ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP)

VOLUME I—TECHNICAL REPORT

Annual Report to the Texas Commission on Environmental Quality January 2016-December 2016

Jeff Haberl, Ph.D., Bahman Yazdani, P.E., Juan-Carlos Baltazar, Ph.D., P.E., Shirley Ellis, Patrick Parker, Gali Zilbershtein, Ph.D., David Claridge, Ph.D., P.E.

December 2017

Energy Systems Laboratory

December 22, 2017

Vincent Meiller Air Quality Planning Section Air Quality Division, Office of Air Texas Commission on Environmental Quality Austin, TX 78711-3087

Dear Mr Meiller:

The Energy Systems Laboratory (ESL) at the Texas A&M Engineering Experiment Station of the Texas A&M University System is pleased to provide its annual report, "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)," as required under Texas Health and Safety Code 386.205, 386.252, 388.006, 389.003 (e), and under Texas Utilities Code Sec. 39.9051 (g) (h), and Sec. 39.9052 (c) (d).

The ESL is required to annually report the energy savings from statewide adoption of the Texas Building Energy Performance Standards in Senate Bill 5 (SB 5), as amended, and the relative impact of proposed local energy code amendments in the Texas non-attainment and near-non-attainment counties as part of the Texas Emissions Reduction Plan (TERP).

Please contact me at (979) 845-9213 should you or any of the TCEQ staff have any questions concerning this report or any of the work presently being done to quantify emissions reduction from energy efficiency and renewable energy measures as a result of the TERP implementation.

Sincerely,

David E. Claridge, Ph.D., P.E., FASHRAE

Director

Enclosure

cc: Commissioner Toby Baker

David E. Clarifo

Commissioner Jon Niermann

Executive Director Richard A. Hyde, P. E.

Disclaimer

This report is provided by the Energy Systems Laboratory of the Texas A&M Engineering Experiment Station (TEES) as required under Sections 386.205, 386.252, 388.006, and 388.003 (e) of the Texas Health and Safety Code and Sections 39.9051 (g) (h), and 39.9052 (c) (d) of the Texas Utilities Code. The information provided in this report is intended to be the best available information at the time of publication. TEES makes no claim or warranty, express or implied, that the report or data herein is necessarily error-free. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the Energy Systems Laboratory or any of its employees. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Texas A&M Engineering Experiment Station or the Energy Systems Laboratory.

VOLUME I – TECHNICAL REPORT

Energy Efficiency/Renewable Energy Impact In The Texas Emissions Reduction Plan

Executive Summary

The Energy Systems Laboratory (Laboratory), a division of the Texas A&M Engineering Experiment Station and a member of The Texas A&M University System, in fulfillment of its responsibilities under Sections 386.205, 386.252, 388.006, and 388.003 (e) of the Texas Health and Safety Code and Sections 39.9051 (g) (h), and 39.9052 (c) (d) of the Texas Utilities Code, submits its annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (TERP) to the Texas Commission on Environmental Quality.

The report is organized in two volumes.

Volume I – Technical Report – provides a detailed report of activities, methodologies and findings, including an executive summary and overview;

Volume II – Technical Appendix – contains detailed data from simulations for each of the counties included in the analysis.

The ESL worked with the EPA and TCEQ regarding a new version of eGRID for all ERCOT counties in Texas. A new version of eGRID was developed and presented in this report, which is based on the ERCOT congestion management zones. As the TCEQ moved the base year to more recent years, this updated version of eGRID, representing the current Texas market, has been used to estimate the emissions reduction from wind power in the next year's report.

Accomplishments:

a. Energy Code Amendments

The Laboratory was requested by several Councils of Governments (COGs) and municipalities to analyze the stringency of several proposed residential and commercial energy code amendments, including: the 2012 IECC and the ASHRAE Standards 90.1-2010. Results of the analysis are included in this Volume I-Technical Report.

b. Technical Assistance

The Laboratory provided technical assistance to the TCEQ, PUCT, SECO, ERCOT, and several political subdivisions, as well as stakeholders participating in improving the compliance of the Texas Building Energy Performance Standards (TBEPS). The Laboratory also worked closely with the TCEQ to refine the integrated NOx emissions reduction calculation procedures that provide the TCEQ with a standardized, creditable NOx emissions reduction from energy efficiency and renewable energy (EE/RE) programs, which are acceptable to the US EPA. These activities have improved the accuracy of the creditable NOx emissions reduction from EE/RE initiatives contained in the TERP and have assisted the TCEQ, local governments, and the building industry with effective, standardized implementation and reporting.

c. NOx Emissions Reduction

Under the TERP legislation, the Laboratory must determine the energy savings from energy code adoption and, when applicable, from more stringent local codes or above-code performance ratings, and must report these reductions annually to the TCEQ.

Figure 1 shows the integrated NOx emissions reduction through 2020 for the electricity and natural gas savings from the various EE/RE programs.

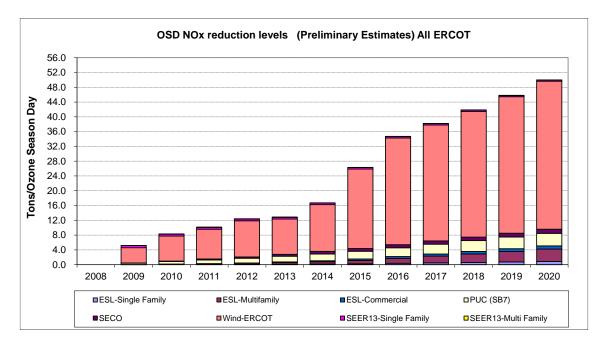


Figure 1: Integrated OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)

In 2016 (Table 1), the total integrated annual savings from all programs are 44,016,581 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 3,087,080 MWh/year (7.0% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program are 3,498,867 MWh/year (7.9%),
- Savings from SECO's Senate Bill 5 program are 1,100,775 MWh/year (2.5%),
- Electricity savings from green power purchases (wind) are 36,069.833 MWh/year (81.9%), and
- Savings from residential air conditioner retrofits¹ are 260,026 MWh/year (0.6%).

By 2020, the total integrated annual savings from all programs will be 63,853,554 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 7,242,298 MWh/year (11.3% of the total electricity savings),
- Sayings from the PUC's Senate Bill 7 program will be 4,975,963 MWh/year (7.8%),
- Savings from SECO's Senate Bill 5 program will be 1,435,808 MWh/year (2.2%),
- Electricity savings from green power purchases (wind) will be 49,987,692 MWh/year (78.3%), and
- Savings from residential air conditioner retrofits will be 211,793 MWh/year (0.3%).

In 2016 (Table 2), the total integrated annual NOx emissions reductions from all programs are 12,142 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 769 tons-NOx/year (6.3% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 874 tons-NOx/year (7.2%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 294 tons-NOx/year (2.4%),
- NOx emissions reductions from green power purchases (wind) are 10,143 tons-NOx/year (83.5%), and
- NOx emissions reductions from residential air conditioner retrofits are 61 tons-NOx/year (0.5%).

¹ This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

By 2020, the total integrated annual NOx emissions reductions from all programs will be 17,576 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 5.09 tons-NOx/day (10.2%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 3.40 tons-NOx/day (6.8%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 1.09 tons-NOx/day (2.2%),
- NOx emissions reductions from green power purchases (wind) will be 40.07 tons-NOx/day (80.1%), and
- NOx emissions reductions from residential air conditioner retrofits will be 0.35 tons-NOx/day (0.7%).

Table 1: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)

PRO CRAM	ANNUAL (MWh)												
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	25,031	47,000	74,109	153,562	215,164	275,535	360,010	533,473	710,874	892,438	1,078,398	1,268,995
ESL-Multifamily	0	50,784	108,018	200,414	332,835	527,292	774,578	1,225,617	1,856,682	2,515,116	3,202,811	3,921,770	4,674,114
ESL-Commercial	0	0	24,066	83,255	119,422	247,952	400,015	559,947	696,924	839,015	986,534	1,139,810	1,299,190
PUC (SB7)	0	538,841	976,984	1,437,883	1,831,318	2,267,414	2,675,295	3,079,759	3,498,867	3,897,019	4,275,264	4,634,597	4,975,963
SECO	0	71,910	154,786	347,175	508,375	705,060	1,004,828	1,005,713	1,100,775	1,191,083	1,276,877	1,358,380	1,435,808
Wind-ERCOT	0	3,454,992	8,587,397	11,606,284	13,774,557	16,597,064	19,905,202	24,322,675	36,069,833	39,135,769	42,462,309	46,071,605	49,987,692
SEER13-Single Family	0	343,330	326,163	309,855	294,362	279,644	265,662	252,379	239,760	227,772	216,383	205,564	195,286
SEER13-Multi Family	0	29,021	27,569	26,191	24,881	23,637	22,456	21,333	20,266	19,253	18,290	17,376	16,507
Total Annual (MWh)	0	4,513,907	10,251,982	14,085,166	17,039,312	20,863,228	25,323,570	30,827,434	44,016,581	48,535,902	53,330,907	58,427,500	63,853,554

PRO CRAM	OZONE SEASON DAY - OSD (MWh/day)													
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
ESL-Single Family	0	69	129	203	421	589	755	986	1,462	1,948	2,445	2,955	3,477	
ESL-Multifamily	0	139	296	549	912	1,445	2,122	3,358	5,087	6,891	8,775	10,745	12,806	
ESL-Commercial	0	0	66	228	327	679	1,096	1,534	1,909	2,299	2,703	3,123	3,559	
PUC (SB7)	0	1,476	2,677	3,939	5,017	6,212	7,330	8,438	9,586	10,677	11,713	12,698	13,633	
SECO	0	197	424	951	1,393	1,932	2,753	2,755	3,016	3,263	3,498	3,722	3,934	
Wind-ERCOT	0	15,037	24,335	29,191	35,122	34,369	45,184	76,917	102,874	111,618	121,105	131,399	142,568	
SEER13-Single Family	0	2,445	2,323	2,207	2,097	1,992	1,892	1,798	1,708	1,622	1,541	1,464	1,391	
SEER13-Multi Family	0	195	186	176	167	159	151	144	136	130	123	117	111	
Total OSD (MWh)	0	19,559	30,435	37,445	45,456	47,377	61,283	95,930	125,777	138,447	151,904	166,221	181,479	

Table 2: Annual and OSD NOx Emissions Reductions Values for the Different Programs (Base Year 2008)

PROGRAM	ANNUAL (in tons NOx)													
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
ESL-Single Family	0	3	8	15	34	50	65	86	129	174	219	265	313	
ESL-Multifamily	0	4	19	43	77	127	190	305	468	639	817	1,003	1,198	
ESL-Commercial	0	0	6	20	28	59	97	138	172	207	243	281	321	
PUC (SB7)	0	135	246	362	460	567	669	770	874	973	1,067	1,156	1,241	
SECO	0	19	43	92	133	183	264	265	294	322	348	373	397	
Wind-ERCOT	0	945	2,388	3,222	3,851	4,643	5,577	6,800	10,143	11,005	11,941	12,956	14,057	
SEER13-Single Family	0	81	77	73	69	66	62	59	56	53	51	48	46	
SEER13-Multi Family	0	7	6	6	6	6	5	5	5	5	4	4	4	
Total Annual (Tons NOx)	0	1,193	2,792	3,831	4,659	5,700	6,930	8,428	12,142	13,377	14,690	16,087	17,576	

PROGRAM					OZO	NESEASON	DAY - OSD	- OSD (in tons NOx/day)							
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		
ESL-Single Family	0.00	0.01	0.02	0.04	0.09	0.14	0.18	0.24	0.35	0.48	0.60	0.73	0.86		
ESL-Multifamily	0.00	0.01	0.14	0.20	0.29	0.43	0.60	0.91	1.36	1.82	2.31	2.82	3.35		
ESL-Commercial	0.00	0.00	0.02	0.05	0.08	0.16	0.27	0.38	0.47	0.57	0.67	0.77	0.88		
PUC (SB7)	0.00	0.37	0.67	0.99	1.26	1.55	1.83	2.11	2.39	2.67	2.92	3.17	3.40		
SECO	0.00	0.05	0.12	0.25	0.37	0.50	0.72	0.73	0.81	0.88	0.95	1.02	1.09		
Wind-ERCOT	0.00	4.15	6.75	8.04	9.79	9.56	12.64	21.50	28.91	31.37	34.03	36.93	40.07		
SEER13-Single Family	0.00	0.57	0.54	0.51	0.49	0.46	0.44	0.42	0.40	0.38	0.36	0.34	0.32		
SEER13-Multi Family	0.00	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03		
Total OSD (Tons NOx)	0.00	5.20	8.30	10.13	12.41	12.84	16.72	26.31	34.72	38.19	41.88	45.80	49.99		

d. Technology Transfer

In 2016, The Laboratory, hosted the annual Clean Air Through Energy Efficiency (CATEE) conference, which is attended by top experts and policy makers in Texas and from around the country. In the 2016 conference, the latest educational programs and technology were presented and discussed, including efforts by the Laboratory, and others, to reduce air pollution in Texas through energy efficiency and renewable energy. These efforts have produced significant success in bringing EE/RE closer to US EPA acceptance in the Texas SIP. The Laboratory will continue

to provide superior technology to the State of Texas through such efforts with the TCEQ and the US EPA.

To accelerate the transfer of technology developed as part of the TERP, the Laboratory has also made presentations at national, state and local meetings and conferences, which includes the publication of peer-reviewed papers. The Laboratory continuesly provides technical assistance to the TCEQ, counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering emissions and improving the air quality for all Texans.

These efforts have been recognized nationally by the US EPA. In 2007, the Laboratory was awarded a National Center of Excellence on Displaced Emissions Reduction (CEDER) by the US EPA so that these accomplishments could be rapidly disseminated to other states for their use. The benefits of CEDER include:

- Reducing the financial, technical, and administrative costs of determining the emissions reduction from EE/RE measures;
- Continuing to accelerate implementation of EE/RE strategies as a viable clean air effort in Texas and other states:
- Helping other states better identify and prioritize cost-effective clean air strategies from EE/RE; and
- Communicating the results of quantification efforts through case-studies and a clearinghouse of information.

The Energy Systems Laboratory provides the annual report, <u>Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (TERP)</u>, to the Texas Commission on Environmental Quality (TCEQ) in fulfillment of its responsibilities under Sections 386.205, 386.252, 388.006, and 388.003 (e) of the Texas Health and Safety Code and Sections 39.9051 (g) (h), and 39.9052 (c) (d) of the Texas Utilities Code. If any questions arise, please contact us by phone at (979) 845-9213.

Acknowledgements

This work has been completed as a fulfillment of Sections 386.205, 386.252, 388.006, and 388.003 (e) of the Texas Health and Safety Code and Sections 39.9051 (g) (h), and 39.9052 (c) (d) of the Texas Utilities Code, which require the Laboratory to assist TCEQ in quantifying emissions reductions credits from energy efficiency and renewable energy programs.

The authors are also grateful for the timely input provided by the following individuals, and agencies: Mr. Art Diem, US EPA, for providing the eGRID database and Vincent Meiller and Robert Gifford, TCEQ.

Numerous additional individuals at the Laboratory contributed significantly to this report, including, Sungkyun Jung, Farshad Kheiri, and Minjae Shin.

Table of Contents

	ve Summary	
Acknow	wledgements	7
1 O	verview	12
1.1	Legislative Background	
1.2	Laboratory Funding for the TERP	
1.3	Code Adoption	
1.4	Accomplishments since January 2016	16
1.5	Technology Transfer	17
1.6	Energy and NOx Reductions from New Residential and Commercial Construction, Including Residential Air Conditione	r
	Retrofits	
1.7	Integrated NOx Emissions Reductions Reporting Across State Agencies	
1.8 1.9	Technology for Calculating and Verifying Emissions Reduction from Energy Used in Buildings	
1.9	Planned Focus for 2017	
	troduction	
2.1 2.2	Background	
2.2.1		28
2.2.2		28
2.2.3		
2.2.4		
2.2.5	5 (SB 5) Sec. 388.008. Development of Home Energy Ratings	29
2.2.6		
2.2.7		nt
	of Alternative Energy-Saving Methods.	29
2.2.8		20
220	Certification of Municipal Building Inspectors	
2.2.9		
2.2.1		
2.2.1		
	atewide Air Emissions Calculations from Wind and Other Renewables	
3.1	Analysis of wind farms using an improved method and 2016 data	
3.2	Analysis of emissions reductions from wind farms	
3.3	Degradation analysis	
3.4	Analysis of other renewable sources	
3.5	Review of electricity savings and transmission planning study reported by ERCOT	39
4 Ca	alculated NOx Reductions Potential from Energy Savings of New Construction in 2016	41
4.1	2016 Results for New Single-family Residential Construction	41
4.2	2016 Results for New Multi-family Residential Construction	51
4.3	2016 Results for New Residential Construction (Single-family and Multi-family)	
4.4	2016 Results for Commercial Construction.	
4.5	2016 Results for New Residential (Single-family and Multi-family) and Commercial Construction	88
5 Ca	alculation of Integrated NOx Emissions Reductions from Multiple State Agencies Participating in the	
Te	exas Emissions Reduction Plan (TERP)	95
5.1	Background	95
5.2	Description of the Analysis Method	
5.3	Calculation Procedure	
5.4	Results	
6 20	116 Year Activities of Energy Systems Laboratory (ESL) for Texas Emissions Reduction Plan	
6.1	IC3 Texas Building Registry (TBR)	105
6.1.1	Background	105
6.1.2		
6.1.3	0 1	
6.1.4	1	
6.2	IC3 Enhancements	
6.2.1 6.2.2	,	
6.2.3		
0.4.	Change in onight i minity input i no	127

6.3 Laboratory's TERP Web Site "esl.tamu.edu/terp"	.13
6.4 Activities of Technical Transfer	
6.4.1 Technical Assistance to the TCEQ	.130
6.4.2 Code Training	.13
6.4.3 Other Meetings	
6.4.3.1 North Central Texas Council Government (NCTCG) Meetings from 2016.	.13
6.4.3.2 State Agency Energy Advisory Group (SAEAG)	.140
6.4.3.3 Clean Air Through Energy Efficiency (CATEE 2016)	.144
6.4.4 Papers, Theses, etc.	.148
6.4.4.1 Theses and Dissertations	
6.4.4.2 Papers	
6.4.4.2.1 Published Papers in 2016	
6.5 Solar Test Bench (STB)	
6.5.1 Solar Test Bench Setup	
6.5.2 2016 STB Activities	
6.5.2.1 Regular Maintenance	
6.5.2.2 Weekly Report	
6.5.3 Future work Plan	
6.5.3.1 Camera Installation	
6.5.3.2 Wire Protection in Mechanical Room	
6.5.4 Acknowledgements	.154
References 155	
Bibliography	158
Appendix: Presentations to Various Entities at Conferences and Workshops in 2016	163

List of Figures

Figure 1: Integrated OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)	4
Figure 2: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Year	
2008)	
Figure 3: US EPA Nonattainment and Near Nonattainment	
Figure 4: Available NWS, TMY2 and WYEC2 weather files compared to IECC/IRC weather zones for Texas	
Figure 5: Comparison of 2016 Measured and 2008 Estimated Wind Power Production for Each Wind Farm	
Figure 6: Comparison of 2016 OSP Measured and 2008 OSP Estimated Wind Power Production for Each Wind	
Farm	
Figure 7: Electricity Generation by Renewable Resources (ERCOT: 2001–2016 Annual)	
Figure 8: 2016 Annual Electricity Savings by County from New Single-family and Multi-family Residences	
Figure 9: Map of 2016 Annual Electricity Savings by County from New Single-family and Multi-family Residences	
Figure 10: 2016 Annual NOx Reductions by County from New Single-family and Multi-family Residences	01 62
Figure 11: Map of 2016 Annual NOx Reductions by County from New Single-family and Multi-family Residen	
Figure 12: Calculation Method for 2016 Energy Savings from New Commercial Buildings	
Figure 13: All the Types of 2016 New Commercial Building Construction (Dodge 2017	
Figure 14: 2016 New Commercial Building Construction by Type (Dodge 2017)	
Figure 15: 2016 Annual Electricity Savings by County from New Commercial Construction	
Figure 16: 2016 Annual NOx Reductions by County from New Commercial Construction	
Figure 17: 2016 Annual Electricity Savings by County from New Residential and Commercial Construction	
Figure 18: Map of 2016 Annual Electricity Savings by County from New Residential and Commercial Construc	
Figure 19: 2016 Annual NOx Reductions by County from New Residential and Commercial Construction	
Figure 20: Map of 2016 Annual NOx Reductions by County from New Residential and Commercial Construction	
Figure 21: Process Flow Diagram of the NOx Emissions Reduction Calculations	
Figure 22: Integrated OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)	
Figure 23: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Yea	r
2008)	104
Figure 24: IC3 2016 Certificates and Projects	105
Figure 25: IC3 2016 Active Users and Certificates	
Figure 26: IC3 2016 Certificates – Counties with at least 10 Certificates	106
Figure 27: IC3 2016 Certificates – Cities with at least 200 Certificates	
Figure 28: Database Schema	
Figure 29: Counties Generating Single-Family Homes IC3 Certificates in 2016	109
Figure 30: Cities Generating Multi-Family Homes IC3 Certificates in 2016	
Figure 31: Yearly Average Wall Cavity Insulation Distribution by County for Single-Family Homes in 2016	
Figure 32: Yearly Average Water Heater Energy Factor Distribution by County for Single-Family Homes in 20:	
2. Survey 2. 1 county 1.1 values 1. county 2. county 1.	
Figure 33: Yearly Average Water Heater Energy Factor Distribution by County for Single-Family Homes in 20:	16
Tigute 55. Tearly 110 raige Water Floater Elicity Factor Distribution by Country for Single Failing Homes in 20.	
Figure 34: Yearly Average Water Heater Energy Factor Distribution for Single-Family Homes in 2016	
Figure 35: Average A/C SEER across Counties for Single-Family Homes in 2016	
Figure 36: Average Ceiling Insulation across Counties for Single-Family Homes in 2016	
Figure 37: Average Heating Efficiency across Counties for Multi-Family Homes in 2016.	
Figure 38: Average Heat Pump Heating Efficiency across Counties for Multi-Family Homes in 2016	
Figure 39: Average SHGC across Counties for Single-Family Homes in 2016.	
Figure 40: Average U Factor across Counties for Single-Family Homes in 2016	
Figure 41. TERP Home Page	
Figure 42: TERP –Letters and Reports	
Figure 43: TERP Links	
Figure 44. Exterior View of the Solar Test Bench.	
Figure 45: Comparisons of the STB Data with the NOAA Data	153

List of Tables

Table 1: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)	5
Table 2: Annual and OSD NOx Emissions Reductions Values for the Different Programs (Base Year 2008)	5
Table 3: Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Different	
Programs	20
Table 4: Summary of 90th Percentile Hourly Wind Power Analysis for Eighty Five Wind Farms (85 Sites) in Te	exas
	37
Table 5: Number of Identified Projects for Other Renewable Sources	
Table 6: Annual Electricity Generation by Renewable Resources (MWh, ERCOT: 2001 - 2016)	39
Table 7: 2016 and 2015 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New	W
Single-family Residences	
Table 8: 2016 Annual Electricity Savings from New Single-family Residences	45
Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties	47
Table 10: 2016 Totalized Annual Electricity Savings by CM Zone from New Single-family Residences	49
Table 11: 2016 Annual NOx Reductions from New Single-family Residences Using 2010 eGRID	
Table 12: 2016 and 2015 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for Ne	
Multi-family Residences	
Table 13: 2016 Annual Electricity Savings from New Multi-family Residences	
Table 14: 2016 Totalized Annual Electricity Savings by CM Zone from New Multi-family Residences	
Table 15: 2016 Annual NOx Reductions from New Multi-family Residences Using 2010 eGRID	
Table 16: 2016 Annual NOx Reductions from New Single-family and Multi-family Residences	
Table 17: Commercial Building Types in the US DOE Report and Dodge Database	
Table 18: Commercial Building Floor Area for Retail and Food Service Types from CBECS Database	
Table 19: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Apartment, Healthcare,	, and
Lodging Building Types	71
Table 20: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Office and Education	
Building Types	
Table 21: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2014 Code-Compliant Retail and Food Service	
Building Types	
Table 22: Annual Electricity and Natural Gas Savings from New Commercial Construction	
Table 23: 2016 Totalized Annual Electricity Savings by CM Zone from New Commercial Construction	
Table 24: 2016 Annual NOx Reductions from New Commercial Construction Using 2010 eGRID	83
Table 25: 2016 Annual Electricity and Natural Gas Savings and NOx Reductions from New Commercial	0.4
Construction	
Table 26: 2016 Annual NOx Reductions from New Residential and Commercial Construction	
Table 27: Final Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Differ	
Programs	
Table 28: Example of NOx Emissions Reduction Calculations using 2010 eGRID	
Table 29: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)	
Table 30: Annual and OSD NOx Emissions Reduction Values for the Different Programs (Base Year 2008)	
Table 31: Changes in Single-Family Input file	
Table 32. List of the sensors updated to the end of 2016	152

1 Overview

The Energy Systems Laboratory (Laboratory), at the Texas A&M Engineering Experiment Station (TEES) of the Texas A&M University System, is pleased to provide our annual report, Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), to the Texas Commission on Environmental Quality (TCEQ) in fulfillment of its responsibilities under Sections 386.205, 386.252, 388.006, and 388.003 (e) of the Texas Health and Safety Code and Sections 39.9051 (g) (h), and 39.9052 (c) (d) of the Texas Utilities Code. This annual report:

- Provides an estimate of the energy savings and NOx reductions from energy code compliance in new residential construction in all Electric Reliability Council of Texas (ERCOT) counties;
- Provides an estimate of the standardized, cumulative, integrated energy savings and NOx reductions from the TERP programs implemented by the Laboratory, , the State Energy Conservation Office (SECO), the Public Utility Commission (PUC) and ERCOT in all ERCOT Texas;
- Describes the technology developed to enable the TCEQ to substantiate energy and emissions reduction credits from energy efficiency and renewable energy initiatives (EE/RE) to the U.S. Environmental Protection Agency (US EPA), including the development of a web-based emissions reduction calculator; and
- Outlines progress in advancing EE/RE strategies for credit in the Texas State Implementation Plan (SIP).

The report is organized in two volumes.

Volume I – Technical Report – provides a detailed report of activities, methodologies and findings, including an executive summary and overview;

Volume II – Technical Appendix – contains detailed data from simulations for each of the counties included in the analysis.

1.1 Legislative Background

The TERP was established in 2001 by the 77th Legislature through the enactment of Senate Bill 5 to:

- Ensure that Texas air meets the Federal Clean Air Act requirements (Section 707, Title 42, United States Code); and
- Reduce NOx emissions in non-attainment and near-non-attainment counties through mandatory and voluntary programs, including the implementation of energy efficiency and renewable energy programs (EE/RE).

To achieve the clean air and emissions reduction goals of the TERP, Senate Bill 5 created a number of EE/RE programs for credit in the SIP:

- The Texas Building Energy Performance Standards (TBEPS) as the building energy code for all new residential and commercial buildings;
- A municipality or county may request the Laboratory to determine the energy impact of proposed energy code changes;
- An annual evaluation by the Public Utility Commission of Texas (PUCT), in cooperation with the Laboratory, of the emissions reduction of energy demand, peak electric loads and the associated air contaminant reductions from utility-sponsored programs established under Senate Bill 5, and utility-sponsored programs established under the electric utility restructuring act (Section 39.905 Utilities Code);
- A 5% electricity reduction goal each year for facilities of political subdivisions in non-attainment and nearnon-attainment counties from 2002 through 2009; and
- Annual report to TCEQ to be provided by the Laboratory on the energy savings and resultant emissions reduction from implementation of building energy codes and which identifies the municipalities and counties whose codes are more or less stringent than the un-amended code.

Passed during the 78th Legislature (2003), HB 1365 and HB 3235 amended TERP to enhance its effectiveness with these additional energy efficiency initiatives:

• TCEQ is required to conduct outreach to non-attainment and near-non-attainment counties on the benefits of implementing energy efficiency measures as a way to meet the air quality goals under the federal Clean Air Act;

- TCEQ is required develop a methodology for computing emissions reduction from energy efficiency initiatives:
- A voluntary Energy-Efficient Building Program at the General Land Office (GLO), in consultation with the Laboratory, for the accreditation of buildings that exceed the state energy code requirements by 15% or more;
- Municipalities are allowed to adopt an optional, alternate energy code compliance mechanism through the use
 of accredited energy efficiency programs determined to be code-compliant by the Laboratory, as well as the
 US EPA's Energy Star New Homes program; and
- The Laboratory is required to develop and administer a statewide training program for municipal building inspectors seeking to become code-certified inspectors for enforcement of energy codes.

Senate Bill 5 was again amended during the 79th Legislature (2005) through SB 20, HB 2481 and HB 2129. These enhanced the effectiveness of Senate Bill 5 by adding the following energy efficiency initiatives:

- 5,880 MW of generating capacity is required from renewable energy technologies by 2015;
- 500 MW from non-wind renewables;
- The PUCT is required to establish a target of 10,000 megawatts of installed renewable capacity by 2025;
- The TCEQ is required to develop methodology for computing emissions reduction from renewable energy initiatives and the associated credits;
- The Laboratory is required to assist the TCEQ in quantifying emissions reduction credits from energy efficiency and renewable energy programs;
- The Texas Environmental Research Consortium (TERC) is required to contract with the Laboratory to develop and annually calculate creditable emissions reduction from wind and other renewable energy resources for the state's SIP; and
- The Laboratory is required to develop at least three alternative methods for achieving a 15 % greater potential energy savings in residential, commercial and industrial construction.

The 80th Legislature (2007), through SB 12, and HB 3693 further amended Senate Bill 5 to enhance its effectiveness by adding the following energy efficiency initiatives:

- The Laboratory is required to provide written recommendations to the State Energy Conservation Office (SECO) about whether or not the energy efficiency provisions of latest published edition of the International Residential Code (IRC) or the International Energy Conservation Code (IECC) are equivalent to or better than the energy efficiency and air quality achievable under the editions adopted under the 2001 IRC/IECC. The Laboratory shall make its recommendations no later than six months after publication of new editions at the end of each three-year code development cycle of the International Residential Code and the International Energy Conservation Code.
- The Laboratory is required to consider comments made by persons who have an interest in the adoption of the energy codes in the recommendations made to SECO.
- The Laboratory is required to develop a standardized report format to be used by providers of home energy ratings, including different report formats for rating newly constructed residences from those for existing residences. The form must be designed to give potential buyers information on a structure's energy performance, including: insulation; types of windows; heating and cooling equipment; water heating equipment; additional energy conserving features, if any; results of performance measurements of building tightness and forced air distribution; and an overall rating of probable energy efficiency relative to the minimum requirements of the International Energy Conservation Code or the energy efficiency chapter of the International Residential Code, as appropriate.
- The Laboratory is encouraged to cooperate with an industry organization or trade association to: develop guidelines for home energy ratings; provide training for individuals performing home energy ratings and providers of home energy ratings; and provide a registry of completed ratings for newly constructed residences and residential improvement projects for the purpose of computing the energy savings and emissions reduction benefits of the home energy ratings program.
- The Laboratory is required to include information on the benefits attained from this program in an annual report to the commission.

The 81st Legislature (2009) extended the date of the TERP to 2019 and required the TCEQ to contract with Laboratory to compute emissions reduction from wind and other renewable energy resources for the SIP.

The 82nd Legislature (2011) increased the Laboratory's responsibilities under TERP with the introduction of new energy efficiency initiatives:

- Each political subdivision, institution of higher education or state agency shall establish a goal to reduce the electric consumption by the entity by at least 5% each fiscal year for 10 years, beginning September 1, 2011. Each entity shall report annuallt to SECO, on forms provided by SECO, regarding the entity's goal, the entity's efforts to meet the goal, and progress the entity has made. The Laboratory is required to calculate energy savings and emissions reduction for each political subdivision, institution of higher education or state agency, based on the information collected by SECO.
- Beginning April 1, 2012, all electric cooperatives that had retail sales of more than 500,000 MWh in 2005 and all municipally owned utilities must report annually to SECO, on a standardized form developed by SECO, information regarding the combined effects of the energy efficiency activities of the electric cooperative/utility from the previous calendar year, including the annual goals, programs enacted to achieve those goals, and any achieved energy demand or savings goals. The Laboratory is required to calculate energy savings and emissions reduction for municipally owned utilities and for electric cooperatives, based on the information collected by SECO.
- SECO is required to appoint a new advisory committee for selecting high-performance building design evaluation systems. The Laboratory will send a representative to participate at the new advisory committee.
- The Laboratory may conduct outreach to the real estate industry on the value of energy code compliance and above code construction.

The 83rd Legislature (2013) did not change any of the Laboratory's previously established responsibilities under TERP.

During the 84th Legislature session (2015), changes to the Sec. 388.003. Adoption of Building Energy Efficiency Performance Standards, with the passage of HB 1736, affected the Laboratory's responsibilities under TERP:

- 2015 residential energy codes (IRC/IECC) editions are in effect starting Sept 1, 2016. 2015 commercial energy codes (IECC) are in effect starting Nov 1, 2016. The Laboratory's responsibilities of reviewing new energy codes and local code amendments remain. New codes will be reviewed no sooner than every 6 years.
- The legislation introduces a new energy rating index (ERI) as a voluntary compliance path for local code amendments. With the introduction of the ERI as another compliance path, the Laboratory is required to consider it when local amendments are reviewed, and needs to update the web-based code compliance tool and emissions reduction calculator to allow for the new optional compliance path.

1.2 Laboratory Funding for the TERP

The Laboratory expended \$181,855 in FY 2002; \$372,226 in FY 2003; \$635,683.84 in FY 2004; \$1,107,366.13 in FY 2005; \$952,012.70 in 2006; \$947,114.62 in FY 2007; \$908,512.65 in FY 2008; \$949,927.94 in FY 2009; \$902,843.35 in FY 2010, \$853,421.69 in FY 2011; \$434,481.91 in FY 2012 (with the 50% Legislature cut in ESL funding), \$447,907.94 in FY 2013; \$453,122.25 in FY 2014; and \$454,571.79 in FY 2015. In FY 2016 the Laboratory expended \$458,595.49. Throughout the years, the Laboratory has also supplemented these funds with competitively awarded Federal and State grants to provide the needed statewide training for the new mandatory energy codes and to provide technical assistance to cities and counties in helping them implement adoption of the legislated energy efficiency codes. In addition, the ESL received an award from the US EPA in the spring of 2007 to establish a Center of Excellence for the Determination of Emissions Reduction (CEDER) which has helped to enhance the EF/RE emissions calculations.

1.3 Code Adoption

One of the TERP's energy efficiency programs to reduce emissions from stationary sources was the establishment of the Texas Building Energy Performance Standards (TBEPS) that define the building energy codes for all new residential and commercial construction statewide. The original TBEPS were based on the energy efficiency chapter of the 2000 International Residential Code (IRC), including the 2001 Supplement, for Single-Family residences, (i.e., one- and two-family residences of three stories or less above grade) and the 2000 International Energy Conservation Code (IECC), including the 2001 Supplement, for commercial, industrial and residential buildings over three stories.

Over the years since the establishment of the TERP, newer editions of the IRC and the IECC have been published. The Energy Systems Laboratory is mandated to review the stringency of the new code editions and provide recommendations to the State on whether to upgrade the TBEPS to the new editions.

In the time frame of 2002-2009, the laboratory provided recommendations and considered additional input from stakeholder meetings and public comment periods on new editions of the IRC/IECC energy efficiency codes. The State of Texas did not adopt any of the newer editions of the energy efficiency codes as the TBEPS. During this timeframe, several individual jurisdictions did adopt the newer editions of the IRC and the IECC.

With the laboratory's recommendation, on April 1, 2011, SECO updated the TBEPS commercial and residential (excluding single-family) energy codes to the 2009 International Energy Conservation Code (IECC). On January 1, 2012, the TBEPS for single-family residential was updated to Chapter 11 (Energy Efficiency) of the 2009 International Residential Code (IRC).

In the timeframe of 2012-2015, the laboratory provided recommendations and considered additional input from stakeholder meetings and public comment periods on new editions of the IRC/IECC energy efficiency codes. The State of Texas did not adopt either edition of the energy efficiency codes as the TBEPS. During this time, several individual jurisdictions did adopt the newer editions of the IRC and the IECC. As of the time of this report, SECO announced a timeline to adopt the 2015 IRC/IECC effective September 1, 2016.

During the 84th Legislature session (2015), the legislator adopted the 2015 residential energy codes (IRC/IECC) editions to be in effect starting September 1, 2016. 2015 commercial energy codes (IECC) were also set to be in effect starting Nov 1, 2016. The Laboratory's responsibilities of reviewing new energy codes and local code amendments remain. New codes will be reviewed no sooner than every 6 years (next review will be of 2021 code editions). The legislation also established a new energy rating index (ERI) as a voluntary compliance path for local code amendments. With the introduction of the ERI as another compliance path, the Laboratory is required to consider it when local amendments are reviewed, and local amendments are reviewed. During 2016, the Laboratory has update the IC3 web-based code compliance tool and emissions reduction calculator to allow for the new optional compliance path.

1.4 Accomplishments since January 2016

Since January 2016, the Laboratory has accomplished the following:

- Calculated energy and resultant NOx reductions from implementation of the Texas Building Energy Performance Standards (IECC/IRC codes) to new residential and commercial construction for all nonattainment and near-non-attainment counties;
- Enhanced the Laboratory's IECC/IRC Code-Traceable Test Suite for determining emissions reduction due to code and above-code programs;
- Enhanced the IC3 calculator, which is an energy code compliance software based on the Texas Building Energy Performance Standards by resolving minor defects found in the model and webpage.
- Continued development and testing of key procedures for validating simulations of building energy performance;
- Provided energy code training workshops, including: residential, commercial, IECC/IRC energy code training sessions at the 15th Building Professional Institute (BPI) Houston.
- Provided energy code training workshops, including: residential, commercial, IECC/IRC energy code training sessions at the 23rd Building Professional Institute (BPI), UT Arlington.
- Provided energy code training workshops, including: residential, commercial, IECC/IRC energy code training sessions to the City of San Antonio, the Bluebonnet Chapter of ICC, the Bay Area Municipal Inspectors Association and the Association of Energy Engineers;
- Maintained and updated the Laboratory's Texas Emissions Reduction Plan (TERP) website;
- Maintained a builder's residential energy code Self-Certification Form (Ver.1.3) for use by builders outside municipalities;
- Hosted the Clean Air Through Energy Efficiency (CATEE) Conference in December 2016, in San Antonio, Texas. Conference sessions included key talks by the TCEQ, PUCT, ERCOT, EPA, SECO, several ISDs and cities, and the Laboratory about quantifying emissions reduction from EE/RE opportunities and guidance on key energy efficiency and renewable energy topics; the various topics covered: Learning from Green Schools and Exisiting Buildings; Innovative Technologies and Techniques; PACE as a New Program in Texas; Alternative Financing for Energy Efficiency; Commercial & Institutional Green Building Performance; Collaboration is the Key Public/Private Partnerships; Utilities Efficiency Resources; Energy Codes Discussion; and Regional Applications.
- Provided technical assistance to the TCEQ regarding specific issues, including:
 - Enhancement of the standardized, integrated NOx emissions reduction reporting procedures to the TCEQ for EE/RE projects, and
 - Enhancement of the procedures for weather normalizing NOx emissions reduction from renewable projects.
- Participated as exhibitors at several conferences, including at the Clean Air Through Energy Efficiency Conference in San Antonio, Texas, the Texas Green Home Summit in Plano, Texas, and TCEQ Environmental Trade Fair and Conference, Austin, Texas; and
- The ESL participated in the South-central Partnership for Energy Efficiency as a Resource (SPEER), funded and administered by the Texas Comptroller of Public Accounts State Energy Conservation Office (SECO).
- Continued worked toward the code compliance tools for commercial buildings, retail and school buildings, and new Application Programming Interface (API)

1.5 Technology Transfer

To accelerate the transfer of technology developed as part of the TERP program, the Laboratory:

- Updated previously developed database of other renewable projects in Texas, including: solar photovoltaic, geothermal, hydroelectric, and Landfill Gas-fired Power Plants;
- Applied previously developed estimation techniques for hourly solar radiation from limited data sets;
- Along with the TCEQ and the US EPA, is host to the annual Clean Air Through Energy Efficiency (CATEE) Conference attended by top Texas and national experts, and policy makers; and
- Continued the National Center of Excellence on Displaced Emissions Reduction (CEDER) by the US EPA. The benefits of CEDER include:
 - Reducing the financial, technical, and administrative costs of determining the emissions reduction from EE/RE measures;
 - Continuing to accelerate implementation of EE/RE strategies as a viable clean air effort in Texas and other states;
 - o Helping other states identify and prioritize cost-effective clean air strategies from EE/RE, and;
 - Communicating the results of quantification efforts through case-studies and a clearinghouse of information.

Three presentations to the Clean Air Through Energy Efficiency Conference held in San Antonio, Texas, December 2016.

- Baltazar, J., 2016 "Benchmarking and Profiling Airport Terminal Energy End Uses" Clean Air Through Energy Efficiency Conference, San Antonio, Texas, December 2016
- Ellis, S., 2016 "Introduction of the TX A&M IC3 Energy Code Compliance Tool and Other Code Compliance Tools" *Clean Air Through Energy Efficiency Conference*, San Antonio, Texas, December 2016
- Haberl, J.; Yazdani, B.; Baltazar, J., 2016 "Energy Efficiency and Renewable Energy Impacts on Emission Reductions" *Clean Air Through Energy Efficiency Conference*, San Antonio, Texas, December 2016

The Laboratory has and will continue to provide leading-edge technical assistance to the TCEQ, counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering emissions and improving the air quality for all Texans. The Laboratory will continue to provide superior technology to the State of Texas through efforts with the TCEQ and US EPA. The efforts taken by the Laboratory have produced significant success in bringing EE/RE closer to US EPA acceptance in the SIP. These activities were designed to more accurately calculate the creditable NOx emissions reduction from EE/RE initiatives contained in the TERP and to assist the TCEQ, local governments, and the building industry with standardized, effective implementation and reporting.

1.6 Energy and NOx Reductions from New Residential and Commercial Construction, Including Residential Air Conditioner Retrofits

State adoption of the energy efficiency provisions of the International Residential Code (IRC) and International Energy Conservation Code (IECC) became effective September 1, 2001. The Laboratory has developed and delivered training to assist municipal inspectors to become certified energy inspectors. The Laboratory also supported code officials with guidance on interpretations as needed. This effort, based on a requirement of HB 3235, 78th Texas Legislature, supports a more uniform interpretation and application of energy codes throughout the state. In general, the State is experiencing a true market transformation from low energy efficiency products to high energy efficiency products. These include: low solar heat gain windows, higher efficiency appliances, high efficiency air conditioners and heat pumps, increased insulation, lower thermal loss ducts and in-builder participation in "above-code" code programs such as Energy Star New Homes, which previously had no state baseline and almost no participation.

In 2016, the following savings were calculated:

- In 2016, the annual electricity savings from code-compliant residential and commercial construction are 3,087,080 MWh/year (7.0% of the total electricity savings),
- Savings from residential air conditioner retrofits² are 260,026 MWh/year (0.6%).
- In 2016, the OSD electricity savings from code-compliant residential and commercial construction are 8,458 MWh/day (6.7%),
- Savings from residential air conditioner retrofits are 1,844 MWh/day (1.5%).
- By 2020, the annual electricity savings from code-compliant residential and commercial construction will be 7,242,298 MWh/year (11.3% of the total electricity savings),
- Savings from residential air conditioner retrofits will be 211,793 MWh/year (0.3%).
- By 2020, the OSD electricity savings from code-compliant residential and commercial construction will be 19,842 MWh/day (10.9%),
- Savings from residential air conditioner retrofits will be 1,502 MWh/day (0.8%).
- In 2016, the annual NOx emissions reduction from code-compliant residential and commercial construction are 769 tons-NOx/year (6.3% of the total NOx savings),
- NOx emissions reductions from residential air conditioner retrofits are 61 tons-NOx/year (0.5%).
- In 2016, the OSD NOx emissions reduction from code-compliant residential and commercial construction are 2.18 tons-NOx/day (6.3%)
- NOx emissions reductions from residential air conditioner retrofits are 0.43 tons-NOx/day (1.2%).
- By 2020, the NOx emissions reduction from code-compliant residential and commercial construction will be 1,832 tons-NOx/year (10.4% of the total NOx savings),
- NOx emissions reductions from residential air conditioner retrofits will be 50 tons-NOx/year (0.3%).
- By 2020, the OSD NOx emissions reduction from code-compliant residential and commercial Construction will be 5.09 tons-NOx/day (10.2%),
- NOx emissions reductions from residential air conditioner retrofits will be 0.35 tons-NOx/day (0.7%).

² This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

1.7 Integrated NOx Emissions Reductions Reporting Across State Agencies

In 2005, the Laboratory began to work with the TCEQ to develop a standardized, integrated NOx emissions reduction across state agencies implementing EE/RE programs so that the results can be evaluated consistently. As required by the legislation, the TCEQ receives the following reports:

- From the Laboratory, savings from code compliance and renewables;
- From the Laboratory, in cooperation with the Electric Reliability Council of Texas (ERCOT), the savings from electricity generated from wind power;
- From the Public Utility Commission of Texas (PUCT) on the impacts of the utility-administered programs designed to meet the mandated energy efficiency goals of SB7 and SB5; and
- From the State Energy Conservation Office (SECO) on the impacts of energy conservation in state agencies and political subdivisions.

In 2016, the total integrated annual savings from all programs are 44,016,581 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 3,087,080 MWh/year (7.0% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program are 3,498,867 MWh/year (7.9%),
- Savings from SECO's Senate Bill 5 program are 1,100,775 MWh/year (2.5%),
- Electricity savings from green power purchases (wind) are 36,069,833 MWh/year (81.9%), and
- Savings from residential air conditioner retrofits³ are 260,026 MWh/year (0.6%).

In 2016, the total integrated OSD savings from all programs are 125,777 MWh/day, which would be a 5,241 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 8,458 MWh/day (6.7%),
- Savings from the PUC's Senate Bill 7 programs are 9,586 MWh/day (7.6%),
- Savings from SECO's Senate Bill 5 program are 3,016 MWh/day (2.4%),
- Electricity savings from green power purchases (wind) are 102,874 MWh/day (81.8%), and
- Savings from residential air conditioner retrofits are 1,844 MWh/day (1.5%).

By 2020, the total integrated annual savings from all programs will be 63,853,554 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 7,242,298 MWh/year (11.3% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program will be 4,975,963 MWh/year (7.8%),
- Savings from SECO's Senate Bill 5 program will be 1,435,808 MWh/year (2.2%),
- Electricity savings from green power purchases (wind) will be 49,987,692 MWh/year (78.3%), and
- Savings from residential air conditioner retrofits will be 211,793 MWh/year (0.3%).

By 2020, the total integrated OSD savings from all programs will be 181,479 MWh/day, which would be a 7,562 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 19,842 MWh/day (10.9%),
- Savings from the PUC's Senate Bill 7 programs will be 13,633 MWh/day (7.5%),
- Savings from SECO's Senate Bill 5 program will be 3,934 MWh/day (2.2%),
- Electricity savings from green power purchases (wind) will be 142,568 MWh/day (78.6%), and
- Savings from residential air conditioner retrofits will be 1,502 MWh/day (0.8%).

³ This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

In 2016, the total integrated annual NOx emissions reductions from all programs are 12,142 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 769 tons-NOx/year (6.3% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 874 tons-NOx/year (7.2%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 294 tons-NOx/year (2.4%),
- NOx emissions reductions from green power purchases (wind) are 10,143 tons-NOx/year (83.5%), and
- NOx emissions reductions from residential air conditioner retrofits are 61 tons-NOx/year (0.5%).

In 2016, the total integrated OSD NOx emissions reductions from all programs are 34.72 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 2.18 tons-NOx/day (6.3%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 2.39 tons-NOx/day (6.9 %),
- NOx emissions reductions from SECO's Senate Bill 5 program are 0.81 tons-NOx/day (2.3%),
- NOx emissions reductions from green power purchases (wind) are 28.91 tons-NOx/day (83.3%), and
- NOx emissions reductions from residential air conditioner retrofits are 0.43 tons-NOx/day (1.2%).

By 2020, the total integrated annual NOx emissions reductions from all programs will be 17,576 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 1,832 tons-NOx/year (10.4% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 1,241 tons-NOx/year (7.1%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 397 tons-NOx/year (2.3%),
- NOx emissions reductions from green power purchases (wind) will be 14,057 tons-NOx/year (80.0%), and
- NOx emissions reductions from residential air conditioner retrofits will be 50 tons-NOx/year (0.3%).

By 2020, the total integrated OSD NOx emissions reductions from all programs will be 49.99 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 5.09 tons-NOx/day (10.2%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 3.40 tons-NOx/day (6.8%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 1.09 tons-NOx/day (2.2%),
- NOx emissions reductions from green power purchases (wind) will be 40.07 tons-NOx/day (80.1%), and
- NOx emissions reductions from residential air conditioner retrofits will be 0.35 tons-NOx/day (0.7%).

Table 3: Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Different Programs

	ESL-Single Family	ESL- Multifamily	ESL- Commercial	PUC (SB7)	SECO	Wind-ERCOT	SEER13 Single Family	SEER13 Multi Family
Annual Degradation Factor	2.0%	2.0%	2.0%	5.0%	5.0%	0.0%	5.0%	5.0%
T&D Loss	7.0%	7.0%	7.0%	7.0%	7.0%	0.0%	7.0%	7.0%
Initial Discount Factor	20.0%	20.0%	20.0%	10.0%	60.0%	5.0%	20.0%	20.0%
Growth Factor	4.1%	6.1%	5.3%	0.0%	0.0%	8.5%	N.A.	N.A.
Weather Normalized	Yes	Yes	Yes	No	No	No	Yes	Yes

Note: For Wind-ERCOT, the OSD energy consumption is the average daily consumption of the measured data in the months of July, August, and September.

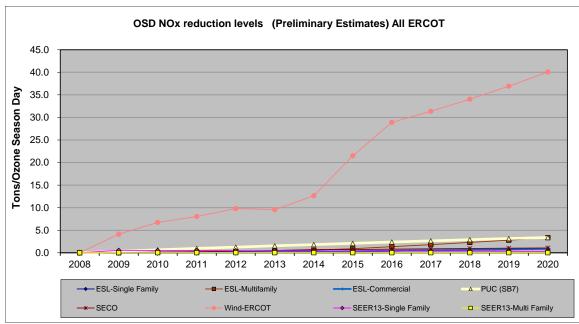


Figure 2: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Year 2008)

1.8 Technology for Calculating and Verifying Emissions Reduction from Energy Used in Buildings

In 2004 and 2005, the Laboratory developed a web-based Emissions Reduction Calculator, known as "*eCalc*," which contains the underlying technology for determining NOx emissions reduction from power plants that generate the electricity for the user⁴. The emissions reduction calculator was being used to calculate emissions reduction for consideration for SIP credits from energy efficiency and renewable energy programs in the TERP.

In 2007, the Laboratory enhanced the calculator to provide additional functions and usability, including:

- Renaming the product IC3 v2.0
- Enhanced the Laboratory's IECC/IRC Code-Traceable Test Suite for determining emissions reduction due to code and above-code programs;
- Enhanced web-based emissions calculator, including:
 - o Use of the calculator to determine 15% above code residential and commercial options.
 - o Gathered, cleaned and posted weather data archive for 17 NOAA stations;
 - o Performed comparative testing of the calculator vs. other, non-web-based simulation programs;
 - Developed and tested radiant barrier simulation;
 - Using the web-based emissions calculator, started development of the derivative version Texas Climate
 Vision calculator for the City of Austin;
- Continued the development of verification procedures, including:
 - o Completed the calibrated simulation of a high-efficiency office building in Austin, Texas;
 - o Continued work to develop a calibrated simulation of an office building in College Station; and
 - o Continued work to develop a calibrated simulation of a K-12 school in College Station;

In 2008, work on both web based calculators continued;

- Deployed IC3 v3.2 to handle a wider selection of Single-Familybuilding configurations (http://ic3.tamu.edu);
- Delivered TCV v1.0 to the City of Austin for their testing:
- Continued to operate the original eCalc;
- Supported modeling efforts by building enhanced tools for batch simulation;
- Provided training on both IC3 and TCV.

⁴ eCalc reports NOx, SOx and CO2 emissions reduction from the US EPA eGRID database for power providers in the ERCOT region.

In 2009, IC3 developments included:

- A sister product, AIM was created for the State Comptroller's office.
- Usage statistics continue to climb.
- Updated to v3.6 which included 3 story houses, external cladding, more sophisticated ceiling/roof models, enhanced foundation modeling and the ability to copy projects

In 2010 there were several software updates including:

- IC3
 - o 3.9.0 Slab Insulation Support
 - o 3.7.0 3.8.0 First Version of Multifamily Released along with numerous tweaks and fixes
 - o 3.6.2 New Building Model Integrated, Updated Artwork and Illustrations
- DDP
 - o 1.7.05 Added Heat Reject Recording for Electric and Gas
- Web Reports and Texas Building Registry
 - o Registry 0.x First versions of the Web Reports on TCV, eCalc, and IC3
 - o Registry 1.0 City and County Reports
 - o Registry 1.1 Cross-linked Reports for City and County
 - IC3 Reports 1.0 Updated Certificate Reports which replace Registry 1.1 and evolve into the Texas Building Registry

The 2011 software updates include:

- IC3
 - 3.9.4 Added approval workflow to start a new 2009 IECC job as further refinements were needed to the BDL
 - o 3.9.5 Various IECC 2009 fixes and refinements implemented
 - 3.9.6 Updated BDL to 4.01.08, SHGC max does not apply to Climate Zone 4, 0.35 ACH minimum to all projects, Ventilation Fans added to % Air Conditioning Calculation
 - 3.9.7 Corrected Certificate and Status screens to reflect insulation and floor construction.
 - o 3.9.8- Set minimum R-value for insulated sheathing to R-2;
 - 3.10.0 Updated and corrected problems with several text and value fields; Corrected and printed MF and SF Certificates;
 - 3.10.3 Changed Certificate to Energy Audit Report; Added a new Certificate to be printed out; Added Inspector's list for a project; Added Pagination in projects page
 - o 3.11.0 12/22/2011-Added Austin Energy 2009 IECC Energy Code Support
- Web Reports and Texas Building Registry
 - o TBR Reports 1.0.5 Added 4 new reports
 - o TBR Reports 1.0.6 Added 9 new reports
 - o Registry 2.0 Included 7 new Parameterized reports

The 2012 software updates include:

- IC3
 - o 3.12 Deprecated the 2000/2001 and 2006 Code (as of 1/1/2012)
 - 3.12.1 Added a version of the energy report with a signature line, as requested by some municipalities.
 Improved the algorithm.
 - o 3.12.2 Alter help text to be more clear. Improved the algorithm.
 - o 3.12.3 Alter help pictures to make them clearer.
 - 3.12.4 Added optional input for water heaters to allow for better detail. Updated user manual.
 Improved the transform algorithms.

The 2013 software updates include:

- IC3
- o 3.12.5 Bug fix in energy report
- o 3.13.0 Added support for manual J. Added NCTCOG 2012 amendments

There were no significant enhancements to IC3 in the calendar year 2014. We performed routine maintenance on the program and the database during this time. The API interface was under development.

The 2015 software updates include:

- IC3
- o Version 4.0 (June 2015)
- o Version 4.0.1 (July 2015)

The 2016 software updates include:

- IC3
- o Version 4.0.2 (April 2016)
- o Version 4.1 (September 2016)
- o Version 4.1.1 (September 2016)
- Version 4.1.2 (October 2016)
- Oversion 4.2 (October 2016)

1.9 Evaluation of Additional Technologies for Reducing Energy Use in Existing Buildings

The Laboratory provided technical assistance to the TCEQ, the PUCT, SECO and ERCOT, as well as Stakeholders participating in the Energy Code and Renewables programs.

- In 2016, the Laboratory continued to work with the TCEQ to develop an integrated NOx emissions
 reductions calculation that provided the TCEQ with a creditable NOx emissions reductions from energy
 efficiency and renewable energy (EE/RE) programs reported to the TCEQ in 2016 by the Laboratory,
 PUCT, SECO, and ERCOT (i.e., wind).
- At the request of the TCEQ, the Laboratory has continued the development of procedures for quantifying NOx emissions reductions from wind turbines that includes weather normalization and the quantification of NOx emissions reductions from the new Federal regulations for SEER 13 air conditioners.

1.10 Planned Focus for 2017

In FY 2017, the Energy Systems Laboratory will continue in its cooperative efforts with the TCEQ, PUCT, SECO, US EPA and others to evaluate the energy savings resulted from the EE/RE measures and programs of the TERP and their impact on air quality, and continue with the energy code state-wide implementation assistance under the Texas Building Energy Performance Standards program of the TERP. The Laboratory team will:

- Assist the TCEQ to obtain SIP credits from energy efficiency and renewable energy using the Laboratory's Emissions Reduction Calculator technology.
- Verify, document and report energy efficiency and renewable energy savings in all TERP EE/RE programs for the SIP in each non-attainment and affected county using the TCEQ/US EPA approved technology.
- Assist the PUCT with determining emissions reductions credits from energy efficiency programs funded by SB 7 and SB 5.
- Assist political subdivisions and Councils of Governments with calculating emissions reductions from local code changes and voluntary EE/RE programs for SIP inclusion.
- Continue to refine the cost-effective techniques to implement 15% above code (2009 IECC) energy efficiency in low-priced and moderately-priced residential housing.

- Continue to refine the cost-effective methods and techniques to implement 15% above code energy efficiency in commercial buildings.
- Continue to develop creditable procedures for calculating NOx emissions reductions from green renewable technologies, including wind power, solar energy and geothermal energy systems.
- Continue development of well-documented, integrated NOx emissions reductions methodologies for calculating and reporting NOx reductions, including a unified database framework for required reporting to TCEQ of potentially creditable measures from the ESL, PUCT, and SECO SB 5 initiatives.
- Upon request, provide written recommendations to the State Energy Conservation Office (SECO) about
 whether or not the energy efficiency provisions of latest published edition of the International Residential
 Code (IRC), or the International Energy Conservation Code (IECC), are equivalent to, or better than, the
 energy efficiency and air quality achievable under the editions adopted under the 2009 IRC/IECC. This will
 consider comments made by persons who have an interest in the adoption of the energy codes in the
 recommendations made to SECO.
- Develop a standardized report format to be used by providers of home energy ratings, including different report formats for rating newly constructed residences from those for existing residences.
- Continue to cooperate with an industry organization or trade association to: develop guidelines for home
 energy ratings; provide training for individuals performing home energy ratings and providers of home
 energy ratings; and provide a registry of completed ratings for newly constructed residences and residential
 improvement projects for the purpose of computing the energy savings and emissions reductions benefits of
 the home energy ratings program.
- Include all benefits attained from this program in an annual report to the commission.
- Engage production builders and municipalities in overcoming obstacles to use IC3 for their new home construction.
- Release Austin Energy and NCTCOG ammendments to 2015 IECC for IC3
- Migrate all applications/databases to the TAMU ENGR cloud
- Release 2018 IECC in IC3

The Laboratory has and will continue to provide leading-edge technical assistance to counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering emissions and improving the air for all Texans. The Laboratory will continue to provide superior technology to the State of Texas through efforts with the TCEQ and US EPA. The efforts taken by the Laboratory have produced significant success in bringing EE/RE closer to US EPA acceptance in the SIP.

If any questions arise, please contact us by phone at 979-845-9213.

2 Introduction

2.1 Background

In 2001, the Texas Legislature adopted the Texas Emissions Reduction Plan, identifying thirty-eight counties in Texas where a focus on air quality improvements was deemed critical to public health and economic growth. These areas are shown on the map in Figure 3 as non-attainment and near nonattainment. In 2008, the twenty counties designated as nonattainment counties include: Brazoria, Chambers, Collin, Dallas, Denton, Ellis, Fort Bend, Hardin, Harris, Jefferson, Galveston, Johnson, Kaufman, Liberty, Montgomery, Orange, Parker, Rockwall, Tarrant, and Waller Counties. The fourteen counties designated as Ozone Early Action Compact counties include: Bastrop, Bexar, Caldwell, Comal, Gregg, Guadalupe, Harrison, Hays, Rusk, Smith, Travis, Upshur, Williamson, and Wilson County.

These counties represent several geographic areas of the state, which have been assigned to different climate zones by the 2001 IECC⁵ as shown in Figure 4, based primarily on Heating Degree Days (HDD). These include climate zone 5 or 6 (i.e., 2,000 to 2,999 HDD₆₅) for the Dallas-Ft. Worth and El Paso areas, and climate zones 3 and 4 (i.e., 1,000 to 1,999 HDD₆₅) for the Houston-Galveston-Beaumont-Port Arthur-Brazoria areas. Also shown in Figure 4 are the locations of the various weather data sources, including the Typical Meteorological Year (TMY2) (NREL 1995) stations, the Weather Year for Energy Calculations (WYEC2) (Stoffel 1995) weather stations, the National Weather Service weather stations, (NWS) (NOAA 1993) weather stations, the ASHRAE 90.1 1989 weather locations⁶, the ASHRAE 90.1 1999 weather locations, the solar stations measured by the National Renewable Energy Laboratory (NREL)⁷, the solar stations measured by the TCEQ⁸, and F-CHART and PV F-CHART weather locations⁹.

⁵ The "2000 IECC" notation is used to signify the 2000 International Residential Code (IRC), which includes the International Energy Conservation Code (IECC) as modified by the 2001 Supplement (IECC 2001), published by the ICC in March of 2001, as required by Senate Bill 5.

⁶ The ASHRAE 90.1-1989 and 90.1-1999 weather stations are used in the emissions calculator for determining the building characteristics.

⁷ The NREL stations were the primary source of the 1999 global horizontal, direct normal and diffuse solar radiation used to determine the 1999 peak-day and annual emissions for the DOE-2 simulations for code-compliant housing and commercial buildings.

⁸ The TCEQ stations were used as the secondary source for global horizontal solar radiation when the NREL sites were missing data or no NREL site was nearby.

⁹ The F-Chart and PV F-Chart weather locations are used to determine the solar thermal or electricity produced by the systems specified by the use in the emissions calculation. The monthly energy or electricity production from F-Chart or PV F-Chart is then weather-normalized using ASHRAE's Inverse Model Toolkit to develop coefficients that are then used to determine the 1999 annual and peak day energy or electricity production for emissions calculations.

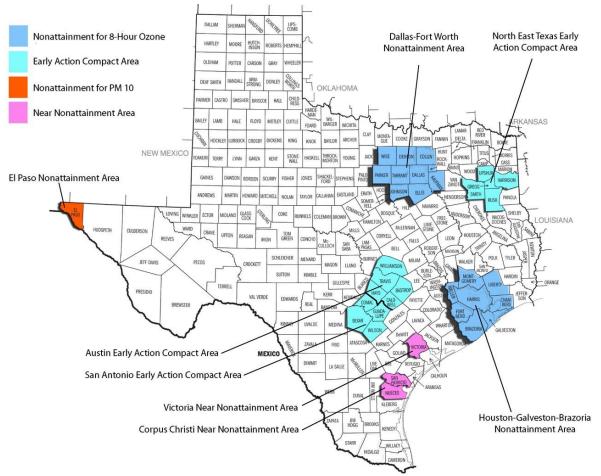
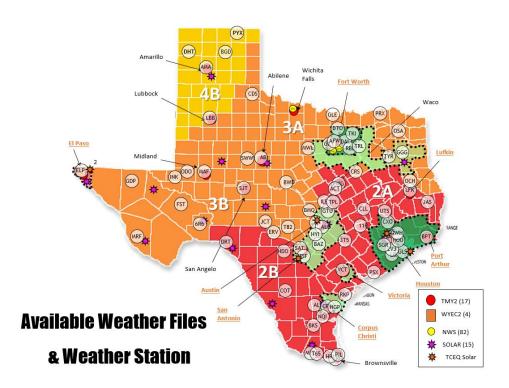


Figure 3: US EPA Nonattainment and Near Nonattainment


2.2 Energy Systems Laboratory's Responsibilities in the TERP

In 2001, Texas Senate Bill 5 outlined the following responsibilities for the Energy Systems Laboratory (ESL) within the TERP:

- Sec. 386.205. Evaluation of State Energy Efficiency Programs.
- Sec. 388.003. Adoption of Building Energy Efficiency Performance Standards.
- Sec. 388.004. Enforcement of Energy Standards Outside of Municipality.
- Sec. 388.007. Distribution of Information and Technical Assistance.
- Sec. 388.008. Development of Home Energy Ratings.

