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ABSTRACT

Determining the Statistical Significance of Extreme Values in Clustered Data

Advait Parulekar
Department of Computer Science

Texas A&M University

Research Advisor: Dr. Thomas Ioerger
Department of Computer Science

Texas A&M University

A search through a large database for a match similar to the object being queried is

commonplace. In the field of Bioinformatics, for example, this occurs during BLAST

searches, in which an E-score is provided to reflect the significance of similarity of two

gene sequences. In the case discussed in this work, the database consists of clusters

(triplets) of amino acids found near the interface region of Protein Protein Interations

(PPIs). The Exploring Key Orientations (EKO) algorithm needs to find similarity in struc-

ture between a peptidomimetic scaffold compound and a triplet present on such a PPI,

and it is of interest to us to determine the triplets from within a large database of protein

complexes that best fit the scaffold. It is our goal to determine when a "best match" thus

acquired is statistically significant. We do this by parameterizing the space of triplets to

find clusters, modeling a density distribution on the space, and fitting a Weibull distribution

to determine a p value for a match. The inherently clustered nature of the triplet database

affects the analysis of significance, and we propose a method to efficiently estimate the p

value of a match score.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Proteins and Amino Acid Triplets

Proteins are highly variable biological molecules responsible for much of the physi-

ology of life. Structurally, proteins are linear sequences of several (sometimes hundreds

of) amino acids, which consist of a conserved peptide "backbone" and a variable "side

chain" made up of amino acid residues. Protein function is highly dependent on their

three dimensional spatial configuration, which is determined by the particular sequence of

amino acids which constitute it. Protein structure comes from the lowest energy confor-

mation of each of the variable bonds that make up the peptide backbone of the protein,

as well as any variable bonds present in the side chains. Overall strucure is determined

partially by backbone interactions, which yield the secondary structure, and side chain

interactions. Side chains dictate protein structure by interacting with one another (for ex-

ample, oppositely charged residues form electrostatic salt bridges) or with the aqueous

solution they are in (it is entropically favorable to position hydrophobic residues such that

they face other hydrophobic residues in the "interior", and it is energetically favorable for

hydrophilic residues to be in contact with water, i.e. on the "outside" of the protein).

The carbon atom on the backbone that contains a bond to the branch point of the side

chain is called the Cα atom and the carbon atom immediately adjacent to it on the side

chain is the Cβ atom. We define an amino acid triplet as being an ordered set of the Cα

and Cβ atoms of three (not necessarily consecutive, but clustered in space) amino acids of

a protein. Figure 1.1 shows an example of such a triplet.
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Figure 1.1: Example of a triplet on 1b0g (a Class 1 Histocompatibility Antigen). It is
derived from the Cα, Cβ bonds (shown in magenta) taken from an alpha helix.

1.2 Peptidomimetics and PPIs

The immediate context of this work relates to the EKO algorithm which is used to

design peptidomimetic compounds [1]. EKO searches (mines) for low RMSD matches

of a scaffold molecule to interface regions from a large database of PPIs. The scaffold

molecules are peptidomimetic compounds structured in such a way as to allow the attach-

ments of residues to specific portions of the scaffold in an attempt to mimic a collection

of residues (triplets) on a real protein. Potential scaffold molecules are screened based on

their ability to mimic the conformation of the Cα and Cβ atoms on some key amino acid

triplet of the target protein. Figure 1.2 displays an example of a scaffold molecule.

Molecules in solutions are dynamic due to the flexible nature of rotatable bonds. Quan-

tum Molecular Dynamics (QMD) simulations of the scaffold moleucules, with methyl

groups as place holders for the side chains, output a number of energetically feasible con-

formations for each of the stereoisomers of the scaffold. These conformations are filtered
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(a) Example of a scaffold molecule

(b) 2D chemical structure of scaffold

(c) Magenta lines indicate the triplet that comes from this scaffold. The
methyl groups on the triplets will be replaced by specific residues suited
to the target interaction during synthesis

Figure 1.2
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to exclude those conformations that match with a binding energy of greater than 3kcal/mol

above the minimum across all conformations. The remaining conformations are clustered,

and a representative is chosen from each of the clusters, which can then be "matched"

against the set of triplets found in a target PPI. Match scores are the root mean square

deviation between the scaffold Cα, and Cβ atoms and their counterparts in the protein

complex interface. The goal of this work is to place the relative match scores thus gen-

erated into perspective. Such an analysis can inform the screening of peptidomimetic

molecules, the synthesis of which is a complex and expensive process. Peptidomimetic

design in this work uses only the Cα and Cβ atoms of triplets and the corresponding atoms

on peptidomimetic scaffolds as an abstraction of the full structure.

