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ABSTRACT 

Cognitive Ability Score Differences on Mobile and Nonmobile Devices: The Role of Working 
Memory 

 

Ellen Hagen 
Department of Psychology 

Texas A&M University 
 

Research Advisor: Dr. Winfred Arthur, Jr. 
Department of Psychology 

 

In the last few decades there has been a dramatic shift in the way employment-related 

assessments are administered due to technological advancements. Mobile devices are 

increasingly used in employment-related assessments despite documented significant 

performance differences in scores on cognitive tests completed on mobile and nonmobile 

devices. These performance differences have been attributed to structural characteristic 

differences between mobile and nonmobile devices, which place differentiated information 

processing demands on test takers (Arthur, Keiser, & Doverspike, 2016). This relationship 

between the structural characteristic differences and information processing demands serves as 

the basis for Arthur et al.’s Structural Characteristics Information Processing (SCIP) model. The 

present study examines one component of this model, working memory, and the role it plays in 

the observed performance differences on mobile device cognitive assessments. Participants were 

recruited from the Texas A&M University Psychology Department Subject Pool (n = 196), and 

were randomly assigned to either a smartphone (n = 100) or desktop computer (n = 96) device 

condition to complete the specified cognitive and noncognitive assessments; they then completed 

a working memory test on a desktop computer. The relationship between participants’ working 
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memory test scores and their cognitive and noncognitive test scores were examined to investigate 

whether the relationships differ as a function of the device type on which participants were 

tested. The results failed to show the expected device type differences for cognitive ability. 

However, as hypothesized, there was a stronger relationship between working memory and 

general mental ability (GMA) when the GMA test was completed on a smartphone compared to 

a desktop computer. Also as hypothesized, there was no significant difference between the 

smartphone and desktop device conditions on noncognitive test scores, nor in the working 

memory-noncognitive test score correlations for smartphones and desktop computers. The 

findings provide partial, initial support for Arthur et al.’s SCIP model, which can be utilized to 

explain the effects of internet-based testing devices on scores on employment-related 

assessments and tests. 
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CHAPTER I 

INTRODUCTION 

 

With continued advances in technology, there has been an increase in the use of unproctored 

internet-based tests (UIT) in employment-related testing and assessment for selection purposes 

(Arthur, Doverspike, Munoz, Taylor, & Carr, 2014). Unproctored internet-based tests allow an 

organization to remotely administer employment-related tests on any internet-capable device. As 

a result, organizations have benefited from this change in assessment delivery by reducing their 

cost of test administration, increasing their applicant pool, and having relative administrative 

ease (Tippins, Beaty, Drasgow, Gibson, Pearlman, Segall, & Shephard, 2006). UITs also provide 

some benefits to test takers by permitting them even more degrees of freedom in terms of how, 

when, and where they can take an assessment (Arthur, Keiser, & Doverspike, 2016).  

However, a cause for concern in UIT administration is the ability to interpret scores because of 

the differentiated context through which an assessment is given (Tippins et al., 2006). Due to the 

increase in the ownership and use of smartphones, job applicants are no longer restricted to 

desktop and laptop computers to complete these high-stakes assessments which is further cause 

for concern for the ability to interpret scores due to the lack of standardization in test 

administration between mobile and nonmobile devices (Arthur et al., 2014; Tippins et al., 2006). 

This lack of standardization can render the validity of a test unknown between device types until 

the equivalency of the methods is empirically verified (Květon, Jelínek, Vobořil, & Klimusová, 

2007).  
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As of April 2015, 64% of American adults owned a smartphone, which is up from 58% in early 

2014 (Smith, 2015). This 8% rise in smartphone ownership over the course of a year, indicates 

that the use of smartphones to complete employment related-assessments will continue to 

increase. Scores derived from testing done on mobile devices, such as smartphones (compared to 

nonmobile devices, such as desktops) may not accurately represent test takers abilities, especially 

for cognitive assessments (i.e., general mental ability tests). As discussed in Arthur et al. (2016), 

this may be because testing done on mobile devices differentially utilize working memory, 

perceptual speed and visual acuity, psychomotor ability, and selective attention. For example, 

mobile device testing places a greater demand on working memory due to an increased number 

of screens to display an equivalent amount of information on a nonmobile device. Thus, 

individuals with higher working memory capacity should show smaller differences between 

mobile-test derived scores and nonmobile-test derived scores than those with low working 

memory capacity. Despite these concerns, the use of mobile devices in employment-related 

selection testing was the Society for Industrial Organizational Psychology’s (SIOP) number one 

workplace trend for 2015 (SIOP, 2015).  