In 2003 these responsibilities were modified by the following:

- House Bill 1365, including modifications to:
 - o Sec. 388.004. Enforcement of Energy Standards Outside of Municipality
 - o Sec. 388.009. Energy-Efficient Building Program
- House Bill 3235 which includes modifications to
 - Sec. 388.009. Certification of Municipal Building Inspectors.

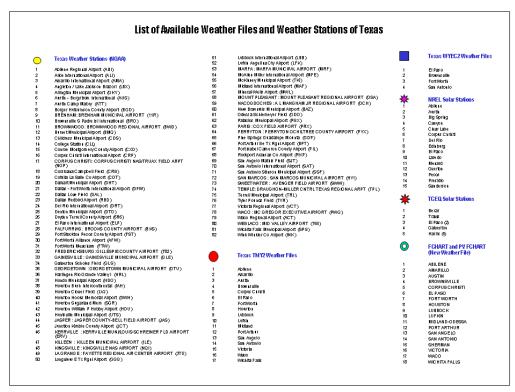


Figure 4: Available NWS, TMY2 and WYEC2 weather files compared to IECC/IRC weather zones for Texas

In 2005 these same responsibilities were further updated:

• with Senate Bill 20. House Bill 2481, and 2129.

These responsibilities were further updated in 2007:

• with Senate Bill 12 and House Bill 3693.

These responsibilities were further updated in 2009:

• with House Bill 1796.

These responsibilities were further updated in 2011:

• with Senate Bills 898 and 924, and House Bill 51.

These responsibilities were not updated in 2012. They remained unchanged in 2013. They were not updated in 2014.

These responsibilities were further updated in 2015:

- Changes to Sec. 388.003. Adoption of Building Energy Efficiency Performance Standards
- with House Bill 1736.

In the following sections, each of these tasks is further described.

2.2.1 (SB 5) Section 386.205. Evaluation of State Energy Efficiency Programs (w/PUCT)

The Laboratory is instructed to assist the Public Utility Commission of Texas (PUCT) and provide an annual report that quantifies by county the reductions of energy demand, peak loads, and associated emissions of air contaminants achieved from the programs implemented under this subchapter and from those implemented under Section 39.905, Utilities Code (i.e., Senate Bill 7).

To implement procedures for evaluating state energy-efficiency programs, in 2004, the Laboratory held several meetings with the Public Utility Commission of Texas to discuss the development of a framework for reporting emissions reduction from the State Energy Efficiency Programs administered by the PUCT. The State Energy-Efficiency Programs administered by the PUCT include programs under Senate Bill 7 (i.e., Section 39.905 Utilities Code) and Senate Bill 5.

In 2003 and 2004, the Laboratory worked with the TCEQ to identify a method to help the PUCT more accurately report their deemed savings as peak-day savings in 1999, using the Laboratory's new emissions reductions calculator.

In 2005, this method was implemented in the TCEQ's Integrated Emissions Calculations, which was reported in previous (from 2005-2016) annual reports.

2.2.2 (SB 5) Sec. 388.003. Adoption of Building Energy Efficiency Performance Standards

In 2001, TERP adopts the energy efficiency chapter of the 2001 International Residential Code (2001 IRC) as an energy code for Single-Family residential construction, and the 2001 International Energy Conservation Code (2001 IECC) for all other residential, commercial and industrial construction in the state. It requires that municipalities establish procedures for administration and enforcement, and ensure that code-certified inspectors perform inspections.

TERP provides that local amendments, in non-attainment areas and affected counties, may not result in less stringent energy efficiency requirements. The Laboratory is to review local amendments, if requested, and submit an annual report of savings impacts to the TCEQ. The Laboratory is also authorized to collect fees for certain of its tasks in Sections 388.004, 388.007 and 388.008.

2.2.3 (SB 5) Sec. 388.004. Enforcement of Energy Standards Outside of Municipality

For construction outside of the local jurisdiction of a municipality, TERP provides for a building to comply if:

- the building is certified by a national, state, or local accredited energy efficiency program;
- the building was subjected to inspections from private code-certified inspectors using the energy efficiency chapter of the International Residential Code or International Energy Conservation Code; or
- the builder who does not have access to either of the above methods for a building certifies compliance using a form provided by the Laboratory, enumerating the code-compliance features of the building.

2.2.4 (SB 5) Sec. 388.007. Distribution of Information and Technical Assistance

The Laboratory is required to make available to builders, designers, engineers, and architects code implementation materials that explain the requirements of the International Energy Conservation Code and the energy efficiency chapter of the International Residential Code. TERP authorizes the Laboratory to develop simplified materials to be designed for projects in which a design professional is not involved. It also authorizes the Laboratory to provide local jurisdictions with technical assistance concerning implementation and enforcement of the International Energy Conservation Code and the energy efficiency chapter of the International Residential Code.

2.2.5 (SB 5) Sec. 388.008. Development of Home Energy Ratings

TERP requires the Laboratory to develop a standardized report format to be used by providers of home energy ratings (HERs). The form must be designed to give potential buyers information on a structure's energy performance, including certain equipment. TERP requires the Laboratory to establish a public information program to inform homeowners, sellers, buyers, and others regarding home energy ratings.

2.2.6 (HB 1365) Sec. 388.004. Enforcement of Energy Standards Outside of Municipality

At the 78th Legislature (2003), House Bill 1365 modified Section 388.004 of The TERP to include the following new requirements:

- That builders shall retain for three years documentation which shows their building is in compliance with the Texas Building Energy Performance Standards, and that builders shall provide a copy of the compliance documentation to homeowners.
- That Single-Family residences built in unincorporated areas of counties, which were completed on or after September 1, 2001, but not later than August 31, 2003, are considered in compliance with the Texas Building Energy Performance Standards.

To help builders comply with these requirements, the Laboratory will enhance the current form, which is posted on the Laboratory's The TERP website.

2.2.7 (HB 1365) Sec. 388.009. Energy-Efficient Building Program, renamed in 2005 (HB 2129) Sec. 388.012. Development of Alternative Energy-Saving Methods.

In this Section, the laboratory shall develop at least three alternative methods for achieving a 15% greater potential energy savings in residential, commercial, and industrial construction than the potential energy savings of construction that is in minimum compliance with Section 388.003. The alternative methods:

(1) may include both prescriptive and performance-based approaches, such as the approach of the United States Environmental Protection Agency's Energy Star qualified new home labeling program; and

- (2) must include estimates of the implementation costs and energy savings to consumers and the related emissions reductions.
- 2.2.8 (HB 3235) Sec. 388.009. Certification of Municipal Inspectors renamed in 2005 (HB 2018) Sec. 388.011. Certification of Municipal Building Inspectors.

Also in 2003, House Bill 3235 modified the TERP to add the new Section 388.009. In this section the Laboratory is required to develop and administer a state-wide training program for municipal building inspectors who seek to become code-certified inspectors. To accomplish this, the Laboratory will work with national code organizations to assist participants in the certification program and is allowed to collect a reasonable fee from participants in the program to pay for the costs of administering the program. This program was required to be developed no later than January 1, 2004, with state-wide training sessions starting no later than March 1, 2004.

2.2.9 (SB 20, HB 2481, HB 2129). Additional Energy-Efficiency Initiatives

The 79th Legislature (2005), through SB 20, HB 2481 and HB 2129, amended SB 5 to enhance its effectiveness by adding the following additional energy-efficiency initiatives, including requiring 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables.

This legislation also requires PUCT to establish a target of 10,000 MW of installed renewable capacity by 2025, and requires TCEQ to develop a methodology for computing emissions reductions from renewable energy initiatives and the associated credits. The Laboratory is to assist TCEQ in quantifying emissions reductions credits from energy-efficiency and renewable-energy programs, through a contract with the Texas Environmental Research Consortium (TERC) to develop and annually calculate creditable emissions reductions from wind and other renewable energy resources for the state's SIP.

Finally, this legislation requires the Laboratory to develop at least 3 alternative methods for achieving a 15% greater potential energy savings in residential, commercial and industrial construction. To accomplish this, the Laboratory will be using the code-compliance calculator to ascertain which measures are best suited for reducing energy use without requiring substantial investments.

2.2.10 (SB 12, HB 3693). Additional Energy-Efficiency Initiatives

The 80th Legislature (2007), through SB 12, and HB 3693 amended SB 5 to enhance its effectiveness by adding several new energy efficiency initiatives. First, it requires the Laboratory to provide written recommendations to the State Energy Conservation Office (SECO) about whether or not the energy efficiency provisions of latest published edition of the International Residential Code (IRC), or the International Energy Conservation Code (IECC), are equivalent to or better than the energy efficiency and air quality achievable under the editions adopted under the 2001 IRC/IECC. The laboratory shall make its recommendations not later than six months after publication of new editions at the end of each three-year code development cycle of the International Residential Code and the International Energy Conservation Code. As part of this work with SECO, the Laboratory is required to consider comments made by persons who have an interest in the adoption of the energy codes in the recommendations made to SECO.

In addition, it requires the Laboratory to develop a standardized report format to be used by providers of home energy ratings, including different report formats for rating newly constructed residences from those for existing residences. The form must be designed to give potential buyers information on a structure's energy performance, including: insulation; types of windows; heating and cooling equipment; water heating equipment; additional energy conserving features, if any; results of performance measurements of building tightness and forced air distribution; and an overall rating of probable energy efficiency relative to the minimum requirements of the International Energy Conservation Code or the energy efficiency chapter of the International Residential Code, as appropriate.

It also encourages the Laboratory to cooperate with an industry organization or trade association to: develop guidelines for home energy ratings; provide training for individuals performing home energy ratings and providers of home energy ratings; and provide a registry of completed ratings for newly constructed residences and residential improvement projects for the purpose of computing the energy savings and emissions reductions benefits of the home energy ratings program. Finally, it requires the Laboratory shall include information on the benefits attained from this program in an annual report to the commission.

2.2.11 (HB 1796). TERP Term & Additional Energy- Efficiency Initiatives

The 81st Legislature (2009), through HB 1796, amended sections Sec. 386.252 (a) and (b), to extend the date of the TERP to 2019 and require the TCEQ to contract with Laboratory to compute emissions reduction from wind and other renewable energy resources for the SIP.

2.2.12 (HB 51, SB 898, SB 924). Additional Energy-Efficiency Initiatives & Refinement of Ongoing Initiatives

The 82nd Legislature (2011) through HB-1, the Laboratory's responsibilities under TERP increased:

The 82nd Legislature (2011), through SB 898, amended Sec 388.005 (c), (d) and (e), which per the amendment, requires each political subdivision, institution of higher education or state agency to establish a goal to reduce the electric consumption by the entity by at least 5% each fiscal year for 10 years, beginning September 1, 2011. SB 898 further elaborated and enhanced the annual reporting requirements for those entities, and required SECO to develop a standardized form for reporting. SB 898 adds the Laboratory as the entity in charge of calculating energy savings and estimated emissions reduction for each political subdivision, institution of higher education or state agency, based on the information collected by SECO. The Laboratory shall share the analysis with the TCEQ, EPA and ERCOT.

The 82nd Legislature (2011), through SB 924, amended Sec 39.9051, Utilities Code, (f), (g) and (h), to enhance the reporting requirements by all municipally owned utilities and electric cooperatives that had retail sales of more than 500,000 MWh in 2005, regarding combined effects of their energy efficiency activities. Per the amended sections, beginning April 1, 2012, these entities must report each year to SECO, on a standardized form developed by SECO. The report of information regarding the combined effects of the energy efficiency activities of the electric cooperative/utility from the previous calendar year should include the annual goals, programs enacted to achieve those goals, and any achieved energy demand or savings goals. SB 924 adds the Laboratory as the entity in charge of calculating energy savings and estimated emissions reduction for municipally owned utilities and for electric cooperatives, based on the information collected by SECO. The Laboratory shall share the analysis with the PUCT, ERCOT, EPA and TCEQ.

The 82nd Legislature, through HB 51, required SECO to appoint a new advisory committee for selecting high-performance building design evaluation systems. The committee includes a representative from the Laboratory and meets at least once every two years.

The 82nd Legislature, through HB 51, modified Sec 388.003 (e) on the Laboratory's review of proposed local code amendments, which should be compared to the unamended code (instead of the "base" code), and added to Sec 388.007 (c) the fact that Laboratory is allowed to provide technical assistance concerning the implementation of local code amendments.

In addition, HB 51 added Sec 388.007 (d), which allows The Laboratory to conduct outreach to the real estate industry on the value of energy code compliance and above code construction.

The 83rd Legislature (2013) did not change any of the Laboratory's previously established responsibilities under TERP.

During the 84th Legislature session (2015), changes to the Sec. 388.003. Adoption of Building Energy Efficiency Performance Standards, with the passage of HB 1736, affected the Laboratory's responsibilities under TERP:

- 2015 residential energy codes (IRC/IECC) editions are in effect starting Sept 1, 2016. 2015 commercial energy codes (IECC) are in effect starting Nov 1, 2016. The Laboratory's responsibilities of reviewing new energy codes and local code amendments remain. New codes will be reviewed no sooner than every 6 years.
- The legislation introduces a new energy rating index (ERI) as a voluntary compliance path for local code amendments. With the introduction of the ERI as another compliance path, the Laboratory is required to consider it when local amendments are reviewed, and needs to update the web-based code compliance tool and emissions reduction calculator to allow for the new optional compliance path.

3 Statewide Air Emissions Calculations from Wind and Other Renewables

The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its tenth annual report, "Statewide Air Emissions Calculations from Wind and Other Renewables," to the Texas Commission on Environmental Quality.

The report is organized in several deliverables:

- a summary report, which details the key areas of work
- supporting documentation
- supporting data files, including weather data, and wind production data,

This executive summary provides key areas of accomplishment this year, including:

- continuation of stakeholder's meetings
- analysis of power generation from wind farms using improved method and 2016 data
- analysis of emissions reductions from wind farms
- updates on degradation analysis
- analysis of other renewables, including solar PV, solar thermal, biomass, hydroelectric, geothermal, and landfill gas
- review of electricity generation by renewable sources and transmission planning study reported by ERCOT

3.1 Analysis of wind farms using an improved method and 2016 data

In this report, the weather normalization procedures, developed together with the Stakeholders, were presented and applied to all the wind farms that reported their data to ERCOT during the 2016 measurement period, together with wind data from the nearby NOAA weather stations or the zone average wind speed provided from ERCOT.

In the previous Wind and Renewables report to the TCEQ, weather normalization analysis methods were reviewed. This report used the same analysis method as the previous reports to present the same weather normalization procedure, including:

- the processing of weather and power generation data, modeling of daily power generation versus daily wind speed using the ASHRAE Inverse Model Toolkit (IMT) for two separate periods, i.e., Ozone Season Period (OSP), from July 15 to September 15, and Non-Ozone Season Period (Non-OSP);
- predicting 2008 wind power generation as a baseline, using developed coefficients from 2016 daily OSP and Non-OSP models for all the wind farms; and
- the analysis on monthly capacity factors generated using the models.

A summary of total wind power production in the base year (2008) for all of the wind farms in the ERCOT region using the developed procedure is presented, and the twenty six new wind farms which started operation in 2015 and 2016 were added, including Javelina Ii Wind 1, Javelina Ii Wind 2, Javelina Ii Wind 3, Cotton Plains Wind, Old Settler Wind, Electra Wind 1, Electra Wind 2, Doug Colbeck'S Corner (Conway) A, Doug Colbeck'S Corner (Conway) B, Gunsight Mountain Wind, Horse Creek Wind 1, Horse Creek Wind 2, Los Vientos Iv Wind, Mariah Del Norte 1, Mariah Del Norte 2, Hidalgo & Starr Wind 11, Hidalgo & Starr Wind 12, Hidalgo & Starr Wind 21, Saltfork_Unit1, Saltfork_Unit2, San Roman Wind, South Plains Wind Ii A, South Plains Wind Ii B, Tyler Bluff Wind, Wake Wind 1, and Wake Wind 2. Figure 5 shows the measured annual wind power generation in 2016 and the estimated wind power generation in 2008 using the developed method for those wind farms in the ERCOT region. The total measured wind power generation in 2016 is 50,023,889 MWh/yr., which is 23.12% higher than what the same wind farms would have produced in 2008. Figure 6 shows the same comparison but for the Ozone Season Period. The measured wind power generation in the OSP of 2016 is 113,946 MWh/day, which is 30.12% higher than the 2008 OSP baseline wind production. For the analysis of this year, the measured 2016 wind power generation is fairly higher than the 2008 baseline wind power production.

This report also includes an uncertainty analysis that was performed on all the daily regression models for the entire year and Ozone Season Period.

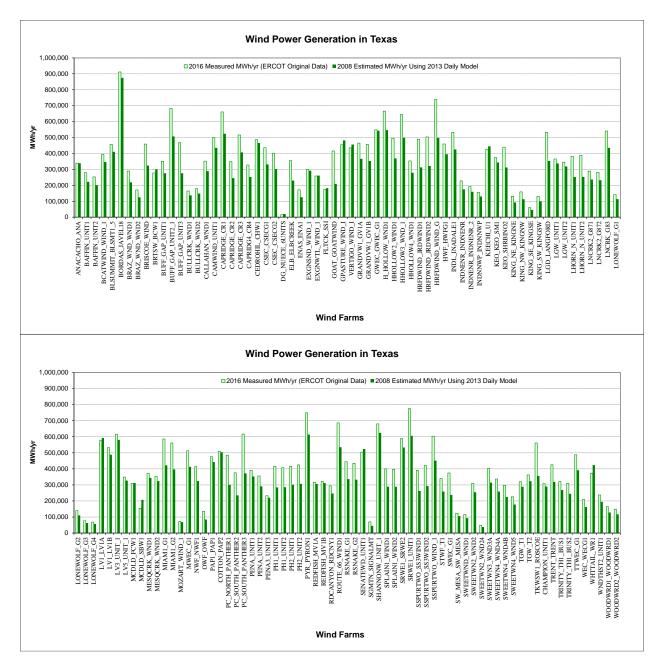


Figure 5: Comparison of 2016 Measured and 2008 Estimated Wind Power Production for Each Wind Farm

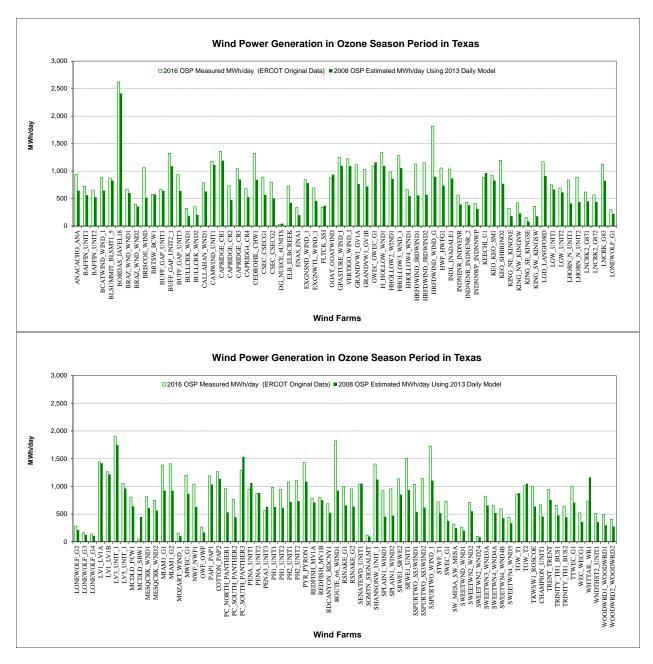


Figure 6: Comparison of 2016 OSP Measured and 2008 OSP Estimated Wind Power Production for Each Wind Farm

3.2 Analysis of emissions reductions from wind farms

In this report, the procedure for calculating annual and peak-day, county-wide NOx reductions from electricity savings from wind projects implemented in the congestion management (CM) zones in ERCOT was presented and, calculating the NOx emission reductions based on the special version of 2010 eGRID, developed by the ESL and EPA for the TCEQ. According to the developed models, the total MWh savings for all the wind farms in the base year 2008 within the ERCOT region are 40,630,248 MWh/yr and 87,571 MWh/day in the Ozone Season Period. The total NOx emissions reductions across all the counties amount are 11,259.29 tons/yr and 24.50 tons/day for the Ozone Season Period. Based on the 2016 measured ERCOT data, the total MWh savings for all the wind farms within the ERCOT region are 50,023,889 MWh/yr and 113,946 MWh/day in the Ozone Season Period. The total NOx emissions reductions in 2016 across all the counties amount are 13,796.73 tons/yr and 31.66 tons/day for the Ozone Season Period. Compared to the base year 2008, the total annual NOx emissions reductions increased by 22.54%, and the total NOx emissions reductions increase 29.22% for the Ozone Season Period.

3.3 Degradation analysis

This report contains an updated analysis to determine what degradation could be observed in the measured power from Texas wind farms. By TCEQ request on reference to the degradation of the wind farm power output, the ESL has been evaluating observed degradations from the measured data for all the Texas wind farms.

For the analysis, a statistical index was established for each site that used the 10th, 25th, 50th, 75th, 90th, and 99th percentiles of the hourly power generation over a 12-month sliding period, as well as mean, minimum and maximum hourly power generation of the same 12-month period. These indices were then displayed using one data symbol for each 12-month slide, beginning from the first 12-month period until the last 12-month period for each of the wind farms.

As shown in Table 4, of the eighty five sites ¹⁰ analyzed, fourty seven sites showed an increase when one compares the 90th percentile of the whole period to the 90th percentile of the first 12-month period, ranging from 0.1% to 60.5%. The remaining thirty eight sites showed a decrease from -0.4% to -27.2%. The weighted average of this increase across all wind farms is 6.5% (positive), which indicates that no degradation was observed from the aggregate energy production from these wind farms over the analyzed operation period. Similarly, the wind farms of Loraine Windpark IV (-10.5%), Papalote Creek Wind Farm (-14.5%), Big Spring Wind Power (-15.4%), Snyder Wind Project (-16.1%), and Sherbino 2 Wind (-27.2) have a decrease on production with a percentage larger than 10%, which may be caused by wind farm operations issues, the meter problems or other related issues.

¹⁰ The eighty five sites presented in the degradation analysis section include one hundred and five individual wind farms.

Table 4: Summary of 90th Percentile Hourly Wind Power Analysis for Eighty Five Wind Farms (85 Sites) in Texas

				12-Month Slid Hourly	ing 90th Pe Wind Repo					
Wind Farm	First Y	ear	Av	erage	Mir	nimum	Max	timum	No. of Months of Data	Capacity (MW)
	First 12-mo Ending Mo.	MW	MW	% Diff. vs. First 12-mo	MW	% Diff. vs. First 12-mo	MW	% Diff. vs. First 12-mo		
Anacacho Wind	Nov-13	83.4	86.7	4.0%	83.1	-0.4%	89.0	6.7%	38	100
Blue Summit Wind	Oct-13	121.9	121.0	-0.8%	114.9	-5.8%	128.5	5.4%	39	135
Bobcat Bluff Wind	Nov-13	115.0	114.6	-0.4%	101.5	-11.8%	127.9	11.2%	38	150
Brazos Wind Ranch	Dec-04	127.5	126.8	-0.6%	93.5	-26.7%	139.4	9.3%	133	160
Barton Chapel Wind 1	Apr-09	60.0	76.5	27.4%	43.1	-28.2%	89.1	48.5%	81	120
Buffalo Gap 1	Nov-06	100.9	98.4	-2.4%	75.4	-25.2%	105.7	4.8%	110	120
Buffalo Gap 2	Apr-08	183.4	174.1	-5.1%	104.9	-42.8%	207.6	13.2%	93	233
Buffalo Gap 3	Jun-09	86.4	136.1	57.6%	86.4	0.0%	152.1	76.0%	79	170
Bull Creek Wind Plant	Dec-09	93.9	91.5	-2.6%	41.5	-55.8%	130.4	38.9%	73	180
Big Spring Wind Power	Dec-02	27.2	23.0	-15.4%	16.3	-40.1%	27.2	0.0%	157	41
Callahan Divide Wind	Feb-06	93.3	95.1	2.0%	86.7	-7.1%	101.5	8.8%	119	114
Capricorn Ridge Wind 1&2	Aug-08	258.0	248.2	-3.8%	174.5	-32.4%	291.2	12.8%	89	364
Capricorn Ridge Wind 3	Jan-09	120.3	134.9	12.1%	97.9	-18.6%	153.5	27.6%	84	186
Capricorn Ridge Wind 4	Apr-09	85.2 111.3	84.1 106.8	-1.3%	67.6 95.0	-20.6%	92.8	9.0%	93	112.5 130
Camp Springs Wind Energy Center Camp Springs Energy Expension	Apr-08	_	106.8 97.4	-4.0% 3.7%		-14.6% -5.4%	120.9	8.6% 14.8%		
Camp Springs Energy Expension Cedro Hill Wind	Jan-09 Dec-11	94.0 136.3	125.6	3.7% -7.8%	88.9 102.1	-5.4% -25.1%	107.9 136.9	14.8%	84 49	120 150
Champion Wind Farm	Jan-09	89.4	102.8	14.9%	87.7	-1.9%	113.2	26.6%	84	126.5
Desert Sky	Dec-02	89.0	118.8	33.4%	83.1	-6.7%	134.4	50.9%	157	160.5
Elbow Creek Wind	Dec-02	94.5	97.8	3.5%	88.5	-6.4%	104.5	10.6%	73	121.9
Forest Creek Wind Farm	Dec-09	105.2	106.2	1.0%	97.3	-7.5%	111.2	5.7%	97	124.2
Goat Wind	Feb-09	61.4	94.3	53.7%	61.4	0.0%	122.6	99.8%	83	150
Gulf Wind 1	Jun-10	108.6	105.5	-2.9%	85.2	-21.6%	119.4	9.9%	79	141.6
Gulf Wind 2	Jun-10	116.5	115.4	-0.9%	89.7	-23.0%	126.3	8.4%	79	141.6
Hackberry Wind	Dec-09	138.0	125.4	-9.1%	105.8	-23.3%	140.6	1.9%	73	165.5
Harbor Wind	Jan-13	6.1	6.0	-1.5%	4.3	-29.1%	7.1	15.9%	48	9
Horse Hollow Phase 1	Jun-06	157.0	165.9	5.7%	141.3	-10.0%	185.1	17.9%	115	213
Horse Hollow Phase 2	Aug-07	145.7	137.4	-5.7%	99.0	-32.1%	151.5	4.0%	101	184
Horse Hollow Phase 3	May-07	169.2	165.8	-2.0%	123.9	-26.8%	187.7	11.0%	104	223.5
Horse Hollow Phase 4	Jun-07	88.6	88.8	0.1%	80.9	-8.7%	94.8	6.9%	103	115
Inadale Wind	Sep-10	117.9	136.8	16.0%	99.0	-16.0%	166.3	41.1%	76	197
Indian Mesa	Dec-02	48.0	58.0	20.9%	36.0	-24.9%	72.2	50.5%	157	82.5
King Mountain Wind Ranch-NE	Dec-02	41.8	46.9	12.0%	36.3	-13.2%	56.4	34.8%	157	79.3
King Mountain Wind Ranch-NW	Dec-02	44.7	55.3	23.7%	40.2	-10.1%	65.3	46.1%	157	79.3
King Mountain Wind Ranch-SE	Dec-02	21.6	23.6	9.2%	18.4	-15.0%	28.1	29.8%	157	40.3
King Mountain Wind Ranch-SW	Dec-02	41.6	46.9	12.8%	38.4	-7.7%	53.7	29.1%	157	79.3
Langford Wind	Dec-02	115.7	126.0	8.9%	114.4	-1.1%	134.3	16.0%	61	150
Lone Star - Post Oak Wind	Mar-09	149.1	155.9	4.6%	138.4	-7.2%	170.5	14.4%	94	200
Lone Star - Mesquite Wind	Sep-08	140.4	150.8	7.4%	129.9	-7.5%	168.1	19.7%	100	200
Loraine Windpark I	Dec-10	30.4	35.4	16.5%	25.9	-14.8%	42.3	39.2%	61	126
Loraine Windpark II	Dec-10	27.8	35.7	28.2%	25.7	-7.6%	43.3	55.7%	61	124.5
Loraine Windpark III	Jan-12	16.2	20.6	26.9%	16.2	0.0%	22.6	39.4%	48	26
Loraine Windpark IV	Dec-12	17.4	15.6	-10.5%	5.0	-71.5%	20.8	19.1%	37	24
Los Vientos Wind I	Oct-13	148.5	163.0	9.8%	148.5	0.0%	175.1	17.9%	39	200.1
Los Vientos Wind II	Nov-13	153.3	149.0	-2.8%	134.4	-12.3%	157.5	2.7%	38	201.6
Magic Valley Wind (Redfish) 1A	Apr-13	88.6	86.1	-2.8%	79.3	-10.5%	90.7	2.4%	45	99.8
Magic Valley Wind (Redfish) 1B	Jul-13	94.2	89.8	-4.7%	83.8	-11.1%	94.6	0.4%	42	103.5
McAdoo Wind	Dec-09	111.7	135.8	21.5%	111.7	0.0%	143.6	28.5%	73	150
Notrees Windpower	Feb-10	103.7	113.0	9.1%	103.7	0.0%	122.9	18.6%	83	153
Ocotillo Windpower	Dec-09	39.1	42.1	7.6%	36.6	-6.4%	47.2	20.7%	73	58.8
Panther Creek 1	Dec-09	114.4	120.2	5.1%	107.8	-5.8%	128.9	12.7%	73	142.5
Panther Creek 2	Dec-09	91.8	96.3	4.9%	85.2	-7.2%	104.2	13.5%	73	115.5
Panther Creek 3	Aug-10	128.5	153.3	19.3%	120.0	-6.6%	177.1	37.8%	77	199.5
Papalote Creek Wind Farm	Dec-10	150.1	128.4	-14.5%	39.6	-73.6%	157.9	5.2%	73	180
Papalote Creek Wind Farm II	Dec-11	174.2	167.7	-3.7%	155.0	-11.0%	176.4	1.2%	49	200.1
Penascal Wind 1	Feb-11	133.2	125.5	-5.8%	99.7	-25.2%	141.5	6.2%	71	161
Penascal Wind 2	Dec-09	83.3	109.1	31.0%	80.7	-3.1%	125.4	50.5%	73	142
Penascal Wind 3	May-11	87.1	78.4	-10.0%	65.7	-24.6%	88.8	2.0%	68	101
Pyron Wind Farm	Dec-09	157.2	187.2	19.1%	151.4	-3.7%	220.1	40.0%	73	249
Red Canyon 1	Aug-07	76.4	75.6	-1.0%	72.6	-4.9%	79.1	3.6%	113	84
Roscoe Wind Farm	Dec-08	169.4	153.4	-9.4%	108.1	-36.2%	179.8	6.2%	85	209
Sand Bluff Wind Farm	Nov-08	69.4	68.0	-2.0%	55.0	-20.7%	75.4	8.6%	98	90
Senate Wind	Sep-13	127.1	126.1	-0.8%	117.4	-7.6%	132.2	4.0%	49	150
Sherbino I Wind	Dec-09	104.7	112.9	7.9%	92.3	-11.8%	128.1	22.4%	73	150
Sherbino 2 Wind	Dec-12	125.7	91.6	-27.2%	38.0	-69.8%	125.7	0.0%	37	150
Silver Star Wind	Apr-09	40.6	45.9	13.0%	39.5	-2.7%	50.5	24.4%	81	60
South Trent Wind Farm	Dec-09	67.7	84.2	24.4%	65.4	-3.5%	91.0	34.4%	73	101.2
Southwest Mesa Wind	Dec-02	51.1	47.1	-7.8%	37.2	-27.1%	56.5	10.6%	157	74.6
Stanton Wind Energy	Dec-08	79.4	95.5	20.3%	79.4	0.0%	107.0	34.7%	85	120
Sweetwater Wind 1	Dec-04	34.1	33.0	-3.2%	29.9	-12.2%	34.9	2.4%	133	37.5
Sweetwater Wind 2 (unit 1)	Jan-06	71.4	81.7	14.5%	71.4	0.0%	88.0	23.3%	120	97.5
Sweetwater Wind 2 (unit 2)	Mar-08	13.1	13.8	5.1%	12.0	-8.7%	14.8	13.3%	106	16
Sweetwater Wind 3	Dec-06	99.6	101.1	1.4%	67.1	-32.7%	111.2	11.6%	109	135
Sweetwater Wind 4	Mar-08	161.0	170.4	5.8%	153.2	-4.9%	182.2	13.2%	106	240.8
Sweetwater Wind 5	Dec-08	66.5	63.3	-4.8%	56.3	-15.3%	69.3	4.3%	85	80.5
Snyder Wind Project	Dec-08	52.9	44.4	-16.1%	36.1	-31.8%	52.9	0.0%	85	63
Γrent Mesa	Dec-02	108.8	119.8	10.0%	90.7	-16.7%	132.8	22.0%	157	150
Γrinity Hills Wind Farm 1	Dec-12	78.8	78.4	-0.5%	62.8	-20.3%	88.1	11.8%	37	118
Γrinity Hills Wind Farm 2	Dec-12	74.8	77.0	2.9%	63.5	-15.0%	88.0	17.7%	37	108
Γurkey Track Wind Energy Center	Dec-09	77.4	124.2	60.5%	77.0	-0.5%	143.1	85.0%	73	169.5
Whirlwind	Dec-08	54.0	50.0	-7.4%	39.8	-26.3%	56.9	5.4%	85	60
Whitetail Wind	Oct-13	72.9	70.3	-3.5%	66.6	-8.6%	73.1	0.3%	39	92
WKN Mozart Wind	Oct-13	22.4	22.9	2.1%	20.5	-8.5%	25.8	15.0%	39	30
Wolf Ridge Wind	Dec-09	105.9	105.4	-0.5%	97.6	-7.8%	108.8	2.7%	73	112.5
Woodward Mountain Ranch	Dec-09 Dec-02	85.3	97.3	14.1%	80.4	-5.7%	112.4	31.8%	157	159.7

3.4 Analysis of other renewable sources

Five specific renewable sources were determined: solar, biomass, hydroelectric, geothermal, and landfill gas-fired. To generate/save energy throughout the State of Texas, six types of renewable energy projects were identified: solar photovoltaic (PV) including solar power, solar thermal, biomass power, hydroelectric power, geothermal HVAC, and landfill gas-fired power projects. The solar photovoltaic project accounts for non-utility scale PV installations in Texas whereas the solar power project accounts for utility scale (solar power plant) constructions. Table 5 presents the number of newly located renewable energy projects and total renewable energy projects included in this report.

This report also presents county-wide annual/Ozone Season Day (OSD) energy savings and annual NOx emission reductions for solar photovoltaic including solar power, solar thermal, biomass, and hydroelectric projects. The annual/OSD energy savings calculation for solar photovoltaic and solar thermal was conducted using the eCalc tool. The power generation data for the other renewable energy projects (solar power, biomass, and hydroelectric), which were obtained from the ERCOT, were used to evaluate the annual/OSD energy generation. Then, the annual NOx emission reductions calculation were conducted with the special version of Texas 2010 eGrid, based on their energy savings/generation.

In 2016, the total annual/OSD energy savings from each renewable projects across all the counties were:

- solar photovoltaic projects (non-utility scale): 127,098 MWh/yr and 386 MWh/day; in addition, solar power projects (utility scale): 836,565 MWh/yr and 2,292 MWh/day,
- solar thermal projects: 232 MWh/yr and 0.6 MWh/day,
- biomass projects: 622,434 MWh/yr and 1,705 MWh/day, and
- hydroelectric projects: 1,060,418 MWh/yr and 2,905 MWh/day.

In 2016, the annual NOx emission reductions from renewable projects across all the counties were:

- solar photovoltaic projects (non-utility scale): 98.6 tons/yr; in addition, solar power projects (utility scale): 171.7 tons/yr,
- solar thermal projects: 0.1 tons/yr,
- biomass projects: 153.4 tons/yr, and
- hydroelectric projects: 157.8 tons/yr.

Table 5: Number of Identified Projects for Other Renewable Sources

Renewable Energy Projects	Number of 2016 New Projects	Total Number of Projects
Solar Photovoltaic ¹¹	66	4,750
(Solar Power)	(7)	(23)
Solar Thermal	0	38
Biomass ¹²	New: 1, Retired:4	18
Hydroelectric ¹³	0	29
Geothermal	0	286
Landfill Gas-Fired ¹⁴	0	35

¹¹ The Open PV project database of National Renewable Energy Laboratory (NREL) (https://openpv.nrel.gov/), which was checked in March, 2016, provides updated PV projects for 2006, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015. Thus, the total number of PV projects until 2016, including PV projects from various websites, is now 4,750. Previously, it was 4,534.

12 This report includes one more biomass project information which was not identified in the previous year report; however, it does not mean the State of Texas has a

new biomass power plant constructed in 2016.

This report includes one more hydroelectric project information which was not identified in the previous year report; however, it does not mean the State of Texas

has a new hydroelectric power plant constructed in 2016.

¹⁴ Landfill gas-fired projects information from EPA have seven sub-categories for their status: operational, candidates, potential, construction, shutdown, planned, and other. EPA rearranged/added/removed some projects information within the seven sub-categories. Operational projects were considered for the number of the projects. This report includes four more (new) and two less (shutdown) operational landfill gas-fired project information which was not identified in the previous year report; however, the new operational projects do not mean the State of Texas has new landfill gas-fired projects constructed in 2016.

3.5 Review of electricity savings and transmission planning study reported by ERCOT

In this report, the information posted on ERCOT's Renewable Energy Credit (REC) Program site www.texasrenewables.com was reviewed. In particular, information posted under the "Public Reports" tab was downloaded and assembled into an appropriate format for review. This includes ERCOT's 2001 through 2016 reports to the Legislature and information from ERCOT's listing of REC generators.

Each year ERCOT is required to compile a list of grid-connected sources that generate electricity from renewable energy and report them to the Legislature. Table 6 contains the data reported by ERCOT from 2001 to 2016. Figure 7 is included to better illustrate the annual data collected by ERCOT. Other sources present different renewable electricity generation values on biomass, wind and hydro, but those are explained in general because the numbers reported in this report are focused on the ERCOT region.

Table 6: Annual Electricity Generation by Renewable Resources (MWh, ERCOT: 2001 - 2016)

Year	Biomass (MWh)	Hydro (MWh)	Landfill gas (MWh)	Solar (MWh)	Wind (MWh)	Total (MWh)
2001	0	30,639	0	0	565,597	596,236
2002	0	312,093	29,412	87	2,451,484	2,793,076
2003	39,496	239,684	154,206	220	2,515,482	2,949,087
2004	36,940	234,791	203,443	211	3,209,630	3,685,014
2005	58,637	310,302	213,777	227	4,221,568	4,804,512
2006	60,569	210,077	306,087	470	6,530,928	7,108,131
2007	54,101	382,882	356,339	1,844	9,351,168	10,146,333
2008	70,833	445,428	387,110	3,338	16,286,440	17,193,150
2009	73,364	507,507	412,923	4,492	20,596,105	21,594,390
2010	97,535	609,257	464,904	14,449	26,828,660	28,014,805
2011	137,004	267,113	497,645	36,580	30,769,674	31,708,016
2012	288,988	389,197	549,037	139,439	32,746,534	34,113,195
2013	200,564	294,238	550,845	178,326	36,909,385	38,133,358
2014	343,469	240,792	518,580	312,757	40,644,362	42,059,961
2015	349,600	414,289	561,915	410,318	45,165,341	46,901,462
2016	247,643	393,740	518,403	847,808	57,796,161	59,803,756

NOTE: The REC Program tracks renewable generation in Texas, including non-ERCOT regions of Texas 15.

-

¹⁵ https://www.texasrenewables.com/reports.asp

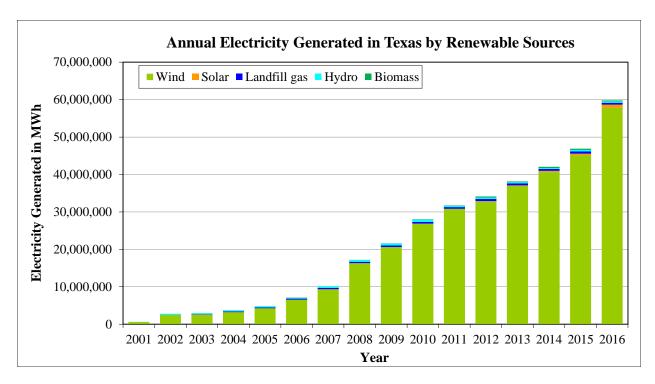


Figure 7: Electricity Generation by Renewable Resources (ERCOT: 2001–2016 Annual)

4 Calculated NOx Reductions Potential from Energy Savings of New Construction in 2016

A complete reporting of the savings, using 2008 base year (the implementation of the 2015 IECC and the ASHRAE Standard 90.1-2013), requires tracking and analyzing savings for new construction buildings that undergo a building permit. The adoption of the energy code and standard in Texas is expected to impact the following types of buildings:

- single-family residential
- multi-family residential
- commercial
- industrial

The following sections report the calculated energy savings associated with new construction activities for both residential (i.e., single-family and multi-family¹⁶) and commercial buildings.

4.1 2016 Results for New Single-family Residential Construction

This section provides the potential electricity and natural gas savings and the associated NOx emissions reductions in 2016 using the 2008 base year which implemented the 2015 IECC for new single-family residences in the 36 non-attainment and affected counties as well as other counties in the ERCOT region¹⁷. To calculate the NOx emissions reductions, the following procedures were adopted. First, new construction activity was determined by county. To accomplish this, the number of 2016 building permits per county was obtained from the real estate center at Texas A&M University (REC 2017). Next, energy savings attributable to the 2015 IECC were calculated using the Laboratory's code-traceable, DOE-2.1e simulation, which was developed for the TERP. For the savings calculation, the 2016 Home Innovation Research Labs (HIRL) data¹⁸ were used to determine the appropriate construction data corresponding to housing types. Then the NOx reductions potential from the electricity and natural gas savings in each county was calculated using the US EPA's 2010 eGRID database¹⁹.

In Table 7²⁰, the 2016 new single-family and 2015 IECC code-compliant building characteristics are shown for each county. The building characteristics reflect those published by the HIRL, ARI, and GAMA for Texas. The 2015 IECC code-compliant characteristics are the minimum building code characteristics required for each county for single-family residences (i.e., Type A.1). In Table 7, the rows are first sorted by the US EPA's non-attainment, affected designation, and then other ERCOT counties alphabetically. Next, in the fourth column, the HIRL's survey classification is listed. The fifth through eighth columns show the HIRL's survey data: average glazing U-value, Solar Heat Gain Coefficient (SHGC), roof insulation, and wall insulation, respectively. In addition, the ninth through twelfth columns show the 2015 IECC minimum requirements for glazing U-value, SHGC, roof insulation, and wall insulation.

The corresponding values in IECC and effective regulations are applied to the air-conditioner efficiency, furnace efficiency (AFUE), and domestic water heater efficiency. The values shown in : 2016 and 2015 IECC Codecompliant Building Characteristics Used in the DOE-2 Simulations for New Single-family Residences represent the only changes that were made to the simulation to obtain the savings calculations. In cases where the 2016 values were more efficient than the 2015 IECC requirements, the 2016 values were used in the 2016 new

¹⁶ The potential energy savings and NOx reductions analysis from energy savings of new single- and multi-family constructions in 2016 includes the related provisions for both *systems* and *envelope* in 2015 IECC, whereas in previous years analysis only the related provisions to the *envelope* from the corresponding code were included.

¹⁷ The three new counties added in the 2003 Legislative session (i.e., Henderson, Hood, and Hunt) were included in the ERCOT region.

¹⁸ In 2013, the NAHB Research Center announced that it has changed its name to Home Innovation Research Labs (HIRL). See more at: http://www.homeinnovation.com

¹⁹ This preliminary analysis does not include actual power transfers on the grid, and assumes transmission and distribution losses of 7%. Counties were assigned to utility service districts as indicated.

²⁰ Hardin, Jefferson, and Orange Counties were removed from Table 7 and : 2016 Annual Electricity Savings from New Single-family Residences because since 2012 they are not in the category of "Nonattainment County" based on [http://www.tceq.texas.gov/airquality/sip/bpa/bpa-status], and these counties do not belong to ERCOT region.

single-family simulations. Otherwise, the 2015 IECC values were used in both simulations²¹. For example, in the Collin County, according to the HIRL's survey data, the roof insulation is R-25.77, which is less than the code-required insulation of R-38. Therefore, R-38 was used in the 2016 simulation.

In Table 8, the code-traceable simulation results for single-family residences are shown for each county. In a similar fashion to Table 7, Table 8 is first divided into the US EPA's non-attainment and affected classifications, followed by an alphabetical list of other ERCOT counties. In the third column, the 2015 IECC climate zone is listed followed by the number of new projected housing units²² in the fourth column. In the fifth column, the total simulated energy use is listed if all new Construction had been built to pre-code specifications. In the sixth column, the total county-wide energy use for code-compliant Construction is shown. The values in the fifth and sixth columns come from the associated 24 simulation runs for each county, which were then distributed according to the HIRL's survey data, to account for 1 story, 2 story, slab-on-grade, crawlspace, and three different system types (i.e., central air conditioning with electric resistance heating, heat pump heating, or a natural gas-fired furnace). In the seventh column, the total annual electricity savings are shown for each county. A 7% transmission and distribution loss is used in the 2016 report, which represents a fixed 1.07 multiplier for the electricity use. In the eighth and ninth columns, the total annual pre-code and code-compliant natural gas use is shown for those residences that had natural gas-fired furnaces and domestic water heaters. Finally, in the tenth column, the total annual natural gas savings are shown for each county.

In Table 9, the Congestion Management (CM) Zones²³ assignments for each county are shown. In Table 10, the annual electricity savings are assigned to CM Zones provider(s) according to Table 9²⁴. The total electricity savings for each CM Zone, as shown in Table 10, then entered into the bottom row of Table 11, which is the 2010 US EPA's eGRID database²⁵ for Texas. Next, the county's NOx reductions (lbs) are calculated using the assigned 2010 eGrid proportions (lbs-NOx/MWh) to each CM zone in the county. The calculated NOx reductions are presented in the columns adjacent to the corresponding CM Zone columns. By adding the NOx reductions values in each row, then, the total of the NOx reductions per county (lbs and Tons) is calculated. Counties that do not show NOx reductions represent counties that do not have power plants in eGRID's database.

²¹ 2016 HIRL data and 2015 IECC are used for the 2016 new code-compliant simulations and 2008 NAHB data and 2006 IECC are used for the base-year simulations

²² The number of the new housing units in 2016 were obtained from the Real Estate Center at Texas A&M University.

²³ ERCOT region has employed the Congestion Management (CM) since 2010, and it is currently divided into four zones: Houston (H), North (N), South (S), and West (W).

²⁴ Of a total of 202 counties, 138 counties are not included in this table since the corresponding providers could not be assigned for these 138 counties

²⁵ This preliminary analysis does not include actual power transfers on the grid, and assumes transmission and distribution losses of 7%. Counties were assigned to CM Zones as indicated.

Table 7: 2016 and 2015 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Single-family Residences

March Marc			Climate	Division		2016 2	Average	I		201	5 IECC	
CALADIAN 2		County		East or West	Glazing U-value (Btu/hr-ft ² -F)	SHGC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)	Glazing U-value (Btu/hr-ft ² -F)	SHGC	Roof Insulation (hr-ft ² -F/Btu)	Wall Insulat (hr-ft ² -F/Bt
Color 1		BRAZORIA	2	East Texas		0.53		13.533	-	0.25	38	13
Authors All Act A			_									13
March 1												20 20
Company Comp												20
STATESTED 2 BAT FORD 29 03 250 144 022 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							25.772				38	20
SAMESTON 2 Destroy 199 193 2594 193 194												20
SMASS 2 Per Tour 0.97												13
MENSONS D. N. N. T. T. 19	n-attainment											13
MATHEMATICAL 1.0 1		JOHNSON	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
MONTH												20
MARINE 1			_									13
PARCENALL 3 West Team 6.99 6.93 2.972 1.138 6.33 2.92 38 3 3 3 3 3 3 3 3												20
WALLER 3 Water Teams 9.9 9.3 23.08 19.30 9.4 9.2 9.8 9.7 WALLE S Water Teams 9.9 9.3 23.07 14.35 3.5 2.5 9.8 1.0 WALLE S 2 Water Teams 9.9 9.3 23.77 14.35 14.35 14.3 1.0 1.0 1.0 1.0 CALOWEL 2 Water Team 9.9 9.3 23.77 14.35 14.3 1.0 1.0 1.0 1.0 CALOWEL 2 Water Team 9.9 9.3 23.77 14.35 14.3 1.0 1.0 1.0 CALOWEL 2 Water Team 9.9 9.3 23.77 14.35 14.3 1.0 1.0 CALOWEL 3 Water Team 9.9 9.3 23.77 14.35 1.0 1.0 CALOWEL 3 Water Team 9.9 9.3 23.77 14.35 1.0 1.0 CALOWEL 3 Water Team 9.9 9.3 23.77 14.35 1.0 CALOWEL 3 Water Team 9.9 9.3 23.77 14.35 1.0 CALOWEL 3 Water Team 9.9 9.3 23.77 14.35 1.0 CALOWEL 3 Water Team 9.9 9.3 23.77 14.35 1.0 CALOWEL 3 Water Team 9.9 9.3 23.60 1.0 1.0 CALOWEL 3 Water Team 9.9 9.3 23.60 1.0 WALLANDON 2 Water Team 9.9 9.3 23.60 1.0 WALLANDON 3 Water Team 9.9 9.3 23.77 1.1 WALLANDON 3 Water		ROCKWALL		West Texas								20
WILE 3 Wur Team 0.00 0.33 0.277 1.138 0.35 0.25 38 0.25												20
BATTON 3 West Teams 30 97 93 25.72 14.38 84 32 23 88 1												13 20
Marie 1968 1978 1979												13
COUNTY 1.00												13
GROOD J. Bart Teams 0.39												13
MARHAMA AMERICA AME			_									13
Michael Mich												20
Ministrate												13 20
Design					0.39				0.4		38	13
SATAPATRONO 2 Bart Fear 0.99 0.51 25.084 11.513 0.15 0.25 31 1 1 1 1 1 1 1 1	Affected											13
SMITH 3 East Teas 0.99 0.51 2.5772 1.1438 0.4 0.25 38 1 1 1 1 1 1 1 1 1												20
TRANS												13 20
Vertorial Petropic												13
WILLANGON 2												20
Wellow 2			_									13
NORDENON 2 Sent Teast 0.99 0.53 25.964 13.33 0.4 0.25 3.8 1												13 13
ANDERSON 3 West Teass 0.39 0.31 22.772 14.158 0.33 0.32 33 34 35 35 35 36 37 38 38 38 38 38 38 38			_									13
APACHEM 2 East Teast 9.9 0.51 25.964 13.33 0.4 0.25 38 1												20
## ACRORDE 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.33 38 1 ## AUSTIN 2 Rest Teas 0.99 0.55 25.772 14.158 0.04 0.025 38 1 ## AUSTIN 2 Rest Teas 0.99 0.55 25.604 10.153 0.4 0.25 38 1 ## BANDERS 2 West Teas 0.99 0.55 25.772 14.158 0.4 0.25 38 1 ## BANDERS 3 West Teas 0.99 0.55 25.772 14.158 0.4 0.25 38 1 ## BANDERS 3 West Teas 0.99 0.55 25.772 14.158 0.4 0.25 38 1 ## BELL 2 2 West Teas 0.99 0.53 25.772 14.158 0.4 0.25 38 1 ## BELL 2 2 West Teas 0.99 0.53 25.772 14.158 0.4 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.53 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 3 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 4 West Teas 0.99 0.51 25.772 14.158 0.4 0.25 38 1 ## BELNCO 5 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 6 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 7 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 8 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 8 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 8 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 8 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 8 West Teas 0.99 0.51 25.604 10.153 0.4 0.25 38 1 ## BELNCO 8 West Teas 0.99 0.51		ANGELINA	2		0.39	0.53	25.604	13.533	0.4	0.25	38	13
ANTERON 2 Note Treas 0.39 0.31 25.772 14.338 0.4 0.25 38 1 1 BANDERA 2 REATRESS 0.39 0.53 25.964 13.335 0.4 0.25 38 1 1 BANDERA 2 REATRESS 0.39 0.53 25.972 14.336 0.4 0.25 38 1 1 BANDERA 2 REATRESS 0.39 0.53 25.772 14.336 0.4 0.25 38 1 1 BANDERA 2 REATRESS 0.39 0.53 25.772 14.336 0.4 0.25 38 1 1 BANDERA 2 REATRESS 0.39 0.53 25.772 14.336 0.4 0.25 38 1 1 BANDERA 3 WARTENSS 0.39 0.53 25.772 14.336 0.5 0.25 38 1 1 BELSAR 2 REATRESS 0.39 0.53 25.772 14.336 0.5 0.25 38 1 1 BELSAR 3 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 3 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 3 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 3 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 5 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 6 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.4 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.5 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.5 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.5 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.5 0.25 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.5 0.5 0.5 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.5 0.5 0.5 38 1 1 BELSAR 1 REATRESS 0.39 0.53 25.772 14.338 0.5 0.5 0.5 0.5 38 1 1 BELSAR 1 REATRESS 0.39 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			_									13
AUTINE 2 Rest Trees 0.99 0.51 22.5964 13.531 0.4 0.22 38 1												20 13
BANDERA 2 WHITEMS 0.99 0.31 25.772 14.338 0.4 0.22 38 1 1 BANTOR 3 WHITEMS 0.99 0.53 25.772 14.338 0.4 0.22 38 1 BEE 2 EXITUMS 0.99 0.53 25.772 14.338 0.50 0.25 38 1 BEE 2 EXITUMS 0.99 0.53 25.772 14.338 0.50 0.25 38 1 BEL 2 EXITUMS 0.99 0.53 25.772 14.338 0.50 0.25 38 1 BEL 2 EXITUMS 0.99 0.53 25.772 14.338 0.4 0.25 38 1 BELX 0 WHITEMS 0.99 0.53 25.772 14.338 0.4 0.25 38 1 BEANCO 3 WHITEMS 0.99 0.53 25.772 14.338 0.4 0.25 38 1 BEANCO 3 WHITEMS 0.99 0.53 25.772 14.338 0.4 0.25 38 1 BEONCE 3 WHITEMS 0.99 0.53 25.772 14.338 0.55 0.25 38 1 BEONCE 3 WHITEMS 0.99 0.53 25.772 14.338 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.4 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.4 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.4 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.4 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.4 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.54 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.25 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.55 0.55 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.55 0.55 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.55 0.55 38 2 BERVITER 0.99 0.53 25.772 14.358 0.55 0.55 0.55 38 2 BERVITER 0.99 0.53 25.772 14.3												13
BRILDER 2 RATTERS 0.99 0.35 25:772 14:358 0.35 0.25 38 1 1												13
BEE 2 2 East Teass 0.99 0.33 22.504 10.533 0.4 0.25 38 1 BELL 2 West Teass 0.99 0.35 25.772 14.358 0.4 0.25 38 1 BELANO 3 West Teass 0.99 0.35 25.772 14.358 0.4 0.25 38 2 BOOQUE 2 West Teass 0.99 0.35 25.772 14.358 0.35 0.25 38 2 BOOQUE 2 West Teass 0.99 0.35 25.772 14.358 0.35 0.25 38 2 BELAZORIA 2 East Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 2 BELAZORIA 2 East Teas 0.99 0.35 25.604 10.533 0.4 0.25 38 1 BELAZORIA 3 West Teas 0.99 0.35 25.604 10.533 0.4 0.25 38 1 BELAZORIA 3 West Teas 0.99 0.35 25.604 10.533 0.4 0.25 38 1 BELAZORIA 4 West Teas 0.99 0.35 25.604 10.533 0.4 0.25 38 1 BELAZORIA 5 West Teas 0.99 0.35 25.604 10.533 0.4 0.25 38 1 BELAZORIA 5 West Teas 0.99 0.35 25.604 10.533 0.4 0.25 38 1 BELAZORIA 5 West Teas 0.99 0.35 25.772 14.538 0.35 0.25 38 1 BELAZORIA 5 West Teas 0.99 0.35 25.772 14.538 0.35 0.25 38 1 BELAZORIA 6 West Teas 0.99 0.35 25.772 14.538 0.35 0.25 38 1 BELAZORIA 6 West Teas 0.99 0.35 25.604 10.533 0.4 0.25 38 1 BELAZORIA 7 West Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 BELAZORIA 7 West Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 BELAZORIA 7 West Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 BELAZORIA 7 West Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 BELAZORIA 7 West Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 CALHONN 2 East Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 CALHONN 2 East Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 CHEROXEE 2 East Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 CHEROXEE 2 East Teas 0.99 0.35 25.772 14.358 0.35 0.25 38 1 COLDEAN 3 West Teas 0		Billolitol										13
BELL 2 West Tenss												20
BEXARE 2 West Teass 0.99 0.33 25772 14.358 0.4 0.23 38 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												13
BEANCO 3 West Texas 0.39 0.53 25.772 14.358 0.35 0.25 38 2												13
BRACODE 2 West Teras 0.39 0.33 25.772 14.358 0.4 0.25 38 1	BELL BEXA BLAN BORI											20
BRAZORIA 2 EAST Teas 0.39 0.33 2:504 13:533 0.4 0.25 38 1 BRAZORIA 2 SAST TEAS 0.39 0.33 2:504 13:533 0.4 0.25 38 1 BREWNTR 3 West Teas 0.39 0.53 2:572 14:538 0.35 0.25 38 2 BRECOR 4 West Teas 0.39 0.53 2:572 14:538 0.35 0.4 4.90 2 BRECOR 3 West Teas 0.39 0.53 2:572 14:538 0.35 0.4 0.25 38 1 BRECESION 2 EAST TEAS 0.39 0.53 2:572 14:538 0.35 0.4 0.25 38 1 BRECESION 2 EAST TEAS 0.39 0.53 2:572 14:538 0.35 0.4 0.25 38 1 BRECESION 2 EAST TEAS 0.39 0.53 2:572 14:538 0.55 0.25 38 1 BRECESION 2 EAST TEAS 0.39 0.53 2:572 14:538 0.55 0.25 38 1 BRECESION 2 EAST TEAS 0.39 0.53 2:572 14:538 0.55 0.25 38 1 CALIDUTIL 2 West Teas 0.39 0.53 2:572 14:538 0.55 0.25 38 1 CALIDUTIL 2 West Teas 0.39 0.53 2:572 14:538 0.55 0.25 38 1 CALIDUTIL 2 West Teas 0.39 0.53 2:572 14:538 0.55 0.25 38 1 CALIDUTIL 2 EAST TEAS 0.39 0.53 2:572 14:538 0.55 0.25 38 1 CALIDUTIL 2 EAST TEAS 0.39 0.53 2:572 14:538 0.4 0.25 38 1 CALIDUTIL 2 EAST TEAS 0.39 0.53 2:572 14:59 0.4 0.25 38 1 CALIDUTIL 2 EAST TEAS 0.39 0.53 2:572 14:59 0.4 0.25 38 1 CALIDUTIL 2 EAST TEAS 0.39 0.53 2:572 14:59 0.55 0.25 38 1 CALIDUTIC 2 EAST TEAS 0.39 0.53 2:570 14:59 0.4 0.25 38 1 CHEROTOR 2 EAST TEAS 0.39 0.53 2:570 14:59 0.4 0.25 38 1 CHEROTOR 2 EAST TEAS 0.39 0.53 2:5064 1:533 0.4 0.25 38 1 CHEROTOR 2 EAST TEAS 0.39 0.53 2:570 14:39 0.4 0.25 38 1 CHEROTOR 2 EAST TEAS 0.39 0.53 2:572 14:39 0.5 0.5 0.25 38 1 CHEROTOR 2 EAST TEAS 0.39 0.53 2:572 14:39 0.5 0.5 0.25 38 1 CHEROTOR 3 West TEAS 0.39 0.53 2:5772 14:39 0.5 0.5 0.25 38 1 COOKE 3 West TEAS 0.39 0.53 2:5772 14:39 0.5 0.5 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.53 2:5772 14:39 0.55 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.53 2:5772 14:39 0.55 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.53 2:5772 14:39 0.35 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.53 2:5772 14:39 0.35 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.53 2:5772 14:39 0.35 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.33 2:5772 14:39 0.35 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.33 2:5772 14:39 0.35 0.35 0.25 38 1 COOKEAN 3 West TEAS 0.39 0.33 2:5772 14:39 0.35 0.35 0												20
BRAZOS 2 EAST FERAS 0.99 0.53 22.664 13.533 0.4 0.22 38 1												13
BRECOTE 4 West Teas 0.99 0.33 25.772 14.158 0.35 0.25 38 7.2 BRICOS 4 West Teas 0.99 0.53 25.772 14.158 0.35 0.4 49 7.2 BROWN 3 West Teas 0.99 0.53 25.604 15.333 0.4 0.25 38 7.2 BROWN 6 2 East Teas 0.99 0.53 25.604 15.333 0.4 0.25 38 7.2 BROWN 7 3 West Teas 0.99 0.53 25.604 15.333 0.4 0.25 38 7.2 BURLESON 2 East Teas 0.99 0.53 25.604 15.333 0.4 0.25 38 7.2 CALIMEL 2 West Teas 0.99 0.53 25.772 14.158 0.53 0.25 38 7.2 CALIMEL 2 West Teas 0.99 0.53 25.772 14.158 0.50 0.25 38 7.2 CALIMER N 3 West Teas 0.99 0.53 25.772 14.158 0.00 0.25 38 7.2 CALIMER N 3 West Teas 0.99 0.53 25.772 14.158 0.00 0.25 38 7.2 CALIMER N 3 West Teas 0.99 0.53 25.772 14.158 0.00 0.25 38 7.2 CALIMER N 3 West Teas 0.99 0.53 25.772 14.158 0.00 0.25 38 7.2 CALIMER N 3 West Teas 0.99 0.53 25.772 14.158 0.00 0.25 38 7.2 CALIMER N 3 West Teas 0.99 0.53 25.772 14.158 0.00 0.25 38 7.2 CHEROSCE 2 East Teas 0.99 0.53 25.604 15.333 0.4 0.2 0.25 38 7.2 CHEROSCE 2 East Teas 0.99 0.53 25.604 15.333 0.4 0.2 0.25 38 7.2 CHEROSCE 2 East Teas 0.99 0.53 25.604 15.333 0.4 0.2 0.25 38 7.2 CHEROSCE 2 East Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 CHEROSCE 2 East Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 CHEROSCE 2 East Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COKE 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COKE 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COKE 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 2 East Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.158 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.159 0.03 0.25 38 7.2 COLORADO 3 West Teas 0.99 0.53 25.772 14.1												13
BROOKS 2 East Teas 0.39 0.53 25.604 13.533 0.4 0.25 38 7 7 8 8 7 8 8 9 9 8 9 9 9 9 9 9 9 9 9												20
BROWN 3 West Teass 0.99 0.53 25.772 14.358 0.35 0.25 38 1 2			4	West Texas								20
BÜRLESON 2			_									13
BURNET 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 1												20 13
CALDWELL 2 West Teass 0.39 0.53 25.772 14.358 0.4 0.25 38 1 1 CALLARIAN 3 West Teas 0.39 0.53 25.604 13.533 0.4 0.25 38 1 1 CALLARIAN 3 West Teas 0.39 0.53 25.604 13.533 0.4 0.25 38 1 1 CALLARIAN 3 West Teas 0.39 0.53 25.604 13.533 0.4 0.25 38 1 1 CALLARIAN 3 West Teas 0.39 0.53 25.604 13.533 0.4 0.25 38 1 1 CALLARIAN 4 0.25 38 1 1 CALLARIA												20
CALLARAN 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 2 7 7 14.558 0.35 0.25 38 2 7 1 14.558 0.35 0.25 38 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2		0.39					0.25	38	13
CAMERON 2 East Teas 0.99 0.53 25.694 13.533 0.4 0.25 38 1 1 CHEROKEE 2 East Teas 0.99 0.53 25.694 13.533 0.4 0.25 38 1 1 CHEROKEE 2 East Teas 0.99 0.53 25.694 13.533 0.4 0.25 38 1 1 CHEROKEE 2 East Teas 0.99 0.53 25.694 13.533 0.4 0.25 38 1 1 CHEROKEE 2 East Teas 0.99 0.53 25.772 14.538 0.55 0.25 38 2 2 CANY 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 2 2 CANY 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 2 2 CANY 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 2 2 CANY 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 2 2 CANY 4 CANY 5 CANY												13
CHANGERS 2 East Teas 0.99 0.53 25.694 13.533 0.4 0.25 38 1 1 CHEROKEE 2 East Teas 0.99 0.53 25.694 13.533 0.4 0.25 38 1 1 CHEROKEE 2 East Teas 0.99 0.53 25.772 14.538 0.55 0.25 38 1 CALLY 3 News Teas 0.99 0.53 25.772 14.538 0.55 0.25 38 2 CORE 3 West Teas 0.39 0.53 25.772 14.538 0.55 0.25 38 2 COLEAUN 3 West Teas 0.39 0.53 25.772 14.538 0.55 0.25 38 2 COLEAUN 3 West Teas 0.39 0.53 25.772 14.538 0.55 0.25 38 2 COLORADO 2 East Teas 0.39 0.53 25.772 14.538 0.55 0.25 38 2 COLORADO 2 East Teas 0.39 0.53 25.772 14.538 0.55 0.25 38 2 COMANCHE 3 West Teas 0.39 0.53 25.772 14.538 0.4 0.25 38 1 COMANCHE 3 West Teas 0.39 0.53 25.772 14.538 0.4 0.25 38 1 CONCHOOL 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 2 CONCHEL 2 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 2 CORTEL 2 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 2 CORTEL 2 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 2 CORTEL 3 West Teas 0.39 0.53 25.772 14.558 0.45 0.25 38 2 CORTEL 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 2 CORTEL 2 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CORTEL 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CORTEL 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CORTEL 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CRANG 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CRANG 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CRANG 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CRANG 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.4 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 3 CROCKETT 3 West Teas 0.39 0.53 25.772 14.558 0.35 0.25												20
CHEROKEE 2 East Teas 0.99 0.53 25.702 11.4538 0.4 0.25 38 7 CHARDESS 3 West Teas 0.99 0.53 25.772 11.4538 0.35 0.25 38 7 COKE 3 West Teas 0.99 0.53 25.772 11.4538 0.35 0.25 38 7 COKE 0.502 0.502 0.503 0.502 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.503 0.502 0.5												13 13
CELLDRESS 3 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.55 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.538 0.4 0.25 38 2.7 CAX 9 West Teams 0.99 0.53 25.772 14.												13
CORE OCRE 3 West Teas 0.99 0.53 25.772 14.538 0.53 0.25 38 2			3	West Texas								20
COLEMAN 3 West Teas 0.99 0.53 25.772 14.358 0.55 0.25 38 2 0.000 0			_									20
COLIN 3 West Teams 0.39 0.53 22.772 14.538 0.35 0.25 38 7 COLORADO 2 East Teams 0.39 0.53 22.5664 13.333 0.4 0.25 38 1 CONALA 2 West Teams 0.39 0.53 22.772 14.358 0.4 0.25 38 1 CONCRO 3 West Teams 0.39 0.53 22.772 14.358 0.4 0.25 38 2 CONCRO 3 West Teams 0.39 0.53 22.772 14.358 0.35 0.23 38 2 CONTED 3 West Teams 0.39 0.53 22.772 14.358 0.4 0.23 38 2 COTTLE 3 West Teams 0.39 0.53 22.772 14.358 0.4 0.23 38 1 CRANE 3 West Teams 0.39 0.53 22.772 14.358 0.35	FRCOT											20
COLORADO 2 East Teas 0.39 0.53 25.604 13.333 0.4 0.25 38 1 2 COMANCE 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.538 0.4 0.25 38 1 2 COMANCE 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.538 0.45 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.538 0.45 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.538 0.45 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.55 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.55 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.55 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.55 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.55 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.55 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.45 0.55 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 2 2 COMED 0.00 1 2 Vest Teas 0.39 0.53 25.77	1											20
COMANCHE 3 West Teas 0.99 0.53 25.772 14.358 0.35 0.25 38 7 CONCHO 3 West Teas 0.99 0.53 25.772 14.358 0.35 0.25 38 7 CONCHEL 2 West Teas 0.99 0.53 25.772 14.358 0.35 0.25 38 7 CONTEL 2 West Teas 0.99 0.53 25.772 14.358 0.35 0.25 38 7 COTTLE 3 West Teas 0.99 0.53 25.772 14.358 0.35 0.25 38 7 CONTEL 3 West Teas 0.99 0.53 25.772 14.358 0.35 0.25 38 7 CRANE 3 West Teas 0.99 0.53 25.772 14.358 0.35 0.25 38 7 CROCKETT 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 CROCKETT 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 CROCKETT 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 CROCKET 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 CROCKET 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 CULLERION 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DAWNON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DAWNON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DENTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.3		COLORADO	2	East Texas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
CONCHO 3												13
COOKE 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 2 CORTELL 2 West Teas 0.99 0.53 25.772 14.538 0.4 0.25 38 1 COTTLE 3 West Teas 0.99 0.53 25.772 14.538 0.45 0.25 38 1 CRANE 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 1 CROCKETT 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 COLDERRON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 CULLERRON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DAWSON 3 West Teas 0.39 0.53 25.772 14.358 0.35 <td></td> <td>20</td>												20
CORYELL 2 West Teas 0.59 0.53 25.772 14.358 0.4 0.25 38 2 COTTLE 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 CRANE 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 CROCKETT 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 CROCKETT 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 CUBERSON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 CUBERSON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 CUBERSON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DALLAS 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DALLOS 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DEWITT 2 East Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DEWITT 2 East Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 DENTON 4 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 DEWIT 2 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 EASTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 1 EENTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 1 EENTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 1 EENTLAND 4 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 1 EENTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 EENTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 EENTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 EENTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 EENTLAND 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 ENAMELY 4 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 ENAMELY 4 Wes												20
COTILE 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 7 CRANE 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 7 CROCKETT 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 7 CROCKETT 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 7 CROBEY 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 7 CROBEY 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 7 CROBEY 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DALIAS 5 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DALIAS 6 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772 14.538 0.40 0.55 0.25 38 7 DELTA 3 West Teas 0.39 0.53 25.772												13
CROCKETT 3 West Teas 0.59 0.53 25.772 14.538 0.55 0.25 38 2 2 2 2 2 2 2 2 2		COTTLE			0.39						38	20
CROSSY 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 2												20
CULBERSON 3 West Teas 0.99 0.53 25.772 14.538 0.55 0.25 38 2 DALLAS 3 Vest Teas 0.99 0.53 25.772 14.538 0.55 0.25 38 2 DAWSON 3 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 2 DENTON 4 West Teas 0.99 0.53 25.772 14.538 0.35 0.25 38 2 DENTON 3 West Teas 0.99 0.53 25.772 14.538 0.40 0.50 0.25 38 2 DENTON 3 West Teas 0.99 0.53 25.772 14.538 0.45 0.25 38 2 DICKENS 3 West Teas 0.99 0.53 25.772 14.538 0.55 0.25 38 2 DICKENS 3 West Teas 0.99 0.53 25.772 14.538 0.40 0.55 0.25 38 2 DICKENS 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.50 0.25 38 2 DICKENS 3 West Teas 0.99 0.53 25.772 14.558 0.40 0.55 0.25 38 2 DICKENS 3 West Teas 0.99 0.53 25.772 14.558 0.40 0.25 38 2 DICKENS 3 West Teas 0.99 0.53 25.772 14.558 0.40 0.25 38 2 EASTLAND 3 West Teas 0.99 0.53 25.772 14.558 0.40 0.25 38 2 EASTLAND 3 West Teas 0.99 0.53 25.772 14.558 0.40 0.25 38 2 EEDWARDS 2 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 2 EEDWARDS 2 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 2 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 2 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 2 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 2 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 EASTLAND 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 EBUASD 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.45 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.35 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.35 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.35 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.35 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.35 0.25 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.35 0.35 0.35 38 3 ERAITH 3 West Teas 0.99 0.53 25.772 14.558 0.35 0.35 0.												20
DALLAS 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DAWNON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DE WITT 2 East Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DE WIT 3 West Teas 0.39 0.53 25.604 13.533 0.4 0.25 38 3 DELTA 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 DEXENS 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 DEMORIT 2 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DEMORIT 2 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DEMORIT 2 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 DEMORIT 3 West Teas 0.39 0.53 25.772 14.358 0.4 0.23 38 1 DEMORIT 4 West Teas 0.39 0.53 25.772 14.358 0.4 0.23 38 2 ECTOR 3 West Teas 0.39 0.53 25.772 14.358 0.4 0.23 38 2 EUWARDS 2 West Teas 0.39 0.33 25.772 14.358 0.4 0.23 38 2 EUWARDS 2 West Teas 0.39 0.33 25.772 14.358 0.4 0.23 38 1 ELIS 3 West Teas 0.39 0.33 25.772 14.358 0.4 0.23 38 1 ERATH 3 West Teas 0.39 0.33 25.772 14.358 0.4 0.23 38 1 ERATH 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 ERATH 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 2 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 2 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 3 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.23 38 1 FANINN 3 West Teas 0.39 0.35 25.772 14.358 0.4 0.35 0.35 0.35 38 2 FORTEREND 2 East Teas 0.39 0.35 25.772 14.358 0.4 0.35												20
DAWSON 3 West Teas 0.59 0.53 25.772 14.358 0.35 0.25 38 2 2 2 2 2 2 2 2 2			3		0.39	0.53	25.772	14.358	0.35	0.25	38	20
DELTA 3 West Tenas 0.39 0.53 25.772 14.538 0.35 0.25 38 2 2 2 2 2 2 2 2 2		DAWSON		West Texas								20
DENTON 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2.70												13
DICKENN 3 West Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 1												20
DN.M.GT 2 West Tenas 0.39 0.53 25.772 14.538 0.4 0.25 38 1	DE D											20
DUVAL 2		DIMMIT			0.39	0.53	25.772	14.358	0.4	0.25	38	13
ECTOR 3 West Tenas 0.59 0.53 25.772 14.358 0.55 0.25 38 2 ELLIS 3 West Tenas 0.39 0.53 25.772 14.358 0.4 0.25 38 2 ELLIS 3 West Tenas 0.39 0.53 25.772 14.358 0.4 0.25 38 2 ERATH 3 West Tenas 0.39 0.53 25.772 14.358 0.4 0.25 38 2 ERATH 3 West Tenas 0.39 0.53 25.772 14.358 0.4 0.25 38 2 FALLIS 2 West Tenas 0.39 0.53 25.772 14.358 0.4 0.25 38 2 FANNIN 3 West Tenas 0.39 0.53 25.772 14.358 0.4 0.25 38 2 FANNIN 3 West Tenas 0.39 0.53 25.772 14.358 0.4 0.25 38 2 FANTETE 2 EAST Tenas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FANTETE 3 West Tenas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FANTETE 3 West Tenas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FORTEREND 3 West Tenas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FORTEREND 3 West Tenas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FORTEREND 2 East Tenas 0.39 0.53 25.772 14.358 0.35 0.25 38 3 FORTEREND 2 East Tenas 0.39 0.53 25.772 14.358 0.35 0.25 38 3				East Texas								13
EDWARDS 2												20
ELIS 3												20 13
ERATH 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FALLS 2 West Teas 0.39 0.53 25.772 14.358 0.4 0.25 38 1 FANNIN 3 West Teas 0.39 0.53 25.772 14.558 0.35 0.25 38 1 FANETIE 2 East Teas 0.39 0.53 25.772 14.538 0.35 0.25 38 1 FIRHER 3 West Teas 0.39 0.53 25.772 14.358 0.43 0.25 38 2 FOARD 3 West Teas 0.39 0.53 25.772 14.358 0.43 0.25 38 2 FOARD 3 West Teas 0.39 0.53 25.772 14.358 0.43 0.25 38 2 FOARD 3 West Teas 0.39 0.53 25.772 14.358 0.43												13
FANNIN 3 West Teas 0.39 0.53 25.772 14.358 0.35 0.25 38 2 2 FANTITE 2 East Teas 0.39 0.53 25.664 13.533 0.4 0.25 3.8 1 FEMER 3 West Teas 0.39 0.53 25.664 13.533 0.4 0.25 3.8 2 FANTITE 0.4 0.5 3.8 2 2 FANTITE 0.4 0.5 3.8 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							25.772					20
FAYETTE 2 East Texas 0.39 0.53 25.604 13.533 0.4 0.25 38 1 FISHER 3 West Texas 0.39 0.53 25.772 14.538 0.35 0.25 38 2 FOARD 3 West Texas 0.39 0.53 25.772 14.538 0.35 0.25 38 2 FOAR DEND 2 East Texas 0.39 0.53 25.772 14.538 0.35 0.25 38 1 FOAT BEND 2 East Texas 0.39 0.53 25.604 13.333 0.4 0.25 38 1												13
FISHER 3 West Tenus 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FOARD 3 West Tenus 0.39 0.53 25.772 14.358 0.35 0.25 38 2 FORT BEND 2 East Tenus 0.39 0.53 25.772 14.358 0.35 0.25 38 2												20
FOARD 3 West Texas 0.39 0.53 25,772 14.358 0.35 0.25 38 2 FORT BEND 2 East Texas 0.39 0.53 25,604 13,533 0.4 0.25 38 1												13
FORT BEND 2 East Texas 0.39 0.53 25.604 13.533 0.4 0.25 38 1												20
												13
		FRANKLIN					25.772					20