Scaffold moleules begin with methyl groups as the Cβ atoms in place of any larger

side chains attached to the Cαs. To complete the analysis and simulation of a scaffold

molecule, side chains are "stitched" on to the appropriate carbons. A semi-emperical force

field can then be used to estimate the interaction energy (∆∆G) for the affinity with one

member of the protein complex using AutoDock [2]. It is hypothesized that such mimics,

once synthesized, can effectively perturb PPIs by competing with the protein they mimic,

and methods have been developed to use advanced biomolecular software to model the

interactions of proteins to develop such molecules [3]. Computational methods such as

alanine scanning, which is used to gauge the effect of individual residues on binding affin-

ity, and Generalized Born Surface Area (GBSA), which is used to model the interaction

with the solvent, have been used to design peptidomimetics, for example, to inhibit the

p53-MDM2 complex [4].

While the ∆∆G is a good approximation of the binding affinity of a scaffold, it is

expensive to compute. We narrow our search using the RMSD matches. After all, in order

for a scaffold to work, it must necessarily contain Cα and Cβ atoms that align well with

the mimicked protein.
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1.3 Prior Work and Motivation

Any search of a database for similarity will result in a best match. In the context

of EKO, these are the minimum match scores, that is, the lowest Root Mean Squared

Deviation (RMSD) matches, of scaffold molecule conformations with triplets on a target

PPI. It is our goal to help determine how significant such a match is. This relates to our

concerns of specificity and off target effects [5]; we would like our scaffolds, and resulting

peptidomimetics to match uniquely well. For instance, as we will see in Section 3.1 where

we discuss secondary structure and clustering, if our scaffold mimics the structure of an

alpha helix, we would expect to get very close matches to many interfaces, since triplets

resemble alpha helices more often than average. While the overall binding affinity will

depend largely on the particular amino acids that are stitched onto the scaffold, it is more

likely that the scaffold will also perturb other PPIs if it comes from a geometric structure

that is highly represented in the database.

A useful tool with which to approach this problem is the Extreme Value Distribution,

which is defined as the distribution of extreme (in our case minimum) values of a random

variable computed over several samples drawn from a target distribution (in our case the

distribution of random triplet pair match scores). Given that the overall distribution of

match scores conforms to certain analytical conditions, it is possible to model the extreme

value distribution by a Weibull distribution [6]. This will be explored further in Section

2.5.

Baldi and Nasr conducted similar research in the context of chemical similarity [7].

They represent chemicals by an N bit bitstring p ∈ {0, 1}N using common binary fin-

gerprints. Similarity was measured by the Tanimoto score, pi∩pj
pi∪pj

. To model the Weibull

distribution from a set of random Tanimoto match scores, the numerator and denominator

of the score are modelled as correlated Normal random variables to the end of getting a p
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value from a score. We ask the same questions they did. What should be threshold for a

match to be considered a "good" match. For example, is an RMSD of 0.5Å good enough?

How can we interpret the significance of a match score conditioned on the query?

Such an analysis has also been conducted for the matching of triplets, but it assumed

a uniform distribution of data. We will expand on this by taking advantage of the fact that

clustering is to be expected due to the existence of triplets sourced from the relatively rigid

secondary structures. This results in a non-uniform underlying density function, which we

will try to account for.

1.4 PD-1/PD-L1 - a Motivating Example

Programmed cell death protein (PD-1) is a T-cell cell surface receptor that plays a

role in downregulating the immune response and facilitating self-tolerance [8]. Figure 1.3

shows human PD-L1 in complex with murine PD-1. One of its two ligands, programmed

death ligand 1 (PD-L1), which is expressed both on antigen-presenting cells and T-cells,

is found to be upregulated in certain strains of cancer, and the interaction between the two

has been studied as a possible target for drugs such as Durvalumab, Atezolizumab and

Avelumab. Antibodies against PD-1 or PD-L1 have been shown to restore exhausted CD8

T cells during a chronic viral infection [9].

