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ABSTRACT 

Hydrofluoric (HF) acid is an extremely corrosive solution commonly found in many oil refineries where it is used as a catalyst in the 
production of high octane gasoline blending stock. HF acid is almost synonymous with the alkylation unit, which is where the 
processing takes place within the refinery process flow. There are two main alkylation processes available, HF and Sulfuric acid; this 
tutorial will focus on HF alkylation and the challenges associated with handling this solution and the process streams that come in 
contact with HF acid. The HF alkylation process uses hydrofluoric acid which is dangerous and requires special treatment, particularly 
in the area of shaft sealing along with pump design and construction. While each individual facility may have its safety and reliability 
guidelines in place to manage HF acid and exposure to it, it is universally accepted in industry that minimizing personnel exposure to 
this fluid is a prime concern. This tutorial will attempt to address several topics centered on reliable operation of pumps in an HF alky 
unit, including pump and mechanical seal design and construction, along with mechanical seal support system considerations. In 
covering these topics, the tutorial will draw upon the combined previous experience of the authors in addressing these applications 
along with accepted good practices from relevant industry standards. The reader should review the content and consult as a reference, 
keeping in mind that not all of the content is applicable to every application and that each application should always undergo a 
thorough engineering review.  

INTRODUCTION  

In modern petroleum refining, the HF Alkylation Unit combines isobutane and butylene in the presence of HF acid and excess 
isobutane to form iso-octane, or alkylate. The alkylate will have an octane number of 95 or greater and is used as a lead free octane 
improver for gasoline. There were historically different licensors of the HF Alkylation unit technology, and the most common process 
flow is represented in Figure 1: note that depending on the unit licensor, the equipment utilized and process flow may differ slightly. 
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Figure 1: Common HF Alkylation Unit process flow 

There are a number of different sources of Liquefied Petroleum Gas (LPG) providing feedstock for the alkylation unit in any refinery. 
The feedstock preparation should be flexible and able to accommodate varying sources, with the most common sources coming from a 
fluidic catalytic cracking unit (FCCU) or a hydrocracker. The goal of the pre-treatment process is to remove propane, purify butane, 
and remove water from the system. Beyond the pre-treatment stage, the processes cease being HF acid free environments until the 
final products are produced. The critical pump and seal applications in the process flow begin to take shape in the process streams of 
the mixing nozzle, reactor riser, HF acid recovery, main fractionator top / bottom product, normal butane takeoff, depropanizer, and 
the acid stripper. The reaction of the HF acid catalyst in the reactor with the dry olefin and unreacted isobutane feed combine to form 
the alkylate product. In addition to the various fractionation processes utilized to separate the hydrocarbon streams, there are also 
scrubbing processes with potassium hydroxide (KOH) and sodium hydroxide (NaOH) which are used to remove traces of HF acid and 
organic fluorides prior to sending specific finished products to storage. In addition to alkylate, common product streams leaving an HF 
Alkylation Unit are normal butane liquid, LPG propane, and tar / acid soluble oil (ASO). 

PUMP TYPES AND CONSTRUCTION 

Historically, the major HF Alkylation Unit technology providers have used special variations of API 610 Centrifugal Pumps and more 
recently, API 685 Sealless Centrifugal Pumps. Centerline mounted, single stage overhung (OH2) pumps and radially split, one and 
two stage between bearings (BB2) pumps are the most common pumps used in HF acid service. Specific to HF acid process, the 
suction and discharge nozzle orientation of top suction, top discharge is preferred for the OH2 pumps, but not specifically required by 
any particular design standard. Orientation of the suction and discharge nozzles in this manner facilitates having bleeders on the 
suction and discharge piping, eliminating casing vents which would be another connection on the casing where HF acid containing 
material could collect and cause issues. The orientation of the nozzles in a top-top manner also reduces pipe strain on the suction and 
discharge nozzles. Figure 2 depicts a recommended pump nozzle configuration that has been used successfully in many HF acid 
applications.  
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Figure 2: Top-top nozzle orientation sketch highlighting vent and drain connections 

The materials of construction for a HF acid service pump would be considered a modified S-5 construction (refer to table H.1 in API 
610 11th Edition). The S-5 construction utilizes a carbon steel pressure casing with Monel Alloy 400 (UNS N04400) impellers and 
throat bushings, Monel K500 (UNS N05500)  shafts, B7M (ASTM A193 grade) studs with 2HM (ASTM A194 grade) nuts, and 
wetted hardware of Monel K500. Pure Monel castings (grade M-35-1) can be used but the size of the cast part can become cost and 
strength prohibitive.  Cast Monel also has documented concerns with internal voids and defects showing up after the pump is placed in 
HF acid service, even if the casting passed a non-destructive testing (NDT) examination including X-Ray. Solid Monel Alloy 400 
covers machined from a plate can be used effectively up to a 20” diameter; beyond this size and overlaid / cladded carbon steel is 
required to achieve the desired material strength for the pressure casing.  

The key component associated with many HF acid service pumps is the use of a Monel overlay or cladding that is utilized in all areas 
of the pump that have fits in contact with the process fluid. Typical overlay areas would include the case and cover gasket areas, case 
wear ring area, throat bushing area, center stage area when applicable, and any case drain threaded area (if allowed by the unit 
licensor).  The overlay / cladding’s purpose is to aid in disassembly of the pump.  Recalling that the pressure casing material of HF 
acid pumps is carbon steel, when this material is exposed to HF acid over time iron fluorides will form and accumulate within the 
internal passageways of the pump. Accumulation of iron fluorides in critical fit areas with relatively tight tolerances and clearances 
between mating surfaces can have detrimental effects in reducing the clearances making disassembly very difficult if not impossible. 
The overlay / cladding on the other hand does not form iron fluorides, therefore utilization in the critical fit locations of the pump 
allows for disassembly and preservation of the critical fits as well in future equipment repairs. The use of Monel cladding is essential 
especially with respect to the case ring and throat bushing locations to avoid collapsing these components due to continual iron 
fluoride formation.  
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Monel cladding is accomplished by undercutting the carbon steel and applying a pure nickel butter layer (ERNi-1), followed by 
applying two passes of Monel Alloy 400 (ERNiCU-7) to provide an after machining thickness of at least 1/8” thick.  The Monel 
cladding seems to retain material integrity better when applied past where it is required, otherwise the cladding can peel off due to 
corrosion and erosion. The stripping of this protective layer in key areas has been a re-occurring concern in HF acid service pumps for 
many years. In many cases, pre-mature degradation of pump components has been attributed to high flow velocities and localized 
impingement in critical areas. While this concern is valid, the application of Monel cladding or overlays in critical fit areas is more 
crucial and issues with the cladding has been a contributing factor to reduced usability of some components. As noted, while the base 
carbon steel material is acceptable for HF use, there is gradual iron fluoride formation over time due to reactions with the process. As 
scale breaks loose, more scale forms, and these free components can cause localized erosive damage once loose from the base 
material. Additionally, the iron fluoride formation can force its way under the cladding and actually force the cladding loose from the 
base metal. To this point, application of the cladding, including blending of the overlay to avoid sharp breaks in material boundaries 
(base metal and overlay) and extending the cladding beyond the required area are good measures to avoid reduced component life due 
to corrosive and erosive mechanisms. Figure 3 depicts examples of good Monel cladding applied to an HF acid service pump. 

