Cpe’ = 10',10%,10°,10", and 10"

n
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10° 10 10 10 10 10
0-12_ L] L] LB L] L] LA T L] IIIIIII 1] L] rrrrnn L] T LA™ 0-12
0.10 F /N J0.10

E 2 { 3
- Cpe =10 =
0.08 / 3 0.08
s F E
Q 5 / ;oz/\ 3
o 0.06 F ~ 3 0.06
2 - 2
5 F / 3
d 10 E
0.04 - 3 0.04
] / 10° E
0.02F / //_\ 4 0.02
= b7 25 10 3
3 Coe”=10 E
0-00 o L L L LLLLLL L L L1l Illl 0-00
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t/PspCp

Figure F.1 — Plot showing ¢ vs. to/(psp Cp)for Cpe values of 10%, 102, 10%, 10* and 10%°
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F.1 Deconvolution with Normal Distribution adjustment

The normal distribution is given by Abramowitz and Stegun (1972) as

Where p is the probability distribution function, « is a scaling factor, m is the mean of the distribution, o is

the variance of the distribution and x is value of the data point.

In our case, the normal distribution equation describing €[to/(psp Cp)] would be

¢ 2
In[ D }—m
11 | psDCD

2 o

tp o
g = e ST (F.10)
{ PsDCp } oN2r

where the values of a, m, and, o vary based on Cp.

An improved approximation of pwcp(to) obtained from combining Eqgs. F.6 and F.10 can, therefore, be

written as

‘ 2
In{D}—m
1| [ pspCD

2 o

_ _ -Ip ||«
chD(tD)—psD(tD) l:l eXp|: :|:| O_ﬂe ............................. (F.ll)

Psp Cp

While the choice of the normal distribution equation is based on the shape of [to/(pso Cp)], the parameters

of the normal distribution equation that provide a good fit for a particular value of Cp are determined by

® A good visual match of a plot that compares ¢[tp/(pso Cp)] obtained from Eq. F.8 and €[to/(pso Cp)]

obtained from the normal distribution equation (Eqg. F.10), and

® An acceptable level of error between €[to/(psp Cp)] obtained from Eq. F.8 and &[to/(psp Cp)] obtained

from the normal distribution equation (Eq. F.10).
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For the determination of error, we introduce the term Absolute Relative Error (ARE), in percent, which is
the absolute value of the difference between puco(tp) obtained from solving Eq. F.1 using numerical methods

and puco(tp) obtained using Eq. F.6. It is given as,

PwCDactual ~ PWCDapproximae
ARE = X

PwCDactyal

An acceptable level of error would be one with an ARE < 1.5%.

Plot showing the variation of o with C,

1% 10° 10° 10" 10"” 10® 10® 10® 10® 10* 10* 10® 10® 10¥
0.40 ~ 0.40
0.35 F /’ 0.35
0.30 { 1 0.30
0.25 F /J 1 0.25
s 0.20f \ q0.20
0.15f \ q0.15
n \ (—) a-Model .
( ® ) a-Data Points |]
0.10 9 J0.10
n N 3
0.05 F As 1 0.05
05 F S=u ] o.
L T~ | | -
0.00L 0.00
10° 10° 10° 10" 10® 10® 10® 10° 10* 10* 10* 10® 10®° 10
CD
Figure F.2 — Plot showing the variation of « with Cp.
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Plot showing the variation of owith C,
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Figure F.3 — Plot showing the variation of m with Cp.
Figures F.4 — F.11 show match plots and ARE plots for selected values of Cpe?. These plots show good
fits and acceptable ARE. By this process of matching and error determination, relationships between the

parameters a, m, and, o and Cp, were determined empirically to be given as

26 [1.43087InCp +1|
o= exp| — +0.03772,0r Cp <1, (F.13a)
77.1579 9.50843
Bm e e ——————————————————————— (F.13b)
InCD +4.4
M =0.90,F07 C <102, woovoovevveeveeeeeeseeseeseeseeeeeeeeeeeeeeeeeseseessee e ses s e et (F.14a)
T IR 10 oF n [0 Y (F.14b)
1[In cp-17
58 2| 2 6
o=———¢ FOrC D <107 s (F.15a)
212r b
G =0.94,T0TC 2100 ..o (F.15b)

Table F.1 shows the empirical values of &, m, and, ¢ for various values of Cp.
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Table F.1— Empirical values of a, m, and, ¢ for various values of Cp.

