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ABSTRACT 
Controlling Software and Optimization for Compressor Engine’s Operation Under Variable Gas 

Composition 
 
 

Pedro Valent Riojas 
Department of Mechanical Engineering 

Texas A&M University 
 
 

Research Advisor: Dr. Timothy Jacobs 
Department of Mechanical Engineering 

Texas A&M University 
 
 

This research will determine what controller type and code must be implemented to ensure 

the operation of a natural gas compressor station engine stays within emission standards. The 

natural gas pipeline compressor stations power the transportation of extracted natural gas 

downstream. The engines that power these stations run off the natural gas being fed through the 

line. As fracking occurs to extract natural gas, the newly accessed natural gas deposits do not have 

a single level of chemical composition, as they would have in a natural gas reservoir. Thus, the 

engines that are fed the natural gas from areas that utilize techniques such as fracking must be able 

to adapt their operation to still run to meet emission standards and continue to move the natural 

gas. The controller to be designed must run the compressor station engines to meet emission 

standards and still provide enough power to pass the natural gas along the pipeline.  
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NOMENCLATURE 

 

HHV   Higher Heating Value 

NOx  Nitrous Oxides 

WI   Wobbe Index     

SG  Specific Gravity 

LHV  Lower Heating Value 

PID  Proportional integral derivative 

TDC  Top Dead Center 

BDC  Bottom Dead Center 

MPC   Model Predictive Control 

  



4 

CHAPTER I 

INTRODUCTION 

 

When natural gas is extracted from the ground, the chemical composition of the gas can 

vary over a period of time “as short as a few minutes to periods of several days due to formations 

containing increased heavy hydrocarbons or inert contents.”[1] The development of natural gas 

production within the United States has only increased the focused on fracking to extract the 

trapped gasses within scattered shale pockets. Since natural gas has various stable chemical forms, 

the gas within each well reaches different chemical equilibrium conditions in multiple sections, 

inherently causing variance of the gas being extracted. Furthermore, the gas is transported along a 

pipeline that connects to multiple sources. This network of sources into the pipeline, along with 

the gas dynamics, causes variability in composition at compressor stations, where the gas flowing 

through the pipeline is siphoned to run compressor station engines. Typically, natural gas is 

composed of a majority methane (CH4), a small part ethane (C2H6), a portion propane (C3H8), and 

the rest by heavier hydrocarbons and inert gasses. However, as noted by the 2014 study of natural 

gas composition by the Southwest Research Institute [2], the chemical composition in the well 

alone, dependent on factors such as the organic make up of kerogen which helps produce the 

natural gas, can vary in Higher Heating Value (HHV) by several hundred btu/scf. The fuel with 

variability in HHV, as well as other fuel mixture properties, is then fed into an engine along the 

pipeline which may receive infrequent maintenance, due to inaccessibility, which runs off steady 

state performance parameters. Concurrently, these parameters set in the engine are tuned to a 

manufacturer determined optimal level, based upon a tested performance cycle for an expected 

composition of natural gas. This predetermined optimal level is generally set to reduce the possible 
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damage to the engine when the energy content in the fuel is at a maximum expected level. 

However, the planning for an outlier case can lead to further issues with reduced engine power and 

higher Nitrous Oxides (NOx) emission levels when operating off the various sources natural gas 

fuel running through the engine.  

Presently, controllers used to operate these engines account for a small amount of 

variability, but the engine’s themselves can experience problems such as engine damage, auto-

ignition, and misfiring if the fuel composition changes drastically. Furthermore, with hundreds of 

species and thousands of possible reactions occurring with the possible combinations of fuel 

passing into the engine, the emissions level and power may quickly change as the fuel composition 

changes. Luckily, GT-Power is a simulation software that can be utilized to obtain combustion 

characteristics and ‘virtual’ testing of a controller design before hardware implementation takes 

place. This process allows for the designed controller to be tested in a virtual environment for fine 

tuning of the controller to reduce calibration time to the engine and reduce the likelihood of damage 

occurring to the engine running off new software. The controller designed is to reduce the varied 

levels of NOx by 50% of current base calibration emissions that results from a varying fuel 

chemical composition. 
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CHAPTER II 