Figure 3: Monel overlay on pump head fit (left) and wear ring area (right) 

Although suction and discharge flange cladding isn’t required by specific HF Alkylation unit licensors, it is recommended as the 
suction and discharge flanges have the most potential to have HF acid and water exposure, which can create diluted acid that is highly 
corrosive to the flange.  In this instance, the overlay / cladding is only required in the gasket sealing area. When repairing Monel 
cladding / overlay, a hydrogen bake-out must be done before weld overlay is re-applied.  Typical hydrogen bake-out takes place after 
undercutting the area to be overlaid. A hydrogen bake-out procedure is essential to drive out atomic hydrogen that has diffused into 
the steel casing, as the trapped hydrogen can lead to cracking in a weld or embrittlement of the casing material. Hydrogen bake-out 
requires heating the steel to an elevated temperature and allowing time for diffusion of the hydrogen out of the material. The hydrogen 
free material will be weldable at this point and ready to accept the procedure for overlay / cladding in critical areas.  

Generally agreed good practices for HF acid pumps requires heating the pump case/cover to 450-600 °F (230 – 316 °C) and holding 
for a minimum of 2 hours.  Once the bake-out has been completed, welding must be started within 1 hr.  A local heat treat can be 
done, but typically results of welding and cladding are improved if the entire pump volute or head is included in the bake-out process.   
When considering repairs for the pressure containing parts of the pump outside of any overlay / cladding, a recommended practice is 
to pre-weld bake-out of the complete part being repaired at 450-550 °F (230 – 288 °C) for a minimum of two hours, then furnace 
cooled to 250 °F (120 °C) at a rate of 100 °F (38 °C) per hour. It is recommended that the weld repair be performed using ER70S-3 
wire using Gas Tungsten Arc Welding (GTAW) methods, maintaining 250 °F (120 °C) maintenance temperature. The use of the 
ER70S-3 wire is based on experience that some HF Alkylation unit users have documented as concerns with weld repairs of carbon 
steel cases using 7018 welding rods, as the 7018 was found to lift away once the area was exposed to HF acid. In one instance, a pump 
case repaired with 7018 passed both a helium leak test and in-line static pressure test with alkylate seal flush applied to the casing for 
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multiple days, only to develop a leak upon exposure to HF acid. The post-leak tear down and inspection found that the weld repair had 
separated from the base metal upon exposure to the HF acid in the process. If feasible, it is a good practice to overlay the repaired area 
with Monel to avoid potential issues in any case. 

When speaking specifically about the internal wear rings within the pump, a good practice with regards to clearances is that pump 
wear ring and throat bushing clearances be maintained the larger of 0.025”-0.030” (0.63 to 0.76 mm) diametrical clearance or what is 
specified in API 610 11th Edition depending on the associated diameter. The larger clearances are required to avoid potential issues 
with wear ring or throat bushing collapse over time due to iron fluorides that may build up behind overlay / cladded areas. Metallic 
wear rings and throat bushings should be made from Monel Alloy 400, with the case rings coated with a coating such as Colmonoy 4, 
5, or 6 in order to provide the 100 BHN difference in hardness between the mating wear ring or shaft/shaft sleeve. In many HF acid 
pumps, Teflon® PFA fluorocarbon resin and oriented carbon fiber (PFA/CF Reinforced Composite, 20 WT% random x-y oriented 
carbon-fiber) reinforced composite materials have shown very good success for case rings and throat bushings although API clearance 
should be used due to the free iron fluorides and other particulate in the process fluid. 

Another area of concern with HF acid pumps is in the area of gaskets utilized in the case to cover seal. Some older legacy HF unit 
technology pumps used soft iron gaskets in these locations; these should be converted to Monel-cored camprofile gaskets or the case 
modified to accept Monel Alloy 400/PTFE or Monel Alloy 400/graphite spiral wound gasket with a metal to metal case fit.  
Camprofile (or Kammprofile) gaskets can be used with no changes to an existing pump and these gaskets consist of a metal core 
serrated on each side and covered with a soft filler bonded to each face. In the context of HF acid applications, the gasket metal core 
shall be Monel Alloy 400 or PTFE coated carbon steel and have a graphite facing layer on both sides. Regardless of the gasket type in 
use, care should be taken to ensure that the flanges have a uniform gap all around the flange (flange parallelism) to ensure a good seal 
and even distribution around the sealing surface.  Spiral wound gaskets should be made to at least 300 pound pressure class with extra 
extrusion of the filler material. 

MECHANICAL SEAL DESIGN 

The services generally described to this point would be considered API applications, and require the use of a current edition API 610 
pump design. API 610 defaults to mechanical seals that meet the standards and criteria of API 682. API 682 does not address HF Acid 
applications directly and based on the unique nature of the fluid these applications would fall under the description of ‘Engineered 
Seal’. In order to accurately assess the application, one needs to consider the actual fluid being sealed in most HF applications as a 
function of the primary seal flush, which is typically going to be either isobutane, propane, or alkylate. Looking objectively at the fluid 
being sealed is useful in evaluating potential seal design configurations and it allows API 682 to be referred to for guidance in terms of 
general design criteria. API 682 would consider these fluids flashing hydrocarbons, in which case a Type A seal is recommended. A 
Type A seal is a pusher seal utilizing multiple springs and elastomer (O-ring) secondary sealing elements in a rotating or stationary 
seal head orientation. 

Noted in a tutorial from the 32nd Pump Symposium, the requirements for effective sealing of very light hydrocarbons in terms of the 
mechanical seal is a maximization of both seal face stability and lubrication. Mechanical seals operating in the services described will 
do so with very little hydrodynamic load support due to the low viscosities in place. It is likely that the seal face in such applications 
will operate in a solid to mixed friction regime; in these operating regions, the face materials are likely to experience higher wear rates 
due to increased temperature (from rubbing friction) and potential break down due to hydrostatic loading of the faces themselves, 
which is a function of the very high pressures typically associated with these applications. Further, balance ratio, which is 
dimensionless value associated with closing and opening areas of the seal face geometry, must be optimized to minimize the face 
generated heat and loading in order for the seal to have a reasonable chance to survive. For Type A mechanical seals, the balance 
diameter is typically the diameter of the sliding contact surface of the dynamic O-ring. In a Type B and C seal, the balance diameter is 
the mean effective diameter of the bellows core. Due to the nature of the bellows geometry, the design is considered inherently 
balanced at low pressure. As pressure increases, the balance diameter decreases to a degree determined by the temperature, material 
characteristics, plate thickness, and geometry of the core, which leads to a net overall increase in balance ratio and face load (Kalfrin 
2016). Figure 4 highlights the balance diameter differences between the seal types.  

