
MODELING AN INTERFERENCE-TOLERANT LIDAR SYSTEM

An Undergraduate Research Scholars Thesis

by

DERRICK BRUCE KNOX

Submitted to the Undergraduate Research Scholars program at

Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Samuel Palermo

May 2018

Major: Electrical Engineering

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGMENTS .. 2

NOMENCLATURE ... 3

CHAPTER

I. INTRODUCTION .. 4

On LIDAR .. 4

Interference Reduction and Pseudo-Random Binary Sequencing 5

MATLAB Simulations.. 6

Hardware Testing .. 7

II. METHODS ... 8

Constructing The Model ... 8

Testing With The Simulation .. 11

Testing With The Hardware.. 12

III. RESULTS ... 13

Software Modeling Results ... 13

Hardware Testing Results ... 16

Discussion ... 17

IV. CONCLUSION ... 18

REFERENCES ... 19

APPENDIX ... 20

Matlab Model Code ...20

PRBS Verilog Code...41

PRBS Verilog Testbench Code .. 44

1

ABSTRACT

Modeling an Interference-Tolerant LIDAR System

Derrick Bruce Knox

Department of Electrical Engineering

Texas A&M University

Research Advisor: Dr. Samuel Palermo

Department of Electrical Engineering

Texas A&M University

LIDAR – essentially laser radar – is a key technology in the emerging field of

autonomous vehicles. It allows the vehicle to detect any obstacles around it and calculate its

distance from them, which allows it to build a real-time map of its surroundings. Issues arise,

however, when multiple LIDAR-equipped vehicles are on the road at the same time, as their

transmitted lasers may strike other vehicles' receivers. This interference gives the receiving car a

faulty view of its surroundings, which could be dangerous if the LIDAR is being used to help

control the car. Our research team found a way to mitigate this issue, using a pseudo-random

algorithm to vary the time at which the lasers are sent. This spreads the laser energy around and

makes it less likely to create a faulty detection in any cars that may accidentally receive it.

My work on this project was to create a software model of this algorithm to assist with

the creation of this hardware, and then to test the functionality of this system in hardware using

an actual laser system. To do this, I created and optimized a program in MATLAB for the

software portion. Once that software portion was completed and tested to be accurate, a Verilog

script was written so that tests could be conducted with actual laser drivers on FPGA boards.

2

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Palermo, for admitting me onto his project and for

his direction, Po-Hsuan Chang for providing me with the initial MATLAB model as far as

debugging support, and my brother, Dillon Knox, for reminding me of a couple program-critical

research deadlines I had forgotten about. None of this research would have been completed

without them.

3

NOMENCLATURE

LFSR Linear feedback shift register

LIDAR Light Imaging, Detecting And Ranging

PRBS Pseudo-random bit sequencing

SNR Signal-to-noise ratio

SPAD Single-photon avalanche diode

4

CHAPTER I

INTRODUCTION

On LIDAR

LIDAR technology allows machines to detect obstacles around them. A laser pulse is

sent out, it strikes an object, and some of the laser photons are reflected back. A very small

number of these will be reflected straight back to the source.

These can be detected by the use of single-photon avalanche diodes (SPADs), which can

detect as little as one photon that strikes them and use that impulse to trigger a much larger

electrical signal. A few particles of light can thus be used control a voltage large enough to be

measured by a computer. Ideally, a SPAD can be used to detect an object as far as 100 meters

away (Richardson).

A timer is started when the laser is fired, and when the SPAD signal is seen, the timer is

stopped. Under real-world conditions, light can be assumed to always travel at a constant speed,

so by knowing the laser's velocity and the time the laser traveled, the distance from the

transmitter to the object can be calculated. This functionality is handled in hardware with a time-

to-digital converter connected to a SPAD (Richardson).

The overarching goal of this research project is to develop a LIDAR system that fits on a

single IC – making it simpler to add LIDAR systems to vehicles and reducing cost. A rough

outline for this system has previously been made (Chen), and the current work on the project is

on how to ultimately implement that into hardware. To our knowledge, this has only been done

once before (Niclass), and it’s never been done with an interference-reduction feature like ours

has, which will be crucial if the technology is to reach a mass scale.

5

Interference Reduction and Pseudo-Random Binary Sequencing

 The concern my team has, and the motivation for this research, is that if LIDAR

technology is to become widespread, there may be hundreds of cars on a road, all firing lasers in

all directions. This will inevitably end up striking the LIDAR receivers on another vehicle,

causing it to create a false reading of seeing an object that isn't truly there – or more dangerously,

possibly ignoring an object that is.

 To solve this, our team's idea is to pseudo-randomly spread the laser signal around. A

pulsed laser will be repeatedly fired, but the time will randomly vary. Sometimes it may be a few

fractions of a second ahead of its normal period, sometimes it may be a few fractions of a second

behind its normal period. The timers, likewise, start counting when the laser is fired. This allows

the energy to be spread around over time and minimize the energy that is sent to other vehicles,

while ideally, the clocks still accurately measure the lasers' overall travel time since they are

synchronized with all the individual pulses.

 The generation of random numbers in hardware is what is known as a pseudo-random

binary sequence (PRBS). The output is created by a repeatable mathematical process and is

deterministic, but it appears to be random over long stretches. A common way to create these

sequences is through linear feedback shift registers (LFSR). A series of digital shift registers

with a beginning “seed” bit sequence is implemented. XOR gates are tapped to the outputs of

certain registers, and the output of those XORs in turn to the beginning of the sequence. An

example of this is shown in figure 1. In this way, the input of the sequence is always being

“scrambled”, and that scrambled input is continuously scrambled more as the shifting progresses.

With enough bits and an unknown seed, the process becomes unpredictable enough to be

considered random.

6

Figure 1. An example of the shifting registers and XOR logic used to create a pseudo-random

binary sequence.

MATLAB Simulations

 MATLAB models were constructed to simulate the LIDAR laser pulses being sent out,

and how they interfered with each other. This let us determine how many photons our pulses

could be expected to return from a signal sent out, how much our random time-shifting of pulses

reduced interference compared to an unshifted signal, and what degree of randomization we

would need to optimize interference reduction while using a minimal amount of hardware.

 The model was built up incrementally over time. A rough existing model, using two

sources interfering with each other using a Gaussian randomization process created in

MATLAB, already existed – this was used as the foundation for the rest of the work. The model

originally only had two sources in it – this was expanded to three. After that, a flaw in the model

that caused it to have an excessive run time (over one hour per simulation), was located and

solved, to reduce the run time to a matter of seconds. Then, pseudo-random bit sequencing was

implemented to simulate the actual hardware we would be using, instead of the software-defined

Gaussian bell-curve that could not be replicated by a circuit. The model was then verified for

accurate function.

7

Hardware Testing

 The hardware portion of the circuit was to be implemented after the MATLAB model

was perfected. A Verilog script was created to drive actual, physical laser transmitters on an

FPGA board, using the PRBS time-shifting algorithm perfected in MATLAB. These lasers were

to be transmitted at targets at a distance, and their reflections would be measured by the devices.

By building histograms of the photons received, we were able to see a picture of what the

LIDAR machines were detecting. Ideally, these could be used have been used to verify the

measurements of the software model.