VARIABLE GAS COMPOSITION 

Predictive Indices 

When considering the various stable states of the natural gas being extracted during the 

fracking process, the gas composition can vary widely around an expected state. To account for 

this, it is generally accepted to use an index to identify the combustible potential of a specific 

mix to reduce the chance of auto-ignition during the combustion process. [1] One such index, 

proposed by Leiker at AVL [3], is the Methane Number (MN) to predict auto-ignition within a 

mixture. MN is defined as the below [3] 

𝑀𝑁 = 	%1 − ()*+,
()*+,-()*.+/

0 × 100    (2.1) 

 The MN number provides an indication of a mix’s resistance to auto-ignition, where a low value 

of the MN will predict a need to retard the ignition timing, to move the ignition timing later in 

the combustion cycle, to reduce the chance of auto-ignition [1]. This number can thus provide a 

gauge for the control process to adjust the timing in one direction to correct for the oncoming 

gas. It is noted that with the presence of diluents, such as CO2, a MN of over 100 is possible [4]. 

This index reaching over a value of 100 indicates an auto-ignition tendency below that of even 

pure CH4. It is noted in Hedrick et. al [1] that an additional index option is the Wobbe Index 

(WI) defined as 

𝑊𝐼 =	 56(
√89

   (2.2) 
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where SG is the specific gravity and LHV is the lower heating value. However, as noted by 

Hedrick et al [1], a single Wobbe index value can explain multiple different stable states of gas 

that may be passing through a relay station. Thus, the Wobbe index is not favorable for any 

ignition controlling criteria since this inaccuracy could result in an over-correction in the ignition 

timing and cause unnecessary damage to the system.  

 However, monitoring the MN number is only a single feature to optimize the system 

around when dealing with a changing gas composition. Additional to this index, as suggested by 

Hedrick et al [1], the engine performance parameters, such as the laminar flame speed and 

adiabatic flame temperature, can also be analyzed for optimization. Both of these parameters 

indicate the instantaneous pressures and temperatures moving through the combustion process, 

where a deviation from an expected pressure level or temperature level can indicate an increased 

production in NOx or decrease in engine efficiency. Over time, the peak temperature recorded 

for differing levels of the air/fuel ratio can provide a graph of the adiabatic flame temperature, as 

shown below in Figure 2.1.  

 

 

Figure 2.1. Example adiabatic flame temperature curve, taken directly from Heywood [5], pg. 94. 
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The adiabatic flame temperature curve is compiled from maximum temperature values in a 

combustion cycle over a range of equivalence ratios. The adiabatic flame temperature is 

important to note due to the correlation between the level of incomplete combustion products and 

the temperature of the reaction. For example, the leaner that an engine is running, meaning the 

lower amount of fuel to air being fed into the engine, will result in less unburned fuel in the 

exhaust after combustion in the engine’s cylinder. Alternatively, the richer the engine is running, 

the more amount of unburned fuel can pass through the engine at the same operating conditions 

due to a lower oxygen level not allowing for as complete of a combustion reaction [5]. However, 

when the engine operates at a higher temperature level, at a higher point on the adiabatic flame 

temperature curve, the mixture approaches the auto-ignition temperature of the mixture. This 

situation creates an environment where a spark will create a faster moving flame kernel, 

correlating to a faster laminar flame speed, allowing for more fuel to be burned during the 

engines power stroke and resulting in a lowered amount of unburned fuel in the exhaust stroke. 

While this is advantageous, it is kept in mind that the NOx is exponentially correlated to 

combustion temperature [6]; however, this can be mitigated by the control system.  

Combustion Modeling 

 While the products of the physical combustion can be evaluated by the use of the above 

predictive indices, the actual combustion characteristics can also be estimated by the use of 

computer simulation as well. Currently, the use of CANTERA chemistry solutions can be 

utilized to develop predictions about the laminar flame speed. This parameter serves to further 

detail an optimal ignition timing by providing information relative to the combustion reaction 

speed and reaction timing after spark initiation.  
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 Within CANTERA, a solution can be generated utilizing the GRI-MECH 3.0 solution 

mechanism, which is a commonly used skeleton for predictions of natural gas combustion. This 

simulation skeleton encompasses 53 different species of gasses with 325 different reactions [7]. 