Table 7: 2016 and 2015 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Single-family Residences (Continued)

	Comme	Climate	Division	Glavina ** t		Roof Insulation	Wall Insulation	Obsing 11 - 1		Roof Insulation	Wall Insula
	County	Zone	East or West	Glazing U-value (Btu/hr-ft ² -F)	SHGC	(hr-ft ² -F/Btu)	Wall Insulation (hr-ft ² -F/Btu)	Glazing U-value (Btu/hr-ft ² -F)	SHGC	(hr-ft ² -F/Btu)	(hr-ft ² -F/B
	FRIO GALVESTON	2 2	West Tesas East Tesas	0.39	0.53	25.772 25.604	14.358 13.533	0.4	0.25 0.25	38 38	13
	GILLESPIE	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	GLASSCOCK GOLIAD	3	West Texas East Texas	0.39	0.53	25.772 25.604	14.358	0.35	0.25	38	20
	GONZALES GRAYSON	2	West Texas	0.39	0.53 0.53	25.772 25.772	14.358 14.358	0.4	0.25 0.25	38 38	13
	GRIMES	2	West Texas East Texas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	GUADALUPE HALL	2	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.4	0.25	38	13 20
	HAMILTON	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	HARDEMAN HARRIS	3	West Texas East Texas	0.39	0.53	25.772 25.604	14.358	0.35	0.25	38 38	20
	HASKELL	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	HAYS HENDERSON	3	West Tenas East Tenas	0.39	0.53	25.772 25.604	14.358	0.4	0.25	38	13
	HIDALGO HILL	2	East Texas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	HOOD	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.4	0.25 0.25	38 38	13 20
	HOPKINS	3	West Texas	0.39	0.53	25,772	14.358	0.35	0.25	38	20
	HOUSTON HOWARD	3	East Texas West Texas	0.39	0.53 0.53	25.604 25.772	13.533 14.358	0.4	0.25	38 38	13 20
	HUDSPETH HUNT	3	West Tenas West Tenas	0.39	0.53	25.772	14.358 14.358	0.35	0.25	38	20
	IRION	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	JACK JACKSON	3	West Texas East Texas	0.39	0.53	25.772 25.604	14.358 13.533	0.35	0.25	38 38	20 13
	JEFF DAVIS	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	ЛМ HOGG ЛМ WELLS	2	West Texas East Texas	0.39	0.53	25.772 25.604	14.358 13.533	0.4	0.25 0.25	38 38	13 13
	JOHNSON JONES	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	KARNES	2	West Texas West Texas	0.39	0.53 0.53	25.772 25.772	14.358 14.358	0.35 0.4	0.25 0.25	38 38	20
	KAUFMAN KENDALL	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.35	0.25	38	20
	KENEDY	2	East Texas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	KENT KERR	3	West Texas West Texas	0.39	0.53 0.53	25.772 25.772	14.358 14.358	0.35 0.35	0.25 0.25	38 38	20 20
	KIMBLE	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	KING KINNEY	3	West Texas West Texas	0.39	0.53 0.53	25.772 25.772	14.358 14.358	0.35 0.4	0.25 0.25	38 38	20
	KLEBERG	2	East Tenas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	KNOX LA SALLE	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.35	0.25 0.25	38 38	20 13
	LAMAR LAMPASAS	3	East Texas	0.39	0.53	25.604 25.772	13.533	0.35	0.25	38	20
	LAMPASAS LAVACA	3	West Tenas East Tenas	0.39	0.53	25,772	14.358	0.35	0.25	38	20
	LEE	2	West Texas	0.39	0.53	25.772	14.358	0.4	0.25	38	13
	LEON LIMESTONE	2	East Texas West Texas	0.39	0.53	25.604 25.772	13.533 14.358	0.4	0.25	38 38	13
	LIVE OAK LLANO	2	East Texas West Texas	0.39	0.53	25.604 25.772	13.533 14.358	0.4	0.25	38 38	13 20
	LOVING	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	MADISON MARTIN	2	East Texas West Texas	0.39	0.53	25.604 25.772	13.533 14.358	0.4	0.25	38 38	13 20
	MASON	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	MATAGORDA MAVERICK	2	East Texas West Texas	0.39	0.53	25.604 25.772	13.533 14.358	0.4	0.25	38	13
	MCCULLOCH MCLENNAN	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	MCMULLEN	2	West Texas West Texas	0.39	0.53	25.772	14.358 14.358	0.4	0.25	38	13
	MEDINA	2	West Texas	0.39	0.53 0.53	25.772	14.358	0.4	0.25	38	13
COT	MENARD MIDLAND	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.35	0.25	38 38	20
	MILAM MILLS	2	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.4	0.25 0.25	38 38	13 20
	MITCHELL	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	MONTAGUE MONTGOMERY	3	West Texas East Texas	0.39	0.53	25.772 25.604	14.358	0.35	0.25	38 38	20
	MOTLEY	3	West Texas	0.39	0.53	25,772	14.358	0.35	0.25	38	20
	NACOODOCHES NAVARRO	3	East Texas West Texas	0.39	0.53	25.604	13.533	0.35	0.25	38	20
	NOLAN NUECES	3	West Texas	0.39	0.53	25.772 25.604	14.358 13.533	0.35	0.25 0.25	38 38	20 13
	PALO PINTO	3	East Texas West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	PARKER PECOS	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.35	0.25 0.25	38 38	20 20
	PRESIDIO	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	RAINS REAGAN	3	West Texas West Texas	0.39	0.53	25,772	14.358	0.35	0.25	38	20
	REAL	2	West Texas	0.39	0.53	25.772	14.358	0.4	0.25	38	13
	RED RIVER REEVES	3	East Texas West Texas	0.39	0.53	25.604 25.772	13.533 14.358	0.35	0.25	38 38	20
	REFUGIO	2	East Texas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	ROBERTSON ROCKWALL	3	East Texas West Texas	0.39	0.53	25.604 25.772	13.533 14.358	0.4	0.25	38 38	13 20
	RUNNELS RUSK	3	West Texas East Texas	0.39	0.53 0.53	25.772 25.604	14.358 13.533	0.35 0.35	0.25 0.25	38 38	20 20
	SAN PATRICIO	2	East Tenas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	SAN SABA SCHLEICHER	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.35	0.25	38	20 20
	SCURRY	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	SHACKELFORD SMITH	3	West Texas East Texas	0.39	0.53	25.772 25.604	14.358	0.35	0.25	38 38	20
	SOMERVELL	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	STARR STEPHENS	3	East Texas West Texas	0.39	0.53	25.604 25.772	13.533 14.358	0.4	0.25	38 38	13 20
	STERLING	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	STONEWALL SUTTON	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.35	0.25 0.25	38	20
	TARRANT	3	West Texas West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	TAYLOR TERRELL	3	West Texas	0.39	0.53 0.53	25,772 25,772	14.358 14.358	0.35	0.25 0.25	38 38	20 20
	THROCKMORTON TITUS	3	West Texas East Texas	0.39	0.53	25.772 25.604	14.358	0.35 0.35	0.25 0.25	38 38	20 20
	TOM GREEN	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	TRAVIS UPTON	2	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.4	0.25 0.25	38 38	13 20
	UVALDE	2	West Texas	0.39	0.53	25.772	14.358	0.4	0.25	38	13
	VAL VERDE VAN ZANDT	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.4	0.25 0.25	38 38	13 20
	VICTORIA	2	East Tenas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	WALLER WARD	2	East Texas West Texas	0.39	0.53 0.53	25.604 25.772	13.533 14.358	0.4 0.35	0.25 0.25	38 38	13 20
	WASHINGTON	2	East Texas	0.39	0.53	25.604	13.533	0.4	0.25	38	13
	WEBB WHARTON	2	West Texas East Texas	0.39	0.53	25.772 25.604	14.358 13.533	0.4	0.25 0.25	38 38	13
	WICHITA	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	WILBARGER WILLACY	3	West Texas East Texas	0.39	0.53 0.53	25.772 25.604	14.358	0.35	0.25	38 38	20
	WILLIAMSON	2	West Tenas	0.39	0.53	25.772	14.358	0.4	0.25	38	13
	WILSON WINKLER	3	West Texas West Texas	0.39	0.53	25.772 25.772	14.358 14.358	0.4	0.25	38 38	13 20
	WISE	3	West Texas	0.39	0.53	25.772	14.358	0.35	0.25	38	20
	YOUNG ZAPATA	3	West Texas West Texas	0.39	0.53 0.53	25.772 25.772	14.358 14.358	0.35	0.25	38 38	20 13
			West Texas	0.39	0.53	25.772	14.358	0.4	0.25	38	13

Table 8: 2016 Annual Electricity Savings from New Single-family Residences

County County M.	County RAZORIA HAMBERS OLLIN ALLAS ENTON L PASO LLIS ORT BEND ARKIS ORNSON	Climate Zone	No. of Projected Units (2014) 2,909 295 8,197 5,152	Precode Total Annual Elec. Use (MWh/yr)	Code- compliant Total Annual Elec. Use (MWh/yr)	Total Annual Elec. Savings (MWh/yr) w/7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code- compliant Total NG Use (Therm/yr)	Total Annual NG Savings (Therm/yr)
County County M.	HAMBERS OLLIN ALLAS ENTON L PASO LLIS OORT BEND ALVESTON ARRIS	3 3 3 3 2	295 8,197	52,995				(11101111)	
Nonattain-ment County JC K.	OLLIN ALLAS ENTON L PASO LLIS ORT BEND ALVESTON ARRIS	3 3 3 2	8,197		47,650	5,719	509,600	478,255	31,346
Nonattain-ment County JC K. M.	ALLAS ENTON L PASO LLIS ORT BEND ALVESTON ARRIS	3 3 2		5,312 146,437	4,801 128,838	547 18,831	51,702 2,510,414	49,384 2,358,144	2,319 152,270
Nonattain-ment County JC LI LI M	L PASO LLIS ORT BEND ALVESTON ARRIS	2	-,102	91,900	80,948	11,718	1,588,578	1,490,194	98,384
Nonattain-ment County L.	LLIS ORT BEND ALVESTON ARRIS		6,212 2,219	110,976	97,638	14,271 5,313	1,902,488	1,787,092	115,396 27,373
Nonattain-ment County H	ALVESTON ARRIS		1,446	38,923 25,793	33,957 22,720	3,289	626,868 445,863	599,495 418,249	27,613
Nonattain-ment County JC	ARRIS	3	9,777	178,135	160,151	19,242	1,712,741	1,604,489	108,252
KA LI M	OHNGON	2	2,209 15,511	40,243 282,607	36,184 254,077	4,343 30,528	386,974 2,717,226	363,171 2,545,488	23,803 171,739
LI		2	516	9,204	8,107	1,174	159,104	149,251	9,854
M	AUFMAN IBERTY	2	446 456	7,968 8,312	7,010 7,471	1,025 900	136,592 79,689	128,307 74,640	8,285 5,049
	IONTGOMERY	3	4,175	76,068	68,388	8,217	731,379	685,153	46,226
	OCKWALL	2	408 1,116	7,289 19,937	6,413 17,541	937 2,564	124,954 341,786	117,375 321,055	7,579 20,731
TA	ARRANT	2	5,831	104,012	91,617	13,263	1,797,942	1,686,592	111,351
	VALLER VISE	2	13 70	237	213	26	2,277	2,133	144
	ASTROP	2	138	1,251 2,645	1,100 2,355	161 310	21,438 27,475	20,138 24,689	1,300 2,786
	EXAR	2	3,283	58,608	52,196	6,861	758,406	677,023	81,383
	ALDWELL OMAL	3	322 1,917	5,782 34,222	5,155 30,478	672 4,006	77,969 442,846	70,154 395,325	7,814 47,521
GI	REGG	3	157	3,017	2,688	353	36,409	36,078	332
	UADALUPE ARRISON	2	903	16,120 768	14,357 685	1,887 88	208,602 9,376	186,217 9,265	22,385 112
	AYS	2	1,895	34,044	30,341	3,962	458,852	411,879	46,973
County	UECES	3 2	1,212		19,845	2,547	158,494	149,464	9,031
	AN PATRICIO	2	232	37 4,254	33 3,799	488	393 30,339	385 28,610	1,729
Si	МІТН	2	454	8,708	7,775	999	106,806	105,481	1,325
	RAVIS PSHUR	3	7,172	128,846	114,832 87	14,995 12	1,736,615 1,266	1,558,836 1.187	177,779 79
VI	ICTORIA	2	62	1,116	1,000	124	9,095	8,631	464
	VILLIAMSON	2	3,800 52	68,267 928	60,842 827	7,945 109	920,125 12,013	825,931 10,723	94,194 1,289
	NDERSON	2	13	238	211	29	2,555	2,501	54
	NDREWS	3	8		137	19	1,809	1,706	102 247
	NGELINA RANSAS	2	60 187	1,100 3,429	976 3,062	133 393	11,792 24,454	11,545 23,061	1,393
	RCHER	3	5		85	13	2,070	1,932	138
	TASCOSA USTIN	2	34 22		541 360	71 43	7,862 3,854	7,029 3,610	833 244
B	ANDERA	2	1	18	16	2	230	213	17
B.	AYLOR	2	0	0 126	0 113	0	0 1,027	975	0 52
	ELL	2	1,581	28,401	25,389	3,223	465,565	420,222	45,342
	LANCO	3	13	234	208	27	3,148	2,826	322
	ORDEN	2	19	394 18	355 16	41	7,113 294	6,698 266	414
BI	RAZOS	2	1,127	20,534	18,461	2,218	197,429	184,950	12,478
	REWSTER RISCOE	3	5	90 139	80 124	12 16	1,769 4,335	1,658 4,038	111 297
BI	ROOKS	2	1	34	30	4	212	196	16
	ROWN URLESON	2	85 12	1,527 219	1,365 197	173 24	25,030 2,102	22,593 1,969	2,438 133
	URNET	3	354	6,360	5,668	740	85,717	76,942	8,775
	ALLAHAN	2	60		968	120	8,802	8,353	449 47
	AMERON	3 2	1,217	36 22,616	32 20,037	2,759	706 138,733	659 128,441	10,293
	HEROKEE	2	6		98	13	1,179	1,154	25
	HILDRESS LAY	3	0		51	8	0 1,242	1,159	83
C	OKE	3	0	0	0	0	0	0	0
	OLORADO	2	22		0 360	43	0 3,854	0 3,610	244
C	OMANCHE	3	1	18	16	2	294	266	29
	ONCHO	3	1 51	18	16	2 117	354 15.600	332	22 974
	ORYELL	2	156	910 2,802	801 2,505	318	15,699 45,938	14,725 41,464	4,474
	OTTLE	3	0	0	0	0	0	0	0
	RANE ROCKETT	3	13 19	231 344	204 302	29 44	4,624 6,723	4,356 6,302	268 421
CI	ROSBY	3	9	187	168	20	3,369	3,173	196
	ULBERSON AWSON	3	3		46 0	7	847 0	810 0	37 0
DI	E WITT	2	3	54	48	6	440	418	22
	ELTA ICKENS	3	0		0		0	0	0
DI	IMMIT	2	7	125	0 111		0 1,185	1,068	117
Di	UVAL	2	0	0	0	0	0	0	0
	ASTLAND CTOR	3	0 448		7,014	1,016	0 159,129	150,125	9,005
EI	DWARDS	2	0	0	0	0	0	0	0
	RATH ALLS	2	36		574 48	87 6	12,707 883	11,863 797	844 86
FA	ANNIN	3	27	482	424	62	8,311	7,796	516
	AYETTE ISHER	2	8		131	16 0	1,401	1,313	89
	OARD	3	0		0		0	0	0
FF	RANKLIN	3	0	0	0	0	0	0	0
	REESTONE RIO	2	7		96 111	12 15	1,767 1,619	1,595 1,447	172 172

Table 8: 2016 Annual Electricity Savings from New Single-family Residences (Continued)

				L	Code-	Total Annual			
	County	Climate Zone	No. of Projected Units (2014)	Precode Total Annual Elec. Use (MWh/yr)	compliant Total Annual Elec. Use (MWh/yr)	Elec. Savings (MWh/yr) w/ 7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code- compliant Total NG Use (Therm/yr)	Total Annua Savings (Therm/y
	GILLESPIE	3	49	880	785	102	11,865	10,650]
	GLASSCOCK GOLIAD	3	0	0 54	0	0	0 440	0 418	
	GONZALES	2	9	161	48 143	19	2,079	1,856	
	GRAYSON GRIMES	3 2	374 39	6,677	5,877	855 77	115,125 6,832	107,983 6,400	
	HALL	3	0	0	0	0	0	0	
	HAMILTON HARDEMAN	3	6	108		12	1,767	1,595	
	HASKELL	3	2	36	32	5	706	659	
	HENDERSON HIDALGO	2	40 2,921	767 54,281	685 48,091	6,623	9,410 332,983	9,294 308,279	24
	HILL	2	8	144	128	16	2,356	2,126	
	HOPKINS HOUSTON	2	10	179	157	23 0	3,063	2,877 0	
	HOWARD HOOD	3	23 132	409 2,355	360 2,074	52 300	8,170 40,701	7,707	
	HUDSPETH	3	0	2,333	2,074	0	40,701	38,180 0	:
	HUNT IRION	3	166	2,963	2,609	380	51,098	47,928 0	
	JACK	3	2	36	32	5	706	659	
	JACKSON JEFF DAVIS	3	11	198		22	1,614	1,531 0	
	JIM HOGG	2	0	0	0	0	0	0	
	JIM WELLS JONES	3	15			32	1,962	1,850	
	KARNES	2	49	849	760	95	9,321	8,413	
	KENDALL KENEDY	2	245	4,371 0	3,805	606	56,342 0	52,291 0	4
	KENT	3	0	0	0	0	0	0	
	KERR KIMBLE	3	60			125 0	14,528	13,041 0	
	KING	3	0	0	0	0	0	0	
	KINNEY KLEBERG	2	9	165		0 19	1,177	0 1,110	
	KNOX	3	0	0	0	0	0	0	
	LA SALLE LAMAR	3	3 26	53 499	48 445	58	508 6,092	458 6,021	
	LAMPASAS	3	45	808	723	92	13,251	11,961	
	LAVACA LEE	2	27	486 233	435 208	54 27	3,949 3,148	3,744 2,832	
	LEON LIMESTONE	2	0	0		0	0	0	
	LIVE OAK	2	3 7	54 128		6 15	883 915	797 863	
	LLANO	3	226	4,060		473	54,723	49,121	
	LOVING MADISON	2	5	91		0 10	876	0 821	
	MARTIN	3	4	71	63	9	1,421	1,340	
	MASON MATAGORDA	2	82	54 1,476	48 1,322	6 164	726 12,029	652 11,416	
	MAVERICK MCCULLOCH	2 3	64	1,140		131	10,834 354	9,766 332	
	MCLENNAN	2	637	11,443	10,229	1,299	354 187,580	332 169,312	18
ERCOT	MCMULLEN MEDINA	2 2	0 29	0 518		0 61	0	0 5,980	
	MENARD	3	0	0	0	0	6,699	0	
	MIDLAND MILAM	3 2	632	11,234 121	9,895 109	1,433	224,486 1,586	211,783 1,416	12
	MILLS	3	0	0	0	0	0	0	
	MITCHELL MONTAGUE	3	0	18		2	308	289	
	MOTLEY	3	0	0	0	0	0	0	
	NACOGDOCHES NAVARRO	3	24 167	440 3,000		53 340	4,717 49,177	4,618 44,388	
	NOLAN	3	1	18	16	2	353	330	
	PALO PINTO PECOS	3	9	2,025	143 1,781	22 262	3,177 39,632	2,966 37,148	:
	PRESIDIO	3	11	199	175	26	3,892	3,648	
	RAINS REAGAN	3	1	18 18		2	306 356	288 335	
	REAL	2	0	0	0	0	0	0	
	REEVES	3	6	53	103 47	13 7	1,406 1,066	1,389 1,005	
	REFUGIO ROBERTSON	2 2	7 79	126		14 155	1,027	975 12,965	
	RUNNELS	3	2	36	32	5	13,839 708	663	
	SAN SABA SCHLEICHER	3	7	126 18	112	15 2	1,695 354	1,521 332	
	SCURRY	3	8	166	150	17	2,995	2,820	
	SHACKELFORD SOMERVELL	3	0 11	196		25	3,392	0 3.182	
	STARR	2	4	74	66	9	456	422	
	STEPHENS STERLING	3	0	36 0		5	706 0	659	
	STONEWALL	3	0	0	0	0	0	0	
	SUTTON TAYLOR	3	12 296	217 5,389		28 718	4,246 104,479	3,980 97,536	
	TERRELL	3	0	0	0	0	0	0	
	THROCKMORTON TITUS	3	19	365	325	42	4,452	4,400	
	TOM GREEN UPTON	3	172 0	3,110	2,735	402	60,864	57,049	
	UVALDE	2	19	339	302	40	4,389	3,918	
	VAL VERDE VAN ZANDT	3	93 28	1,660 500		194 64	21,484 8,575	19,179 8,055	
	WARD	3	3	53	47	7	1,066	1,005	
	WASHINGTON WEBB	2 2	72 945	1,312	1,179 15,019	142 1.935	12,613 159,968	11,816 144,200	1:
	WHARTON	2	82	1,476	1,322	164	12,029	11,416	
	WICHITA WILBARGER	3	86	1,659	1,454	219	35,609 414	33,234 386	
	WILLACY	2	37	688	609	84	4,218	3,905	
	WINKLER WISE	3	70	1.251		0 161	0 21.438	0 20.138	
	YOUNG	3	10	182	159	24	3,530	3,295	
	ZAPATA ZAVALA	2 2	0	0	0	0	0	0 610	
	TOTAL	- 2	102,647		64	217,883		010	1,700

Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties

County	Plant		CM Zones		
Andrews	Fullerton	H 0.10	N 0.58	W 99.31	S 0.01
Atascosa	San Miguel	11.04	0.74	0.04	88.18
	Bastrop Energy Center Lost Pines 1 Pow er Project				
Bastrop	Sim Gideon 1	11.04	0.74	0.04	88.18
	Sim Gideon 2				
	Sim Gideon 3 Arthur Von Rosenberg				
	Covel Gardens				
	J K Spruce				
	J K Spruce 2 JT Deely 1				
	JT Deely 2				
Bexar	Leon Creek	11.04	0.74	0.04	88.18
Dexai	O W Sommers 1 O W Sommers 2	11.04	0.74	0.04	00.10
	University of Texas at San Antonio				
	V H Braunig 1				
	V H Braunig 2 V H Braunig 3				
	V H Braunig 6				
Bosque	W B Tuttle Bosque County Peaking	13.35	81.87	3.95	0.84
	BASF Freeport Works	10.00	01.07	0.00	0.04
	Chocolate Bayou Plant				
Brazoria	Chocolate Bayou Works Dow Chemical Texas Operation	99.06	0.01	0.00	0.93
	Freeport Energy Center (expansion)	00.00	0.01	0.00	0.00
	Oyster Creek Unit VIII				
	Sw eeny Cogen Facility Bryan 3	+			
	Bryan 4				
	Bryan 5	\dashv			
Brazos	Bryan 6 Bryan 7	13.09	72.93	3.52	10.45
	Densby 1				
	Dansby 2				
	Dansby 3 Point Comfort Operations				
Calhoun	Seadrift Coke LP	11.04	0.74	0.04	88.18
	Union Carbide Seadrift Cogen La Palma 4				
	La Palma 5				
Cameron	La Palma 6	11.04	0.74	0.04	88.18
	La Palma 7				
	Silas Ray Baytown Energy Center				
Chambers	Cedar Bayou 1	99.06	0.01	0.00	0.93
	Cedar Bayou 2 Enterprise Products Operating	-			
	Stryker Creek 1				
Cherokee	Stryker Creek 2	13.35	81.87	3.95	0.84
Coke	Stryker Creek 3 Jameson Gas Processing Plant	0.00	0.00	0.00	0.00
	Ray Olinger 2	0.00	0.00	0.00	0.00
Collin	Ray Olinger 3	13.35	81.87	3.95	0.84
Colin	Ray Olinger 4 Ray Olinger 5	13.35	01.07	3.95	0.84
	University of Texas at Dallas				
	C E New man				
Dallas	Lake Hubbard 1 Lake Hubbard 2	13.35	81.87	3.95	0.84
	Mountain Creek				
	State Farm Insur Support Center Central				
Denton	Spencer 5	13.35	81.87	3.95	0.84
	Odessa Ector Generating Station				
Ector	Quail Run Energy Center	0.97	0.60	91.36	7.07
	Quail Run Energy Center Quail Run Energy Center	7			
Elis	Ennis Tractebel Pow er LP	13.35	81.87	3.95	0.84
Fannin	Midlothian Energy Facility Valley	13.35	81.87	3.95	0.84
	Fayette Pow er Project				
Fayette	Winchester Power Park	11.89	30.55	1.48	56.09
	Brazos Valley Generating Facility W A Parish 1				
	W A Parish 2				
	W A Parish 3				
Fort Bend	W A Parish 4 W A Parish 5	99.06	0.01	0.00	0.93
	W A Parish 7 (Uprated)				
	W A Parish 8				
	W A Parish GT1 Big Brown 1 (Upgrade)	+			
Freestone	Big Brown 2	13.35	81.87	3.95	0.84
	Freestone Pow er Generation LP	+			
Frio	Pearsall 1 Pearsall 2	0.10	0.58	99.31	0.01
	Pearsall 3		0.38	33.31	3.01
	Green Power 2	1			
	P H Robinson Pow er Station 4	\dashv			
Galveston	S&L Cogeneration	99.06	0.01	0.00	0.93
	Texas City Plant Union Carbide				
			İ	İ	Ì
	Texas City Power Plant				
Goliad	Valero Refining Texas City Coleto Creek	0.00	0.00	0.00	0.00
Goliad Grimes	Valero Refining Texas City	0.00 0.00	0.00	0.00	0.00

Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties (Continued)

County	Plant	Н	CM Zones F N	Percentage W	s
	AES Deepw ater		.,	••	
	Altura Cogen				
	Bayou Cogen Plant				
	Cedar Bayou 4				
	Channel Energy Center Channelview Cogeneration Plant				
	Clear Lake Cogeneration Ltd				
	Deepw ater				
	Deer Creek Energy Center				
	Deer Park Energy Center				
	Exelon LaPorte Generating Station				
	ExxonMobil Baytow n Refinery ExxonMobil Baytow n Turbine				
	Greens Bayou 5				
	Greens Bayou Others				
	Hiram Clarke				
Harris	Houston Chemical Complex Battleground	99.06	0.01	0.00	0
	Pasadena Pasadena Cogeneration				
	Pasadena Cogeneration Rice University				
	Sam Bertron 1				
	Sam Bertron 2				
	Sam Bertron 3				
	Sam Bertron 4				
	Sam Bertron Others				
	San Jacinto Steam Electric Station Shell Deer Park				
	T H Wharton				
	Texas Medical Center				
	Texas Petrochemicals				
	Valero Refining Texas Houston				
	Webster Westhellow Technology Contor				
	Westhollow Technology Center Hays Energy Project				
lays	Southwest Texas State University	11.04	0.74	0.04	88
lenderson	Trinidad	13.35	81.87	3.95	(
	Frontera Energy Center				
idalgo	Hidalgo Energy Center	44.04	0.74	0.04	00
iuaigo	J L Bates 1 J L Bates 2	11.04	0.74	0.04	88
	Magic Valley Generating Station				
	DeCordova Steam Electric Station 1				
lood	DeCordova Steam Electric Station CTs	13.35	81.87	3.95	(
	Wolf Hollow I, L.P.				
low ard	Big Spring Carbon Plant	0.20	0.59	98.34	(
	C R Wing Cogen Plant Engine Plant				
lunt	Greenville	11.08	2.24	0.11	86
	Pow erlane Plant				
ack	Jack County Project	13.35	81.87	3.95	(
	Jack Energy Facility				
ohnson aufman	Johnson County Forney Energy Center	13.35 13.35	81.87 81.87	3.95 3.95	(
	Lamar Pow er Project				
amar	Paris Generating Station	13.35	81.87	3.95	(
imestone	Limestone 1	0.00	0.00	0.00	(
	Limestone 2 (Uprated)				
ano	Thomas C Ferguson	11.04	0.74	0.04	88
	Baylor University Cogen Lake Creek				
lcLennan	Tradinghouse 1	13.35	81.87	3.95	(
	Tradinghouse 2				
	Sandow 5				
filam	Sandow No 4	11.04	0.74	0.04	88
fitchell	Sandow Station	0.40	0.58	99.31	(
olan	Morgan Creek TXU Sw eetw ater Generating Plant	0.10 0.10	0.58	99.31	
	Barney M. Davis 1	5.10	5.50	55.51	
	Barney M. Davis 2				
	Barney M. Davis Power Plant (repowering)				
	Celanese Engineering Resin				
lueces	Corpus Christi	11.04	0.74	0.04	88
	Corpus Christi Energy Center Corpus Refinery				
	Nueces Bay Power Plant (repowering)				
	Valero Refinery Corpus Christi East				
	Valero Refinery Corpus Christi West				
	R W Miller 1				
alo Pinto	R W Miller 2 R W Miller 3	13.35	81.87	3.95	(
	R W Miler 3 R W Miller Others				
	North Texas	40	04	0	
arker	Weatherford	13.35	81.87	3.95	(
ecos	Yates Gas Plant	0.10	0.58	99.31	(
eagan	Midkiff Plant	0.10	0.58	99.31	(
	Oak Grove 1				
obertson	Oak Grove 2	11.34	11.28	0.55	76
	Twin Oaks Power One 1 Twin Oaks Power One 2				
usk	Martin Lake	0.00	0.00	0.00	(
	Gregory Power Facility				
an Patricio	Ingleside Cogeneration	11.04	0.74	0.04	88
curry	EG178 Facility	0.10	0.58	99.31	(
	Eagle Mountain	40.05	81.87	3.95	(
arrant	Handley	13.35			

Table 9: Allocation of CM Zones for Each of Applicable ERCOT Counties (Continued)

0	Di	· ·	CM Zones Per	centage	
County	Plant	Н	N	W	S
	Central Utility Plant				
	Decker Creek 1				
	Decker Creek 2				
	Decker Creek GT (1-4)				
Travis	Hal C Weaver Power Plant	11.04	0.74	0.04	88.18
	Holly Street 3				
	Holly Street 4				
	Mueller Energy Center				
	Sand Hill				
Upton	Benedum Plant	0.10	0.58	99.31	0.01
	Sam Rayburn				
Victoria	Victoria (refurbish)	11.04	0.74	0.04	88.18
	Victoria Texas Plant				
	Permian Basin 5				
Ward	Permian Basin 6	0.10	0.58	99.31	0.01
	Permian Basin Others				
	Laredo 1				
Webb	Laredo 2	11.04	0.74	0.04	88.18
Webb	Laredo 3	11.04	0.74	0.04	00.10
	Laredo Energy Center (refurbish)				
	Colorado Bend Energy Center				
Wharton	Colorado Bend Energy Center	11.04	0.74	0.04	88.18
vviiaitori	Colorado Bend Energy Center	11.04	0.74	0.04	00.10
	New gulf Cogen				
Wichita	PPG Industries Works 4	0.10	0.58	99.31	0.01
vvicilita	Signal Hill Wichita Falls Power LP	0.10	0.56	99.31	0.01
Wilbarger	Oklaunion	13.35	81.87	3.95	0.84
Wise	Bridgeport Gas Processing Plant	13.35	81.87	3.95	0.84
AAISC	Wise County Power LP	13.33	01.07	3.93	0.04
Young	Graham 1	13.35	81.87	3.95	0.94
i oung	Graham 2	13.35	81.87	3.95	0.84

Table 10: 2016 Totalized Annual Electricity Savings by CM Zone from New Single-family Residences

CM Zone	Total Electricity Savings by CM Zone (MWh) [2016-TRY 2008]
Houston (H)	73,840
North (N)	56,475
West (W)	4,246
South (S)	40,086
Total	174,648

Table 11: 2016 Annual NOx Reductions from New Single-family Residences Using 2010 eGRID

Area	County	Н	NOx Reductions (lbs)	N	NOx Reductions (lbs)	w	NOx Reductions (lbs/year)	s	NOx Reductions (lbs)	Total Nox Reductions (lbs)	Total Nox Reductions (Tons)
	Brazoria	0.0562032	4150.05	0.0000071	0.40	0.0000003	0.00	0.0005265	21.11	4171.57	2.09
	Chambers	0.0204500	1510.03	0.0000071	0.15	0.0000001	0.00	0.0003203	7.68	1517.86	0.76
Houston-	Fort Bend	0.0313463	2314.62	0.0000020	0.22	0.0000002	0.00	0.0002937	11.77	2326.62	1.16
Galveston Area	Galveston	0.0226620	1673.36	0.0000029	0.16	0,0000001	0.00	0.0002123	8.51	1682.04	0.84
	Harris	0.1486911	10979.38	0.0000189	1.07	0.0000009	0.00	0.0013930	55.84	11036.29	5.52
	Collin	0.0012932	95.49	0.0079329	448.01	0.0003832	1.63	0.0000809	3.24	548.37	0.27
	Dallas	0.0024826	183.32	0.0152295	860.09	0.0007356	3.12	0.0001554	6.23	1052.75	0.53
	Denton	0.0001267	9.35	0.0007770	43.88	0.0000375	0.16	0.0000079	0.32	53.71	0.03
Dallas/ Fort	Tarrant	0.0004742	35.01	0.0029089	164.28	0.0001405	0.60	0.0000297	1.19	201.08	0.10
Worth Area	Ellis	0.0029920	220.93	0.0183544	1036.56	0.0008865	3.76	0.0001873	7.51	1268.76	0.63
,	Johnson	0.0007256	53.58	0.0044512	251.38	0.0002150	0.91	0.0000454	1.82	307.69	0.15
	Kaufman	0.0059718	440.96	0.0366343	2068.92	0.0017695	7.51	0.0003738	14.98	2532.37	1.27
	Parker	0.0000012	0.09	0.0000075	0.43	0.0000004	0.00	0.0000001	0.00	0.52	0.00
	Wise	0.0010202	75.33	0.0062583	353.44	0.0003023	1.28	0.0000638	2.56	432.61	0.22
San Antonio Area	Bexar	0.0138906	1025.68	0.0009368	52.91	0.0000452	0.19	0.1109355	4446.98	5525.76	2.76
Area	Guadalupe	0.0032029	236.50 249.45	0.0002160	12.20	0.0000104	0.04	0.0255795	1025.38	1274.13	0.64
Austin Area	Bastrop	0.0033782	61.52	0.0002278	12.87	0.0000110	0.05	0.0269798 0.0066537	1081.51 266.72	1343.88 331.42	0.67
Ausun Area	Hays Travis	0.0008331	382.38	0.0000562	19.72	0.0000027	0.01	0.0066537	1657.87	2060.05	1.03
Corpus Christi	Nueces	0.0031783	949.42	0.0003493	48.97	0.0000169	0.07	0.0415577	4116.33	5114.90	2.56
Area	San Patricio	0.0015100	111.50	0.0001018	5.75	0.0000419	0.10	0.1020570	483.40	600.67	0.30
Victoria Area	Victoria	0.0021192	156.48	0.0001010	8.07	0.0000049	0.03	0.0169244	678.43	843.01	0.42
victoria Arca	Andrews	0.0000037	0.28	0.0001429	1.30	0.0039003	16.56	0.0000002	0.01	18.15	0.42
	Bosque	0.0022204	163.96	0.0136212	769.25	0.0006579	2.79	0.0001390	5.57	941.58	0.47
	Brazos	0.0024089	177.87	0.0112305	634.24	0.0005425	2.30	0.0047829	191.73	1006.15	0.50
	Calhoun	0.0009466	69.90	0.0000638	3.61	0.0000031	0.01	0.0075598	303.04	376.56	0.19
	Cameron	0.0063536	469.15	0.0004285	24.20	0.0000207	0.09	0.0507425	2034.07	2527.51	1.26
	Cherokee	0.0027392	202.26	0.0168033	948.97	0.0008116	3.45	0.0001714	6.87	1161.54	0.58
	Ector	0.0019215	141.88	0.0006604	37.29	0.0911346	387.00	0.0146527	587.37	1153.55	0.58
	Fannin	0.0000041	0.30	0.0000249	1.40	0.0000012	0.01	0.0000003	0.01	1.72	0.00
	Fayette	0.0051867	382.99	0.0103217	582.92	0.0004986	2.12	0.0283993	1138.42	2106.44	1.05
	Freestone	0.0047643	351.80	0.0292268	1650.58	0.0014117	5.99	0.0002982	11.95	2020.33	1.01
	Henderson	0.0006908	51.01	0.0042376	239.32	0.0002047	0.87	0.0000432	1.73	292.93	0.15
	Hidalgo	0.0053716	396.64	0.0003623	20.46	0.0000175	0.07	0.0428994	1719.67	2136.84	1.07
	Hood	0.0050771	374.89 17.80	0.0311454	1758.93 43.15	0.0015044	6.39 545.22	0.0003178 0.0009490	12.74 38.04	2152.95 644.22	1.08 0.32
	Howard	0.0002411 0.0088463	653.21	0.0007641	265.81	0.1283942 0.0002273	0.97	0.0009490	2616.92	3536.90	1.77
Other ERCOT	Hunt Jack	0.0088463	227.30	0.0047066	1066.47	0.0002273	3.87	0.0032823	7.72	1305.36	0.65
counties	Lamar	0.0040001	295.37	0.0166639	1385.83	0.0009121	5.03	0.0001927	10.04	1696.27	0.05
countres	Llano	0.0040001	297.68	0.00243388	15.35	0.0011833	0.06	0.0002304	1290.64	1603.73	0.80
	McLennan	0.0056576	417.76	0.0347066	1960.05	0.0000151	7.12	0.0003541	14.19	2399.13	1.20
	Milam	0.0012686	93.67	0.0000856	4.83	0.0000041	0.02	0.0101316	406.14	504.66	0.25
	Mitchell	0.0000311	2.30	0.0001910	10.78	0.0324260	137.70	0.0000019	0.08	150.86	0.08
	Nolan	0.0000293	2.16	0.0001795	10.14	0.0304745	129.41	0.0000018	0.07	141.78	0.07
	Palo Pinto	0.0036129	266.78	0.0221635	1251.68	0.0010705	4.55	0.0002261	9.06	1532.07	0.77
	Pecos	0.0000020	0.15	0.0000121	0.68	0.0020520	8.71	0.0000001	0.00	9.55	0.00
	Robertson	0.0039506	291.71	0.0055755	314.87	0.0002693	1.14	0.0246170	986.80	1594.53	0.80
	Upton	0.0000025	0.19	0.0000156	0.88	0.0026494	11.25	0.0000002	0.01	12.33	0.01
	Ward	0.0001995	14.73	0.0012239	69.12	0.2078335	882.56	0.0000125	0.50	966.91	0.48
	Webb	0.0042017	310.26	0.0002834	16.00	0.0000137	0.06	0.0335565	1345.15	1671.47	0.84
	Wharton	0.0021095	155.77	0.0001423	8.03	0.0000069	0.03	0.0168474	675.35	839.18	0.42
	Wichita	0.0000121	0.89	0.0000743	4.20	0.0126190	53.59	0.0000008	0.03	58.71	0.03
	Wilbarger	0.0179710	1326.98	0.1102430	6225.96	0.0053249	22.61	0.0011247	45.09	7620.64	3.81
	Young	0.0071054 0.4414501	524.66 32596.75	0.0435880 0.4812863	2461.63 27180.58	0.0021054 0.5345786	8.94 2270.07	0.0004447 0.6829349	17.83 27376.23	3013.06 89423.63	1.51 44.71
	Total	0.4414501	34390./5	0.4812863	4/180.58	0.5345/86	44/0.07	0.0829349	2/3/0.23	69423.63	44./1
Energy											
Savings by PCA											
(MWh)		73,840		56,475		4.246		40.086			
(1717711)	l	/5,840		30,4/5		4,246		40,086			

4.2 2016 Results for New Multi-family Residential Construction

This section provides the potential electricity and natural gas savings and the associated NOx emissions reductions in 2016 using the 2008 base year which implemented the 2015 IECC for new multi-family residences in the 36 non-attainment and affected counties as well as other counties in the ERCOT region²⁶. To calculate the NOx emissions reductions, the following procedures were adopted. First, new construction activity was determined by county. To accomplish this, the number of 2016 building permits per county was obtained from the real estate center at Texas A&M University (REC 2017). Next, energy savings attributable to the 2015 IECC were calculated using the Laboratory's code-traceable, DOE-2.1e simulation, which was developed for the TERP. For the savings calculation, the 2016 HIRL's survey data²⁷ were used to determine the appropriate construction data corresponding to housing types. Then, the NOx reductions potential from the electricity and natural gas savings in each county was calculated using the US EPA's 2010 eGRID database²⁸.

In Table 12²⁹, the 2016 new multi-family and 2015 IECC code-compliant building characteristics are shown for each county. The 2015 IECC code-compliant characteristics are the minimum building code characteristics required for each county for multi-family residences (i.e., Type A.2). In Table 12, the rows are first sorted by the US EPA's non-attainment, affected designation, and other ERCOT counties, alphabetically. Next, in the fourth column, the HIRL's survey classification is listed. The fifth through eighth columns show the HIRL's survey data including: average glazing U-value, Solar Heat Gain Coefficient (SHGC), roof insulation, and wall insulation, respectively. In addition, the ninth through twelfth columns show the 2015 IECC minimum requirements for glazing U-value, SHGC, roof insulation, and wall insulation.

The corresponding values in IECC and effective regulations are applied to the air-conditioner efficiency, furnace efficiency (AFUE), and domestic water heater efficiency. The values shown in Table 12 represent the only changes that were made to the simulations to obtain the savings calculations.

In cases where the 2016 new multi-family values were more efficient than the 2015 IECC requirements, the 2016 new multi-family values were used in 2016 new multi-family simulations. Otherwise, the 2015 IECC values were used in both simulations. For the 2016 new multi-family simulations, the more efficient values from 2016 HIRL data and 2015 IECC were applied. Similarly, for the base-year simulations, the more efficient values from 2008 NAHB data and 2006 IECC were used.

In Table 13, the code-traceable simulation results for multi-family residences are shown for each county. In a similar fashion to Table 12, Table 13 is first divided into the US EPA's non-attainment and affected classifications, followed by an alphabetical list of other ERCOT counties. In the third column, the 2015 IECC climate zone is listed followed by the number of new projected housing units³⁰ in the fourth column. In the fifth column, the total simulated energy use is listed if all new Construction had been built to pre-code specifications. In the sixth column, the total county-wide energy use for code-compliant Construction is shown. The values in the fifth and sixth columns come from the associated 144 simulation runs for each county, which were then distributed according to the HIRL's survey data to account for 1, 2 or 3 story, and 3 different fuel options (i.e., central air conditioning with electric resistance heating, heat pump heating, or a natural gas-fired furnace). In the seventh column, the total annual electricity savings are shown for each county. A 7% transmission and distribution loss is used, which represents a fixed 1.07 multiplier for the electricity use. In the eighth and ninth columns, the total annual pre-code and codecompliant natural gas use is shown for those residences that had natural gas-fired furnaces and domestic water heaters. Finally, in the tenth column, the total annual natural gas savings are shown for each county.

The annual electricity savings from Table 13 are assigned to CM Zones³¹ provider(s) in a similar fashion to the single-family residential assignments. The total electricity savings for each CM Zone, as shown in Table 14, are then

²⁶ The three new counties added in the 2003 Legislative session (i.e., Henderson, Hood, and Hunt) were included in the ERCOT region.

²⁷ The NAHB Research Center announced that it has changed its name to Home Innovation Research Labs (HIRL). See more at: http://www.homeinnovation.com

²⁸ This analysis assumes transmission and distribution losses of 7%. Counties were assigned to utility service districts as indicated.

²⁹ Hardin, Jefferson, and Orange Counties were removed from Table 12 and Table 13 because since 2012 they are not in the category of "Nonattainment County" based on [http://www.tceq.texas.gov/airquality/sip/bpa/bpa-status], and these counties do not belong to ERCOT region.

³⁰ The number of the new housing units in 2015 were obtained from the Real Estate Center at Texas A&M University.

³¹ ERCOT region has employed the Congestion Management (CM) since 2010, and it is currently divided into four zones: Houston (H), North (N), South (S), and West (W).

entered into the bottom row of Table 15, the 2010 US EPA's eGRID database for Texas. Next, the county's NOx reductions (lbs) are calculated using the assigned 2010 eGrid proportions (lbs-NOx/MWh) to each CM zone in the county. The calculated NOx reductions are presented in the columns adjacent to the corresponding CM Zone columns. By adding the NOx reductions values in each row, then, the total of the NOx reductions per county (lbs and Tons) is calculated. Counties that do not show NOx reductions represent counties that do not have power plants in eGRID's database.

