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ABSTRACT 

Role of the N-terminus of Rpb9 in RNA Polymerase II Transcription 

Katherine Nguyen 
Department of Biochemistry and Biophysics 

Texas A&M University 

Research Advisor: Dr. David Peterson 
Department of Biochemistry and Biophysics 

Eukaryotic transcription is a highly regulated process that requires RNA polymerase to 

continuously proofread and edit the RNA stand before it continues to elongate. A subunit in RNA 

polymerase II (RNAPII), known as Rpb9, plays an important role in the efficiency of RNA 

proofreading and maintains the health of a cell as a whole. Recent studies have proven that Rpb9 

serves at least two functions, one of which resides in the C-terminal half of the protein and the 

other in the N-terminal half.  The experiments proposed here suggest a genetic approach to start 

to determine the function of the N-terminal domain. 
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CHAPTER I  

INTRODUCTION 

Transcripts produced in eukaryotic cells are constantly being proofread by RNA polymerase II 

during transcriptional elongation. One small subunit of RNAPII, Rpb9, a protein composed of 

122 amino acids, has been proven to have a significant role in the proofreading activity of the 

polymerase. Recent research has shown that in the absence of Rpb9, errors incurred during 

transcription are not efficiently corrected. Incorrect matches to the template DNA strand are 

normally cleaved by an accessory factor called TFIIS, which associates with the polymerase and 

reprograms the active site for the removal of misincorporated nucleotides (1). Rpb9 has been 

proven to be crucial in slowing the elongation process after a misincorporation, providing a 

checkpoint during which the polymerase can backtrack and proofread the transcript (1). 

Therefore, the absence of Rpb9 causes errors in the transcript to be extended at a faster rate, 

restricting the time frame of that checkpoint (1). Not only does Rpb9 play a crucial role in TFIIS-

mediated cleavage, it also affects mismatch extension (2). Random mutations caused by the 

decreased proofreading activity of the polymerase affects the overall health and growth of the 

cell (3).  

Furthermore, recent studies have suggested that not only do the errors incurred during 

transcription impede normal cellular health but also have the potential to inflict human diseases 

related to abnormal protein folding, such as Alzheimer’s disease (4). Proteins that are translated 

from erroneous mRNA strands sometimes do not have the correct three-dimensional structure 
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(4).  In fact, some of the mutated proteins are not able to fold at all, and can cause increased 

levels of proteotoxic stress (4). Experimental evidence has also shown that the number of errors 

made during transcription is directly related to cell age (4). Therefore, it is possible that the 

accumulation of transcription errors made and propagated by an error-prone polymerase can be a 

new mechanism by which some human diseases are developed.   

The structure of Rpb9 consists of two domains. The C-terminal domain of the protein has proven 

to be significant in reducing the number of errors present in the mRNA strand. Experiments have 

shown that cells containing certain mutations on the C-terminal domain of Rpb9 exhibit the same 

increased speed in error propagation as cells lacking the entire Rpb9 protein (5).  There is 

convincing evidence that the N-terminal domain of Rpb9 serves a function independent from the 

C-terminal domain. The majority of the growth defects present in Rpb9-deficient cells can be 

rescued by a truncated Rpb9 containing only the first 59 amino acids of the protein.  The N-

terminal domain of Rpb9 has also been proposed to affect transcription start-site selection. 

The experiments described here are part of a larger genetic and biochemical study to explicitly 

define the role of the N-terminal domain of Rpb9 on RNAPII activity and the interactions of 

RNAPII with other components of the eukaryotic transcription machinery. Saccharomyces 

cerevisiae (S. cerevisiae), more commonly known as Baker’s yeast, was used as the model 

organism in these experiments, as it is a simple organism that possesses eukaryotic transcription 

machinery. We are interested in identifying the specific amino acids within the N-terminal 

domain of Rpb9 that, if changed, have visible effects on how a eukaryotic cell grows in various 
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environments. In order to accomplish this, an array of random mutations in the N-terminal 

domain of Rpb9 will be created and then screened for phenotypes associated with an rpb9 

deletion. The goal is to find a particular amino acid sequence present on the N-terminal domain 

of Rpb9 that, if mutated, will cause cells to mimic the growth patterns of cells missing the entire 