Following predictive species, this simulation environment can yield the laminar flame speed 

characteristics based upon a one-dimensional laminar flame and follows a multi-component 

species transport model, code shown in Appendix A given as a demo with the download of 

CANTERA [7]. The outputs of this code will yield an iterative algorithm resulting in a value for 

multicomponent flame speed.  
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CHAPTER III 

CONTROLLERS 

 

Controller Scheme 

 When analyzing the gasses, a NOx sensor will determine the composition of the natural 

gas flowing through the pipeline. The considered sensors include the NOx 5210 system from 

ECM, Varian CP -4900 microgas chromatograph, and the GasPT2 from CUI Inc. The benefit of 

the NOx 5210 system is that it allows two output signals to be broadcasted at once, while at the 

detriment of accuracy of gas quality measurement. While the NOx 5210 sensor does in fact 

provide optimal data for combustion exhaust properties, it cannot provide adequate fuel 

composition data for an intake sensor. Therefore, the comparison between the gas chromatograph 

and the GasPT2 sensor can be summarized from the PRCI project [8]. 

 The benefit of the gas chromatograph includes the utilization of the thermal conductivity 

sensor, where a measurement was taken every 3 minutes, and compares the gas composition 

against a calibrated normal. This thermal conductivity sensor provides data towards the heating 

properties of the gas travelling past the sensor, providing an accurate measurement relating to the 

combustion process. This sensor can be calibrated using a certified gas with an expected 

composition to account for an optimal case passing through the pipeline, where the sensor thus 

provides a reading deriving from an accurate base case. Alternatively, the GasPT2 sensor is 

considered an energy sensor; this sensor has a faster response time than the gas chromatograph. 

There are 2 components to the GasPT2- the main unit is a CO2 sensor with temperature and 

pressure sensors, while the secondary unit contains a thermal conductivity sensor and a speed of 
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sound sensor. This sensor provides more data for the combustion properties of the fuel, yielding 

an optimal option for the system.  

 For engine controllers, the system is generally represented as a closed loop system. An 

example closed loop system is represented below in Figure 3.1.   

 

 
Figure 3.1 Closed loop engine controller. Simplified from [9]. 

 

Here, the system inputs include the fuel composition and the engine’s initial performance 

settings. These system inputs will act as the input into the control loop of the control system. As 

the engine is operated, the engine, and the corresponding model, will encounter external 

disturbances such as the changing of external humidity, temperature, pressure, and fuel 

composition. While the engine runs, the output will pass by a sensor array, offering data for the 

engine controller to adjust based upon operating conditions.  

 This engine controller, based on the NOx sensor and GasPT2 sensor suggested 

previously, features a predictive feedback performance where prediction can be determined in 

the inlet and adjusted based upon the NOx 5210 sensor in the outlet. The data being fed into the 

engine will thus be generating two data sets for the system to parse. The inlet sensor will provide 

information relative to an expected combustion curve, following the analysis of the MN and the 

methane level. Following combustion, the NOx 5210 sensor will provide information relative to 
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the NOx levels emitted in the exhaust. As the noted information is fed to the controller, the data 

must be passed through a proportional integral derivative (PID) controller to optimize the NOx 

level during operation. This controller is derived below, from Visioli et al [10], (3.1-3.3) with 

derivative time constant, 𝜏;, and integral time constant, 𝜏<, 

𝑦(𝑡) = 𝐾B C𝑢(𝑡) + 𝜏< ∫ 𝑢(𝑣)𝑑𝑣I
J + 𝜏;

K
KI
𝑢(𝑡)L                                 (3.1) 

with the transfer function in the ideal non-interacting form 

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑠) = S(T)
U(T)

= 𝐾B C1 +
<
VWT

+ 𝜏;𝑠L                                 (3.2) 

and further noted in the non-ideal interacting form  

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑠) = 𝐾B C
VWT-<
VWT

L (𝜏;𝑠 + 1)                                    (3.3) 

where the transfer function (controller) is simplified in Skogestad et al [11] (3.4). 

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟(𝑠) = 	 [\
VWT
(𝜏<𝜏;𝑠] + (𝜏< + 𝜏;)𝑠 + 1)	                          (3.4) 

This controller features the controller gain, Kc, the integral time, 𝜏<, the derivative time, 𝜏;, all 

represented in the Laplace domain, with notation s. The controller serves to multiply into the 

differential equation y(s) for the input u(s) to be adjusted towards the target level- In this 

evaluation equation, y(s) is the NOx level, u(s) is the ignition timing, and ys(s) are the system 

inputs described below from Skogestad et al [11].  

