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ABSTRACT

Wildlife management is essentially the balance between maintenance of habitat and

control of population density. To demonstrate the application of multivariate techniques

for habitat assessment, I evaluated 4 contemporary classification schemes for use as

experimental units for mourning dove (Zenaida macroura) research in Texas. I conducted

a generalized canonical discriminant analysis (CDA) for each classification scheme using

25 habitat variables obtained adjacent to each of the 133 U.S. Fish and Wildlife Services

call-count survey routes within Texas. Classification results from each CDA were used to

generate a confusion matrix for each classification scheme (i.e., overall accuracy, average

accuracy, and expected agreement). Because classification schemes differed in the

number of categories, the Kappa Coefficient of Agreement was used to account for the

proportion of agreement due to chance. The Kappa estimates were higher for the Gould

(0.760) and Omernik (0.700) classification schemes, than for the Fenneman (0.618) or

George (0.673) classification schemes, indicating the newer classification schemes

provide a more accurate partitioning of multidimensional habitat space, and are therefore

better suited for use as experimental units for mourning dove research in Texas. To

demonstrate the impact of human land use on wildlife habitat, I evaluated the

spatial-temporal effects of habitat loss and anthropogenic land use on grassland birds

from 1993–2012. I used 8 habitat metrics corresponding to the U.S. Census of

Agriculture data for Texas during this period, and northern bobwhite (Colinus

virginianus) abundance estimates from the Breeding Bird Survey and Texas Parks and

Wildlife Department as the proxy grassland bird species. The redundancy analysis

indicated that economic, agricultural, and land use metrics accounted for 74.5% of the

total variance in bobwhite relative abundance during the period (Radj
2 = 60.8%, P <
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0.0016), and most anthropogenic land trend variables (e.g., Population Density, Market

Value, Production Value) were inversely proportional to quail relative abundance. The

canonical discriminant analysis indicated that economic, agricultural, and land use

metrics explained 88.6% of the variability among ecoregions (P < 0.0002) and 99.5% of

the variability among years (P < 0.0167). These results indicate that land values (market

value and production value per hectare) and human population density may signal the

onset of anthropogenic land conversion, and might be used to predict future changes that

will impact grassland bird species and other natural resources. Finally, to demonstrate the

feasibility of combining scientific and citizen-science data to obtain a regional estimate of

grassland bird abundance, I obtained congruent estimates of northern bobwhite (Colinus

virginianus) abundance using a double-sampling paradigm. Spring cock call-counts were

conducted on 12 ranches within the Rolling Plains of Texas during 2012–2014. This

sampling effort collected calls and distances at each point, yielding 1,022 total counts,

detected 36,415 calls, 4,647 birds, and obtained 4,627 distances. Data were analyzed

using program DISTANCE to generate local and regional estimates of quail density for

each year, and to calibrate density estimates with birds heard using a double-sampling

paradigm. My results demonstrated that it is economically feasible and logistically

pragmatic to calibrate metrics obtained through citizen-science efforts (call-counts;

relative abundance) with results obtained by more intensive scientific methods (distance

sampling; density estimates). Collectively, these results illustrate that it is within the

microcosm of single-species management that we test the limits of our ecological

knowledge and understanding.
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CHAPTER I

INTRODUCTION

MOURNING DOVE

Since the signing of the Migratory Bird Treaty Act in 1918, national management of

mourning dove (Zenaida macroura) has consisted primarily of estimating population

trends and establishing hunting regulations, with additional efforts to estimate various

demographic parameters initiated independently within several states (National Mourning

Dove Planning Committee 2004). Through these efforts a considerable amount of

autecological knowledge has been gained (Baskett 1993), but this information has proven

insufficient for determining the relative contribution of habitat loss (including habitat

change) on either the long-term mourning dove population trend, or the long-term trend

in the mourning dove call-count survey (CCS). Consequently, due to the lack of any

estimate on the impact of habitat loss on mourning dove populations, the information

currently available provides managers with little insight into the relative influence of

proposed changes in harvest regulations on future mourning dove population

trends (National Mourning Dove Planning Committee 2004). Yet bureaucratic inertia will

no doubt rationalize changes in harvest regulations as the proper and necessary response

to perceived declines in the mourning dove call-count index, as the exercise of regulatory

authority is the means by which governmental agencies legitimize their existence under

the so-called doctrine of public trust.

In the 2006 Mourning Dove Population Status Report (Dolton and Rau 2006),

significant (P ≤ 0.05) declines in the (1966–2006) CCS index trends of dove heard were

reported for all 3 management units (Eastern [EMU], Central [CMU], and Western

[WMU]). Of particular concern, significant declines in dove heard occurred in the 2-year
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(2005–2006), 10-year (1997–2006), and 41-year (1966–2006) trends for the CMU.