Co a m S

10* 0.1200 0.90 1.000
103 0.1550 0.90 1.020
102 0.2020 0.90 1.075
101 0.2800 0.90 1.095
10° 0.3680 0.90 1.100
10t 0.2700 0.90 1.100
102 0.2000 0.90 1.090
108 0.1560 1.00 1.040
104 0.1270 1.00 1.020
108 0.0900 1.00 0.940
108 0.0685 1.00 0.940
1010 0.0570 1.00 0.940
10%° 0.0401 1.00 0.940
1020 0.0310 1.00 0.940
10%° 0.0215 1.00 0.940
10%0 0.0165 1.00 0.940
10%0 0.0133 1.00 0.940
1080 0.0112 1.00 0.940

97



Plot comparing &[t,/p,pCp] and the Normal Distribution for CDezs= 10"

107 10" 10° 10" 10° 10°
0.14 — — —rrrrrm 0.14
- Cpe=10' .
0.12 | (—)Actual £[ty/p;pCp] 0.12
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010 A\ 1 0.10
0.08 : //\ ] -
0.06 - / 1 0.08
0.04 ; / \\ oou
0.02 / \\ -
0.00:_5_4_-/-..... R . ””":0.00

107 10 10° 10' 10% 10°

to/PspCp

€ [t/PspCol
]
]

Figure F.4 — Plot comparing &[to/(psp Cp)] and the Normal Distribution for Cpe? = 10%.

Plot of Absolute Relative Error for Cpe” = 10'
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Figure F.5 — Absolute Relative Error Plot for Cpe® = 10
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Plot comparing &[ty/p.,Cpl and the Normal Distribution for CDezs= 10°
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Figure F.6 — Plot comparing &[to/(psp Cp)] and the Normal Distribution for Cpe? = 10°,

Plot of Absolute Relative Error for CDezs= 10°
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Figure F.7 — Absolute Relative Error Plot for Cpe® = 10°.
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Plot comparing &[f;/p;pCp] and the Normal Distribution for CDeZS= 10*
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Plot of Absolute Relative Error for Cuezs= 10*

Figure F.8 — Plot comparing &[to/(psp Cp)] and the Normal Distribution for Cpe? = 10
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Figure F.9 — Absolute Relative Error Plot for Cpe? = 10,
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Figure F.10 — Plot comparing &[to/(psp Cp)] and the Normal Distribution for Cpe?s = 10%.
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Figure F.11 — Absolute Relative Error Plot for Cpe? = 10%.
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Figures F.12 and F.13show type curve plots of puco(to). While Figure F.12 shows a type curve plot of
pwco(tp) obtained numerically compared with that obtained from Eq. F.13, Figure F.13 shows a type curve
plot of puco(tp) obtained from Eq. F.13. It can be observed that the match is good, as corresponding Cpe?

curves lie on top of each other almost perfectly.

Figures F.14 and F.15 show type curve plots of pucp'(tp). While Figure F.14 shows a type curve plot of
pwen(to) obtained numerically compared with that obtained from the numerical differentiation of the puco(to)
in Eq. F.13, Figure F.15 shows a type curve plot of pwco(tp) obtained from Eq. F.13. It can be observed that
the shape of the derivative curve in Figure F.15 is not as it ought to be. There is an extra point of inflection

as the derivative moves towards radial flow stabilization (pwco'(tp) = 0.5).

This implies that this approximation is not an accurate representation of puwco(tp). Attempting to carry out a
deconvolution calculation aimed at determining psp(to) from this flawed pwco(tp) cannot yield accurate

results.

102



Type curve plot of p,cp for a homogeneous reservoir with
Pwcp computed using the normal distribution adjustment
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Figure F.12 — Type curve plot of puwco for a homogeneous reservoir. pwco computed using the
normal distribution adjustment.

