
DETECTING FAILURES IN AN ASYNCHRONOUS SYSTEM

THAT NEVER STOPS CHANGING

An Undergraduate Research Scholars Thesis

by

HIMANK YADAV

Submitted to the Undergraduate Research Scholars program at
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Jennifer Welch

May 2018

Major: Computer Science

TABLE OF CONTENTS

Page

ABSTRACT . 1

DEDICATION . 3

ACKNOWLEDGMENTS . 4

NOMENCLATURE . 5

LIST OF FIGURES . 6

LIST OF TABLES . 7

1. INTRODUCTION . 8

1.1 Motivation . 10
1.2 Failure Detectors . 10
1.3 Contribution . 11

2. MODEL . 12

3. METHOD . 15

4. FAILURE DETECTION ALGORITHM . 19

4.1 Local Variables . 21

5. CORRECTNESS . 23

5.1 Discussion on θ . 29

6. CONCLUSION AND FUTURE WORK . 31

6.1 Limitations . 31
6.2 Future Work . 31

REFERENCES . 33

ABSTRACT

Detecting Failures in an Asynchronous System That Never Stops Changing

Himank Yadav
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Jennifer Welch
Department of Computer Science

Texas A&M University

This thesis presents an algorithm for detecting failures in dynamic asynchronous dis-

tributed systems or environments in which new participants may continually join the sys-

tem and old participants may continually leave the system (a phenomenon called churn),

and active participants may fail.

Such behavior is exhibited by many dynamic modern networks, for example, peer-to-

peer networks. Devices are continually joining and leaving, and peers often remain in the

network only long enough to retrieve the data they require. Another example would be

mobile networks. Devices are constantly on the move, resulting in a continual change in

participants. In these types of networks, the set of participants is rarely stable for very long

and is dynamically changing.

Many problems are not solvable if the fraction of participants that are crashed is too

large. Yet the participants will continue to leave the system or crash. To avoid crossing the

threshold where too many participants are crashed, it is of paramount importance to detect

crashed participants and remove them from the system.

1

The problem of detecting failures has been solved in static and synchronous distributed

systems. However, since processes in an asynchronous dynamic distributed systems pos-

sess no global clock or synchronized logical clocks or timing information, detecting fail-

ures is a hard problem to solve in such systems.

We propose a failure detector for an asynchronous system with churn by exploiting the

dynamic nature of the system to estimate elapsed time. We design an algorithm to detect

failed processes in such an asynchronous system and prove that if a process is identified

as crashed by our failure detector, it has indeed failed. Additionally, we also prove that

if the churn continues forever, then under certain circumstances every failed process is

eventually identified as crashed.

2

DEDICATION

To those who keep pushing the boundaries of computing forward.

3

ACKNOWLEDGMENTS

I cannot thank enough my advisor, Dr. Jennifer Welch, for her unending support in

making this thesis possible, and for introducing me to this amazing world of research and

distributed computing. I would not have been here in the first place if it were not for Dr.

Welch. She introduced me to interesting problems in the field of distributed algorithms

and has taught me valuable lessons. She has provided insightful comments throughout the

course of my research, important connections to past work, and unbounded encouragement

to pursue new research directions. Her door has always been open for me. I am constantly

amazed by her attention to detail and her commitment to research and mentoring. She

has served as an immense source of support and inspiration, and I consider myself both

extremely lucky and privileged to have had a chance to work with her.

I am also extremely grateful to Saptaparni Kumar for her advice, mentoring, friendship,

and all the long discussions. The guidance and support I have received from Sapta through-

out the course of my research have been absolutely paramount in completing this work.

Her constant source of energy and enthusiasm towards new research ideas has played an

important role in keeping me excited about exploring these ideas, and, therefore, towards

establishing the direction of this thesis.

Lastly, a big thank you to Juliang, Victoria, Muin, Sahil, Tyler, Neal, Jay, and Prof.

Tyagi for being my support pillars and the best friends anyone could ever ask for to shape

their undergraduate experience. There are no other people I would rather spend so much

time with, and I cannot even fathom having such an incredible time during my undergrad-

uate years without them. Thanks also go out to all my other friends and the department

faculty who have contributed heavily in making my time at Texas A&M University a won-

derful journey.