As shown in Arthur et al. (2014), the relative percentage of those choosing to take high-stakes 

employment assessments on a mobile device is low (1.93%). However, with the growing 

ownership of smartphones, the percentage of test takers taking an assessment on a mobile device 

is likely to increase. Despite SIOP’s recognition of the growth of smartphones in employment-

related selection testing, there is a dearth of research and literature on the equivalence of 

assessments that are delivered via mobile and nonmobile devices (Arthur et al., 2014). Of the 19 

papers identified by Arthur et al. (2016) of relevance to this topic only four were peer-reviewed 

articles, fourteen were conference presentations, and one was a masters thesis. Clearly, more 
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research is needed to determine if the growing use of mobile devices in high-stakes employment 

testing is appropriate. 

Research has indicated that score differences between mobile and nonmobile devices vary as a 

function of the type of assessment being administered. For noncognitive measures (i.e., 

personality tests), there are no significant score differences reported between mobile and 

nonmobile devices (Arthur et al., 2016; Illingworth, Morelli, Scott, & Boyd, 2014). In 

comparison, for cognitive measures (i.e., general mental ability tests) there are significant score 

differences between mobile and nonmobile devices, with higher scores reported on nonmobile 

devices (Arthur et al., 2016). These score differences are posited to arise from differences in 

screen size, screen clutter, the input interface, and permissibility of where the device can be used 

(Arthur et al., 2016). The smaller screen size of mobile devices, greater scrolling requirements, 

and the ability to take assessments in distractible environments that characterize mobile devices 

translate into a differentiated demand on the four different information-processing variables 

identified by Arthur et al. (2016), specifically working memory, perceptual speed and visual 

acuity, psychomotor ability, and selective attention. On the basis of these structural and 

information-processing differences, Arthur et al. (2016) placed device types on a continuum, 

ranging from smartphones, phablets, tablets, laptops, to desktops, with smartphones engendering 

the highest degree of cognitive load and desktops requiring the least. These information-

processing differences are cause for ethical and professional concern, and it can be argued that 

the use of internet-based testing violates multiple parts of Section 9 of APA’s Ethical Principles 

of Psychologists and Code of Conduct. Specifically relevant to mobile device testing, it can be 

argued that the use of mobile and nonmobile devices to deliver the same assessment violates the 

standard of standardization (Pearlman, 2009). 
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In spite of the lack of research directly testing Arthur et al.’s (2016) structural characteristics 

information processing (SCIP) model, there is some evidence that indirectly supports it. In two 

studies that focused on mobile devices (Sanchez & Branagan, 2011; Sanchez & Goolsbee, 2010), 

there were significant score differences between assessments taken on mobile and nonmobile 

devices as a result of differences in scrolling and text size, which places a differentiated demand 

on working memory. Due to the smaller size of mobile devices, communication oftentimes runs 

on multiple screens requiring the user to scroll to read the entirety of the text (Sanchez & 

Branagan, 2011). In Sanchez and Branagan (2011), this scrolling was shown to negatively affect 

reasoning performance. However, when the orientation was switched from portrait to landscape 

those who were lower in working memory capacity significantly improved their reasoning 

performance, while those higher in working memory capacity were relatively unaffected. 

Sanchez and Goolsbee (2010) found that text size could affect how well information is 

remembered. When text size increased the amount of scrolling on a small screen device, 

information recall was negatively impacted because of the higher demand placed on working 

memory. Although these studies did not directly focus on employment tests, they suggest that 

there may be a negative impact on performance when assessments are delivered via a mobile 

device versus a nonmobile device due to the increased demand on working memory and 

cognitive load in general (Arthur et al., 2016).  Additional information-processing variables 

associated with screen size are perceptual speed and visual acuity, which can be impaired if there 

are clutter-related issues that vary with screen size. 

In regards to psychomotor ability, the interface of the device plays an important role in the 

ability of a person to manipulate the screen. As noted by Arthur et al. (2016), the use of finger 

swipes versus a keyboard/mouse can result in more difficulty interacting with a mobile device. 
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Due to the smaller screen size of mobile devices, people inevitably interact more with the device 

since more screens are needed to present an equivalent amount of information on a nonmobile 

device placing a higher demand on psychomotor ability.  