Due to the nature of construction of the metal bellows core, which is comprised of individually welded plates,  along with the 
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likelihood of inadequate vapor suppression  and potential for increased wear due to increased face loading, the conditions described 
will potentially lead to ‘stick-slip’ of the faces which transfers stresses to the undamped bellows welds closest to the face location. API 
682 cautions against the use of metal bellows in flashing services due to these fatigue failure concerns as they relate to the metal 
bellows core (Kalfrin 2016). The metal bellows plate thickness would also pose very specific concerns with regards to corrosion 
mitigation and plate design geometry, making application in HF acid process streams especially challenging and typically not 
recommended. 

Figure 4: Type A (pusher) and Type B & C (metal bellows) balance diameter comparison 

MECHANICAL SEAL MATERIALS OF CONSTRUCTION 

One of the key variables warranting consideration when applying mechanical seals to HF applications are the materials of 
construction. Critical to the material selection process is whether or not water is present and if it is, in what amount as the corrosive 
nature of HF varies accordingly. In an Alkylation process unit, fresh HF acid to the unit is anhydrous (no water present) and 
subsequently the vast majority of equipment and equipment component interactions will be with anhydrous HF acid. It is important to 
note that HF acid dissolved in water is one of the most difficult acids to handle and highly corrosive in very small concentrations. If 
HF acid would come into contact with moisture or water at any point during the process, corrosive damage would be substantial.  

As noted by Wallace and Middleton, when seeking out reference sources for material compatibility in these services, some of the most 
reliable information on the corrosion resistance of materials to HF acid in addition to detailed specification requirements is derived 
from tests in a suitable loop in an actual HF-alkylation unit. The maturation and simplification of material selection in HF services is 
due in large part to not only advances in the materials themselves but also to well document the performance results of specific 
materials under service conditions. The unique properties of the process fluid make accurate ‘testing’ very complicated as under 
typical atmospheric conditions, anhydrous HF is bordering on a gas with a boiling point of 67.1 °F (19.5°C). Corrosion tests with 
anhydrous HF in a laboratory would require a very elaborate test with specific controls in place for accurate replication of live process 
conditions (Wallace / Middleton, 1997). There have been instances where end users have opted to submerge test pieces of various 
materials in live process streams to evaluate corrosion rates and compatibility over a specified period, and the data from such 
evaluations has been very useful. Tests with HF solutions in water are, on the other hand, comparatively easy based on the nature of 
the solution. To this point, when laboratory tests results are quoted in support of the HF resistance of particular material for a 

A
C

 A
O

Balance Diameter

46TH TURBOMACHINERY & 33RD PUMP SYMPOSIA 

HOUSTON, TEXAS I DECEMBER 11-14, 2017 

GEORGE R. BROWN CONVENTION CENTER 



Copyright© 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station 

mechanical seal such as an elastomer or carbon grade it is very important to check whether the test had really carried out on anhydrous 
HF, otherwise these data should be questioned (Wallace / Middleton, 1997).  

Seal Face Materials 

As mechanical seal technology and material advancements have progressed over the years, the selection of suitable materials for 
chemically aggressive services such as HF acid has become more concise and no doubt continued material advancements will likely 
provide alternative options for various components. For the purpose of this tutorial, the focus will be more on the most common and 
widely acceptable materials for use in HF acid applications as opposed to archival data. Regarding mechanical seal faces, the most 
commonly used materials today are carbon-graphite, alpha-sintered silicon carbide, and nickel bound tungsten carbide (to a lesser 
extent). Carbon would be utilized as the softer of the two material parings in the interface as the primary, or spring loaded member. 
Based on the volatility of the process in question, there are specific requirements on the type of carbon grade to be used.  

Chemically graphite is one of the most inert materials available. It is a good conductor of heat, a natural lubricant and has a laminar 
grain structure, allowing the individual grains to slide over each other. This laminar structure allows the release of graphite from the 
surface to be deposited on a counter-face. In the context of a mechanical seal, carbon is the prime material choice due to this very 
characteristic. During the production process impurities are removed from the raw material and then blended with additives and 
oxidation inhibitors to enhance the various properties of the base products, referred to as carbon-graphite. Pitch is commonly used as a 
binder, of which there are numerous chemical formulations. To render mechanical carbon-graphite materials impervious to various 
process variables, they are impregnated with various substances in order to achieve the required physical and chemical properties. 
Various additives include resins, waxes, inorganic salts, ceramics and molten metals. Unfilled or non-impregnated carbon grades have 
low permeability and resistance to many chemicals and high temperatures. The production process involves repeated infusions with 
hydrocarbons which are carbonized resulting in dense carbon graphite that is extremely resistant to aggressive chemicals such as HF 
acid and these specialized grades are the only acceptable carbon face option for these services. While the removal of less chemically 
resistant additives from the base carbon structure make the material more chemically resistant, there are compromises made in other 
areas, particularly strength and rigidity that warrant a thorough evaluation of the seal design in these applications if carbon is 
considered.  

Due to the typical high application pressures in many HF acid applications, material strength of a carbon face could be a concern. 
However, many successful and reliable seal designs in service in these applications have utilized chemically resistant carbon material 
and overcome the lack of material strength by modifying the primary ring geometry to be more resistant to pressure induced 
distortion. Aided by more advanced Finite Element Analysis (FEA) modelling techniques, optimized seal face geometry can be 
designed for the application conditions such that the desirable material properties can be maximized without compromises. Figure 5 is 
a side by side comparison of like chemically resistant carbon materials simulated at 70 F and 300 PSIG (21 °C and 20.6 BAR), sealing 
propane, which would be a very typical service condition for a HF acid seal. The modified geometry on the left exhibits an overall net 
decrease in pressure distortion over the geometry on the right. The modification yields an overall reduction in face temperature, 
prolonging seal life due to reduced wear and minimizing leakage at the same time.   
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Figure 5: Carbon face geometry comparison 

It is very important that the seal face geometry be reviewed in advance of utilizing an ‘acid-grade’ carbon for these severe duty 
applications to maximize reliability of the design. Regardless of seal face geometry modifications and specialized material 
considerations, ultimately there is no carbon grade that is completely HF proof; some specialized grades are more HF resistant than 
others, but should these faces be exposed or immersed in the HF acid containing process, there will be corrosive wear. This fact ties 
directly into the importance of the API Plan 32 external flush to HF acid service seals. 