Texas, which comprises the largest proportional land area and the largest number of

call-count survey routes (CCS; 133) within the CMU, showed a significant decline for

dove heard in the 10-year (1997–2006) call-count index trend, but a non-significant

decline for dove heard in the 41-year (1966–2006) trend. Surprisingly, the trends for

mourning dove seen do not parallel the trends for dove heard in any management unit,

which is especially troubling since both metrics are obtained concurrently from the same

populations (Dolton and Rau 2006). This disparity begs the question as to which metric

or trend (dove heard or dove seen) best reflects the actual trajectory of mourning dove

populations. Questions of this type indicate that, at the very least, we should examine the

validity of the data and associated methodology.

Further contradiction arises when we consider the annual yield from mourning dove

populations. Contemplate for a moment that the mourning dove is 1 of the 10 most

abundant and ubiquitous of North American bird species (Aldrich and Duvall 1958, Grue

et al. 1983, Robbins et al. 1986, Baskett and Sayre 1993, Peterjohn et al. 1994), with a

population size estimated to be between 350 million and 600 million birds (Dunks et al.

1982, Tomlinson 1988, Sadler 1993). Sadler (1993) reported that annual harvest in the

United States averaged 45.6 million birds between 1983 and 1987, or approximately

10.8% of the estimated annual autumn population (Dunks et al. 1982, Tomlinson 1988,

Sadler 1993). With such a small portion of the estimated population harvested each year,

one must question the validity of existing information: would a complete moratorium on

harvest reverse the presumed long-term downward trends, is population size being

overestimated, is harvest being underestimated, and how important are changes in land

use to the declining trends in dove heard? These questions have been asked

before (Dambach 1948, Southeastern Association of Game and Fish Commissioners

1957), and bear striking resemblance to questions currently being raised by the National
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Mourning Dove Planning Committee (2004).

To paraphrase Dambach (1948), my objective is not to minimize the importance of

harvest regulations; rather it is to point out their limitations in terms of perpetuating the

species at levels which will allow for equitable use of the resource by all parties.

Similarly, I note that changes in harvest regulations are not likely to alter declines in dove

abundance due to habitat depletion or downward trends resulting from survey timing

(e.g., near term trend caused by CCS initiation during a population maximum; see

comparison of CCS to Missouri Roadside Dove Survey in Schulz 2006). Further, the

current National Mourning Dove Planning Committee (2004) explicitly states that

information currently available is insufficient to predict what effect alterations in harvest

regulations will have on mourning dove populations. As such, while it is anticipated that

some form of harvest restrictions may be mandated if the downward trend in the CCS

index continues, changes in harvest regulations will not identify, and likely will not alter,

the major underlying factors influencing mourning dove populations.

NORTHERN BOBWHITE

Grassland birds are declining at an alarming rate, commensurate with losses of

grassland habitat. An icon of grassland birds, the northern bobwhite (Colinus

virginianus), is one of the most intensively studied bird species, with over 3,500

publications dedicated to it’s natural history, autecology, and management. Yet, despite

this enormous amount of research, the species has undergone a substantial long-term

decline. While previous research has identified several biotic factors which influence

abundance in a stochastic manner (i.e., short and long term weather fluctuations, disease),

researchers have speculated that habitat loss due to anthropogenic land use change is the

most likely cause for the long-term decline. Because land use change is both spatially and

temporally variable, monitoring efforts over broad spatial and temporal scales are needed
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if we are to identify the signs or symptoms of impending habitat loss.

To investigate the factors influencing the decline in northern bobwhite, I utilize data

from a recent multi-year survey of land trends (Anderson et al. 2014) to demonstrate the

utility of commonly available anthropogenic metrics for detecting early signs of

impending land use change and potential degradation of grassland bird habitat. I limit my

discussion to northern bobwhite across 6 Ecoregions of Texas (Gould 1962, 1975). My

habitat analysis objective is to demonstrate that common anthropogenic land use

variables may be a cost effective and highly efficient method for monitoring threats to

habitat quality for all grassland bird species.

To assess the potential of using citizen-science manpower to obtain abundance or

relative abundance data at a higher spatial resolution, I utilize data from a recent

multi-year survey of bobwhite in the Rolling Plains Ecoregion of Texas (Gould 1962,

1975) to demonstrate the utility of the double-sample calibration approach for

citizen-science monitoring of northern bobwhite. I limit my discussion to conventional

distances sampling for simplicity, but acknowledge that other methods for estimating the

probability of detection are viable alternatives in a double-sampling paradigm. My

abundance analysis objective is to demonstrate that contrary to recently published

findings (Rollins et al. 2005, Applegate et al. 2011, Murray et al. 2011, Texas A&M