Type curve plot of p,cp for a homogeneous reservoir with
Pwco computed using the normal distribution adjustment
showing only the approximate solution
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Figure F.13 — Type curve plot of pucp for a homogeneous reservoir. pwco computed using the
normal distribution adjustment showing only the approximate solution.
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Type curve plot of p,,cp" for a homogeneous reservoir with
Pwco computed using the normal distribution adjustment
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Figure F.14 — Type curve plot of pucp' for a homogeneous reservoir. puco computed using the
normal distribution adjustment.

Type curve plot of p,,cp" for a homogeneous reservoir with
Pwep computed using the normal distribution adjustment
showing only the approximate solution
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Figure F.15 — Type curve plot of pucp' for a homogeneous reservoir. puco computed using the
normal distribution adjustment showing only the approximate solution.
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F.2 Deconvolution with Modified Normal Distribution adjustment

The modification of the normal distribution could be written as

a 1| Xx—m 2 a 1| Xx—m 2
1 —' 2 — 12
p= exp| —= + exp| —— e —————— (F.16)
o1V 2 2{ o1 } o927 2{ o) }

This is essentially the addition to two normal distribution equations, where p is the probability distribution

function, a; and a; are the scaling factors, m; and m; are the means of the distributions, 1 and o, are the

variances of the distributions and x is value of the data point.

In our case, the normal distribution equation describing g[tp/(pso Cp)] would be

where the values of as, az, m1, My, o1, and o2 vary based on Cp.

An improved approximation of pwcp(tp) obtained from combining Egs. F.6 and F.10 can, therefore, be

written as
_ t -
- In{DC}—ml
-t
1_exp{ D }_ X exp 1 PsDtD
PsDCD || o1v2r 2 o1
Pwep (tp) = Psp (tp) i I (F.18)
R S B PspCp
ooN21 2 02

While the choice of the modified normal distribution equation is based on the shape of g[to/(pso Cp)], the
parameters of the normal distribution equation that provide a good fit for a particular value of Cp are

determined by

® A good visual match of a plot that compares ¢[to/(pso Cp)] obtained from Eq. F.8 and €[to/(pso Cp)]
obtained from the modified normal distribution equation (Eg. F.17), and
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® An acceptable level of error between g[tp/(pso Cp)] obtained from Eq. F.8 and ¢[tp/(psp Cp)] obtained
from the modified normal distribution equation (Eg. F.17) i.e. an Absolute Relative Error (ARE) <
1.5%.

Plot showing the variations of ¢, and a, with Cj,
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Figure F.16 — Plot showing the variation of a1 and a2 with Cp.
Plot showing the variations of m, and m, with C,
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Figure F.17 — Plot showing the variation of m; and m; with Cp.
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Figures F.18 — F.25 show match plots and ARE plots for selected values of Cpe®. These plots show good
fits and acceptable ARE. By this process of matching and error determination, relationships between the

parameters a1, a2, M1, My, a1, 62 and Cp, were determined empirically to be given as

67 |0.17712654InCp)|
o= exp| — +0.06176,for Cp <1, oo (F.19a)
46.79328048 6.491984578
a1 = 7.25627685 L FOrCD 20, (F.19Db)
InCp +4.82070369
67 0.17712654InCp)|
ap = ———————exp| - +0.06176,f0r Cp <1, ..ovvvvveererrecenneeeienrereesnenines (F.20a)
46.79328048 6.491984578
ay = 402500168 _ (O Y3 OO (F.20b)
INCp +6.45174628
my = 0.33475819€rf(0.00017879C 5 )+ 343607917 ,....cvvvvevrrmmmreeereeeessssesssseessssssssssssesssssssssss (F.21)
My =0.16erf(0.000038895C D) )+1.44896298, .........crrrveversssmmsnsessssessssssssessssssssssssssessssssssss (F.22)
O S 158 1 e (F.23)
09 Z0.79 . oo (F.24)

Table F.2 shows the empirical values of &, m, and, ¢ for various values of Cp.
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Table F.2— Empirical values of a, m, and, ¢ for various values of Cp.