RPB9 gene. Sequencing the mutations found in the selected alleles will identify amino acids that 

are critical for the function of the N-terminal domain of Rpb9 and will allow for the development 

of specific hypotheses related to their effect on RNAPII. The work described here is a part of 

efforts to develop a sensitive screen to more efficiently identify mutations in the N-terminal 

domain of Rpb9 that affect transcription start-site selection.  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CHAPTER II 

METHODS 

Colony PCR 

Mutants generated from random mutagenesis, Rpb9(4-6)X mutants, that showed stunted or 

abnormal growth were single colony purified for further testing. Colony PCR (cPCR) was 

performed in order to amplify the mutant DNA. During colony PCR, fresh yeast cells were 

placed into 10 µL of 0.02 N NaOH. A layer was paraffin oil was added to the sample to prevent 

evaporation in the subsequent heating process. The heat and sodium hydroxide function to lyse 

the yeast cells and release both RNA and DNA molecules. Water was then added to each sample 

of lysed cells to make a 1:5 diluted DNA sample. A master mix containing Taq polymerase, 10x 

PCR buffer, water, 0.2 mM dNTP’s, 0.2 mM of T3 primer, and 0.2 mM of T7 primer was then 

added to each of the samples. Each sample contained 10 µL of the diluted sample, 31 µL of 

dH2O, 5 µL of buffer, and 1 µL of each primer, dNTP’s, and polymerase. The genetic sequence of 

each mutant was amplified using the Polymerase Chain Reaction. For colony PCR, the PCR 

machine ran for 1 minute at 94ºC. The PCR continued to cycle 40 times, with each cycle 

consisting of 30 seconds at 95ºC, then 30 seconds at 45ºC, and finally 2.5 minutes at 72ºC. At the 

end of the reaction, the samples were held at 10ºC. About 5 µL of the PCR products were 

removed from the tube. This portion of product was saved to confirm the efficiency of the PCR 

process. The remaining portion of cPCR product was cleaned using the Qiagen PCR Cleanup 

Kit.  
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Gel electrophoresis 

Gel electrophoresis was used to determine if the mutants contained the RPB9 construct and if 

purification was successful. About 5 µL of the sample not cleaned using the Qiagen PCR 

Cleanup Kit was mixed in with 1 µL of 6X dye. The resulting solution was loaded into a 0.8% 

agarose gel. One µL of 50% glycerol and 1 µL of 6X dye were added to 5 µL of the purified 

samples. The entire solution of pure sample, glycerol, and dye were loaded into a well. The 

agarose gel contained GelRed, which was used as an intercalating agent. The gel was allowed to 

run at 80 V in 1X TAE buffer and was analyzed under UV light. A band was present around the 

1200 bp region, indicating the presence of rpb9 on the transformed plasmid.  

Amplification PCR 

The purified products were amplified a second time using Amplification PCR (aPCR). To each 

PCR tube, 2 µL of the sample cleaned by the Qiagen PCR Cleanup Kit, 39 µL of dH2O, 5 µL of 

10X PCR buffer, 1 µL of Taq polymerase, 1 µL of 10 mM T3 primer, 1 µL of 10mM T7 primer, 

and 1 µL of 10 mM dNTP’s were added. All tubes were placed into the thermocycler and ran 

under the same PCR program as cPCR. The products yielded by aPCR were cleaned a second 

time using the Qiagen PCR Cleanup Kit. 

Concentration measurement 

 The concentrations of the resulting samples were measured using BioTek’s Epoch Micro-

Volume Spectrophotometer System. Only samples containing more than 100 ng/µL of DNA 

qualified for sequencing.  
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Sequencing PCR 

Two µL of each of the doubly purified samples, 1 µL of water, 1 µL of Big Dye, and 1 µL of T3 

primer were added into clean test tubes. Sequencing PCR was then used to amplify the purified 

sample solutions. At the beginning of this process, the PCR machine ran for 4 minutes at 96ºC. 