Table 12: 2016 and 2015 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Multi-family Residences

			Division		2016 A	verage			2015	5 IECC	
	County	Climate Zone	East or West	Glazing U-value	SHGC	Roof Insulation	Wall Insulation	Glazing U-value	SHOC	Roof Insulation	Wall Insulati
				(Btu/hr-ft ² -F)		(hr-ft ² -F/Btu)	(hr-ft ² -F/Btu)	(Btu/hr-ft ² -F)		(hr-ft ² -F/Btu)	(hr-ft ² -F/Bt
	BRAZORIA CHAMBERS	2	East Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13
	COLLIN	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	DALLAS	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	DENTON HL PASO	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38 38	20
	HLIS	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	FORT BEND	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	GALVESTON	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
n-attainment	HARRIS JOHNSON	3	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13 20
	KAUFMAN	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	LIBERTY	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	MONTGOMERY PARKER	2	East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13 20
	ROCKWALL	3	West Texas West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	TARRANT	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	WALLER	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	WISE BASTROP	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38 38	20
	BEXAR	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	CALDWELL	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	COMAL	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	GREGG GUADALUPE	3	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38	20 13
	HARRISON	3	East Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	HAYS	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
Affected	NUECES	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	RUSK SAN PATRICIO	3	East Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38	20 13
	SAN PATRICIO SMITH	3	East Texas East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	20
	TRAVIS	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	UPSHUR	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	VICTORIA WILLIAMSON	2	East Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13
	WILLIAMSON	2	West Texas West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	ANDERSON	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	ANDREWS	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	ANGELINA	2	East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13
	ARANSAS	3	East Texas West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	ATASCOSA	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	AUSTIN	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BANDERA	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BAYLOR BAYLOR	2	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13 20
	BEE	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BELL.	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BEXAR	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BLANCO BORDEN	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	BOSQUE	2	West Texas	0.39	0.53	30.703	15.172	0.33	0.25	38	13
	BRAZORIA	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BRAZOS	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BREWSTER BRISCOE	3 4	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38 49	20 20
	BRISCOE BROOKS	2	West Texas East Texas	0.39	0.53	30.703	15.172	0.35	0.4	38	13
	BROWN	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	BURLESON	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	BURNET	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	CALHOUN	2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13
	CALLAHAN	3	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	20
	CAMERON	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	CHAMBERS	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	CHEROKEE	2	East Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38	13
	CLAY	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	COKE	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
ERCOT	COLEMAN	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	COLUN	3 2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38 38	20 13
	COMAL	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	COMANCHE	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	CONCHO	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	COOKE	3	West Texas West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	13
	COTTLE	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	CRANE	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	CROCKETT	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38	20 20
	CROSBY CULBERSON	3	West Texas West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	DALLAS	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	DAWSON	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	DE WITT	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	DELTA DENTON	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38	20 20
	DICKENS	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	DIMMIT	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	DUVAL	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	EASTLAND	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	ECTOR EDWARDS	3 2	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38 38	20 13
	ELLIS ELLIS	3	West Texas West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	ERATH	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	FALLS	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	FANNIN FAYETTE	3 2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25 0.25	38 38	20
	PAIRLIE	1 2		0.39	0.53	30.703	15.172	0.4	0.25	38	13
	FISHER	3									
	FISHER FOARD	3	West Texas West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
		3 2 3									

Table 12: 2016 and 2015 IECC Code-compliant Building Characteristics Used in the DOE-2 Simulations for New Multi-family Residences (Continued)

	County	Climate Zone	Division East or West	Glazing U-value	SHOC	Roof Insulation	Wall Insulation	Glazing U-value	SHGC	Roof Insulation	Wall Insulation (hr-ft ² -F/Btu)
	FRIO	2	West Texas	(Btu/hr-ft ² -F) 0.39	0.53	(hr-ft ² -F/Btu) 30.703	(hr-ft ² -F/Btu) 15.172	(Btu/hr-ft ² -F)	0.25	(hr-ft ² -F/Btu) 38	(hr-ft*-F/Btu)
	GALVESTON GILLESPIE	2	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.35	0.25	38 38	13 20
	GLASSCOCK GOLIAD	3 2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25 0.25	38 38	20 13
	GONZALES	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	GRAYSON GRIMES	3	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25	38 38	20 13
	GUADALUPE HALL	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4	0.25	38	13 20
	HAMILTON HARDEMAN	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25	38 38	20 20
	HARRIS HASKELL	2	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25	38 38	13 20
	HAYS	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	HENDERSON HIDALGO	3	East Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25 0.25	38 38	20 13
	HILL HOOD	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.35	0.25	38 38	13 20
	HOPKINS HOUSTON	3	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25	38 38	20 13
	HOWARD HUDSPETH	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	HUNT	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	JACK	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38	20 20
	JACKSON JEFF DAVIS	3	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25	38 38	13 20
	JIM HOGG JIM WELLS	2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.4	0.25	38 38	13 13
	JOHNSON JONES	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	KARNES	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	KAUFMAN KENDALL	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	KENEDY	3	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.35	0.25	38 38	13 20
	KERR KIMBLE	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	KING	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	KINNEY KLEBERG	2	West Texas East Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4 0.4	0.25	38 38	13 13
	KNOX LA SALLE	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25 0.25	38 38	20 13
	LAMAR LAMPASAS	3	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	LAVACA LEE	2	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.4	0.25	38 38	13 13
	LEON	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	LIMESTONE LIVE OAK	2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.4	0.25	38 38	13 13
	LLANO LOVING	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38 38	20 20
	MADISON MARTIN	2	East Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4	0.25	38 38	13 20
	MASON MATAGORDA	3 2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25 0.25	38 38	20 13
	MAVERICK	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	MCCULLOCH MCLENNAN	2	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25	38 38	20 13
	MCMULLEN MEDINA	2	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.4	0.25	38	13 13
ERCOT	MENARD MIDLAND	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25	38 38	20 20
1ACO1	MILAM	2	West Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	MILLS MITCHELL	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38	20
	MONTAGUE MONTGOMERY	3	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25	38 38	20 13
	MOTLEY NACOGDOCHES	3	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25	38 38	20 20
	NAVARRO NOLAN	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	NUECES PALO PINTO	2	East Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4	0.25	38	13
	PARKER	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	PECOS PRESIDIO	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38 38	20 20
	RAINS REAGAN	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25	38 38	20 20
	REAL RED RIVER	2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.35	0.25 0.25	38 38	13 20
	REEVES REFUGIO	3	West Texas East Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38	20
	ROBERTSON	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	ROCKWALL RUNNELS	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	RUSK SAN PATRICIO	3	East Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25 0.25	38 38	20 13
	SAN SABA SCHLEICHER	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25	38 38	20 20
	SCURRY SHACKELFORD	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38	20
	SMITH	3	East Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	SOMERVELL STARR	2	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25	38	20 13
	STEPHENS STERLING	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35	0.25	38 38	20 20
	STONEWALL SUTTON	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25 0.25	38 38	20 20
	TARRANT TAYLOR	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38	20
	TERRELL	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	THROCKMORTON TITUS	3	West Texas East Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.35	0.25	38 38	20 20
	TOM GREEN TRAVIS	3	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25	38 38	20 13
	UPTON UVALDE	3 2	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.35 0.4	0.25	38 38	20 13
	VAL VERDE VAN ZANDT	2	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4	0.25	38	13
	VICTORIA	2	East Texas	0.39	0.53	30.703	15.172	0.4	0.25	38	13
	WALLER WARD	3	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25 0.25	38 38	13 20
	WASHINGTON WEBB	2	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.4	0.25	38 38	13 13
	WHARTON WICHITA	2	East Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.4	0.25	38	13
	WILBARGER	3	West Texas	0.39	0.53	30.703	15.172	0.35	0.25	38	20
	WILLIACY WILLIAMSON	2	East Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4 0.4	0.25 0.25	38 38	13 13
	WILSON WINKLER	2	West Texas West Texas	0.39	0.53 0.53	30.703 30.703	15.172 15.172	0.4	0.25	38 38	13 20
								_			
	WISE YOUNG	3	West Texas West Texas	0.39	0.53	30.703 30.703	15.172 15.172	0.35	0.25	38	20 20

Table 13: 2016 Annual Electricity Savings from New Multi-family Residences

	County	Climate Zone	No. of Projected Units (2013)	Precode Total Annual Elec. Use (MWh/yr)	Code- compliant Total Annual Elec. Use (MWh/yr)	Total Annual Elec. Savings (MWh/yr) w/ 7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code-compliant Total NG Use (Therm/yr)	Total Annual ! Savings (Therm/yr)
	BRAZORIA CHAMBERS	2	21	3,307 0	3,114 0	206.26	7,746	7,626 0	119
	COLLIN	2	4,957	818,549	749,530	73,850.43	2,395,102	2,174,643	220,459
	DALLAS DENTON	2	12,907	2,129,835 200,798	1,951,368 183,867	190,959.81 18,116.22	6,255,803 587,542	5,677,088 533,461	578,715 54,080
	EL PASO	3	835	135,973	123,289	13,571.78	384,882	347,327	37,554
	FLLIS	3	5	825	756	73.98	2,423	2,199	224
onattain-	FORT BEND GALVESTON	2 2	502 32	79,066 5,039	74,451 4,746	4,938.13 314.30	185,171 11,804	182,304 11,621	2,866 182
ment	HARRIS	2	7,150	1,126,139	1,060,406	70,333.86	2,637,391	2,596,562	40,828
County	JOHNSON	3	238	39,273	35,982	3,521.22	115,355	104,683	10,671
	KAUFMAN LIBERTY	2	4	661	605	59.59 0.00	1,933	1,755	177
	MONTGOMERY	3	1,362	214,518	201,996	13,397.86	502,395	494,618	7,777
	PARKER	2	57	9,412	8,619	849.20	27,541	25,006	2,535
	ROCKWALL	2	0	0	0	0.00	0	0	0
	TARRANT WALLER	3 2	6,675 292	1,101,468 45,991	1,009,172 43,306	98,757.01 2,872.38	3,235,259 107,709	2,935,970 106,041	299,289
	WISE	3	6	991	907	89.39	2,899	2,632	266
	BASTROP	3	30	4,898	4,524	400.79	12,695	11,429	1,265
	BEXAR	3	4,317	698,714	644,222	58,306.51	1,754,344	1,571,172	183,172
	CALDWELL COMAL	3	1,172	1,633 189,690	1,508 174,897	133.60 15,829.33	476,278	426,549	49,728
	GREGG	2	1,172	189,090	174,897	0.00	4/0,2/8	420,349	49,720
	GUADALUPE	3	0	0	0	0.00	0	0	(
	HARRISON	3	28	4,513	4,234	298.29	12,100	12,309	-209
Affected	HAYS NUECES	3	546 25	89,164 3 943	82,336 3,697	7,305.28	230,952	207,925	23,020
County	RUSK	2	25	3,943	3,697	263.33	7,892	7,802	90
	SAN PATRICIO	3	252	39,742	37,261	2,654.32	79,553	78,644	909
	SMITH	3	127	20,455	19,203	1,340.38	54,973	55,908	-934
	TRAVIS	3	6,331	1,033,874	954,709	84,706.47	2,677,946	2,410,945	267,000
	UPSHUR VICTORIA	3 2	0	0	0	0.00	0	0	(
	WILLIAMSON	2	1,617	264,062	243,842	21,634.87	683,974	615,779	68,194
	WILSON	2	0	0	0	0.00	0	0	(
	ANDERSON	2	0		0	0.00	0	0	(
	ANDREWS ANGELINA	3 2	0		588	0.00 43.57	1,542	1,563	-2
	ARANSAS	2	2	315	296	21.07	631	624	-2
	ARCHER	3	0		0	0.00	0	0	(
	ATASCOSA	2	0		0	0.00	0	0	(
	AUSTIN BANDERA	2	6		890	59.02 0.00	2,213	2,179	34
	BAYLOR	3	0		0	0.00	0	0	(
	BEE	2	0	0	0	0.00	0	0	(
	BELL	2	526	89,089	80,843	8,823.43	257,848	224,300	33,541
	BLANCO BORDEN	3	5	817	754	66.90	2,115	1,904	210
	BOSQUE	2	0	0	0	0.00	0	0	
	BRAZOS	2	1,642	258,618	243,523	16,152.19	605,678	596,301	9,370
	BREWSTER	3	8	1,381	1,243	147.19	4,473	3,962	51
	BRIS COE BROOKS	4 2	0		0	0.00	0	0	(
	BROWN	3	3		461	50.32	1,471	1,279	19:
	BURLESON	2	0	0	0	0.00	0	0	
	BURNET	3	98	16,004	14,778	1,311.20	41,453	37,320	4,13.
	CALHOUN	2	0		0	0.00	0	0	(
	CALLAHAN CAMERON	3	352		52,911	4,566.00	106.115	104,948	1,16
	CHEROKEE	2	0	0	0	0.00	0	0	1,10
	CHILDRESS	3	0	0	0	0.00	0	0	(
	CLAY	3	42		6,856	841.82	26,914	23,691	3,22
ERCOT	COLEMAN	3	0		0	0.00	0	0	(
	COLORADO	2	0	0	0	0.00	0	0	
	COMANCHE	3	0		0	0.00	0	0	
	COOKE	3	0		0	0.00	0	0	
	CORYELL	2	20		3,074	335.49	9,804	8,528	1,27
						0.00	2,804	0	
	COTTLE	3	0		0				
	COTTLE CRANE	3	0	0	0	0.00	0		
	COTTLE CRANE CROCKETT	3 3 3	0	0	0	0.00	0	0	
	COTTLE CRANE	3 3 3	0	0 0	0	0.00 0.00 0.00	0		
	COTTLE CRANE CROCKETT CROSBY CULBERSON DAWSON	3 3 3	0 0 0	0 0 0	0 0	0.00 0.00 0.00 0.00	0 0	0	
	COTTLE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT	3 3 3 3 3 3	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0.00 0.00 0.00 0.00 0.00	0 0 0 0 0	0 0 0 0	(
	COTTLE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT DELTA	3 3 3 3 3 3 2 3	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0	0 0 0 0 0	(
	COTTLE CRANE CROCKEIT CROSBY CULBERSON DAWSON DE WITT DELTA DICKENS	3 3 3 3 3 3 2 3	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0	0 0 0 0 0	(
	COTTLE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT DELTA	3 3 3 3 3 3 2 3	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0	0 0 0 0 0	
	COTTLE CRANE CROCKETT CROCKETT CROSBY CULBERSON DAWSON DE WITT DELTA DICKENS DIMMIT DUVAL EASTLAND	3 3 3 3 3 3 2 3 3 2 2 3 3 2 2 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
	COTTLE CRANE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT DELTA DICKENS DIMMIT DUVAL EASTLAND ECTOR	3 3 3 3 3 3 2 2 3 3 2 2 2 3 3 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	
	COTTLE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT DELTA DICKENS DIMMIT DUVAL EASTLAND ECTOR	3 3 3 3 3 3 2 2 3 3 2 2 2 3 3 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	
	COTTLE CRANE CROCKETT CROSBY CULBERSON DAWSON DEWITT DELTA DICKENS DIMMIT DUVAL EASTLAND ECTOR EDWARDS	3 3 3 3 3 3 2 3 3 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	12,27
	COTTLE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT DELTA DICKENS DIMMIT DUVAL EASTLAND ECTOR	3 3 3 3 3 3 2 2 3 3 2 2 2 3 3 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12,27
	COTITE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT DICKENS DIMBUTT DUNAL EASTLAND ECTOR EUTOR EUTOR EASTLAND ETTOR ETTOR EASTLAND EASTL	3 3 3 3 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 2 2 2 2 3 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12,27
	COTITE CRANE CROCKETT CROSET CROSET CRUBERSON DAWSON DE WITT DELTA DICKENS DIMMIT DUVAL EASTLAND ECTOR EDWARDS ERATH FALLS FANNIN FAVETTE FISHER	3 3 3 3 3 2 2 3 3 3 2 2 2 3 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12,277
	COTITE CRANE CROCKETT CROSBY CULBERSON DAWSON DE WITT DICKENS DIMBUTT DUNAL EASTLAND ECTOR EUTOR EUTOR EASTLAND ETTOR ETTOR EASTLAND EASTL	3 3 3 3 3 3 3 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 3 3 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12,27

Table 13: 2016 Annual Electricity Savings from New Multi-family Residences (Continued)

	County	Climate Zone	No. of Projected Units (2013)	Precode Total Annual Elec. Use (MWh/yr)	Code- compliant Total Annual Elec. Use (MWh/yr)	Total Annual Elec. Savings (MWh/yr) w/ 7% of T&D Loss	Precode Total NG Use (Therm/yr)	Code-compliant Total NG Use (Therm/yr)	Total Annual N Savings (Therm/yr)
	GILLESPIE GLASS COCK	3	0	0	0	0.00	0	0	0.0
	GOLIAD GONZALES	2 2	0	0	0	0.00	0	0	0.0
	GRAYSON	3	356	58,766	53,827	5,284.48	172,414	156,552	15,861.9
	GRIMES HALL	3	0	0	0	0.00	0	0	0.
	HAMILTON HARDEMAN	3	0	0	0	0.00	0	0	0.
	HASKELL HENDERSON	3 2	54	0 8,698	8,165	0.00 569.93	23,374	23,772	-397.
	HIDALGO HILL	2	1,647	267,535	247,568	21,364.19	496,508	491,047	5,461. 0.
	HOOD HOPKINS	3	12	1,980	1,814	177.54	5,816	5,278	538
	HOUSTON	3 2	0	0	0	0.00	0	0	0
	HOWARD HUDSPETH	3	0	0	0	0.00	0	0	0
	HUNT IRION	2	0	0	0	0.00	0	0	0
	JACK JACKSON	3 2	0	0	0	0.00	0	0	0
	JEFF DAVIS	3	0	0	0	0.00	0	0	0
	JIM HOGG JIM WELLS	2	2	0 315	0 296	21.07	631	0 624	0. 7.
	JONES KARNES	3 2	0	0	0	0.00	0	0	0.
	KENDALL KENEDY	3 2	288	47,608	43,008	4,922.32	118,951	107,905	11,046
	KENT	3	0	0	0	0.00	0	0	0
	KERR KIMBLE	3	0	0	0	0.00	0	0	0
	KING KINNEY	3 2	0	0	0	0.00	0	0	0
	KLEBERG KNOX	2 3	0	0	0		0	0	0
	LA SALLE LAMAR	2	0 20	3,303	3,024	0.00	9,664	0 8,774	0
	LAMPASAS	3	0	0	0	0.00	0	0	0
	LAVACA LEE	2	0	0	0	0.00	0	0	0
	LEON LIMESTONE	2	0				0	0	0
	LIVEOAK LLANO	2	0 12	0 1,960	0 1,810		5,076	4,570	506
	LOVING	3	0	0	0	0.00	0	0	0
	MADISON MARTIN	2	6	945	890	59.02 0.00	2,213 0	2,179	34 0
	MASON MATAGORDA	3 2	0	0	0	0.00	0	0	0
	MAVERICK MCCULLOCH	2	12 72	1,892 12,429	1,774 11,191	126.40 1,324.73	3,788 40,260	3,745 35,656	43. 4,604.
ERCOT	MCLENNAN	2	1,125	190,542	172,905	18,871.40	551,481	479,728	71,753.
ERCOI	MCMULLEN MEDINA	2	0	0	0	0.00	0	0	0
	MENARD MIDLAND	3	40	6,882	6,178	0.00 752.31	22,565	19,891	2,673
	MILAM MILLS	2	5	788 0	742 0	49.18 0.00	1,844	1,816	28
	MITCHELL MONTAGUE	3	0	0	0	0.00	0	0	0
	MOTLEY	3	0	0	0	0.00	0	0	0
	NACOGDOCHES NAVARRO	3	4	629 1,863	588 1,691	43.57 184.52	1,542 5,392	1,563 4,691	-21 701
	NOLAN PALO PINTO	3	0	0	0	0.00	0	0	0
	PECOS PRESIDIO	3	0	0	0	0.00	0	0	0
	RAINS	3	0	0	0	0.00	0	0	0
	REAGAN REAL	3 2	0	0	0	0.00	0	0	0
	RED RIVER REEVES	3	2	330 0	302 0	29.80 0.00	966 0	877 0	88
	REFUGIO ROBERTSON	2 2	0	0	0	0.00	0	0	0
	RUNNELS SAN SABA	3	0			0.00	0	0	0
	SCHLEICHER	3	0	0	0	0.00	0	0	0
	SCURRY SHACKELFORD	3	0				0		
	SOMERVELL STARR	3 2	20	0	0	295.90 0.00	9,694 0	8,797 0	896 0
	STEPHENS STERLING	3	0	0	0	0.00	0	0	0
	STONEWALL SUITON	3	0		0	0.00	0	0	0
	TAYLOR	3	8	1,394	1,251	152.76	4,539	4,008	530
	TERRELL THROCKMORTON	3	0	0		0.00	0	0	0
	TITUS TOM GREEN	3	0	0	0		0	0	0
	UPTON UVALDE	3 2	0	0	0 597		1.626	1.456	169
	VAL VERDE	2	0	0	0	0.00	0	0	0
	VAN ZANDT WARD	3	0	0	0	0.00	0	0	0
	WASHINGTON WEBB	2	12 213	1,890 33,591	1,780 31,495	118.04 2,243.53	4,426 67,242	4,358 66,473	68 768
	WHARTON WICHITA	2	90	16,377	0 14,691	0.00	57,672	50,767	6,904
	WILBARGER	3	0	0	0	0.00	0	0	0
	WILLACY WINKLER	3	0	0	0	0.00	0	0	0
	WISE YOUNG	3	6		907	89.39 0.00	2,899 0	2,632	266 0
	ZAPATA ZAVALA	2 2	0	0	0	0.00	0	0	0
	TOTAL		57,634		-	779,821	,	0	2,039,2

Table 14: 2016 Totalized Annual Electricity Savings by CM Zone from New Multi-family Residences

CM Zone	Total Electricity Savings by CM Zone (MWh) [2016-TRY 2008]
Houston (H)	151,511
North (N)	345,761
West (W)	18,492
South (S)	166,288
Total	682,052

Table 15: 2016 Annual NOx Reductions from New Multi-family Residences Using 2010 eGRID

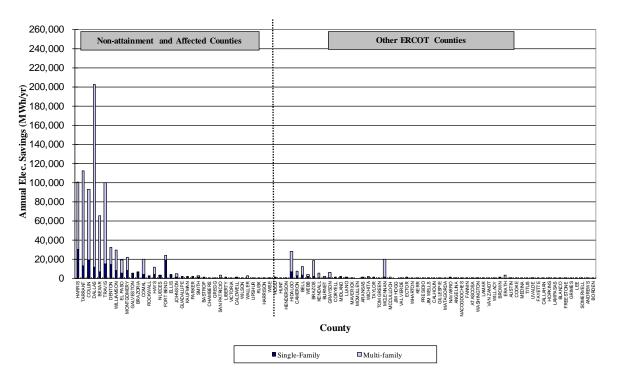
Area	County	Н	NOx Reductions	N	NOx Reductions	w	NOx Reductions	s	NOx Reductions	Total Nox Reductions	Total Nox Reductions
			(lbs)		(lbs)		(lbs/year)	-	(lbs)	(lbs)	(Tons)
	Brazoria	0.0562032	8515.42	0.0000071	2.47	0.0000003	0.01	0.0005265	87.56	8605.45	4.30
	Chambers	0.0204500	3098.41	0.0000026	0.90	0.0000001	0.00	0.0001916	31.86	3131.17	1.57
Houston- Galveston Area	Fort Bend	0.0313463	4749.32	0.0000040	1.38	0.0000002	0.00	0.0002937	48.83	4799.53	2.40
Garveston Area	Galveston	0.0226620	3433.54	0.0000029	0.99	0.0000001	0.00	0.0002123	35.30	3469.85	1.73
	Harris	0.1486911	22528.39	0.0000189	6.52	0.0000009	0.02	0.0013930	231.64	22766.57	11.38
	Collin	0.0012932	195.93	0.0079329	2742.90	0.0003832	7.09		13.46	2959.37	1.48
	Dallas	0.0024826	376.14	0.0152295	5265.78	0.0007356	13.60		25.84	5681.36	2.84
	Denton	0.0001267	19.19	0.0007770	268.66	0.0000375	0.69	0.0000079	1.32	289.87	0.14
Dallas/ Fort	Tarrant	0.0004742	71.84	0.0029089	1005.77	0.0001405	2.60		4.93	1085.15	0.54
Worth Area	Ellis	0.0029920	453.32	0.0183544	6346.21	0.0008865	16.39	0.0001873	31.14	6847.07	3.42
	Johnson	0.0007256	109.94	0.0044512	1539.04	0.0002150	3.98		7.55	1660.51	0.83
	Kaufman	0.0059718	904.80	0.0366343	12666.69	0.0017695	32.72		62.15	13666.36	6.83
	Parker	0.0000012	0.19	0.0000075	2.61	0.0000004	0.01	0.0000001	0.01	2.81	0.00
	Wise	0.0010202	154.57	0.0062583	2163.87	0.0003023	5.59	0.0000638	10.62	2334.65	1.17
San Antonio	Bexar	0.0138906	2104.58	0.0009368	323.91	0.0000452	0.84	0.1109355	18447.21	20876.54	10.44
Area	Guadalupe	0.0032029	485.27	0.0002160	74.69	0.0000104	0.19		4253.55	4813.70	2.41
	Bastrop	0.0033782	511.84	0.0002278	78.78	0.0000110	0.20	0.0269798	4486.40	5077.22	2.54
Austin Area	Hays	0.0008331	126.23	0.0000562	19.43	0.0000027	0.05	0.0066537	1106.42	1252.13	0.63
	Travis	0.0051785	784.61 1948.10	0.0003493	120.76	0.0000169	0.31	0.0413577	6877.27	7782.95	3.89
Corpus Christi Area	Nueces	0.0128578 0.0015100	228.78	0.0008672 0.0001018	299.83 35.21	0.0000419	0.77	0.1026870 0.0120591	17075.58 2005.27	19324.28 2269.35	9.66 1.13
	San Patricio	0.0013100	321.08	0.0001018	49.42	0.0000049	0.09	0.0120391	2814.31	3184.93	1.13
Victoria Area	Victoria Andrews	0.0021192	0.57	0.0001429	7.94	0.0000069	72.12		0.04	3184.93 80.67	0.04
	Bosque	0.0000037	336.42	0.0000230	4709.67	0.0039003	12.17	0.000002	23.11	5081.36	2.54
	Brazos	0.0022204	364.97	0.0130212	3883.07	0.0005425	10.03	0.0001390	795.34	5053.41	2.54
	Calhoun	0.0024089	143.42	0.0112303	22.07	0.00003423	0.06		1257.09	1422.64	0.71
	Cameron	0.0063536	962.65	0.000038	148.16	0.0000031	0.00	0.0073398	8437.84	9549.03	4.77
	Cherokee	0.0003330	415.01	0.0004283	5809.93	0.0000207	15.01	0.0001714	28.51	6268.46	3.13
	Ector	0.0019215	291.13	0.0006604	228.32	0.0911346	1685.25	0.0146527	2436.56	4641.26	2.32
	Fannin	0.0000041	0.61	0.0000049	8.60	0.0000012	0.02	0.0000003	0.04	9.28	0.00
	Fayette	0.0051867	785.84	0.0103217	3568.83	0.0004986	9.22	0.0283993	4722.45	9086.35	4.54
	Freestone	0.0047643	721.85	0.0292268	10105.48	0.0014117	26.10	0.0002982	49.58	10903.02	5.45
	Henderson	0.0006908	104.66	0.0042376	1465.18	0.0002047	3.78	0.0000432	7.19	1580.82	0.79
	Hidalgo	0.0053716	813.85	0.0003623	125.26	0.0000175	0.32	0.0428994	7133,64	8073.08	4.04
	Hood	0.0050771	769.24	0.0311454	10768.86	0.0015044	27.82	0.0003178	52.84	11618.75	5.81
	Howard	0.0002411	36.53	0.0007641	264.19	0.1283942	2374.24	0.0009490	157.81	2832.77	1.42
	Hunt	0.0088463	1340.32	0.0047066	1627.37	0.0002273	4.20	0.0652823	10855.64	13827.53	6.91
Other ERCOT	Jack	0.0030783	466.40	0.0188839	6529.31	0.0009121	16.87	0.0001927	32.04	7044.61	3.52
counties	Lamar	0.0040001	606.07	0.0245388	8484.57	0.0011853	21.92	0.0002504	41.63	9154.18	4.58
	Llano	0.0040314	610.81	0.0002719	94.01	0.0000131	0.24	0.0321966	5353.90	6058.96	3.03
	McLennan	0.0056576	857.19	0.0347066	12000.19	0.0016764	31.00	0.0003541	58.88	12947.27	6.47
	Milam	0.0012686	192.21	0.0000856	29.58	0.0000041	0.08	0.0101316	1684.75	1906.62	0.95
	Mitchell	0.0000311	4.72	0.0001910	66.03	0.0324260	599.62	0.0000019	0.32	670.68	0.34
	Nolan	0.0000293	4.43	0.0001795	62.05	0.0304745	563.53	0.0000018	0.30	630.32	0.32
	Palo Pinto	0.0036129	547.40	0.0221635	7663.28	0.0010705	19.80	0.0002261	37.60	8268.08	4.13
	Pecos	0.0000020	0.30	0.0000121	4.18	0.0020520	37.95	0.0000001	0.02	42.44	0.02
	Robertson	0.0039506	598.56	0.0055755	1927.78	0.0002693	4.98	0.0246170	4093.49	6624.81	3.31
	Upton	0.0000025	0.39	0.0000156	5.39	0.0026494	48.99	0.0000002	0.03	54.80	0.03
	Ward	0.0001995	30.23	0.0012239	423.19	0.2078335	3843.22	0.0000125	2.08	4298.72	2.15
	Webb	0.0042017	636.61	0.0002834	97.98	0.0000137	0.25	0.0335565	5580.04	6314.88	3.16
	Wharton	0.0021095	319.62	0.0001423	49.19	0.0000069	0.13	0.0168474	2801.51	3170.44	1.59
	Wichita	0.0000121	1.84	0.0000743	25.69	0.0126190	233.35	0.0000008	0.13	261.00	0.13
	Wilbarger	0.0179710	2722.81	0.1102430	38117.71	0.0053249	98.47	0.0011247	187.03	41126.02	20.56
	Young	0.0071054	1076.55	0.0435880	15071.03	0.0021054	38.93	0.0004447	73.95	16260.46	8.13
	Total	0.4414501	66884.69	0.4812863	166409.92	0.5345786	9885.34	0.6829349	113563.60	356743.55	178.37
Energy											
Savings											
by PCA											
(MWh)	1	151,511		345,761		18,492		166,288		l	

4.3 2016 Results for New Residential Construction (Single-family and Multi-family)

Table 16 presents the individual and combined annual electricity savings and NOx emissions reductions resulted from the new single-family and multi-family Construction in 2016. In addition, Table 16 includes the combined natural gas savings from the new Construction for both single-family and multi-family and the corresponding NOx emissions reductions³².

The total NOx reductions from electricity and natural gas savings from total new single-family and multi-family Construction in 2016 are 240.27 tons NOx/year, including 44.71 tons NOx/year (18.61 %) from single-family residential electricity savings, 178.37 tons NOx/year (74.24 %) from multi-family residential electricity savings, and 17.19 tons NOx/year (7.15 %) from natural gas savings from both single-family and multi-family residences. Figure 8 through Figure 11 show the electricity savings and NOx reductions tabulated in Table 16. Figure 8 shows the annual electricity savings by county using a stacked bar chart and Figure 9 shows the spatial distribution of the electricity savings by county across the state. Figure 10 shows the annual NOx reductions by using a stacked bar chart and Figure 11 shows the spatial distribution of the NOx reductions by county across the state.

³² 0.092 lb-NOx/MMBtu of emission rate was used for the calculation.


Table 16: 2016 Annual NOx Reductions from New Single-family and Multi-family Residences

		Electricity Sa Resultant NOx (Single Family	Reductions	Electricity Si Resultan Reduct (Multifamily	nt NOx tions	Total Electricity Resultant NOx (Single and Mo	Reductions ulti-Family	Total Natural Gas Resultant NOx I (Single and Multi-F	Reductions	Total Nox Reductions
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual Nos Reductions (Tons)
	HARRIS TARRANT	30,527.77 13,262.92	5.52 0.10	70,333.86 98,757.01	11.38	100,861.62 112,019.93	16.90 0.64	212,567.58 410,639.74	0.98 1.89	17
	COLLIN	18,831.20	0.27	73,850.43	1.48	92,681.63	1.75	372,729.40	1.71	3
	DALLAS BEXAR	11,718.50 6,860.83	0.53 2.76	190,959.81 58,306.51	2.84 10.44	202,678.30 65,167.33	3.37 13.20	677,099.45 264,555.03	3.11 1.22	6
	TRAVIS	14,994.63	1.03	84,706.47	3.89	99,701.11	4.92	444,779.25	2.05	
	DENTON	14,271.00	0.03	18,116.22	0.14	32,387.23	0.17	169,476.67 162,388.64	0.78	0
	WILLIAMSON EL PASO	7,944.73 5,313.43		21,634.87 13,571.78		29,579.60 18,885.20	0.00	64,927.75	0.75 0.30	(
	MONTGOMERY	8,216.97		13,397.86		21,614.83	0.00	54,003.33	0.25	(
	GALVESTON BRAZORIA	4,343.17 5,719.46	0.84 2.09	314.30 206.26	1.73 4.30	4,657.47 5,925.71	2.58 6.39	23,985.61 31.465.58	0.11	
	COMAL	4,006.16	2.09	15,829.33	4.30	19,835.49	0.00	97,249.22	0.14	
	ROCKWALL	2,563.82		0.00		2,563.82	0.00	20,731.11	0.10	(
	HAYS NUECES	3,961.91 2,547.30	0.17 2.56	7,305.28 263.33	9.66	11,267.19 2,810.62	0.79 12.22	69,999.85 9,120.76	0.32	12
Non- attainment	FORT BEND	19,242.47	1.16	4,938.13	2.40	24,180.60	3.56	111,118.16	0.51	
nd Affected	ELLIS	3,289.00	0.63	73.98	3.42	3,362.98	4.06	27,837.48	0.13	4
Counties	JOHNSON GUADALUPE	1,173.67 1.887.09	0.15	3,521.22	0.83	4,694.89 1.887.09	0.98	20,524.99 22.384.54	0.09	
	KAUFMAN	1,024.61	1.27	59.59	6.83	1,084.20	8.10	8,462.91	0.04	
	PARKER SMITH	937.31 998.67	0.00	849.20	0.00	1,786.51	0.00	10,114.16	0.05	
	BASTROP	998.67 309.83	0.67	1,340.38 400.79	2.54	2,339.05 710.63	3.21	390.23 4,051.33	0.00	
	CHAMBERS	546.90	0.76	0.00	1.57	546.90	2.32	2,318.90	0.01	
	GREGG SAN PATRICIO	352.64 487.60	0.30	0.00 2,654.32	1.13	352.64 3,141.92	0.00	331.85 2,637.79	0.00	
	SAN PATRICIO LIBERTY	487.60 900.28	0.30	2,654.32	1.13	3,141.92 900.28	0.00	2,637.79 5,048.86	0.01	
	VICTORIA	123.92	0.42	0.00	1.59	123.92	2.01	463.60	0.00	
	CALDWELL WILSON	671.66 108.67		133.60		805.26 108.67	0.00	7,814.32 1,289.03	0.04	
	WALLER	25.59		2,872.38		2,897.96	0.00	1,811.35	0.01	
	UPSHUR	11.89		0.00		11.89	0.00	78.82	0.00	
	RUSK HARRISON	4.43 88.38	0.00	0.00 298.29	0.00	4.43 386.68	0.00	8.24 (97.70)	(0.00)	(
	WISE	160.81	0.22	89.39	1.17	250.20	1.38	1,567.19	0.01	,
	HOOD	300.24	1.08	177.54	5.81	477.78	6.89	3,058.76	0.01	
	HUNT HENDERSON	379.63 87.99	1.77 0.15	0.00 569.93	6.91 0.79	379.63 657.91	8.68	3,169.84 (280.65)	(0.00)	
	HIDALGO	6,623.22	1.07	21,364.19	4.04	27,987.41	5.10	30,165.33	0.14	
	CAMERON	2,759.48	1.26	4,566.00 8,823.43	4.77	7,325.48	6.04 0.00	11,459.84 78,890.98	0.05	
	BELL WEBB	3,222.81 1,934.95	0.84	2,243.53	3.16	12,046.24 4,178.49	3.99	16,536.60	0.36	
	BRAZOS	2,218.09	0.50	16,152.19	2.53	18,370.28	3.03	21,854.56	0.10	
	KENDALL BURNET	605.65 740.11		4,922.32 1,311.20		5,527.96 2,051.32	0.00	15,097.43 12,907.93	0.07	
	GRAYSON	855.30		5,284.48		6,139.78	0.00	23,003.66	0.11	
	CORYELL	318.00		335.49		653.49	0.00	5,749.62	0.03	
	MIDLAND LLANO	1,432.73 472.50	0.80	752.31 160.56	3.03	2,185.04 633.06	0.00 3.83	15,376.80 6,108.16	0.07	
	MAVERICK	131.04	0.00	126.40	3.03	257.44	0.00	1,111.19	0.01	
	MCMULLEN ARANSAS	0.00 393.02		0.00 21.07		0.00 414.09	0.00	0.00 1.400.55	0.00	
	WICHITA	219.43	0.03	1,803.89	0.13	2,023.32	0.00	9,280.77	0.01	
	TAYLOR	717.50		152.76		870.26	0.00	7,473.45	0.03	
	TOM GREEN MCLENNAN	401.63 1.298.50	1.20	0.00 18.871.40	6.47	401.63 20.169.91	7.67	3,815.09 90.022.22	0.02	
	MCCULLOCH	2.34	1.20	1,324.73	0.47	1,327.06	0.00	4,626.98	0.41	
	JIM HOGG	0.00		0.00		0.00	0.00	0.00	0.00	
	VAL VERDE ECTOR	194.35 1.015.61	0.58	0.00	2.32	194.35 1.015.61	0.00 2.90	2,305.38 9,004.79	0.01	
	WHARTON	1,015.61	0.58	0.00	1.59	1,015.61	2.00	9,004.79	0.04	
	KERR	125.44		0.00		125.44	0.00	1,487.28	0.01	
her ERCOT	PRESIDIO JIM WELLS	25.69 31.53		0.00 21.07		25.69 52.59	0.00	243.99 118.98	0.00	
Counties	CALHOUN	119.93	0.19	0.00	0.71	119.93	0.90	448.64	0.00	
	GILLESPIE	102.45		0.00		102.45	0.00	1,214.61	0.01	
	MATAGORDA NAVARRO	163.90 340.42		0.00 184.52		163.90 524.94	0.00	613.15 5,491.06	0.00	
	ANGELINA	132.92		43.57		176.49	0.00	226.14	0.00	
	NACOGDOCHES FANNIN	53.17 61.75	0.00	43.57 89.06	0.00	96.73 150.81	0.00	77.76 782.91	0.00	
	ATASCOSA	61.75 70.97	U.00	89.06 0.00	0.00	150.81 70.97	0.01	782.91 833.14	0.00	
	WASHINGTON	141.71		118.04		259.75	0.00	865.71	0.00	
	LAMAR VAN ZANDT	57.65 64.33	0.85	297.96 0.00	4.58	355.61 64.33	5.43 0.00	961.01 520.14	0.00	
	WILLACY	83.90		0.00		83.90	0.00	312.92	0.00	
	BROWN	173.27		50.32		223.59	0.00	2,629.10	0.01	
	ERATH AUSTIN	87.26 43.30		3,532.51 59.02		3,619.77 102.32	0.00	13,121.24 277.85	0.06	
	COOKE	116.63		0.00		116.63	0.00	973.87	0.00	
	MEDINA	60.60		0.00		60.60	0.00	718.88	0.00	
	TITUS UVALDE	42.13 39.71	0.00	0.00 54.03	0.00	42.13 93.73	0.00	52.26 640.71	0.00	
	FAYETTE	15.75	1.05	0.00	4.54	15.75	5.60	88.58	0.00	
	CALLAHAN	4.85		0.00		4.85	0.00	46.91	0.00	
	HOPKINS LAMPASAS	22.97 91.73		0.00		22.97 91.73	0.00	185.76 0.00	0.00	
	BLANCO	27.18		66.90		91./3	0.00	533.11	0.00	
	FREESTONE	12.23	1.01	0.00	5.45	12.23	6.46	172.08	0.00	
	GRIMES LEE	76.76 27.12	0.00	0.00	0.00	76.76 27.12	0.00	431.81 315.49	0.00	
	SOMERVELL	25.02		295.90		320.92	0.00	1,106.81	0.00	
	ANDREWS BORDEN	19.14 41.45	0.01	0.00	0.04	19.14 41.45	0.05	102.16 414.45	0.00	

Table 16: 2016 Annual NOx Reductions from New Single-family and Multi-family Residences (Continued)

		Electricity Savings and Resultant NOx Reductions (Single Family Houses)		Electricity S Resultar Reduc (Multifamily	t NOx tions	Total Electricity Savings and Resultant NOx Reductions (Single and Multi-Family Houses)		Total Natural Gas Savings and Resultant NOx Reductions (Single and Multi-Family Houses)		Total Nox Reductions	
	County	Total Annual Bectricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual Nox Reductions (Tons)	
	CHEROKEE	13.29	0.58	0.00	3.13	13.29	3.72	24.73	0.00	3.	
	DIMMIT	14.33 6.12		0.00		14.33 6.12	0.00	116.80 86.04	0.00	0	
	COLORADO	43.30		0.00		43.30	0.00	243.59	0.00	0.	
	FRIO MILAM	14.61	0.00	0.00 49.18	0.00	14.61	0.00	171.53 198.41	0.00	0.	
	JACKSON	21.99	0.25	49.18 0.00	0.95	21.99	0.00	82.25	0.00	0	
	ANDERSON	28.80		0.00		28.80	0.00	53.58	0.00	0	
	HILL CULBERSON	16.31 7.16		0.00		16.31 7.16	0.00	229.44 37.01	0.00	0	
	MASON	6.27		0.00		6.27	0.00	74.36	0.00	0	
	PECOS	261.53	0.00	0.00	0.02	261.53	0.03	2,484.24	0.01	(
	RAINS LAVACA	2.30 54.19		0.00		2.30 54.19	0.00	18.58 205.07	0.00	(
	PALO PINTO	21.82	0.77	0.00	4.13	21.82	4.90	211.09	0.00		
	KIMBLE MADISON	0.00 9.84		0.00 59.02		0.00 68.86	0.00	0.00 89.62	0.00		
	ARCHER	12.76		0.00		12.76	0.00	138.13	0.00	- (
	REFUGIO	13.99		0.00		13.99	0.00	52.34	0.00	(
	LIMEST ONE CLAY	6.12 7.65	0.00	0.00 841.82	0.00	6.12 849.47	0.00	86.04 3,305.19	0.00	-	
	BEE	13.99		0.00		13.99	0.00	52.34	0.02		
	MARTIN	9.07		0.00		9.07	0.00	80.40	0.00		
	GONZALES BURLESON	18.81 23.62		0.00	-	18.81 23.62	0.00	223.10 132.86	0.00	-	
	KARNES	94.89		0.00		94.89	0.00	908.16	0.00		
	KLEBERG	18.91		0.00		18.91	0.00	67.06	0.00	-	
	BREWSTER WINKLER	11.68		147.19 0.00		158.87 0.00	0.00	622.55 0.00	0.00		
	FRANKLIN	0.00		0.00		0.00	0.00	0.00	0.00		
	YOUNG	24.24	1.51	0.00	8.13	24.24	9.64	234.55	0.00		
	HOUSTON	0.00 17.45		0.00	-	0.00 17.45	0.00	0.00 174.50	0.00	-	
	BOSQUE	2.04	0.47	0.00	2.54	2.04	3.01	28.68	0.00		
	COMANCHE	2.04		0.00		2.04	0.00	28.68	0.00	-	
	BRISCOE	16.27 2.34		0.00		16.27 2.34	0.00	296.84 22.18	0.00	-	
	ZAVALA	8.19		0.00		8.19	0.00	66.74	0.00		
	NOLAN	2.42	0.07	0.00	0.32	2.42	0.39	23.45	0.00	-	
	BROOKS ROBERTSON	4.19 155.48	0.80	0.00	3.31	4.19 155.48	0.00 4.11	16.25 874.69	0.00		
	LIVE OAK	14.71	0.00	0.00	3.31	14.71	0.00	52.16	0.00		
	HAMILTON	12.23		0.00		12.23	0.00	172.08	0.00	-	
	JONES REAGAN	0.00		0.00		0.00	0.00	0.00 20.62	0.00	-	
	WARD	6.80	0.48	0.00	2.15	6.80	2.63	60.30	0.00		
	RED RIVER	13.30		29.80		43.10	0.00	105.45	0.00		
	HASKELL HOWARD	4.85 52.14	0.32	0.00	1.42	4.85 52.14	0.00 1.74	46.91 462.30	0.00	- 1	
	SAN SABA	14.64		0.00		14.64	0.00	173.52	0.00		
her ERCOT	JACK	4.85	0.65	0.00	3.52	4.85	4.17	46.91	0.00	-	
Counties	STEPHENS RUNNELS	4.85 4.67		0.00		4.85 4.67	0.00	46.91 44.36	0.00	-	
	REEVES	6.80		0.00		6.80	0.00	60.30	0.00	-	
	DE WITT CHILDRESS	6.00		0.00		6.00	0.00	22.43 0.00	0.00	-	
	CROSBY	19.63		0.00		19.63	0.00	196.32	0.00		
	DAWSON	0.00		0.00		0.00	0.00	0.00	0.00	-	
	MITCHELL WILBARGER	0.00	0.08 3.81	0.00	0.34 20.56	0.00 2.55	0.41 24.37	0.00 27.63	0.00	2-	
	COLEMAN	0.00	3.61	0.00	20.36	0.00	0.00	0.00	0.00		
	UPTON	0.00	0.01	0.00	0.03	0.00	0.03	0.00	0.00	-	
	COKE	0.00 44.37	0.00	0.00	0.00	0.00 44.37	0.00	0.00 421.43	0.00	-	
	HARDEMAN	0.00		0.00		0.00	0.00	0.00	0.00		
	BANDERA	2.47		0.00		2.47	0.00	16.54	0.00		
	BAYLOR COTTLE	0.00		0.00		0.00	0.00	0.00	0.00		
	CRANE	29.50		0.00		29.50	0.00	268.03	0.00	(
	DELTA	0.00		0.00		0.00	0.00	0.00	0.00	-	
	DICKENS DUVAL	0.00		0.00		0.00	0.00	0.00	0.00	- '	
	EASTLAND	0.00		0.00		0.00	0.00	0.00	0.00		
	EDWARDS FISHER	0.00		0.00		0.00	0.00	0.00	0.00	-	
	FOARD	0.00		0.00		0.00	0.00	0.00	0.00		
	GLASSCOCK	0.00		0.00		0.00	0.00	0.00	0.00		
	GOLIAD	6.00		0.00	-	6.00	0.00	22.43	0.00		
	HUDSPETH	0.00		0.00		0.00	0.00	0.00	0.00		
	IRION JEFF DAVIS	0.00		0.00		0.00	0.00	0.00	0.00		
	JEFF DAVIS KENEDY	0.00		0.00		0.00	0.00	0.00	0.00		
	KENT	0.00		0.00		0.00	0.00	0.00	0.00		
	KING	0.00		0.00		0.00	0.00	0.00	0.00	-	
	KINNEY	0.00		0.00		0.00	0.00	0.00	0.00	-	
	LA SALLE	6.14		0.00		6.14	0.00	50.06	0.00	-	
	LEON	0.00		0.00		0.00	0.00	0.00	0.00		
	LOVING MENARD	0.00		0.00	 	0.00	0.00	0.00	0.00	-	
	MILLS	0.00		0.00		0.00	0.00	0.00	0.00		
	MONT AGUE MOTLEY	2.29		0.00		2.29	0.00	19.10	0.00	-	
	MOTLEY REAL	0.00		0.00	-	0.00	0.00	0.00	0.00	-	
	SCHLEICHER	2.34		0.00		2.34	0.00	22.18	0.00		
	SHACKELFORD	0.00		0.00		0.00	0.00	0.00	0.00		
	STARR STERLING	9.07		0.00		9.07	0.00	33.83 0.00	0.00		
									0.00		
	STONEWALL	0.00		0.00		0.00	0.00	0.00	0.00		
	SUTTON	28.02		0.00		28.02	0.00	266.17	0.00	(

Annual Elec. Savings w/7% T&D Loss (Single and Multi-family Residences)

Annual Elec. Savings w/7% T&D Loss (Single and Multi-family Residences)

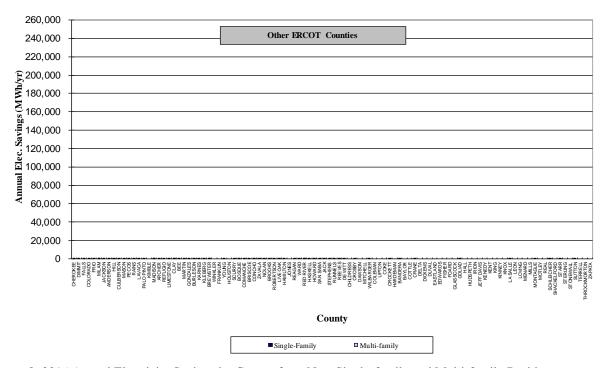


Figure 8: 2016 Annual Electricity Savings by County from New Single-family and Multi-family Residences

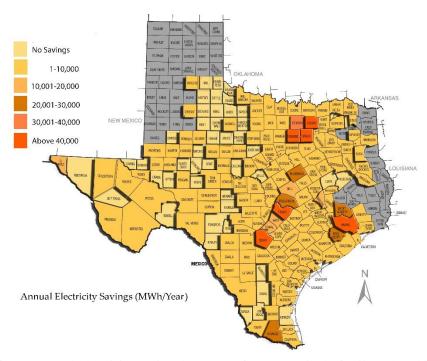
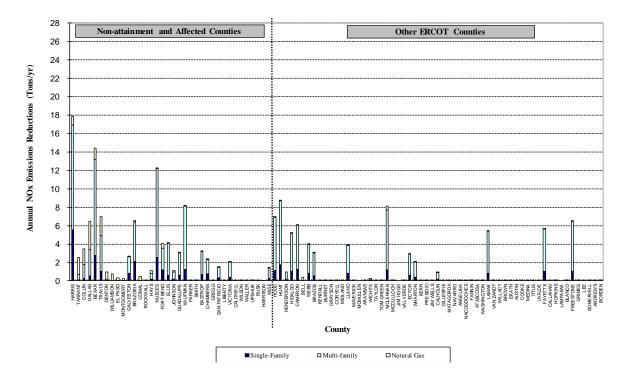



Figure 9: Map of 2016 Annual Electricity Savings by County from New Single-family and Multi-family Residences

Total Annual NOx Emissions Reductions (Single and Multi-Family Residences)

Total Annual NOx Emissions Reductions (Single and Multi-Family Residences)

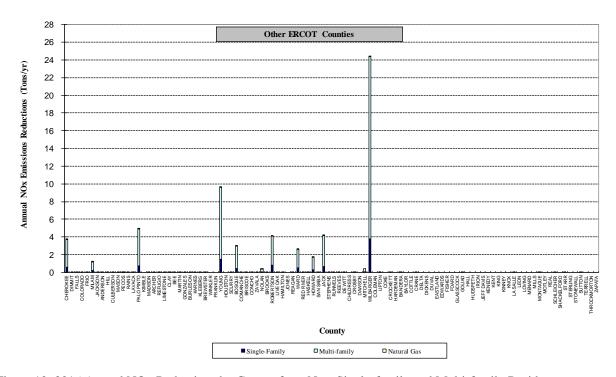


Figure 10: 2016 Annual NOx Reductions by County from New Single-family and Multi-family Residences

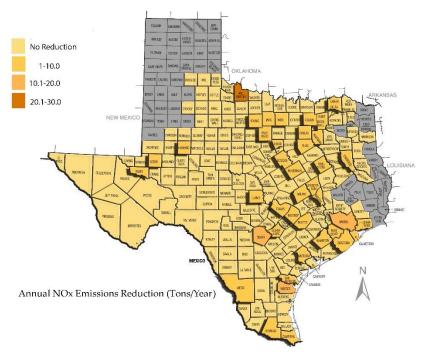


Figure 11: Map of 2016 Annual NOx Reductions by County from New Single-family and Multi-family Residences

4.4 2016 Results for Commercial Construction

This section reports the calculated energy savings and emissions reductions from new commercial Construction in 2016 that were built to meet ASHRAE Standard 90.1-2013.

To determine the energy savings and emissions reductions from new commercial Construction in all counties in the ERCOT region as well as the 36 non-attainment and affected counties, data from two sources (i.e., Dodge and USDOE) were merged into one analysis as shown in Figure 12. Beginning in the upper left of Figure 12, the Dodge database of the square footage of new commercial Construction per county in Texas (Dodge 2017) was categorized by the building types in the report published by the US Department of Energy (DOE) (USDOE 2014). This allowed for the new Construction to be tracked by county and building type. The next block in Figure 12 and Table 17 show the categories from the Dodge database and the DOE report. The Dodge "stores and restaurant" category had to be split into two categories to match the two DOE categories for "retail" and "food". To accomplish this, information published in the 2012 CBECS database by the US DOE's EIA was used to determine the percentages used to split the Dodge conditioned area for each county as shown in

Table 18 (i.e., 21.33% for food and 78.67% for retail). As a result, six Dodge building types were categorized into seven DOE building types and the resultant square footage of new commercial Construction by the seven DOE building types is shown in Figure 13 for all building types and in Figure 14 for each building type.

In the next step, the annual energy savings were calculated. To accomplish this, this report used the resultant square footage and savings of the annual energy use intensity (EUI). The DOE report included the annual EUI values, which comply with the ASHRAE Standard 90.1-2007 and 2013, by seven building types (USDOE 2011). The annual energy use for each building type was calculated by multiplying the annual EUI value by the resultant square footage. Then, the annual energy savings were calculated by subtracting the annual energy use from ASHRAE Standard 90.1-2007 to the annual energy use from ASHRAE Standard 90.1-2013. From Table 19 to Table 21 show the annual energy use calculated for new commercial Construction, by building type, for ASHRAE Standard 90.1-2007 and ASHRAE Standard 90.1-2013. Table 22 shows the county-wide annual electricity and natural gas savings by building type³³.

-

³³ In this table (-) values are savings, (+) values are increased energy use.

In the next calculation step, CM Zones were assigned to each county as shown in Table 23. In the case where more than one provider was shown in a county, a percentage of electricity use was allocated.

Table 25 shows the transformation of the annual county-wide electricity and natural gas savings, along with the associated 2016 NOx emissions reductions with 7% T&D losses³⁴. Figure 15 shows the bar chart of the annual electricity savings for 2016. Figure 16 presents the NOx emissions reductions resulted from the electricity and natural gas savings. The total NOx reductions from electricity and natural gas savings from new commercial Construction in 2016 are calculated to be 81.47 tons NOx/year which represents 35.78 tons NOx/year from electricity savings and 45.69 tons NOx/year from natural gas savings.

 $^{^{\}rm 34}$ 0.092 lb-NOx/MMBtu of emission rate was used for the calculation.

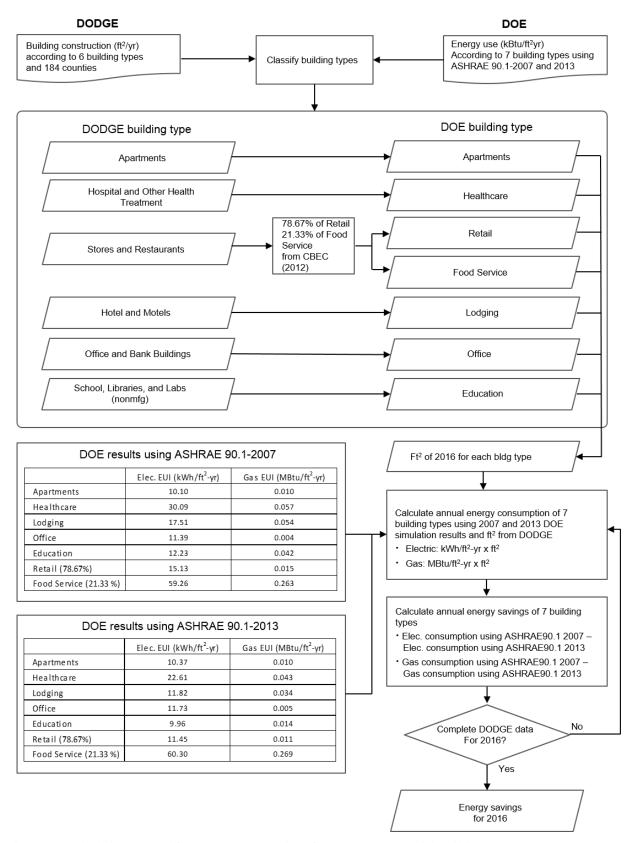


Figure 12: Calculation Method for 2016 Energy Savings from New Commercial Buildings

Table 17: Commercial Building Types in the US DOE Report and Dodge Database

No.	DOE Building Types	Dodge Building Types
1	Apartments	Apartments
2	Healthcare	Hospitals and Other Health Treatment
3	Lodging	Hotels and Motels
4	Office	Office and Bank Buildings
5	Education	Schools, Libraries, and Labs (nonmfg)
6	Retail	Stores and Restaurants
7	Food Service	Stores and Restaurants

Table 18: Commercial Building Floor Area for Retail and Food Service Types from CBECS Database

		CBECS (2012)						
		Total Floor Area (million square feet)	% Distribution of Floor Area					
E4	Food Sales	1,252	21.22					
Food	Food Service	1,819	21.33					
D-4-11	Retail (Other Than Mall)	5,439	79 /7					
Retail	Enclosed and Strip Malls	5,890	78.67					

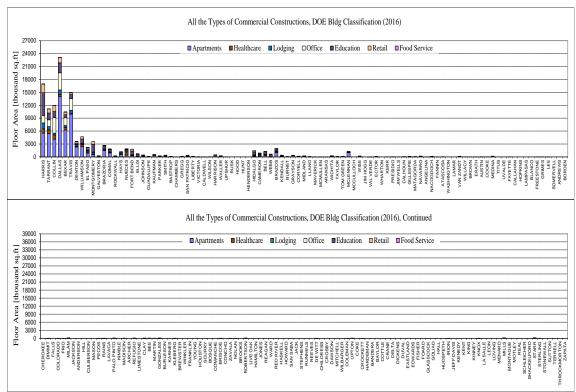
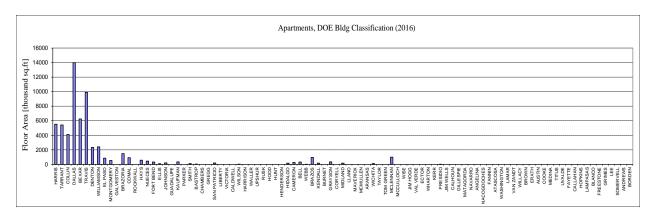
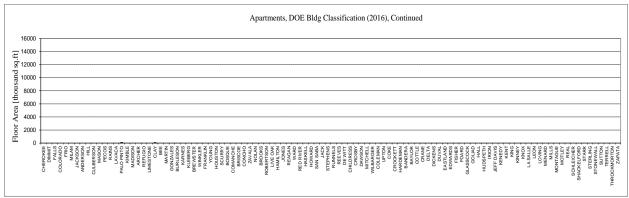
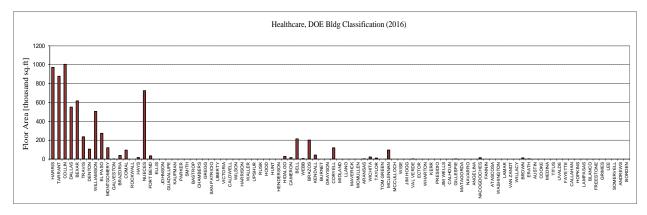





Figure 13: All the Types of 2016 New Commercial Building Construction (Dodge 2017

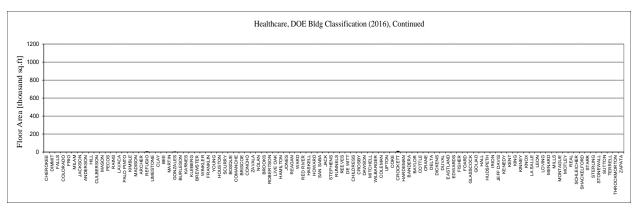
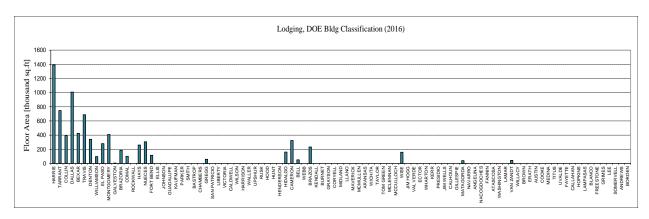
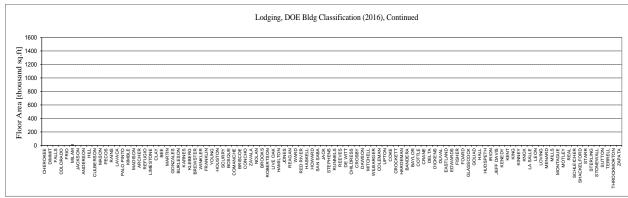
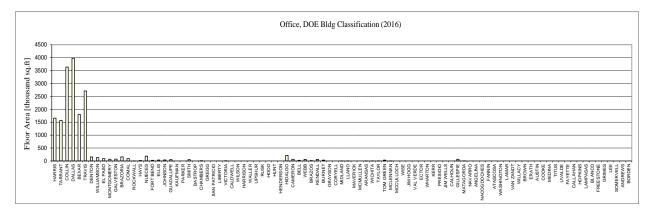





Figure 14: 2016 New Commercial Building Construction by Type (Dodge 2017)

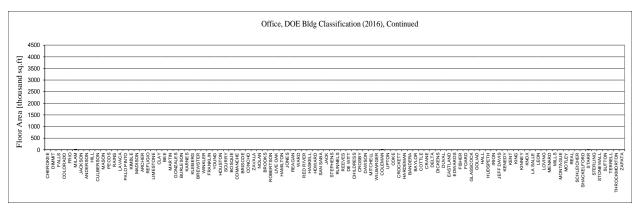
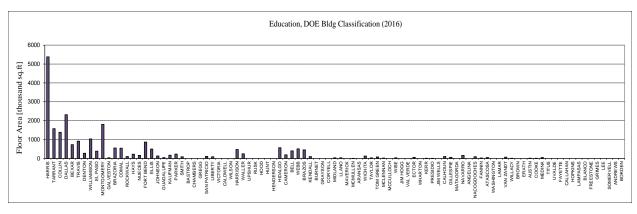
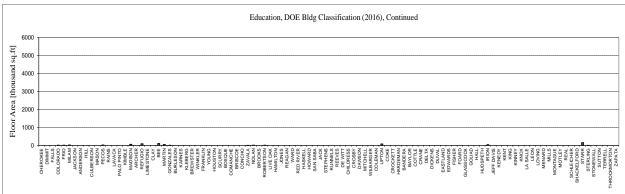




Figure 14: 2016 New Commercial Building Construction by Type (Dodge 2017) (Continued)

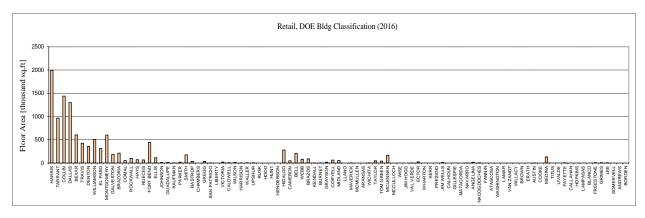
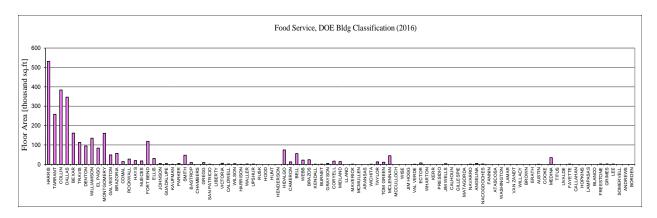



Figure 14: 2016 New Commercial Building Construction by Type (Dodge 2017) (Continued)

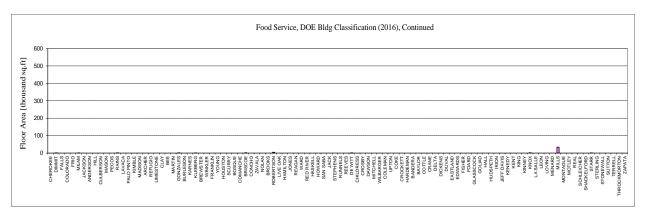


Figure 14: 2016 New Commercial Building Construction by Type (Dodge 2017) (Continued)

 $Table\ 19: Energy\ Use\ of\ ASHRAE\ Standard\ 90.1-2007\ and\ 90.1-2013\ Code-Compliant\ Apartment,\ Healthcare,\ and\ Lodging\ Building\ Types$

Gas (mBtu/yr), DOE 2007 (Annual) 2013 (Annual) 10017 631 0 0 21308 1344 54634 3442 18457 1166 15129 953 0 0 6201 399 282 17			
10017 631 0 21308 1342 54634 33442 18457 1163 15129 953 0 6201 390 282 17			
0 21308 1344 54634 3442 18457 1166 15129 953 0 6201 390 282 17			
21308 1344 54634 3442 18457 1163 15129 953 0 0 6201 399 282 17			
54634 3442 18457 1163 15129 953 0 6201 390 282 17			
18457 1163 15129 953 0 6201 390 282 17			
15129 953 0 6201 390 282 17			
0 6201 390 282 17			
282 17			
282 17			
75460 4755			
0			
0			
0			
22143 1395			
0			
0			
40454 2549			
0			
8527 537			
0327 337			
ing			
Electricity (kWh/yr), DOE Gas (mBtu/yr), DOE			
2007 (Annual) 2013 (Annua			
0			
22967 1447			
0			
5421 341			
3144 198			
0			
0			
14050 885			
16554 1043			
0			
0			
0			
37326 2352			
0 2332			
0			
5204 327			
0 3204			
_			

Table 19: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Apartment, Healthcare, and Lodging Building Types (Continued)

		Apart	ments			Healt	hcare			Lod	lging	
Other ERCOT Counties	Electricity (k	Wh/yr), DOE		u/yr), DOE	Electricity (k	Wh/yr), DOE		u/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBtu	ı/yr), DOE
	2007 (Annual)			2013 (Annual)				2013 (Annual)			2007 (Annual)	
ANDERSON	0		0		0	0	0	0		0	0	0
ANDREWS	0		0		0	0	0	0		0	-	0
ANGELINA	0		0		0	0	0	0	0	0		0
ARANSAS	0		0		105320	79132	198	149	0	0		0
ARCHER AT ASCOSA	0		0		0	0	0	0		0		0
AUSTIN	0					0				0		
BANDERA	0		0			0	0	0		0		0
BAYLOR	0		0		0	0	0	0		0		0
BEE	0	0	0	0	0	0	0	0	0	0	0	0
BELL	3134902	3220013	3027	3110	6451624	4847408	12119	9134	875466	591144		1708
BLANCO	0	0	0		0	0	0	0		0	0	0
BORDEN	0		0		0	0	0	0		0		0
BOSQUE	0 0 0 0 0 0 0	9930706	0227	9590	6081408	4560215	0	0		2741720	·	7021
BRAZOS BREWSTER	9668220		9337 0		6081498	4569315	11423	8610 0		2741728	12570	7921
BRISCOE	0		0		0	0	0	0		0	0	0
BROOKS	0		0		0	0	0	0		0		0
BROWN	0		0		403226	302963	757	571	0	0	0	0
BURLESON	0	0	0		0	0	0	0	0	0	0	0
BURNET	0		0	0	0	0	0	0	0	0	0	0
CALHOUN	0		0		0	0	0	0		0	-	0
CALLAHAN	0		0		0	0	0	0		0	-	0
CAMERON	2497825	2565640	2412	2478	481464	361747	904	682	5667766	3827069		11057
CHEROKEE	0		0		0	0	0	0		0	0	0
CHILDRESS	672422		650		0	0	0	0		0	-	0
CLAY COKE	673423	691706	650		0	0	0	0		0		0
COLEMAN	0		0		0	0	0	0		0		0
COLORADO	0		0			0	0	0		0		0
COMANCHE	0		0			0	0	0		0		0
CONCHO	0					0				0		
COOKE	0		0			0	0	0		0		0
CORYELL	0		0		3610983	2713102	6783	5113	0	0	0	0
COTTLE	0		0		0	0	0	0		0		0
CRANE	0		0		0	0	0	0		0		0
CROCKETT	0		0		279851	210265	526	396		0		0
CROSBY	0		0		0	0	0	0		0		0
CULBERSON DAWSON	0		0			0	0	0		0		
DEWITT	0		0		0	0	0	0		0		0
DELTA	0		0		0	0	0	0		0		0
DICKENS	0		0		0	0	0	0		0		0
DIMMIT	0		0		0	0	0	0		0		0
DUVAL	0	0	0	0	0	0	0	0	0	0	0	0
EASTLAND	0		0		0	0	0	0		0		0
ECTOR	0		0		0	0	0	0		0		0
EDWARDS	0		0			0	0	0		0		
ERATH	0		0			72349	181	136		0		0
FALLS FANNIN	0		0		0	0	0	0		0	-	0
FAYETTE	0		0		0	0	0	0		0	-	0
FISHER	0		0		0	0	0	0		0		0
FOARD	0		0		0	0	0	0		0		0
FRANKLIN	0		0		0	0	0	0		0		0
FREESTONE	0	0	0		0	0	0	0		0	0	0
FRIO	0					0	0			0		0
GILLESPIE	0		0		30092	22609	57	43		0		0
GLASSCOCK	0		0		0	0	0	0		0		0
GOLIAD	0		0		94256	62206	0	0		0		0
GONZALES GRAYSON	3452936	3546681	3335		84256	63306	158	119		0		0
GRIMES	3452936	3546681	3333		0	0	0	0		0		0
HALL	0		0			0	0	0		0		0
HAMILTON	0					0				0		
HARDEMAN	0					0	0			0		
HASKELL	0	0	0	0	0	0	0	0	0	0	0	0
HENDERSON	484623	497780	468	481	947883	712189	1780	1342	0	0		0
HIDALGO	1686083	1731859	1628	1672	872654	655666	1639	1236	2817249	1902303		5496
HILL	0		0		0	0	0	0				0
HOOD	0		0		0	0	0	0		0		0
HOPKINS	0		0			0	0	0		0		
HOUSTON HOWARD	0							0		0		
HUDSPETH	0				0		0	0		0		0
HUNT	0		0		0	0		0		0		0
IRION	0					0		0		0		
JACK	0		0			0		0		0		0
JACKSON	0		0		0			0		0		
JEFF DAVIS	0	0	0	0	0		0	0		0	0	0
ЛМ HOGG	0									0		

Table 19: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Apartment, Healthcare, and Lodging Building Types (Continued)