4

NOMENCLATURE

α Churn fraction

∆ Failure fraction

D Upper bound on message delay

N(t) Number of nodes present in the system at time t

CCREG Continuous Churn Register

5

LIST OF FIGURES

FIGURE Page

1.1 Overview of a virtual shared object [1] 8

2.1 A sample process p running the three threads 13

3.1 Sample failure detection by process N2 16

3.2 Maximum increase in system size during [t, t+D] 17

3.3 Maximum increase in system size during [t−D, t+ 2D] 17

5.1 Graph plotting θ (y-axis) and α (x-axis) 30

6

LIST OF TABLES

TABLE Page

4.1 Variables used in the failure detection algorithm by process p 21

7

1. INTRODUCTION

Shared memory is a popular mechanism to communicate in concurrent systems and a

long-studied primitive for distributed algorithms, allowing each device to store and retrieve

information. An advantage of shared memory algorithms is their simplicity and their more

high-level nature than messaging passing algorithms. However, in modern large-scale

systems, physical shared memory is not a viable option. Instead, shared memory objects

are often simulated in a messaging passing distributed system.

Figure 1.1: Overview of a virtual shared object [1]

Figure 1.1 illustrates how external applications invoke operations on a shared data

object and receive responses. The shared data object is simulated by different processes

in a distributed system. Individual processes keep independent copies of the shared object

and use message-passing amongst processes to keep their copies consistent, thus providing

an illusion of a shared object to external applications while hiding all the complexity under

the hood.

8

Most existing work has focused on simulating atomic shared read/write registers. Many

simulations duplicate the value of the register in various servers and require readers and

writers to communicate with a majority of servers. One such example is the ABD simu-

lation [2] which assumes a majority of the processes do not crash and replicates the value

of the register in the server processes. For a single writer and reader, the writer sends

the value along with a sequence number and waits for a confirmation from a majority of

them. The reader contacts a majority of the server processes for the value and returns the

one with the highest sequence number. This approach can be further extended to multiple

readers and writers by having both a read phase and a write phase take place during reads

and writes [3]. This approach is proven to work well for static systems where the number

of readers, writers and servers are predetermined or fixed. And it has motivated research

for dynamic systems where the processes may enter and leave anytime.

The original work on distributed systems with churn (in which processes may enter

or leave dynamically) relies on the assumption that the system size is bounded [4] or the

churn eventually stops for sufficiently long periods of time [5]. A recent algorithm [6]

lets the churn continue forever while still ensuring that read and write operations continue

and processes can join and leave the system anytime. The churn model in [6] assumes an

upper bound on the number of processes that can enter or leave the system during a certain

time interval which is derived from the size of the system. This allows the simulation of a

read/write register in a crash-prone asynchronous system where processes enter and leave

continuously as long as they satisfy the churn model constraints.

The system is crash-prone and therefore processes possibly fail as the system continues

to exist. The original CCREG algorithm [6] does not detect failures thereby decreasing the

robustness of the system.

9

1.1 Motivation

Our motivation to tackle this problem is threefold.

1. Since we are dealing with a dynamic system with churn, we would like our failures

to be dynamic as well, and would like the system to detect failures instead of relying

on some entity outside the system.

2. Not being able to detect failures means that the system can no longer afford to have

processes that fail unless new processes are added in order to maintain an upper

bound on the ratio of failed processes with respect to the system size.

3. Undetected failed processes would also reduce the dynamic nature of the system

since existing processes in the system will not be allowed to leave as that could

violate the upper bound on the ratio of failed processes with respect to the system

size.

4. If we are able to implement a failure detector, we can explore other problems like

solving consensus (a primitive in distributed computing that ensures all processes

agree on a common value) which are unsolvable in the presence of undetected fail-

ures.

1.2 Failure Detectors

Failure detectors were first proposed as way to solve consensus in asynchronous dis-

tributed systems with crashes by differentiating between slow and crashed processes [7].

Each process can run the failure detector module and use the information concerning

which processes the failure detector suspects have crashed to help it solve consensus.