This allows for the initial denaturation of the DNA strands. The PCR continued to cycle 30 

times, with each cycle consisting of 30 seconds at 96ºC, then 15 seconds at 50ºC, and finally 4 

minutes at 60ºC. At the end of the reaction, the samples are held at 10ºC. 

DNA sequencing 

In preparation for DNA sequencing, the samples were placed into size-exclusion gel columns. 

Before the addition of the sample, however, the gel columns were centrifuged at 1000 g for 2 

minutes. The buffer supernatant was then disposed and the column was placed into another tube. 

Water was added to each sample to make a total volume of 50 µL, and then all of the diluted 

sample was dispensed through the gel column. After centrifugation at 1000 g for 4 minutes, the 

tubes were dried for an hour using a RoboVap spinning apparatus. The dehydrated products and 

sequences were then sent to the Texas A&M Gene Technology Lab in the Biology Department 

for analysis. The gene technology lab ran an automated sequencing procedure that generated the 

sequence of DNA. By sequencing the Rpb9 mutants, we sought to identify the amino acid 

sequence located in the N-terminal domain that is crucial in maintaining the function of the Rpb9 

protein.  
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Transformation using yeast construct  

Yeast cells with a rpb9∆::NATMX4 imd2∆::HIS3 genome were transformed with trialanine 

mutant plasmids. One thousand µL of the transformed cultures were centrifuged and resuspended 

in 800 µL of transformation solution. The transformation mix consisted of 700 µL of Magic Mix 

(0.2 M lithium acetate, 40% polyethylene glycol 3350), 72 µL of dH2O, 8 µL of 1 M DTT, and 

20 µL of 2 mg/mL single-strand salmon sperm DNA. All transformations were grown on -leu 

plates.  

Replica plating  

Transformed cells were replica plated onto -leu, -leu -his, -leu with 0.04 µg/mL of MPA, -leu -his 

with 0.04 µg/mL of MPA, -leu -his with 0.04 µg/mL of MPA and 5 mM of 3AT (3-amino-

triazole), and -leu -his with 0.04 µg/mL of MPA and 10 mM of 3AT. All plates were grown at 

30ºC for a total of 4 days.  
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CHAPTER III 

RESULTS 

Site-directed trialanine mutagenesis 

A library of mutations that introduced amino acid substitutions into the N-terminal domain of 

Rpb9 has already been made using site-directed mutagenesis. These mutations were generated on 

a plasmid of Escherichia coli (E.coli) using primers to introduce changes in the DNA that caused 

three consecutive amino acids in Rpb9 to be replaced with alanine. The growth patterns of the 

trialanine mutants were then assessed, and colonies that exhibited similar growth to Rpb9-

deficient cells were selected for further study.  Yeast cells that contained the trialanine mutation 

at the 4-6 amino acid position yielded a promising phenotype. The mutations were made 

according to Figure 1. 

 

Figure 1. Rpb9(C-flag) N-terminal Domain Amino Acid Changes: Mutations generated through 

site-directed trialanine mutagenesis  
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Random mutagenesis 

Targeted yet random mutations were then constructed in wild-type yeast cells at the 4-6 residue 

position of RPB9. Each construct contained three different mutant amino acid sequences at the 

4-6 position and were made using PCR-mediated mutagenesis. Multiple assays were carried out 

in order to phenotype the newly created Rpb9 mutant yeast colonies, denoted as Rpb9(4-6)X 

mutants. In one experiment, the Rpb9(4-6)X cells were plated onto mycophenolic acid (MPA) 

and their growth patterns were accessed as the drug concentration increased. MPA inhibits the 

production of GTP, which results in stunted growth of hypersensitive yeast cells. Some cells, 

however, have the ability to induce the production of inosine monophosphate dehydrogenase 2 

(IMD2), an enzyme used to overcome the deficiency of GTP caused by the presence of MPA. 