Such an interaction is a candidate for perturbation with a small molecule inhibitor. Pep-

tidomimetic drugs structurally mimic a small part of a naturally occurring protein [10]. If

the residues modeled by the peptidomimetic are critical for the PPI this can lead to a dis-

ruption of the interaction. In the case of PD-1/PD-L1, disrupting the association will lead

to reduced self-tolerance. In the search of the appropriate inhibitory interaction, several

scaffold molecules are tested, each of which concedes several conformations. When de-

ciding between which scaffolds work best, the RMSD between the scaffold molecule and

the corresponding residues on the partner protein is taken into consideration. However,
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Figure 1.3: The PD1-PDL1 crystal structure (PDB: 3bik) with PDL1 (Programmed cell
death 1 ligand 1) shown in green, and PD1 (Programmed cell death protein 1) shown in
blue

in the interest of specificity, it may not necessarily be the scaffold that gives the optimal

RMSD with a target triplet that is the ideal candidate, since the geometry of that scaffold

may be such that it more regularly admits good matches in general. We also consider

the conditional probability of finding a particular RMSD given the geometry of a scaffold

molecule. This gives a statistical measure of the number of such matches across a large

body of hypothesized protein complexes (all the proteins in the human body).
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2. METHODS

2.1 RMSD Computation

Root mean square deviation (RMSD) among the 3 Cαs and Cβs is the primary metric

between two triplets used in this work. Let ai and bi be a set of N points in Rn, then we

define the RMSD as being

d =

√
1

N

∑
1≤i≤N

||ai − bi||2 =

√
1

N

∑
1≤i≤N

∑
1≤j≤n

(aij − bij)2 (2.1)

Several methods to determine RMSD from spatial locations of each of the atoms of the

triplets have been studied in the literature. To phrase the problem mathematically, given

two sets of k points each ai and bi ∈ Rn, we must find the optimal rotation matrix, R,

to minimize J(R) =
∑

i |ai − Rbi|. A solution to find the optimal linear translation to

minimize RMSD reported by Kabsch [11] uses singular value decomposition as follows.

We first translate the triplets so that their centroids align. Let A,B ∈ Rk×n be the matrices

with rows ai, and bi respectively. We compute the SVD of ABT = USV T where U and

V are orthogonal matrices and S is diagonal with entries in descending order. Our desired

rotation matrix R (for the case n = 3) is given by:

R = U


1 0 0

0 1 0

0 0 d

V T (2.2)

where d = det(U) det(V ).
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2.2 Parameterization

In order to avoid the difficulties in computing RMSD we parameterize the triplets using

9 parameters picked so as to capture geometric information. By embedding triplets into

R9, we allow the construction of a well defined local density function, which can be used

in the extreme value distribution (see Section 2.5). If we can arrange to use the Euclidean

metric in R9 instead of RMSD, we can also save time in computing similarity between

triplets. Nearest neighbours searches in Euclidean space can be computed in O(log n)

rather than O(n) in discrete space.

The parameters are chosen to be geometrically meaningful and permutation, trans-

lation and rotation invariant. Normalization (as described in Section 2.3) allows us to

optimize the difference between true RMSD, and the RMSD estimate using euclidean dis-

tance. They are listed below.

The Cα (respectively Cβ) triangle is the triangle formed by the three Cα (respectively

Cβ) atoms.

1. dA, the sum of the distances between theCα atoms (the perimeter of theCα triangle).

2. vA, the variance of side lengths in the Cα triangle.

3. γA, the variance of angle in the Cα triangle.

4. dB, the sum of the distances between theCβ atoms (the perimeter of theCβ triangle).

5. vB, the variance of side length in the Cβ triangle

6. γB, the variance of angle in the Cβ triangle.

7. τ , the average dihedral angle between the planes formed by

• the Cαi , centroid of the Cαs, centroid of the Cβ
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• centroid of the Cαs, centroid of the Cβ , the Cβi

over i = 1, 2, 3. This parameter is taken to suggest the average "torsion" of the

triplet.