		Apartments				Healt	hoore		Lodging				
Other ERCOT Counties	Electricity (k	Wh/yr), DOE	Gas (mBtu	ı/yr), DOE	Electricity (k			ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBtu	/yr), DOE	
			2007 (Annual)	2013 (Annual)				2013 (Annual)			2007 (Annual)		
JIM WELLS	0		0	0	0	0	0	0	0	0	0	0	
JONES	0		0	0	0	0	0	0		0	0	0	
KARNES KENDALL	1665890		0 1609	0 1652	0 1293936	972195	0 2431	0 1832	0	0	0	0	
KENEDY	0		0	0	1293930	9/2193	2431	0	-	0		0	
KENT	0				0	0	0	0		0		0	
KERR	0		0	0	0	0	0	0		0	0	0	
KIMBLE	0				0	0	0	0		0	0	0	
KING	0		0		0	0	0	0		0	0	0	
KINNEY KLEBERG	0		0	0	0	0	0	0		0	0	0	
KNOX	0		0		0	0	0	0		0		0	
LA SALLE	0		0		0	0	0	0		0		0	
LAMAR	0	0			0	0	0	0	0	0	0	0	
LAMPASAS	0				0	0	0	0		0		0	
LAVACA	0				0	0	0	0		0	0	0	
LEE	0		0		0	0	0	0		0	0	0	
LEON LIMESTONE	0		0		0	0	0	0		0		0	
LIVE OAK	0		0		0	0	0	0		0	0	0	
LLANO	0		0		0	0	0	0		0		0	
LOVING	0		0	0	0	0	0	0	0	0		0	
MADISON	0				0	0	0			0		0	
MARTIN	0				0	0	0	0		0	0	0	
MASON MATAGORDA	0		0		0	0	0	0		461093	2114	1332	
MAVERICK	0		0		0	0	0	0		401093	2114	1332	
MCCULLOCH	0		0		0	0	0	0		0	0	0	
MCLENNAN	10060966	10334115	9716	9980	2888787	2170481	5426	4090	0	0	0	0	
MCMULLEN	0		0	0	0	0	0	0		0	0	0	
MEDINA	0			0	0	0	0	0		0	0	0	
MENARD MIDLAND	0 1625505	1669636	0 1570	0 1612	0	0	0	0		0	0	0	
MIDLAND MILAM	1623303		1370	1612	0	0	0	0		88672	407	256	
MILLS	0	-	0	0	0	0	0	0		0	0	0	
MITCHELL	0		0	0	0	0	0	0		0	0	0	
MONT AGUE	0		0		0	0	0	0		0	0	0	
MOTLEY	0		0		0	0	0	0		0	0	0	
NACOGDOCHES	0				451373	339138	848	639	0	0		0	
NAVARRO NOLAN	0		0		0	0	0	0		0	0	0	
PALO PINTO	805685	827559	778	799	0	0	0	0		0	0	0	
PECOS	0	027339	0	0	0	0	0	0		0		0	
PRESIDIO	90867	93334	88	90	0	0	0	0		0	0	0	
RAINS	0		0		0	0	0	0		0	0	0	
REAGAN	0		0		0	0	0	0		0		0	
REAL RED RIVER	0				0	0	0	0		0		0	
REEVES	0				0	0	0	0		0	0	0	
REFUGIO	0				150458	113046	283	213	0	0	0	0	
ROBERT SON	0	0	0	0	0	0	0	0	0	0	0	0	
RUNNELS	0		0	0	0	0	0	0		0	0	0	
SAN SABA	0		0	0	0	0	0	0		0	0	0	
SCHLEICHER SCURRY	0		0	0	0	0	0	0		0	0	0	
SHACKELFORD	0				0	0	0	0		0	0	0	
SOMERVELL	0				0	0	0	0		0		0	
STARR	0	0	0	0	0	0	0	0	0	0	0	0	
STEPHENS	0		0		0	0	0	0		0	0	0	
STERLING	0				0	0	0	0		0		0	
STONEWALL SUTTON	0		0		0	0	0	0		0		0	
TAYLOR	0		0		346053	260006	650	490	0	0	0	0	
TERRELL	0				0	0	0.50	0	-	0	-	0	
THROCKMORTON	0					0				0		0	
TITUS	0			0	0	0	0	0	0	0	0	0	
TOM GREEN	0	Ü	0	0	0	0	0	0	0	0	0	0	
UPTON	0				0	0	0	0		0	0	0	
UVALDE VAL VERDE	0				75229	56523	0 141	107	0	0	0	0	
VAN ZANDT	0				13229	0	0	0	747648	504837	2315	1459	
WARD	0				0	0	0	0		0	0	0	
WASHINGTON	0	0	0	0	0	0	0	0	0	0	0		
WEBB	35337	36296	34		186567	140177	350	264		0			
WHARTON	0		0	0	0	0	0	0		0		0	
WICHIT A WILBARGER	1037900	1066078	1002	1030	692105 0	520011	1300	980	0	0		0	
WILLACY	0				0	0	0	0		0		0	
WINKLER	0				0	0	0	0		0		0	
YOUNG	0			0	0	0	0	0		0	0	0	
ZAPATA	0		0	0	0	0	0			0			
ZAVALA	0	0	0	0	0	0	0	0	0	0	0	0	
Total	602191985	618541089	581537	597325	211405024	158838535	397100	299312	136849334	92405324	423661	266977	
	1 0021/1/03	0.0071007	201237	371343	2	***************************************	37/100	277312	100070034	/2403324	723001	200711	

 $Table\ 20: Energy\ Use\ of\ ASHRAE\ Standard\ 90.1-2007\ and\ 90.1-2013\ Code-Compliant\ Office\ and\ Education\ Building\ Types$

		Of	fice			Educ	ation	
Non-attainment Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE
		2013 (Annual)	2007 (Annual)		2007 (Annual)			2013 (Annual)
Brazoria	1807501	1862265	688	750	6727873	5482809	22956	7679
Chambers	127561	131426	49	53	0	0	0	0
Collin	41450645	42706527	15787	17203	16899761	13772283	57664	19288
Dallas	45288879	46661052	17248	18796	28316238	23076021	96619	32318
Denton	1739164	1791858	662	722	3336428	2718987	11384	3808
El Paso	1043271	1074880	397	433	4671489	3806981	15940	5332
Ellis	392935	404840	150	163	6086017	4959736	20766	6946
Fort Bend	290430	299230	111	121	10594902	8634204	36151	12092
Galveston	829150	854271	316	344	366775	298899	1251	419
Harris	18893904	19466356	7196	7841	65781063	53607588	224454	75078
Johnson	445326	458819	170	185	1583245	1290249	5402	1807
Kaufman	0	0	0	0	2060052	1678818	7029	2351
Liberty	0	0	0	0	1075873	876771	3671	1228
Montgomery	761952	785038	290	316	22082289	17995730	75348	25203
Parker	0	0	0	0	2811940	2291561	9595	3209
Rockwall	35307	36377	13	15	1218915	993342	4159	1391
Tarrant	17831272	18371528	6791	7400	19238562	15678264	65645	21958
Waller	0	0	0	0	2986770	2434037	10191	3409
Wise	0	0	0	0	366775	298899	1251	419
		Of	fice			Educ	ation	
Affected Counties		Wh/yr), DOE		ı/yr), DOE	Electricity (k		(ı/yr), DOE
	2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)
Bastrop	0	0	0	0	0	0	0	0
Bexar	20488423	21109186	7803	8503	8875950	7233363	30286	10130
Caldwell	0	0	0	0	0	0	0	0
Comal	1023909	1054931	390	425	6593389	5373213	22498	7525
Gregg	0	0	0	0	0	0	0	0
Guadalupe	588833	606673	224	244	512262	417463	1748	
Harrison	0	0	0	0	5760810	4694712	19657	6575
Hays	199315	205354	76	83	2752034	2242741	9390	3141
Nueces	2134377	2199045	813	886	1968358	1604093	6716	2247
Rusk	0		0	0	0	0	0	0
San Patricio	0	0	0	0	1260483	1027217	4301	1439
Smith	568332	585551	216	236	1020857	831936	3483	1165
Travis	30860765	31795792	11753	12808	11187854	9117425	38175	12769
Upshur	0		0	0	0	0	0	
Victoria	100227	103264	38	42	0	0	0	0
Williamson	1458984	1503189	556	606	12628057	10291103	43089	14413
Wilson	0	0	0	0	0	0	0	0

Table 20: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Office and Education Building Types (Continued)

Description Description			Of	fice			Educ	ation	
ANDERSYN	Other ERCOT Counties	Electricity (k			ı/yr), DOE	Electricity (k			u/yr), DOE
ANDRELINA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2007 (Annual)		2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)
ARCELINA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									0
ARANSKS \$23018									
ARCHER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
AT ARCOSA O O O O O S80727 47227 1992 AUSTIN O O O O O O 171162 139486 5944 DANDERA O O O O O O O 171162 139486 5944 DANDERA O O O O O O O O O O O O O O O O O O O									
ALSTIN 0									663
BANDERA									195
BAYLOR									0
BILL							0		0
BIANCO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BEE	0	0	0	0	1344841	1095964	4589	1535
BORDER	BELL	282458	291016	108	117	4864657	3964401	16599	5552
BOSQUIE									
BRAZOS									
BREWSTER									0
BIRSCOR									6339
BROOKS									0
BROWN									
BIRRIEDON									
BIRNET									
CALI-DIUN									0
CALLAHAN O O O O O O O O O O O O O O O O O O O									1367
CHEROKIE		0				0	0	0	0
CHILDRES O O O O O O O O O O O O O O O O COKE COKE O O O O O O O O O O O O O O O O O O O									2648
CLAY									0
COKE 0 0 0 0 0 0 0 0 COLORADO 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>									0
COLEMAN									
COLORADO									0
COMANCHE 0<									211
CONCHO 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>									0
COOKE 0 0 0 0 97807 79706 334 COTTLE 0 0 0 0 0 0 0 CARNE 0 0 0 0 0 0 0 CROCKETT 0 0 0 0 0 0 0 CROSRY 0 0 0 0 0 0 0 CLIERSON 0 0 0 0 0 0 0 CLIERSON 0 0 0 0 0 0 0 DEWITT 0 0 0 0 0 0 0 0 DIMMIT 0 0 0 0 0 0 0 0 DUVAL 0 0 0 0 0 0 0 0 ECTOR 0 0 0 0 0 0 0 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
CORTLE 0									112
CRANE	CORYELL								0
CROCKETT	COTTLE	0	0	0	0	0	0	0	0
CROSBY	CRANE								
CULBERSON 0									
DAWSON									
DEWITT									
DELTA									
DICKENS									
DIMMIT									
DUVAL									
EASTLAND									
ECTOR									
FRATH						712766	580861	2432	814
FALLS	EDWARDS		0		0	0	0		
FANIN									0
FAYETTE									0
FISHER									301
FOARD									0
FRANKLIN 0<									0
FREESTONE									
FRIO 0 0 0 0 173607 141479 592 GILLESPIE 742590 765089 283 308 665085 542004 2269 GCASSCOCK 0 0 0 0 0 0 0 GOLIAD 0 0 0 0 0 0 0 GONZALES 0 0 0 0 0 0 0 0 GRAYSON 0									
GILLESPIE 742590 765089 283 308 665085 542004 2269 GLASSCOCK 0 0 0 0 0 0 0 0 GOLIAD 0 0 0 0 0 0 0 0 GONZALES 0 0 0 0 0 134484 109596 459 GRAYSON 0 0 0 0 0 0 0 0 0 GRIMES 0									198
GLASSCOCK 0 0 0 0 0 0 0 GOLIAD 0									759
GOLIAD		0	0	0	0	0	0	0	0
GRAYSON 0 </td <td>GOLIAD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	GOLIAD								
GRIMES 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>153</td>									153
HALL 0 0 0 0 0 0 0 HAMILTON 0 0 0 0 0 0 0 0 HARDEMAN 0 0 0 0 0 0 0 0 HASKELL 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
HAMILTON									
HARDEMAN									
HASKELL 0 0 0 0 0 0 0 HENDERSON 0 0 0 0 0 0 0 0 HIDALGO 2438474 2512356 929 1012 6921041 5640230 23616 HILL 0 0 0 0 0 0 0 0 HOOD 0									
HENDERSON 0 0 0 0 0 0 0 0 0									
HIDALGO									
HILL 0 0 0 0 0 0 0 HODD 0 0 0 0 122258 99633 417 HOPKINS 0 0 0 0 0 0 0 HOUSTON 0 0 0 0 0 0 0 HOWARD 0 0 0 0 0 0 0 HUDSPETH 0 0 0 0 0 0 0 HUNT 0 0 0 0 257965 210226 880 IRION 0 0 0 0 496369 404510 1694 JACK 0 0 0 0 0 0 0 JACKSON 0 0 0 0 0 0 0									
HOOD 0 0 0 0 122258 99633 417 HOPKINS 0 0 0 0 0 0 0 HOUSTON 0 0 0 0 0 0 0 HOWARD 0 0 0 0 0 0 0 HUDSPETH 0 0 0 0 0 0 0 HUNT 0 0 0 0 257965 210226 880 IRION 0 0 0 496369 404510 1694 JACK 0 0 0 0 0 0 0 JACKSON 0 0 0 0 0 0 0									
HOUSTON 0 0 0 0 0 0 0 HOWARD 0 0 0 0 0 0 0 0 HUDSPETH 0 0 0 0 0 0 0 0 HUNT 0 0 0 0 257965 210226 880 IRION 0 0 0 496369 404510 1694 JACK 0 0 0 0 0 0 0 JACKSON 0 0 0 0 0 0 0	HOOD					122258	99633	417	140
HOWARD 0 <td>HOPKINS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	HOPKINS								
HUDSPETH 0 0 0 0 0 0 HUNT 0 0 0 0 257965 210226 880 RION 0 0 0 0 496369 404510 1694 JACK 0 0 0 0 0 0 0 JACKSON 0 0 0 0 0 0 0									
HUNT 0 0 0 0 257965 210226 880 IRION 0 0 0 0 496369 404510 1694 JACK 0 0 0 0 0 0 0 JACKSON 0 0 0 0 0 0 0									
IRION 0 0 0 496369 404510 1694 JACK 0 0 0 0 0 0 0 JACKSON 0 0 0 0 0 0 0 0									
JACK 0 0 0 0 0 0 JACKSON 0 0 0 0 0 0 0									294
JACKSON 0 0 0 0 0 0 0 0									567
DEFF DAVIS U U U U 0 0 0 0 0									
JIM HOGG 0 0 0 0 0 0 0									

Table 20: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Office and Education Building Types (Continued)

		Of	fice			Educ	ation	
Other ERCOT Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBtu	ı/yr), DOE
		2013 (Annual)		2013 (Annual)	2007 (Annual)			
JIM WELLS	0	0	0	0	0	0	0	(
JONES	0	0	0	0	0	0	0	(
KARNES	650336	0	0	0	0	0.43535	0	(
KENDALL		670040	248	270	1157786	943525	3951	1321
KENEDY KENT	0	0	0	0	0	0	0	(
KERR	0	0	0	0	61129	49817	209	70
KIMBLE	0	0	0		01129	49817	0	/(
KING	0	0	0	0	0	0	0	(
KINNEY	0	0	0	0	0	0	0	(
KLEBERG	0	0	0	0	0	0	0	(
KNOX	0	0	0	0	0	0	0	(
LA SALLE	0	0	0	0	0	0	0	Ò
LAMAR	0	0	0	0	0	0	0	(
LAMPASAS	0	0	0	0	0	0	0	(
LAVACA	0	0	0	0	0	0	0	(
LEE	0	0	0	0	0	0	0	(
LEON	0	0	0	0	0	0	0	(
LIMESTONE	0	0	0	0	0	0	0	(
LIVE OAK	0	0	0	0	0	0	0	(
LLANO	46697	48111	18	19	361884	294914	1235	413
LOVING	0	0	0	0	0	0	0	(
MADISON	0	0	0	0	751888	612744	2566	858
MARTIN	0	0	0	0	612514	499162	2090	699
MASON	0	0	0	0	0	0	0	(
MATAGORDA	61503	63366	23	26	0	0		(
MAVERICK	0	0	0	0	0	0	0	(
MCCULLOCH	0	0	0	0	0	0	0	(
MCLENNAN	41002	42244	16	17	202949	165391	692	232
MCMULLEN	0	0	0	0	42790	34872	146	49
MEDINA	0	0	0	0	544049	443367	1856	621
MENARD	0	0	0	0	0	0	0	(
MIDLAND	56947	58672	22	24	366775	298899	1251	419
MILAM	208426	214741	79	87	311759	254064	1064	356
MILLS	0	0	0	0	0	0	0	(
MITCHELL	0	0	0		0	0	0	(
MONTAGUE	0	0	0	0	0	0	0	(
MOTLEY	0	0	0		0	0	0	(
NACOGDOCHES	0	0	0		1137002	926588	3880	1298
NAVARRO	0	0	0	0	1931681	1574203	6591	2205
NOLAN	0	0	0	0	207839	169376	709	237
PALO PINTO	0	0	0	0	0	0	0	(
PECOS	0	0	0	0	317872	259046	1085	363
PRESIDIO	0	0	0	0	18339	14945	63	21
RAINS REAGAN	0	0	0	0	0	0	0	(
REAL	0	0	0	0	0	0	0	(
RED RIVER	0	0	0	0	0	0	0	(
REEVES	0	0	0	0	0	0	0	(
REFUGIO	0	0	0	0	1132112	922602	3863	1292
ROBERTSON	0	0	0		199281	162402	680	227
RUNNELS	0	0	0	0	0	0	0	(
SAN SABA	0	0	0	0	0	0	0	(
SCHLEICHER	0	0	0	0	0	0	0	(
SCURRY	0	0	0		0	0	0	(
SHACKELFORD	0	0	0	0	0	0	0	(
SOMERVELL	0	0	0	0	0	0	0	(
STARR	60364	62193	23	25	1881555	1533353	6420	2147
STEPHENS	0	0	0	0	0	0	0	(
STERLING	0	0	0		50126	40850	171	57
STONEWALL	0	0	0			0		(
SUTTON	0	0	0		0	0	0	(
TAYLOR	17084	17602	7		311759	254064	1064	356
TERRELL	0	0	0			0	0	(
THROCKMORTON	0	0	0		0	0	0	(
TITUS	0	0	0		0	0	0	(
TOM GREEN	378129	389585	144	157	916937	747248	3129	1047
UPTON	0	0	0		1023302	833929	3492	1168
UVALDE	0	0	0			0		(
VAL VERDE	0	0	0			647615		000
VAN ZANDT	0	0	0	0	794679	647615	2712	907
WARD	0	0	0		0	0	0	(
WASHINGTON WEBB	0 646919	666519	246	0 268	0 6191159	5045420	0 21125	7066
WHARTON	646919	0 0 0 0	246	268	6191159	5045420	21125	/066
WICHITA	23918	24642	9		1522115	1240432	5194	1737
WILBARGER	23918	24642	0		1522115	1240432	5194	1/3/
WILLACY	0	0	0		110032	89670	375	126
WILLACY WINKLER	0	0	0		110032	89670	3/5	126
YOUNG	0	0	0		0	0	0	(
ZAPATA	0	0	0		0	0	0	(
ZAVALA	0	0	0		46458	37861	159	53
LATALA	- 0	U	0	0	40438	3/001	139	33

Table 21: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2014 Code-Compliant Retail and Food Service Building Types

		Re	tail			Food S	ervice	
Non-attainment Counties	Electricity (k	Wh/yr), DOE	Gas (mBtı	ı/yr), DOE	Electricity (k	Wh/yr), DOE	Gas (mBtı	ı/yr), DOE
		2013 (Annual)	2007 (Annual)	2013 (Annual)		2013 (Annual)		
Brazoria	3210388	2428451	3187	2429	3409039	3469011	15121	15457
Chambers	0	0	0	0	0	0	0	0
Collin	21700175	16414780	21542	16415	23042930	23448305	102207	104479
Dallas	19612292	14835432	19470	14836	20825854	21192226	92373	94427
Denton	5354218	4050120	5315	4050	5685524	5785545	25218	25779
El Paso	4755469	3597205	4721	3597	5049726	5138562	22398	22896
Ellis	1715302	1297515	1703	1298	1821441	1853484	8079	8259
Fort Bend	6707651	5073905	6659	5074	7122705	7248009	31593	32295
Galveston	2756863	2085388	2737	2085	2927451	2978951	12985	13273
Harris	30046945	22728573	29828	22729	31906179	32467478	141520	144666
Johnson	215454	162977	214	163	228786	232811	1015	1037
Kaufman	30949	23411	31	23	32864	33442	146	149
Liberty	0	0	0	0	0	0	0	0
Montgomery	9055032	6849547	8989	6850	9615336	9784490	42649	43597
Parker	269020	203496	267	204	285667	290692	1267	1295
Rockwall	1534368	1160650	1523	1161	1629311	1657974	7227	7387
Tarrant	14584232	11032029	14478	11032	15486669	15759113	68691	70218
Waller	95228	72034	95	72	101121	102900	449	458
Wise	0	0	0	0	0	0	0	0
		Ret	tail			Food S	ervice	
Affected Counties		Wh/yr), DOE		ı/yr), DOE	Electricity (k			ı/yr), DOE
	2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)	2007 (Annual)	2013 (Annual)
Bastrop	520185	393487	516	393	552373	562090	2450	2505
Bexar	9107407	6889165	9041	6889	9670952	9841085	42896	43849
Caldwell	108322	81939	108	82	115025	117049	510	522
Comal	813013	614991	807	615	863320	878508	3829	3914
Gregg	498759	377279	495	377	529621	538938	2349	2401
Guadalupe	202360	153073	201	153	214882	218662	953	974
Harrison	33330	25212	33	25	35392	36015	157	160
Hays	1089175	823891	1081	824	1156571	1176917	5130	5244
Nueces	985614	745553	978	746	1046602	1065014	4642	4745
Rusk	0	0	0	0	0	0	0	0
San Patricio	36901	27913	37	28	39184	39874	174	178
Smith	2678299	2025960	2659	2026	2844026	2894059	12615	12895
Travis	6399349	4840694	6353	4841	6795326	6914870	30141	30811
Upshur	83325	63030	83	63	88481	90037	392	401
Victoria	323777	244916	321	245	343811	349860	1525	1559
Williamson	7630177	5771736	7575	5772	8102314	8244851	35938	36737
Wilson	172601	130562	171	131	183282	186506	813	831

Table 21: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Retail and Food Service Building Types (Continued)

		Ret	tail			Food S	Service	
Other ERCOT Counties	Electricity (k	Wh/yr), DOE	Gas (mBt	u/yr), DOE		Wh/yr), DOE	Gas (mBt	u/yr), DOE
ANDERSON	2007 (Annual) 0	2013 (Annual) 0	2007 (Annual) 0	2013 (Annual) 0	2007 (Annual) 0	2013 (Annual)	2007 (Annual) 0	2013 (Annual)
ANDREWS	0	0	0	0	0	0	0	0
ANGELINA	258307	195393	256	195	274291	279116	1217	1244
ARANSAS	0	0	0	0	0	0	0	0
ARCHER	0	0	0	0	0	0	0	0
ATASCOSA	0	0	0		0	0	0	0
AUSTIN	29759	22511	30	23	31600	32156	140	143
BANDERA	0	0	0		0	0	0	0
BAYLOR BEE	0	0	0		0	0	0	0
BELL	3137776	2373525	3115	2374	3331934	3390550	14779	15107
BLANCO	0	0	0		0	0	0	
BORDEN	0	0	0		0	0		
BOSQUE	0	0	0	0	0	0	0	0
BRAZOS	1336769	1011179	1327	1011	1419485	1444457	6296	6436
BREWSTER	0	0	0	0	0	0	0	0
BRISCOE	108322	81939	108	82	115025	117049	510	522
BROOKS	0	0	0	0	0	0	0	0
BROWN BURLESON	0	0	0		0	0	0	0
BURNET	52376	39619	52	40	55617	56595	247	252
CALHOUN	0	39019	0	0	0	30393	0	0
CALLAHAN	0	0	0	0	0	0	0	0
CAMERON	717784	542957	713	543	762199	775608	3381	3456
CHEROKEE	0	0	0	0	0	0	0	0
CHILDRESS	0	0	0		0	0		
CLAY	0	0	0		0	0		
COKE	0	0	0		0	0	0	0
COLEMAN	0	0	0		0	0	0	
COLORADO	0	0	0	0	0	0	0	0
COMANCHE CONCHO	0	0	0		0	0	0	0
COOKE	0	0	0	0	0	0	0	0
CORYELL	943952	714038	937	714	1002361	1019995	4446	4545
COTTLE	0	0	0	0	0	0	0	0
CRANE	0	0	0	0	0	0	0	0
CROCKETT	0	0	0	0	0	0	0	0
CROSBY	0	0	0	0	0	0	0	0
CULBERSON	0	0	0		0	0		
DAWSON	0	0	0	0	0	0	0	0
DEWITT	104751	79238	104	79	111233	113190	493	504
DELTA	0	0	0	0	0	0	0	0
DICKENS DIMMIT	85706	64831	0 85	65	91009	92610	0 404	413
DUVAL	0	04831	0		91009	92010	0	0
EASTLAND	0	0	0	0	0	0	0	0
ECTOR	391627	296240	389	296	415860	423176	1845	1886
EDWARDS	0	0	0	0	0	0	0	0
ERATH	0	0	0	0	0	0	0	0
FALLS	0	0	0		0	0	0	0
FANNIN	0	0	0		0	0	0	0
FAYETTE	85706	64831	85	65	91009	92610	404	413
FISHER	0	0	0		0	0	0	0
FOARD FRANKLIN	0	0	0	0	0	0	0	0
FREESTONE	108322	81939	108	82	115025	117049	510	522
FRIO	0	0 0	0		0			
GILLESPIE	0		0		0		0	
GLASSCOCK	0	0	0		0	0	0	0
GOLIAD	0	0	0		0	0		0
GONZALES	77373	58528	77	59	82161	83606	364	373
GRAYSON	258307	195393	256	195	274291	279116		1244
GRIMES	108322	81939	108	82	115025	117049	510	522
HALL HAMILTON	0	0	0		0			
HARDEMAN	0	0	0		0	0		
HASKELL	0	0	0		0			
HENDERSON	89277	67532	89	68	94801	96469	420	430
HIDALGO	4206715	3182108	4176	3182	4467017	4545601	19813	20254
HILL	0	0	0	0	0	0	0	0
HOOD	103561	78337	103	78	109969	111904	488	499
HOPKINS	0	0	0		0	0		
HOUSTON	0	0	0		0	0	0	
HOWARD	0	0	0		0			
HUDSPETH	1504600	1129120	1404	1129	1507711	1625919	0	7244
HUNT	1504609	1138139	1494	1138	1597711	1625818	7087	7244
IRION JACK	0	0	0		0	0	0	
JACKSON	0		0					
	0	0	0					
JEFF DAVIS								

Table 21: Energy Use of ASHRAE Standard 90.1-2007 and 90.1-2013 Code-Compliant Retail and Food Service Building Types (Continued)

		Re	tail			Food S	Service	
Other ERCOT Counties	Electricity (k	Wh/yr), DOE		ı/yr), DOE	Electricity (k	Wh/yr), DOE		ı/yr), DOE
	2007 (Annual)	2013 (Annual)	2007 (Annual)		2007 (Annual)	2013 (Annual)	2007 (Annual)	
JIM WELLS	179744	135964	178	136	190866	194223	847	865
JONES	0	0	0	0	0	0	0	0
KARNES KENDALL	39282	0 29714	39	30	0 41712	0 42446	185	0 189
KENEDY	39282	29/14	0	0	41/12	42446	0	0
KENT	0	0	0	0	0	0	0	0
KERR	0	0	0		0			0
KIMBLE	0	0	0	0	0	0	0	0
KING	0	0	0		0			0
KINNEY	0	0	0		0	0		0
KLEBERG	14284	10805	14	11	15168	15435	67	69
KNOX LA SALLE	108322	81939 0	108	82	115025	117049 0	510	522 0
LAMAR	0	0	0	0	0	0	0	0
LAMPASAS	0	0	0	0	0	0	0	0
LAVACA	0	0	0	0	0	0	0	0
LEE	83325	63030	83	63	88481	90037	392	401
LEON	0	0	0	0	0	0	0	0
LIMESTONE	0	0	0	0	0	0	0	0
LIVE OAK	0	0	0	0	0	0	0	0
LLANO	0	0	0		0	0		0
LOVING MADISON	0	0	0	0	0	0	0	0
MARTIN	0	0	0	0	0	0	0	0
MASON	0	0	0	0	0	0	0	0
MATAGORDA	0	0	0	0	0	0	0	0
MAVERICK	38091	28814	38	29	40448	41160	179	183
MCCULLOCH	0	0	0	0	0	0	0	0
MCLENNAN MCMULLEN	2503317	1893598	2485	1894	2658216	2704980	11791	12053
MEDINA	1970038	0 1490206	0 1956	0 1490	2091939	2128741	9279	9485
MENARD	1970038	0	0	0	2091939	2128741	0	0
MIDLAND	792777	599684	787	600	841832	856641	3734	3817
MILAM	46424	35117	46	35	49296	50164	219	224
MILLS	1904568	1440683	1891	1441	2022418	2057997	8970	9170
MIT CHELL	0	0	0	0	0	0	0	0
MONTAGUE	0	0	0	0	0	0	0	0
MOTLEY	01657	0	91	0	97329	99041	432	0 441
NACOGDOCHES NAVARRO	91657 44043	69333 33316	44	69	46768	47591	207	212
NOLAN	0	0	0	0	0	0	0	0
PALO PINTO	0	0	0	0	0	0	0	0
PECOS	0	0	0	0	0	0	0	0
PRESIDIO	0	0	0	0	0	0	0	0
RAINS	85706	64831	85	65	91009	92610	404	413
REAGAN	0	0	0	0	0	0	0	0
REAL RED RIVER	0	0	0	0	0	0	0	0
REEVES	0	0	0	0	0	0	0	0
REFUGIO	0	0	0	0	0	0		0
ROBERTSON	258307	195393	256	195	274291	279116	1217	1244
RUNNELS	0	0	0	0	0	0	0	0
SAN SABA	0	0	0		0	0		0
SCHLEICHER	0	0	0	0	0	0	0	0
SCURRY SUACKEL FORD	0	0	0		0	0		0
SHACKELFORD SOMERVELL	0	0	0	0	0	0	0	0
STARR	49995	37818	50	38	53088	54022	235	241
STEPHENS	0	0	0					0
STERLING	0	0						0
STONEWALL	0	0	0		0	0		0
SUTTON	0	0	0		0	0		0
TAYLOR	721355	545659	716		765991	779466		3473
TERRELL	0	0	0	0	0	0	0	0
THROCKMORTON TITUS	0	0	0		0	0		0
TOM GREEN	627317	474525	623	475	666134	677853	2955	3020
UPTON	027317	0	0	0	0	0	0	0
UVALDE	0	0	0	0	0	0	0	0
VAL VERDE	30949	23411	31	23	32864	33442	146	149
VAN ZANDT	0	0	0	0	0	0	0	0
WARD	0	0	0	0	0	0		0
WASHINGT ON WEBB	1228447	929240	0 1220	929	1304460	1327408	5786	5915
WHARTON	1228447	929240	0	929	1304460	1327408	5/86	3915
WICHITA	46424	35117	46	35	49296	50164	219	224
WILBARGER	0	0	0	0	0	0	0	0
WILLACY	0	0	0	0	0	0	0	0
WINKLER	0	0	0					0
YOUNG	0	0	0		0	0	0	0
ZAVALA	0	0	0		0	0		0
ZAVALA	0	0	0	0	0	0	0	0
Total	176899872	133813324	175613	133817	187846019	191150635	833192	851713

Table 22: Annual Electricity and Natural Gas Savings from New Commercial Construction

	Apart	ments	Healt	thcare	Lod	lging	Off	ice	Educ	ation	Re	tail	Food 5	Service	To	otal	Total*1.07 (T&	D loss) for eGrid
Counties	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	MWh/yr	Therm/yr
Non-attainment Counties																		i
(square feet in thousands)																		i
BRAZORIA	405899	392	-295553	-550	-1050853	-3705	54764	62	-1245063	-15278	-781937	-759	59972	336	-2852770	-19501	3052	208659
CHAMBERS	0	0	0	0	0	0	3865	4	0	0	0	0	0	0	3865	4	-4	-47
COLLIN	1126144	1088	-7514522	-13979	-2235336	-7881	1255882	1416	-3127478	-38376	-5285395	-5127	405375	2272	-15375330	-60587	16452	648278
DALLAS	3832712	3701	-4124270	-7672	-5731354	-20205	1372174	1548	-5240217	-64301	-4776860	-4634	366372	2053	-14301444	-89510	15303	957755
DENTON	637164	615	-796122	-1481	-1936230	-6826	52694	59	-617441	-7576	-1304098	-1265	100021	561	-3864013	-15913	4134	170270
EL PASO	231895	224	-2048667	-3811	-1587083	-5595	31609	36	-864508	-10608	-1158264	-1124	88836	498	-5306182	-20380	5678	218070
ELLIS	22833	22	0	0	0	0	11905	13	-1126281	-13820	-417787	-405	32043	180	-1477287	-14010	1581	149911
FORT BEND	87468	84	-257393	-479	-650528	-2293	8800	10	-1960698	-24059	-1633746	-1585	125304	702	-4280794	-27619	4580	295526
GALVESTON	0	0	-11972	-22	-29569	-104	25122	28	-67876	-833	-671474	-651	51500	289	-704269	-1294	754	13843
HARRIS	1515295	1463	-7269849	-13524	-7916081	-27908	572452	646	-12173475	-149376	-7318372	-7099	561299	3146	-32028732	-192652	34271	2061372
JOHNSON	55013	53	0	0	0	0	13493	15	-292996	-3595	-52477	-51	4025	23	-272942	-3555	292	38041
KAUFMAN	92923	90	0	0	0	0	0	0	-381234	-4678	-7538	-7	578	3	-295272	-4592	316	49138
LIBERTY	0	0	0	0	0	0	0	0	-199102	-2443	0	0	0	0	-199102	-2443	213	26141
MONTGOMERY	145661	141	-903119	-1680	-2322907	-8189	23086	26	-4086559	-50145	-2205485	-2139	169155	948	-9180170	-61038	9823	653112
PARKER	0	0	0	0	0	0	0	0	-520379	-6385	-65524	-64	5025	28	-580877	-6421	622	68702
ROCKWALL	0	0	0	0	0	0	1070	1	-225573	-2768	-373718	-363	28663	161	-569558	-2969	609	31764
TARRANT	1486815	1436	-6567257	-12217	-4243784	-14961	540256	609	-3560297	-43687	-3552203	-3446	272444	1527	-15624025	-70739	16718	756904
WALLER	0	0	0	0	0	0	0	0	-552733	-6782	-23194	-22	1779	10	-574148	-6795	614	72705
WISE	0	0	0	0	-894476	-3153	0	0	-67876	-833	0	0	0	0	-962351	-3986	1030	42653
Affected Counties																		1
(square feet in thousands)																		
BAST ROP	8854	9	0	0	0	0	0	0	0	0	-126699	-123	9717	54	-108128	-60	116	641
BEXAR	1711337	1653	-4612868	-8581	-2409341	-8494	620763	700	-1642588	-20156	-2218242	-2152	170133	954	-8380805	-36076	8967	386015
CALDWELL	0	0	0	0	0	0	0	0	0	0	-26383	-26	2024	11	-24360	-14	26	152
COMAL	250397	242	-712320	-1325	-568643	-2005	31023	35	-1220176	-14972	-198021	-192	15188	85	-2402552	-18132	2571	194015
GREGG	0	0	0	0	-329813	-1163	0	0	0	0		-118	9317	52	-441976	-1228	473	13143
GUADALUPE	0	0	0	0	0	0	17841	20	-94799	-1163	-49288	-48	3780	21	-122466	-1170	131	12516
HARRISON	0	0	0	0	0	0	0	0	-1066098	-13082	-8118	-8	623	3	-1073594	-13086	1149	140021
HAYS	157585	152	-123459	-230	-1473923	-5196	6039	7	-509293	-6249	-265284	-257	20347	114	-2187989	-11660	2341	124757
NUECES	121156	117	-5425451	-10093	-1736636	-6122	64668	73	-364265	-4470	-240061	-233	18412	103	-7562177	-20625	8092	220684
RUSK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SAN PATRICIO	50710	49	0	0	0	0	0	0	-233266	-2862	-8988	-9	689	4	-190854	-2818	204	30155
SMITH	26040	25	0	0	0	0	17219	19	-188920	-2318	-652339	-633	50033	280	-747967	-2626	800	28098
TRAVIS	2717039	2624	-1768079		-3915677	-13804	935027	1055	-2070430	-25405	-1558655	-1512	119544	670	-5541230	-39662	5929	424389
UPSHUR	0	0	0	0	0	0	0	0	0	0	-20295	-20	1557	9	-18738	-11	20	117
VICTORIA	0	0	0	0	0	0	3037	3	0	0	-78861	-76	6048	34	-69775	-39	75	419
WILLIAMSON	657502	635	-3787565	-7046	-545897	-1925	44205	50	-2336954	-28676	-1858441	-1803	142537	799	-7684613	-37965	8223	406229
WILSON	6304	6	0	0	0	0	0	0	0	0	-42040	-41	3224	18	-32511	-17	35	178

Note: A decrease in energy use is negative (i.e., savings); an increase in energy use is positive (i.e., more consumption)

Table 22: Annual Electricity and Natural Gas Savings from New Commercial Construction (Continued)

Control		Apart	ments	Heal	thcare	Lod	ging	Of	fice	Educa	ation	Re	tail	Food	Service	To	otal	Total*1.07 (T&	D loss) for eGrid
Mathematical	Counties																		
SAMELY AND ALL	Other EPCOT Counties	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	MWh/yr	Therm/yr
NESSECTION 1 6 6 6 7 7 8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																			
NOMERICA G. G. 16	ANDERSON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MASSACK C	ANDREWS	0	0	0			0	-	0	0	0	0	0	0	0			0	0
Memory M			-				0					-62914							
MAXAMA		- 0	-			U	0		1	0		0		0	- 0	-25464		27	513
SETING OF SETIMATE OF SETIMATE							0		0	-107470		0				-107470		115	14110
ANY SALES OF STREET OF STR	AUSTIN						0					-7248							
EST	BANDERA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Section Sect	BAYLOR	0	0	0	0	0	0	0	0	0		0		0	0		0	0	0
MANON COLOR OF COLOR	BEE																		
SeeSey		85110	82	-1604215	-2984	-284322	-1002	8558	10	-900256	-11047	-764251		58616	329	-3400760	-15354	3639	164291
Second		0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0
SEXCOS SEXON S		0		-	-	0			-	0		0						0	0
SIMPLY SET OF THE PARTY OF THE	BRAZOS	262486	253	-1512183	-2813	-1318683	-4649		5	-1027862	-12612	-325590	-316	24972	140			4165	213910
MONTAL	BREWSTER	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
MANUAL 1	BRISCOE		0	0								-26383		2024		-24360	-14	26	152
BRILLEANS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	0		0	0			0		0		0		0	0	0	0
MEMBERT 0			_			0	0		-	0		0							
CAMBOLN. 0							0											0	
CHALMANN 6 14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CALHOUN	0	0	0	Ü	Ü	0	0	0			0		0	0			237	
SHEPOLEZE 0	CALLAHAN		0		0					0	.0		0			0	0	0	0
SHEMENS 0 0 0 0 0 0 0 0 0	CAMERON	67814					-6489	22085	25	-429426		-174827		13409				2634	128243
CLY		0					0	0	0	0		0		0				0	0
COME 1			-	-			0	-				0						0	0
CRIEMANS 0 0 0 0 0 0 0 0 0							0					0						-20	-189
COLORANOME O O O O O O O O O O O O O O O O O O O		0	0				0		3	0		0					3	-3	-36
CONSIGNATION 0 0 0 0 0 0 0 0 0	COLORADO	0	0				0		0	-34164		0					-419	37	4486
COONEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMANCHE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CONTILE 0 0 0 9.7832 .1670 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0			0					0						0	0
COTTLE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COOKE											0							
CRANE O O O O O O O O O O O O O O O O O O O		0	0	-897882	-1670		0				0	-229913	-223	17634	99	-1110161	-1794	1188	19201
CREATET 0 0 0 66786 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0	0		0				0	0	0	0	0	0	0	0	0
GROSSIY 0		-		-	-	-	0					0				-	-	74	1385
DAMSON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CROSBY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEWITT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CULBERSON		0	0			0		0									0	0
DRITA DR			-	-			0											0	0
DIXERS 0 0 0 0 0 0 0 0 0		0	0			U	0	0	0			-25514		1957	11			25	147
DIMMIT 0 0 0 0 0 0 0 0 0			0				0	0	0			0		0	0			0	0
DUANAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIMMIT			-					-			-20875						21	
EASTLAND O O O O O O O O O O O O O	DUVAL	0	0	0	0	0	0	0	0	0	0	0		0				0	0
EDWARDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EASTLAND	0	0	0	0	0	0	0	0	0	0			0	0	0		0	0
REATH 0 0 0 -22944 -45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2944 -45 2.6 4777 FALLS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ECTOR									-131905		-95386						235	
FALLS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0		Ü	Ü	0	0	0	0		0	Ü	-		Ü		0	
FANNIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0				0	0		0		0							
FAYETTE		-		-															
RISHER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FAYETTE	0	0	0		0	0		0	0	0	-20875							121
FRANKIN	FISHER	0	0	0		0	0		0	0	0	0						0	0
RREISONE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FOARD											0						0	0
RRIO	FRANKLIN											0						0	0
GILLEYIE 0 0 0 7482 1-14 0 0 0 22499 25 1-123081 1-1510 0 0 0 0 1 0 1-18066 1-1499 11-16 16037 1							0												
GLASSOCK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							0					0							
GOLIAD O O O O O O O O O O O O O O O O O O O	GLASSCOCK	0	0	0		V	0	0	0	0		0						0	0
GRAYSON 93745 91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GOLIAD	0	0	0			0	0	0	0		0						0	0
GRIMES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GONZALES			-20951					0	-24888		-18845				-63238			3794
HALL 0							0		0	0		-62914					57		
HAMILTON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-	-		-	0					-26383						26	
HARDEMAN 0							0					0						0	0
HANKELL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HARDEMAN					0	0					0						0	0
HENDERSON 13157 13 23564 4-38 0 0 0 0 0 0 0 2-21745 -21 1668 9 2-342614 4-37 260 46818 HIDALCO 45776 44 235694 4-49 23698 4-04 914947 3-326 73882 83 -1280811 -15716 -1024607 -9-94 78584 440 -3239111 -19772 3466 221555 111 45974 -20 1 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HASKELL					0	0					0						0	0
HIDALGO 45776 44 216988 4-04 9-19497 3-3226 73828 83 -1280811 -15716 1-024607 9-94 78584 440 3-239111 1-9772 3466 211555 1	HENDERSON				-438	0	0	0		0		-21745	-21		9	-242614	-437		
HOOD 0 0 0 0 0 0 0 0 0 0 0 22625 278 25224 2-24 1935 11 45914 2-91 49 3116 MPKINS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HIDALGO	45776		-216988		-914947	-3226	73882		-1280811	-15716	-1024607	-994					3466	211555
HOPKINS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HILL						0			0		0							0
HOUSTON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HOOD		0	0			0			-22625	-278	-25224		1935	11	-45914	-291	49	3116
HOWARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0	0			0			0	0	0		0	0	0	0	0	0
HIDSPETH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HOUSI ON HOWARD		-	-				_	-			0					-	0	0
HINT 0 0 0 0 0 0 0 0 0 0 0 0 0 -4779 -586 -36669 -355 28107 158 -386101 -784 413 8386 RINT NINT NINT NINT NINT NINT NINT NINT			0							0		0						0	0
IRION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91858 1127 0 0 0 0 0 91858 1127 98 12061 ACK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HUNT		0				0		0		-586	-366469				-386101	-784		8386
JACKSON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IRION									-91858	-1127	0	0	0	0		-1127		12061
DEFF DAVIS 0 0 0 0 0 0 0 0 0	JACK		0				0		0	0	0	0				0		0	0
JIM HOCG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0				0		0	0		0						0	0
MM WELLS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -43779 -42 3338 19 -4042 -24 43 233 10NES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IIM HOGG						0					0						0	0
JONES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0				0	0	0										
KARNES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JONES		0				0	0	0			0						0	0
	KARNES	0	0	0	0	0	0	0	0		0	0	0					0	0

Note: A decrease in energy use is negative (i.e., savings); an increase in energy use is positive (i.e., more consumption)

Table 22: Annual Electricity and Natural Gas Savings from New Commercial Construction (Continued)

Control Cont		Apart	ments	Heal	thcare	Lod	lging	Off	ice	Educ	ation	Re	tail	Food	Service	To	otal	Total*1.07 (T&	D loss) for eGrid
Mathematics	Counties																		
Season Company	Other EPCOT Counties	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	kWh/yr	MBtu/yr	MWh/yr	Therm/yr
NEXISSAL **********************************	(square feet in thousands)																		
SAMPLE GO PA DE SE	KENDALL	45228	44	-321741	-599	0	0	19704	22	-214260	-2629	-9568	,	734	4	-479903	-3167	513	33886
SEEST OF STATE OF STA		0	0	0		0	0	0		0		0				0	0	0	0
NEMBER 0 0 0 0 0 0 0 0 0		0	0	-			0		0			0							0
SSEC. 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0				0		0										
SENSY		0	0	0		0	0					0					-	0	0
SONY O O O O O O O O O O O O O O O O O O O	KINNEY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AMMERICA 1	KLEBERG	0	0	0			0		0									3	
AMASAM AND TABLE AND		0	0	-			0					-26383						26	152
LAMPANAS. 1		0	0	0			0		0			0		0				0	0
AMMANDA 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0			0		0			0						0	0
MATING	LAVACA	0	0	0	0	0	0	0	0		0	0	0					0	0
EMESTONS 0 0 0 0 0 0 0 0 0	LEE	0	0									-20295		1557				20	117
ENROSK		0	0				v					0		0				0	0
LANDO		0	-									0						0	0
COUNCY 0		0	-			0	0					0						70	8776
MACHEN D D D D D D D D D D D D D	LOVING	0	0	0	0	0	0		0	0		0					0	0	0
MASSEM Declared Brown Services MASSEM Declared Brown Service	MADISON	0	0	0	-	0	0		0			-		-					
MATAGERICA 0 0 0 0 0 22777 772 180 2 0 0 0 0 0 0 0 0	MARTIN	0	0	0		0	0		0	-113352								121	14883
MANDESCK 0		0	0	0		0	0		0	0								0	0
MICHILLOCH 1		0	0	0		-221771 0	-782	1863	2								-780	235	
MILENNAN 27148	MCCULLOCH	0	0	0		0	0	0	0			-92/8					-3	0	
MEDINAM 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MCLENNAN	273148				0	0			-37558		-609719						1118	19916
MEMARD 0	MCMULLEN	0	0	0	0		0	0		-7919	-97	0	0	0	0	-7919	-97	8	1040
MILLAND 44131 43 0 0 0 0 1225 2 2 67876 433 1-1939 1-17 1410 18 3 2-30001 909 214 955 MILLAY 0 0 0 0 0 4-66 1-150 6151 2 3-57966 703 1-1939 1-17 1410 18 18 2 3-30001 909 214 955 MILLAY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MEDINA	0	0			0	0		0	-100682		-479831		36802			-1495	582	15993
MILLAS 0 0 0 0 0 0 -42646 1-190 6-115 2 37694 708 -1130 6-130 2 3 104467 4857 1112 9737 MILLAS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0			0	0		0	0		0		0			0	0	0
MILES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		44131	43	0					2						83				
MICHELL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MILLS	0	0	0					0					35579	199	-428307			
MOTLEY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MITCHELL	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0
NACKGROCHES 0 0 -112255 -209 0 0 0 0 0 23044 -2585 -22234 -22 1112 18 041326 -3803 367 29098 NACKGROWN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MONTAGUE	0	0	0	0	0	0					0		0	0	0	0	0	0
NAVABRO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MOTLEY						0					0						0	0
NOLAN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3886 472 41 5050 PALO PINTO 1 2157 4 21 0 0 0 0 0 0 3886 472 41 5050 PALO PINTO 1 2157 4 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																			
PRAD PINTO 31574 21 0 0 0 0 0 0 0 0 0		0	0	0			0		- 0			-10727							
PECISIO		21874	21	0			0			0		0							
RAINS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PECOS	0	0	0	0	0	_0	0	0	-58825	-722	0	0	0	0			63	
REACH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRESIDIO	2467	2	0			0			-3394								1	
REAL. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0			0			0									
REPORVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0										0							0
REEVENS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RED RIVER	0										0							0
ROBERTSON O O O O O O O O O O O O O O O O O O	REEVES	0	0	0			0	0	0			0	0			0	0	0	0
RUNNELS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REFUGIO	0	0	-37412	-70	0	0	0	0	-209509								264	
SAN SMAR O O O O O O O O O O O O O O O O O O O	ROBERTSON	0	0	0			0	0											
SCHEICHER O O O O O O O O O O O O O		0	0	0			0		0			0						0	0
SURRY 0 0 0 0 0 0 0 0 0		0	0	0			0		0			0						0	0
SHACKEFORD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCURRY	0	0	-			0		0			0						0	0
SIABR 0 0 0 0 0 0 0 1859 2 -34820] -4273 -12177 -12 9-34 5 -357616 -4277 383 45766 SIEPHENS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SHACKELFORD	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
SIEPHENS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOMERVELL	0	- 0	- 0			0		0										0
SIZERLING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0				0		2									383	
SIONEWALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0	-		0		-									0	
SITTON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STONEWALL	0	0	0			0												1218
TERRELL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SUTTON	0		0	0		0	0		0	0	0	0	0	0	0		0	0
THROCKORTON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TAYLOR	0	0	-86047						-57694	-708	-175697		13475		-305445		327	10297
TITUS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TERRELL	0	0	0		0	0		0	0	0	0	- 0	0		0		0	0
TOM GREEN 0 0 0 0 0 0 14877 13 -1468699 -2082 -152792 -148 11719 66 -299306 -29152 330 23024 UVALUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0		0	0		0	0		0						0	0
UPTON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 189373 2324 203 24864 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0		0	0					0							
UVALDE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UPTON	0	0	0		0	0												
VAN ZANDT 0 0 0 0 0 -242811 -855 0 0 0 147064 -1805 0 0 0 0 -389874 -2661 417 28468 WARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UVALDE								0	0		0					0	0	0
WARD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VAL VERDE	0	Ü	-18706								-7538							
WASHINGTON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	-	0						-147064		0						417	28468
WEBB 959 1 4-6391 8-66 0 19601 22 1-145739 1-1059 2-99206 2-996 129 1-147827 1-14284 1549 152837 14170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	-	-		0				0		0					-	0	0
WIBARTON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEBB	959	1			0	V			-1145739		-299206						1549	152837
WILBAGER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WHARTON	0		0	0			0		0	0	0	0	0	0	0	0	0	0
WILLACY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WICHITA						-		1										
WINKLER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WILBARGER	0	0	0		0	0		-			0							
YOUNG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0		0	0					0						22	2674
ZAPATA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0	0					0						0	0
	ZAPATA	0	0			0	0					0						0	0
Total 16349104 15788 -52566489 -97788 -44444010 -15684 5920148 6677 -54969446 -674508 -43086548 -41796 3304617 18521 -169492624 -929789 181357 9948746	ZAVALA	0				0						0						9	
	Total	16349104	15788	-52566489	-97788	-44444010	-156684	5920148	6677	-54969446	-674508	-43086548	-41796	3304617	18521	-169492624	-929789	181357	9948746

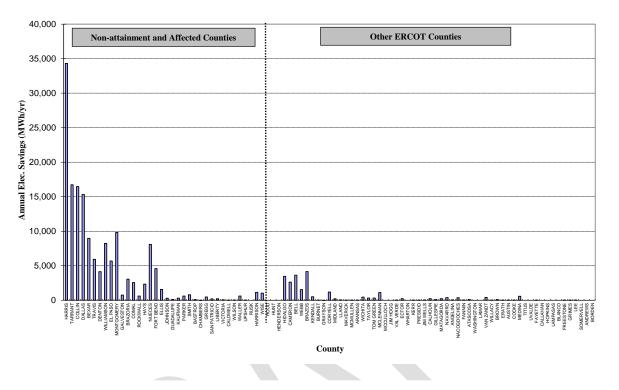
Note: A decrease in energy use is negative (i.e., savings); an increase in energy use is positive (i.e., more consumption)

Table 23: 2016 Totalized Annual Electricity Savings by CM Zone from New Commercial Construction

CM Zone	Total Electricity Savings by CM Zone (MWh) 2016-TRY 2008
Houston (H)	54,261
North (N)	50,490
West (W)	3,455
South (S)	31,433
Total	139,639

Table 24: 2016 Annual NOx Reductions from New Commercial Construction Using 2010 eGRID

			NOx		NOx		NOx		NOx		Total Nox
Area	County	н	Reductions	N	Reductions	w	Reductions	s	Reductions	Total Nox Reductions	Reductions
			(lbs)	·	(lbs)		(lbs/year)		(lbs)	(lbs)	(Tons)
	Brazoria	0.0562032	3049.66	0.0000071	0.36	0.0000003	0.00	0.0005265	16.55	3066.57	1.5
	Chambers	0.0204500	1109.64	0.0000026	0.13	0.0000001	0.00	0.0001916	6.02	1115.80	0.5
Houston- Galveston Area	Fort Bend	0.0313463	1700.89	0.0000040	0.20	0.0000002	0.00	0.0002937	9.23	1710.32	0.8
Garveston Area	Galveston	0.0226620	1229.67	0.0000029	0.15	0.0000001	0.00	0.0002123	6.67	1236.49	0.6
	Harris	0.1486911	8068.17	0.0000189	0.95	0.0000009	0.00	0.0013930	43.79	8112.92	4.0
	Collin	0.0012932	70.17	0.0079329	400.53	0.0003832	1.32	0.0000809	2.54	474.57	0.2
	Dallas	0.0024826	134.71	0.0152295	768.94	0.0007356	2.54	0.0001554	4.88	911.07	0.4
	Denton	0.0001267	6.87	0.0007770	39.23	0.0000375	0.13	0.0000079	0.25	46.48	0.0
Dallas/Fort	Tarrant	0.0004742	25.73	0.0029089	146.87	0.0001405	0.49	0.0000297	0.93	174.02	0.0
Worth Area	Ellis	0.0029920	162.35	0.0183544	926.71	0.0008865	3.06	0.0001873	5.89	1098.01	0.5
	Johnson	0.0007256	39.37	0.0044512	224.74	0.0002150	0.74	0.0000454	1.43	266.28	0.1
	Kaufman	0.0059718	324.04	0.0366343	1849.66	0.0017695	6.11	0.0003738	11.75	2191.56	1.1
	Parker	0.0000012	0.07	0.0000075	0.38	0.0000004	0.00	0.0000001	0.00	0.45	0.0
	Wise	0.0010202	55.36	0.0062583	315.98	0.0003023	1.04	0.0000638	2.01	374.39	0.1
San Antonio Area	Bexar	0.0138906	753.72	0.0009368	47.30	0.0000452	0.16	0.1109355	3487.00	4288.17	2.1
Area	Guadalupe	0.0032029	173.79 183.31	0.0002160	10.91	0.0000104	0.04	0.0255795	804.03 848.04	988.77 1042.89	0.4
	Bastrop	0.0033782	45.21	0.0002278	11.50 2.84	0.0000110	0.04	0.0269798	209.14	257.20	0.5
Austin Area	Hays	0.0008331	45.21 280.99	0.0000562			0.01	0.0066537			0.1
C Chair	Travis	0.0051785 0.0128578	280.99 697.68	0.0003493 0.0008672	17.63 43.78	0.0000169 0.0000419	0.06	0.0413577 0.1026870	1299.98 3227.72	1598.67 3969.33	1.9
Corpus Christi Area	Nueces San Patricio	0.0128578	81.93	0.0008672	43.78 5.14	0.0000419	0.14	0.1026870	379.05	3969.33 466.14	0.2
Victoria Area	Victoria	0.0013100	114.99	0.0001018	7.22	0.0000049	0.02	0.0120391	531.98	654.21	0.2
victoria Area	Andrews	0.0021192	0.20	0.0001429	1.16	0.0039003	13.47	0.0109244	0.01	14.85	0.0
	Bosque	0.0022204	120.48	0.0000230	687.73	0.0039003	2.27	0.000002	4.37	814.86	0.0
	Brazos	0.0024089	130.71	0.0130212	567.03	0.0005425	1.87	0.0047829	150.34	849.95	0.4
	Calhoun	0.0009466	51.36	0.0000638	3.22	0.0000031	0.01	0.0075598	237.62	292.22	0.1
	Cameron	0.0063536	344.76	0.0004285	21.64	0.0000207	0.07	0.0507425	1594.97	1961.43	0.9
	Cherokee	0.0027392	148.63	0.0168033	848.40	0.0008116	2.80	0.0001714	5,39	1005.22	0.5
	Ector	0.0019215	104.26	0.0006604	33.34	0.0911346	314.86	0.0146527	460.57	913.03	0.4
	Fannin	0.0000041	0.22	0.0000249	1.26	0.0000012	0.00	0.0000003	0.01	1.49	0.0
	Favette	0.0051867	281.44	0.0103217	521.14	0.0004986	1.72	0.0283993	892.66	1696.97	0.8
	Freestone	0.0047643	258.52	0.0292268	1475.66	0.0014117	4.88	0.0002982	9.37	1748.43	0.8
	Henderson	0.0006908	37.48	0.0042376	213.95	0.0002047	0.71	0.0000432	1.36	253.50	0.1
	Hidalgo	0.0053716	291.47	0.0003623	18.29	0.0000175	0.06	0.0428994	1348.44	1658.26	0.8
	Hood	0.0050771	275.49	0.0311454	1572.53	0.0015044	5.20	0.0003178	9.99	1863.21	0.9
	Howard	0.0002411	13.08	0.0007641	38.58	0.1283942	443.58	0.0009490	29.83	525.07	0.2
	Hunt	0.0088463	480.01	0.0047066	237.64	0.0002273	0.79	0.0652823	2051.99	2770.43	1.3
Other ERCOT	Jack	0.0030783	167.03	0.0188839	953.45	0.0009121	3.15	0.0001927	6.06	1129.69	0.5
counties	Lamar	0.0040001	217.05	0.0245388	1238.96	0.0011853	4.09	0.0002504	7.87	1467.98	0.7
countres	Llano	0.0040314	218.75	0.0002719	13.73	0.0000131	0.05	0.0321966	1012.02	1244.55	0.6
	McLennan	0.0056576	306.99	0.0347066	1752.34	0.0016764	5.79	0.0003541	11.13	2076.25	1.0
	Milam	0.0012686	68.84	0.0000856	4.32	0.0000041	0.01	0.0101316	318.46	391.63	0.2
	Mitchell	0.0000311	1.69	0.0001910	9.64	0.0324260	112.03	0.0000019	0.06	123.42	0.0
	Nolan	0.0000293	1.59	0.0001795	9.06	0.0304745	105.28	0.0000018	0.06	115.99	0.0
	Palo Pinto	0.0036129	196.04	0.0221635	1119.04	0.0010705	3.70	0.0002261	7.11	1325.89	0.6
	Pecos	0.0000020	0.11	0.0000121	0.61	0.0020520	7.09	0.0000001	0.00	7.81	0.0
	Robertson	0.0039506	214.36	0.0055755	281.51	0.0002693	0.93	0.0246170	773.78	1270.57	0.6
	Upton	0.0000025	0.14	0.0000156	0.79	0.0026494	9.15	0.0000002	0.01	10.08	0.0
	Ward	0.0001995	10.83	0.0012239	61.80	0.2078335	718.03	0.0000125	0.39	791.05	0.4
	Webb	0.0042017	227.99	0.0002834	14.31	0.0000137	0.05	0.0335565	1054.77	1297.12	0.6
	Wharton	0.0021095	114.46	0.0001423	7.18	0.0000069	0.02	0.0168474	529.56	651.23	0.3
	Wichita	0.0000121	0.66	0.0000743	3.75	0.0126190	43.60	0.0000008	0.02	48.03	0.0
	Wilbarger	0.0179710	975.13	0.1102430	5566.16	0.0053249	18.40	0.0011247	35.35	6595.04	3.3
	Wise	0.0010202	55.36	0.0062583	315.98	0.0003023	1.04	0.0000638	2.01	374.39	0.1
	Young Total	0.0071054 0.4414501	385.55 23953.66	0.0435880 0.4812863	2200.76 24300.12	0.0021054 0.5345786	7.27 1846.89	0.0004447 0.6829349	13.98 21466.44	2607.56	1.3 35.7
	iotal	0.4414501	23955.00	0.4812863	24500.12	0.5545/86	1840.89	0.0829349	21400.44	71567.11	35.7
Fnoray			1				1			1	
Energy Savings											
by PCA											
(MWh)		54,261		50,490		3,455		31,433			
(1727/11)		54,261		50,490		3,433		31,433		I	


Table 25: 2016 Annual Electricity and Natural Gas Savings and NOx Reductions from New Commercial Construction

		Electricity Sar Resultant NOx (Comme	Reductions	Total Natural Gas Resultant NOx (Comme	Reductions	Total Nox Reductions
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual Nox Reductions (Tons)
	HARRIS TARRANT	34,270.74 16,717.71	4.06 0.09	2,061,372.19 756,904.12	9.48 3.48	13.5
	COLLIN	16,451.60	0.24	648,277.67	2.98	3.2
	DALLAS	15,302.54	0.46	957,755.30	4.41	4.8
	BEXAR TRAVIS	8,967.46 5,929.12	2.14 0.80	386,014.87 424,388.51	1.78 1.95	3.9 2.7
	DENTON	4,134.49	0.02	170,270.50	0.78	0.8
	WILLIAMSON	8,222.54		406,229.17	1.87	1.8
	EL PASO MONTGOMERY	5,677.61 9,822.78		218,069.62 653,111.83	1.00 3.00	3.0
	GALVESTON	753.57	0.62	13,843.44	0.06	0.0
	BRAZORIA	3,052.46	1.53	208,658.94	0.96	2.
	COMAL ROCKWALL	2,570.73 609.43		194,015.30 31,763.89	0.89 0.15	0.
	HAYS	2,341.15	0.13	124,756.80	0.57	0.
Non-	NUECES	8,091.53	1.98	220,684.04	1.02	3.0
attainment	FORT BEND ELLIS	4,580.45	0.86	295,526.33	1.36	2.:
and Affected	JOHNSON	1,580.70 292.05	0.55	149,910.75 38,041.06	0.69	0.:
Counties	GUADALUPE	131.04	0.49	12,516.32	0.06	0.:
	KAUFMAN	315.94	1.10	49,137.70	0.23	1.:
	PARKER SMITH	621.54 800.32	0.00	68,702.10 28,098.02	0.32	0
	BASTROP	115.70	0.52	640.84	0.00	0.:
	CHAMBERS	(4.14)	0.56	(46.64)	(0.00)	0.:
	GREGG SAN PATRICIO	472.91 204.21	0.23	13,143.39 30,154.66	0.06 0.14	0.0
	LIBERTY	204.21	0.23	26,141.11	0.14	0.
	VICTORIA	74.66	0.33	419.17	0.00	0.:
	CALDWELL	26.07		152.50	0.00	0.0
	WILSON WALLER	34.79 614.34		177.85 72,705.36	0.00	0.0
	UPSHUR	20.05		117.31	0.00	0.0
	RUSK	0.00	0.00	0.00	0.00	0.0
	HARRISON WISE	1,148.75 1,029.72	0.19	140,020.71 42,653.22	0.64	0.0
	HOOD	0.00	0.19	42,033.22	0.20	0.9
	HUNT	0.00	1.39	0.00	0.00	1.
	HENDERSON	0.00	0.13	0.00	0.00	0.
	HIDALGO CAMERON	3,465.85 2,633.66	0.83	211,555.07 128,242.78	0.97	1.3
	BELL	3,638.81	0.70	164,291.02	0.76	0.
	WEBB	1,549.18	0.65	152,836.60	0.70	1.3
	BRAZOS KENDALL	4,164.66 513.50	0.42	213,910.23 33,885.79	0.98 0.16	1.4
	BURNET	0.42		(63.69)	(0.00)	(0.0
	GRAYSON	(38.15)		(605.02)	(0.00)	(0.
	MIDLAND	1,187.87		19,201.14 9,551.00	0.09	0.0
	LLANO	214.32 70.14	0.62	8,775.85	0.04	0.0
	MAVERICK	9.17		53.63	0.00	0.0
	MCMULLEN	8.47 27.25		1,039.70 512.53	0.00	0.0
	ARANSAS WICHITA	465.79	0.02	40,174.69	0.00	0.0
	TAYLOR	326.83		10,297.03	0.05	0.0
	TOM GREEN MCLENNAN	320.26	101	23,024.24	0.11	0.
	MCCULLOCH	1,117.54 0.00	1.04	19,915.73 0.00	0.09	1.
	JIM HOGG	0.00		0.00	0.00	0.0
	VAL VERDE	27.46		415.91	0.00	0.
	ECTOR WHARTON	235.37 0.00	0.46 0.33	17,869.83 0.00	0.08	0.:
	KERR	12.10	0.33	1,485.29	0.00	0.0
	PRESIDIO	0.99		420.10	0.00	0.0
ther ERCOT Counties	JIM WELLS CALHOUN	43.25 237.25	0.15	253.05 29,111.70	0.00	0.
Journes	GILLESPIE	115.63	0.13	16,037.37	0.13	0.0
	MATAGORDA	235.30		8,343.17	0.04	0.0
	NAVARRO ANGELINA	393.10 62.16		46,997.19	0.22	0.0
	NACOGDOCHES	62.16 367.29		363.65 29,989.47	0.00	0.
	FANNIN	52.29	0.00	6,416.46	0.03	0.
	ATASCOSA	114.99		14,110.26	0.06	0.
	WASHINGTON LAMAR	0.00	0.73	0.00	0.00	0.
	VAN ZANDT	417.17		28,468.10	0.13	0.
	WILLACY	21.79		2,673.52	0.01	0.0
	BROWN ERATH	107.28 25.62		1,995.73 476.59	0.01	0.0
	AUSTIN	41.05		4,200.71	0.00	0.0
	COOKE	19.37		2,376.46	0.01	0.0
	MEDINA	581.77	0.00	15,992.54	0.07	0.0
	TITUS UVALDE	0.00	0.00	0.00	0.00	0.0
	FAYETTE	20.62	0.85	120.66	0.00	0.0
	CALLAHAN	0.00		0.00	0.00	0.
	HOPKINS	0.00		0.00	0.00	0.
	LAMPASAS BLANCO	0.00		0.00	0.00	0.0
	FREESTONE	26.07	0.87	152.50	0.00	0.0
	GRIMES	26.07	0.00	152.50	0.00	0.0
	LEE	20.05		117.31	0.00	0.0
	SOMERVELL ANDREWS	0.00	0.01	0.00	0.00	0.0
	BORDEN	0.00	0.01	0.00	0.00	0.0