Co a1 m; S1 az ma S2

104 0.989677 3.436079 1.58 0.612319 1.448963 0.79
107 1.096792 3.436079 1.58 0.613858 1.448963 0.79
102 1.216340 3.436080 1.58 0.615751 1.448963 0.79
10t 1.349764 3.436086 1.58 0.618231 1.448964 0.79
10° 1.505232 3.436147 1.58 0.623862 1.448970 0.79
10t 1.018669 3.436755 1.58 0.459773 1.449033 0.79
102 0.769825 3.442832 1.58 0.364026 1.449665 0.79
108 0.618690 3.502901 1.58 0.301284 1.455982 0.79
104 0.517159 3.767002 1.58 0.25699 1515799 0.79
108 0.389364 3.770837 1.58 0.198596 1.608963 0.79
108 0.312214 3.770837 1.58 0.161826 1.608963 0.79
10%° 0.260581 3.770837 1.58 0.136544 1.608963 0.79
10%° 0.184359 3.770837 1.58 0.098193 1.608963 0.79
1020 0.142637 3.770837 1.58 0.076662 1.608963 0.79
10%0 0.098193 3.770837 1.58 0.053291 1.608963 0.79
1040 0.074866 3.770837 1.58 0.04084  1.608963 0.79
10%0 0.060494 3.770837 1.58 0.033106 1.608963 0.79
1080 0.050752 3.770837 1.58 0.027834 1.608963 0.79
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Figure F.18 — Plot comparing &[to/(psp Cp)] and the Modified Normal Distribution for Cpe? = 10%.

Plot comparing &[ty/p,,Cp] and the Modified Normal Distribution for CDezs= 101
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Figure F.19 — Absolute Relative Error Plot for Cpe? = 10* (Modified Normal Distribution).
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Figure F.20 — Plot comparing &[to/(psp Cp)] and the Modified Normal Distribution for Cpe? = 10°.

Plot comparing e[t,/p,,Cp] and the Modified Normal Distribution for Cpe” = 10°
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Figure F.21 — Absolute Relative Error Plot for Cpe? = 10° (Modified Normal Distribution).
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Plot comparing &[t,/p.»Cs] and the Modified Normal Distribution for Cpe’ = 10°
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Figure F.22 — Plot comparing ¢[to/(psp Cp)] and the Modified Normal Distribution for Cpe? = 10*.
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Figure F.23 — Absolute Relative Error Plot for Cpe? = 10* (Modified Normal Distribution).

111



Plot comparing &[ty/p,5,Cp] and the Modified Normal Distribution for CDe2s= 10"
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Figure F.24 — Plot comparing &[to/(psp Cp)] and the Modified Normal Distribution for Cpe® = 10,

Plot of Absolute Relative Error for C[,ezs= 10"
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Figure F.25 — Absolute Relative Error Plot for Cpe® = 10'° (Modified Normal Distribution).
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Figures F.26 and F.27show type curve plots of puco(to). While Figure F.26 shows a type curve plot of
pwco(tp) obtained numerically compared with that obtained from Eq. F.27, Figure F.27 shows a type curve
plot of puco(tp) obtained from Eq. F.27. It can be observed that the match is good, as corresponding Cpe?

curves lie on top of each other almost perfectly.

Figures F.28 and F.29 show type curve plots of pucp'(tp). While Figure F.28 shows a type curve plot of
pwen(to) obtained numerically compared with that obtained from the numerical differentiation of the puco(tp)
in Eq. F.27, Figure F.29 shows a type curve plot of pucp(tp) obtained from Eq. F.27. It can be observed that

both the pressure and derivative curves are very good matches.

This implies that this approximation is an accurate representation of pwcp(tp) and a deconvolution aimed at

determining psp(to) from this puco(tp) can be attempted.

Deconvolution, in this case, means the determination of psp(tp) from Eq. F.18. This cannot be done by hand
and requires the use of some software package. Wolfram Mathematica was used in the deconvolution

calculations in this work.

Figures F.30 and F.31 show type curve plots of psp(tp). While Figure F.30 shows a type curve plot of
psp(to) obtained numerically compared with that obtained from Eq. F.18, Figure F.31 shows a type curve
plot of psp(to) obtained from Eq. F.27. It is clear that the psp(to) determined using deconvolution does not
match the one obtained numerically. The attempted deconvolution has not yielded an accurate psp(tp)

approximation.
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Type curve plot of p,cp for a homogeneous reservoir with
Pwco computed using the modified normal distribution adjustment
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Figure F.26 — Type curve plot of pucp for a homogeneous reservoir. pwco computed using the
modified normal distribution adjustment.