 Unfortunately, the FPGA boards needed were in another place, and we were not able to

get them back to College Station before the end of the semester. Instead, the Verilog code was

written and tested on software to show that it would work, had the proper equipment been

available.

8

CHAPTER II

METHODS

Constructing The Model

Work was began on this project by using a MATLAB model that had been created by a

PhD student working on this project, Po-Hsuan Chang. This model modeled two LIDAR beams

interfering with each other and plotted the results on a histogram. While functioning, the model

had some shortcomings. The pseudo-random time-shifting behavior it was intended to test was

not yet implemented and was simulated by using Gaussian bell-curve distributions. In addition,

the model had an excessive run time of over an hour per test, which made repeated testing

impractical.

The first improvement made to this model was adding a third source to the other two, to

help generate more data. This third source was constructed identically to the first two, and its

reflections and interference were combined along with the first two sources. Testing showed that

this third interferer worked properly.

The next step was to make the model run in a shorter amount of time, since one hour per

run made testing very impractical. I created a series of text-printout flags in the script that would

display a message when the program got to them (one example was “I am computing the

received elements”), and see what parts of the code took the longest to execute.

That slow part of the code was found in a section that computed the reflections for the

three different sources. This was a process than ran several nested for-loops, ultimately covering

millions of elements. MATLAB software is designed to handle vector calculations very quickly,

9

but on the flip side, it handles traditional looping operations very slowly, and this was causing

the excessive run time.

I was able to find some vector commands within MATLAB that replicated the arithmetic

being done within the for-loops, and replaced the loops with these much faster functions. After

this, the run time for the model fell from over an hour to about ten seconds.

With the foundation of the model finished, the next step was to implement the pseudo-

random shifting algorithm that the simulation was intended to model. An implementation was

used to recreate the action of the LFSR – an array of values were used, and values were passed

down the chain to higher and higher indices. Some of these indices were compared to each other

with a logical XOR function, and those outputs XOR’ed with others according to a user-

configurable setting of taps. The output of that logic was fed back in to the beginning of the

sequence.

Three separate PRBS sources were added to the model, so that each transmitter source

had its own stream of random inputs. The transmitters would take a fixed amount of bits from the

sequence – most of the testing was done with 8 bits – and use that to determine how much

shifting would occur. The transmit time of the model was backed up by a factor of (2^(number of

bits – 1)), and then all the shifting afterwards would be added to that offset. The last bit in the

sequence would move the offset ahead by one time period if the bit was 1, or by none if it was

zero. The second to last bit would move the offset ahead by 2 if the bit was 1, or by none if it

was zero. And so on until the last bit, which would move the sequence ahead by 128 if the bit

was 1 or by zero if the bit was 0. At the very most, the sequence could move 255 time periods

forward if all 8 bits in the PRBS sequence turned out to be 1.

10

Given that signal was offset by 128 periods to start with, this gives us a maximum of +127 time

periods forward shift. At the other extreme, all the PRBS bits could be zero, the shift would be

zero, and that -128 offset would remain, so the signal would be shifted back by 128 time periods.

Any shift between -128 and +127 was equally likely given the randomness of the sequence. This

allowed us to spread the output and thus the energy of the signal equally over time. The timer of

the transmitter would be shifted along with the signal, so it would always record its source

accurately. But it sees the energy of all the other sources trying to interfere with it as a smooth,

low-power spread across the time domain.

 Once the system was proven to be functioning properly, we were able to factor a non-

ideality in. The system built previously assumed that signals lost no strength with increasing

distance. In reality though, the laser intensity would diffuse over increasing area. It had an

elliptical lens with an X-axis half angle of 30 degrees and Y-axis half-angle of, and the diffu.

The equation governing this signal strength is shown below in Figure 2. The SPAD has a

diameter of 8 um, and rho*phi-LR is a constant equal to 0.7. The laser wavelength is 905 nm.

11

Figure 2. Optical power formula used to calculate SPAD power. Courtesy of Dr. Xiaoge Zeng.

The goal with testing this non-ideal model is to find the distances between a source and an

interferer where the source would have 10 dB gain over the interferer.

Testing With The Simulation

The main purpose of the simulation was to find the strength of a LIDAR signal in a

variety of conditions. Signal strength was measured in terms of signal-to-noise ratio – the

maximum strength of the signal, divided by the maximum strength of the next-highest peak

besides the signal, i.e. the maximum of the interference and noise.

To measure the effectiveness of LFSR shifting on reducing interference, the system was

tested with shifting in place, and then the exact same code was ran again with the shifting offsets

all set to zero, creating static pulses.

Simulations initially had random placement of transmitter sources, and random noise

generated for every run, so to average out those parameters, ten trials were conducted and their

12

means were taken. For the shifting and non-shifting comparisons, the same transmitter location

and noise variables were used in both tests to keep the comparisons as close as possible.

For the non-ideal tests factoring in power loss over distance, one of the two interferers

was effectively eliminated from the test, and the other one was placed at a fixed distance (eg, 10

m , 20 m, 50 m). The other remaining source was shifted until its signal-to-noise ratio versus the

interferer was +10 dB.

Testing With The Hardware

Hardware testing was to be achieved by driving physical lasers mounted on FPGA boards

and monitoring the response of SPAD receivers, similar to the design proposed for self-driving

cars. The lasers would be pulsed at pseudo-random time intervals, using LFSR shifting simulated

with a software algorithm. Their received signals would be recorded and built into a histogram,

much like the Matlab model did. In this way, they could be used as experimental verification of

the Matlab model.

Unfortunately, the FPGA boards were not available before the end of the semester, so no

physical testing could be conducted. A script to drive the FPGA boards was written, and the

script was tested on a waveform simulator to prove that it worked as intended. Were the boards

available, this script could have been used to successfully drive them.

13

CHAPTER III

RESULTS

Software Modeling Results

Figure 3. Sample of received signal without PRBS shifting. One source (far right) and two

interfering signals.

Source 1 - No Shifting Source 2 - No Shifting Source 3 - No Shifting

dBs 0.526578774 3.098212916 0.965727862

3.712542713 0.599032841 0.496278653

0.469987631 0.914281179 1.213956807

0 0 1.023050449

0.965727862 0 1.339183957

1.492672366 2.182792878 1.160164654

0.496278653 1.023050449 0.526578774

3.521825181 1.086897775 4.438711997

0.469987631 1.41183863 0

1.93820026 2.361986242 1.339183957

Avg 1.453010868 1.322043935 1.331884953

Figure 4: Signal to noise ratio of unshifted signals (dBs)

In figure 3, intended signal to be received (in the center) has no gain over it’s two

interferers and is actually weaker than the left-most interferer. Figure 4’s data demonstrates

that the signal and the noise in this situation are practically indistinguishable.

14

 Figure 5. Sample of a received with two interferers, after PRBS shifting. Notice how the energy

of the other two signals from Figure 3 has been spread around the time domain.