Lastly internet-based testing devices vary in the amount of permissibility a test taker has to 

decide where to take an assessment. Test takers have more degrees of freedom (high 

permissibility) in choosing where to take an assessment when completing it on a mobile device, 

resulting is assessment being completed in more distracting environments. The ability of test 

takers to remain focused on goal-relevant stimuli (i.e., a test) varies when people are distracted 

by task-irrelevant stimuli (i.e., noise in a public space) (Lavie, 2005). In a study comparing 

proctored and unproctored test administration, of the 163 students in the unproctored condition, 

89% took the assessment at home, 2% from the library, and 9% from the office. Of the 

unproctored group 61% were somewhat bothered by the noise, 31% were bothered, 4% were 

very bothered, and 2% were extremely bothered. In contrast, of the 252 in the proctored 

condition 90% were not bothered by the noise, 8% were somewhat bothered, 0% were bothered, 

1% were very bothered, and 0% were extremely bothered (Shephard, Do, & Drasgow, 2003). 

Clearly, the relationship between environment and distractibility cannot be ignored. Taking an 

assessment on a mobile device can result in a greater demand placed on selective attention due to 

the higher degree of permissibility, and can cause test takers to become distracted with task-

irrelevant stimuli. 

While Arthur et al.’s (2016) SCIP model of the interaction between internet-based testing device 

type and score differences between cognitive and noncognitive measures logically makes sense, 

there has yet to be any empirical tests of the model. For the purposes of this study, the focus is 
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specifically on smartphones and desktop computers, which occupy the higher and lower ends of 

the device engendered construct-irrelevant cognitive load (Arthur et al., 2016).  

The present study addresses one component of Arthur et al.’s (2016) model—working memory. 

Working memory is defined as “the use of short-term memory as a temporary store for 

information needed to accomplish a particular task” (Reed, 2013, p. 72). When information is 

displayed on a mobile device, it oftentimes will require more screens to display an equivalent 

amount of text on a nonmobile device. This requires the test taker to keep more information 

active in their short-term memory resulting in a higher cognitive load. In turn, this will translate 

into differentiated scores between mobile and nonmobile devices due to the greater demand on 

working memory in mobile device testing versus the demand on working memory in nonmobile 

device testing.  

In summary, on the basis of the preceding review and aligned with the tenets of the SCIP model 

the following were hypothesized: 

Hypothesis 1: For cognitively-loaded constructs, smartphone derived mean scores will be 

significantly lower than desktop computer derived mean scores. 

Hypothesis 2: For noncognitive constructs, smartphone and desktop computer mean 

scores will not be significantly different. 

Hypothesis 3: For cognitively-loaded constructs, smartphone scores will display a higher 

relationship with working memory than desktop computer scores. 

Hypothesis 4: For noncognitive constructs, the relationship between working memory 

and device type will be weak, and nonsignificant. 
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CHAPTER II 

METHODS 

 

Participants 

Participants were recruited from the Texas A&M University Psychology Department Subject 

Pool (n = 196). Participants received a total of 3 research credits to fulfill an introductory 

psychology course research requirement. No monetary compensation was provided. As a result 

of recruiting participants from a psychology department subject pool, the selection process was 

restricted and may not be representative of the general population. Participants were randomly 

assigned into the mobile (n = 100) and nonmobile (n = 96) conditions. Of the sample, 43.59% 

were male (n = 86) and 56.41% were female (n = 110) and the average age reported was 19.08 

(SD = 1.30) with a minimum of age of 18 and a maximum age of 28.  

 

Measures 

Cognitive Ability. Cognitive ability was operationalized as scores on a general mental ability 

(GMA) test developed by Arthur (2014). Participants were allotted 10 minutes to complete the 

60-item (30 verbal, 30 numeric), multiple-choice assessment. Scores were computed as the 

number of items answered correctly. A 7-10 day retest reliabilities of .76 and .70 have been 

reported for two alternate forms of the test (Naber, Arthur, Edwards, & Franco-Watkins, 2016). 