Table 25: 2016 Annual Electricity and Natural Gas Savings and NOx Reductions from New Commercial Construction (Continued)

		Electricity Sa Resultant NOx (Comme	Reductions	Total Natural Ga Resultant NOx (Comme	Reductions	Total Nox Reductions
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual Nox Reductions (Tons)
	CHEROKEE	0.00	0.50	0.00	0.00	0.50
	DIMMIT FALLS	20.62		120.66 0.00	0.00	0.00
	COLORADO FRIO	36.56 34.38	0.00	4,485.58 4,218.23	0.02	0.02
	MILAM	34.38 111.78	0.00	9,172.91	0.04	0.24
	JACKSON	0.00		0.00	0.00	0.00
	ANDERSON HILL	0.00		0.00	0.00	0.00
	CULBERSON MASON	0.00		0.00	0.00	0.00
	PECOS	62.94	0.00	7,723.51	0.00	0.04
	RAINS	20.62		120.66	0.00	0.00
	LAVACA PALO PINTO	0.00 (23.40)	0.66	(226.02)	(0.00)	0.00
	KIMBLE	0.00		0.00	0.00	0.00
	MADISON ARCHER	148.88		18,269.07 0.00	0.08	0.08
	REFUGIO	264.21		28,252.26	0.13	0.13
	LIMESTONE	0.00	0.00	0.00 (188.92)	(0.00)	0.00
	BEE	266.30		32,676.39	0.15	0.15
	MARTIN GONZALES	121.29 67.66		14,882.61 3,793.59	0.07	0.07
	BURLESON	0.00		0.00	0.00	0.00
	KARNES KLEBERG	0.00 3.44		0.00 20.11	0.00	0.00
	BREWSTER	0.00		0.00	0.00	0.00
	WINKLER FRANKLIN	0.00		0.00	0.00	0.00
	YOUNG	0.00	1.30	0.00	0.00	1.30
	HOUSTON SCURRY	0.00		0.00	0.00	0.00
	BOSQUE	0.00	0.41	0.00	0.00	0.41
	COMANCHE BRISCOE	0.00 26.07		0.00 152.50	0.00	0.00
	CONCHO	0.00		0.00	0.00	0.00
	ZAVALA NOLAN	9.20 41.16	0.06	1,128.82 5,049.99	0.01	0.01
	BROOKS	0.00	0.06	0.00	0.02	0.00
	ROBERTSON	101.62	0.64	5,205.70	0.02	0.66
	LIVE OAK HAMILTON	0.00		0.00	0.00	0.00
	JONES	0.00		0.00	0.00	0.00
	REAGAN WARD	0.00	0.40	0.00	0.00	0.00
	RED RIVER	0.00		0.00	0.00	0.00
	HASKELL HOWARD	0.00	0.26	0.00	0.00	0.00
	SAN SABA	0.00		0.00	0.00	0.00
Other ERCOT	JACK STEPHENS	0.00	0.56	0.00	0.00	0.56
Counties	RUNNELS	0.00		0.00	0.00	0.00
	REEVES DEWITT	0.00 25.21		0.00 147.47	0.00	0.00
	CHILDRESS	0.00		0.00	0.00	0.00
	CROSBY DAWSON	0.00		0.00	0.00	0.00
	MITCHELL	0.00	0.06	0.00	0.00	0.06
	WILBARGER COLEMAN	0.00	3.30	0.00 (35.81)	(0.00)	3.30
	UPTON	202.63	0.01	24,863.76	0.11	0.12
	COKE CROCKETT	0.00 74.46	0.00	0.00 1.385.10	0.00	0.00
	HARDEMAN	0.00		0.00	0.00	0.00
	BANDERA BAYLOR	0.00		0.00	0.00	0.00
	COTTLE	0.00		0.00	0.00	0.00
	CRANE DELTA	0.00		0.00	0.00	0.00
	DICKENS	0.00		0.00	0.00	0.00
	DUVAL EASTLAND	0.00		0.00	0.00	0.00
	EDWARDS	0.00		0.00	0.00	0.00
	FISHER FOARD	0.00		0.00	0.00	0.00
	GLASSCOCK	0.00		0.00	0.00	0.00
	GOLIAD	0.00		0.00	0.00	0.00
	HALL HUDSPETH	0.00		0.00	0.00	0.00
	IRION	98.29		12,060.56	0.06	0.06
	JEFF DAVIS KENEDY	0.00		0.00	0.00	0.00
	KENT	0.00		0.00	0.00	0.00
	KING KINNEY	0.00		0.00	0.00	0.00
	KNOX	26.07		152.50	0.00	0.00
	LA SALLE LEON	0.00		0.00	0.00	0.00
	LOVING	0.00		0.00	0.00	0.00
	MENARD MILLS	0.00 458.29		0.00 2,681.28	0.00	0.00
	MONTAGUE	0.00		0.00	0.00	0.00
	MOTLEY REAL	0.00		0.00	0.00	0.00
	SCHLEICHER	0.00		0.00	0.00	0.00
	SHACKELFORD STARR	0.00 382.65		0.00 45,765,56	0.00	0.00
	STERLING	382.65 9.93		45,765.56 1,217.94	0.21	0.21
	STONEWALL	0.00		0.00	0.00	0.00
	SUTTON TERRELL	0.00		0.00	0.00	0.00
	THROCKMORTON	0.00		0.00	0.00	0.00
	ZAPATA	0.00 180,635.25	35.78	9,932,562.29	0.00 45.69	0.00 81.47

Annual Elec. Savings w/ 7% T&D Loss (Commercial Buildings)

Annual Elec. Savings w/ 7% T&D Loss (Commercial Buildings)

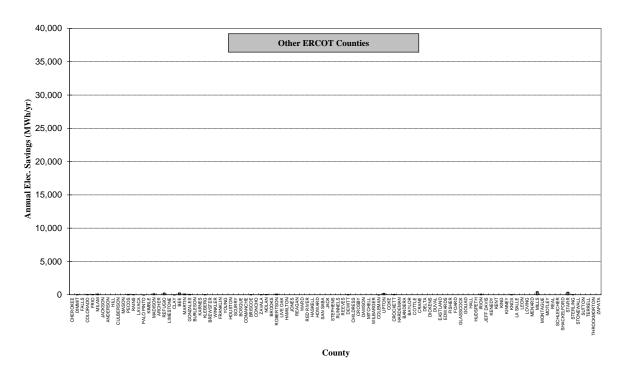
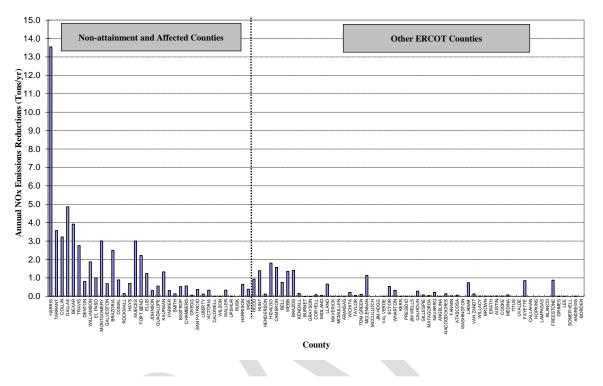



Figure 15: 2016 Annual Electricity Savings by County from New Commercial Construction

Annual NOx Emissions Reductions (Commercial Buildings)

Annual NOx Emissions Reductions (Commercial Buildings)

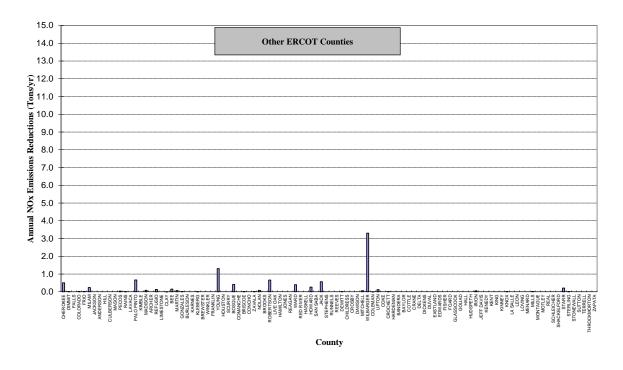


Figure 16: 2016 Annual NOx Reductions by County from New Commercial Construction

4.5 2016 Results for New Residential (Single-family and Multi-family) and Commercial Construction

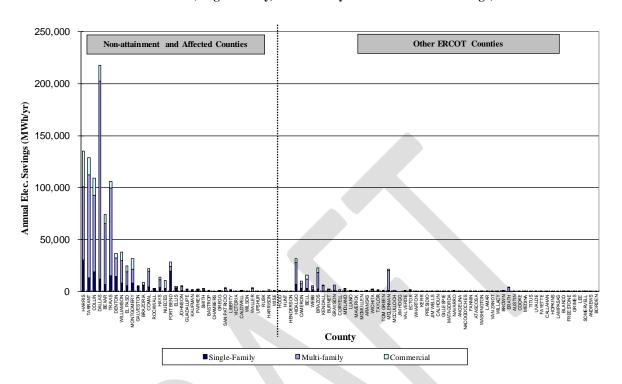
Figure 17 shows the bar chart and Figure 18 shows the spatial distribution of the 2016 annual electricity savings, and Figure 19 shows the bar chart and Figure 20 shows the spatial distribution of the 2016 annual NOx reductions for new residential and commercial Construction, respectively. In general the significant increase in the annual NOx emissions reduction shown in Figure 19, compared to the previous report is due to the higher energy savings. As shown in Table 26, the total annual electricity savings in 2016 resulted in 1,178,088.55 MWh/yr which includes 217,721.83 MWh/yr (i.e., 18.48 %) for single-family buildings, 779,731.47 MWh/yr (i.e., 66.19 %) for multi-family buildings, and 180,635.25 MWh/yr (i.e., 15.33 %) for new commercial buildings. In addition, the total annual natural gas savings from new residential and commercial Construction in 2016 resulted in 1,366,764.44 MMBtu³⁵ (13,670,907.81 therms).

The total NOx reductions³⁶ from electricity and natural gas savings from new residential (single-family and multifamily) and commercial Construction in 2016 resulted in 321.75 tons NOx/year which represents 258.87 tons NOx/year from electricity savings and 62.89 tons NOx/year from natural gas savings.

³⁶ 0.092 lb-NOx/MMBtu of emission rate was used for the calculation.

December 2017

^{35 1} Therm = 0.10 MMBtu, source from www.eia.gov/tools/faqs/faq.cfm?id=45&t=8


Table 26: 2016 Annual NOx Reductions from New Residential and Commercial Construction

		Electricity S: Resultant NOx (Single Fami	Reductions	Electricity S. Resultant NOs (Multifamil)	Reductions	Electricity Sa Resultant NOx (Commercial	Reductions	Total Electricit Resultant NOx I MF and Comme	Reductions (SF,	Total Natural Gas Savin NOx Reduct (Single and Multi-Fa	tions	Total Natural Gas Savii NOx Reduc (SF, MF and Comme	tions	Total Nox Reductions
	County	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual Nox Reductions (Tons)
	HARRIS TARRANT	30,527.77 13.262.92	5.52 0.10	70,333.86 98,757.01	11.38	34,270.74 16,717.71	4.06 0.09	135,132.37 128,737.64	20.96	212,567.58 410,639.74	0.98 1.89	2,273,939.77	10.46 5.37	31.42 6.10
	COLLIN	18,831.20	0.27	73,850.43	1.48	16,451.60	0.24	109,133.24	1.99	372,729.40	1.71	1,021,007.07	4.70	6.69
	DALLAS	11,718.50	0.53	190,959.81	2.84	15,302.54	0.46	217,980.85	3.82	677,099.45	3.11	1,634,854.75	7.52	11.34
	BEXAR	6,860.83	2.76	58,306.51	10.44	8,967.46	2.14	74,134.80	15.35	264,555.03	1.22	650,569.90	2.99	18.34
	TRAVIS DENTON	14,994.63 14,271.00	1.03	84,706.47 18,116.22	3.89 0.14	5,929.12 4,134.49	0.80	105,630.23 36,521.72	5.72 0.20	444,779.25 169,476.67	2.05 0.78	869,167.76 339,747.17	4.00 1.56	9.72
	WILLIAMSON	7,944.73	0.03	21,634.87	0.14	8,222.54	0.00	37,802.14	0.00	162,388.64	0.75	568,617.82	2.62	2.62
	EL PASO	5,313.43		13,571.78		5,677.61	0.00	24,562.82	0.00	64,927.75	0.30	282,997.37	1.30	1.30
	MONTGOMERY GALVESTON	8,216.97 4,343.17	0.84	13,397.86 314.30	1.73	9,822.78 753.57	0.00	31,437.61 5,411.03	0.00 3.19	54,003.33 23,985.61	0.25 0.11	707,115.16 37,829.05	3.25 0.17	3.25 3.37
	BRAZORIA	5,719.46	2.09	206.26	4.30	3,052.46	1.53	8,978.18	7.92	31,465,58	0.11	240,124.52	1.10	9.03
	COMAL	4,006.16		15,829.33		2,570.73	0.00	22,406.22	0.00	97,249.22	0.45	291,264.52	1.34	1.34
	ROCKWALL	2,563.82		0.00		609.43	0.00	3,173.25	0.00	20,731.11	0.10	52,495.00	0.24	0.24
	HAYS NUECES	3,961.91 2,547.30	0.17 2.56	7,305.28 263.33	0.63 9.66	2,341.15 8,091.53	0.13 1.98	13,608.34 10,902.15	0.92 14.20	69,999.85 9,120.76	0.32 0.04	194,756.65 229,804.80	0.90 1.06	1.82 15.26
Non-	FORT BEND	19,242.47	1.16	4,938.13	2.40	4,580.45	0.86	28,761.05	4.42	111,118.16	0.51	406,644.49	1.87	6.29
attainment and Affected	ELLIS	3,289.00	0.63	73.98	3.42	1,580.70	0.55	4,943.68	4.61	27,837.48	0.13	177,748.23	0.82	5.42
Counties	JOHNSON	1,173.67	0.15	3,521.22	0.83	292.05	0.13	4,986.94	1.12	20,524.99	0.09	58,566.05	0.27	1.39
	GUADALUPE KAUFMAN	1,887.09 1,024.61	0.64 1.27	0.00 59.59	2.41 6.83	131.04 315.94	0.49	2,018.13 1,400.14	3.54 9.20	22,384.54 8,462.91	0.10	34,900.86 57,600.61	0.16 0.26	3.70 9.46
	PARKER	937.31	0.00	849.20	0.00	621.54	0.00	2,408.05	0.00	10,114.16	0.05	78,816.26	0.26	0.36
	SMITH	998.67		1,340.38		800.32	0.00	3,139.38	0.00	390.23	0.00	28,488.25	0.13	0.13
	BASTROP	309.83 546.90	0.67	400.79	2.54	115.70	0.52	826.32 542.77	3.73 2.88	4,051.33	0.02	4,692.17	0.02	3.75
	CHAMBERS GREGG	546.90 352.64	0.76	0.00	1.57	(4.14) 472.91	0.56	542.77 825.55	2.88	2,318.90 331.85	0.01	2,272.26 13,475.24	0.01	2.89
	SAN PATRICIO	487.60	0.30	2,654.32	1.13	204.21	0.00	3,346.14	1.67	2,637.79	0.00	32,792.45	0.06	1.82
	LIBERTY	900.28		0.00		213.04	0.00	1,113.32	0.00	5,048.86	0.02	31,189.98	0.14	0.14
	VICTORIA	123.92	0.42	0.00	1.59	74.66	0.33	198.58	2.34	463.60	0.00	882.77	0.00	2.35
	CALDWELL WILSON	671.66 108.67		133.60		26.07 34.79	0.00	831.32 143.46	0.00	7,814.32 1,289.03	0.04	7,966.82 1,466.88	0.04	0.04
	WALLER	25.59		2,872.38		614.34	0.00	3,512.30	0.00	1,811.35	0.01	74,516.71	0.34	0.34
	UPSHUR	11.89		0.00		20.05	0.00	31.94		78.82	0.00	196.12	0.00	0.00
	RUSK HARRISON	4.43 88.38	0.00	0.00 298.29	0.00	0.00 1,148.75	0.00	4.43 1.535.42	0.00	8.24 (97.70)	0.00	8.24 139.923.01	0.00	0.00
	WISE	160.81	0.22	89.39	1.17	1,029.72	0.00	1,279.92	1.57	1,567.19	0.01	44,220.40	0.04	1.77
	HOOD	300.24	1.08	177.54	5.81	0.00	0.93	477.78	7.82	3,058.76	0.01	3,058.76	0.01	7.83
	HUNT	379.63	1.77	0.00	6.91	0.00	1.39	379.63	10.07	3,169.84	0.01	3,169.84	0.01	10.08
	HENDERSON HIDALGO	87.99 6,623.22	0.15 1.07	569.93 21,364.19	0.79 4.04	0.00 3,465.85	0.13	657.91 31,453.26	1.06 5.93	(280.65) 30,165.33	(0.00) 0.14	(280.65) 241,720.40	(0.00) 1.11	1.06 7.05
	CAMERON	2,759.48	1.07	4,566.00	4.04	2,633.66	0.83	9,959.14	7.02	11,459.84	0.14	139,702.63	0.64	7.66
	BELL	3,222.81		8,823.43		3,638.81	0.00	15,685.06	0.00	78,890.98	0.36	243,182.00	1.12	1.12
	WEBB	1,934.95	0.84	2,243.53	3.16	1,549.18	0.65	5,727.66	4.64	16,536.60	0.08	169,373.20	0.78	5.42
	BRAZOS KENDALL	2,218.09 605.65	0.50	16,152.19 4,922.32	2.53	4,164.66 513.50	0.42	22,534.94 6.041.46	3.45 0.00	21,854.56 15.097.43	0.10	235,764.79 48,983.22	1.08 0.23	4.54 0.23
	BURNET	740.11		1,311.20		0.42	0.00	2,051.74	0.00	12,907.93	0.07	12,844.23	0.23	0.23
	GRAYSON	855.30		5,284.48		(38.15)	0.00	6,101.63	0.00	23,003.66	0.11	22,398.64	0.10	0.10
	CORYELL	318.00		335.49 752.31		1,187.87	0.00	1,841.36	0.00	5,749.62	0.03	24,950.76	0.11	0.11
	MIDLAND LLANO	1,432.73 472.50	0.80	752.31 160.56	3.03	214.32 70.14	0.00	2,399.37 703.20	4.45	15,376.80 6,108.16	0.07	24,927.80 14,884.00	0.11	0.11 4.52
	MAVERICK	131.04		126.40		9.17	0.00	266.61	0.00	1,111.19	0.01	1,164.81	0.01	0.01
	MCMULLEN	0.00		0.00		8.47	0.00	8.47	0.00	0.00	0.00	1,039.70	0.00	0.00
	ARANSAS WICHITA	393.02 219.43	0.03	21.07 1,803.89	0.13	27.25 465.79	0.00	441.34 2.489.11	0.00	1,400.55 9,280.77	0.01	1,913.07 49,455.46	0.01	0.01
	TAYLOR	717.50	0.03	1,803.89	0.13	326.83	0.02	1,197.09	0.00	7,473.45	0.04	17,770.48	0.23	0.41
	TOM GREEN	401.63		0.00		320.26	0.00	721.89	0.00	3,815.09	0.02	26,839.33	0.12	0.12
	MCLENNAN	1,298.50	1.20	18,871.40	6.47	1,117.54	1.04	21,287.45	8.71	90,022.22	0.41	109,937.94	0.51	9.22
	MCCULLOCH JIM HOGG	2.34		1,324.73		0.00	0.00	1,327.06	0.00	4,626.98 0.00	0.02	4,626.98 0.00	0.02	0.02
	VAL VERDE	194.35		0.00		27.46	0.00	221.81	0.00	2,305.38	0.00	2,721.29	0.00	0.00
	ECTOR	1,015.61	0.58	0.00	2.32	235.37	0.46	1,250.98	3.35	9,004.79	0.04	26,874.62	0.12	3.48
	WHARTON	163.90	0.42	0.00	1.59	0.00	0.33	163.90	2.33	613.15	0.00	613.15	0.00	2.33
	KERR PRESIDIO	125.44 25.69		0.00		12.10	0.00	137.55 26.68	0.00	1,487.28 243.99	0.01	2,972.57 664.08	0.01	0.01
Other ERCOT		31.53		21.07		43.25	0.00	26.68 95.84	0.00	243.99 118.98	0.00	372.03	0.00	0.00
Counties	CALHOUN	119.93	0.19	0.00	0.71	237.25	0.15	357.17	1.05	448.64	0.00	29,560.34	0.14	1.18
	GILLESPIE	102.45		0.00		115.63	0.00	218.07	0.00	1,214.61	0.01	17,251.98	0.08	0.08
	MATAGORDA NAVARRO	163.90 340.42		0.00 184.52		235.30 393.10	0.00	399.20 918.04	0.00	613.15 5,491.06	0.00	8,956.31 52,488.25	0.04	0.04
	ANGELINA	132.92		43.57		62.16	0.00	238.64	0.00	226.14	0.03	589.79	0.24	0.24
	NACOGDOCHES	53.17		43.57		367.29	0.00	464.02	0.00	77.76	0.00	30,067.23	0.14	0.14
	FANNIN	61.75	0.00	89.06	0.00	52.29	0.00	203.10	0.01	782.91	0.00	7,199.37	0.03	0.04
	ATASCOSA WASHINGTON	70.97 141.71		0.00 118.04		114.99	0.00	185.96 259.75	0.00	833.14 865.71	0.00	14,943.40 865.71	0.07	0.07
	LAMAR	57.65	0.85	297.96	4.58	0.00	0.73	355.61	6.16	961.01	0.00	961.01	0.00	6.16
	VAN ZANDT	64.33		0.00		417.17	0.00	481.49	0.00	520.14	0.00	28,988.23	0.13	0.13
	WILLACY	83.90		0.00 50.32		21.79	0.00	105.68 330.88	0.00	312.92	0.00	2,986.45 4.624.83	0.01	0.01
	BROWN ERATH	173.27 87.26		50.32 3,532.51		107.28 25.62	0.00	330.88 3,645.39	0.00	2,629.10 13,121.24	0.01	4,624.83 13,597.83	0.02	0.02
	AUSTIN	43.30		59.02		41.05	0.00	143.37	0.00	277.85	0.00	4,478.56	0.00	0.00
	COOKE	116.63		0.00		19.37	0.00	136.00	0.00	973.87	0.00	3,350.33	0.02	0.02
	MEDINA	60.60		0.00		581.77	0.00	642.38	0.00	718.88	0.00	16,711.42	0.08	0.08
	TITUS	42.13	0.00	0.00	0.00	0.00	0.00	42.13	0.00	52.26	0.00	52.26	0.00	0.00
	UVALDE FAYETTE	39.71 15.75	1.05	54.03 0.00	4.54	0.00 20.62	0.00	93.73 36.37	0.00 6.44	640.71 88.58	0.00	640.71 209.23	0.00	0.00 6.45
	CALLAHAN	4.85	1.00	0.00	4.74	0.00	0.00	4.85	0.00	46.91	0.00	46.91	0.00	0.00
	HOPKINS	22.97		0.00		0.00	0.00	22.97	0.00	185.76	0.00	185.76	0.00	0.00
	LAMPASAS	91.73		0.00		0.00	0.00	91.73	0.00	0.00	0.00	1,290.58	0.01	0.01
	BLANCO FREESTONE	27.18 12.23	1.01	66.90 0.00	5.45	0.00 26.07	0.00	94.08 38.30	0.00 7.34	533.11 172.08	0.00	533.11 324.57	0.00	0.00 7.34
	GRIMES	76.76	0.00	0.00	0.00	26.07	0.87	102.82	0.00	431.81	0.00	584.31	0.00	0.00
	LEE	27.12		0.00		20.05	0.00	47.17	0.00	315.49	0.00	432.79	0.00	0.00
	SOMERVELL	25.02		295.90		0.00	0.00	320.92	0.00	1,106.81	0.01	1,106.81	0.01	0.01
	ANDREWS	19.14	0.01	0.00	0.04	0.00	0.01	19.14	0.06	102.16	0.00	102.16	0.00	0.06

Table 26: 2016 Annual NOx Reductions from New Residential and Commercial Construction (Continued)

		Hectricity S Resultant NOs (Single Fami	Reductions	Electricity S Resultant NOs (Multifamil)	Reductions	Electricity S Resultant NO: (Commercial	x Reductions	Total Electricit Resultant NOx F MF and Comme	teductions (SF,	Total Natural Gas Savir NOx Reduc (Single and Multi-F	tions	Total Natural Gas Savin NOx Reduc (SF, MF and Comme	ctions	Total No Reduction
	County	Total Annual Hectricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual Electricity Savings per County w/ 7% T&D Loss (MWh/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Total Annual N.G. Savings (Therm/County)	Annual Nox Reductions (Tons)	Annual No Reduction (Tons)
	DIMMIT FALLS	13.29 14.33 6.12	0.58	0.00 0.00	3.13	0.00 20.62 0.00	0.50 0.00 0.00	13.29 34.96 6.12	4.22 0.00 0.00	24.73 116.80 86.04	0.00 0.00 0.00	24.73 237.46 86.04	0.00 0.00	
	COLORADO	43.30		0.00		36.56	0.00	79.85	0.00	243.59	0.00	4,729.16	0.02	
	FRIO MILAM	14.61 13.31	0.00	0.00 49.18	0.00	34.38 111.78	0.00	48.99 174.27	0.00 1.40	171.53 198.41	0.00	4,389.75 9,371.31	0.02	
	JACKSON ANDERSON	21.99 28.80		0.00		0.00	0.00	21.99 28.80	0.00	82.25 53.58	0.00	82.25 53.58	0.00	
	HILL CULBERSON	16.31 7.16		0.00		0.00	0.00	16.31 7.16	0.00	229.44 37.01	0.00	229.44 37.01	0.00	
	MASON	6.27		0.00		0.00	0.00	6.27	0.00	74.36	0.00	74.36	0.00	
	PECOS RAINS	261.53 2.30	0.00	0.00	0.02	62.94 20.62	0.00	324.47 22.92	0.03	2,484.24 18.58	0.01	10,207.76 139.23	0.05	
	LAVACA PALO PINTO	54.19 21.82	0.77	0.00	4.13	0.00 (23.40)	0.00	54.19 (1.59)	0.00 5.56	205.07 211.09	0.00	205.07	(0.00)	
	KIMBLE MADISON	0.00 9.84		0.00 59.02		0.00 148.88	0.00	0.00 217.75	0.00	0.00 89.62	0.00	0.00 18,358.70	0.00	
	ARCHER	12.76		0.00		0.00	0.00	12.76	0.00	138.13	0.00	138.13	0.00	
	REFUGIO LIMESTONE	13.99 6.12	0.00	0.00	0.00	264.21 0.00	0.00	278.20 6.12	0.00	52.34 86.04	0.00	28,304.60 86.04	0.13 0.00	
	CLAY BEE	7.65 13.99		841.82 0.00		(19.56) 266.30	0.00	829.91 280.29	0.00	3,305.19 52.34	0.02	3,116.27 32,728.73	0.01	
	MARTIN	9.07		0.00		121.29	0.00	130.35	0.00	80.40	0.00	14,963.01	0.07	
	GONZALES BURLESON	18.81 23.62		0.00		67.66 0.00	0.00	86.47 23.62	0.00	223.10 132.86	0.00	4,016.69 132.86	0.02	
	KARNES KLEBERG	94.89 18.91		0.00		0.00 3.44	0.00	94.89 22.34	0.00	908.16 67.06	0.00	908.16 87.17	0.00	
	BREWSTER WINKLER	11.68		147.19		0.00	0.00	158.87	0.00	622.55	0.00	622.55	0.00	
	FRANKLIN	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	YOUNG HOUSTON	24.24 0.00	1.51	0.00	8.13	0.00	1.30 0.00	24.24 0.00	10.94 0.00	234.55 0.00	0.00	234.55 0.00	0.00	
	SCURRY BOSQUE	17.45 2.04	0.47	0.00	2.54	0.00	0.00	17.45 2.04	0.00 3.42	174.50 28.68	0.00	174.50 28.68	0.00	
	COMANCHE BRISCOE	2.04 16.27		0.00		0.00 26.07	0.00	2.04 42.34	0.00	28.68 296.84	0.00	28.68 449.33	0.00	
	CONCHO	2.34		0.00		0.00	0.00	2.34	0.00	22.18	0.00	22.18	0.00	
	ZAVALA NOLAN	8.19 2.42	0.07	0.00	0.32	9.20 41.16	0.00	17.39 43.58	0.00 0.44	66.74 23.45	0.00	1,195.56 5,073.44	0.01	
	BROOKS ROBERTSON	4.19 155.48	0.80	0.00	3.31	0.00 101.62	0.00	4.19 257.10	0.00 4.74	16.25 874.69	0.00	16.25 6,080.39	0.00	
	LIVE OAK	14.71		0.00		0.00	0.00	14.71	0.00	52.16	0.00	52.16	0.00	
	HAMILTON JONES	12.23		0.00		0.00	0.00	12.23 0.00	0.00	172.08 0.00	0.00	172.08 0.00	0.00	
	REAGAN WARD	2.27	0.48	0.00	2.15	0.00	0.00	2.27 6.80	0.00 3.03	20.62 60.30	0.00	20.62	0.00	
	RED RIVER HASKELL	13.30 4.85		29.80		0.00	0.00	43.10 4.85	0.00	105.45 46.91	0.00	105.45 46.91	0.00	
	HOWARD	52.14	0.32	0.00	1.42	0.00	0.26	52.14	2.00	462.30	0.00	462.30	0.00	
er ERCOT	SAN SABA JACK	14.64 4.85	0.65	0.00	3.52	0.00	0.00	14.64 4.85	0.00 4.74	173.52 46.91	0.00	173.52 46.91	0.00	
Counties	STEPHENS RUNNELS	4.85		0.00		0.00	0.00	4.85 4.67	0.00	46.91 44.36	0.00	46.91 44.36	0.00	
	REEVES DE WITT	6.80		0.00		0.00 25.21	0.00	6.80 31.20	0.00	60.30 22.43	0.00	60.30 169.90	0.00	
	CHILDRESS	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	CROSBY DAWSON	19.63 0.00		0.00		0.00	0.00	19.63 0.00	0.00	196.32 0.00	0.00	196.32 0.00	0.00	
	MITCHELL WILBARGER	0.00 2.55	0.08 3.81	0.00	0.34 20.56	0.00	0.06 3.30	0.00 2.55	0.47 27.67	0.00 27.63	0.00	0.00 27.63	0.00	
	COLEMAN UPTON	0.00	0.01	0.00	0.03	(3.18)	0.00	(3.18)	0.00	0.00	0.00	(35.81) 24.863.76	(0.00) 0.11	
	COKE	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	CROCKETT HARDEMAN	44.37 0.00		0.00		74.46 0.00	0.00	118.82 0.00	0.00	421.43 0.00	0.00	1,806.53 0.00	0.01	
	BANDERA BAYLOR	2.47		0.00		0.00	0.00	2.47	0.00	16.54	0.00	16.54 0.00	0.00	
	COTTLE	0.00 29.50		0.00		0.00	0.00	0.00	0.00	0.00 268.03	0.00	0.00 268.03	0.00	
	DELTA	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	DICKENS DUVAL	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	EASTLAND EDWARDS	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	FISHER FOARD	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	GLASSCOCK	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	GOLIAD HALL	6.00 0.00		0.00		0.00	0.00	6.00	0.00	22.43 0.00	0.00	22.43 0.00	0.00	
	HUDSPETH IRION	0.00		0.00		0.00 98.29	0.00	0.00 98.29	0.00	0.00	0.00	0.00 12,060.56	0.00	
	JEFF DAVIS KENEDY	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	KENT	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	KING KINNEY	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	KNOX LA SALLE	0.00 6.14		0.00		26.07 0.00	0.00	26.07 6.14	0.00	0.00 50.06	0.00	152.50 50.06	0.00	
	LEON	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	LOVING MENARD	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	MILLS MONTAGUE	0.00 2.29		0.00		458.29 0.00	0.00	458.29 2.29	0.00	0.00 19.10	0.00	2,681.28 19.10	0.01	
	MOTLEY	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	REAL SCHLEICHER	0.00 2.34		0.00		0.00	0.00	0.00 2.34	0.00	0.00 22.18	0.00	0.00 22.18	0.00	
	SHACKELFORD STARR	0.00 9.07		0.00		0.00 382.65	0.00	0.00 391.72	0.00	0.00 33.83	0.00	0.00 45,799.39	0.00 0.21	
	STERLING	0.00		0.00		9.93	0.00	9.93	0.00	0.00	0.00	1,217.94	0.01	
	STONEWALL SUTTON	0.00 28.02		0.00		0.00	0.00	0.00 28.02	0.00	0.00 266.17	0.00	0.00 266.17	0.00	
	TERRELL THROCKMORTON	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	ZAPATA	0.00		0.00 779,731.47	178.37	0.00	0.00	0.00	0.00	0.00 0.00 3,737,054.94	0.00	0.00	0.00	

Annual Elec. Savings w/7% T&D Loss (Single-Family, Multi-Family and Commercial Buildings)

Annual Elec. Savings w/7% T&D Loss (Single-Family, Multi-Family and Commercial Buildings)

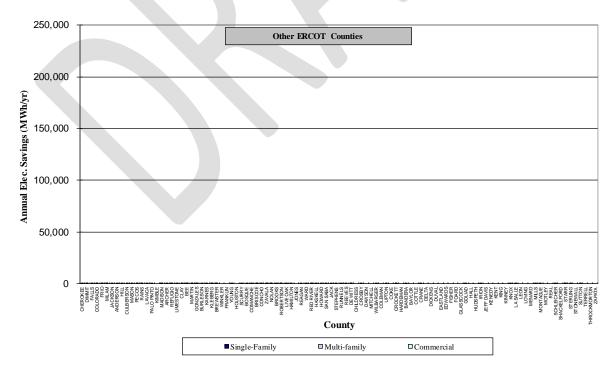


Figure 17: 2016 Annual Electricity Savings by County from New Residential and Commercial Construction

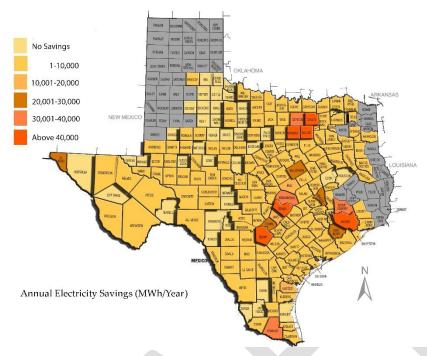
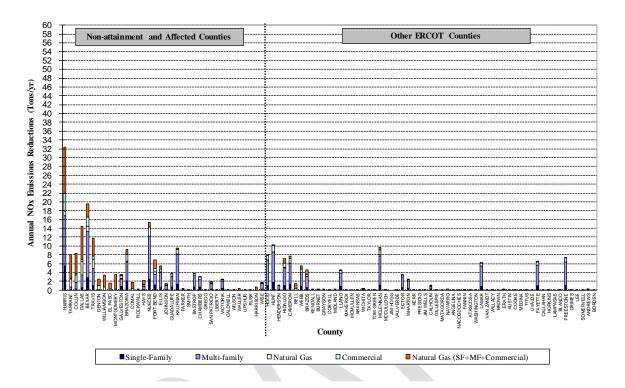



Figure 18: Map of 2016 Annual Electricity Savings by County from New Residential and Commercial Construction

Total Annual NOx Emissions Reductions (Single-Family, Multi-Family and Commercial Buildings)

Total Annual NOx Emissions Reductions (Single-Family, Multi-Family and Commercial Buildin

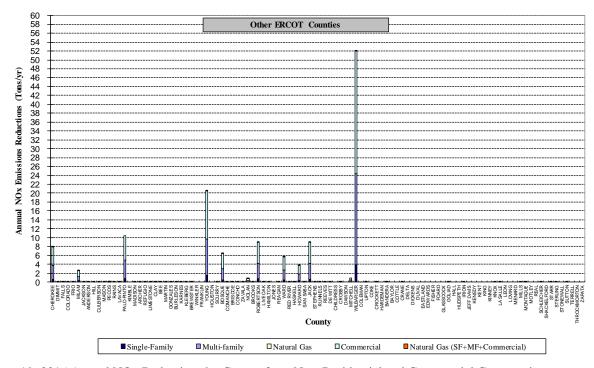


Figure 19: 2016 Annual NOx Reductions by County from New Residential and Commercial Construction

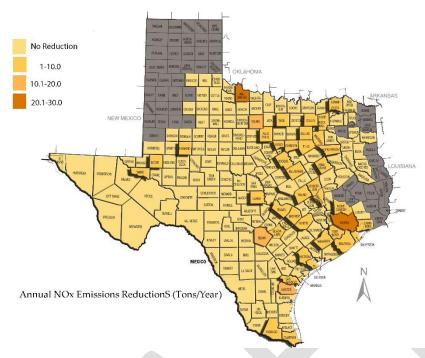


Figure 20: Map of 2016 Annual NOx Reductions by County from New Residential and Commercial Construction

5 Calculation of Integrated NOx Emissions Reductions from Multiple State Agencies Participating in the Texas Emissions Reduction Plan (TERP)

5.1 Background

In January 2005, the Laboratory was asked by the Texas Commission on Environmental Quality (TCEQ) to develop a method by which the NOx emissions reductions from the energy-efficiency programs from multiple Texas State Agencies working under Senate Bill 5 and Senate Bill 7 could be reported in a uniform format to allow the TCEQ to consider the combined savings for Texas' State Implementation Plan (SIP) planning purposes. This required that the analysis should include the integrated savings estimation from all projects projected through 2020 for both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reductions from all these programs were calculated using estimated emissions factors for 2010 from the US Environmental Protection Agency (US EPA) eGRID database, which had been specially prepared for this purpose. The different programs included in this 2016 integrated analysis are:

- ESL Single-family new construction
- ESL Multi-family new construction
- ESL Commercial new construction
- PUC Senate Bill 7 Program
- SECO Senate Bill 5 Program
- Electricity generated by wind farms in Texas (ERCOT)
- SEER 13 upgrades to Single-family and Multi-family residences

The Laboratory's single-family and multi-family programs include the energy savings attained by constructing new residences in Texas. The baseline to estimate energy savings uses the published data on residential construction characteristics by the 2008 National Association of Home Builders (NAHB 2008) based on the 2006 IECC building code (2006 ICC). Annual electricity savings (MWh) are obtained from the Laboratory's Annual Reports to the TCEQ (Haberl et al., 2002 - 2016).

The Laboratory's commercial program includes the energy savings attained by constructing new commercial buildings in Texas, including office, apartment, healthcare, education, retail, food and lodging as defined by Dodge building type (Dodge 2011). Energy savings were estimated from code compliant buildings (ASHRAE Standard 90.1-2013) against pre-code buildings (ASHRAE Standard 90.1-2007) using EUI in the USDOE report and constructed square footage in Dodge data (Dodge 2017).

The Public Utility Commission of Texas (PUC) Senate Bill 7 program includes the energy efficiency programs implemented by electric utilities under the Public Utility Regulatory Act §39.905. The PUC regulated energy efficiency program was adopted pursuant to 1999 legislation (SB 7) and subsequent legislation in 2001 (SB 5), 2007 (HB 3693), and 2011 (SB 1125). The energy efficiency measures include high efficiency HVAC equipment, variable speed drives, increased insulation levels, infiltration reduction, duct sealing, Energy Star Homes, etc. Annual electricity savings claimed by the utilities were reported for the different programs completed in the years 2001 through 2016.

The Texas State Energy Conservation Office (SECO) funds energy-efficiency programs that are directed towards school districts, government agencies, city and county governments, private industries and residential energy consumers. For the 2016 reporting year SECO submitted annual energy savings values for projects funded by SECO and by Energy Service projects.

The Electric Reliability Council of Texas (ERCOT) electricity production from currently installed green power generation (wind) in Texas is reported. Actual measured electricity productions for 2001 through 2016 were included. For projections to 2020, the annual growth factor was estimated using the last six years installed wind power capacity.

Finally, NOx emissions reductions from the installation of SEER 13 air conditioners in existing residences are also reported.

5.2 Description of the Analysis Method

Annual and Ozone Season Day (OSD) NOx emissions reductions were calculated for 2016 and integrated from 2009 to 2020 using several factors to discount the potential savings. These factors include an annual degradation factor, a transmission and distribution factor, a discount factor, and growth factors as shown in Table 27 and are described as follows:

Annual degradation factor: This factor was used to account for an assumed decrease in the performance of the measures installed as the equipment wears down and degrades. With the exception of electricity generated from wind, an annual degradation factor of 2% was used for ESL Single-family, Multi-family, and Commercial programs and an annual degradation factor of 5% was used for all other programs. The value of the 5% degradation factor was taken from a study by Kats et al. (1996).

Transmission and distribution loss: This factor adjusts the reported savings to account for the loss in energy resulting from the transmission and distribution of the power from the electricity producers to the electricity consumers. For this calculation, the energy savings reported at the consumer level are increased by 7% to give credit for the actual power produced that is lost in the transmission and distribution system on its way to the customer. In the case of electricity generated by wind, the T&D losses were assumed to cancel out since wind energy is displacing power produced by conventional power plants; therefore, there is no net increase or decrease in T&D losses.

Initial discount factor: This factor was used to discount the reported savings for any inaccuracies in the assumptions and methods employed in the calculation procedures. For the Laboratory's single, multi-family and commercial program, the discount factor was assumed to be 20%. For PUC's Senate Bill 7 program, the discount factor was taken as 10%. For the savings in the SECO program, the discount factor was 60%. For the electricity from wind, the discount factor was taken as 5%. In addition, the discount factor for SEER 13 single-family and SEER 13 multi-family program was 20%.

Growth factor: The growth factors shown in Table 23 were used to account for several different factors. Growth factors for single-family (4.1%), multi-family residential (6.1%), and commercial (5.3%) construction are projections based on the average growth rate for these housing types from recent U.S. Census data for Texas. Growth factor for wind energy (8.5%) is a linear projection based on the installed wind power capacity for 2009 through 2016 from the Public Utility Commission of Texas. No growth was assumed for PUC programs, SECO, and SEER 13 entries.

Figure 21 shows the overall information flow that was used to calculate the NOx emissions savings from the annual and OSD electricity savings (MWh) from all programs. For the Laboratory's single-family and multi-family code-implementation programs, the annual and OSD were calculated from DOE-2 hourly simulation models³⁷. The base case is taken as the average characteristics of single- and multi-family residences for Texas published by the National Association of Home Builders for 2008 (NAHB 2008) and 2006 IECC. The annual electricity savings from PUC's energy efficiency programs were calculated using PUC approved demand savings calculations or tables or industry accepted measurement and verification methods (PUC 2017). The OSD consumption is the average daily consumption for the period between July 15 and September 15.

The SECO electricity savings were submitted as annual savings by project³⁸. A description of the measures completed for the project was also submitted for information purposes. The electricity production from wind farms in Texas was from the actual on-site metered data measured at 15-minute intervals.

Integration of the savings from the different programs into a uniform format allowed for creditable NOx emissions to be evaluated using different criteria as shown in Table 27. These include evaluation across programs, evaluation

.

³⁷ These values are based on a performance analysis as defined by Chapter 4 of IECC 2006. This analysis is discussed in the Laboratory's annual reports to the TCEQ.

³⁸ The reporting requirements to the SECO did not require energy savings by project type, although for selected sites, energy savings by project type was available.

across individual counties by program, evaluation by SIP area, evaluation for all ERCOT counties except Houston/Galveston, and evaluation within a 200 km radius of Dallas/Ft.Worth.

5.3 Calculation Procedure

The electricity savings in this report was estimated based on the baseline year of 2008. In addition, the emissions estimation throughout this report was based on the 2010 eGrid database which is using the four different Congestion Management (CM) zones: Houston, North, West, and South. This report calculates the OSD emissions reductions by dividing the annual emissions reductions with 365 since the 2010 eGrid estimates the annual emissions only. However, the OSD emissions reductions from the Electricity Generated by Wind Farms were estimated by actual measured data.

ESL Single-family and Multi-family. The calculation of the annual electricity savings reported for the years 2002 through 2016 included the savings from code-compliant new housing in all 36 non-attainment and affected counties as reported in the Laboratory's annual report submitted by the Laboratory to the Texas Commission of Environmental Quality (TCEQ). From 2009 to 2016, based on year 2008, the annual electricity savings were calculated for new residential construction in all the counties in ERCOT region, which includes the 36 non-attainment and affected counties. These savings were then tabulated by county and program. Using the calculated values through 2016, savings were then projected to 2020 by incorporating the different adjustment factors mentioned above.

In these calculations, it was assumed that the same amount of electricity savings from the code-complaint construction would be achieved for each year after 2016 through 2020³⁹. The projected energy savings through 2020, according to county, were then divided into the CM zones in the 2010 eGRID. To determine which CM zone was to be used, or in counties with multiple CM zone, the allocation to each CM zone by county was obtained from CM zone's listing published in the Laboratory's 2010 annual report⁴⁰.

For the 2016 annual NOx emissions calculations, the US EPA's 2010 eGRID were used. An example of the eGRID spreadsheet is given in the Table 28. The total electricity savings for each CM zone were used to calculate the NOx emissions reductions for each of the different counties using the emissions factors contained in eGRID. Similar calculations were performed for each year for which the analysis was required.

ESL-Commercial Buildings. The annual electricity savings for 2004 through 2016 for commercial buildings were obtained from the annual reports for 2004 through 2016 submitted by the Laboratory to TCEQ . From 2009 to 2016, based on year 2008, the annual electricity savings were also calculated for new commercial construction by county. Using the calculated savings through 2016, savings were then projected to 2020 by incorporating the different adjustment factors mentioned above . In the projected annual electricity savings, it was assumed that the same 2016 amount of electricity savings would be achieved for each year through 2020. Similarly to the single family calculations, the projected energy saving numbers through 2020, by county, were allocated into the appropriate CM zones.

PUC-Senate Bill 7. For the PUC Senate Bill 7 program savings, the annual electricity savings for 2001 through 2016 were obtained from the Public Utility Commission of Texas. Using these values savings were projected through 2020 by incorporating the different adjustment factors mentioned above. Similar savings were assumed for each year after 2016 until 2020. The 2010 annual eGRID was also used to calculate the NOx emissions savings for the PUC-Senate Bill 7 program. The total electricity savings for each CM zone were used to calculate the NOx emissions reductions for each county using the emissions factors contained in the US EPA's eGRID spreadsheet. The integrated NOx emissions reductions for each county were then calculated.

SECO Savings. The annual electricity consumption reported by political subdivisions for 47 counties through 2016 were obtained from the State Energy Conservation Office (SECO). Using the reported consumption, the annual and

_

³⁹ This would include the appropriate discount and degradation factors for each year.

⁴⁰ Haberl et al., 2010, pp. 265.

OSD electricity savings resulted from energy conservation projects were then calculated. To achieve this, the annual energy use intensity (EUI) for each county was estimated and the county's energy savings for each year against the baseline year of 2008 were then calculated . In addition, the savings through 2020 were projected using the different adjustment factors mentioned above. In a similar fashion to the previous programs, it was assumed that the same amount of electricity savings will be achieved for each year through 2020. The 2010 annual eGRID was also used to calculate the NOx emissions savings for the SECO program.

Electricity Generated by Wind Farms. The measured electricity production from all the wind farms in Texas for 2001 through 2016 was obtained from the Energy Reliability Council of Texas (ERCOT). To obtain the annual production, the 15-minute data were summed for the 12 months. Using the reported numbers for 2016, savings through 2020 were projected incorporating the different adjustment factors mentioned above. The 2010 annual eGRID was then used to calculate the NOx emissions reductions for the electricity generated by Texas' wind farms⁴¹. The total electricity savings for each CM zone were used to calculate the NOx emissions reductions for each of the different counties.

SEER 13 Single-Family and Multi-Family. In January of 2006, Federal regulations mandated that the minimum efficiency for residential air conditioners be increased to SEER 13 from the previous SEER 10. Although the electricity savings from new construction reflected this change in values, the annual and OSD electricity savings from the replacement of the air conditioning units by air conditioners with an efficiency of SEER 13 in existing residences needed to be calculated. In this analysis, it was assumed that an equal number of existing houses had their air conditioners replaced, as reported for 2006, by the air conditioner manufacturers. This replacement rate continued until all the existing air conditioner stock was replaced with SEER 13 air conditioners.

In the 2016 report to the TCEQ, the annual and OSD electricity savings for all the counties in ERCOT region as well as the 36 non-attainment and affected counties were calculated. Using the numbers for 2008, the savings after 2008 until 2020 were projected by incorporating the appropriate adjustment factors⁴². The total electricity savings for each CM zone were used to calculate the NOx emissions reductions for each of the different county using the emissions factors contained in the 2010 eGRID. Integrated NOx emissions reductions for each county by SIP area were also calculated.

⁴¹ This credited the electricity generated by the wind farm to the utility that either owned the wind farm or was associated with the wind farm owner.

⁴² Additional details about this calculation are contained in the Laboratory's 2008 Annual Report to the TCEQ, available at the Senate Bill 5 web site "http://esl.tamu.edu/".

5.4 Results

The total integrated annual and OSD electricity savings for all the different programs in the integrated format were calculated for 2009 through 2020 as shown in Table 29, using the adjustment factors shown in Table 27. Annual and OSD NOx emissions reductions from the electricity savings (presented in Table 29) for all the programs in the integrated format were shown in Table 30.

In 2016, the total integrated annual savings from all programs are 44,016,581 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 3,087,080 MWh/year (7.0% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program are 3,498,867 MWh/year (7.9%),
- Savings from SECO's Senate Bill 5 program are 1,100,775 MWh/year (2.5%),
- Electricity savings from green power purchases (wind) are 36,069,833 MWh/year (81.9%), and
- Savings from residential air conditioner retrofits⁴³ are 260,026 MWh/year (0.6%).

In 2016, the total integrated OSD savings from all programs are 125,777 MWh/day, which would be a 5,241 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction are 8,458 MWh/day (6.7%),
- Savings from the PUC's Senate Bill 7 programs are 9,586 MWh/day (7.6%),
- Savings from SECO's Senate Bill 5 program are 3,016 MWh/day (2.4%),
- Electricity savings from green power purchases (wind) are 102,874 MWh/day (81.8%), and
- Savings from residential air conditioner retrofits are 1,844 MWh/day (1.5%).

By 2020, the total integrated annual savings from all programs will be 63,853,554 MWh/year. The integrated annual electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 7,242,298 MWh/year (11.3% of the total electricity savings),
- Savings from the PUC's Senate Bill 7 program will be 4,975,963 MWh/year (7.8%),
- Savings from SECO's Senate Bill 5 program will be 1,435,808 MWh/year (2.2%),
- Electricity savings from green power purchases (wind) will be 49,987,692 MWh/year (78.3%), and
- Sayings from residential air conditioner retrofits will be 211,793 MWh/year (0.3%).

By 2020, the total integrated OSD savings from all programs will be 181,479 MWh/day, which would be a 7,562 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different programs are:

- Savings from code-compliant residential and commercial construction will be 19,842 MWh/day (10.9%),
- Savings from the PUC's Senate Bill 7 programs will be 13,633 MWh/day (7.5%),
- Savings from SECO's Senate Bill 5 program will be 3,934 MWh/day (2.2%),
- Electricity savings from green power purchases (wind) will be 142,568 MWh/day (78.6%), and
- Savings from residential air conditioner retrofits will be 1,502 MWh/day (0.8%).

In 2016 (Table 30), the total integrated annual NOx emissions reductions from all programs are 12,142 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 769 tons-NOx/year (6.3% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 874 tons-NOx/year (7.2%),
- NOx emissions reductions from SECO's Senate Bill 5 program are 294 tons-NOx/year (2.4%),
- NOx emissions reductions from green power purchases (wind) are 10,143 tons-NOx/year (83.5%), and
- NOx emissions reductions from residential air conditioner retrofits are 61 tons-NOx/year (0.5%).

December 2017

⁴³ This assumes air conditioners in existing homes are replaced with the more efficient SEER 13 units, versus an average of SEER 11, which is slightly more efficient than the previous minimum standard of SEER 10.

In 2016, the total integrated OSD NOx emissions reductions from all programs are 34.72 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction are 2.18 tons-NOx/day (6.3%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs are 2.39 tons-NOx/day (6.9 %),
- NOx emissions reductions from SECO's Senate Bill 5 program are 0.81 tons-NOx/day (2.3%),
- NOx emissions reductions from green power purchases (wind) are 28.91 tons-NOx/day (83.3%), and
- NOx emissions reductions from residential air conditioner retrofits are 0.43 tons-NOx/day (1.2%).

By 2020, the total integrated annual NOx emissions reductions from all programs will be 17,576 tons-NOx/year. The integrated annual NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 1,832 tons-NOx/year (10.4% of the total NOx savings),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 1,241 tons-NOx/year (7.1%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 397 tons-NOx/year (2.3%),
- NOx emissions reductions from green power purchases (wind) will be 14,057 tons-NOx/year (80.0%), and
- NOx emissions reductions from residential air conditioner retrofits will be 50 tons-NOx/year (0.3%).

By 2020, the total integrated OSD NOx emissions reductions from all programs will be 49.99 tons-NOx/day. The integrated OSD NOx emissions reductions from all the different programs are:

- NOx emissions reductions from code-compliant residential and commercial construction will be 5.09 tons-NOx/day (10.2%),
- NOx emissions reductions from the PUC's Senate Bill 7 programs will be 3.40 tons-NOx/day (6.8%),
- NOx emissions reductions from SECO's Senate Bill 5 program will be 1.09 tons-NOx/day (2.2%),
- NOx emissions reductions from green power purchases (wind) will be 40.07 tons-NOx/day (80.1%), and
- NOx emissions reductions from residential air conditioner retrofits will be 0.35 tons-NOx/day (0.7%).

Table 27: Final Adjustment Factors used for the Calculation of the Annual and OSD NOx Savings for the Different Programs

	ESL-Single Family	ESL- Multifamily	ESL- Commercial	PUC (SB7)	SECO	Wind-ERCOT	SEER13 Single Family	SEER13 Multi Family
Annual Degradation Factor	2.0%	2.0%	2.0%	5.0%	5.0%	0.0%	5.0%	5.0%
T&D Loss	7.0%	7.0%	7.0%	7.0%	7.0%	0.0%	7.0%	7.0%
Initial Discount Factor	20.0%	20.0%	20.0%	10.0%	60.0%	5.0%	20.0%	20.0%
Growth Factor	4.1%	6.1%	5.3%	0.0%	0.0%	8.5%	N.A.	N.A.
Weather Normalized	Yes	Yes	Yes	No	No	No	Yes	Yes

Note: For Wind-ERCOT, the OSD energy consumption is the average daily consumption of the measured data in the months of July, August and September.