8. D, the distance between the Cα and Cβ centroids

9. Γ, the angle between the plane formed by the Cα atoms and the segment connecting

the centroids.

vA, γA, vB, γB are chosen to depict the degree to which a triangle is scalene. Note that

each of these parameters results from a symmetric function of angles and sidelengths. To-

gether, these allow a triplet to be represented by a vector p = (dA, vA, γA, dB, vB, γB, τ,D,Γ) ∈

R9.

2.3 Scaling

In order to retain the RMSD between triplets in the form of Euclidean distance in the

parameterized space, we use linear regression to determine the optimal weights to assign

to each parameter. Let T denote a set of triplets, d(τ1, τ2) represent the RMSD between

triplet τ1 and τ2, and pτ1 ∈ R9 denote the column vector representing the embedded triplet.

Using numpy’s linalg.lstsq, weightswi are determined, one for each of the nine dimensions

listed above, such that W , the diagonal matrix with entries wi minimizes

∑
τi,τj∈T

(d(τi, τj)
2 − (pτi − pτj)

TW (pτi − pτj))
2 (2.3)

From here we can scale the parameter space; p̂τi = W 1/2pτi is used to represent the triplet,

and we see that the euclidean distance estimate is d̂(τi, τj) =
√

(p̂τi − p̂τj)T (p̂τi − p̂τj).

See Figure 2.1 for an illustration of the agreement between scaled Euclidean distance and

RMSD. The weights used are presented in Table 2.1.
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Figure 2.1: A comparison of weighted Euclidean distance between triplets on the x-axis
and the true RMSD computed using the SVD decomposition described. The weights as-
sociated with each parameter are optimized so as to minimize the mean square difference
between the two. On the right we have zoomed in to just plot the matches that are better
than 1Å RMSD.

Table 2.1: Weights used to scale the parameters so that the Euclidean distance between
parameters optimally agrees with the true RMSD

dA vA γA dB vB γB τ D Γ
0.12 0.4 1.28 0.17 0.26 1.13 0.031 1.97 0.028

2.4 Clustering with DBSCAN

Density Based Scanning of Applications with Noise (DBSCAN) is used to cluster the

data once it is embedded in R9 [12]. DBSCAN clusters data into regions of threshold

densities. In summary, it categorizes points as core points, reachable points, and outliers

using two user defined parameters: ε, indicating the radius of the spheres used in the

algorithm and n, indicating the minimum number of other data points that need to be in a

sphere of radius ε of a point for the point to be considered a core point. All points within
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spheres of radius ε of a core point which are not core points are reachable and all others

are outliers. DBSCAN suits the purposes of this project primarily because it is density

based. As described in previous sections, much of our analysis is dependent on density,

and so clusters in which points lie above a certain threshold of local density are useful

to study to gain an understanding of the data. In particular, the premise of our work as

mentioned in Section 1.3 is that certain triplets come from clusters of high density, and

that the significance of those matches should be modulated based on an analysis of local

density.

2.5 Extreme Value Distributions

To determine how statistically significant a match score is, we can compare it to the

distribution of random match scores. A good match will give a score that corresponds to

the tail region of the distribution.

Let random variables X1, X2, · · ·Xn be independent and identically distributed (i.i.d.)

from a cumulative distribution function (cdf) F . Let mn = minX1, X2, · · ·Xn be the

minimum (extreme value) of theXi. The Extreme Types Theorem charaterizes the limiting

cdf of mn as n (the number of samples) grows large [13]. It states that such a limiting

distribution can only be of three types. The type applicable to this scenario is the Weibull

distribution, given by a cdf of the form 1− e( xλ )k for some λ, k > 0.

Of interest to us is the distribution of the distance to the closest triplet from a given

query point, and here we adapt the Weibull distribution for the purposes of closest matches

in R9. Suppose the triplets are i.i.d according to some density function ρ in parameter

space. Then the probability of any triplet being withing a distance of r of a point is

proportional to the volume of the selected region. In this case we can just take it to be

Ard

V
, where d is the number of dimensions of the space, V is the total volume, and A is

an appropriate constant. The probability that mn (the distance to the closest triplet) is less

14



than r is 1− (1− Ard

V
)n, i.e. we have P (mn < r) = 1− (1− Ard

V
)n. From (1− x

n
)n → e−x

and V = n
ρ
, we get P (mn < r) = 1 − (1 − Aρrd

n
)n → 1 − e−Aρrd . For d = 9, in R9, we

get A = 32π9

945
, which gives

P (mn < r) =→ 1− e−
32π9

945
ρrd (2.4)

The results from a simulation consisting of 5000 points in R9 taken from a uniform

distribution are provided in Figure 2.2 below, in which a histogram of nearest neighbour

distances (best matches) is overlayed with the estimated extreme value distribution given

above. We see that the theoretical distribution matches well with the simulation. A dis-

tribution of random distances from which the nearest distances come is also shown for

perspective.