Failure detectors are classified in [7] based on when their suspicions are correct. The

main tenets of such classification include accuracy and completeness. The accuracy con-

10

dition states that if a process is suspected as crashed, then it has really crashed. The

completeness condition states if a process is crashed, then it is suspected as crashed.

Certain failure detectors are strong enough (i.e., give sufficiently accurate and complete

information) to allow consensus to be solved. Since consensus is unsolvable in our model,

we cannot implement such failure detectors in our model in general.

However, under certain assumptions on the churn, we are able to implement a fairly

strong failure detector in our model. We prioritize accuracy over completeness and aim

to identify failed processes with perfect accuracy (all processes identified by our failure

detector have actually crashed).

1.3 Contribution

This thesis augments the CCREG algorithm [6] for dynamic asynchronous message

passing systems subject to crash failures by adding the ability to detect failures. Detecting

failures enables us to increase the fault tolerance of the algorithm given the churn model.

Once failed processes are detected, an external entity could take steps to remove such

processes. We prove the correctness of our failure detector, i.e., every process that has

been identified as crashed as indeed crashed, and show that under some circumstances, all

failures can be detected if the churn continues forever.

11

2. MODEL

The model is the same as that adopted by the CCREG algorithm [6]. The system is

an asynchronous message-passing system where processes have no idea of real or elapsed

time due to the lack of clocks.

Processes use a broadcasting service to communicate with each other within the sys-

tem. The broadcast service sends the same message to all processes in the system where

all broadcasted messages have an upper bound on message delay, D, which is unknown

to processes in the system. This implies that any message sent by process p at time t is

guaranteed to be received by process q within D units of time provided process q is active

throughout [t, t+D].

The system has a churn fraction, α, known to all nodes, i.e., an upper bound on the

churn that occurs in the time interval [t, t+D]. For any time t, the number of “ENTER(p)”

or “LEAVE(p)” signals occurring in the time interval [t, t + D] is at most α · N(t) where

N(t) is the number of processes present at time t.

There is also a failure fraction, ∆ < 1, known to all processes, such that at any given

time t, at most ∆ · N(t) processes have crashed. Note that no active processes can leave

the system if ∆ ·N(t) processes are crashed at time t.

An “ENTER(p)” signal experienced by process p causes p to enter the system and

similarly a “LEAVE(p)” signal causes p to leave the system. These signals for any given

process p can be generated at most once implying that processes cannot re-enter the system

after leaving.

As seen in Figure 2.1 below, each process runs failure_detector threads along with the

regular client and server threads. Processes can enter and leave the system as long as they

satisfy the churn constraints.

12

Figure 2.1: A sample process p running the three threads

We assume the joining protocol from [6] is executed. Accordingly, after entering the

system, the process announces its entry to all processes by broadcasting an enter message.

After the process announces its entry to all processes, it waits to receive sufficient acknowl-

edgement messages before announcing (by broadcasting a message to all processes) that

it has joined the system. Joining the system is separate from entering the system. A joined

process has a good estimate of the system composition and is able to perform read, write

and failure detection operations.

A process is present at time t if it has entered the system but not left by time t. The

Present set for a process p is a local variable at p containing p’s estimate of all processes

that are present in the system at the given time. The Present set is maintained according

to the protocol presented in [6].

Processes that have crashed do not participate in the system in any way, i.e., crashed

processes do not send or receive any messages. The terms crashes and failures are analo-

gous and refer to the same thing.

Similar to the entering protocol, a process announces its leave to all processes by

broadcasting a leave message when it leaves the system [6]. The main difference between

13

a leave and a crash is that leaves are announced while crashes are not.

An active process at time t is present in the system at time t and has not crashed.

14

3. METHOD

Our approach towards building a failure detector for the system is dependent on each

active process running the failure detection module continuously on the failure detector

thread. The failure detection module consists of a series of phases, defined below.

Since crashed processes do not interact with the system in any manner, i.e., they do

not send or receive messages, we take advantage of this property of our model. Processes

send failure-check messages to all other processes and wait for the acknowledgements

from processes to come back. If a sender process does not receive acknowledgements

back from a receiver process within a specified time period and the process has not left the

system, the receiver process is marked as failed. However, the hard problem is that since

this is an asynchronous system, processes do have any measure of time. Therefore, it is

hard to estimate elapsed time. We approach this by exploiting the churn rate to gain an

estimation on elapsed time.