Source 1 Peak - Unfiltered Source 2 Peak - Unfiltered Source 3 Peak - Unfiltered

Signal-to-Noise Ratios 6.026 6.0206 9.5424

(dBs) 12.0412 9.5424 12.0412

13.9794 6.0206 15.563

13.9794 3.5218 9.5424

12.0412 13.9794 7.9588

6.206 12.0412 3.5218

13.9794 12.0412 13.9794

9.5424 13.9794 12.0412

9.5424 12.0412 12.0412

16.902 13.9794 3.5218

Avg SNR (dBs) 11.60553238 10.50089279 9.966201563

Figure 6. Signal to noise ratio of PRBS shifted signals (dBs)

The PRBS shifting dramatically improved the signal-to-noise ratio for the LIDAR output.

The intended signal is now clearly readable over the noise, as can be seen in Figure 5.

15

Figure 7. Received signal after PRBS shifting and the application of a digital filter.

Source 1 Peak - Filtered Source Peak 2 - Filtered Source Peak 3 - Filtered

17.5012 18.5884 13.563

17.5012 18.5884 15.563

Signal-to-Noise Ratios 17.5012 16.902 17.5012

(dBs) 17.5012 17.5012 17.5012

17.5012 18.5884 12.5678

17.5012 18.0618 18.0618

17.5012 11.2854 15.563

17.5012 18.5884 16.902

17.5012 19.0849 19.5545

18.0618 19.5545 17.5012

Avg SNR (dBs) 16.58605019 16.92263463 16.02120686

Figure 8. Signal-to-noise ratio of a received signal, after PRBS shifting and digital filtering.

Total Avg SNR (dB)

Filtered 16.51789072

Unfiltered 10.71795454

No Shifitng 1.363717235

Figure 9. Signal-to-noise ratio comparison, between the averages of the signal with filtering and

PRBS shifting, the signal with shifting but no filtering, and the unshifted and unfiltered signals.

After applying a digital filter, the data in Figure 8 and Figure 9 shows that the target

signal becomes much sharper as the noise is heavily attenuated. It stands above the noise floor by

a factor of six. Figure 7 provides visual proof of this.

16

Inteferer
at….

10 dB signal-noise point
at… Discrepancy

10m 6.9m 3.1m (31%)

20m 12.1m 7.9m(39.5%)

30m 23.2m 6.8m(22.7%)

50m 42.4m 7.6m(15.2%)

75m 70.1m
3.9m
(5.25%)

90m 85.8m 4.2m (4.6%)

Figure 10. Matlab model testing, attenuation with distance included.

Hardware Testing Results

It was also shown that Verilog script written for the FPGA laser driver would work

successfully, although no FPGA was able to be used. This is the waveform output of the laser.

Notice how the 8-bit LFSR value is pseudo-randomly changing between 0 and 255, and how the

period of the laser firing changes along with it. The Verilog code and testbench used can be

found in the appendix.

17

Figure 11. Waveform simulation of FPGA driver Verilog code.

Discussion

The PRBS shifting makes a great difference in reducing interference from two

aggressors. Without shifting, the signal barely had any gain over the signals interfering with it.

Shifting made three times stronger than the noise, and applying a digital filter created a sixfold

gain over the noise.

This model proves that PRBS shifting and filtering is a valid way to reduce interference

from nearby LIDAR signals. However, one thing it does not factor in is laser beam spreading

over distance – this model assumes that the lasers will lose no strength over distance.

The updated model factored in signal loss over distance. The data in Figure 10 shows

that, in general, the LIDAR model can determine an object that is 4-7 meters away from an

interfering beam with a +3dB signal gain, all the way out to about 90 meters. 95 meters is the

maximum range of the system: the 13-bit hardware time counter overflows beyond that.

Working Verilog code has also been written to test physical hardware with laser drivers,

as proven by the test-bench simulation in Figure 11.

18

CHAPTER IV

CONCLUSION

Overall, I was able to accomplish all my intended goals for this research. The LIDAR

model was proven to work successfully and our pseudo-random shifting using linear feedback

shift registers was able to reduce interference by as much as a factor of six, compared to a system

without PRBS shifting. The system was found to perform well even when non-idealities such as

signal attenuation over distance were introduced as well, having a resolution of 4-7 meters of

targets up to 90 meters away. And while the laser-driver FPGA boards needed to experimentally

verify the Matlab model were unavailable, I was able to write a Verilog script that would have

ran them successfully had I been able to use them.

This research paves the way for future work in implementing the system in hardware – at

first through an FPGA board testing, and long term, into a tape-out on silicon. The ultimate goal

is to build a single-IC LIDAR system utilizing this pseudo-random shifting technology that can

be easily and cheaply installed in a vehicle. The convenience of installing such a system, along

with a shifting algorithm making operation possible in heavy autonomous vehicle traffic, will be

a major step forward in making self-driving vehicles an everyday reality.

19

REFERENCES

C.Y. Chen, “A Sub-centimeter Ranging Precision LIDAR Sensor Prototype Based on ILO-

TDC”, in a thesis submitted to Texas A&M Office of Graduate and Professional Studies, August

2016. Print.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18-µm CMOS SoC for a

100-m-Range 10-Frame/s 200×96-Pixel Time-of-Flight Depth Sensor,” IEEE Journal of Solid-

State Circuits, vol. 49, no. 1, pp. 315–330, Jan 2014. Print.

C. Niclass, M. Soga, H. Matsubara, S. Kato, and M. Kagami, “A 100-m Range 10-Frameps

340x96-Pixel Time-of-Flight Depth Sensor in 0.18-µm CMOS,” IEEE Journal of Solid-State

Circuits, vol. 48, no. 2, pp. 559–572, Feb 2013.

J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K.

Henderson, “A 32×32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for

time correlated imaging,” in 2009 IEEE Custom Integrated Circuits Conference, Sept 2009, pp.

77–80. Print.

20

APPENDIX

Matlab model code

% 50khz: 20us (laser period)

% 200MHz: 5ns (TDC coarse clock cycle)

% TDC resolution 78ps as a unit

% A coarse clock cycle has 64 units

% A 13 bit TDC has 2^13= 8192 unit

% A laser period = 4000*64 = 256000 units

% PRBS variation:+- 8 clock period = +- 512 units

clear;clc

clock_period=64;

pulse_period=256000;

pulse_number=50;

tdc_total_lsb=8192;

x1=2430;

x2=2581;

x3=3900;

%x1 = 3900;

%x2 = 50;

%x3 = 100;

pulse_width=64;

photon_number=1000;

noise_number=round((pulse_number+1)*(20e-

6)*200/(10000*256*2.94e-9));

pde=0.05;

holdoff_time=512;

word_length=8;

disp(' ');

disp('I am generating an LFSR sequence');

LFSR_Taps = [16 14 13 11];

LFSR_Seed_1 = decimalToBinaryVector(randi(255), 16);

LFSR_Seed_2 = decimalToBinaryVector(randi(255), 16);

LFSR_Seed_3 = decimalToBinaryVector(randi(255), 16);

21

PRBS_Sequence_1 = LFSR(LFSR_Seed_1, LFSR_Taps);

PRBS_Sequence_2 = LFSR(LFSR_Seed_2, LFSR_Taps);

PRBS_Sequence_3 = LFSR(LFSR_Seed_3, LFSR_Taps);

if(length(PRBS_Sequence_1) < (pulse_number)+1)

PRBS_Sequence_1 = repmat(PRBS_Sequence_1,

ceil(pulse_number/length(PRBS_Sequence_1)));