Silicon carbide is another option for seal face materials in HF acid applications. Silicon carbide is an advanced ceramic material. The 
earliest type of silicon carbide available for use in mechanical seals was reaction bonded and developments have made a number of 
variations available. Silicon carbide is extremely hard, being highly wear resistant and with good mechanical properties. It has high 
temperature strength and thermal shock resistance, maintaining its high mechanical strength at temperatures as high as 2550 °F (1400 
°C). Silicon carbide has higher resistance to chemical corrosion than other ceramics, but the free silicon present in reaction bonded 
silicon carbide will be attacked by caustics and strong acids, which make it not preferable for HF acid applications. The only silicon 
carbide material that can be used in HF acid applications is sintered silicon carbide. Sintered silicon carbide is manufactured by 
compressing a blend of pure silicon carbide powder, with non-oxide sintering aids. Subsequently sintered using an inert atmosphere at 
temperatures around 3630°C (2000°C). Sintered silicon carbide (also referred to as pressure-less sintered), has no free silicon present. 
Two grain structures are used in production, Alpha (hexagonal) and Beta (cubic), both being almost chemically inert to process 
chemicals, including aggressive acids such as HF acid. Figure 6 highlights the differences between the two silicon carbide materials in 
the finished surface and material structure. Usage of silicon carbide face materials may require additional design considerations into 
the method of ensuring fluid film lubrication at the faces in seal flush fluids in HF acid services. Such modifications may be recesses, 
grooves, or other micro-surface treatments design to enhance lubrication and minimize frictional heat generation, which is 
recommended in hard face on hard face pairings. 

Figure 6: Reaction bonded (left) and sintered (right) silicon carbide surfaces 
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Although less popular, tungsten carbide can be considered a hard face material option. Cemented tungsten carbides are derived from a 
high percentage of tungsten carbide particles bonded together by a ductile metal. The common binders used for seal faces are nickel 
and cobalt. The resultant properties are dependent upon the tungsten matrix and percentage of binder (typically 6 to 12% by weight 
per volume). Tungsten carbides have extremely high wear resistance and are very robust materials in general. Corrosion mechanisms 
give rise to surface depletion of the binder phase, allowing the carbide grains to become detached by wear processes. To increase 
corrosion resistance, the levels of nickel (Ni), chromium (Cr), and molybdenum (Mo) are increased, with the highest corrosion 
resistance obtained from TiC-Ni grades (titanium carbide – nickel). These materials can have lower strength and reduced thermal 
conductivity when compared to more traditional cemented carbide grades and silicon carbide as well. In many cases, the balance of 
the ability to transfer heat along with good chemical resistance often make silicon carbide materials more preferred options for HF 
acid services.  

Metallurgy 

As with mechanical seal faces, the material selection process with regards to seal metallurgy for HF acid services has become rather 
simplified over the years. Mechanical seal components differ from larger pressure containing pieces such as pump cases and vessels in 
that the allowable corrosion rates are significantly less by necessity. Loss of metal in seal glands and sleeves through corrosion 
mechanisms will at the very least make these components unrepairable, increasing overall costs. In addition, the corrosion of internal 
fits and support surfaces can cause seal faces to track improperly and ultimately the seal becomes compromised. For these reasons, 
mechanical seal metallurgy selection will typically default to much higher alloy metals with higher corrosion resistance. In the vast 
majority of HF acid applications, Monel Alloy 400 (UNS N04400) is used extensively for gland plates, collars and most adaptive 
hardware components.  

One of Monel’s drawbacks is that it is comparatively soft when evaluated against more traditional seal metallurgy, so the use of Alloy 
400 in thicker cross-section components like gland plates is ideal as it will be more resistant to deviations incurred from normal wear 
in operation. When considering other seal components, such as sleeves, drive / anti-rotation pins, and fasteners, alternative materials 
with increased hardness values would be desirable. In the case of the mechanical seal sleeve, there are typically thinner cross-section 
areas in contact with bushings and other contact surfaces where increased hardness and durability are required. In this case, Monel K-
500 (UNS N05500) is an alternative option as the increased hardness over Alloy 400 makes the material more wear resistant and 
robust, especially in reduced cross-section components. The hardness increase is especially ideal in fasteners, especially seal drive 
collar set screws as the drive collar screw needs sufficient hardness differential (10 Rc typically) over the pump shaft material to 
effectively ‘bite’ into the shaft and transmit torque to the seal. As mentioned, the concern with softer alloy materials in seal sleeve 
construction can be distortion, especially if fasteners used to transmit torque to internal seal components are engaged over top of 
reduced cross section areas. Distortion or dimpling of the sleeve due to fastener engagement can actually impede cartridge seal 
installation onto the pump shaft. One design variation that has been successful has been to utilize keys instead of set screws for this 
purpose, avoiding the potential dimpling or distortion of the sleeve. Figure 7 displays an example of key driven internal seal heads in 
relation to the mounting sleeve in a cartridge seal design. 

Figure 7: Key driven internal seal components 
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Secondary Sealing Elements 

Considering Type A seal designs for these services, the majority of the secondary sealing elements in the mechanical seal design will 
be elastomeric components. There are very specific elastomer material grades that have shown to exhibit good chemical resistance 
when in contact with HF acid; it is important to review elastomer selections as many generic grades will swell and degrade with 
prolonged exposure to the process. As in the case of most materials utilized in these services, it is beneficial to review an experience 
list of documented installations as test data outside of live HF alky unit can be questionable. Speaking in generic terms, current and 
legacy HF alky unit design standards accept the use of perfluoroelastomer secondary sealing elements for mechanical seals. 
Perfluoroelastomers are the most chemically resistant elastomer available, combining the chemical and thermal resistance of 
polytetrafluoroethylene (PTFE) with the elastomeric properties of fluoroelastomers (FKM), becoming a fully fluorinated high 
performance polymer. Various compounds are available which are compatible with a wide chemical base and cover a temperature 
range 0 °F to 600 °F (-18 °C to 316 °C). For a time, specifically cured fluoroelastomers were being utilized in HF acid applications 
and they did exhibit good chemical resistance. However, the specific lead-oxide curing of the material and subsequent cost and 
environmental impacts have made these grades not viable in these applications any more.  