Each failure detection phase for a process p begins by process p broadcasting a fail-

check message to all processes in the system at time t. Each message has a maximum

transmission delay of D. Therefore, the receiving active process q should receive the mes-

sage by at most t+D time and respond with an acknowledgement. The acknowledgement

send by process q should be received by process p by at most time t + 2D since the up-

per bound on message delay for the acknowledgement is also D. When the phase ends,

which is guaranteed to be after at least 2D time has elapsed, process p marks all the other

processes (that have not left the system) it has not heard from as failed.

The failure detection phases are run by all active joined processes repeatedly. Each

phase consists of running the failure detection algorithm until at least 2D units of time has

elapsed since the process running the failure detection algorithm broadcasted the fail-check

15

message most recently.

Figure 3.1: Sample failure detection by process N2

As seen in the example in Figure 3.1, process N2 starts a failure detection phase by

sending a fail-check message to processes N1 and N5 at time t. The maximum message

transmission delay on these messages is D, therefore, these messages must be received by

processes N1 and N5 by time t + D. Since process N1 is crashed, it does not receive

the message sent by process p and cannot reply to it. On the other hand, an active process

N5 receives the message within time t + D and replies with an acknowledgement that

reaches process N2 by time t + 2D. At the end of the failure detection phase (which is

after t + 2D), since process N2 has received the acknowledgement from process N5 but

not from process N1, process N2 marks process N1 as failed.

The challenge here is for N2 to determine when the time interval 2D has elapsed as

the processes have no way to measure time. In order to determine time, we use the churn

rate.

The churn bound, α, signifies that at most α · N(t) processes can enter or leave the

16

system in a given time interval, [t, t+D]. In other words, the maximum number of churn

events that can take place in the time interval, [t, t+D], is α ·N(t).

Figure 3.2: Maximum increase in system size during [t, t+D]

Figure 3.2 shows the maximum possible increase in system size as time elapses. The

system size at any time t is N(t) and since at most α ·N(t) processes can enter the system

during the time interval [t, t + D], the maximum possible system size at time t + D is

(1 + α) ·N(t).

As we mentioned above, a process needs to wait for at least 2D time after sending the

fail-check message to detect failures since it takes at most D units of time to reach the

other process and another D units of time for the acknowledgement to reach back.

Figure 3.3: Maximum increase in system size during [t−D, t+ 2D]

Figure 3.3 shows the maximum system size at various time intervals as a function of

17

the system size at time t. We estimate when at least D units of time have elapsed using

the churn bound since the maximum number of churn events in the time interval [t, t+D]

is α · N(t). As seen in Figure 3.3, we estimate time interval 2D based on the churn rate

and the maximum possible system size after 2D units of time has elapsed. The maximum

number of churn events that can occur in time interval [t, t+2D] is given by α·(1+α)·N(t).

It could appear that waiting to receive messages about α ·(1+α) ·N(t) churn events would

be sufficient to measure 2D time. However, this in itself is not sufficient to guarantee that

2D units of time have elapsed since messages sent during [t − D, t] might be received

between [t, t + D]. We also need to take these messages into consideration. Therefore,

at least 2D units of time have elapsed if the process counts the incoming enter or leave

messages until it meets a target number of messages, to be calculated. An important

thing to note that is that counting the incoming enter or leave messages until it meets the

target number of messages as discussed above guarantees that at least 2D units of time has

elapsed, i.e., the time elapsed could be greater than 2D.

We prove that the target number of messages we need to wait for to ensure that at least

2D time has elapsed is a multiple of the size of Present set.

Summing up, processes exploit the churn bound as a way to measure time. Therefore,

during the failure detection phase, a process p sends the fail-check message to all processes

and waits until the count of incoming enter and leave messaged meets the target number

of messages (that signify that at least 2D time has elapsed) before classifying processes

that did not acknowledge the message and have not left the system as failed.