2.6 Local Density

Based on the previous section, we see that in order to make informed decisions about

the significance of a match we need to know the local density in the parameter space

around the point of interest. For each data point, we compute the number of neighbors

within a ball of fixed radius. In order to do this efficiently, we use a kd-tree, which is shown

to have O(log n) nearest neighbor search times [14]. This is where we take advantage of

having embedded our data in R9. Such a calculation (nearest neighbours) on a discrete

graph would have taken O(n) time. It is also not clear how to define a local density

function without the convenience of the Euclidean metric.

We can now model the density at all points in the parameter space using kernel density

estimation.
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Figure 2.2: The histogram for the extreme value distribution from a simulation of random
uniformly distributed data consisting of 10000 points in R9 , plotted on top of the modeled
distribution from the previous section.

2.6.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a non parametric way to model the underlying

continuous density function associated with a data set as a "smoothed" function in order to

estimate the local density at all points in space. Given a sample of independent and iden-

tically distributed data (x1, x2 · · ·xN), we consider the function ρ(x) = 1
nh

∑
iK(x−xi

h
)

for some smoothing parameter h > 0 and K is some function (kernel) that allows us

to capture the concept of distance. This formulation allows us to compute the density

ρ at any point x as an "average" (weighted by distance) of the densities at neighbouring

16



points in the dataset. The kernel K can be a variety of functions; we use the Gaussian:

K(x) = 1√
2π
e−

x2

2 . h is a smoothing parameter that is usually picked emperically.

The complete process is described in Figure 2.3.

Figure 2.3: The complete process of using the triplet database in order to come to a under-
standing of the significance of a match.
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3. RESULTS

In this work, we search a large database of approximately 5 × 106 triplets (defined

in Section 1.1) chosen from 23, 000 proteins that yielded 2 × 105 heterodimer complexes

to find low RMSD matches to some given chemical scaffolds. Triplets were filtered to

include only those found at the interface region of the protein complex, where a sidechain

is defined to be at the interface region if its Cα atom is within 4Å of any atom on the

other chain involved in the complex. The triplets were also filtered such that none of

the distances between pairs of Cα atoms was more than 12Å as these cannot easily be

constructed on a scaffold.

Because a triplet is a representation of 6 atoms (3 Cαs and 3 Cβs), each of which lies

in R3, the full triplet lies most directly in R18. Some of these dimensions are redundant,

however, because a canonical triplet is invariant under rotations and translations. It can

also be argued that since the CαCβ distances are roughly constant at 1.4Å, we can actually

view them as lying in R9. For reasons described in Section 2.2, we embed the triplets into

R9 using a parameterization scheme, the details of which are also presented in that section.

3.1 Clustering

After processing the data as indicated in Sections 2.2-2.3, a DBSCAN clustering was

performed. The choice of parameters ε and n was determined so as to classify as large

number of points into a minimum number of clusters. There are several such choices, and

Figure 3.1 displays the results of the clustering using a pair (ε = 0.32, n = 30) that gives

22 clusters. This choice results in 0.18% of the data being clustered, primarily into 6 large

clusters. The DSSP database was used to compute the secondary structure for each residue

in the clustered triplets. Results are shown in Figure 3.1.
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Figure 3.1: Cluster sizes for ε = 0.32, n = 30 with standard scaling on raw parameters
(pre-optimization). Most of the residues in each cluster come from α helices and β ladders.