MECHANICAL SEAL ARRANGMENTS 

Encompassing all local specifications and regulations regarding the use of various different seal configurations in HF acid service is 
well beyond the scope of this tutorial. It is beneficial to note key points from international specifications and recommended practices 
regarding pumps and mechanical seals in these services. For example, the API Recommended Practice for Safe Operation of 
Hydrofluoric Acid Alkylation Units (API RP 751) states that pumps in HF service should preferably have dual seals or should be of 
sealless design.  

Single Seals 

When discussing single seals in HF acid service, the best practice initially is for plant management to do a risk analysis and determine 
if the environmental controls in place are sufficient to mitigate potential effects associated with various failure scenarios. 
Fundamentally, all mechanical seals must ‘leak’ as a function of adequate seal face lubrication to mitigate wear and dissipate heat. In a 
single seal arrangement (one set of seal faces), the leakage from the process will move to a lower / atmospheric pressure regions 
within the seal. At this point one must consider the nature of the leakage in this location, whether it is toxic or hazardous, and how 
more significant levels of leakage such as in a failure event are managed. In HF acid applications, the potential impact associated with 
these considerations can be that much more significant, which is why single seal usage in HF acid service can be a very challenging 
topic to address. Since all HF alky unit design standards call for a API Plan 32 flush with no HF to always be used the only outside 
implication should be the external hydrocarbon fluid leaking to the atmosphere.  While not ideal, provided the external flush is 
maintained there should be minimal implications to the outside environment, i.e. no HF acid containing material released.  

In many early HF acid applications, the original seal configuration was a single seal with an external flush injection, or API Plan 32. 
The intent of the external flush injection is that during normal operation the mechanical seal faces are cooled and lubricated by a liquid 
that is “HF free”. This liquid is typically supplied from the unit, with isobutane and propane being popular choices. Aside from being 
not contaminated with HF acid, the fluid must be compatible with the process as the flow path into the mechanical seal will lead to 
injection to the process side of the pump. The operating principles of the single seal and external flush injection have typically been 
very reliable and all seal leakage would be of relatively safe fluid (compared to the process). What is detrimental to the performance 
of single seals in these services are instances when there is an interruption or loss of the external flush, at which point the mechanical 
seal components are exposed to the process fluid containing the hazardous acid and subsequently corrosive attack of some or all of the 
seal components is inevitable. This scenario highlights the other purpose of the API Plan 32 injection in HF acid streams outside of 
lubrication – to serve as another layer of insulation between the hazardous process and mechanical seal components. It cannot be 
overstated that a reliable source of external flush fluid is critical to the success of a single seal and remains as such even when 
discussing more complex seal arrangements such as those discussed later in this tutorial. A typical Plan 32 piping example is 
diagramed in Figure 8.  
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Figure 8: API Plan 32 example piping diagram 

Single seals have advantages in the form of reduced cost over a dual seal based on the relatively simple design and they also utilize a 
simplified support system. If considering the use of a single seal in these services, it is recommended that the design incorporate 
additional features to enhance the performance. Such features might include a distributed flush injection for symmetrical face cooling 
and purging of the seal face area of vapor bubble formations, a segmented throttle bushing on the atmospheric side of the seal for 
additional protection in the event of a seal failure, and a reduced clearance throat bushing in the bottom of the seal chamber to restrict 
ingress of HF acid into the chamber in upset conditions and further maintain the insulation of the seal components from the process. 
The throat bushing clearance should be sized for a flow velocity suitable for process exclusion and representative of a laminar flow 
regime. A good practice to adopt is to include the throat bushing as an integral component to a cartridge seal assembly so that the 
bushing replacement is guaranteed with each seal change. What hinders external flush effectiveness and leads to excess external flush 
fluid loss to process is worn throat bushing clearances; incorporation of the throat bushing into the seal cartridge helps ensure these 
clearances remain intact. Figure 9 is an example of a single seal design in an HF acid service that incorporates the integral throat 
bushing feature. 

Figure 9: Single seal cartridge with integral throat bushing 

Despite some noted advantages, the criticality of the API Plan 32 availability at all times, even before startup, at the correct pressure 
and flow rate can be significant detriments to its success. Once the API Plan 32 fluid injection is lost, HF acid will enter the 
mechanical seal area and could even enter the injection and any leakage past the seal faces at this point would contain HF acid. There 
may be a temptation to propose a single seal configuration for a service that is classified as containing ‘trace HF acid’, as the 
connotation of ‘trace’ suggests less severity. It is important to realize that in these streams the HF acid is immiscible with the 
hydrocarbon and the ‘trace’ of HF acid that is present will be a 100% concentration and not diluted. Additionally, actual percentages 
associated with ‘trace’ HF acid services vary from as low as 1% to greater than 6%, so clarification must be sought when reviewing 
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applications with this designation. Even if the external flush fluid source is reliable, the cleanliness of the fluid must not be in question 
as fouled external flush piping can lead to degradation of the fluid flow rate and potential contamination of the seal components as 
well. Many times, the isobutane flush stream utilized in many HF alkylation plants tends to be more prone to fouling when compared 
to propane for example, but it really depends on the operational parameters of the unit in general. External flush fluid screens and 
filters must have regular preventive maintenance (PM) intervals to minimize potential impacts to the seal. Figure 10 highlights 
external flush fluid contaminants and a carbon seal face after exposure to a trace HF acid stream that was the result of a loss of clean 
external flush. In many pre-existing installations, the contaminants are iron fluoride scale due to prolonged exposure of carbon steel 
hard-piping to the process conditions. In more recent installations and where practical, Monel tubing has been utilized for external seal 
flush interconnecting piping downstream of a filtration element to help mitigate this issue. 

Figure 10: External flush debris fouling and carbon seal face post HF acid exposure 

Even if the exposure risk associated with the presence of HF acid was removed from the equation, a single seal in these applications 
would be required to seal a very high pressure, low viscosity, volatile light hydrocarbon with minimal normal leakage expectations. 
When the duty conditions are considered along with HF acid exposure risks, it is understandable to see why many end users opt for 
additional layers of leakage management and safety associated with multiple seal arrangements. Unless specific parameters have been 
met, including a detailed risk assessment, single mechanical seals are not recommended for HF acid services.  

Dual Unpressurized – Wet Containment 

The natural progression beyond a single mechanical seal is to a dual mechanical seal. A dual mechanical seal is an assembly 
comprised of two sets of seal faces in which the orientation of the assemblies within the housing creates a cavity between the two 
seals. The cavity between the two seals can be wet or dry and either maintained at a lower pressure than the process pressure or at a 
higher pressure than the process pressure. Regardless of the configuration, the purpose of a multiple seal arrangement is management 
of leakage, and with an unpressurized seal the second seal is in place to capture inner seal leakage and aid in diverting this leakage to a 
safe location for disposal. In an dual unpressurized seal with wet containment, the inner seal sees the higher duty as it must seal the 
differential between process pressure and the pressure within the containment cavity, which is slightly above atmospheric pressure and 
typically operating at the flare or vapor recovery system pressure. The outer, or containment seal is only sealing the differential 
pressure between the containment cavity and atmospheric. In this configuration it is important to understand that the inner seal is 
essentially acting as a single seal and so the heat generated by the inner seal must be removed and these faces lubricated by some 
means. This requires the use of an inner seal flush of sufficient lubricating properties injected at a pre-determined flow rate for the 
particular application. The requirement of a suitable flush for the inner mechanical seal in the context of an HF acid application 
defaults back to a reliable API Plan 32 system.  