𝑢(𝑠) = 	𝐾B C
VWT-<
VWT

L C𝑦T(𝑠) −
V^T-<
V_T-<

𝑦(𝑠)L                                 (3.5) 

 It is noted that the value of  𝜏` = 𝛼𝜏; and 𝛼 = 0.01[11]. Skogestad decided to choose the 

𝛼 value as 0.01 to not bias results. This system transfer function, utilized in the above equation 

form, will thus be utilized by the Simulink model described by the further Model Predictive 

Control section. 
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Ignition Timing for Emission Control 

 The ignition timing is chosen to control the system due to the significant impact on NOx 

levels. Advancing the ignition timing in the engine cycle allows for the combustion of the fuel to 

begin further in front of top dead center (TDC) of the piston; TDC of the piston is the location in 

the combustion process where the trapped volume of the cylinder is minimum [6]. An earlier 

combustion causes a larger buildup of pressure when the piston reaches TDC since the 

combustion energy is further increasing the pressure in the cylinder than compression of the gas 

alone. It is noted that retarding the ignition timing will decrease in-cylinder pressure since the 

combustion energy will not couple with the compression of the gas, since more fuel will be 

burned after TDC [6], the later combustion starts in the engine cycle.  The larger build up in 

cylinder pressure from advancing the ignition timing results in a higher in-cylinder temperature 

increasing NOx formation rates.  

GT-Power 

 GT-Power is a 1-dimensional simulation software where specific components within an 

engine can be represented as objects with defined mass flow parameters, pressure drops, and 

expected temperature performances. This software inside Gamma Technologies GT-SUITE 

allows for the gas dynamics expected through an engine’s operation to further predict engine 

performance. As mentioned before, CANTERA could provide suitable combustion data for a 

fuel passing through a natural gas engine, providing the necessary information to continue 

combustion modeling within GT-POWER. This laminar flame speed information, as well as 

predicted NOx values from the simulation then can be stored for further use by a controller plant.  
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Model Predictive Control and Simulink 

 The ultimate system-wide control option would be the Model Predictive Control (MPC) 

simulation environment to tie the aforementioned control parameters and methods together. The 

MPC co-simulates an operating environment in multiple areas to generate possible alternatives 

when organizing the plant of the controller. The MPC model is summarized below, following the 

design workflow of Chen et al [12], even though the system mentioned is applied to a diesel 

engine since the controller scheme can be easily applied to natural gas applications.  

 The MPC system operates off the joint work between the GT-POWER engine model and 

a Simulink controller. It is important to note that the GT-POWER model and Simulink model are 

running similar algorithms, but the Simulink model is running the controller code mentioned in 

the PID section and the GT-POWER model is running combustion simulation based upon the 

engine components and the CANTERA results. The Simulink model can be represented similarly 

to Figure 3.1, where the closed loop controller will be adjusting the ignition timing of the 

physical engine based upon the error introduced by the comparison to the target value from the 

measured values in the sensor array. The interaction of Simulink and GT-POWER is facilitated 

by the Simulink interface provided by GT-POWER, which can both drive and collect the 

necessary measurements from the plant.[12] This interaction follows a verifiable path that the 

MPC can follow to optimize the performance of the engine, where a simplification is directed by 

the simulation values. The workflow of the MPC is displayed below in Figure 3.2  reformatted 

from Chen et al [12]. 
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Figure 3.2 MPC controller workflow, reformatted from Chen et al [12]. 

 

 Naturally, the engine operating in real time, before the onset of the MPC, will be running 

non-linearly. However, by periodic sampling within Simulink, the engine can be co-simulated 

between the Simulink measurements and the GT-POWER model. This co-simulation will result 

in values for maximum temperature/pressure to be compared between the Simulink values and 

the predicted GT-POWER values. From this co-simulation, a plant function can be selected 

using tools from the ‘System Identification Toolbox’ within Simulink. This linearizing plant 

function will then result in the selection of the appropriate MPC controller, which can be 
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validated by the comparison of the controller performance with predetermined gas compositions; 

these gas compositions are the expected compositions mentioned previously that could be used 

to calibrate the sensors. Once this controller is validated based upon a percentage fit between 

measured values and model values, the controller will be ‘scheduled’ for operation. This 

scheduling procedure is utilized as a controller selection method in which various ranges of gas 

compositions will serve as expected operating points; the MPC must be tested and verified at 

each operating point prior to operation. When the controller is to be scheduled during operation, 

the system must identify the current operating conditions in respect to the developed schedule, 

the level of gas compositions, then a finalized gain is utilized for optimum performance until a 

new gas composition change is detected.  
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CHAPTER IV 