3.2 RMSD Distributions and Extreme Values

We continue a discussion of Section 2.5 in the context of this work. The clusters

returned by DBSCAN roughly identify regions with density above a threshold related

to the parameters. Consider the distribution of general (random) RMSD scores St(T ) =

{d(τ̃ , τ)|τ̃ ∈ t, τ ∈ T} for some sets t, T of triplets. We are interested in the distribution of

S̄t(T ) = {minτ∈T d(τ̃ , τ)|τ̃ ∈ t}. In order to highlight the dependence on local density of

the resulting extreme value distribution, we present the distributions corresponding to the

set t ranging over the various clusters found by DBSCAN in Figure 3.2. Upon comparing

Figure 3.2 with the resulting extreme value distribution from t being a random sample of

1000 elements from the triplet database (in particular, not related to any cluster), shown in

19



Figure 3.3, we see that a blanket threshold for statistical significance is inappropriate. An

RMSD of 0.25Å is expected from the best RMSD for random matchings, but we would

expect much a much better best match if it was known that one of the triplets in the match

comes from a cluster.

Core points in DBSCAN are points with at least n neighbours within a distance of ε,

meaning that the local density around each core point is at least n
32π9

945
εd

. The plot of the

modeled Weibull pdf is overlayed on the histograms as an estimate of the actually extreme

distribution. Note that the modeled distribution overestimates the minimum distances.

This may be because the actual density of some of the points in the clusters may be much

larger than the threshold required to be a part of the cluster.

3.3 EKO Matching

The PD1-PDL1 complex (PDB: 3bik) is used to evaluate the utility of this technique.

We use a set of synthesizable scaffolds [15], and the set of interface triplets, both of which

we represent in R9. The statistical significance of the lowest RMSD match from suitable

(close to lowest energy) conformations of each of the stereoisomers of the scaffolds to

each of the triplets in chain A of the complex interface is determined by computing the

RMSD between the best conformer of the scaffold with every other triplet in the database

(i.e., from other PPIs) and returning a true percentage of better RMSD matches. A density,

computed using KDE, is used to generate a Weibull distribution for the best RMSD match

scores. The RMSD of the closest match to any triplet on the PPI of interest is used to

compute the probability of there being a better match among the remainder of the dataset,

i.e., the p value of the match. The results are presented in the accompanying tables, Tables

3.1 to 3.4, along with images of the scaffold superimposed onto the best matching triplet

on the target PPI, Figures 3.4 to 3.7.
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Figure 3.2: The distribution of best RMSD matches, i.e. S̄t(T ), (left) and general RMSD
matches, i.e. St(T ), (right) for t ranging over the five largest clusters returned by DBSCAN
are shown. T is a set consisting of 1% of the full triplet database.

Figure 3.3: The distribution of best RMSD matches, i.e. S̄t(T ), (left) and general RMSD
matches, i.e. St(T ), (right) where t is taken to be a set of 1000 random triplets, T is a set
consisting of 1% of the full triplet database.
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Figure 3.4: Chemotype 1: A scaffold shown superimposed onto the best matching triplet
in the PPI.

Table 3.1: Chemotype 1: RMSD of best matches, percentage of better matches, i.e., the
ratio of the number of triplets from the full database that match with a better RMSD to the
total number of triplets, and the estimated probability of there being a better match in the
database according to the density dependent distribution for each of the stereoisomers of
the scaffold.

Chemotype 1, stereoisomer: DLL DLD DDL DDD LLD LLL LDD LDL
RMSD 0.48 0.6 0.67 0.46 0.44 0.46 0.51 0.52
better matches (×10−5) 2.1 6.6 28 1.8 0.051 0.069 4.1 1.7
probability estimate (×10−5) 0.56 1.4 19 0.23 0.12 0.17 0.74 0.08

Figure 3.5: Chemotype 2

Table 3.2: Results for Chemotype 2

Chemotype 2, stereoisomer: DLL DLD DDL DDD LLD LLL LDD LDL
RMSD 0.45 0.35 0.51 0.56 0.38 0.53 0.46 0.35
better matches (×10−5) 0.34 0.37 10.5 13.7 0.38 3.5 0.086 0
probability estimate (×10−5) 0.22 0.028 0.44 0.98 0.045 0.96 0.32 0.011
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Figure 3.6: Chemotype 3

Table 3.3: Results for Chemotype 3

Chemotype 3, stereoisomer: LDD LDL LLD LLL DDL DDD DLL DLD
RMSD 0.58 0.59 0.45 0.49 0.49 0.46 0.63 0.49
better matches 0 0 0 0 0 0 0 0
probability estimate (×10−11) 0 0.00014 0 0.54 2160 0.18 0.034 0.62