The outer or containment seal in this configuration is supported by an API Plan 52. API Plan 52 uses an external reservoir to provide 
buffer fluid for the outer seal of an unpressurized dual seal arrangement. During normal operation, circulation is maintained by an 
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internal pumping ring. The reservoir is usually continuously vented to a vapor recovery system and is maintained at a pressure less 
than the pressure in the seal chamber. While this piping plan has been used successfully in many applications, the nature of the process 
fluid being sealed in this case makes the selection of this support system less desirable. While the inner seal does contain the higher 
pressure fluid and should be insulated from HF acid components by the external flush injection, should the inner seal be exposed to 
HF acid through an upset condition the possibility exists that the API Plan 52 system will be exposed to the same contaminants as they 
pass through to the buffer fluid system. Incompatibility of the buffer liquid with the inner seal leakage flow is of a particular concern 
as contamination over time leads to the liquid buffer becoming an emulsion, typically losing its lubricating properties resulting in the 
outer seal performance to degrade. Once the buffer fluid is contaminated, it must be replaced and disposed of which requires 
maintenance intervention and the potential for personnel exposure to HF acid containing material. In fact, regular maintenance of the 
buffer fluid is required just to maintain a satisfactory level of performance in which case continued personnel exposure becomes a real 
concern. Buffer fluid compatibility and ideal fluid properties is a topic that has been addressed in many technical documents so it does 
not require repeating in this tutorial; however, in the context of HF acid services the use of Automatic Transmission Fluid (ATF) 
should be strictly avoided as the additives in the fluid will break down and polymerization occurs upon contact with inner seal leakage 
and hazardous constituents.  

In addition to the fluid compatibility concerns, the overall system itself needs to be designed for compatibility with HF acid since the 
exposure risk is a legitimate concern. This requires a fluid reservoir constructed from Killed Carbon Steel or Monel for corrosion 
resistance along with the associated instrument connections, valve bodies, and trim components designed for exposure to HF acid as 
well. These material considerations alone will increase overall costs of the system aside from any additional testing requirements for 
the pressure vessel as mandated by local or industry specifications. The marginal reliability advantages in an HF acid application are 
outweighed by the significant potential disadvantages and for this reason liquid lubricated dual unpressurized seals are not commonly 
used in HF acid applications and are not recommended.  

Dual Unpressurized – Dry Containment  

In a dual unpressurized seal design with dry containment, the buffer fluid as described in the previous section is a gas and not a liquid. 
These dry containment seals are specialized configurations separated into two categories: contacting dry running and non-contacting 
dry running. In either case, the inner seal remains a wet contacting design that requires lubrication by a clean external flush similar to 
the single and dual unpressurized wetted seal. The contacting configuration is designed with special grades of carbon and engineered 
spring loads so that face wear is minimized. The specialized carbon grade running against a corresponding silicon carbide face has a 
very low coefficient of friction and in conjunction with a modified spring load it can achieve long life. However, the same grade of 
carbon has a very limited corrosion resistance and potential exposure to HF acid is a prime concern.  Additionally, while the 
coefficient of friction and wear is low with these seals, there is still wear and a finite life to consider and assurance of the containment 
seals ability to isolate more significant levels of inner seal leakage requires a regular testing interval for these seal types. A more 
comprehensive overview of dry running, contacting containment seals and subsequent testing protocols can be found in the 
proceedings from the 31st International Pump Users Symposium (Kalfrin / Gonzalez, 2015).  The limited corrosion resistance of the 
carbon and the testing requirements make dry running, contacting containment seals less desirable options in HF acid applications.  

Dry running, non-contacting containment seals do have significant benefits and have been supplied successfully in HF acid 
configurations with some modifications to the standard configuration. In a non-contacting containment seal, the faces utilize 
engineered recesses or grooves to generate hydrodynamic lift and subsequently create face separation. In this configuration, the non-
contacting containment seal shares the same benefits as the contacting containment seal as the support system is greatly simplified and 
the need for an external reservoir as in the dual unpressurized wetted configuration is eliminated. In addition, the non-contacting 
design will generate no frictional heat in operation and experience near zero wear. This characteristic becomes advantageous in the 
event of an inner seal failure as the containment seal faces will positively seal off, isolating more significant levels of leakage. Both 
the contacting and non-contacting arrangements are aided by the support of a continuous purge of the containment cavity (API Plan 
72), which aids in forcing non-condensable leakage from the inner seal to flare (API Plan 76). The drawback with a conventional non-
contacting containment seal is that with the hydrodynamic lift features being on the containment cavity side, the potential for 
significant leakage to the atmosphere in the event of a failure is increased as the features may ‘pump’ liquid from higher to lower 
pressure regions. Typical API Plan 72 and Plan 76 piping diagrams are outlined in Figure 11. 
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Figure 11: API Plan 72 (left) and Plan 76 (right) piping diagrams 

One adaptation to the dual unpressurized non-contacting containment seal that has been used successfully in many HF acid 
applications over the past seventeen years has been to orient the hydrodynamic lift generating face features of the containment seal on 
the face inner diameter, away from the process. This seal configuration utilizes a wet contacting seal as the primary seal, a non-
contacting containment seal with active lift features on the face inner diameter, and a segmented carbon throttle bushing as a final seal 
between the containment seal and the atmosphere. The leakage past the inner seal is sealed by the dry running non-contacting seal that 
is designed to compress moisture-free nitrogen gas from the inside diameter to the outside diameter into the containment cavity. The 
mixture of the nitrogen with the vaporized flush leakage is then vented to the flare or vapor recovery system. Nitrogen is supplied 
outboard of the dry tandem seal between the segmented bushing which restricts its flow to the atmosphere; the dry running seal faces 
incorporate a series of active lift grooves, which are designed to operate on a thin film of gas. The grooves are configured to pump 
from inside diameter (ID) to the outer diameter (OD) of the seal faces. This nitrogen quench supply ensures an inert gas film, of which 
an extremely small amount is vented to the flare or vapor recovery system. This initial concept and subsequent testing was discussed 
in detail in the proceedings from the 20th International Pump Users Symposium (Wasser, et al 2003). An example of the modified dual 
unpressurized design described is depicted in Figure 12. 