Type curve plot of p,,c, for a homogeneous reservoir with
Puwcp computed using the modified normal distribution
adjustment showing only the approximate solution
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Figure F.27 — Type curve plot of puco for a homogeneous reservoir. pwco computed using the
modified normal distribution adjustment showing only the approximate solution.
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Type curve plot of p,cp' for a homogeneous reservoir with
Pwcp computed using the modified normal distribution adjustment
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Figure F.28 — Type curve plot of pucp' for a homogeneous reservoir. puco computed using the
modified normal distribution adjustment.

Type curve plot of p,,cp' for a homogeneous reservoir with
Pwcp computed using the modified normal distribution
adjustment showing only the approximate solution
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Figure F.29 — Type curve plot of pucp' for a homogeneous reservoir. puco computed using the
modified normal distribution adjustment showing only the approximate solution.
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Type curve plot of p,, for a homogeneous reservoir with p,cp
computed using the modified normal distribution adjustment and deconvolution
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Figure F.30 — Type curve plot of psp for a homogeneous reservoir. puco computed using the
modified normal distribution adjustment and deconvolution.

Type curve plot of py, for a homogeneous reservoir with p,cp

computed using the modified normal distribution adjustment
and deconvolution, showing only the approximate solution
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Figure F.31 — Type curve plot of psp for a homogeneous reservoir. puco computed using the

modified normal distribution adjustment and deconvolution, showing only the
approximate solution.
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APPENDIX G
DERIVATION OF DECONVOLUTION APPROXIMATION FOR pso(to)
BASED ON puco(to) DERIVED USING THE LINEAR psp(to) ASSUMPTION

It has been shown that the constant rate bottomhole pressure affected by wellbore storage and skin effects

can be written as a convolution integral given by

tp d
pwed (tp) = | d—T[quD(r)]psD(tD )T, o (G.1)
0
where
dweb (tp) =1-Cp dti[pww(tD)], ............................................................................................. (G.2)
D
and
PSD (D) = PD D) 5 - ot (G.3)

Eq. G.1 can be approximated as

pwep (tp) = %[1— exp(— xtp )]+ iz [exp(= Xtp )+ XtD —1] oo (G.4)
X
where
1+ CDb
D (G.5)
1
Yy —G ................................................................................................................................................. (G6)
b
L= ﬂ ............................................................................................................................................... (G.7)
and
b= E[psD(tD)] ................................................................................................................................ (G.8)
d
a= psD(tD)—tD T[pSD(tD)] ....................................................................................................... (G.9)
D

Substituting Egs. G.8 and G.9 into Eqgs. G.5, G.6 and G.7, we obtain
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1+CD{dth[psD(tD)]}

Ko e ——————————————— ottt (G.10)
CD{psD(tD)_tD dth[psD(tD)]}
o Peolto)] o
CD{psD(tD)_tD mdD[psD(tD)]}
y . psp(tp)-tp dth[psD(tD)]
B e ———————————— (G.12)
CHN ol L fotoll
. e Co|Polo)to ool o rotiol] -
x_z_(l+CDb)2_ {1 i { d e .
+Cp dtD[psD(tD)]ﬂ
Therefore, Eq. G.4 becomes
psp(tp)-tp dth[psD(tD)] o +CDtD[dth[psD(tD)]}
Pwep (tp) = 1-exp| -
1+Cp i[IOsD(tD)] Cp psD(tD)_tDL[psD(tD)]
dtp dtp
. CD{PSD(tD)‘tD dth[psD(tD)]}Lth[psD(tD)]}
2
[ucD[de[psD(tD)]ﬂ
to +CDtD{dSD[pSD(tD)]} o +CDtDLth[psD(tD)]}
exp| — + -1
co| potio)-to & [peolto]] | |co| motio)to & [meolio]
.................................................................................................................................................................. (G.14)
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. cD{psDaD)—thfD[psDaD)ﬂ[dt"D[psD(tD)]}_ piolto)-to - b o)
w 2
{1+CD[dth[psD(tD)]ﬂ 1+CDL“dD[pSD(tD)]}
to +CDtDLtO:D[psD(tD)]}
exp| — +
_ CD{DSD(ID)_tD dth[psD(tD)]} _
psD(tD)+(1—tD)dth[psD(tD)]JrCD[psD(tD)—tD dth[psD(tD)]}L“dD[psD(tD)]}
2
1+CD[de[pSD(tD)]} {1+CDLﬁdD[psD(tD)]ﬂ
.................................................................................................................................................................. (G.15)
2
psD(tD)+CDtD{d[psD(tD)]}
Pwep (tp) = il
w B 2
d
{1+ CD{dtD[psD(tD)]ﬂ o
ceol tp +CDtDthdD[psD(tD)]} tp dth[psD(tD)]— psp(tp)