Interestingly, the induced transcription of IMD2 is correlated with the speed at which RNA 

polymerase initiates and elongates transcription. Therefore, growth patterns on MPA plates 

provides information about the speed of the polymerases present in the generated mutants.  

Preliminary results suggest that some rpb9 mutants had higher levels of sensitivity for the drug 

and were selected for further study. In another experiment, the mutant yeast cells were grown in 

an environment of 37°C. Some candidates were more sensitive to higher temperatures and did 

not grow as well as the wild-type yeast cells. These results indicated that certain amino acids 

present in the 4-6 residue region of the RPB9 drastically affected the growth and viability of the 

cell. 
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DNA sequencing 

There is a single amino acid change in the N-terminus of Rpb9, specifically in the 4-6 nucleotide 

region, that can significantly affect the growth of yeast cells in various stress conditions. Yeast 

cells that contained the T3S variant of the Rpb9 protein were more sensitive to mycophenolic 

acid than their wild-type counterparts.  The significant amino acid change was specifically 

caused by two nucleotide changes. Nucleotide 8, usually containing C, was changed to a G. 

Secondly, nucleotide 9 was changed from a G to a C. By obtaining the specific amino acid 

changes that are critical for the function of the N-terminal domain of Rpb9, we can start to 

develop specific hypotheses related to their effect on RNAPII and eukaryotic transcription. 

Replica plating 

After 72 hours of growth, the -leu -his plate containing 0.04 µg/mL of MPA and 5 mM of 3AT 

showed the best gradation in cellular growth. The IMD2 gene contains two transcription sites, 

but only the downstream transcription site produces a functional protein. The IMD2 open reading 

frame was replaced with the HIS3 open reading frame to provide a much more sensitive assay for 

the induction of transcription from the IMD2 promoter. MPA is a drug that induces the selection 

of the downstream transcription start-site in the presence of Rpb9. Without the proper function of 

Rpb9, MPA fails to induce the selection of the downstream transcription start-site. This should 

result in the stunted growth of Rpb9 mutants in the presence of MPA. Addition of 3AT, an 

inhibitor of the HIS3 gene product, can be used to adjust the sensitivity of the assay.  
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Figure 2. New Method Allows for More Sensitive Screening of Rpb9 mutants:  All plates 

pictured are after 72 hours of growth. Plates 1-3 show normal growth patterns for all yeast 

strains. Plate 4 demonstrates stunted growth patterns for N-terminal rpb9 mutants and essentially 

no growth for rpb9∆ mutants. MPA or mycophenolic acid induces IMD2 expression, and 3-

amino triazole inhibits the HIS3 gene product.  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CHAPTER IV 

CONCLUSION 

Using the rpb9∆::NATMX4 imd2∆::HIS3 yeast strain, a more sensitive method was generated for 

screening Rpb9 N-terminal mutants. By replacing the IMD2 open reading frame with the HIS3 

open reading frame, the transcription start-site defects could be phenotypically observed. The 

replacement of the genomic, wild-type RPB9 gene with NATMX4, a gene that encodes an 

enzyme that inactivates the antibiotic nourseothricin, allowed for the knockout of genomic RPB9 

to be phenotypically verified.  Plasmids containing mutant rpb9 genes were used to introduce 

different alleles of rpb9 into the yeast cells. These plasmids enabled the determination of whether 

the different alleles affect the ability of the yeast cells to induce transcription from the IMD2 

promoter, which, in this strain, results in expression of HIS3. The addition of MPA induces 

transcription start-site selection. The addition of 3AT, an inhibitor of the HIS3 gene product, can 

be used to fine tune how much HIS3 needs to be expressed to allow the cells to grow in the 

absence of added histidine. This inhibitory protein can be used to adjust the sensitivity of the 

assay. 

This new method of mutant screening will allow for the identification of the most important 

residues on the N-terminus of Rpb9. More site-specific mutants can be generated to identify 

specific alleles that significantly affect Rpb9 function. This study can also be expanded to 

investigate associations between start-site selection and other functions of Rpb9. 
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