PRBS_Sequence_2 = repmat(PRBS_Sequence_2,

ceil(pulse_number/length(PRBS_Sequence_2)));

PRBS_Sequence_3 = repmat(PRBS_Sequence_3,

ceil(pulse_number/length(PRBS_Sequence_3)));

end

signal_1=zeros(1,(pulse_number+1)*pulse_period);

signal_2=zeros(1,(pulse_number+1)*pulse_period);

signal_3=zeros(1,(pulse_number+1)*pulse_period);

noise_1=zeros(1,(pulse_number+1)*pulse_period);

noise_2=zeros(1,(pulse_number+1)*pulse_period);

noise_3=zeros(1,(pulse_number+1)*pulse_period);

start_1=zeros(1,pulse_number);

start_2=zeros(1,pulse_number);

start_3=zeros(1,pulse_number);

disp(' ');

disp('I am creating start arrays');

i = 6;

for m = 1:pulse_number

 if m >= 8

 start_1(m)=start_1(m-1)+pulse_period -

(clock_period*128) + (clock_period*(PRBS_Sequence_1(i-7) +

PRBS_Sequence_1(i-6)*2 + PRBS_Sequence_1(i-5)*4 +

PRBS_Sequence_1(i-4)*8 + PRBS_Sequence_1(i-3)*16 +

PRBS_Sequence_1(i-2)*32 + PRBS_Sequence_1(i-1)*64 +

PRBS_Sequence_1(i)*128));

 start_2(m)=start_2(m-1)+pulse_period -

(clock_period*128) + (clock_period*(PRBS_Sequence_2(i-7) +

PRBS_Sequence_2(i-6)*2 + PRBS_Sequence_2(i-5)*4 +

PRBS_Sequence_2(i-4)*8 + PRBS_Sequence_2(i-3)*16 +

PRBS_Sequence_2(i-2)*32 + PRBS_Sequence_2(i-1)*64 +

PRBS_Sequence_2(i)*128));

22

 start_3(m)=start_3(m-1)+pulse_period -

(clock_period*128) + (clock_period*(PRBS_Sequence_3(i-7) +

PRBS_Sequence_3(i-6)*2 + PRBS_Sequence_3(i-5)*4 +

PRBS_Sequence_3(i-4)*8 + PRBS_Sequence_3(i-3)*16 +

PRBS_Sequence_3(i-2)*32 + PRBS_Sequence_3(i-1)*64 +

PRBS_Sequence_3(i)*128));

 i = i + 8;

 elseif m ==7

 start_1(m)=start_1(m-1)+pulse_period -

(clock_period*64) + (clock_period*(PRBS_Sequence_1(i-6) +

PRBS_Sequence_1(i-5)*2 + PRBS_Sequence_1(i-4)*4 +

PRBS_Sequence_1(i-3)*8 + PRBS_Sequence_1(i-2)*16 +

PRBS_Sequence_1(i-1)*32 + PRBS_Sequence_1(i)*64));

 start_2(m)=start_2(m-1)+pulse_period -

(clock_period*64) + (clock_period*(PRBS_Sequence_2(i-6) +

PRBS_Sequence_2(i-5)*2 + PRBS_Sequence_2(i-4)*4 +

PRBS_Sequence_2(i-3)*8 + PRBS_Sequence_2(i-2)*16 +

PRBS_Sequence_2(i-1)*32 + PRBS_Sequence_2(i)*64));

 start_3(m)=start_3(m-1)+pulse_period -

(clock_period*64) + (clock_period*(PRBS_Sequence_3(i-6) +

PRBS_Sequence_3(i-5)*2 + PRBS_Sequence_3(i-4)*4 +

PRBS_Sequence_3(i-3)*8 + PRBS_Sequence_3(i-2)*16 +

PRBS_Sequence_3(i-1)*32 + PRBS_Sequence_3(i)*64));

 i = i + 7;

 elseif m==6

 start_1(m)=start_1(m-1)+pulse_period -

(clock_period*32) + (clock_period*(PRBS_Sequence_1(i-5) +

PRBS_Sequence_1(i-4)*2 + PRBS_Sequence_1(i-3)*4 +

PRBS_Sequence_1(i-2)*8 + PRBS_Sequence_1(i-1)*16 +

PRBS_Sequence_1(i)*32));

 start_2(m)=start_2(m-1)+pulse_period -

(clock_period*32) + (clock_period*(PRBS_Sequence_2(i-5) +

PRBS_Sequence_2(i-4)*2 + PRBS_Sequence_2(i-3)*4 +

PRBS_Sequence_2(i-2)*8 + PRBS_Sequence_2(i-1)*16 +

PRBS_Sequence_2(i)*32));

 start_3(m)=start_3(m-1)+pulse_period -

(clock_period*32) + (clock_period*(PRBS_Sequence_3(i-5) +

PRBS_Sequence_3(i-4)*2 + PRBS_Sequence_3(i-3)*4 +

PRBS_Sequence_3(i-2)*8 + PRBS_Sequence_3(i-1)*16 +

PRBS_Sequence_3(i)*32));

 i = i + 6;

23

elseif m==5

 start_1(m)=start_1(m-1)+pulse_period -

clock_period*16 + clock_period*(PRBS_Sequence_1(i-4) +

PRBS_Sequence_1(i-3)*2 + PRBS_Sequence_1(i-2)*4 +

PRBS_Sequence_1(i-1)*8 + PRBS_Sequence_1(i)*16);

 start_2(m)=start_2(m-1)+pulse_period -

clock_period*16 + clock_period*(PRBS_Sequence_2(i-4) +

PRBS_Sequence_2(i-3)*2 + PRBS_Sequence_2(i-2)*4 +

PRBS_Sequence_2(i-1)*8 + PRBS_Sequence_2(i)*16);

 start_3(m)=start_3(m-1)+pulse_period -

clock_period*16 + clock_period*(PRBS_Sequence_3(i-4) +

PRBS_Sequence_3(i-3)*2 + PRBS_Sequence_3(i-2)*4 +

PRBS_Sequence_3(i-1)*8 + PRBS_Sequence_3(i)*16);

 i = i + 1;

elseif m==4

 start_1(m)=start_1(m-1)+pulse_period -

clock_period*8 + clock_period*(PRBS_Sequence_1(i-3) +

PRBS_Sequence_1(i-2)*2 + PRBS_Sequence_1(i-1)*4 +

PRBS_Sequence_1(i)*8);

 start_2(m)=start_2(m-1)+pulse_period -

clock_period*8 + clock_period*(PRBS_Sequence_2(i-3) +

PRBS_Sequence_2(i-2)*2 + PRBS_Sequence_2(i-1)*4 +

PRBS_Sequence_2(i)*8);

 start_3(m)=start_3(m-1)+pulse_period -

clock_period*8 + clock_period*(PRBS_Sequence_3(i-3) +

PRBS_Sequence_3(i-2)*2 + PRBS_Sequence_3(i-1)*4 +

PRBS_Sequence_3(i)*8);

 i = i + 1;

elseif m==3

 start_1(m)=start_1(m-1)+pulse_period -

clock_period*4 + clock_period*(PRBS_Sequence_1(i-2) +

PRBS_Sequence_1(i-1)*2 + PRBS_Sequence_1(i)*4);