CD{psD(tD)_tD dth[psD(tD)]} {1+ CDLfD[DsD(tD)]ﬂZ

The type curve plot, shown in Figure G.1, comparing pucp(tp) obtained using Eq. G.16 (explicit pwco
equation) and that obtained from applying Egs. G.4 to G.9 (linear psp approximation solution) directly shows
that the results are one and the same. Therefore, pwco(to) obtained using the explicit equation is an accurate

approximation for pwcp(tp).
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Comparision of Linear py, Approximation Solution and Explicit p,,cp Equation Solution
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Figure G.1 — Type curve plot of pucp for a homogeneous reservoir comparing pwco computed using

the explicit pucp equation and the linear psp approximation solution.

Deconvolution of puco(to) for an unfractured well in an infinite-acting homogeneous reservoir

The deconvolution of Eq. G.1 is the determination of psp(tp) from Eq. G.16. This would be impossible to

achieve without specifying a value for or an expression of the derivative of psp(tp) with respect to tp.

For a vertical, unfractured well in a homogenous reservoir, the log approximation solution to the diffusivity

equation for radial flow is given as

1,04 tp
pSD(tD) —Elnl:—}/—z:l ...........................................................................................................

e’ Ip

Differentiating Eq. G.17 with respect to tp,

i[psD (tD)]Zi ..................................................................................................................

dtp 2tp

Substituting Eg. G.18 into G.16, we obtain,
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L 12
psp(tp)+ CDtD[Zt}
D

Pwep (tp) = — 5
1
1+Cpl| —
* D|:2ID :|:|
i e e (G.19)
1 1
tp +CDtD{Zt} tD{Z}_ psp(tp)
D tp
+exp| — 5
1
Cp| psp(tp)-tp| - 1+Cp| 1
Simplifying Eq. G.19,
C 1
psD(tD)+4t—D tD[ZtD}—psD(tD) tD+C7D
Pwep (tp) = 2D + S exp| - 2 T | (G.20)
1+C7D 1+C7D CD[psD(tD)_Z}
ZtD 2tD

Eq. G.20 can be solved iteratively for psp(tp) with the help of spreadsheet packages.

Type curve plot of p,, for a homogeneous reservoir
based on the explicit p,cp equation, linear p,p approximate solution
and log approximation solution to the radial flow diffusivity equation
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Figure G.2 — Type curve plot of psp for a homogeneous reservoir comparing pspo computed using the
explicit puco equation, the linear psp approximate solution and the log approximation
solution to that computed using numerical laplace transform inversion.
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Type curve plot of p,,' for a homogeneous reservoir obtained by
numerically solving the cylindrical solution to the radial flow diffusivity equation
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Figure G.3 — Type curve plot of psp' for a homogeneous reservoir, computed using numerical
Laplace transform inversion.

Type curve plot of p,,' for a homogeneous reservoir
based on the explicit p,cp equation, linear p,, approximate solution
and log approximation solution to the radial flow diffusivity equation
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Figure G.4 — Type curve plot of psp' for a homogeneous reservoir, computed using the explicit pwco
equation, the linear psp approximate solution and the log approximation solution
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Figure G.2 shows the type curve plot of psp(tp) comparing results obtained from the numerical Laplace
transform inversion and Eq. G.20. While at mid to late times the match is good, at early times, the match is
not very good. Figures G.3 and G.4 show the derivatives of psp(tp) obtained by numerical Laplace transform

inversion and Eq. G.20 respectively. It is clear that these two plots do not match each other.

This shows that we have been unable to successfully carry out deconvolution for a vertical well in an

infinitely-acting homogeneous reservoir.
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