 

Noncognitive constructs. Three dimensions of the five-factor model (FFM) of personality—

agreeableness, conscientiousness, and emotional stability—were used to operationalize 

noncognitive constructs. Participants were administered a 30-item FFM International Personality 
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Item Pool (IPIP) measure with 10 items per dimension (Goldberg, 1999). Each participant 

utilized a five-point Likert scale (1 = very inaccurate, 5 = very accurate) to rate how descriptive 

an item is of them. Internal consistency reliability estimates of .82, .79, and .83 were obtained for 

agreeableness, conscientiousness, and emotional stability respectively. 

 

Working memory. Working memory was measured using a computerized version of the N-back 

lag task (Shelton, Metzger, & Elliott, 2007). Participants were presented with a list of items 

(letters) at the rate of one item per second. After being presented with the list, the participants 

were asked to recall the last item in the list, the item presented 1-back, 2-back, or 3-back in the 

list. Participant scores were then calculated as the average number of items correctly recalled 

minus incorrect recalls. No test-retest reliability data are reported in the extant literature for 

Shelton et al.’s (2007) N-back lag task. However, in a convergent validation study by Geffen 

(2004) an average correlation of .51 between the subscales (0-, 1-, 2-, or 3-back trials) of the N-

back lag task, indicates some degree of internal consistency between the trials. Similarly, a 

correlation of .35 between a short form of the Raven’s Advanced Progressive Matrices and total 

N-back lag task scores was obtained by Naber et al. (2016). 

 

Procedure 

Devices at the extreme ends of the Arthur et al.’s continuum (desktop computers [nonmobile 

device] and smartphones [mobile devices]) were used as a between-subjects condition. 

Participants were randomly assigned to these two conditions. The cognitive ability test, IPIP 

Likert-scale measure, and a FFM-SJT1 were completed on the participants’ assigned devices, and 

																																																													
1 This is a situational judgment test based measure of the five-factor model dimensions of conscientiousness and 
agreeableness, which was administered as a part of a larger project. 
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all other measures were completed on the desktop computer. All participants completed the 

assessments in the proctored lab. Within each condition, the administration of measures was 

counterbalanced as follows: (1) cognitive ability measure, IPIP Likert-scale, FFM-SJT, N-back 

lag test, social desirability measure2, demographics; and (2) N-back lag test, FFM-SJT, IPIP 

Likert-scale, cognitive ability test, social desirability measure, and demographics.

																																																													
2	This is a measure of social desirability responding, which was administered as a part of a larger project. 
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                                                     CHAPTER III 

RESULTS 

 

Cognitive and noncognitive scores and device type 

Hypothesis 1 had posited that for cognitively-loaded constructs, smartphone mean scores would 

be lower than mean scores obtained on a desktop computer. As reflected in the results presented 

in Table 1, this hypothesis was not supported since the scores for the device types were very 

similar (t(193) = 0.32, p > 0.05; d = 0.05). Hypothesis 2 had posited that for noncognitive 

constructs, smartphone derived mean scores would not differ significantly from desktop derived 

mean scores. Contrary to what was hypothesized, the differences for agreeableness between 

device types were significant (t(192) = -2.01, p < 0.05, d = -2.90). In contrast, the differences for 

conscientiousness (t(192) = -1.48 p > 0.05; d = -0.23) and emotional stability scores (t(192) = 

1.12 p > 0.05; d = 0.16) was not significant. 

Table 1 

Means, Standard Deviations, and Effect Sizes for Cognitive and Noncognitive Construct Scores 
Across Device Types 

Device Type 

Variable Smartphone Desktop  

 M SD M SD d 

GMA 59.90 11.74 58.35 11.93 0.05 

Agreeableness 37.60* 5.52 39.24* 5.87   -2.90* 

Conscientiousness 35.11 5.10 36.27 5.79 -0.23 

Emotional Stability 31.48 7.04 30.45 5.69 0.16 
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Note. *p < 0.05 (two-tailed); GMA means general mental ability 

 

Working memory, construct scores, and device type 

Hypothesis 3 posited that for cognitively-loaded constructs, smartphone scores would display a 

higher relationship with working memory than desktop computer scores. As the results in Table 

2 indicate, the relationship between GMA and working memory for the smartphone condition 

was statistically significant (r = 0.23, p < 0.05), and more than twice as large as the relationship 

between GMA and working memory for the desktop condition which was not statistically 

significant, r = 0.11, p > 0.05. However, the difference between these two correlations was not 

statistically significant, Z(193) = 0.57, p > 0.05. 