Figure 12: Alternative wet / dry containment with active lift and temperature monitoring 

The adaptation of the active lift grooves and low pressure nitrogen make the utility requirements of this configuration minimal and 
nitrogen consumption rates would be significantly reduced over a conventional API Plan 72 buffer gas injection. The injection of the 
nitrogen gas to the inner diameter of the containment seal would make the piping plan more of a quench than a purge, although the 
function of the containment seal design to move the gas to the containment cavity could add confusion when reviewing the piping 
plans associated with the design. API 682 does make provisions for modified piping plans such as this, allowing for coverage under 
Plan 99 designation. A Plan 99 is simply an engineered piping plan that is not defined by any of the existing plans in the standard, 
fitting as HF acid services would usually fall under ‘engineered seal’ applications. API 682 does not have any specifications for a Plan 
99, but it does state that the Plan 99 description and requirements must be clearly defined in specifications outside of the standard. It is 
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not sufficient to indicate “Plan 99” on a seal data sheet or even on a seal layout drawing as a lone descriptor. A drawing of the Plan 99 
and notes about its operation should be supplied. A good practice when adopting this designation would be to include a descriptor 
along with the “99” designation to provide clarity if the proposed piping is a variation of an existing piping plan, such as Plan 72 (99), 
for example.  

The advantages of the design shown in Figure 12 are noticeable in terms of reduced complexity in the overall support system design 
and enhancements to the monitoring of the containment seal condition in terms of both pressure in the containment cavity and 
temperature of the containment seal faces. More recently, additional treatments to the inner seal faces in the form of micro-surface 
structures to reduce interface frictional generated heat and minimize leakage have been implemented to enhance the performance of 
the seal faces in this configuration. As noted, the basic sealing challenge to overcome with these services is the sealing of poor 
lubricating fluid, so generating sufficient fluid film support is fundamental to a reliable seal design in these applications. Description 
of one such treatment that has been incorporated successfully to HF acid applications was first described in the proceedings from the 
Eleventh International Pump Users Symposium (Wallace / Muller, 1994).   

Dual Pressurized 

Dual pressurized seal configurations utilize two sets of seal faces contained within one housing where the cavity between the two seals 
is maintained at a pressure higher than that of the fluid within the pump (process pressure). In this configuration, both sets of seal 
faces are lubricated by the fluid between the two sets of faces, which is referred to as a barrier fluid. Dual pressurized seals, or API 
682 Arrangement 3 designs, have distinct advantages in hazardous applications such as HF acid service in relation to not only safety 
aspects but the ability to seal a difficult or poor lubricating fluid. From a safety perspective, the leakage past both sets of seal faces 
would be that of the barrier fluid, so provided the barrier fluid is not a Volatile Organic Compound (VOC), the leakage to the 
atmosphere will be an inert, non-toxic substance. Similarly, leakage to the process side will be that of the barrier fluid as well, which 
isolates the pumped product completely from the atmosphere. As the barrier fluid pressure is maintained higher than the process 
pressure, the lubrication concerns associated with sealing light hydrocarbons are usually eliminated as the base criteria for barrier fluid 
selection be good lubricity and sealing properties.  

Dual pressurized seals are commonly available in either Face-to-Back (FB), Back-to-Back (BB), or Face-to-Face (FF) configurations 
(see Figure 13). While all three configurations have benefits, speaking specifically in the context of HF acid applications, the BB or 
FF configuration would be recommended. This recommendation stems from several driving factors, one of which being that based on 
the higher pressures typically associated with the process streams and the need to pressurize the barrier fluid above these sealed 
pressure values, a FB configuration would have higher pressure at the inner seal face inner diameter, loading the face materials in 
tension. This could compromise the face materials from not only a stress perspective, but also from a fluid film lubrication standpoint 
where the inner seal interface becomes isolated from the barrier fluid due to combined thermal and pressure distortion of the face 
components (both forces acting in the direction of the applied pressure from the inner diameter). This phenomenon is more prevalent 
with hard face material combinations, which are likely to be utilized in HF acid applications for chemical compatibility purposes as 
previously discussed. Another area of concern with the FB configuration is that there is increased potential for thinner cross-section 
components to be exposed to the corrosive process; this concern is minimized with a BB or FF seal configuration.  

Figure 13: Face-to-Back (FB) vs Back-to-Back (BB) configurations 
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The BB or FF dual pressurized configuration is advantageous as the barrier fluid is circulated around the outer diameter of both sets of 
seal faces. This logic allows for better circulation of the barrier fluid and more effective cooling and lubrication of the inner seal when 
compared to the FB configuration. The injection of the higher pressure barrier fluid around the outer diameter of the seal faces loads 
the components compressively as well, allowing for better net overall distortion resistance. Even with a pressurized barrier fluid 
arrangement, the addition of an external API Plan 32 is recommended to serve as an additional ‘barrier’ between the HF acid 
containing process fluid and the seal components. A circulation of a clean external fluid between the seal components and the process 
also mitigates the formation of iron fluoride scale in these critical areas that could cause potential hang-up of the faces. While the 
inclusion of an API Plan 32 is recommended with a dual pressurized arrangement, the seal is not dependent on the external fluid 
injection for face lubrication as that is handled by the barrier fluid. To this point, the seal is less susceptible to wear as a result of 
interruptions in the external flush supply, unlike the single seal or dual unpressurized designs.  

The typical support systems utilized with dual pressurized seals in HF acid services have traditionally been either API Plan 53A, B. or 
Plan 54. Unlike API Plan 53A that incorporates a pressurized reservoir within the circulation loop, API Plan 53B has only piping and 
an air or water cooled heat exchanger within the closed loop circuit. Some installations have used finned tubing as the “heat 
exchanger”. Liquid replenishment to this circuit is provided by a pre-pressurized bladder accumulator. The basic setup is comprised of 
two parts: the closed loop circulating system and the bladder accumulator. Seal performance is monitored by pressure decrease and not 
by barrier liquid volume as in API Plan 53A. Flow in the circulating system is induced by an internal pumping device or by circulating 
pump in the associated piping in some cases. API Plan 53B is advantageous in that the barrier fluid is not in contact with the 
pressurized gas, so there is no concern over gas entrainment in the barrier fluid that can then come out of solution at the at the seal 
faces. API 682 cautions against using gas pressurization in direct contact with the barrier fluid when the reservoir pressure is above 
150 psig (10 barg); user installation experience and independent mechanical seal manufacturer testing has shown that this value can be 
increased to 300 psig (21 barg) as long as the barrier fluid temperature is less than 250 F (120°C).  Some typical API Plan 53A and 
Plan 53B piping configurations are outlined in Figure 14. 