18

4. FAILURE DETECTION ALGORITHM

We present an algorithm that enables active joined processes in the system to detect

failures of other processes. All joined processes repeatedly run the failure detection al-

gorithm in phases as long as they are active. At the beginning of each phase, the process

calculates a target number of enter or leave messages it needs to wait for. The phase

completes when the process receives the target number of messages. The target number of

messages is calculated such that at least 2D time has elapsed since the process broadcasted

the fail-check message.

In order for process p to begin failure detection, it has to be an active and joined

process in the system. After process p joins the system, it starts executing the failure

detection algorithm. Upon initiation, the algorithm maintains a counter for tracking the

failure detection phase number that the process is currently executing and initializes it to

zero. In addition, process p also keeps track of all failed processes as it advances through

its various phases to prevent re-checking already failed processes again.

The algorithm then proceeds to execute the failure detection phases repeatedly. After

the beginning of the failure detection phase, process p suspects all other active processes

in the Present set as failed. Process p then sends the fail-check message to all suspected

processes to check if they are still active. After broadcasting the fail-check message, pro-

cess p maintains a counter to count the number of enter or leave messages received by

process p. Since the system is asynchronous, we use these churn events as a proxy to

estimate elapsed time.

When process p receives an acknowledgement from process q for a fail-check message

process p had sent or a leave message from process q, process p removes process q from

process p’s list of suspects after verifying that the acknowledgement was meant for the

19

current phase of failure detection.

Process p also replies with an acknowledgement message to process q after it receives

a fail-check message from process q (even if not yet joined).

Whenever process p receives an enter or a leave message from another process, pro-

cess p increments its counter for churn events. After incrementing the counter, process p

checks to see if a leave message was received. If so, p removes the leaving process from

its list of suspects. Process p then checks to see if the counter for churn events has reached

the threshold that would guarantee that at least 2D units of time has elapsed. If so, pro-

cess pmarks the processes that process p did not receive acknowledgements from as failed

processes. Lastly, process p increments its phase number since the failure detection phase

has ended and proceeds to repeat this entire failure detection phase again.

20

4.1 Local Variables

Table 4.1 explains the local variables used in our failure detection algorithm.

Table 4.1: Variables used in the failure detection algorithm by process p

Variable Function

Present p’s estimate of the set of processes that have entered the system but not left

θ
(
α(1+α)2(3−α−α2)

(1−α)3

)
failed_processes set of processes marked as failed

target_churn number of enter or leave messages to wait for before ending current phase

churn_counter tracks the number of enter or leave messages received in the current phase

fd_phase tracks the phase of failure detection

execute_phase tracks whether the phase is in execution

suspect_set set of processes that are suspected as crashed

21

Algorithm 1 Failure detection algorithm - Code for active joined process p
1: fd_phase := 0 . tracks the phase of failure detection

2: failed_processes := {} . tracks all failed processes

3: loop forever

4: suspect_set := Present− {p} − failed_processes

5: target_churn := θ ∗ |Present|

6: churn_counter := 0

7: execute_phase := true

8: bcast < “ fail-check ”, p, fd_phase >

9: while execute_phase do . failure detection phase

10: when 〈“ enter ”, q〉 OR 〈“ leave ”, q〉 is received:

11: churn_counter + +

12: if 〈“ leave ”, q〉 is received then

13: remove q from suspect_set

14: if churn_counter ≥ target_churn then

15: failed_processes = failed_processes ∪ suspect_set

16: fd_phase+ +

17: execute_phase = false

18: when 〈“ ack-fail-check ”, p, phase, q〉 is received:

19: if phase = fd_phase AND q ∈ suspect_set then

20: remove q from suspect_set

21: // also executed by nodes that have entered but not joined

22: when 〈“ fail-check ”, q, phase〉 is received:

23: if q 6= p then

24: bcast 〈“ ack-fail-check ”, q, phase, p〉

22

5. CORRECTNESS

In order to prove the correctness of our algorithm, we rely on some lemmas from [6].

Recall that the churn model and the Present set that is maintained using the protocol in

[6] are valid for our algorithm as well. Therefore, we use lemmas about the Present set

and the effect of churn on system size from [6].