 start_2(m)=start_2(m-1)+pulse_period -

clock_period*4 + clock_period*(PRBS_Sequence_2(i-2) +

PRBS_Sequence_2(i-1)*2 + PRBS_Sequence_2(i)*4);

 start_3(m)=start_3(m-1)+pulse_period -

clock_period*4 + clock_period*(PRBS_Sequence_3(i-2) +

PRBS_Sequence_3(i-1)*2 + PRBS_Sequence_3(i)*4);

 i = i + 1;

elseif m==2

24

 start_1(m)=start_1(m-1)+pulse_period -

clock_period*2 + clock_period*(PRBS_Sequence_1(i-1) +

PRBS_Sequence_1(i)*2);

 start_2(m)=start_2(m-1)+pulse_period -

clock_period*2 + clock_period*(PRBS_Sequence_2(i-1) +

PRBS_Sequence_2(i)*2);

 start_3(m)=start_3(m-1)+pulse_period -

clock_period*2 + clock_period*(PRBS_Sequence_3(i-1) +

PRBS_Sequence_3(i)*2);

 i = i + 1;

 else

 start_1(m)=pulse_period;

 start_2(m)=pulse_period;

 start_3(m)=pulse_period;

% start_1(m)=pulse_period;

% start_2(m)=pulse_period;

% start_3(m)=pulse_period;

 end

end

disp(' ');

disp('I am creating temp photons');

for a1=1:pulse_number

 for b1=1:photon_number

photon_temp_1=round(normrnd(start_1(a1),pulse_width/2.355))

;

 if photon_temp_1>0

signal_1(photon_temp_1)=signal_1(photon_temp_1)+1;

 end

photon_temp_2=round(normrnd(start_2(a1),pulse_width/2.355))

;

 if photon_temp_2>0

signal_2(photon_temp_2)=signal_2(photon_temp_2)+1;

 end

25

photon_temp_3=round(normrnd(start_3(a1),pulse_width/2.355))

;

 if photon_temp_3>0

signal_3(photon_temp_3)=signal_3(photon_temp_3)+1;

 end

 end

end

disp(' ');

disp('I am creating noise vectors');

for e1=1:noise_number

 noise_index_1=unidrnd((pulse_number+1)*pulse_period);

 noise_1(noise_index_1)=noise_1(noise_index_1)+1;

 noise_index_2=unidrnd((pulse_number+1)*pulse_period);

 noise_2(noise_index_2)=noise_2(noise_index_2)+1;

 noise_index_3=unidrnd((pulse_number+1)*pulse_period);

 noise_3(noise_index_3)=noise_3(noise_index_3)+1;

end

disp(' ');

disp('I am computing reflections');

reflect_1to1=[zeros(1,2*x1) signal_1(1 :

(pulse_number+1)*pulse_period-(2*x1))];

reflect_1to2=[zeros(1,x1+x2) signal_1(1 :

(pulse_number+1)*pulse_period-(x1+x2))];

reflect_1to3=[zeros(1,x1+x3) signal_1(1 :

(pulse_number+1)*pulse_period-(x1+x3))];

reflect_2to1=[zeros(1,x1+x2) signal_2(1 :

(pulse_number+1)*pulse_period-(x1+x2))];

reflect_2to2=[zeros(1,2*x2) signal_2(1 :

(pulse_number+1)*pulse_period-(2*x2))];

reflect_2to3=[zeros(1,x2+x3) signal_2(1 :

(pulse_number+1)*pulse_period-(x2+x3))];

reflect_3to1=[zeros(1,x1+x3) signal_3(1 :

(pulse_number+1)*pulse_period-(x1+x3))];

reflect_3to2=[zeros(1,x2+x3) signal_3(1 :

(pulse_number+1)*pulse_period-(x2+x3))];

26

reflect_3to3=[zeros(1,2*x3) signal_3(1 :

(pulse_number+1)*pulse_period-(2*x3))];

% reflect_1to2=zeros(1,(pulse_number+1)*pulse_period);

% reflect_2to1=zeros(1,(pulse_number+1)*pulse_period);

combine_1=reflect_1to1+reflect_2to1+reflect_3to1;

combine_2=reflect_1to2+reflect_2to2+reflect_3to2;

combine_3=reflect_1to3+reflect_2to3+reflect_3to3;

% received_1=zeros(1,(pulse_number+1)*pulse_period);

% received_2=zeros(1,(pulse_number+1)*pulse_period);

% received_3=zeros(1,(pulse_number+1)*pulse_period);

% for c1=1:(pulse_number+1)*pulse_period

% received_1(c1)=binornd(1,pde*combine_1(c1))+noise_1(c1);

%

% received_2(c1)=binornd(1,pde*combine_2(c1))+noise_2(c1);

%

%

received_3(c1)=binornd(1,pde*combine_3(c1))+noise_3(c1);

% end

disp(' ');

disp('I am computing the received elements');

%received_1 =

binornd(1,pde*combine_1,1,((pulse_number+1)*pulse_period))

+ noise_1;

%received_2 =

binornd(1,pde*combine_2,1,((pulse_number+1)*pulse_period))

+ noise_2;

%received_3 =

binornd(1,pde*combine_3,1,((pulse_number+1)*pulse_period))

+ noise_3;

received_1 =

binornd(1,pde*combine_1,1,((pulse_number+1)*pulse_period));

received_2 =

binornd(1,pde*combine_2,1,((pulse_number+1)*pulse_period));

received_3 =

binornd(1,pde*combine_3,1,((pulse_number+1)*pulse_period));

received_1_holdoff=zeros(1,(pulse_number+1)*pulse_period);

27

received_2_holdoff=zeros(1,(pulse_number+1)*pulse_period);

received_3_holdoff=zeros(1,(pulse_number+1)*pulse_period);

d1=1;

d2=1;

d3=1;

while d1<=(pulse_number+1)*pulse_period

 if(received_1(d1))>0

 received_1_holdoff(d1)=1;

 d1=d1+holdoff_time;

 else

 d1=d1+1;

 end

end

while d2<=(pulse_number+1)*pulse_period

 if(received_2(d2))>0

 received_2_holdoff(d2)=1;

 d2=d2+holdoff_time;

 else

 d2=d2+1;

 end

end

while d3<=(pulse_number+1)*pulse_period

 if(received_3(d3))>0

 received_3_holdoff(d3)=1;

 d3=d3+holdoff_time;

 else

 d3=d3+1;

 end

end

hist_1=zeros(1,tdc_total_lsb);

hist_2=zeros(1,tdc_total_lsb);

hist_3=zeros(1,tdc_total_lsb);

for m1=1:pulse_number

for n1= start_1(m1) : start_1(m1)+tdc_total_lsb

 if received_1_holdoff(n1)>0 && n1-start_1(m1)>0

 hist_1(n1-start_1(m1))=hist_1(n1-start_1(m1))+1;

 end

28

end

for n2= start_2(m1) : start_2(m1)+tdc_total_lsb

 if received_2_holdoff(n2)>0 && n1-start_2(m1)>0

 hist_2(n2-start_2(m1))=hist_2(n2-start_2(m1))+1;

 end

end

for n3= start_3(m1) : start_3(m1)+tdc_total_lsb

 if received_3_holdoff(n3)>0 && n3-start_3(m1)>0

 hist_3(n3-start_3(m1))=hist_3(n3-start_3(m1))+1;

 end

end

end

moving_average=ones(1,word_length);

response_1=filter(moving_average,1,hist_1);

response_2=filter(moving_average,1,hist_2);

response_3=filter(moving_average,1,hist_3);