CONCLUSIONS 

 

 Analyzing an engine’s performance, the changing of the natural gas engine’s fuel results 

in negative effects on the engine’s rating, NOx emission levels, and engine efficiency. However, 

the use of a PID controller to optimize engine performance can be utilized to mitigate these 

inefficiencies even with a changing fuel composition. Since the PID controller can account for a 

dynamic changing fuel composition, the negative feedback loop of the controller can adjust the 

engine’s spark timing to continually monitor the reduction in NOx. The controller mentioned can 

utilize a GasPT2 sensor for upstream gas analysis for chemical composition and a NOx 5210 

sensor for the monitoring of NOx emissions. While the GasPT2 sensor monitors CO2 levels, 

thermal conductivity, and the speed of sound, expected compositions of fuel traveling through 

the pipeline can calibrate the sensor to predict the various species in the fuel before reaching the 

engine by monitoring the MN and the NOx emission levels at constant operating conditions. This 

calibration can be utilized to prematurely adjust engine parameters in preparation for the 

changing fuel composition before reaching the engine intake. Thus, the described MPC can 

collect the necessary information relative to the CANTERA variable fuel combustion 

estimations, the GT-POWER engine simulation, and the instantaneous Simulink sensor 

information to provide an optimized controller to minimize the NOx emissions level. Further 

work moving towards a system of controllers in co-dependence can offer further optimization of 

two-stroke natural gas engine’s models for the optimization of the emission and performance 

metrics in this industry.  
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APPENDIX 

 

Example Cantera Code 

""" 
A burner-stabilized, premixed methane/air flat flame with multicomponent 
transport properties and a specified temperature profile. 
""" 
 
import cantera as ct 
import numpy as np 
 
################################################################ 
# parameter values 
p = ct.one_atm  # pressure 
tburner = 373.7  # burner temperature 
mdot = 0.04  # kg/m^2/s 
comp = 'CH4:0.65, O2:1, N2:3.76'  # premixed gas composition 
 
# The solution domain is chosen to be 1 cm 
width = 0.01 # m 
 
loglevel = 1  # amount of diagnostic output (0 to 5) 
refine_grid = True  # 'True' to enable refinement 
 
################ create the gas object ######################## 
# 
# This object will be used to evaluate all thermodynamic, kinetic, and 
# transport properties. It is created with two transport managers, to enable 
# switching from mixture-averaged to multicomponent transport on the last 
# solution. 
gas = ct.Solution('gri30.xml', 'gri30_mix') 
 
# set its state to that of the unburned gas at the burner 
gas.TPX = tburner, p, comp 
 
# create the BurnerFlame object. 
f = ct.BurnerFlame(gas=gas, width=width) 
 
# set the mass flow rate at the burner 
f.burner.mdot = mdot 
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# read temperature vs. position data from a file. 
# The file is assumed to have one z, T pair per line, separated by a comma. 
zloc, tvalues = np.genfromtxt('tdata.dat', delimiter=',', comments='#').T 
zloc /= max(zloc) 
 
# set the temperature profile to the values read in 
f.flame.set_fixed_temp_profile(zloc, tvalues) 
 
# show the initial estimate for the solution 
f.show_solution() 
 
# don't solve the energy equation 
f.energy_enabled = False 
 
# first solve the flame with mixture-averaged transport properties 
f.transport_model = 'Mix' 
f.set_refine_criteria(ratio=3.0, slope=0.3, curve=1) 
 
f.solve(loglevel, refine_grid) 
f.save('ch4_flame_fixed_T.xml','mixav', 
       'solution with mixture-averaged transport') 
 
print('\n\n switching to multicomponent transport...\n\n') 
f.transport_model = 'Multi' 
 
f.set_refine_criteria(ratio=3.0, slope=0.1, curve=0.2) 
f.solve(loglevel, refine_grid) 
f.save('ch4_flame_fixed_T.xml','multi', 
       'solution with  multicomponent transport') 
 
# write the velocity, temperature, density, and mole fractions to a CSV file 
f.write_csv('flame_fixed_T.csv', quiet=False) 
f.show_stats() 
 