Lemma 1 shows that the maximum system size at time t is a known multiple of the size

of the Present set. This is useful in proving Lemma 2 which shows that the minimum

number of enter or leave messages needed to guarantee that 2D time has elapsed is also

a known multiple of the Present set, namely the value of θ in Table 4.1. Next, Theorem 3

proves the perfect accuracy of our failure detector by showing that every process marked

by our failure detector as crashed has actually crashed. Lemma 4 comments on the com-

pleteness property of our failure detector algorithm stating that process q will be detected

as crashed by process p in the current failure detection phase (in which q crashed) or the

consecutive phase of p if p joins at least 2D time after q has entered. Lastly, Theorem 5

extends Lemma 4 to show that with infinite churn and a process that stays on in the system

forever, that process can detect all failed processes.

Lemma 1. For every process p and every time t ≥ tjoinp , where tjoinp is the time when

process p joins the system, at which p is active,

N(t) ≤ |Presenttp| ·
(

1 + α

1− α

)2

Proof. We begin by calculating an upper bound on N(t−2D) as a function of |Presenttp|

and use that to calculate an upper bound on at N(t) as a function of |Presenttp|.

23

From Lemma 7 from [6]:

(1− α)2 ·N(t− 2D) ≤ |Presenttp|

=⇒ N(t− 2D) ≤
|Presenttp|
(1− α)2

From Lemma 2 from [6]:

N(t) ≤ (1 + α)2 ·N(t− 2D)

=⇒ N(t) ≤ (1 + α)2 ·
|Presenttp|
(1− α)2

=⇒ N(t) ≤ |Presenttp| ·
(

1 + α

1− α

)2

Lemma 2. If p receives more than or equal to θ · |Presenttp| enter and/or leave messages

(for distinct processes) during the time interval [t, t′], with t ≥ tjoinp , then t′ − t ≥ 2D.

Proof. The maximum number of enter/leave messages that p can receive in [t, t + 2D] is

the maximum number of enter/leave events that can occur in [t−D, t+2D] since messages

caused by events that occur in [t−D, t] can take up to D time to reach p.

Step 1: We estimate the maximum possible system size at time t − D as a function of

N(t).

From Lemma 1 from [6]:

(1− α) ·N(t−D) ≤ N(t) ≤ (1 + α) ·N(t−D)

=⇒ N(t−D) ≤ N(t)

1− α

24

Step 2: We estimate the maximum possible system size at time t + D as a function of

N(t).

From Lemma 1 from [6]:

(1− α) ·N(t) ≤ N(t+D) ≤ (1 + α) ·N(t)

=⇒ N(t+D) ≤ (1 + α) ·N(t)

We are going to do a proof by contrapositive, so let us assume

t′ − t < 2D

LetCE be the maximum number of enter or leave messages received by process p in [t, t′).

CE < CO[t−D,t] + CO[t,t+D] + CO[t+D,t+2D]

where COI is the maximum number of enter or leave events that can occur in the time

interval I .

From Step 2:

25

CE < α ·N(t−D) + α ·N(t) + α ·N(t+D)

< α · [N(t−D) +N(t) +N(t+D)]

< α ·
(
N(t)

1− α
+N(t) + (1 + α)N(t)

)
... from Lemma 1 from [6]

< α ·N(t) ·
(

1

1− α
+ 2 + α

)

< α ·N(t) ·
(

3− α− α2

1− α

)

< α · |Presenttp|
(

1 + α

1− α

)2

·
(

3− α− α2

1− α

)
... from Lemma 1

<

(
α(1 + α)2(3− α− α2)

(1− α)3

)
· |Presenttp|

< θ · |Presenttp|

where θ =

(
α(1 + α)2(3− α− α2)

(1− α)3

)

Therefore, if t′ − t < 2D, we prove that CE < θ · |Present|. This is logically

equivalent to the proving that if CE ≥ θ · |Present|, then t′ − t ≥ 2D.

Since p receives more than or equal to θ · |Presenttp| enter and/or leave messages

during the time interval [t, t′],

CE ≥ θ · |Presenttp|

26

=⇒ t′ − t ≥ 2D

Theorem 3. Every process q in the failed_processes variable of process p of any active

p has crashed.