[Ma1 In1]=max(response_1);

[Ma2 In2]=max(response_2);

[Ma3 In3]=max(response_3);

%Correct peak check

%[1st peak correct, 2nd peak correct, wrong peak that might

happen, correct

%1st peak index, correct 2nd peak index

[2*x1 2*x2 2*x3 In1 In2 In3]

figure

subplot(3,2,1)

plot(hist_1);

29

xlabel('Time (clock periods)')

ylabel('Photon Count')

title('Unfiltered Reponse 1')

[max_filtered_1_shifting_unfiltered MI_1_U] = max(hist_1);

max_noisefloor_source_1_unfiltered =

max(max(hist_1(1:(MI_1_U-

200))),max((hist_1(MI_1_U+200:8096))));

signalnoise_1_shifting_unfiltered

=(max_filtered_1_shifting_unfiltered /

max_noisefloor_source_1_unfiltered);

subplot(3,2,2)

plot(response_1);

xlabel('Time (clock periods)')

ylabel('Photon Count')

title('Filtered Response 1')

[max_filtered_1_shifting MI_1] = max(response_1);

max_noisefloor_source_1 = max(max(response_1(1:(2*x1-

100))),max((response_1(2*x1+100:8096))));

signalnoise_1_shifting = (max_filtered_1_shifting /

max_noisefloor_source_1);

subplot(3,2,3)

plot(hist_2);

xlabel('Distance')

ylabel('Photon Count')

title('Unfiltered Response 2')

[max_filtered_2_shifting_unfiltered MI_2_U] = max(hist_2);

max_noisefloor_source_2_unfiltered =

max(max(hist_2(1:(MI_2_U-

10))),max((hist_2(MI_2_U+200:8096))));

signalnoise_2_shifting_unfiltered =

(max_filtered_2_shifting_unfiltered /

max_noisefloor_source_2_unfiltered);

subplot(3,2,4)

plot(response_2);

xlabel('Distance')

ylabel('Photon Count')

title('Filtered Response 2')

[max_filtered_2_shifting MI_2] = max(response_2);

max_noisefloor_source_2 = max(max(response_2(1:(MI_2-

10))),max((response_2(MI_2+200:8096))));

30

signalnoise_2_shifting = (max_filtered_2_shifting /

max_noisefloor_source_2);

subplot(3,2,5)

plot(hist_3);

xlabel('Distance')

ylabel('Photon Count')

title('Unfiltered Response 3')

[max_filtered_3_shifting_unfiltered MI_3_U] = max(hist_3);

max_noisefloor_source_3_unfiltered =

max(max(response_2(1:(MI_3_U-

10))),max((response_2(MI_3_U+200:8096))));

signalnoise_3_shifting_unfiltered =

(max_filtered_3_shifting_unfiltered /

max_noisefloor_source_3_unfiltered);

subplot(3,2,6)

plot(response_3);

xlabel('Distance')

ylabel('Photon Count')

title('Filtered Response 3')

[max_filtered_3_shifting MI_3] = max(response_3);

max_noisefloor_source_3 = max(max(response_3(1:(MI_3-

10))),max((response_3(MI_3+200:8096))));

signalnoise_3_shifting = (max_filtered_3_shifting /

max_noisefloor_source_3);

%photon energy = h * c / lambda

%lambda = 905 nm per Xiaoge's model

photon_energy =(6.626E-34)*(2.98E8) / (905E-9);

relectivity_transmission_coeff = 0.7;

SPAD_area = pi * 4E-3 * 4E-3;

power_plot_1 = hist_1;

for i = 1:tdc_total_lsb

 %area of the object reflecting off of is an ellipse

31

 %area = pi * a * b

 %the x axis of the lens is at a 10 degree angle

 %the y axis of the lens is at a 30 degree angle

 power_plot_1(i) = (hist_1(i) * photon_energy *

2*sind(10) * sind(10) * relectivity_transmission_coeff /

SPAD_area) / (pi * ((tand(10) * 0.5*i * (2.98E8 * 78E-12))

* (tand(30)*0.5*i*(2.98E8* 78E-12))));

response_powerplot=filter(moving_average,1,power_plot_1);

 max_signal_powerplot = max(max(response_powerplot(2*x1-

50:2*x1),max(response_powerplot(2*x1:2*x1+50))));

 noise_powerplot = max(max(response_powerplot(2*x2-

200:2*x2),max(response_powerplot(2*x2:2*x2+200))));

 powerplot_SNR = max_signal_powerplot/noise_powerplot

end

figure

xaxis = (1:1:8192);

xaxis = xaxis *(78E-12*0.5*2.98E8);

plot(xaxis, power_plot_1);

xlabel('Distance (m)');

ylabel('Power(W)');

%

%

%

%

%

%

32

% This code was used to generate the non-random, non-

%distance affected code for SNR sims.

% %lazy copy paste below

%

% % 50khz: 20us (laser period)

% % 200MHz: 5ns (TDC coarse clock cycle)

% % TDC resolution 78ps as a unit

% % A coarse clock cycle has 64 units

% % A 13 bit TDC has 2^13= 8192 unit

% % A laser period = 4000*64 = 256000 units

% % PRBS variation:+- 8 clock period = +- 512 units

%

% % clock_period=64;

% % pulse_period=256000;

% % pulse_number=200;

% % tdc_total_lsb=8192;

% % x1=unidrnd(4096);

% % x2=unidrnd(4096);

% % x3=unidrnd(4096);

% %

% % pulse_width=64;

% % photon_number=1000;

% % noise_number=round((pulse_number+1)*(20e-

6)*200/(10000*256*2.94e-9));

% % pde=0.05;

% % holdoff_time=128;

% % word_length=8;

% %

% % disp(' ');

% % disp('I am generating an LFSR sequence');

% %

% %

% % LFSR_Taps = [8 6 5 4];

% % LFSR_Seed_1 = decimalToBinaryVector(randi(63), 8);

% % LFSR_Seed_2 = decimalToBinaryVector(randi(63), 8);

% % LFSR_Seed_3 = decimalToBinaryVector(randi(63), 8);

% %

% %

% % PRBS_Sequence_1 = LFSR(LFSR_Seed_1, LFSR_Taps);

% % PRBS_Sequence_2 = LFSR(LFSR_Seed_2, LFSR_Taps);

% % PRBS_Sequence_3 = LFSR(LFSR_Seed_3, LFSR_Taps);

% %

% % if(length(PRBS_Sequence_1) < (pulse_number)+1)

33

% % PRBS_Sequence_1 = repmat(PRBS_Sequence_1,

ceil(pulse_number/length(PRBS_Sequence_1)));

% % PRBS_Sequence_2 = repmat(PRBS_Sequence_2,

ceil(pulse_number/length(PRBS_Sequence_2)));

% % PRBS_Sequence_3 = repmat(PRBS_Sequence_3,

ceil(pulse_number/length(PRBS_Sequence_3)));