Figure 14: API Plan 53A (left) and 53B (right) piping diagrams 

In either support system, the means of pressurizing the barrier fluid requires either a reliable high pressure nitrogen supply or a 
supplemental booster system to increase available nitrogen pressure to the values dictated by the application conditions. In pressurized 
arrangements, the desired barrier pressure set point should be the greater of either 30 PSIG (2 barg) or 10% above the seal cavity 
pressure, which in this case becomes a function of the external flush supply pressure acting upon the throat bushing within the seal 
chamber. In HF acid applications, it is important to understand potential variations in all system pressures so that the barrier fluid set 
point can be accurately established to minimize the potential for loss of process containment and HF acid exposure to the atmosphere. 
As identified with a dual unpressurized wetted system, the material compatibility concerns associated with the support piping and 
instrumentation with the pressurized wetted systems are of primary importance, and can increase overall system cost and complexity 
as result. Additionally, with the barrier fluid pressure being maintained at a higher value than the seal chamber pressure, there will be 
a need over time to replenish fluid lost through the inner seal just as a function of normal seal leakage. Replenishment of barrier fluid 
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in a pressurized system requires careful consideration to minimize personnel exposure to not only higher pressures but also a 
hazardous process in this instance. Many pressurized systems have been equipped with automated top-up or filling units that function 
to replenish the lost barrier fluid without the intervention of operations or maintenance personnel. When considering an API Plan 53A 
or 53B system with automated make-up, the complexity and operability of the system needs to be carefully reviewed to ensure all 
process hazard analysis (PHA) scenarios are being addressed.  

API Plan 54 utilizes an external source to provide a clean pressurized barrier fluid to a dual pressurized seal. The API Plan 54 
“system” supplying the barrier fluid can range from a process pump in the unit providing clean cool lubricant under pressure to a 
simple lubrication system with minimal components to an elaborate large system with many ancillary components and redundant 
systems to safeguard and alarm against malfunctions and process upsets to a controlled process stream. The designation of API Plan 
54 only means that the dual seal is supplied with pressurized barrier from an external source and does not describe any specific system 
details. A generic depiction of API Plan 54 is shown in Figure 15. 

Figure 15: API Plan 54 diagram 

While there have been stand-alone lubrication systems utilized in HF acid applications, what is more commonly seen in many HF alky 
units is a dedicated barrier fluid loop where the barrier fluid is pressurized by dedicated process pumps with distribution to multiple 
pumps and seals within the HF alky unit. In one particular example, the seal support system utilized a combination of an API Plan 32 
using isobutane with a pressurized barrier fluid of alkylate in the API Plan 54 loop. The isobutane injection was supplied to the cavity 
between the inner seal faces and the process fluid to keep HF acid material away from the seal components; the pressure of the 
isobutane injection was in the range of 290 PSIG (20 barg). The alkylate barrier fluid was taken from the Iso-stripper tower at a 
pressure of 150 PSIG (10 barg), which was suction pressure for two dedicated flush pumps. The pumps increased the alkylate pressure 
to 350 PSIG (24 barg) where it was then filtered and supplied to a distribution header that fed multiple pumps in the unit, with the 
outlet from each mechanical seal routed to a return header back to the suction source of the flush pumps. Figure 16 is an example of 
the localized barrier fluid piping at each seal in this particular configuration, which is a common design certain legacy HF Alkylation 
unit licensors, especially in high acid containing pumps. 
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Figure 16: API Plan 54 piping example 

Flow rate is controlled with the globe valve downstream of each seal, with the local flow meters register flush flow in and out of each 
seal; a significant difference in flow rates would be a first sign indicator of potential inner seal leakage. The excess flow valve was 
designed with the intent to close off Alkylate barrier fluid flow in the case of a catastrophic seal failure while the inclusion of the 
restriction orifice was designed to limit excess flow of alkylate and maintain back pressure on the seal. In the instance of a unit-wide 
barrier fluid system such as this, the user must accept barrier fluid leakage into the process stream and focus on monitoring flow rates 
on a macro-scale initially, then isolate troubleshooting to localized areas to determine which seals may be leaking more than predicted 
or acceptable. In such an arrangement, it is also useful to monitor header pressure in several locations around the piping loop to make 
sure system integrity is maintained and no loss of containment goes un-noticed. A suggested check list when considering a piping 
arrangement such as this one would be as follows:  

• Monitor total barrier flow rate from supply pump discharge – trend to DCS for increases in flow (flow meter and transmitter).
• Utilize local vortex meters and flow transmitters at each mechanical seal – trend inlet and outlet flow to DCS; 2 GPM

decrease across the seal as an indicator of a first sign of trouble.
• Monitor barrier fluid header pressure at several points – provide indication of loss of pressure, i.e. busted pipe, leaking seal,

etc.
• Consider low pressure alarm on the barrier fluid header – low alarm set point would be dictated by the downstream pump and

subsequent seal arrangement with the highest pressure requirement.
• API Plan 32 and Plan 54 components mounted with sufficient space for equipment access; consider unitized mounting on a

panel for a cleaner installation (see Figure 17).
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Figure 17: API Plan 54 – localized components panel mounted 

An example mechanical seal configuration utilized with the API Plan 32 and 54 piping configuration is shown in Figure 18. In this 
example, the mechanical seal is oriented back-to-back with an integral throat bushing supplied to the seal cartridge downstream of the 
API Plan 32 injection connection. The advantages of mounting the throat bushing in the seal gland were discussed in the single seal 
section and would be applicable in this case as well as a good practice. Note that in this particular configuration, no internal circulation 
device is required based on the forced barrier fluid circulation by the external pumps.  

Figure 18: Back-to-Back dual pressurized with API Plan 32 / 54 
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CONCLUSIONS 

There is an extensive list of end user applications in HF Alkylation Unit technology and through the application of industry accepted 
standards for pumps and mechanical seals, along with specific HF Unit licensor guidelines, sound and reliable solutions to these 
critical services can be applied. There are many older legacy installations that may benefit from some of the technologies described in 
this tutorial as the benefits have been well documented. The key statement with these hazardous applications is just that – 
documentation. While no doubt there will continue to be advances in materials and technologies associated with handling these 
processes, it is important to remember the criticality of the equipment handling this process and be mindful that any new technology or 
material be evaluated thoroughly and ideally supported with a well-documented history of success in other HF Alkylation Unit 
services. The intent of this tutorial was to provide an overview to those individuals less familiar with the application of pumps and 
mechanical seals in HF Alkylation Unit services and is not intended to be a comprehensive design guide, but rather serve as a 
supplemental aid in concert with specific design standards focused on this processing technology.  
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