Proof. The reason process q is in process p’s failed_processes set is that at the end of

some failure detection phase of p, say the kth phase, process q was in p’s suspect_set vari-

able. Since q was in the suspect_set of p, q was in the Present set of p at the beginning of

the kth failure detection phase. According to analysis from [6], we know that q was in the

system at the beginning of the kth failure detection phase. If q had left the system during

the kth phase, it would have been removed from the suspect_set of p during the kth phase.

Therefore, since q was in the suspect_set of p at the end of the kth failure detection phase,

q was in the system throughout the kth failure detection phase.

Let us assume for contradiction that process q has not crashed and let the failure detec-

tion phase k for process p run during time interval [t, t′].

At time t, p sends a fail-check message to q which is received by q by time t + D due

to the upper bound on the message delay, D.

After receiving the fail-check message, q replies with the ack-fail-check message. The

ack-fail-check message also has an upper bound on message delay, D, and is received by

p before or at time t + 2D. Upon the receipt of ack-fail-check from q, p removes q from

the suspect_set set.

According to the failure detection algorithm, p receives θ · |Presenttp| enter/leave mes-

sages during the failure detection phase.

According to Lemma 2,

t+ 2D ≤ t′

27

Therefore, at time t′, p does not have q in the suspect_set set at the end of the kth failure

detection phase, a contradiction. Thus, q has crashed.

Lemma 4. Suppose process q crashes at time t, with t in active process p’s kth failure

detection phase, and q is in p’s Present set at the start of p’s kth failure detection phase.

If p completes its (k + 1)th failure detection phase, then p detects q as crashed.

Proof. In other words, process q will be detected as crashed by process p in the current

failure detection phase (in which q crashed) or the consecutive phase of p if q is in the

Present set of p at the start of the current failure detection phase.

Let the kth failure detection phase for process p run for the time interval [tk, tk+1).

Similarly, let the (k + 1)th failure detection phase for process p run for the time interval

[tk+1, tk+2).

Since q is in p’s Present set at the start of the kth failure detection phase, q is also in

the suspect_set of p at the start of the kth phase. During the kth failure detection phase,

process p sends the fail-check message at time tk, which reaches process q time tk + F

where F ≤ D (upper bound on message delay). The time t at which process q crashes can

lie in the time interval [tk, tk + F) or time interval [tk + F, tk+1).

Case 1: Time t lies in the time interval [tk, tk + F). Process q has crashed in the time

interval [tk, tk+F), it is not able to process the fail-check message, and, therefore,

is not able to reply with an acknowledgement. Process p will complete its failure

detection phase k and since it did not receive an acknowledgement from process

q by the end of the kth phase, process p will detect and mark process q as crashed.

Case 2: Time t lies in the time interval [tk+F, tk+1). Process p’s kth failure detector phase

does not detect process q as crashed since process q responds with an acknowl-

edgement for the fail-check message arriving in the time interval [tk, tk + F).

28

Process p then starts the (k + 1)th failure detector phase and sends the fail-check

message at time tk+1. Since time t at which process q crashed lies in the time

interval [tk + F, tk+1), process q does not process the fail-check message sent at

time tk+1. Process p completes its failure detection phase k + 1 and since it did

not receive an acknowledgement from process q by the end of the (k+1)th phase,

process p detects and marks process q as crashed.

Therefore, if process q crashes at time t with t in process p’s kth failure detection phase,

q is in p’s Present set at the start of the kth phase, and process p completes its (k + 1)th

failure detection phase, then p detects process q as crashed.

Theorem 5. If the churn continues forever and there exists an active process p that never

leaves or crashes, then process p detects all crashed processes.

Proof. Let q be any process that enters the system and does not leave. By the protocol in

[6], there is a time t such that q is in p’s Present set for all times at or after t.

Let k be the index of the first failure detection phase of p that starts after q is in p’s

Present set. The existence of k follows from the fact that the churn is infinite and thus

the number of failure detection phases of p is also infinite. Thus, p completes its kth and

(k + 1)th failure detection phases. By Lemma 4, p detects q as crashed.