% % end

%

% signal_1=zeros(1,(pulse_number+1)*pulse_period);

% signal_2=zeros(1,(pulse_number+1)*pulse_period);

% signal_3=zeros(1,(pulse_number+1)*pulse_period);

% %noise_1=zeros(1,(pulse_number+1)*pulse_period);

% %noise_2=zeros(1,(pulse_number+1)*pulse_period);

% %noise_3=zeros(1,(pulse_number+1)*pulse_period);

% start_1=zeros(1,pulse_number);

% start_2=zeros(1,pulse_number);

% start_3=zeros(1,pulse_number);

% disp(' ');

% disp('I am creating start arrays');

%

% for m=1:pulse_number

% if m>=2

% start_1(m)=start_1(m-1)+pulse_period;

% start_2(m)=start_2(m-1)+pulse_period;

% start_3(m)=start_3(m-1)+pulse_period;

%

% %start_1(m)=start_1(m-1)+pulse_period-

clock_period*8+clock_period*unidrnd(16);

% %start_2(m)=start_2(m-1)+pulse_period-

clock_period*8+clock_period*unidrnd(16);

% %start_3(m)=start_3(m-1)+pulse_period-

clock_period*8+clock_period*unidrnd(16);

% % start_1(m)=start_1(m-1)+pulse_period;

% % start_2(m)=start_2(m-1)+pulse_period;

% % start_3(m)=start_3(m-1)+pulse_period;

% else

% start_1(m)=pulse_period-512;

% start_2(m)=pulse_period-512;

% start_3(m)=pulse_period-512;

% % start_1(m)=pulse_period;

% % start_2(m)=pulse_period;

% % start_3(m)=pulse_period;

% end

34

% end

%

% disp(' ');

% disp('I am creating temp photons');

%

% for a1=1:pulse_number

% for b1=1:photon_number

%

photon_temp_1=round(normrnd(start_1(a1),pulse_width/2.355))

;

% if photon_temp_1>0

%

signal_1(photon_temp_1)=signal_1(photon_temp_1)+1;

% end

%

%

photon_temp_2=round(normrnd(start_2(a1),pulse_width/2.355))

;

% if photon_temp_2>0

%

signal_2(photon_temp_2)=signal_2(photon_temp_2)+1;

% end

%

%

photon_temp_3=round(normrnd(start_3(a1),pulse_width/2.355))

;

% if photon_temp_3>0

%

signal_3(photon_temp_3)=signal_3(photon_temp_3)+1;

% end

%

% end

% end

%

% disp(' ');

% disp('I am creating noise vectors');

%

% for e1=1:noise_number

% noise_index_1=unidrnd((pulse_number+1)*pulse_period);

% noise_1(noise_index_1)=noise_1(noise_index_1)+1;

%

% noise_index_2=unidrnd((pulse_number+1)*pulse_period);

% noise_2(noise_index_2)=noise_2(noise_index_2)+1;

%

35

% noise_index_3=unidrnd((pulse_number+1)*pulse_period);

% noise_3(noise_index_3)=noise_3(noise_index_3)+1;

% end

%

% disp(' ');

% disp('I am computing reflections');

%

% reflect_1to1=[zeros(1,2*x1) signal_1(1 :

(pulse_number+1)*pulse_period-(2*x1))];

% reflect_1to2=[zeros(1,x1+x2) signal_1(1 :

(pulse_number+1)*pulse_period-(x1+x2))];

% reflect_1to3=[zeros(1,x1+x3) signal_1(1 :

(pulse_number+1)*pulse_period-(x1+x3))];

% reflect_2to1=[zeros(1,x1+x2) signal_2(1 :

(pulse_number+1)*pulse_period-(x1+x2))];

% reflect_2to2=[zeros(1,2*x2) signal_2(1 :

(pulse_number+1)*pulse_period-(2*x2))];

% reflect_2to3=[zeros(1,x2+x3) signal_2(1 :

(pulse_number+1)*pulse_period-(x2+x3))];

% reflect_3to1=[zeros(1,x1+x3) signal_3(1 :

(pulse_number+1)*pulse_period-(x1+x3))];

% reflect_3to2=[zeros(1,x2+x3) signal_3(1 :

(pulse_number+1)*pulse_period-(x2+x3))];

% reflect_3to3=[zeros(1,2*x3) signal_3(1 :

(pulse_number+1)*pulse_period-(2*x3))];

%

% % reflect_1to2=zeros(1,(pulse_number+1)*pulse_period);

% % reflect_2to1=zeros(1,(pulse_number+1)*pulse_period);

%

% combine_1=reflect_1to1+reflect_2to1+reflect_3to1;

% combine_2=reflect_1to2+reflect_2to2+reflect_3to2;

% combine_3=reflect_1to3+reflect_2to3+reflect_3to3;

%

% % received_1=zeros(1,(pulse_number+1)*pulse_period);

% % received_2=zeros(1,(pulse_number+1)*pulse_period);

% % received_3=zeros(1,(pulse_number+1)*pulse_period);

%

% % for c1=1:(pulse_number+1)*pulse_period

% %

received_1(c1)=binornd(1,pde*combine_1(c1))+noise_1(c1);

% %

% %

received_2(c1)=binornd(1,pde*combine_2(c1))+noise_2(c1);

% %

36

% %

received_3(c1)=binornd(1,pde*combine_3(c1))+noise_3(c1);

% % end

%

% disp(' ');

% disp('I am computing the received elements');

%

% received_1 =

binornd(1,pde*combine_1,1,((pulse_number+1)*pulse_period));

% received_2 =

binornd(1,pde*combine_2,1,((pulse_number+1)*pulse_period));

% received_3 =

binornd(1,pde*combine_3,1,((pulse_number+1)*pulse_period));

%

%

%

received_1_holdoff=zeros(1,(pulse_number+1)*pulse_period);

%

received_2_holdoff=zeros(1,(pulse_number+1)*pulse_period);

%

received_3_holdoff=zeros(1,(pulse_number+1)*pulse_period);

% d1=1;

% d2=1;

% d3=1;

%

% while d1<=(pulse_number+1)*pulse_period

% if(received_1(d1))>0

% received_1_holdoff(d1)=1;

% d1=d1+holdoff_time;

% else

% d1=d1+1;

% end

% end

%

% while d2<=(pulse_number+1)*pulse_period

% if(received_2(d2))>0

% received_2_holdoff(d2)=1;

% d2=d2+holdoff_time;

% else

% d2=d2+1;

% end

% end

%

% while d3<=(pulse_number+1)*pulse_period

37

% if(received_3(d3))>0

% received_3_holdoff(d3)=1;

% d3=d3+holdoff_time;

% else

% d3=d3+1;

% end

% end

%

% hist_1=zeros(1,tdc_total_lsb);

% hist_2=zeros(1,tdc_total_lsb);

% hist_3=zeros(1,tdc_total_lsb);

%

% for m1=1:pulse_number

%

% for n1= start_1(m1) : start_1(m1)+tdc_total_lsb

%

% if received_1_holdoff(n1)>0 && n1-start_1(m1)>0

% hist_1(n1-start_1(m1))=hist_1(n1-start_1(m1))+1;