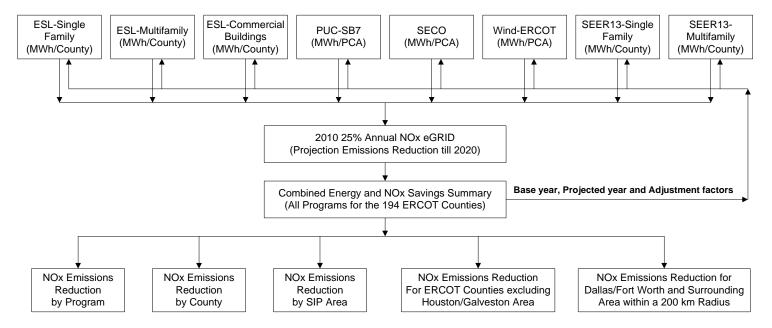


Figure 21: Process Flow Diagram of the NOx Emissions Reduction Calculations

Table 28: Example of NOx Emissions Reduction Calculations using 2010 eGRID

Area	County		н	1		Zones v	v		s	Nox Reductions (lbs)	Total Nox Reductions (Tons)
	Brazoria	0.0562032	8599.9481	0.0000071	1.3218	0.0000003	0.0039	0.0005265	73.8732	8675.15	4.3
	Chambers	0.0204500	3129.1633	0.0000026	0.4810	0.0000001	0.0014	0.0001916	26.8794	3156.53	1.5
	Fort Bend	0.0313463	4796.4664	0.0000040	0.7372	0.0000002	0.0022	0.0002937	41.2015	4838.41	2.4
Houston-	Galveston	0.0226620	3467.6271	0.0000029	0.5330	0.0000001	0.0016	0.0002123	29.7868	3497.95	1.7
alveston Area	Harris	0.1486911	22752.0140	0.0000189	3.4971	0.0000009	0.0103	0.0013930	195.4389	22950.96	11.4
	Liberty	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Montgomery Waller	0.0000000	0.0000	0.0000000	0.0000	0.0000000		0.0000000		0.00	0.0
	Hardin	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000		0.0000	0.00	0.0
eaumont/ Port	Jefferson	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
Arthur Area		0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Orange Collin	0.0000000	197.8745	0.0079329	1470.5795	0.0000000	4.3358	0.0000000	11.3550	1684.14	0.0
	Dallas	0.0012932	379.8770	0.0079329	2823 2008	0.0003832	4.3358 8.3237	0.0000809	21.7993	3233.20	1.6
	Denton	0.0024828	19.3815	0.0152295	144 0407	0.0007356	0.4247	0.0001934	1.1122	164.96	0.0
	Tarrant	0.0001207	72.5572	0.0029089	530 2364	0.0000373	1,5898	0.0000079	4.1637	617.55	0.3
	Ellis	0.0029920	457.8205	0.0023003	3402.4677	0.0001403	10.0316	0.0000297	26.2721	3896.59	1.9
Dallas/ Fort	Johnson	0.0023326	111.0277	0.0044512	825.1448	0.0002150	2.4328	0.0000454	6.3713	944.98	0.4
Worth Area	Kaufman	0.0059718	913 7841	0.0366343	6791.1343	0.0017695	20.0225	0.0003738	52.4376	7777.38	3.8
	Parker	0.00000110	0.1881	0.0000075	1.3982	0.0000004	0.0041	0.00000001	0.0108	1.60	0.0
	Rockw all	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Henderson	0.0006908	105.6993	0.0042376	785.5448	0.0002047	2.3160	0.0000432	6.0656	899 63	0.4
	Hood	0.0050771	776.8732	0.0311454	5773.6292	0.0015044	17.0226	0.0003178	44.5809	6612.11	3.3
	Hunt	0.0088463	1353.6246	0.0047066	872.5005	0.0002273	2.5724	0.0652823	9159.0290	11387.73	5.6
Paso Area	El Paso	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Bexar	0.0138906	2125.4748	0.0000000	173.6634	0.0000050	0.5120	0.1109355	15564.1256	17863.78	8.9
San Antonio	Comal	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
Area	Guadalupe	0.0032029	490.0910	0.0002160	40.0432	0.0000104	0.1181	0.0255795	3588.7688	4119.02	2.0
	Wilson	0.0000000	0.0000	0.0002100	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Bastrop	0.0033782	516.9199	0.0002278	42.2353	0.00000110	0.1245	0.0269798	3785.2277	4344.51	2.1
	Caldw ell	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
Austin Area	Hays	0.0008331	127.4814	0.0000562	10.4160	0.0000027	0.0307	0.0066537	933.5031	1071.43	0.5
	Travis	0.0051785	792.3950	0.0003493	64.7432	0.0000169	0.1909	0.0413577	5802.4379	6659.77	3.3
	Williamson	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Gregg	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Harrison	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
North East	Rusk	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
Texas Area	Smith	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Upshur	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
Corpus Christi	Nueces	0.0128578	1967.4366	0.0008672	160.7508	0.0000419	0.4739	0.1026870	14406.8657	16535.53	8.2
Area	San Patricio	0.0015100	231.0460	0.0001018	18.8778	0.0000049	0.0557	0.0120591	1691.8707	1941.85	0.9
ictoria Area	Victoria	0.0021192	324.2632	0.0001429	26.4942	0.0000069	0.0781	0.0169244	2374.4687	2725.30	1.3
	Andrews	0.0000037	0.5729	0.0000230	4.2579	0.0039003	44.1330	0.0000002	0.0329	49.00	0.0
	Angelina	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Bosque	0.0022204	339.7588	0.0136212	2525.0471	0.0006579	7.4447	0.0001390	19.4971	2891.75	1.4
	Brazos	0.0024089	368.5950	0.0112305	2081.8753	0.0005425	6.1381	0.0047829	671.0365	3127.64	1.5
	Calhoun	0.0009466	144.8416	0.0000638	11.8344	0.0000031	0.0349	0.0075598	1060.6258	1217.34	0.6
	Cameron	0.0063536	972.2026	0.0004285	79.4345	0.0000207	0.2342	0.0507425	7119.1071	8170.98	4.0
	Cherokee	0.0027392	419.1326	0.0168033	3114.9437	0.0008116	9.1839	0.0001714	24.0520	3567.31	1.7
	Coke	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Coleman	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Crockett	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Ector	0.0019215	294.0201	0.0006604	122.4144	0.0911346	1031.2215	0.0146527	2055.7543	3503.41	1.7
	Fannin	0.0000041	0.6205	0.0000249	4.6112	0.0000012	0.0136	0.0000003	0.0356	5.28	0.0
	Fayette	0.0051867	793.6447	0.0103217	1913.3977	0.0004986	5.6413	0.0283993	3984.3892	6697.07	3.3
	Freestone	0.0047643	729.0166	0.0292268	5417.9649	0.0014117	15.9739	0.0002982	41.8347	6204.79	3.1
	Frio	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Grimes	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Hardeman	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Haskell	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Hidalgo	0.0053716	821.9331	0.0003623	67.1566	0.0000175	0.1980	0.0428994	6018.7354	6908.02	3.4
	How ard	0.0002411	36.8947	0.0007641	141.6408	0.1283942	1452.8266	0.0009490	133.1423	1764.50	0.8
	Jack	0.0030783	471.0290	0.0188839	3500.6313	0.0009121	10.3210	0.0001927	27.0300	4009.01	2.0
Other ERCOT	Jones	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
counties	Lamar	0.0040001	612.0828	0.0245388	4548.9266	0.0011853	13.4117	0.0002504	35.1244	5209.55	2.6
	Limestone	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Llano	0.0040314	616.8731	0.0002719	50.4020	0.0000131	0.1486	0.0321966	4517.1506	5184.57	2.5
	McLennan	0.0056576	865.7027	0.0347066	6433.7991	0.0016764	18.9689	0.0003541	49.6784	7368.15	3.6
	Milam	0.0012686	194.1161	0.0000856	15.8604	0.0000041	0.0468	0.0101316	1421.4461	1631.47	0.8
	Mitchell	0.0000311	4.7632	0.0001910	35.3994	0.0324260	366.9116	0.0000019	0.2733	407.35	0.2
	Nolan	0.0000293	4.4765	0.0001795	33.2689	0.0304745	344.8298	0.0000018	0.2569	382.83	0.1
	Palo Pinto	0.0036129	552.8348	0.0221635	4108.6024	0.0010705	12.1135	0.0002261	31.7245	4705.28	2.3
	Pecos	0.0000020	0.3014	0.0000121	2.2402	0.0020520	23.2195	0.0000001	0.0173	25.78	0.0
	Presidio	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Red River	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Robertson	0.0039506	604.4982	0.0055755	1033.5625	0.0002693	3.0473	0.0246170	3453.7302	5094.84	2.5
	Taylor	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Titus	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Tom Green	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.0000000	0.0000	0.00	0.0
	Upton	0.0000025	0.3892	0.0000156	2.8924	0.0026494	29.9793	0.0000002	0.0223	33.28	0.0
	Ward	0.0001995	30.5295	0.0012239	226.8915	0.2078335	2351.7118	0.0000125	1.7519	2610.88	1.3
	Webb	0.0042017	642.9283	0.0002834	52.5309	0.0000137	0.1549	0.0335565	4707.9441	5403.56	2.7
	Wharton	0.0021095	322.7877	0.0001423	26.3736	0.0000069	0.0778	0.0168474	2363.6643	2712.90	1.3
	Wichita	0.0000121	1.8537	0.0000743	13.7761	0.0126190	142.7884	0.0000008	0.1064	158.52	0.0
	Wilbarger	0.0179710	2749.8389	0.1102430	20436.4753	0.0053249	60.2534	0.0011247	157.7997	23404.37	11.7
	Wise	0.0010202	156.1032	0.0062583	1160.1405	0.0003023	3.4205	0.0000638	8.9580	1328.62	0.6
	Young	0.0071054	1087.2350	0.0435880	8080.2007	0.0021054	23.8231	0.0004447	62.3911	9253.65	4.6
				0.4812863	89219.2229	0.5345786	6048,9508	0.6829349	95814.9575	258631.74	129.3
	Total	0.4414501	67548.6111	0.4012003							
	Total	0.4414501	67548.6111	0.4612003	03213.2223	0.5545700	0040.9300		33014.3373	250551.74	120.0

Table 29: Annual and OSD Electricity Savings for the Different Programs (Base Year 2008)

				0			- 6						
PROGRAM						Al	NNUAL (MW	h)					
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	25,031	47,000	74,109	153,562	215,164	275,535	360,010	533,473	710,874	892,438	1,078,398	1,268,995
ESL-Multifamily	0	50,784	108,018	200,414	332,835	527,292	774,578	1,225,617	1,856,682	2,515,116	3,202,811	3,921,770	4,674,114
ESL-Commercial	0	0	24,066	83,255	119,422	247,952	400,015	559,947	696,924	839,015	986,534	1,139,810	1,299,190
PUC (SB7)	0	538,841	976,984	1,437,883	1,831,318	2,267,414	2,675,295	3,079,759	3,498,867	3,897,019	4,275,264	4,634,597	4,975,963
SECO	0	71,910	154,786	347,175	508,375	705,060	1,004,828	1,005,713	1,100,775	1,191,083	1,276,877	1,358,380	1,435,808
Wind-ERCOT	0	3,454,992	8,587,397	11,606,284	13,774,557	16,597,064	19,905,202	24,322,675	36,069,833	39,135,769	42,462,309	46,071,605	49,987,692
SEER13-Single Family	0	343,330	326,163	309,855	294,362	279,644	265,662	252,379	239,760	227,772	216,383	205,564	195,286
SEER13-Multi Family	0	29,021	27,569	26,191	24,881	23,637	22,456	21,333	20,266	19,253	18,290	17,376	16,507
Total Annual (MWh)	0	4,513,907	10,251,982	14,085,166	17,039,312	20,863,228	25,323,570	30,827,434	44,016,581	48,535,902	53,330,907	58,427,500	63,853,554

PDO CD 414	OZONE SEASON DAY - OSD (MWh/day)												
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	69	129	203	421	589	755	986	1,462	1,948	2,445	2,955	3,477
ESL-Multifamily	0	139	296	549	912	1,445	2,122	3,358	5,087	6,891	8,775	10,745	12,806
ESL-Commercial	0	0	66	228	327	679	1,096	1,534	1,909	2,299	2,703	3,123	3,559
PUC (SB7)	0	1,476	2,677	3,939	5,017	6,212	7,330	8,438	9,586	10,677	11,713	12,698	13,633
SECO	0	197	424	951	1,393	1,932	2,753	2,755	3,016	3,263	3,498	3,722	3,934
Wind-ERCOT	0	15,037	24,335	29,191	35,122	34,369	45,184	76,917	102,874	111,618	121,105	131,399	142,568
SEER13-Single Family	0	2,445	2,323	2,207	2,097	1,992	1,892	1,798	1,708	1,622	1,541	1,464	1,391
SEER13-Multi Family	0	195	186	176	167	159	151	144	136	130	123	117	111
Total OSD (MWh)	0	19,559	30,435	37,445	45,456	47,377	61,283	95,930	125,777	138,447	151,904	166,221	181,479

Table 30: Annual and OSD NOx Emissions Reduction Values for the Different Programs (Base Year 2008)

PRO CRAM						ANN	UAL (in tons	NOx)					
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0	3	8	15	34	50	65	86	129	174	219	265	313
ESL-Multifamily	0	4	19	43	77	127	190	305	468	639	817	1,003	1,198
ESL-Commercial	0	0	6	20	28	59	97	138	172	207	243	281	321
PUC (SB7)	0	135	246	362	460	567	669	770	874	973	1,067	1,156	1,241
SECO	0	19	43	92	133	183	264	265	294	322	348	373	397
Wind-ERCOT	0	945	2,388	3,222	3,851	4,643	5,577	6,800	10,143	11,005	11,941	12,956	14,057
SEER13-Single Family	0	81	77	73	69	66	62	59	56	53	51	48	46
SEER13-Multi Family	0	7	6	6	6	6	5	5	5	5	4	4	4
Total Annual (Tons NOx)	0	1,193	2,792	3,831	4,659	5,700	6,930	8,428	12,142	13,377	14,690	16,087	17,576

PDO CD LM					OZO	NESEASON	DAY - OSD	(in tons NOx	/day)				
PROGRAM	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
ESL-Single Family	0.00	0.01	0.02	0.04	0.09	0.14	0.18	0.24	0.35	0.48	0.60	0.73	0.86
ESL-Multifamily	0.00	0.01	0.14	0.20	0.29	0.43	0.60	0.91	1.36	1.82	2.31	2.82	3.35
ESL-Commercial	0.00	0.00	0.02	0.05	0.08	0.16	0.27	0.38	0.47	0.57	0.67	0.77	0.88
PUC (SB7)	0.00	0.37	0.67	0.99	1.26	1.55	1.83	2.11	2.39	2.67	2.92	3.17	3.40
SECO	0.00	0.05	0.12	0.25	0.37	0.50	0.72	0.73	0.81	0.88	0.95	1.02	1.09
Wind-ERCOT	0.00	4.15	6.75	8.04	9.79	9.56	12.64	21.50	28.91	31.37	34.03	36.93	40.07
SEER13-Single Family	0.00	0.57	0.54	0.51	0.49	0.46	0.44	0.42	0.40	0.38	0.36	0.34	0.32
SEER13-Multi Family	0.00	0.05	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.03	0.03
Total OSD (Tons NOx)	0.00	5.20	8.30	10.13	12.41	12.84	16.72	26.31	34.72	38.19	41.88	45.80	49.99

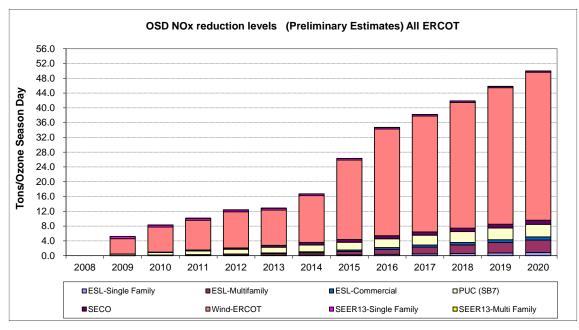


Figure 22: Integrated OSD NOx Emissions Reduction Projections through 2020 (Base Year 2008)

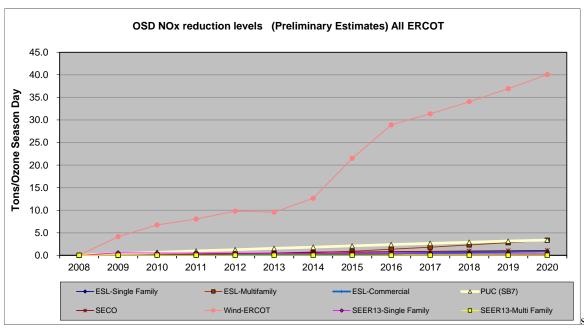


Figure 23: Integrated OSD Individual Programs NOx Emissions Reduction Projections through 2020 (Base Year 2008)

- 6 2016 Year Activities of Energy Systems Laboratory (ESL) for Texas Emissions Reduction Plan
- 6.1 IC3 Texas Building Registry (TBR)

6.1.1 Background

In 2008, the 81st Texas Legislature amended the Texas Administrative Code (TAC .§388.008, 2009) to develop a Registry of Above-Code homes. The ESL built the first version of the Registry in 2009. This preliminary version allowed to provide basic metrics on usage of the ESL's above code calculators, *IC3*⁴⁴ and *TCV*⁴⁵. By running reports against the calculator's databases, the ESL could determine calculator usage by month for Texas' Cities and Counties. These reports allowed a better understanding of how builders were adopting the calculators across the State, which helped to improve the calculators. In 2016, the reports continued and numbers where gathered. Figure 24 shows the projects issued each month from January to December 2016. The projects are differentiated by the basic types, IECC performance path and ERI path. Figure 25 shows the cumulative users and projects through 2016. The data are only valid for IC3 version 4, and so the counts begin from September 2015. The largest adopter of the IC3 software was the North Central Texas Council of Governments (NCTCOG) area, closely followed by the Austin-San Antonio corridor, see Figure 26. Only counties with at least 10 new projects in 2016 are included in the chart. Figure 27 shows the certifications issued by city in 2016. Only those cities with at least 30 new projects are shown on the chart.

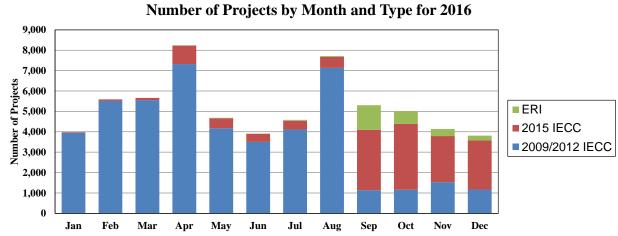


Figure 24: IC3 2016 Certificates and Projects

_

⁴⁴ International Code Compliance Calculator, a web based, above code calculator for single family, detached, new construction in Texas.

⁴⁵ Texas Climate Vision, a web based, above code calculator for single family, detached, new construction in Austin Energy's service area.

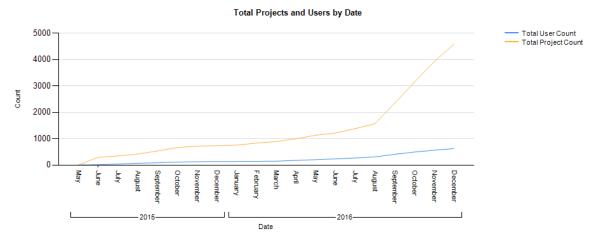


Figure 25: IC3 2016 Active Users and Certificates

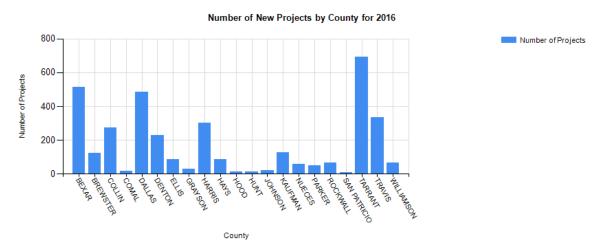


Figure 26: IC3 2016 Certificates – Counties with at least 10 Certificates

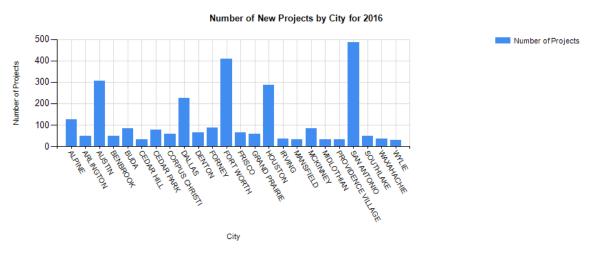


Figure 27: IC3 2016 Certificates – Cities with at least 200 Certificates

6.1.2 Texas Building Registry Current Version

As illustrated below and in the "Report on the Development of the Format for a Texas Residential Registry (Gilman, et al., 2008), the underlying database was optimized for supporting the IC3 and TCV calculators and therefore needed a transformation to allow for seamless reporting. Consequently, the ESL has been steadily adding reporting capability and has been making software changes to reflect the new reporting requirements and analysis capabilities.

The underlying technology of the *IC3* and *TCV* calculators is *Microsoft SQL Server 2016*. This product offers reporting capabilities through various tools.

Figure 28 shows the "layout" of the IC3 (v3.x and above) and TCV^{46} (v1.1) databases. It gives a rough overview of the different tables (called "entities") found in the *IC3* database. The center entity is the project, which is the center of the *IC3* software's abstraction of a house. The other tables include floors, walls, electrical, and systems.

-

⁴⁶ The *TCV* v1.1 database has different fields due to the built-in inspection module and the fact it was completed two years earlier than the described *IC3* v3.6.

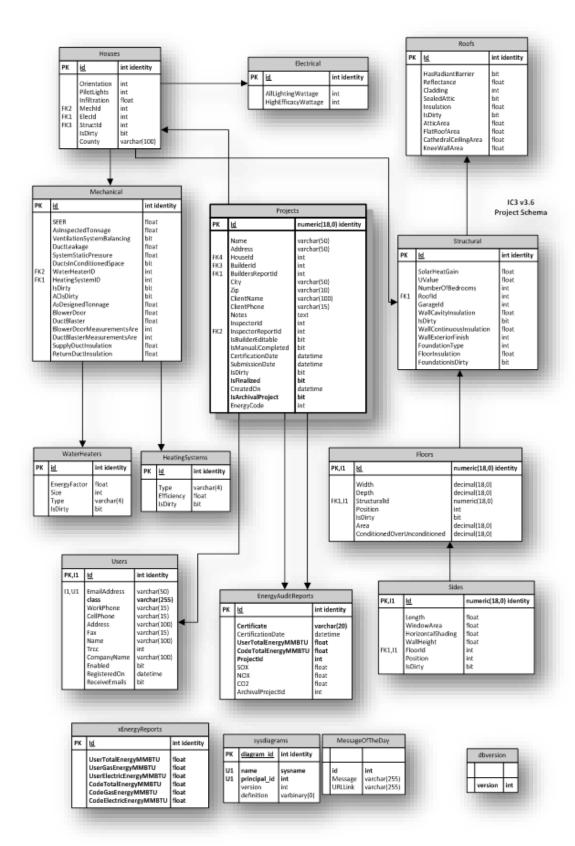


Figure 28: Database Schema

6.1.3 Usage Reports

Figure 25 in Section 6.1.1 shows the correlation between users and their successful projects (i.e. those that generate certificates). The graph shows that users were generating more projects, and were doing so at a much faster rate than the rate of adding new users.

Figure 29 and Figure 30 show where the usage was using Counties and Cities as the grouping entity. The North Central Texas Council of Governments (NCTCOG) led the way in usage during 2016.

County Name	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
ANDERSON									5			
BEXAR	9	37	33	34	78	40	92	63	58	28	19	23
BLANCO					1							
BRAZORIA									1			
BREWSTER		1	1	1	2	3	7	9	43	24	21	13
BURNET			2				1	1				
CAMERON											1	
CLAY		1										
COLLIN				3	2	5	1	12	97	61	55	36
COMAL									6	1		12
COOKE										6		
DALLAS	1	1		8	10	10	14	19	104	140	78	100
DENTON	1	1			1	2	5	4	59	67	51	36
EL PASO								1				
ELLIS								1	17	32	21	16
FANNIN										1		
FORT BEND											1	3
GALVESTON										2	1	
GRAYSON					5				12	3	5	4
GUADALUPE							1				1	
HARRIS				2	3	3	1	4	66	91	55	76
HAYS							2	1		28	37	17
HENDERSON											1	
HOOD	1				1		1		6	1	2	2
HUNT									4		5	3
JEFFERSON												1
JOHNSON							1	2	1	2	7	9
KAUFMAN				5			1		23	12	57	29
KENDALL							1					
KERR										1	3	1
LLANO			3								1	
MCLENNAN										1		

Figure 29: Counties Generating Single-Family Homes IC3 Certificates in 2016

County Name	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
MONT AGUE											1	
MONTGOMERY										2		1
NAVARRO									1		1	
NUECES		1							19	21	13	6
PALO PINTO												1
PARKER			1	2	2		2		13	5	15	9
ROCKWALL				17	1		1	2	11	16	11	6
RUSK											1	
SAN PATRICIO									5	4	1	1
TARRANT	2	1	3	6	8	12	13	27	134	153	160	175
TRAVIS		1		4	8	6	21	12	84	77	86	36
VAL VERDE										1		
VAN ZANDT									1			
VICTORIA							1					
WICHITA					1		1		1			1
WILLIAMSON										18	38	9
WISE								1		1	2	3

Figure 29: Counties Generating Single-Family Homes IC3 Certificates in 2016 (Continued)

County Name	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
ADDISON									1	2	6	
ALAMO HEIGHTS					1							
ALEDO							1		4	3	8	4
ALLEN										1		1
ALPINE		1	1	1	2	3	7	9	43	24	21	13
ALVARADO											1	2
ANGLETON									1			
ANNA									1			2
ARGYLE									1		1	
ARLINGTON									11	17	11	10
AUBREY									2	6	7	3
AURORA											1	
AUSTIN				3	8	6	21	12	84	60	76	36
AZLE				1	1		1		3	2	3	2
BEAUMONT												1
BEDFORD					1				1			
BENBROOK								1	11	16	9	12
BLANCO					1							
BLUE RIDGE									8		3	
BOERNE							1					
BONHAM										1		
BOWIE											1	
BOYD											1	2
BRIDGEPORT												1
BUDA										28	37	17
BURLESON								2	1	2	4	10
CADDO MILLS											1	
CANTON									1			
CARROLLTON	1	1		1	1		1	1	1		3	
CAYUGA									5			
CEDAR HILL				1					13	6	6	7
CEDAR PARK										21	47	9
CELINA												1
CLEBURNE							1			2	1	
COLLEYVILLE	1				1					2	2	2
COMBINE										1		1
CONROE										2		1
COPPELL										1	2	1
COPPER CANYON										1		
CORINTH										2		

Figure 30: Cities Generating Multi-Family Homes IC3 Certificates in 2016

County Name	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
CORPUS CHRISTI									19	21	13	6
CROSBY												1
CROSS ROADS										2		2
CROSS TIMBER											1	
CROWLEY		1	3	1		2	1	3	1			
DALLAS				1	2		1	5	47	86	43	40
DALWORTHINGTON GARDENS												1
DECATUR								1		1		
DEL RIO										1		
DENISON					1					1	2	
DENTON					1	1		1	17	19	13	12
DESOTO									4			16
DUNCANVILLE									1		1	1
EL PASO								1				
ENNIS											1	4
EULESS						1	3	2	2	1	2	1
EVERMAN												1
FAIR OAKS RANCH					2		1		1			
FARMERS BRANCH									2	4	1	
FARMERSVILLE									1		1	
FATE				17								
FERRIS												1
FLOWER MOUND						1	4	2	6	9	5	2
FOREST HILL								1			1	1
FORNEY				4					9	4	54	17
FORT WORTH				3	3	4	5	9	81	88	103	112
FRISCO								1	25	20	12	6
GAINESVILLE										6		
GALVESTON										1		
GARLAND				2		1		1	5	7	4	9
GLENN HEIGHTS												1
GORDON												1
GRANBURY	1				1		1		6	1	2	2
GRAND PRAIRIE	2			3	5	9	12	2	2	12	7	4
GRAPEVINE											1	
GREENVILLE									4		4	
HARLINGEN											1	
HASLET										4	2	
HEARTLAND									3	6	3	10

Figure 30: Cities Generating Multi-Family Homes IC3 Certificates in 2016 (Continued)

County Name	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
НЕАТН									4	7	2	
HELOTES			2	8	2	4	1	2	3	2		1
HENDERSON											1	
HENRIETTA		1										
HICKORY CREEK											1	
HIGHLAND PARK					1			7	6	3		3
HIGHLAND VILLAGE									1			
HORSESHOE BAY											1	
HOUSTON					3	3	1	3	63	87	52	75
HOWE					4				1			
HUDSON OAKS			1	1	1				2			
HUMBLE									1		1	
HURST											1	
IRVING					1		2	1	12	9	6	3
JAMAICA BEACH											1	
JOSEPHINE									9	1		1
KATY										1	1	
KAUFMAN				1			1					1
KELLER								4	1		2	
KENNEDALE									1		1	
KERRVILLE										1	3	1
KYLE							2	1				
LAKE WORTH											1	1
LAKEWOOD VILLAGE										3		
LANCASTER								2	4		2	1
LAVON											1	
LEAGUE CITY										1		
LEANDER										4		
LEWISVILLE									10		14	
LITTLE ELM								1	15	5	1	7
LUCAS									1			
MALAKOFF											1	
MANCHACA				1						10	1	
MANSFIELD									10	4	6	12
MARBLE FALLS			2				1	1				
MARION							1					
MCKINNEY									27	24	13	18
MELISSA									5	4	3	
MESQUITE												1
MIDLOTHIAN								1	4	17	7	3

Figure 30: Cities Generating Multi-Family Homes IC3 Certificates in 2016 (Continued)

County Name	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
NASSAU BAY										1		
NEEDVILLE												1
NEW BRAUNFELS									6	1		12
NORTH RICHLAND HILLS									7	3	2	10
NORTHLAKE		1								1		
OAK LEAF											9	1
OVILLA									2			
PASADENA										1		
PLANO				1	2	5	1	7	3	2	2	1
PORT ARANSAS		1										
PORTLAND									5	4	1	1
PRINCETON									4		2	4
PROSPER									2		1	
PROVIDENCE VILLAGE										16	6	9
QUINLAN												2
RED OAK										1		
RICE									1		1	
RICHARDSON										2		
RICHLAND HILLS								1				
ROANOKE											1	
ROCKWALL					1		1	2	3	3	9	4
ROSENBERG												1
ROWLETT				1					2	2	1	4
ROYSE CITY									3	9	6	2
SACHSE										1		
SAGINAW										2		
SAN ANTONIO	9	37	31	26	73	36	90	61	54	26	19	22
SANGER									2	2	1	1
SEAGOVILLE									4	4		10
SEGUIN											1	
SHERMAN									5			3
SHOREACRES											1	
SOUTHLAKE				1	3	4	3	6	6	11	11	3
SPRING VALLEY									2			
SPRINGT OWN												1
SUGAR LAND											1	1
SUNNYVALE										2		
TERRELL									10	1		
TIOGA										1		
TOMBALL				2								

Figure 30: Cities Generating Multi-Family Homes IC3 Certificates in 2016 (Continued)

County Name	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
TROPHY CLUB									1			
UNINCOPORATED		1	3	2		1		3	9			
UNION VALLEY												1
UNIVERSITY PARK											1	1
VAN ALST YNE									6		3	
VICTORIA							1					
WACO										1		
WATAUGA												1
WAXAHACHIE									11	14	3	6
WEATHERFORD									4	2	5	2
WEST UNIVERSITY PLACE								1		1		
WESTLAKE									1			1
WESTOVER HILLS												1
WHITEWRIGHT										1		1
WICHIT A FALLS					1		1		1			1
WILLOW PARK											1	2
WYLIE								1	9	7	11	2

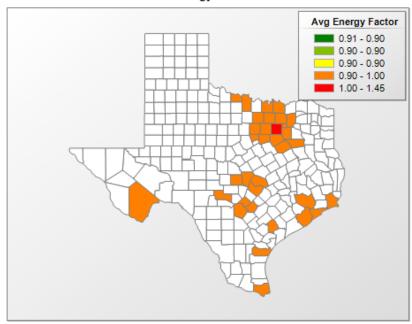
Figure 30: Cities Generating Multi-Family Homes IC3 Certificates in 2016 (Continued)

6.1.4 Parameter Reports

A unique and valuable use of the Registry is to look at building trends across the state. This report shows the yearly average wall cavity insulation distribution in Texas for 2016. Yellow, Orange, and Red in the figure show the relevant insulation values.

Avg Wall Cavity Insulation 0 - 1 1 - 13 13 - 14 14 - 15 15 - 21

Wall Cavity Insulation Distribution

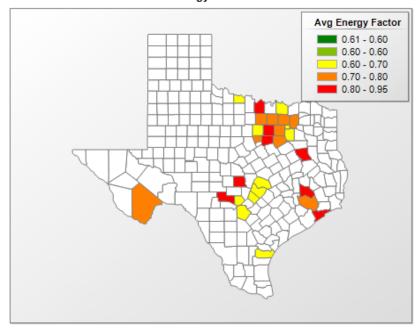

County	Avg Wall Insulation	House Count
Anderson	19.0	5
Bexar	15.7	514
Blanco	0.0	1
Brazoria	13.0	1
Brewster	2.0	125
Burnet	14.5	4
Cameron	19.0	1
Clay	16.0	1
Collin	14.9	272
Comal	13.0	19
Cooke	14.0	6
Dallas	13.9	485
Denton	13.9	227
El paso	13.0	1
Ellis	14.1	87
Fannin	0.0	1
Fort bend	20.5	4
Galveston	18.3	3
County	Avg Wall Insulation	House Count
Palo pinto	13.0	1
Parker	14.2	49
Rockwall	14.2	65
Rusk	0.0	1
San patricio	15.0	11
Tarrant	13.8	694
Travis	15.3	335

Grayson 12.9 29 Guadalupe 14.0 2 Harris 15.4 301 Hays 13.1 85 Henderson 19.0 1 Hood 14.2 14 Hunt 13.0 12 Jefferson 13.0 1 Johnson 14.0 22 Kaufman 12.8 127 Kerdall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montague 19.0 1 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65 Wise 13.4	County	Avg Wall Insulation	House Count
Harris 15.4 301 Hays 13.1 85 Henderson 19.0 1 Hood 14.2 14 Hunt 13.0 12 Jefferson 13.0 1 Johnson 14.0 22 Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montague 19.0 1 Montague 19.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Grayson	12.9	29
Hays 13.1 85 Henderson 19.0 1 Hood 14.2 14 Hunt 13.0 12 Jefferson 13.0 1 Johnson 14.0 22 Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montague 19.0 1 Montague 19.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Guadalupe	14.0	2
Henderson 19.0 1 Hood 14.2 14 Hunt 13.0 12 Jefferson 13.0 1 Johnson 14.0 22 Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montague 19.0 1 Montague 19.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Var zandt 20.0 1 Victoria 13.0 1 Williamson 13.8 65	Harris	15.4	301
Hood 14.2 14 Hunt 13.0 12 Jefferson 13.0 1 Johnson 14.0 22 Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montague 19.0 1 Montague 19.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Hays	13.1	85
Hunt 13.0 12 Jefferson 13.0 1 Johnson 14.0 22 Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Var zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Henderson	19.0	1
Jefferson 13.0 1 Johnson 14.0 22 Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Var zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Hood	14.2	14
Johnson 14.0 22 Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Var zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Hunt	13.0	12
Kaufman 12.8 127 Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Jefferson	13.0	1
Kendall 19.0 1 Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Var zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Johnson	14.0	22
Kerr 11.6 5 Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Var zandt 20.0 1 Victoria 13.0 1 Williamson 13.8 65	Kaufman	12.8	127
Llano 17.8 4 Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Kendall	19.0	1
Mclennan 19.0 1 Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Kerr	11.6	5
Montague 19.0 1 Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Llano	17.8	4
Montgomery 17.7 3 Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Mclennan	19.0	1
Navarro 13.0 2 Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Montague	19.0	1
Nueces 14.4 60 County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Montgomery	17.7	3
County Avg Wall Insulation House Count Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Navarro	13.0	2
Val verde 0.0 1 Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Nueces	14.4	60
Van zandt 20.0 1 Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	County	Avg Wall Insulation	House Count
Victoria 13.0 1 Wichita 11.5 4 Williamson 13.8 65	Val verde	0.0	1
Wichita 11.5 4 Williamson 13.8 65	Van zandt	20.0	1
Williamson 13.8 65	Victoria	13.0	1
	Wichita	11.5	4
Wise 13.4 7	Williamson	13.8	65
	Wise	13.4	7

Figure 31: Yearly Average Wall Cavity Insulation Distribution by County for Single-Family Homes in 2016

This report shows heater efficiencies across Texas in 2016.

Electric DHW Energy Factor Distribution



County	Avg Electric Energy Factor	House Coun
Bexar	0.9	54
Brazoria	0.9	
Brewster	0.9	-
Burnet	1.0	4
Cameron	0.9	
Clay	0.9	•
Collin	0.9	63
Comal	0.9	19
Cooke	0.9	6
Dallas	1.4	168
Denton	0.9	106
Ellis	0.9	60
Navarro	0.9	2
Nueces	0.9	5
Palo pinto	0.9	1
Parker	0.9	42
Rockwall	0.9	23
San patricio	1.0	11

Fort bend	0.9	1
Galveston	1.0	1
Grayson	0.9	20
Guadalupe	0.9	1
Harris	0.9	15
Henderson	1.0	1
Hood	0.9	10
Hunt	0.9	9
Jefferson	1.0	1
Johnson	1.0	15
Kaufman	0.9	37
Kerr	0.9	3
Llano	0.9	3
Tarrant	0.9	350
Travis	0.9	59
Victoria	0.9	1
Wichita	1.0	2
Williamson	0.9	8
Wise	0.9	5

Figure 32: Yearly Average Water Heater Energy Factor Distribution by County for Single-Family Homes in 2016

NGas DHW Energy Factor Distribution

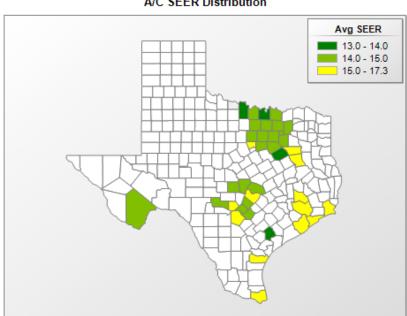
County	Avg NGas Energy Factor	House Count
Anderson	0.8	5
Bexar	0.6	450
Brewster	0.7	6
Collin	0.7	199
Dallas	0.8	295
Denton	0.7	118
Hood	0.7	3
Hunt	0.8	3
Johnson	0.9	6
Kaufman	0.6	86
Kendall	0.6	1
Kerr	0.9	1
Llano	0.9	1
Mclennan	0.9	1
Montague	0.9	1
Montgomery	0.8	3

El paso	0.7	1
Ellis	0.7	24
Fort bend	0.9	3
Galveston	0.9	2
Grayson	0.6	7
Harris	0.8	264
Hays	0.6	85
Nueces	0.7	53
Nueces	0.7	53
Parker	0.6	4
Rockwall	0.7	42
Tarrant	0.8	301
Travis	0.7	242
Van zandt	0.9	1
Wichita	0.6	1
Williamson	0.6	57
Wise	0.8	2

Figure 33: Yearly Average Water Heater Energy Factor Distribution by County for Single-Family Homes in 2016

1

15


Avg Energy Factor 2.00 - 9.67 9.67 - 17.33 17.33 - 25.00

Heat Pump DHW Energy Factor Distribution

County	Avg Heat Pump WH Energy Factor	House Count	Guadalupe	2.3
Bexar	2.3	1	Harris	2.3
Brewster	25.0	1	Kaufman	2.0
Tarrant	2.0	5	Travis	2.5

Figure 34: Yearly Average Water Heater Energy Factor Distribution for Single-Family Homes in 2016

This report shows the average A/C SEER across Texas in 2016. The efficiency (and sizing) of air conditioning is a vital component of energy efficiency in Texas.

A/C SEER Distribution

County	Avg A/C SEER	House Count
Anderson	16.0	5
Bexar	15.6	505
Brazoria	16.0	1
Brewster	14.9	17
Burnet	14.8	4
Cameron	16.0	1
Clay	13.0	1
Collin	15.0	263
Comal	15.0	19
Cooke	14.0	6
Dallas	14.9	464
Denton	14.6	223
El paso	14.5	1
Ellis	14.2	85
Fort bend	15.0	4
Montgomery	16.0	3
Navarro	14.0	2
Nueces	15.8	57
Palo pinto	15.0	1
Parker	15.0	46
Rockwall	14.7	65
San patricio	16.0	11

Galveston	15.3	3
Grayson	14.8	26
Guadalupe	14.8	2
Harris	15.1	283
Hays	14.5	85
Henderson	16.0	1
Hood	15.2	13
Hunt	14.3	12
Jefferson	16.0	1
Johnson	14.3	21
Kaufman	14.0	123
Kendall	16.0	1
Kerr	14.5	4
Llano	14.5	4
Mclennan	14.0	1
Montague	15.0	1
Tarrant	14.8	656
Travis	15.1	317
Van zandt	16.0	1
Victoria	14.0	1
Wichita	17.3	3
Williamson	14.5	65
Wise	15.0	7

Figure 35: Average A/C SEER across Counties for Single-Family Homes in 2016

This report shows the average ceiling insulation across Texas in 2016.

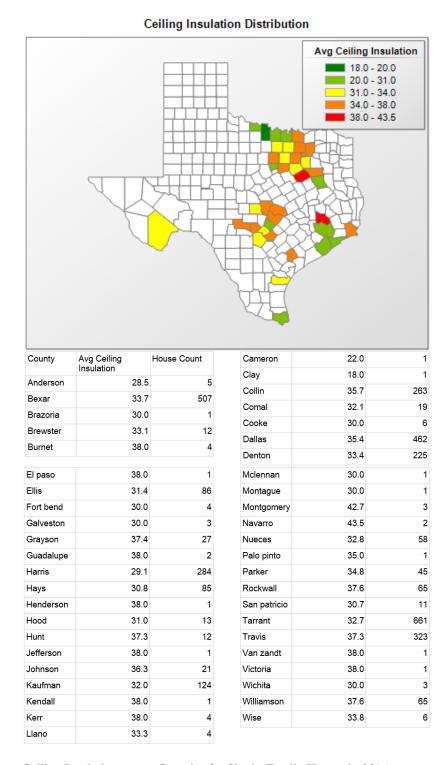
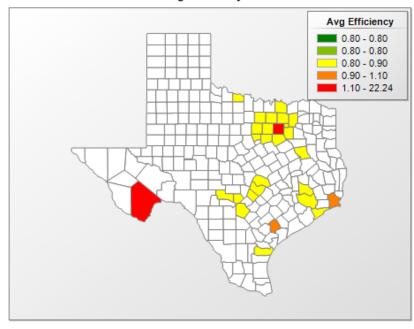
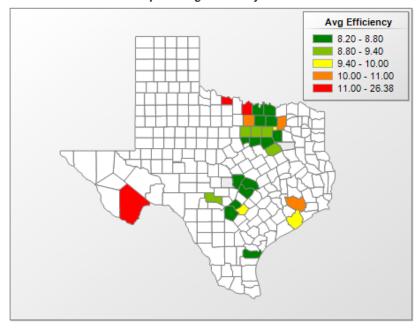



Figure 36: Average Ceiling Insulation across Counties for Single-Family Homes in 2016

This report shows the average heating efficiency across Texas in 2016.

NGas Heating Efficiency Distribution

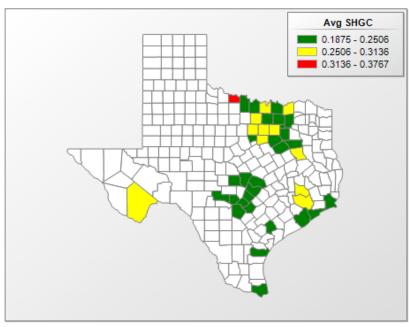


County	Avg NGas Efficiency	House Count
Anderson	0.8	5
Bexar	0.8	448
Brewster	22.2	8
Collin	0.9	202
Dallas	1.2	294
Denton	0.8	119
El paso	0.9	1
Ellis	0.8	20
Fort bend	0.9	3
Galveston	0.9	3
Grayson	0.8	11
Harris	0.8	270
Tarrant	0.8	340
Travis	0.8	229
Van zandt	0.9	1
Victoria	1.0	1

Hays	0.8	85
Hood	0.9	3
Hunt	0.9	2
Jefferson	1.0	1
Johnson	0.8	5
Kaufman	0.8	84
Kendall	0.8	1
Kerr	0.8	2
Mclennan	0.9	1
Montgomery	0.9	3
Nueces	0.8	2
Parker	0.8	14
Rockwall	0.8	45
Wichita	0.9	1
Williamson	0.8	57
Wise	0.8	1

Figure 37: Average Heating Efficiency across Counties for Multi-Family Homes in 2016

Heat Pump Heating Efficiency Distribution

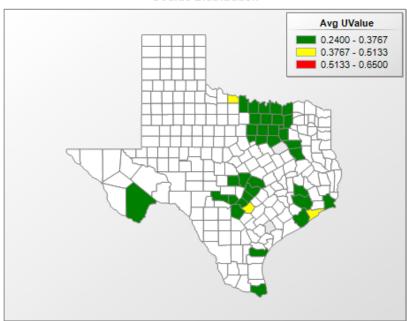

County	Avg Heat Pump Efficiency	House Count
Bexar	8.4	55
Brazoria	9.5	1
Brewster	26.4	ŧ
Burnet	8.4	2
Collin	8.6	61
Comal	8.5	19
Cooke	8.5	(
Dallas	9.2	168
Johnson	8.7	16
Kaufman	8.7	39
Kerr	9.1	2
Llano	8.2	4
Montague	12.0	1
Navarro	9.3	2
Nueces	8.8	56
Palo pinto	9.0	1

Denton	8.7	104
Ellis	8.5	64
Fort bend	13.0	1
Grayson	8.3	15
Guadalupe	9.8	2
Harris	10.0	8
Henderson	8.2	1
Hood	8.3	10
Hunt	10.1	10
Parker	8.8	32
Rockwall	9.4	20
San patricio	8.7	11
Tarrant	8.8	314
Travis	8.6	86
Wichita	11.5	2
Williamson	8.4	8
Wise	10.4	6

Figure 38: Average Heat Pump Heating Efficiency across Counties for Multi-Family Homes in 2016

This report shows the average SHGC across Texas in 2016.

SHGC Distribution


County	Avg SHGC	House Count
Anderson	0.2700	
Bexar	0.2325	505
Brazoria	0.2500	
Brewster	0.2953	17
Cooke	0.2800	(
Dallas	0.2560	466
Denton	0.2495	223
El paso	0.3500	•
Ellis	0.2358	86
Fannin	0.3000	•
Fort bend	0.2550	4
Galveston	0.2367	;
Grayson	0.2400	2
Guadalupe	0.1900	2
Harris	0.2790	283
Hays	0.2214	85
Henderson	0.2500	•
Hood	0.2285	13
Hunt	0.2158	12
Jefferson	0.2200	,
Johnson	0.2695	20
Kaufman	0.2448	125
Kendall	0.2300	•

Burnet	0.2500	4
Cameron	0.2100	1
Clay	0.1900	1
Collin	0.2457	265
Comal	0.2500	19
Kerr	0.2200	4
Llano	0.1875	4
Mclennan	0.2500	1
Montague	0.2500	1
Montgomery	0.2967	3
Navarro	0.2400	2
Nueces	0.2328	58
Palo pinto	0.2200	1
Parker	0.2577	47
Rockwall	0.2369	65
San patricio	0.2300	11
Tarrant	0.2545	667
Travis	0.2338	329
Van zandt	0.2500	1
Victoria	0.2500	1
Wichita	0.3767	3
Williamson	0.2202	65
Wise	0.2733	6

Figure 39: Average SHGC across Counties for Single-Family Homes in 2016

This report shows the average U Factor acorss Texas is 2016. The U Factor applies to the heat transfer of a window caused by temperature, no direct solar radiation.

UValue Distribution

County	Avg UValue	House Count
Anderson	0.2800	5
Bexar	0.3235	506
Brazoria	0.3500	1
Brewster	0.3171	17
Burnet	0.3500	4
Cameron	0.3000	1
Clay	0.3200	1
Collin	0.3324	265
Comal	0.3500	19
Cooke	0.3500	6
Dallas	0.3180	465
Denton	0.3382	223
El paso	0.2500	1
Ellis	0.3335	86
Fannin	0.3000	1
Montague	0.3000	1
Montgomery	0.2967	3
Navarro	0.2400	2
Nueces	0.3340	58
Palo pinto	0.3000	1
Parker	0.3500	47
Rockwall	0.3151	65
San patricio	0.3200	11

Fort bend	0.3150	4
Galveston	0.3833	3
Grayson	0.3415	27
Guadalupe	0.4750	2
Harris	0.3422	283
Hays	0.3553	85
Henderson	0.3500	1
Hood	0.3369	13
Hunt	0.3125	12
Jefferson	0.3500	1
Johnson	0.3475	20
Kaufman	0.3444	125
Kendall	0.3300	1
Kerr	0.3325	4
Llano	0.2700	4
Mclennan	0.2500	1
Tarrant	0.3283	666
Travis	0.3429	329
Van zandt	0.3500	1
Victoria	0.6500	1
Wichita	0.3833	3
Williamson	0.3500	65
Wise	0.3533	6

Figure 40: Average U Factor across Counties for Single-Family Homes in 2016

6.2 IC3 Enhancements

IC3 is continuously being enhanced since 2009 released Version 3.5.2 to 2013 released Version 3.13.x. Numerous enhancements have been made and are detailed out in section 6.2.1.

6.2.1 History of IC3 Enhancements

Most of the enhancements that are being added to IC3 in the recent years are summarized next:

In Version 3.5.2 (November 2009)

- Three code choices: IECC 2009, IECC 2006 (with Houston Amendments) and IECC 2000/2001.
- Duct insulation values
- Improved input of overhang values to allow for just inches

In Version 3.6.1 (December 2009)

- Foundations
- Opt out of emails
- Copy a project
- Moved orientation from Floors tab to Project Information

In Version 3.6.2 (April 2010)

- Fixed defect in 2nd Floor, Back Window issue
- Reference A\C tonnage matches the proposed A\C tonnage.
- Updated model
- Updated illustrations

In Version 3.7.x (June 2010)

- Simple multi-family code compliance
- Updated model
 - a. Floor Insulation R-Value
 - b. Four foundation types
- Updated illustrations
- Updated manual

In Version 3.8.x (September 2010)

- Fixed default of Multi-family Units to be "Ducts in Conditioned Space" to YES
- Fixed wrong IECC code version on certificate
- Enhanced input screens by moving several fields from Units to Floor
- Plans

In Version 3.9.x (October 2010)

- Added slab insulation
- Updated the manual

In Version 3.10 (September 2011)

- Three IECC 2009 compliant reports (i.e. energy, inspection list, and certificate)
- Paging enhancements on "My Page" to help organize large quantities of projects.
- Multi-family usability increased with Plan/Unit information being displayed on pages.
- Elimination of flash animation (so we will become iPad compatible).

- Updated/expanded help text.
- Updated illustrations.
- Tweaked min/max values on duct insulation, water heaters.

In Version 3.11 (December 2011)

• Added support for IECC 2009 Austin Amendments

In version 3.12.x (January 2012)

- Deprecated 2000/2001 and 2006 Houston Code.
- Added a button to generate Energy Report w/ a signature line. The original energy report still exists
- Improvements in the algorithm
- Help images/ text updated
- Updated manual

In version 3.13.x (August 2013)

- Added Manual J.
- Added 2009 NCTCOG code. This is the 2012 IECC w/ NCTCOG amendments. It is slightly less stringent than the base 2012 code and is optimized for climate zone 3.

In version 3.14.x (March 2015)

- Added 2012 AE Code.
- Added heat-pump water heater option
- Added sealed attic option.
- Revised energy report to make it clearer

6.2.2 History of IC3 version 4 Enhancements

Version 4.0 (June 2015)

- Initial release
- Originally has only 2015 IECC single-family

Version 4.0.1 (July 2015)

- The original version (4.0) printed the logged in user's name, phone number, and email address in the builder's fields on the certificate and energy report. These can now be overridden on a project-by-project basis. The new input fields on the left side of the screen are now the values that will be printed on the certificate and energy reports.
- The project notes will now appear on the Energy Report. Due to spacing issues, only the first 60 characters will be printed. If the project notes are longer, they will be truncated in the energy report.
- On a user's main user screen (the one immediately after login that lists all of your projects), a button has been added to the top: 'Edit User Information'. This button allows you to edit the logged in user's contact information that you entered when registering on the site.
- On a user's main user screen (the one immediately after login that lists all of your projects), a button has been added to the top: 'Import Project from IC3 version 3.x'. Several users have requested the ability to 'import' projects from the old version of IC3. This is now possible. o Users will be prompted to enter their IC3 version 3.x credentials and the select a project to import. Only single-family project import is available at this time.
 - \circ The user will be prompted for a new project name, project address, and orientation (just as when you are copying an existing project from version 4.x).
 - Aside from these fields, the project is copied without alteration except that the code is changed to IECC 2015. Of course, there is no guarantee that a project that passes 2009 or 2012 will still pass 2015 without some modifications.
- Some rounding issues on the energy Report have been fixed.

In version 4.0.2 (April 2016)

- Clean up of some error messages
- Revised attic model to give better results
- Webpage will now check that the house meets the minimum fresh air standards as given by the IRC and will post an error message upon submission if it does not meet the minimum standards.

In version 4.1 (September 2016)

Added ERI calculation mode

In version 4.1.1 (September 2016)

• Some bug fixes

In version 4.1.2 (October 2016)

• Altered appliance energy calculation for ERI

In version 4.2 (October 2016)

• Added NCTCOG 2015 IECC amendment to list of codes

6.2.3 Changes in Single-Family Input File

There have been two major version changes according to the changes in the Single-Family Input file since the 2012 annual simulations. Table 31 presents the summarized description of the changes in Single-Family Input file since the 2012 annual simulation.

Table 31: Changes in Single-Family Input file

BDL Version	Description	Date Modified
4.01.08	BDL used for the 2012 annual report.	03/10/2011
4.01.09	Added sensible and latent components for equipment heat gain.	07/31/2013
4.01.10	Added special construction for knee wall. Corrected plywood layers for floor. Corrected construction for floor-over-ambient conditions. Added heat-pump water heater module. Corrected layers for cathedral ceiling.	08/27/2013 10/20/2013 12/11/2013
4.01.11	Added option to include attic volume in conditioned space in case of sealed attic. Added option for roof insulation to go over roof studs.	05/29/2014 04/09/2014

Added sensible and latent components for equipment heat gain

In order to incorporate the HERS Index calculations in IC3, it became necessary to elaborate the input for lighting, equipment and occupants⁴⁷. Equipment loads were now divided into sensible and latent components. Two new parameters were added in Version 4.01.09 to incorporate the sensible and latent components of the equipment load.

Added special construction for knee wall

In BDL Version 4.01.10 specifications were added to represent knee wall construction. Previous versions of the BDL did not have a separate entry for knee wall construction. Specifications for exterior wall construction was used to represent construction for knee walls.

Corrected plywood layers for floor

In BDL Version 4.01.10 specifications for floor construction was modified to better account for standard practice. Previous versions of the BDL had thinner layer of plywood specified. The current version specifies a more appropriate thickness of plywood used in the construction of floors, which include floors over basements and crawl spaces.

Corrected construction for floor over ambient

In BDL Version 4.01.10 specifications for floor-over-ambient construction was created. Previous versions of the BDL used specifications for ceiling insulation for floor-over-ambient conditions. The current version appropriately incorporates floor insulation in floor-over-ambient construction. The specification in the BDL limits the thickness of floor insulation to the thickness of floor studs input in the model.

Added heat-pump water heater module

In BDL Version 4.01.10 specifications for heat-pump water heaters were added. These specifications include the addition of the heat-pump option as an option available in the BDL to be modeled as a DHW type. When the heat-pump option is selected, several inputs are now modified by the software team. These includevalues for energy input

⁴⁷ It should be noted that loads from occupants were included in the loads for equipment.

ratio (DHW-EIR) and heat rate (DHW-HEAT-RATE). The equation for converting EF to COP is adopted from the specifications in EnergyGauge USA (Version 3.1.02).

DHW-EIR = 1/COP = 0.781/(EF)

The heat rate values of 7,700 Btu/hr are adopted from EnergyGauge regardless of the size of the tank⁴⁸. In addition, the curves used for energy input ratio as a function of part load ratio are the same curves that are used for heat pump space heating obtained from Henderson et al. (2000)⁴⁹.

Corrected layers for cathedral ceiling

In BDL Version 4.01.10 specifications for cathedral ceiling were added to the BDL. The modification included providing a separate entry in the BDL for cathedral ceiling insulation that is restricted size of ceiling stud. Previous versions of the BDL used ceiling insulation for cathedral ceilings.

Added option to include attic volume in conditioned space in case of sealed attic

In BDL Version 4.01.11 modifications were made to include attic volume in conditioned space in the case of sealed attic was simulated. The modifications were made to 'ROOM' space conditions.

⁴⁸ Email correspondence with Jeff Myron, EnergyGauge Technical Support (10/18/2013).

⁴⁹ Henderson, H., D. Parker, Huang, Y. (2000). Improving DOE-2's RESYS Routine: User Defined Functions to Provide More Accurate Part Load Energy Use and Humidity Predictions. Presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA.

6.3 Laboratory's TERP Web Site "esl.tamu.edu/terp"

Since the fall of 2001, the Laboratory has maintained a TERP webpage, where information is provided to builders, code officials, the design community and homeowners about TERP. In 2016, the Laboratory redesigned its website to make navigation easier. On the navigation bar is a tab that links to the TERP homepage (Figure 41). The homepage contains the following items:

- Definition of the Texas Emissions Reduction Plan
- Texas Work
 - o TERP Objectives
 - o TERP Elements
 - o ESL's TERP Responsibilities
 - o The CATEE Conference
 - o Links to
 - Texas Legislative Testimony by the ESL
 - TERP Legislative History
- National Work
 - o National Center of Excellence on Displaced Emission Reductions (CEDER)
 - Links to
 - CEDER Program
 - EPA Recognizes ESL and Dallas Partners
- Latest articles and news on the right sidebar

The TERP tab also contains a dropdown menu which provides links to the following sections

- Code Compliance Calculator
 - o IC3
 - Help and Support contains IC3 Help Resources including
 - Supplemental Release Notes
 - What's New in this Version?
 - Manual
 - Detailed Release Notes for current release of IC3
 - Aggregate Reports from IC3 Location, parameters and maps.
 - Contact information
 - Workshops
 - FAQ
 - RESNET Certification Resources
 - o Report
 - News includes information about improvements and fixes to IC3 Workshops description of IC3 Workshops, including contact information
 - FAQs
 - IC3 Reports contains data from ESL's research and software projects
 - IC3 Registry House Parameters (updated monthly)
 - o Envelope
 - o Systems
 - Mixed
 - Texas Building Registry Demographics
 - o Texas

- o Counties
- Cities
- TCV (Travis County & Austin)
- Weather Data
- o TCV
 - Help & Support contains TCV Help & Support and contact information
 - News includes TCV News including
 - What's New in Version 1.1
 - What is the Difference between TCV v1.1 and IC3 v3.x?
 - FAQs
- o Other Legacy calculators
 - AIM Calculator
 - eCalc 1.x Calculator
- o Credits
- Letters and Reports
 - o Legislative Documents
 - o Builders Information
 - o EPA/CEDER Work
 - Background
 - Reports provided to US EPA as part of CEDER Program
 - o Reports listed by year from 2002-2016
- About
 - o Legislative Testimony
 - o Legislative Documents
 - o Legislative History
- TERP Data Sets
 - o Weather Data
 - o Texas Building Registry
 - IC3/TCV Usage Reports
 - IC3 House Construction Trends
- TERP Links
 - o eCalc Emissions & Energy Calculator
 - o International Code Compliance Calculator (ICCC)
 - o Public Utility Commission of Texas (PUC)
 - o U.S. Department of Energy (DOE)
 - o Texas State Energy Conservation Office (SECO)
 - o U.S. Environmental Protection Agency (EPA)
 - o International Code Council (ICC)
 - o American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE)
 - o North Central Texas Council of Governments (NCTCOG)
 - o Alamo Area Council of Governments (AACOG)
 - o Circle of Ten
 - o Texas Home Energy Rating Organization (HERO)
- Other Publications
 - o Builders Information
 - o Digital Library
 - o Presentations
 - o Proceedings
 - Air Quality (CATEE)

- Hot & Humid
- IBPSA
- ICEBO
- IETC
- Workshops
 - o IC3
 - o IECC Residential
 - o IECC Commercial
 - o ASHRAE

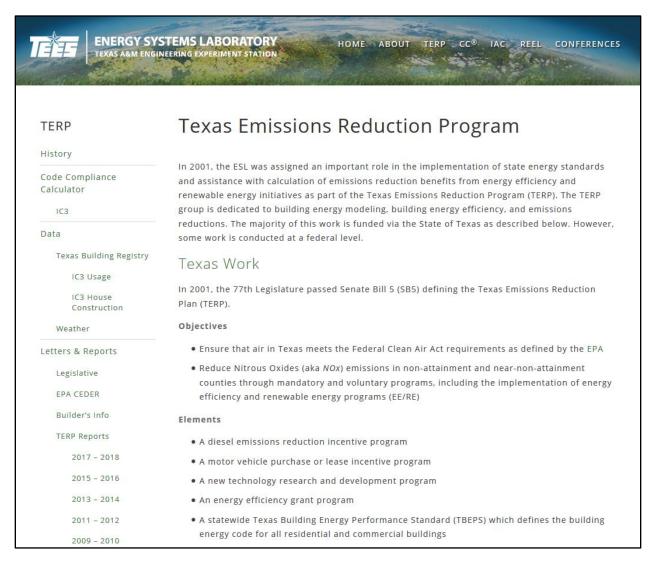


Figure 41. TERP Home Page

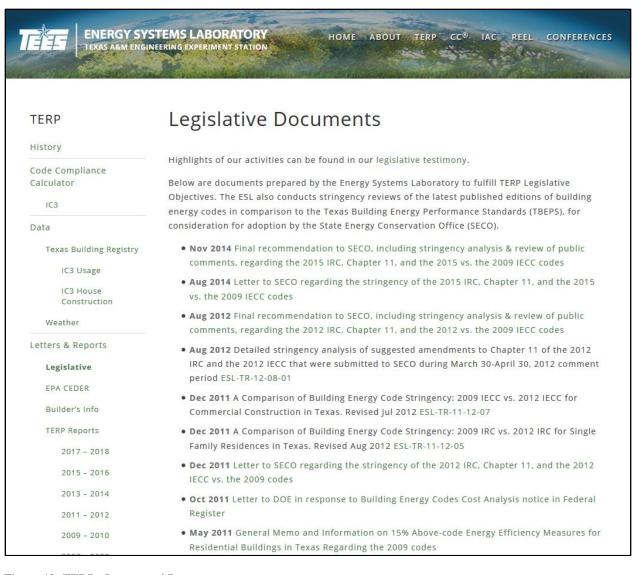


Figure 42: TERP -Letters and Reports

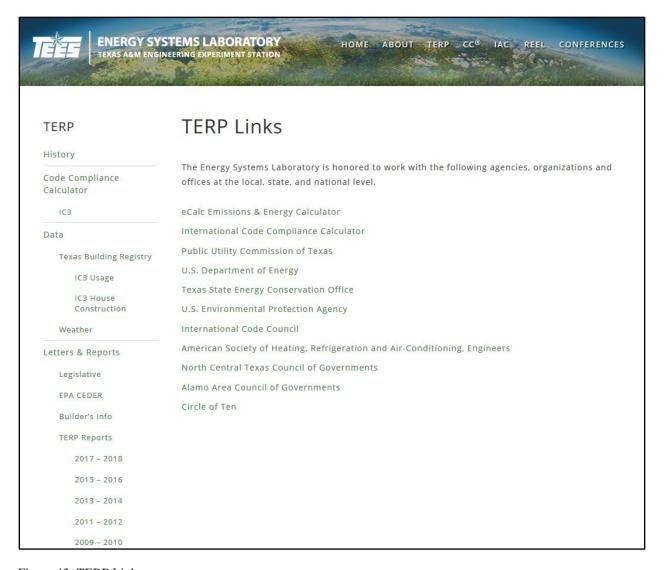


Figure 43: TERP Links

In addition, the Energy Systems Lab. (ESL) also hosted the Clear Air Through Energy Efficiency Conference (CATEE). The CATEE website and information are linked in the dropdown menu of the Conference tab in the ESL website.

6.4 Activities of Technical Transfer

6.4.1 Technical Assistance to the TCEQ

The Laboratory received dozens of calls per week from code officials, builders, home owners and municipal officials regarding the building code and emissions calculations. A complete file of these transactions is maintained at the Laboratory.

The Laboratory provides technical assistance to the TCEQ, the PUC, SECO and ERCOT, as well as Stakeholders participating in a number of conferences and presentations. In 2011, the Laboratory continued to work closely with the TCEQ to develop an integrated emissions calculation, which provided the TCEQ with a creditable NOx emissions reduction from energy efficiency and renewable energy (EE/RE) programs reported to the TCEQ in 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, and 2016 by the Laboratory, PUC, SECO, and Wind-ERCOT.

The Laboratory has also enhanced the previously developed emissions calculator by: expanding the capabilities to include all counties in ERCOT, including the collection and assembly of weather from 1999 to the present from 17 NOAA weather stations, and enhancing the underlying computer platform for the calculator.

The Laboratory has and will continue to provide leading edge technical assistance to counties and communities working toward obtaining full SIP credit for the energy efficiency and renewable energy projects that are lowering the emissions and improving the air for all Texans. The Laboratory will continue to provide superior technology to the State of Texas through efforts with the TCEQ and US EPA. The efforts taken by the Laboratory have produced significant success in bringing EE/RE closer to US EPA acceptance in the SIP.

6.4.2 Code Training

Section 388.009 of HB 3235 requires the Laboratory to develop and administer a state-wide training program for municipal building inspectors who seek to become code-certified inspectors. To accomplish this, the Laboratory originally developed the Energy Code Workshops which were based on the 2006 International Energy Conservation Code (IECC) as published by the International Code Council (ICC) for residential and commercial buildings, with amendments. Since then, the Laboratory has updated the workshops to the 2009 IECC, and developed 2012 code workshops.

6.4.3 Other Meetings

6.4.3.1 North Central Texas Council Government (NCTCG) Meetings from 2016. The following pages are meeting notes, agendas, and summaries from the NCTCG meetings from 2016.

AGENDA

Energy and Green Advisory Board

Thursday, January 21, 2016 9:00 AM – 12:00 PM Metroplex Conference Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair: Ed Dryden, City of Dallas Vice Chair: Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

ACTION ITEM

Discussion of specific proposed amendment language to <u>Table R402.1.2</u>, <u>Table R402.1.4</u> and <u>Section R402.4.1.2</u> of the 2015 Edition of the IECC that include the expiration of the amendment. This action item will require a vote.

DISCUSSION

Continuing review and discussion of the 2015 IgCC. The board will continue reviewing the 2015 Edition of the IgCC and incorporate previous work as applicable.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- Future Agenda Items. Members of the Energy and Green Advisory Board (EGAB) and North Central Texas Council of Governments (NCTCOG) staff may suggest future agenda items.
- Roundtable Topics/Other Business. EGAB members and NCTCOG staff may share additional items of interest as time allows.
- Schedule for the Next EGAB Meeting. Future EGAB meetings will occur on the following Thursdays, from 9:00 AM to 12:00 PM:

February 18, 2016	Tejas Conference Room, CPIII (3rd floor)
March 17, 2016	Tejas Conference Room, CPIII (3rd floor)
Additional meeting dates forthcoming	

6. Adjournment.

If you have any questions regarding the meeting or agenda items, please contact Sandra Barba at (817) 608-2368 or sbarba@nctcog.org. If you plan to attend this public meeting and you have a disability that requires special arrangements

AGENDA

Regional Codes Coordinating Committee

Monday, January 25, 2016 9:30 AM, William J. Pitstick Executive Board Room NCTCOG Offices, CPII 616 Six Flags Drive, Arlington, Texas 76011

Chair:

David Kerr, City of Plano

Vice-Chair:

Jack Thompson, City of DeSoto

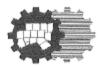
1. Welcome and Introductions.

ACTION/PRESENTATIONS

- Summary of the August 4, 2015 Meeting. The August 4, 2015 draft meeting summary is available online for your review and consideration.
- Approval sought for Appointment of Advisory Board Members. Advisory Board Chair(s) will seek approval of advisory board member appointments.
- Consideration of recommendation from EGAB regarding recommended amendments to the 2015 Edition of the IECC. Ed Dryden, Chair of the EGAB will present discussion regarding amendments to 2015 Edition of the IECC. This item may require a vote.

DISCUSSION

· Discuss Building Standards in light of recent tornados.


INFORMATION ITEMS

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- Future Agenda Items.
- Roundtable Topics/Other Business. RCCC members and NCTCOG staff may share additional items of interest as time allows.
- Schedule for the Next RCCC Meeting. The upcoming RCCC meetings are scheduled for the following dates at the NCTCOG Offices, CPII.

April 12, 2016; June 14, 2016

616 Six Flags Drive, Centerpoint Two P.O. Box 5888, Arlington, Texas 76005-5888 (817) 640-3300 FAX: 817-608-2372 www.nctcog.org

North Central Texas Council of Governments

AGENDA

Energy and Green Advisory Board

Thursday, February 18, 2016 9:00 AM – 12:00 PM Tejas Conference Room NCTCOG Offices, CPIII 600 Six Flags Drive, Arlington, Texas 76011

Chair:

Ed Dryden, City of Dallas

Vice Chair:

Evan Roberts, City of Fort Worth

1. Welcome and Introductions.

DISCUSSION

- Continuing review and discussion of the 2015 IgCC. The board will continue reviewing the 2015 Edition of the IgCC and incorporate previous work as applicable.
 - Reconsideration of recommended deletion of Section 611.
 - Discussion of various templates and checklists.
 - Other as necessary.

ACTION ITEM

3. Final vote on recommended amendments to the 2015 IgCC.

OTHER BUSINESS AND ROUNDTABLE DISCUSSION

- Future Agenda Items. Members of the Energy and Green Advisory Board (EGAB) and North Central Texas Council of Governments (NCTCOG) staff may suggest future agenda items.
- Roundtable Topics/Other Business. EGAB members and NCTCOG staff may share additional items of interest as time allows.
- Schedule for the Next EGAB Meeting. Future EGAB meetings will occur on the following Thursdays, from 9:00 AM to 12:00 PM:

March 17, 2016 (meeting needed only if business not completed at February 18, 2016 EGAB meeting.)	Tejas Conference Room, CPIII (3rd floor)
April 21, 2016	Tejas Conference Room, CPIII (3rd floor)
May 19, 2016	Tejas Conference Room, CPIII (3rd floor)
June 16, 2016	Metroplex Conference Room, CPII

616 Six Flags Drive, Centerpoint Two P.O. Box 5888, Arlington, Texas 76005-5888 (817) 640-3300 FAX: 817-608-2372 www.nctcog.org

6.4.3.2 State Agency Energy Advisory Group (SAEAG)

The following pages are meeting notes, agendas, and summaries from the SAEAG meetings from 2016.