Figure 3.7: Chemotype 4

Table 3.4: Results for Chemotype 4

Chemotype 4, stereoisomer: LDD LDL LLD LLL DDL DDD DLL DLD
RMSD 0.52 0.44 0.33 0.29 0.44 0.48 0.4 0.45
better matches 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
probability estimate (×10−5) 0.0044 0.22 0.02 0.0071 0.43 1.0 0.32 0.27
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4. SUMMARY AND CONCLUSIONS

In this work, we presented a method to improve our understanding of the significance

of a similarity match between two data points. The technique is particularly useful, as

in this case, when only a subset of the data is visible in real time, and some heuristics

from the global data which are computed offline are to be used. In the EKO matching

algorithm, we start with scaffold molecules that can be synthesized, and a set of triplets

from a protein interface, and look for the best match between any scaffold and any triplet

therein. Comparing the match to the entire dataset is expensive. Instead, to quickly gauge

the significance of the match, we use the local density to estimate how many better matches

exist among all other protein interfaces. We may be interested in this just to filter match

results, but there may also be more practical applications to do so. For example, the match

score is fundamentally related to our estimate of the binding affinity of a peptidomimetic

compound to a protein. In order to minimize the number of off target effects, we need

unique matches from the triplet to the PPI.

4.1 Discussion of Results

4.1.1 Clustering

Whether or not a triplet in a DBSCAN cluster is a good first order measure of density.

In Section 3.2, we study the RMSD distributions for triplets in clusters and find that if the

clusters are too coarse, the threshold density is underestimated significantly, causing the

distribution of expected best matches to be overestimated (Figure 3.2). A finer clustering,

i.e. a DBSCAN performed with lower ε may improve the accuracy of this estimate.
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4.1.2 Estimated probability of best match

We now attempt to answer the question we began with. A study of Tables 3.1 - 3.4

suggests that RMSD matches alone cannot be used as measures of statistical significance.

Indeed, if we compare chemotype 1, stereoisomer DLD with chemotype 3, stereoisomer

LLL, we see that chemotype 1 matches with much better RMSD (0.35Å against 0.49Å).

However, a thorough search through the triplet database reveals that while there are 20

better matches in the database for chemotype 1, there are none for chemotype 3. Moreover,

our probability estimate agrees; the probability estimate of the best match being better for

chemotype 1 is 2.8 × 10−6 against 5.4 × 10−12. We see that while the computed density

based probability estimate presented is not an accurate measure of the number of better

matches, a comparison of probabilities may lead to meaningful conclusions about the level

of uniqueness of a match. The density based estimate has the benefit of calculation time,

in that it runs much faster than a full database search. With large datasets, if an estimate is

needed in real time, our method may be more practical to use.

4.2 Improvements and Future Work

The specific geometric parameters were chosen subjectively in an attempt to capture

the essence of a triplet. It is likely that different parameters, chosen in a more objective

manner, could lead to improved agreement between the RMSD estimate and true RMSD.

What is desired is just a canonical representation of a set of three vectors.

In performing Kernel Density Estimation we use a similar bandwidth as was chosen

for ε in the DBSCAN. Different bandwidths lead to different density esimates, and going

forward, there may be better ways to decide on one.

A limitation of our work is that the scaffold conformation is picked such that the match

with the best triplet within the target PPI is optimized, and the optimized conformation of

the scaffold is then compared with the rest of the database, i.e., to triplets from other
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PPIs. This is a bias and results in the extremely good matches (high uniqueness) matches

reported. A complementary analysis which uses the scaffold before optimization is also

needed.

This technique has a wide range of applications. For instance, given a set of people

a social network, we might like to know which pair has a high probability of becoming

friends. Rather than focusing exclusively on the similarities in opinion between people,

we might also like to know, for each opinion on each subject, some measure of the "pe-

culiarity" of that opinion. Two people who share somewhat their stance on a peculiar set

of opinions, are more likely to become friends than two people who match more exactly

but support a set of widely held beliefs. This satisfies the constraints of our problem - we

are looking to place similarities generated from within a subset of a population into the

context of global similarities. As we have seen, doing so by estimating the local density

function and modeling the Weibull distribution may lead to good real time estimates.
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