5.1 Discussion on θ

As shown in Figure 5.1, θ is monotonically increasing with the churn fraction, α.

Based on the constraints on α from the CCREG algorithm in [6], α cannot exceed 0.04.

Therefore, θ can never exceed 0.14467. Even with the highest churn, the number of enter

or leave messages the process needs to wait for is not significant. Therefore, each failure

detection phase only waits to hear from a very small fraction of the processes believed to

be in the system.

29

Figure 5.1: Graph plotting θ (y-axis) and α (x-axis)

30

6. CONCLUSION AND FUTURE WORK

Asynchronous systems with churn are prevalent in computing and a prime example is

peer-to-peer networks. Previous work in this field has enabled such systems to simulate a

read/write register but the problem of detecting failures had been largely unsolved.

In this thesis, we have shown the implementation of a failure detector for an asyn-

chronous system with churn under the given churn model. All messages being transmitted

in the system have an upper bound on message delay, D. Our churn model states that

the number of processes entering or leaving the system must not exceed a fraction of the

system size for a given time interval of length D. We exploit the churn bound to get an

estimate of elapsed time since processes do not have way to measure time in an asyn-

chronous system. We prove the correctness of our failure detector in addition to proving

that under some circumstances, all crashed processes will eventually be identified by the

failure detector if the churn continues forever.

6.1 Limitations

One known limitation of our work is that the failure detector is not able to detect fail-

ures if the churn stops completely, as the only sense of elapsed time the system measures

comes from the churn. If the churn were to stop entirely, there would be no way the system

would have any context about time, therefore, preventing the detection of failed processes.

6.2 Future Work

Finalizing a way to get crashed processes to exit the system after they have been de-

tected as failed would be an interesting avenue of future work. Currently, we plan on using

announced leaves as a mechanism for crashed processes to exit the system where pro-

cesses that detect crashed processes are able to announce leaves on the behalf of crashed

31

processes to all the other processes in the system. However, some work still needs to

be done on making sure the synchronization and communication in cases where multiple

processes detect the same processes as crashed works smoothly.

We would also like to explore strengthening our failure detector by modifying the

algorithm to allow processes to share their sets of identified failed nodes with each other.

Propagating this information could improve our theorems and relax constraints about a

process being in the system forever to detect all crashed nodes.

Another direction of future work could be exploring the possibility and applications

of achieving consensus if the churn continues forever. Since we prove that under some

circumstances, all crashed processes can be detected if the churn continues forever, we

believe this could give rise to some form of consensus. However, some more work needs

to be done to define what consensus in systems with churn would look like and to explore

its various applications.

32

REFERENCES

[1] E. Talmage and J. L. Welch, “Message-passing implementations of shared data struc-

tures.” UIUC Distributed Computing Tele-Seminar, 2017.

[2] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in message-passing

systems,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 124–142, 1995.

[3] N. A. Lynch and A. A. Shvartsman, “Robust emulation of shared memory us-

ing dynamic quorum-acknowledged broadcasts,” in Fault-Tolerant Computing, 1997.

FTCS-27. Digest of Papers., Twenty-Seventh Annual International Symposium on

Fault-Tolerant Computing, pp. 272–281, IEEE, 1997.

[4] R. Baldoni, S. Bonomi, and M. Raynal, “Implementing a regular register in an even-

tually synchronous distributed system prone to continuous churn,” IEEE Transactions

on Parallel and Distributed Systems, vol. 23, no. 1, pp. 102–109, 2012.

[5] S. Gilbert, N. A. Lynch, and A. A. Shvartsman, “Rambo: a robust, reconfigurable

atomic memory service for dynamic networks,” Distributed Computing, vol. 23, no. 4,

pp. 225–272, 2010.

[6] H. Attiya, H. C. Chung, F. Ellen, S. Kumar, and J. L. Welch, “Simulating a shared

register in an asynchronous system that never stops changing,” in International

Symposium on Distributed Computing, pp. 75–91, Springer, 2015.

[7] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed sys-

tems,” Journal of the ACM (JACM), vol. 43, no. 2, pp. 225–267, 1996.

33