% end

%

% end

%

% for n2= start_2(m1) : start_2(m1)+tdc_total_lsb

%

% if received_2_holdoff(n2)>0 && n1-start_2(m1)>0

% hist_2(n2-start_2(m1))=hist_2(n2-start_2(m1))+1;

% end

%

% end

%

% for n3= start_3(m1) : start_3(m1)+tdc_total_lsb

%

% if received_3_holdoff(n3)>0 && n3-start_3(m1)>0

% hist_3(n3-start_3(m1))=hist_3(n3-start_3(m1))+1;

% end

%

% end

%

% end

%

%

%

%

% moving_average=ones(1,word_length);

38

%

% response_1=filter(moving_average,1,hist_1);

% response_2=filter(moving_average,1,hist_2);

% response_3=filter(moving_average,1,hist_3);

%

% [Ma1 In1]=max(response_1);

% [Ma2 In2]=max(response_2);

% [Ma3 In3]=max(response_3);

%

% %Correct peak check

% %[1st peak correct, 2nd peak correct, wrong peak that

might happen, correct

% %1st peak index, correct 2nd peak index

% [2*x1 2*x2 2*x3 In1 In2 In3]

%

%

%

%

% figure

% subplot(3,2,1)

% plot(hist_1);

% xlabel('Distance')

% ylabel('Photon Count')

% title('Unfiltered Reponse 1')

%

% subplot(3,2,2)

% plot(response_1);

% xlabel('Time (clock periods)')

% ylabel('Photon Count')

% title('Filtered Response 1')

% [max_1_noshifting MI_1] = max(response_1);

% max_noisefloor_1_noshifting = max(max(response_1(1:(MI_1-

50))),max((response_1(MI_1+50:8096))));

% signalnoise_1_noshifting = (max_1_noshifting /

max_noisefloor_1_noshifting);

%

%

% subplot(3,2,3)

% plot(hist_2);

% xlabel('Distance')

% ylabel('Photon Count')

% title('Unfiltered Response 2')

%

% subplot(3,2,4)

39

% plot(response_2);

% xlabel('Distance')

% ylabel('Photon Count')

% title('Filtered Response 2')

% [max_2_noshifting MI_2] = max(response_2);

% max_noisefloor_2_noshifting = max(max(response_2(1:(MI_2-

50))),max((response_2(MI_2+50:8096))));

% signalnoise_2_noshifting = (max_2_noshifting /

max_noisefloor_2_noshifting);

%

% subplot(3,2,5)

% plot(hist_3);

% xlabel('Distance')

% ylabel('Photon Count')

% title('Unfiltered Response 3')

%

% subplot(3,2,6)

% plot(response_3);

% xlabel('Distance')

% ylabel('Photon Count')

% title('Filtered Response 3')

% [max_3_noshifting MI_3] = max(response_3);

%

%

% max_noisefloor_3_noshifting = max(max(response_3(1:(MI_3-

50))),max((response_3(MI_3+50:8096))));

% signalnoise_3_noshifting = (max_3_noshifting /

max_noisefloor_3_noshifting);

%

% disp('#1 No Shifting');

% disp(signalnoise_1_noshifting);

%

% disp('#2 No Shifting');

% disp(signalnoise_2_noshifting);

%

% disp('#3 No Shifting');

% disp(signalnoise_3_noshifting);

%

disp('#1 Shifting');

disp(signalnoise_1_shifting);

%disp('#1 Shifting Unfiltered');

%disp(signalnoise_1_shifting_unfiltered);

%

40

% disp('#2 Shifting');

% disp(signalnoise_2_shifting);

%

% disp('#2 Shifting Unfiltered');

% disp(signalnoise_2_shifting_unfiltered);

%

% disp('#3 Shifting');

% disp(signalnoise_3_shifting);

%

% disp('#3 Shifting Unfiltered');

% disp(signalnoise_3_shifting_unfiltered);

PRBS Verilog Code

`timescale 1ns / 1ps

module laser_and_start(clk, laser, trigger, reset_n, period,

LFSR);

input clk;

output reg laser;

output reg trigger;

output reg [10:0] period;

output reg [7:0] LFSR;

input reset_n;

reg [10:0] counter;

//parameter LFSR_Offset_Shift = 0;

wire feedback = LFSR[7];

always @(posedge trigger or negedge reset_n)

begin

 if(~reset_n)

 begin

 LFSR<=8'b00000011;

 period<=11'd1744;

 end

 else

 begin

 LFSR[0] <= feedback;

 LFSR[1] <= LFSR[0];

 LFSR[2] <= LFSR[1] ^ feedback;

 LFSR[3] <= LFSR[2] ^ feedback;

41

 LFSR[4] <= LFSR[3] ^ feedback;

 LFSR[5] <= LFSR[4];

 LFSR[6] <= LFSR[5];

 LFSR[7] <= LFSR[6];

 period<= LFSR + 11'd1744;

 end

 //keep constantly cycling through LFSR outputs. When the laser

fires, the LFSR period for the next pulse will be locked in.

 //shift_temp <= feedback[0] + feedback[1]*2 + feedback[2]*4 +

feedback[3]*8 + feedback[4]*16 + feedback[5]*32 + feedback[6]*64

+ feedback[7]*128;

 //center the shift, so that it can go -128 and +127.

 //shift_temp <= shift_temp - 128;

 //if(counter>=(11'd1999 + LFSR_Offset_Shift))

 //1counter<=0;

 //LFSR_Offset_Shift <= shift_temp;

 //else

 //counter<=counter+1'b1;

end

always @(posedge clk or negedge reset_n)

begin

 if(~reset_n)

 begin

 laser<=1'b1;

 end

 else

 begin

 if(counter<=12'd49)

 laser<=1'b0;

 else

 laser<=1'b1;

 end

end

always @(posedge clk or negedge reset_n)

begin

 if(~reset_n)

 begin

 trigger<=1'b0;

 counter<=0;

 end

 else

42

 begin

 if(counter>=period)

 begin

 trigger<=1'b1;

 counter<=0;

 end

 else

 begin

 trigger<=1'b0;

 counter<=counter+1'b1;

 end

 end

end

endmodule

PRBS Verilog Testbench code

`timescale 1ns / 1ps

//

////////////////

// Company:

// Engineer:

//

// Create Date: 16:10:41 04/06/2018

// Design Name: laser_and_start

// Module Name:

C:/Users/pchang0628/Documents/ise_project/laser_test/laser_teseb

ench.v

// Project Name: laser_test

// Target Device:

// Tool versions:

// Description:

//

// Verilog Test Fixture created by ISE for module:

laser_and_start

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

////////////////

43

module laser_tesebench;

 // Inputs

 reg clk;

 reg reset_n;

 // Outputs

 wire laser;

 wire trigger;

 wire [10:0] period;

 wire [7:0] LFSR;

 // Instantiate the Unit Under Test (UUT)

 laser_and_start uut (

 .clk(clk),

 .laser(laser),

 .trigger(trigger),

 .reset_n(reset_n),

 .period(period),

 .LFSR(LFSR)

);

 initial begin

 // Initialize Inputs

 clk = 0;

 reset_n = 0;

 // Wait 2.5 ns for global reset to finish

 #2.5;

 reset_n = 1;

 // Add stimulus here

 forever begin

 #2.5 clk=!clk;

 end

 end

endmodule