Tammy Persky

Subject:

SAEAG Meeting

Location:

LBJ Building (17th and Brazos) - Room 212C

Start: End: Wed 1/20/2016 9:00 AM Wed 1/20/2016 11:30 AM

Show Time As:

Tentative

Recurrence:

(none)

Organizer:

Eddy Trevino

State Agency Energy Advisory Group

Wednesday, January 20, 2016 9:00 a.m. – 11:15 a.m. LBJ Office Building 17th and Brazos Room 212C Austin, Texas 78711

AGENDA

Case Update from OAG

SECO Report

BREAK

Discussion on Future Presenters

Guest speaker: Greg Tinkler, KCI Technologies; Houston, TX
The Path to a ZeroNet Energy Building and Geothermal

Q&A

General discussion

*If you are attending in person, be sure to bring a picture I.D. to gain entry to the LBJ Building.

Register now if you will be attending remotely!

Registration URL: https://attendee.gotowebinar.com/register/1403499476961338881

Webinar ID: 139-059-811

After registering, you will receive a confirmation email containing information about joining the webinar.

State Agency Energy Advisory Group

Wednesday, May 18, 2016 9:00 a.m. – 10:45 a.m. LBJ Office Building 17th and Brazos Room 305 Austin, Texas 78711

AGENDA

9:00 a.m. – 9:20 a.m. Case Update from OAG (not open to public)
9:20 a.m. – 9:30 a.m. Networking
9:30 a.m. – 10:15 a.m. Guest speaker: Melissa Brogan (CPA Tax Policy) (Presentation and Q&A)
Water-Efficient Products sales tax holiday

10:15 a.m. – 10:30 a.m. SECO Update
10:30 a.m. – 10:45 a.m. General discussion

*If you are attending in person, be sure to bring a picture I.D. to gain entry to the LBJ Building.

Registration

Please register for SAEAG meeting on May 18, 2016 9:00 AM CDT at:

https://attendee.gotowebinar.com/register/4815025675455355396

After registering, you will receive a confirmation email containing information about joining the webinar.

SAEAG MEETING

State Agency Energy Advisory Group

Wednesday, August 17, 2016
9:00 a.m. – 11:00 a.m.
Office of the Attorney General
William Clements Building
NW Corner of 15th and Lavaca
12th Floor Large Conference Room by Receptionist Area
Austin, Texas 78701

AGENDA

9:00 a.m. - 9:15 a.m.

Introductions

9:15 a.m. - 9:45 a.m.

Case Update from OAG

9:45 a.m. - 10:00 a.m.

BREAK

10:00 a.m. - 11:00 a.m.

Energy Reporting Requirements for State Agencies and

Universities, presented by Alison Huxel, SECO

Webinar Registration: https://attendee.gotowebinar.com/rt/7495588846236999171

If you are attending in person, be sure to bring a picture I.D. to gain entry to the Clements Building.

You may pre-register to obtain unescorted clearance (you will still need to bring a picture I.D.) to our floor by emailing or calling before our meeting is scheduled nancy.villarreal@texasattorneygeneral.gov [512-475-4164] or colleen.minor@texasattorneygeneral.gov [512-475-4157].

State Agency Energy Advisory Group

LBJ Office Building- 111 E. 17th Street, Austin

September 21, 2016

AGENDA

9:00-9:15 am Case Update from OAG (not open to public)

9:15-9:30 am SECO Update

9:30–10:30 am Presentation on Eproject Builder by Elizabeth Stuart, Lawrence Berkeley National Laboratory

10:30-10:45 am Questions and General discussion

6.4.3.3 Clean Air Through Energy Efficiency (CATEE 2016)

The Clean Air Through Energy Efficiency (CATEE) Conference is a premiere educational conference and business exhibition connecting public and private decision makers and thought leaders. Its purpose is to help communities improve decisions that determine the energy and water intensity of the built environment, learn from examples and seek alternative renewable energy sources – and reduce related emissions. CATEE is hosted by the Energy Systems Laboratory (ESL) of the Texas A&M Engineering Experiment Station (TEES).

The following pages are conference program and list of sponsors from the CATEE 2016.

CATEE 2016 Program

CATEE 2010 1 Togram								
Monday, Dec. 19 – P	re-Conference Workshops							
9:00am – 12:00pm	Continuous Commissioning® Workshop – Hosted by Texas A&M Energy Systems Laboratory							
	The trademarked Continuous Commissioning® (CC®) process, developed by the ESL, focuses on the optimization of public, commercial, and institutional building operations. The CC® process has been implemented in hundreds of buildings around the world in various climates.							
	Solar for Local and State Governments Workshop – Sponsored by Performance Services • A plain English discussion about solar energy for government,							
	business leaders and owners, fire & code officials, energy engineers & managers and others.							
1:00pm – 4:00pm	ERI, IC3, and IECC 2015 Workshop – Hosted by Texas A&M Energy Systems Laboratory							
	This workshop provides a detailed overview into the use of the IC3 calculator to demonstrate compliance with the 2015 International Energy Conservation Code.							
	Energy Efficiency Workshop for Local Government – Sponsored by McKinstry							
	This workshop will provide city, county administrators, facility managers, energy managers and other public sector officials with some of the latest strategies, methodologies, and benchmarks that lead towards a "best-in-class" 2020 Vision for local government facilities.							
	Solar Tour – Mission Solar and Alamo 1 Solar Farm & Grid Storage Battery							
Tuesday, Dec. 20 – D	ay One of Conference							
7:00am	Registration & Information Desk Open							
8:00am – 6:30pm	Expo Arena Open							
8:30am – 10:00am	 CATEE 2016 Opening General Session Welcome – Betin Santos, CATEE Executive Director Welcome – City of San Antonio, Invited Host Utility – Ricardo Luna, CPS Energy Opening Keynote: When Making a Difference, Really Makes a Difference – John Tooley, Advanced Energy 							
10:00am - 10:30am	Networking Break							
10:30am - 11:45pm	Concurrent Breakout Sessions:							
	Emerging Technologies Showcase – Panel Chair: Eddy Trevino, SECO							
	 UTSA Flow Battery Testing and Demonstration Project – Dr. Juan Gomez, UTSA-TSERI 							

	1MW Grid-Scale Solar Storage Project – Byungwook Lee, OCI Solar					
	Geothermal Power and Desalination – James Jackson, Thermal Energy Partners LLC					
10.00						
10:30am – 11:45pm	Energy and Water – Two Sides of the Same Coin – Panel Chair: Kate Zerrenner, EDF					
	Why Does the Energy-Water Nexus Matter? – Kate Zerrenner					
	Data-driven Insights on Customer Water Use – Brewster McCracken, Pecan Street Inc.					
	Water/Energy Resources – Karen Guz, San Antonio Water					
	System (SAWs)					
	CPS Energy's Generation Strategy – Municipal Utility					
	Perspective – Kim Stoker, CPS Energy					
	Overview of Renewable Energy in Texas – Panel Chair: Melissa					
	Miller, President, TREIA					
	Overview of Wind Energy in Texas – Susan Sloan, American					
	Wind Energy Association					
	Overview of Solar Energy in Texas – Texas Solar Market					
	Update – Charlie Hemmeline, Texas Solar Power Association					
	Overview of Geothermal Energy in Texas – Geothermal					
	Technology and Spotlight Projects – Dustin Gregoire, Bosch					
	Thermotechnology					
	Overview of Energy from Landfill Gas in Texas – Paul Pabor,					
	Waste Management					
11:45pm – 1:00pm	Lunch Presentation – State of the State					
	SECO Update – Dub Taylor, State Energy Conservation Office					
	(SECO)					
	State of the State – Dr. Jeff Haberl, Energy Systems Laboratory,					
	TEES & College of Architecture, TAMU					
1:00pm – 2:15pm	Concurrent Breakout Sessions:					
7.00pm 2.10pm						
	Regional and Community Programs – Panel Chair: Nicholas Jones, AACOG					
	 SA Tomorrow Sustainability Plan: A Vision for a Sustainable San Antonio – Doug Melnick, City of San Antonio 					
	Austin Energy's Energy Efficiency Programs – Denise Kuehn,					
	Austin Energy					
	 2030 Districts in Texas – Elizabeth Kertesz, SPEER 					
	SECO Regional Benchmarking Tool – Jennifer Ronk, HARC					
	Texas Energy Manager's Association: Defining Sustainability to					
	Develop a Sustainability Management – Panel Chair: Ashley Williams,					
	City of Temple					
	Paul Buckner, <i>Bryan ISD</i>					
	Paul Raabe, Northeast ISD					
	Keith Ordeneaux, City of Pearland & Pearland ISD					
	Utility Perspectives on Renewable Energy – Panel Chair: Steve					
	Wiese, Frontier Associates					
	·					
	Transmission and Distribution Utilities and Retail Electricity Providers Solar Costs Incentives and Trends Stave Wiese					
	Providers – Solar Costs, Incentives, and Trends – Steve Wiese,					
	Frontier Associates The Perenastive of an Electric Cooperative on Renawable					
	The Perspective of an Electric Cooperative on Renewable The Perspective of an Electric Cooperative Operation The Perspective of American Development Operation The Perspective Operation Operation The Perspective Operation Operation The Perspective Operation Operation The Perspective Operation Operation The Perspective Operation Operation Operation The Perspective Operation Operation Operation The Perspective Operation Operation Operation Operation The Perspective Operation Operation Operation Operation Operation Operation The Perspective Operation Opera					
	Energy – Ingmar Sterzing, Pedernales Electric Cooperative					

Ĭ.							
	 Municipal Utilities' Engagement with Renewable Energy – Georgetown Utility Systems – Chris Foster, Georgetown Utiliti Systems 						
	Municipal Utilities' Engagement with Renewable Energy – Aust Energy – Danielle Murray, Austin Energy						
2:15pm – 2:45pm	Networking Break						
2:45pm – 4:00pm	Concurrent Breakout Sessions:						
	Central Texas Corridor – Panel Chair: Ana Sandoval, Air and Health						
	Collaborative of San Antonio						
	Andrew Hoekzema, CAPCOG						
	Allie Blazosky, Alamo Area MPO						
	Mario Bravo, EDF						
	Nicholas Jones, Clean Cities, AACOG						
	Research and Compliance Tools for Energy Codes – Panel Chair: Fred Yebra, SECO						
	 Introduction of the TX A&M IC3 Energy Code Compliance Tool & Other Code Compliance Tools – Shirley Ellis, Energy Systems Laboratory 						
	 Texas Field Study – Implementing Targeted Education and Outreach – Richard Morgan, SPEER 						
	Distributed Use of Solar Energy: Multiple Perspectives – Panel Chair: Ross Pumfrey. Texas Solar Energy Society						
	 Rooftop Solar – An Installer Perspective – D.J. Rosebaugh, Lighthouse Solar 						
	 Community Solar in Texas – Current State of the State – Lori Clark, Principal Air Quality Planner, NCTCOG 						
	 Municipal Utility Case Study – Shannon M. Wagner, CPS Energy 						
	 SolSmart Designation and Soft Cost Reduction Strategies – Chad Laurent, Meister Consultant Groups, Inc. 						
4:00pm – 4:15pm	Networking Break						
4:15pm – 5:30pm	Clean Air Act Policy and Legislative Panel – Panel Chair: Cyrus Reed, Ph.D., Conservation Director, The Sierra Club, Lone Star Chapter • Councilman Ron Nirenberg, City of San Antonio • Senator Menendez, Invited						
	Andrew Hoekzema, CAPCOG						
5:30pm – 7:30pm	CATEE Welcome Reception – Sponsored by METCO Engineering						
Wednesday, Dec. 21 –	Day Two of Conference						
8:00am	Registration & Information Desk Open						
8:00am – 2:30pm	Expo Arena Open						
2.000	Energy Efficient & Sustainable Airport Facilities – Panel Chair: Dr.						
	Morad Atif, Texas A&M University						
9:00am – 10:30am	Houston Airport's IAH Initiatives Project – Robert Barker,						
	City of Houston, Houston Airport System						
	Benchmarking and Profiling Airport Terminal Energy End Uses – Juan-Carlos Baltazar, Texas A&M University						
	Toronto Pearson Airport – Ronak Patel, Greater Toronto Airport Authority (GTAA)						
10:30am – 11:00am	Networking Break						

11:00am – 12:00pm	Concurrent Breakout Sessions:				
	Malcolm Verdict Memorial Student Poster Session – Poster Session				
	Chair: Dr. Jeff Haberl, Energy Systems Laboratory				
	Energy Efficiency for Education Facilities – Panel Chair: Dr. Gavin Dillingham, HARC				
	 Energy Management at Alamo Colleges – John Strybos, Alamo Colleges 				
	History of Energy Management at Judson ISD, David Oehler and Marcelo Jimenez, Judson ISD				
	When Hail Breaks Loose – Marcia Coker, Wylie ISD				
12:00pm – 1:30pm	CATEE Awards Luncheon				
	 Luncheon Keynote: International & National Perspective on Energy Efficiency and Clean Air in Buildings – Dr. Morad Atif, Architectural Engineering, TAMU CATEE & Poster Awards – Betin Santos 				
1:30pm – 2:45pm	Concurrent Breakout Sessions:				
	Texas Metro Area Roundtable: Energy Initiatives and Ozone Attainment/Maintenance Efforts – Panel Chair: Tamara Cook and Lori Clark, NCTCOG				
	Nicholas Jones, AACOG				
	Andrew Hoekzema, CAPCOG				
	Shelley Whitworth, HGAC				
	Industrial Energy Efficiency Efforts – Panel Chair: Erik Fowler, SPEER				
	Tracking the Multiple Benefits of Industrial Energy Efficiency – Dr. Bryan Rasmussen, ESL				
	Industrial Energy Efficiency and Combined Heat and Power – Jennifer Ronk, HARC				
	PACE: Financing for Efficiency Projects – Jonathon				
	Blackburn, Texas PACE Authority				
2:45pm	Conference Adjourns				

6.4.4 Papers, Theses, etc.

6.4.4.1 Theses and Dissertations.

The following theses and dissertations were published in 2016 incorporating work related to the Texas Emissions Reduction Plan (TERP).

• Chunliu Mao, "Analysis of Building Peak Cooling Load Calculation Method for Commercial Buildings in The United States,"Phd., Department of Architecture, May 2016.

In This study aims to provide valid comparisons of the peak cooling load methods that were published in the ASHRAE Handbook of Fundamentals, including the Heat Balance Method (HBM), the Radiant Time Series Method (RTSM), the Transfer Function Method (TFM), the Total Equivalent Temperature Difference/ Time Averaging Method (TETD/TA), and the Cooling Load Temperature Difference/Solar Cooling Load /Cooling Load Factor Method (CLTD/SCL/CLF), and propose a new procedure that could be adopted to update the SCL tables in the CLTD/SCL/CLF Method to make the results more accurate.

To accomplish the peak cooling load method comparisons, three steps were taken. First, survey and phone interviews were performed on selected field professionals after an IRB approval was obtained. The results showed that the CLTD/SCL/CLF Method was the most popular method used by the HVAC design engineers in the field due to the reduced complexity of applying the method while still providing an acceptable cooling load prediction accuracy, compared to the other methods.

Next, a base-case comparison analysis was performed using the published data provided with the ASHRAE RP-1117 report. The current study successfully reproduced the HBM results in the RP-1117 report. However, the RTSM cooling load calculation showed an over-prediction compared to the RTSM results in the report. In addition, analyses of the TFM, the TETD/TA Method and the CLTD/SCL/CLF Method were compared to the base-case cooling load. The comparisons showed the HBM provided the most accurate analysis compared to the measured data from the RP-1117 research project, and the RTSM performed the best among the simplified methods. The TFM estimated a value very close to the peak cooling load value compared to the RTSM. The CLTD/SCL/CLF Method behaved the worst among all methods.

Finally, additional case studies were analyzed to further study the impact of fenestration area and glazing type on the peak cooling load. In these additional comparisons, the HBM was regarded as the baseline for comparison task. Beside the base case, fifteen additional cases were analyzed by assigning different window areas and glazing types. The results of the additional tests showed the RTSM performed well followed by the TFM. The TETD/TA Method behaved somewhere in between the TFM and CLTD/SCL/CLF Method. In a similar fashion as the base-case comparisons, the CLTD/SCL/CLF Method performed the worst among all methods.

6.4.4.2 Papers

6.4.4.2.1 Published Papers in 2016

The following papers were published in 2016 incorporating work related to the Texas Emissions Reduction Plan (TERP).

• Oh, S.; Haberl, J.S., 2016. "Origins of analysis methods used to design high-performance commercial buildings: Whole-building energy simulation." Science and Technology for the Built Environment.

Many commercial buildings today do not perform the way they were simulated. One potential reason for this discrepancy is that designers using building energy simulation programs do not fully understand the analysis methods that the programs are based on and may therefore have unreasonable expectations about the actual system performance or energy use. Therefore, the purpose of this study is to trace the origins of the most widely used building energy simulation programs and the analysis methods of thermal envelope loads used in the software to analyze high-performance commercial buildings in the United States. Such an analysis is important to better understand the capabilities of building energy simulation programs so they can be used more accurately to simulate the performance of an intended design. In this study, a new comprehensive genealogy chart was developed to support the explanations for the origins of the analysis methods of thermal envelope loads used in wholebuilding energy simulation programs. Two other works explained the origins of the analysis methods of solar photovoltaic, solar thermal, passive solar, and daylighting simulation programs.

Link:

http://www.tandfonline.com/doi/full/10.1080/23744731.2015.1063958?scroll=top&needAccess=true&

• Oh, S.; Haberl, J.S., 2016. "Origins of analysis methods used to design high-performance commercial buildings: Daylighting Simulation." Science and Technology for the Built Environment.

This study presents a review of the origins of the analysis methods used to design high-performance commercial buildings. This study includes the origins of the analysis methods used in daylighting analysis software developed in the United States. The analysis of this study can help readers better understand and identify the analysis methods used in daylighting simulation programs. In other works, the origins of the analysis methods of whole-building energy and solar energy analysis software were reviewed.

Link: http://www.tandfonline.com/doi/full/10.1080/23744731.2015.1090278

• Oh, S.; Haberl, J.S., 2016. "Origins of analysis methods used to design high-performance commercial buildings: Solar energy analysis." Science and Technology for the Built Environment.

This study reviews the origins of the analysis methods used to design high-performance commercial buildings. This study focuses on the origins of the analysis methods used in solar thermal, passive solar, and solar photovoltaic analysis software, developed in the United States and Canada, using a new comprehensive genealogy chart. This historical analysis is important because it gives readers a better understanding of the fundamentals of the analysis methods. The origins of the analysis methods of whole-building energy and daylighting simulation programs were reviewed in other works.

Link: http://www.tandfonline.com/doi/full/10.1080/23744731.2015.1090277

• Do, S.L.; Haberl, J.S. ,2016. "Development and validation of a custom-built ground heat exchanger model for a case study building." Energy and Buildings.

Use of a ground-source heat pump (GSHP) system is becoming widespread in energy savings applications. A typical GSHP system is equipped with one of three ground heat exchanger (GHX) configurations: vertical, horizontal, or surface-water. Due to site characteristics/limitations, however, some residential/commercial buildings utilize a combination of different GHX configurations for their GSHP systems; in this research, we will refer to such a system as a custom-built GHX. A residential building utilizing a custom-built GHX combining two different GHX types (horizontal and surface-water) was selected to be the case study for this research. This research developed a custom-built GHX model to calculate the entering water temperatures (EWTs) circulated from the custom-built GHX to the GSHP system. In order to validate the developed model, the measured EWTs from the case-study house were referenced and compared to the calculated EWTs. The comparison showed that the average EWT differences resulted in about 1.2 °C (2.1 °F) and 1.6 °C (2.8 °F) for the full heating and cooling seasons, respectively.

Link: http://www.sciencedirect.com/science/article/pii/S0378778816302031

• Kim, H., Oldham, E., Haberl, J., 2016. "Field Investigation of Occupancy-Based Climate Control Technology: IEQ Performance during the Cooling Season", Indoor Air 2016.

Link: http://www.indoorair2016.org/

• Do, S.L.; Haberl, J.S. ,2016. "Development procedure of an air-source heat pump base-case simulation model for a code-compliant residential building." Energy and Buildings.

Computer simulation is widely used for analyzing building energy performance. A building simulation model is often verified by comparing the simulation results of the same building using different simulation programs, and thus developing a same building simulation model for different programs is inevitable for the comparative verification. This study proposed a step-by-step input parameter change procedure to develop a residential building model that complies with the 2009 International Energy Conservation Code (IECC). By implementing the procedure, this study developed the code-compliant residential air-source heat pump base-case model using two whole-building simulation programs: DOE-2.1e and eQUEST. The simulation results from DOE-2.1e and eQUEST at each step in the procedure were compared. To evaluate the accuracy and comparability of the final base-case model developed with the procedure, this study compared the simulation results of the same base-case model using Residential Energy Services Network (RESNET) accredited programs. The comparison showed that the differences in the annual total site energy use among the simulation programs were well-matched within 4.7%.

Link: http://www.sciencedirect.com/science/article/pii/S0378778815301900

 Chen, W.J., Claridge, D., Liao, J., 2016. "Modeling to Predict Positive Pressurization Required to Control Mold Growth from Infiltration in Buildings in a Hot and Humid Climate", Building and Environment.

Commercial buildings in humid regions of the United State are generally designed to operate at a positive pressure to limit mold growth, material deterioration and other condensation related problems from infiltration in hot and humid climates. This paper combines existing models of infiltration and mold growth to predict the influence of pressurization level on the risk of mold growth. Walls are treated differently depending on their height and the direction they face. Local weather data are utilized

to generate the outside pressure field. Temperature measurements performed on an actual building are applied to a multi-layer envelope temperature prediction model, used to simulate the performance of three different envelope constructions. Annual change in mold index is calculated for three humid locations for one construction type and for two other construction types in one location. The simulated results indicate that for a 22 °C indoor temperature set-point, 3 m high walls facing all directions in an unpressurized building in College Station, TX, will experience an annual increase in mold index. However, 1.5 Pa positive pressurization results in a negative annual change in mold index for all walls that should theoretically eliminate the long-term risk of an increasing mold index on all walls. The model also indicates that only 1 Pa pressurization is required to produce negative annual change in mold index if the same building is moved to Fort Worth, TX and no pressurization is required in Atlanta, GA with a 22 °C indoor temperature set-point.

Link: http://www.sciencedirect.com/science/article/pii/S0360132316301536

 Gangisetti, K., Claridge, D., Srebric, J., Paulus, M., 2016. "Influence of Reduced VAV Flow Settings on Indoor Thermal Comfort in an Office Space", Building Simulation.

The air temperature distribution in a space with reduced diffuser flow rates and heat loads was studied using simulation. Computational fluid dynamics (CFD) was used to analyze the room air distribution from a side wall diffuser at the design flow rate, and the results were validated with experimental data. CFD was used to predict occupant discomfort under a range of reduced diffuser flow rates. It was found for diffuser flow rates above 30% of the design flow rate that the temperature influence from the jet was minimal. At these flow rates, there was nearly a uniform temperature distribution in the occupied zone. The predicted maximum value of percentage of dissatisfied occupants within the space began to increase for diffuser flow rates below 30% of the design flow rate. The percent dissatisfaction at 1 m room height was greater than 25% for the lowest diffuser flow rate tested (15% of the design flow rate) directly under the diffuser, which was the highest of the test cases, but was 5% or less throughout more than 90% of the room. In contrast, at the higher flow rates, the percent dissatisfied index was 5% or less in only 60%-80% of the room due to increased velocity. Evidence of dumping was already found at the traditional minimum flow rate setting of 30% of design, and so there would be little harm in reducing the minimum flow rate further. Reducing the flow rate below 30% of design just moved the location of the dumping closer to the diffuser. For very low diffuser flow rates (below 30% of the design flow rate), it is recommended that desks be placed away from the supply diffuser to avoid discomfort. Overall, the simulation results indicate that uniform temperatures are maintained in the room at flow rates as low as 15% of design except immediately under the diffuser. This suggests that the VAV minimum flow rates can be set below 30% of design flow as long as the diffuser is at least 1 m from an occupant's position.

Link: https://link.springer.com/article/10.1007/s12273-015-0254-3

6.5 Solar Test Bench (STB)

This section introduces the activities that were carried out using the Solar Test Bench (STB) during the calendar year of 2016, and the activities summary is listed as follow:

- Regular maintenance
- Weekly report.

6.5.1 Solar Test Bench Setup

Figure 44 shows the exterior view of the STB. In addition, the whole STB setup comprises the sensors indicated in Table 32, which includes the sensor name, make, model and serial number along with the multiplier, offset and unit.

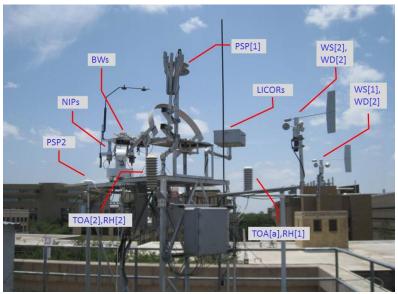


Figure 44. Exterior View of the Solar Test Bench

Table 32. List of the sensors updated to the end of 2016

Index	Sensor			Serial			
Number	Name	Make	Model	Number	Multiplier	Offset	Unit
					0.18	-40	°F
1	TOA/RH[1]	Vaisala	HMP45A	D2430006	0.10	NA	%
					0.18	-40	۰F
2	TOA/RH[2]	Vaisala	HMP155A	G3220004	0.10	NA	%
					1.79	0.629	MPH
3	WS/WD[1]	Met One	034B	H4735	712	NA	Degree
					1.79	0.629	MPH
4	WS/WD[2]	Met One	034B	M5048	712	NA	Degree
5	LICOR[3]	Licor	Li-cor	PY15L25	75.59	NA	W/m ²
6	LICOR[4]	Licor	Li-cor	PY49745	75.03	NA	W/m ²
7	LICOR[5]	Licor	Li-cor	PY 74409	200	NA	W/m ²
8	LICOR[6]	Licor	Li-cor	PY 74438	200	NA	W/m ²
9	LICOR[7]	Licor	Li-cor	PY 74439	200	NA	W/m ²
10	LICOR[8]	Licor	Li-cor	PY 474450	200	NA	W/m ²
11	PSP[1]	Eppley	PSP	13673F3	125.63	NA	W/m ²
12	PSP[2]	Eppley	PSP	16881F3	103.09	NA	W/m ²
13	PSP[3]	Eppley	PSP	35417F3	112.74	NA	W/m ²
14	NIP[1]	Eppley	NIP	14851E6	118.06	NA	W/m ²
15	NIP[2]	Eppley	NIP	16620E6	117.79	NA	W/m ²
16	BW[1]	Eppley	8-48	20226	96.99	NA	W/m ²
17	BW[2]	Eppley	8-48	33886	98.62	NA	W/m ²

6.5.2 2016 STB Activities

6.5.2.1 Regular Maintenance

The solar test bench regular maintenance is carried out every two weeks, the desiccants for PSPs, B&Ws and the junction boxes are replaced, and the used one are recycled. The alignment for the solar tracker and the covers for the B&Ws are checked, and the occurred problems were fixed by restarting the solar tracker and manually adjusting the devices. The sensor wiring connections are checked and fixed as needed.

6.5.2.2 Weekly Report

The data logger downloaded data have been checked every week, and the STB data was compared with NOAA data in STB weekly report. Figure 45 shows the example plots comparing the STB data with the NOAA data.

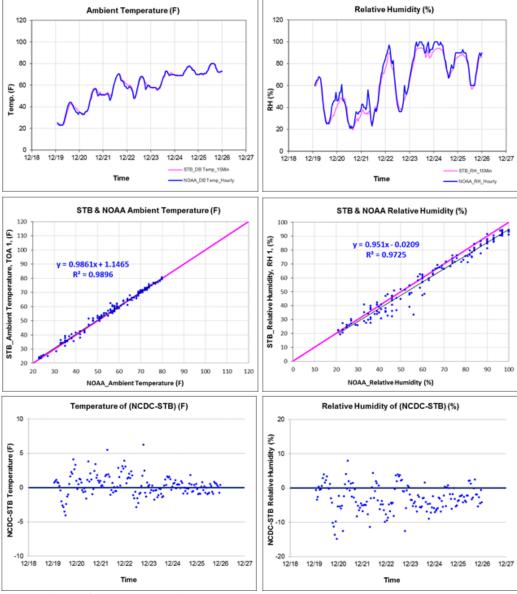


Figure 45: Comparisons of the STB Data with the NOAA Data

6.5.3 Future work Plan

6.5.3.1 Camera Installation

It is required to install a monitoring camera close enough for clear observation of the solar tracker, but avoiding any shading on the bench.

6.5.3.2 Wire Protection in Mechanical Room

In the mechanical room, some wires were outside the junction boxes. It is still necessary to install conduits for wires.

6.5.4 Acknowledgements

This task could not be completed without the help of many students/staffs among another Mr. Sukjoon Oh, Mr. Minjae Shin, Mr. Farshad Kheiri, Mr. Sungkyun Jung, Ms. Qinbo Li, from ESL, TAMU.

References

ASHRAE, 1993. ANSI/ASHRAE Standard 136-1993 (RA 2006) - A Method of Determining Air Change Rates in Detached Dwellings. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.

ASHRAE 90.1 1989 Energy Standard for Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., Atlanta, GA.

ASHRAE 90.1 1999 Energy Standard for Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc., Atlanta, GA.

ASHRAE 2004. "Advanced Energy Design Guide for Small Office Buildings," American Society of Heating, Refrigeration and Air-conditioning Engineers, Atlanta, GA.

ASHRAE, 2010. ANSI/ASHRAE/IESNA Standard 90.1-2010, Energy Standards for Building Except Low-Rise Residential Buildings. American Society of Heating and Refrigerating and Air-conditioning Engineers, Inc., Atlanta, GA.

ASHRAE Standards Addenda, 2008, available at: http://www.ashrae.org/technology/page/132

CBECS 1999. USDOE Commercial Building Energy Characteristics Survey. U.S.D.O.E. Energy Information Agency Report.

CBECS 2003. USDOE Commercial Building Energy Characteristics Survey. U.S.D.O.E. Energy Information Agency Report.

CBECS 2012. USDOE Commercial Building Energy Characteristics Survey. U.S.D.O.E. Energy Information Agency Report. https://www.eia.gov/consumption/commercial/data/2012/#b34-b37

Choi, J., "Analysis of the Impact if Using Improved Multi-layer Window Models for Code-Compliant Residential Building Energy Simulation in Texas," M. S., Department of Architecture, December 2014.

Do, S. L., "Development and Application of a Ground-Coupled Heat Pump Simulation Model for Residential Code-Compliant Simulation in Texas," Department of Architecture, May 2014.

Dodge. 2011. MarkeTrack: McGraw-Hill Construction Analytics. McGraw-Hill Construction Information Group, 148 Princeton-Hightstown Rd., Hightstown, N.J. http://dodge.construction.com.

Dodge. 2017. Dodge Data & Analytics construction starts information, Texas at county level by select project types 2012-2016A. New York, NY: Dodge Data& Analytics. https://www.construction.com/.

Haberl, J., Culp, C., Yazdani, B., Fitzpatrick, and Turner, D., 2002, "Texas's senate Bill 5 Legislation for Reducing Pollution in Non-attainment and Affected Areas," Annual Report to the Texas Natural Resource Conservation Commission, July, Energy Systems Laboratory Report ESL-TR-02/07-01.

Haberl, J., Culp, C., Yazdani, B., Fitzpatrick, T., Bryant, J., Turner, D., 2003, "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)," Volume II – Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2002 to August 2003, Energy Systems Laboratory Report ESL-TR-03/12-04.

Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmed, M., Liu, Z., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II – Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report ESL-TR-04/12-04.

- Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmed, M., Liu, Z., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., and Turner, D. 2006. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2004 to December 2005, Energy Systems Laboratory, Report ESL-TR-06-06-08.
- Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Liu, Z., Baltazar-Cervantes, J.C., Mukhopadhyay, J., Degelman, L., McKelvey, K., Montgomery, C., Ahmed, M., Verdict, M., 2007. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2006 to June 2007, Energy Systems Laboratory, Report ESL-TR-07-12-02.
- Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Liu, Z., Baltazar-Cervantes, J.C., Mukhopadhyay, J., Degelman, L., and Claridge, D. 2008. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2007 to December 2007, Energy Systems Laboratory, Report ESL-TR-08-12-02.
- Haberl, J., Culp, C., Yazdani, B., Gilman, D., Muns, S., Liu, Z., Baltazar-Cervantes, J.C., Mukhopadhyay, J., Degelman, L., and Claridge, D. 2009. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2008 to December 2008, Energy Systems Laboratory, Report ESL-TR-09-12-02.
- Haberl, J., Culp, C., Yazdani, B., Lewis, C., Liu, Z., Baltazar-Cervantes, J.C., Mukhopadhyay, J., Gilman, D., Degelman, L., McKelvey, K., and Claridge, D. 2010. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2009 to December 2009, Energy Systems Laboratory, Report ESL-TR-10-12-02.
- Haberl, J., Yazdani, B., Lewis, C., Liu, Z., Baltazar-Cervantes, J.C., Mukhopadhyay, J., Gilman, D., Degelman, L., McKelvey, K., Zilbertshtein, G., and Claridge, D. 2011. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2010 to December 2010, Energy Systems Laboratory, Report ESL-TR-11-12-03.
- Haberl, J., Yazdani, B., Baltazar-Cervantes, J.C., Lewis, C., Parker, P., Ellis, S., Mukhopadhyay, J., Kim, H., Gilman, D., Degelman, L., Zilbertshtein, G., and Claridge, D. 2012. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2011 to December 2011, Energy Systems Laboratory, Report ESL-TR-12-12-05.
- Haberl, J., Yazdani, B., Baltazar-Cervantes, J.C., Parker, P., Ellis, S., Mukhopadhyay, J., Kim, H., Gilman, D., Degelman, L., Zilbertshtein, G., and Claridge, D. 2013. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2012 to December 2012, Energy Systems Laboratory, Report ESL-TR-13-10-04.
- Haberl, J., Yazdani, B., Baltazar-Cervantes, J.C., Do, S.L., Ellis, S., Mukhopadhyay, J., Parker, P., Degelman, L., Zilbertshtein, G., and Claridge, D. 2014. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2013 to December 2013, Energy Systems Laboratory, Report ESL-TR-14-11-02.
- Haberl, J., Yazdani, B., Baltazar-Cervantes, J.C., Do, S.L., Ellis, S., Mukhopadhyay, J., Parker, P., Degelman, L., Zilbertshtein, G., and Claridge, D. 2015. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)", Volume I Technical Report, Annual Report to the Texas Commission on Environmental Quality, January 2014 to December 2014, Energy Systems Laboratory, Report ESL-TR-15-11-01.
- ICC. 2009. 2009 International Energy Conservation Code. Country Club Hills, IL: International Code Council, Inc.

ICC. 2006. 2006 International Energy Conservation Code. Country Club Hills, IL: International Code Council, Inc.

ICC. 2009. 2009 International Energy Conservation Code. Country Club Hills, IL: International Code Council, Inc.

ICC. 2015. 2015 International Energy Conservation Code. Country Club Hills, IL: International Code Council, Inc

Kats, G.H. et al. 1996. "Energy Efficiency as a Commodity," *ACEEE Summer Study on Energy Efficiency in Buildings*.

Kim, K. H., "Development of an Improved Methodology for Analyzing Existing Single-FamilyResidential Energy Use," Department of Architecture, August 2014.

LBL. 1993. DOE-2 BDL Summary Version 2.1E. LBL Report No. 349346. Berkley, CA: Lawrence Berkeley Laboratory.

Lim, A., "A Comparative Analysis of Predicting Energy Savings From Energy Service Projects," Department of Civil Engineering, May 2014.

Means, R. 2006. "Building Construction Cost Data" R.S. Means, Kingston, Massachusetts.

NAECA. 2006. National Appliance Energy Conservation Act.

Home Innovation Research Labs, 2013, 2014, 2015, 2016. Builder Practices Survey Reports, Upper Marlboro, Maryland.

NAHB. 2008. The Builders Practices Survey Reports. National Association of Home Builders. Upper Marlboro, MD: NAHB Research Center.

NREL. 2001. Building America house performance analysis procedures. (NREL/TP-550-27754) Golden, CO: National Renewable Energy Laboratory. p. 34.

Public Utility Commission of Texas, PUC, 2017, available at: http://www.puc.state.tx.us/

Real Estate Center (REC). 2017. Building permits Texas. recenter.tamu.edu/data/bp/bps/st48.asp

USDOE. 2011. Building Energy Standard Program: Final Determination Regarding Energy Efficiency Improvements in the Energy Standard for Buildings, Except Low-Rise Residential Buildings, ANSI/ASHRAE/IESNA Standard 90.1-2010. Federal Register 76(202):64904-64923.

USDOE. 2014. Building Energy Standard Program: Final Determination Regarding Energy Efficiency Improvements in ANSI/ASHRAE/IES Standard 90.1-2013: Energy Standard for Buildings, Except Low-Rise Residential Buildings. Federal Register 79(187):57900-57915.

Texas State Energy Conservation Office (SECO), 2017, available at: http://www.seco.cpa.state.tx.us/

Bibliography

ACEEE. 2004. The Most Energy-Efficient Appliances. Washington, DC: American Council for An Energy Efficient Economy.

Ahmed, M., Gilman, D., Mukhopadhyay, J., Haberl, J., Culp, C. 2005a. "Development of a Web-based Emissions Reduction Calculator for Code-compliant Single-Familyand Multi-family Construction," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Ahmed, M., Gilman, D., Kim, S., Haberl, J., Culp, C. 2005b. "Development of a Web-based Emissions Reduction Calculator for Code-compliant Commercial Construction," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

ARI 2001. Unpublished ARI Internal Report by Karim Amrane, Ph.D., Air Conditioning and Refrigeration Institute, Arlington, VA (July).

ASHRAE Task Group on Energy Requirements. 1975. Procedures for determining heating and cooling loads for computerized energy calculations; algorithms for building heat transfer subroutines. Atlanta: American Society of Heating Refrigeration and Air-Conditioning Engineers, Inc.

ASHRAE 1989. Energy Efficient Design of New Buildings Except Low-rise Residential Buildings. ASHRAE Standard 90.1-1989.

ASHRAE 2004. ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standards for Buildings Except Low-Rise Residential Buildings. American Society of Heating and Refrigerating and Air-conditioning Engineers, Inc., Atlanta, GA.

ASHRAE 2007. ANSI/ASHRAE/IESNA Standard 90.1-2007, Energy Standards for Building Except Low-Rise Residential Buildings. American Society of Heating and Refrigerating and Air-conditioning Engineers, Inc., Atlanta, GA.

Baltazar-Cervantes, J.C., Liu, Z., Gilman, D., Haberl, J., Culp, C. 2005a. "Development of a Web-based Emissions Reduction Calculator for Retrofits to Municipal Water Supply and WasteWater Facilities," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Baltazar-Cervantes, J.C., Gilman, D., Haberl, J., Culp, C. 2005b. "Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Bankrate. 2005. Federal Discount Rate. Bankrate, Inc. Retrieved June 23, 2005, from: www.bankrate.com.

Cho, S., Mukhopadhyay, J., Culp, C., Haberl, J. S., Yazdani, B., 2007. "Recommendations for 15% Above-Code Energy-Efficiency Measures for Commercial Office Buildings," *Energy Systems Laboratory Report No. ESL-TR-07-09-01*, Texas A&M University.

Cho, Soolyeon. Methodology to Develop and Test an Easy-to-Use Procedure for the Preliminary Selection of High-Performance Systems for Office Buildings in Hot and Humid Climates. Diss. Texas A&M University, 2008.

Dodge. 2005. MarkeTrack: McGraw-Hill Construction Analytics. McGraw-Hill Construction Information Group, 148 Princeton-Hightstown Rd., Hightstown, N.J. http://dodge.construction.com

- Erbs, D., Klein, G., Duffie, S. 1982. "Estimation of the diffuse fraction for hourly, daily and monthly-average global radiation," *Solar Energy*, Vol. 28, pp. 293-301.
- Haberl, J.S. 1993. "Economic Calculations for ASHRAE Handbook," Energy Systems Laboratory Report, No. ESL-TR-93-04-07 (April).
- Haberl, J., Cho, S. 2004a. "Literature Review of Uncertainty of Analysis Methods: F-Chart Program," Energy Systems Laboratory Report, No. ESL-TR-04-08-04 (October).
- Haberl, J., Cho, S. 2004b. "Literature Review of Uncertainty of Analysis Methods: PV F-Chart Program," Energy Systems Laboratory Report, No. ESL-TR-04-10-02 (October).
- Haberl, J., Cho, S. 2004c. "Literature Review of Uncertainty of Analysis Methods: ASHRAE Inverse Model Toolkit (IMT)," Energy Systems Laboratory Report, No. ESL-TR-04-10-03 (October).
- Haberl, J., Cho, S. 2004d. "Literature Review of Uncertainty of Analysis Methods: Cool Roofs," Energy Systems Laboratory Report, No. ESL-TR-04-10-04 (October).
- Haberl, J., Cho, S. 2004e. "Literature Review of Uncertainty of Analysis Methods: DOE-2 Program," Energy Systems Laboratory Report, No. ESL-TR-04-11-01 (November).
- Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmad, M., Liu, Z., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004a. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP)," Vol. III Appendix, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report No. ESL-TR-04-12-05 (December).
- Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmad, M., Liu, Z., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004b. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP)," Vol. II Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report No. ESL-TR-04-12-04 (December).
- Haberl, J., Culp, C., Yazdani, B., Gilman, D., Fitzpatrick, T., Muns, S., Verdict, M., Ahmad, M., Liu, Z., Baltazar-Cervantes, J.C., Bryant, J., Degelman, L., Turner, D. 2004c. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP)," Vol. I Summary Report, Annual Report to the Texas Commission on Environmental Quality, September 2003 to August 2004, Energy Systems Laboratory Report No. ESL-TR-04-12-01 (December).
- Haberl, J., Culp, C., Yazdani, B., Fitzpatrick, T., Bryant, J., and Turner, D. 2003. "Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reductions Plan (TERP). Volume II Technical Report, Annual Report to the Texas Commission on Environmental Quality, September 2002 to August 2003," Energy Systems Laboratory Report ESL-TR-03-12-04.
- Haberl, J., Im, P., Culp, C. 2004. "NOx Emissions Reductions From Implementation of the 2000 IECC/IRC Conservation Code to Residential Construction in Texas," *Proceedings of the 14th Symposium on Improving Building Systems in Hot and Humid Climates*, Texas A&M University, Richardson, Texas, accepted for publication (February), pp. 139-150.
- Haberl, J., Im, P., Culp, C., Yazdani, B., Fitzpatrick, T., Bryant, J., Turner, D. 2005. "A Simulation Methodology to Estimate NOx Emissions Reductions From the Implementation of the 2000 IECC/IRC Conservation Code in Texas," *IBPSA Newsletter*, Vol. 15, No. 2, pp. 39-48 (October).

ICC. 1999. 2000 International Energy Conservation Code. Falls Church, VA: International Code Council, Inc.

ICC. 2001. 2001 Supplement to the International Energy Conservation Code. Falls Church, VA: International Code Council, Inc.

IESNA. 2000. The IES Lighting Handbook, Reference and Application, 9th Edition. New York: Illuminating Engineering Society of North America.

Inflationdata. 2005. Current Inflation Rate. Financial Trend Forecaster®. Retrieved June 23, 2005, from: inflationdata.com/inflation.

Im, P. 2003. "A Methodology to Evaluate Energy Savings and NOx Emissions Reduction from the Adoption of the 2000 IECC to New Residences in Non-attainment and Affected Counties in Texas," *Master's Thesis*, Department of Architecture, Texas A&M University (December).

Im, Piljae. Methodology for the Preliminary Design of High Performance Schools in Hot and Humid Climates. Diss. Texas A&M University, 2009.

Kissock, K., Haberl, J.S., Claridge, D.E. 2002. "Development of a Toolkit for Calculating Linear, Change-point Linear and Multiple-Linear Inverse Building Energy Analysis Models," Final Report for ASHRAE Research Project, No. 1050-RP.

Klein, S.A., Beckman, W.A. 1985. "PV F-Chart User's Manual: DOS Version," F-Chart Software, 4406 Fox Bluff Road, Middleton, Wisc. 53562, www.fchart.com.

Klein, S.A., Beckman, W.A. 1993. "F-Chart Solar Energy System Analysis: Version 6.17W," F-Chart Software, 4406 Fox Bluff Road, Middleton, Wisc. 53562, www.fchart.com.

Kootin-Sanwu, V. 2004. "Development of Energy Efficient Housing for Low-Income Families," *Ph.D. Dissertation*, Department of Architecture, Texas A&M University (May).

LBNL. 1981. "DOE-2 Reference Manual Version 2.1A. LBL-8706 Rev. 1," Lawrence Berkeley National Laboratory, Berkeley, CA, and Los Alamos Scientific Laboratory, Santa Fe, NM.

Malhotra, M. 2005. An Analysis of Maximum Residential Energy-Efficiency in Hot and Humid Climates. MS Thesis, College Station, TX: Texas A&M University.

Malhotra, M. and J. Haberl. 2006. An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates. Proceedings of the Fifteenth Symposium on Improving Building Systems in Hot and Humid Climates. Orlando, FL.

Malhotra, M., J. Mukhopadhyay, B. Liu, J. Haberl, C. Culp, B. Yazdani. 2007. Recommendations for 15% Above-Code Energy Efficiency Measures for Single-FamilyResidences. Energy Systems Laboratory Report No. ESL-TR-07-09-01.

Mukhopadhyay, J. 2005. "Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates," *Master's Thesis*, Department of Architecture, Texas A&M University.

Liu, Z., Gilman, D., Haberl, J., Culp, C. 2005a. "Development of a Web-based Emissions Reduction Calculator for Street Light and Traffic Light Retrofits," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

Liu, Z., Baltazar-Cervantes, J.C., Gilman, D., Haberl, J., Culp, C. 2005b. "Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers," *Proceedings of the 5th International Conference for Enhanced Building Operations*, Pittsburg, PA (October).

LBNL 1995. Residential Sector End-use Forecasting With EPRI REEPS 2.1: Summary Input Assumptions and Results, J. Koomey, R. Brown, R. Richey, F. Johnson, A. Sanstad, and L. Shown, Lawrence Berkeley National Laboratory Report No. LBL-34044-UC-1600 (December).

LBNL 2000. "DOE-2.1e, ver. 107," Documentation Update Package #2, Simulation Research Group, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, CA (March).

Malhotra, M. 2005. "An Analysis of Maximum Residential Energy Efficiency in Hot and Humid Climates," *M.S. Thesis*, Department of Architecture, Texas A&M University.

Malhotra, M. and Haberl, J. 2006. "An Analysis of Building Envelope Upgrades for Residential Energy Efficiency in Hot and Humid Climates," Conference Paper for Presentation at SimBuild 2006, Second National Conference of IBPSA-USA. Cambridge, MA (in preparation).

NAHB 2000. Builder Practices Survey Reports, National Association of Home Builders, Research Center, Upper Marlboro, Maryland (September).

NREL. 1995. User's Manual for TMY2's (Typical Meteorogical Years). NREL/SP-463-7668, and TMY2s, Typical Meteorological Years Derived from the 1961-1990. National Solar Radiation Data Base, June 1995 [CD-ROM]. Golden, Colorado: National Renewable Energy Laboratory.

NOAA 1993. Automated Surface Observing System Guide for Pilots, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, National Weather Service (April).

NREL 1995. User's Manual for TMY2s (Typical Meteorological Years), NREL/SP-463-7668, National Renewable Energy Laboratory (June).

Ottinger, R.L., Wooley, D.R., Robinson, N.A., Hodas, D.R., and Babb, S.E. 1991. *Environmental Costs of Electricity*. Oceana Publications, Inc., New York, N.Y.

Parker, D.S., Dunlop, J.P., Barkaszi, S.F., Sherwin, J.R., Anello, M.T., and Sonne, J.K. 2000. "Towards Zero Energy Demand: Evaluation of Super-Efficient Building Technology with Photovoltaic Power for New Residential Housing," *Proceedings of the 2000 ACEEE Summer Study of Energy Efficiency in Buildings*, 1.207-1.223.

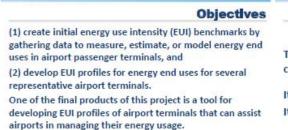
RECenter 2005. Texas Real Estate Research Center, College of Business, Texas A&M University, College Station, Texas. URL: recenter.tamu.edu.

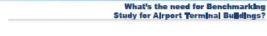
Reilly, M., Winkelmann, D., Arasteh, D., and Caroll, W. 1992. "Modeling windows in DOE-2.1e. Proceedings of Thermal Performance of the Exterior Envelopes of Buildings VI," American Society of Heating Refrigeration and Air-Conditioning Engineers, 1992.

Song, S. 2006. "Development of New Methodologies for Evaluating the Energy Performance of New Commercial Buildings," Texas A&M University, in preparation, (August).

U.S. Census 1999. County Population Estimates for July 1, 1999 and Population Change for July 1, 1998 to July 1, 1999, CO-99-1, U.S. Department of Commerce, March 9, 1999, URL: www.census.org.

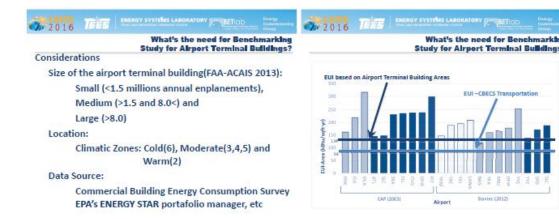

USCB. 2002. Square Footage by Household and Unit Size, Income, and Costs—Occupied Units. American Housing Survey for the United States: 2001, p. 84. U.S. Census Bureau, Current Housing Reports, Series H150/01. Washington, DC: U.S. Government Printing Office.

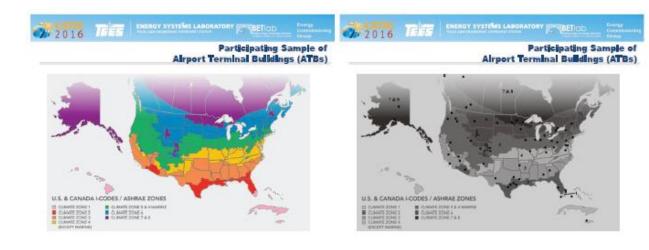

USDOE 2004. Building Energy Standards Program: Determination Regarding Energy Efficiency Improvements in the Energy Standard for Buildings, Except Low-Rise Residential Buildings, ASHRAE/IESNA Standard 90.1-1999. Docket No. (Docket No. EE-DET-02-001). Washington, D.C. http://www.energycodes.gov/implement/pdfs/FR_com_notice.pdf.

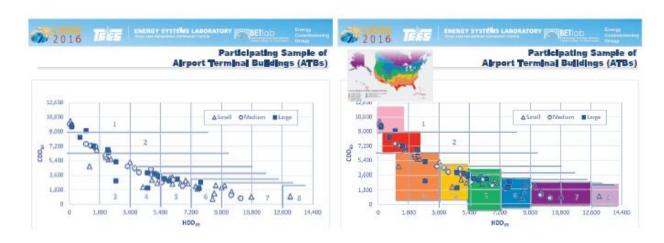

Appendix: Presentations to Various Entities at Conferences and Workshops in 2016

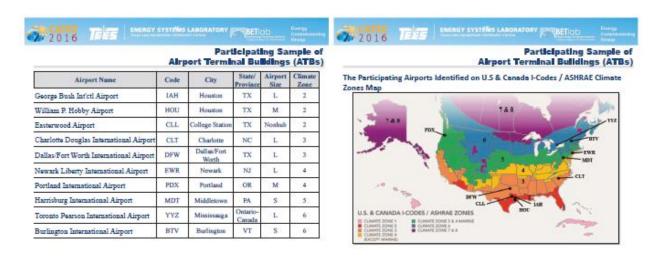
The Energy Systems Laboratory made presentations at several conferences and workshops about ways to save energy, and the appendix shows the presentation slides.

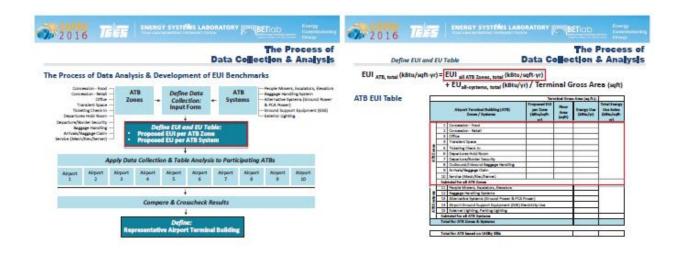
• "Benchmarking and Profiling Airport Terminal Energy End Uses", CATEE conference San Antonio, TX Dec 2016, presented by Juan-Carlos Baltazar.

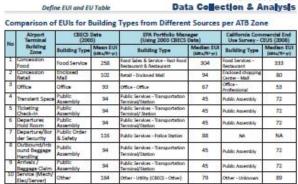


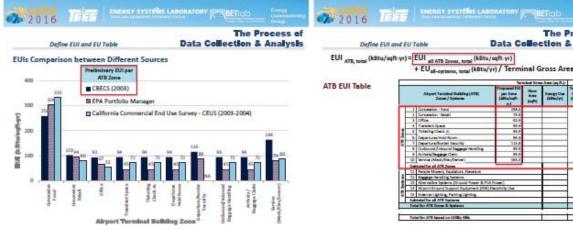


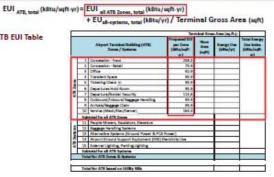



To have a global reference of the energy consumption in an Airport Terminal Building (ATB).

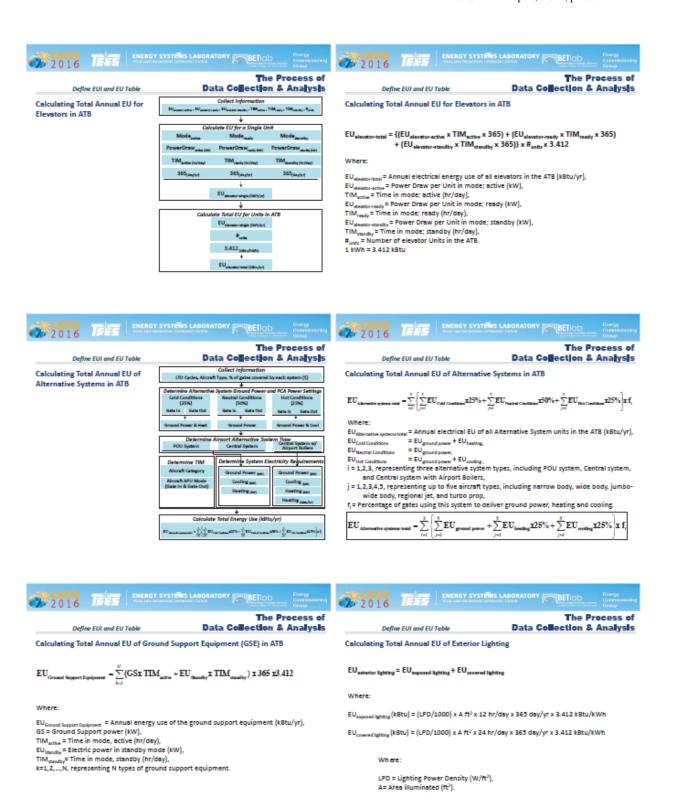

It can be referenced to enplanements, or It can be referenced to conditioned/gross area



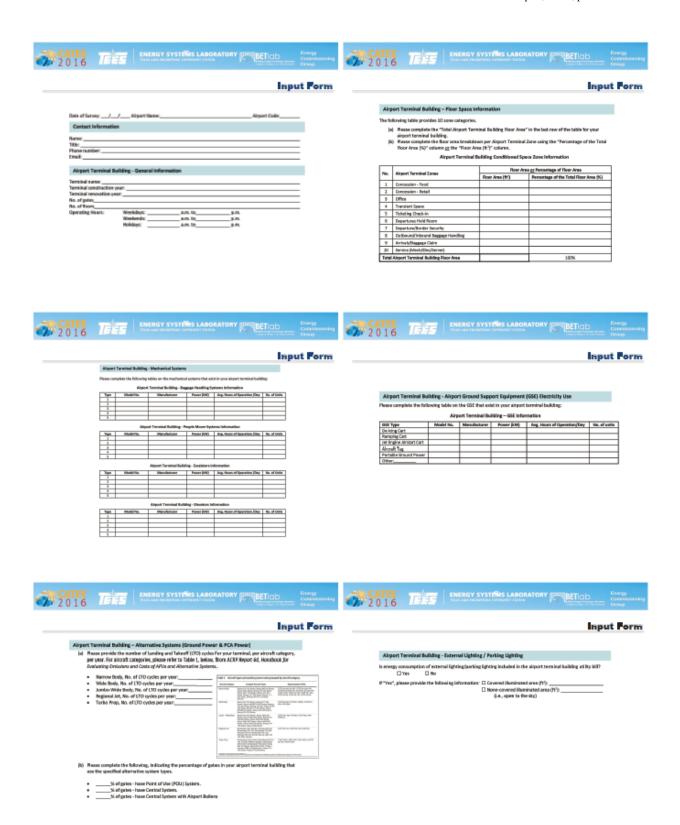


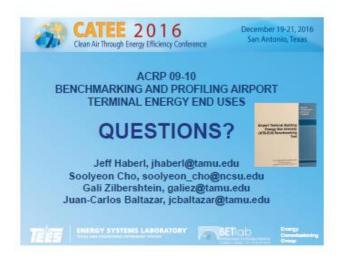


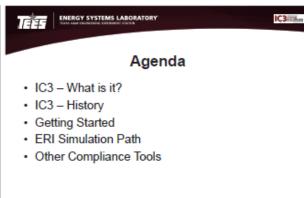
The Process of


The Process of

Data Collection & Analysis



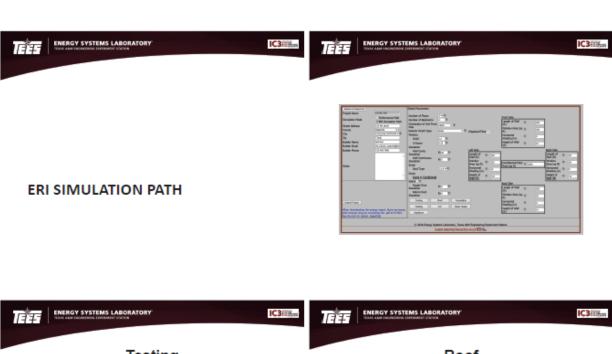


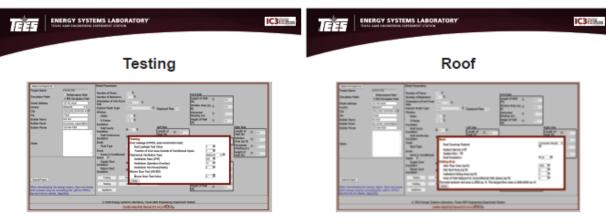


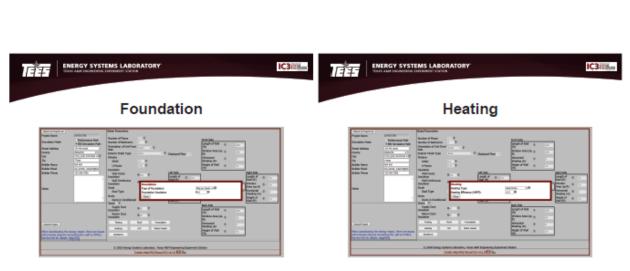
"Introduction of the TX A&M IC3 Energy Code Compliance Tool and Other Code Compliance Tools"
 CATEE conference San Antonio, TX Dec 2016, presented by Shirley Ellis.

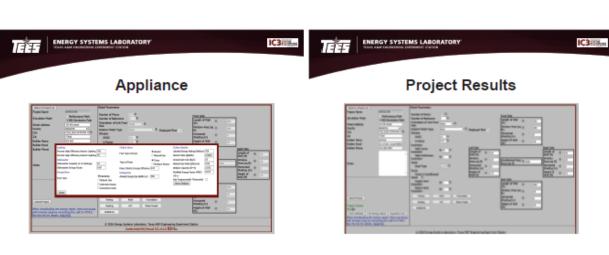
- The International Code Compliant Calculator is a performance-based residential energy code compliance tool
- · Publicly accessible energy code compliance software
- Based on the Texas Building Energy Performance Standards
- RESNET certified
 - Verification Procedures No. 07-003
- · Satisfies the EPA guidelines
 - Demonstrates air quality improvements/emission reductions with adequate certainty

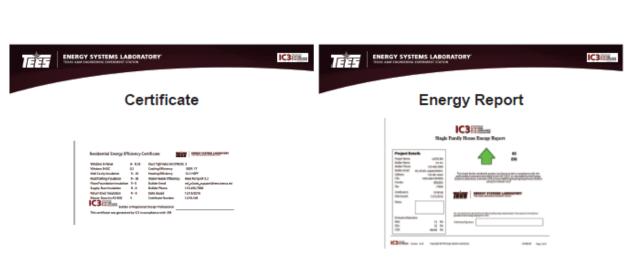
IC3 - History

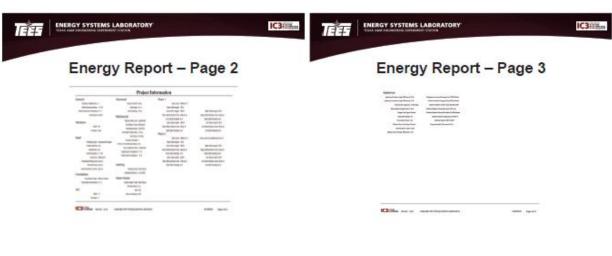

- Created in response to the 77th Texas Legislature's Senate Bill 5 (2001)
- Assigned the ESL responsibilities
 - Calculation of emissions reduction
 - Energy efficiency
 - Renewable energy programs
 - Providing state-wide technical assistance
- Web-based energy efficiency and emissions reduction calculators
 - Texas Climate Vision (Austin, TX)
 - Legacy calculators
 eCalc
 - AIM



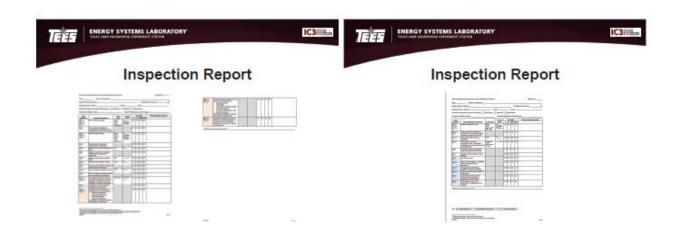


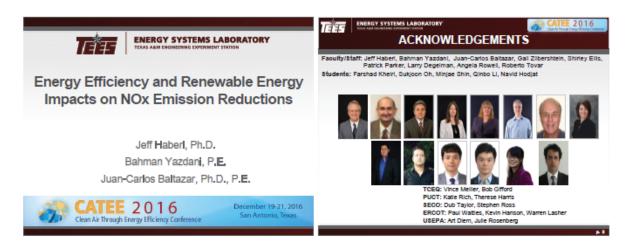


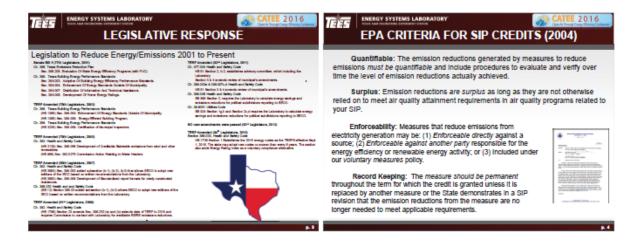




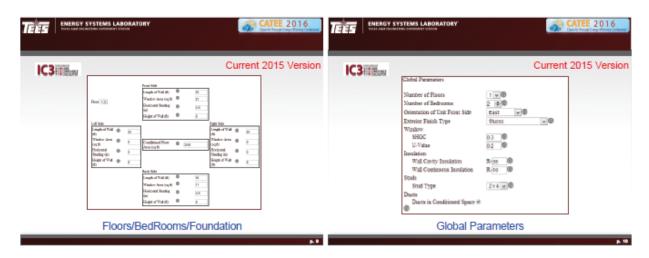








- ANSI/RESNET/ICC 301-2014 Standard for the Calculation and Labeling of the Energy Performance of Low-Rise Residential Buildings using an Energy Rating Index
 - · First published March 2014
 - · Repudiated January 2015
- Software Providers
 - National Registry of Accredited Rating Software Programs www.resnet.us
 - EnergyGauge, REM/Rate, Right-Energy HERS, Ekotrope, HERS Module, ICF International Beacon Residential


• "Energy Efficiency and Renewable Energy Impacts on Emission Reductions" CATEE conference San Antonio, TX Dec 2016, presented by Jeff Haberl.