Hypothesis 4 posited that for noncognitive constructs, the relationship between working memory 

and device type would be weak and nonsignificant. As the results in Table 2 show, none of the 

relationships between the noncognitive constructs and working memory for both either device 

types were statistically significant. Furthermore, the differences between the correlations for 

each device type were not significant either. 

Table 2 

Correlations Between Construct Scores and Working Memory  

Device Type 

Variables Smartphone Desktop  

 r r Z 

GMA/WM   .23* .11 0.57 

Agreeableness/WM .09 .03 0.41 

Conscientiousness/WM -.03 -.14 0.76 
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Emotional Stability/WM .12 -.04 1.10 

Note. *p < 0.05 (two-tailed); WM means working memory 
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CHAPTER IV 

CONCLUSION 

 

The findings of this study provide partial support for the hypotheses. Hypothesis 1 was not 

supported, and results showed that GMA scores did not differ significantly between the 

smartphone and desktop computer conditions. Contrary to Hypothesis 2, there was a significant 

effect for agreeableness and its relationship with device type contradicted the hypothesis that 

there would not be any significant differences in noncognitive scores between device types. 

However in line with Hypothesis 2, there were no significant effects for conscientiousness and 

emotional stability and their relationships with device type. Hypothesis 3 was partially supported 

and showed that when smartphones are used to assess GMA, there is a higher relationship with 

working memory than when GMA is assessed on desktop computers. However, this difference 

was not statistically significant. Additionally, Hypothesis 4 was supported; the results showed 

that when smartphones and desktop computers are used to measure noncognitive constructs, the 

relationship between working memory and device type is weak and nonsignificant. 

 

A possible explanation for the inconsistency between the results showing that cognitive scores 

did not differ between smartphone and desktop device types and prior findings could be due to 

differences between the field (high-stakes) and lab (low-stakes) settings. Of the five studies 

examining differences in cognitive scores between device types identified by Arthur et al. 

(2016), only one study (i.e., Parker & Meade, 2015) did not obtain significant group mean 

differences on the cognitive assessments and similar to the present study, it was lab-based. The 

four other studies examining differences in cognitive scores between device types identified by 
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Arthur et al. (2016) used operational field data obtained from organizations delivering high-

stakes selection assessments. In contrast to the field-based studies, the present lab study was low-

stakes, which may point to motivational factors as another plausible explanation for the 

inconsistent finding. Participants in this study received the same amount of research credit 

regardless of their performance. In contrast, in the field a higher level of performance on an 

assessment translates into a higher chance of being selected for a job. In the future, a monetary 

incentive for top performers could be added to motivate participants to perform to the best of 

their ability to attempt to replicate the high-stakes nature of the field.  

 

Another possible explanation for the observed cognitive score differences between devices seen 

in the field versus the lack of differences seen in the lab pertain to self-selection. Participants in 

this study were randomly assigned to conditions, whereas in the field applicants have the choice 

to take an assessment on any device type with Internet access. Research has documented 

demographic differences between smartphone and desktop computer applicants, such as a higher 

percentage of female, African-American, Hispanic, and younger applicants using smartphones at 

a higher rate (Arthur et al., 2014). Further research on differences between those who select to 

take assessments on smartphones versus those who chose to take assessments on desktop 

computers will need to be undertaken to determine if individuals who choose to take assessments 

on specified device types are inherently different resulting in the observed score differences in 

the field operational data. 
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The mixed support for Hypothesis 2 is an anomaly and at the present time is difficult to explain. 

Additionally, because of the relatively small sample size, some of the tests reported here (e.g., 

the test for differences between correlations) may be underpowered. 

 

In conclusion, the results of this study provide partial, initial support for Arthur et al.’s SCIP 

model. To the extent that additional support is obtained for the SCIP model, it would provide a 

framework to understanding how the structural characteristic differences between internet-based 

testing device types translate into differential demands on the information processing variables of 

working memory, perceptual speed and visual acuity, psychomotor ability, and selected 

attention, and how these information processing demands result in score differences. The present 

study examined the role that working memory plays in the score difference observed between 

smartphones and desktop computers. Further research will be needed to empirically examine the 

role the other information processing variables (i.e., perceptual speed and visual acuity, 

psychomotor ability, and selective attention) identified by the SCIP model play in influencing 

device-type scores, and the relative importance of these information processing variables as well. 
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