AgriLife Extension 2013), distance sampling is an efficacious method for monitoring

bobwhite abundance. Further, I assert that successful implementation of a

double-sampling calibration is required for citizen-science monitoring efforts, due to

spatial-temporal differences in detection probability (i.e., between periods or among

habitat types). Ultimately I seek to encourage debate, further development of techniques,

and illustrate alternative solutions for the use and incorporation of citizen-scientists into

grassland bird monitoring efforts.
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DISSERTATION THEME

This dissertation is divided into chapters, each of which represents an independent

research objective in the field of Wildlife Management. Collectively, these works attempt

to ascertain appropriate experimental units for statewide monitoring, which habitat

variables are correlated with the annual abundance surveys, whether the habitat variables

adjacent to the survey routes/points have changed over time, and if mitigating factors may

have influenced the perceptions of population trajectories. As such, each chapter

represents a fundamental, but typical, example of the problems and solutions faced within

Wildlife Management. I note here that the "problems" faced in each chapter have existed

for decades, and the solutions offered are novel attempts to address each problem using

Cartesian skepticism (methodological doubt) where all previous assumptions are

removed, re-evaluated, and placed back into consideration if and only if warranted within

the context of the problem. The paradigm is an attempt to demonstrate the relevance of

wildlife management as a field of scientific endeavor, and to demonstrate the need to

re-evaluate single species management over time in order to incorporate new technology

and knowledge. As such any errors in logical validity, relative truth of premises, or

interpretation of results are mine alone.

Chapter I provides an introduction and overview. Chapter II questions the

delineation of experimental units used for the current mourning dove call-count survey,

and demonstrates a multivariate technique for evaluating classification schemes

(experimental units) in species–habitat research. Chapter III investigates factors

influencing the decline of northern bobwhite in Texas, and demonstrates the use of

anthropogenic metrics for predicting land use change and loss of grassland bird habitat

over the last 20 years. Chapter IV investigates the use of distance sampling, within a

double-sampling paradigm, for potential citizen-science monitoring of grassland birds
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using northern bobwhite as an example. Chapter V provides a summary of these projects,

and attempts to demonstrate the relevance of wildlife management as a field of science

that not only increases ecological knowledge, but also provides the information necessary

for natural resource management.
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CHAPTER II

CHAPTER II DEFINING EXPERIMENTAL UNITS FOR MOURNING DOVE

SYNOPSIS

Ecological studies, regardless of whether they are manipulative or mensurative in

nature, should clearly define the experimental units that form the basis for sampling and

analysis. In order to investigate the relationship between mourning dove (Zenaida

macroura) habitat and abundance, I evaluated 4 contemporary classification schemes for

use as experimental units in Texas. I conducted a generalized canonical discriminant

analysis (CDA) for each classification scheme using a response data matrix (Y) comprised

of 25 habitat variables (p) obtained adjacent to each of the 133 U.S. Fish and Wildlife

Services call-count survey routes (n) within Texas. The CDA for each classification was

constrained by a design matrix (X) representing the categorical groups within each

classification scheme. Classification results from each CDA were used to generate a

confusion matrix for each classification scheme (i.e., overall accuracy, average accuracy,

and expected agreement). Because classification schemes differed in the number of

categories, the Kappa Coefficient of Agreement was used to account for the proportion of

agreement due to chance. The Kappa estimates were higher for the Gould (0.760) and

Omernik (0.700) classification schemes, than for the Fenneman (0.618) or George

(0.673) classification schemes. The results indicate that the Gould (1962) and Omernik

(1987) classification schemes provide a more accurate partitioning of multidimensional

habitat space than the Fenneman (1928) or George (1982) classification schemes, and are

therefore better suited for use as experimental units for mourning dove research in Texas.
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INTRODUCTION

Experimental design encapsulates "the logical structure" of an experiment (Fisher

1971). The fundamental building block of experimental design is the experimental unit,

defined as the smallest, independent subdivision of homogeneous experimental material

that can be assigned a single treatment. The size and extent of each experimental unit

depends upon the nature of the experiment, type of treatments, amount of replication, and

the intended frame of inference. In addition, homogeneity within experimental material is

of pivotal consideration, as variation among experimental units treated alike determines

the magnitude of experimental error. Because we typically conceive experiments in terms

of a statistical model (i.e., Response = Treatment Effect + Design Effect + Error),

experimental units form the basis for all subsequent statistical analyses. It is therefore

necessary for all autecological studies, regardless of whether they are manipulative or

mensurative in nature, to clearly define the experimental units used within each

experiment (Hurlbert 1984, 2013).

In order to investigate the relationship between mourning dove (Zenaida macroura)

abundance and habitat, one must first identify and delineate homogeneous experimental

units for the design of experiments. Because mourning doves are ubiquitous throughout

Texas, any resulting experimental units are comprised of biotic and abiotic variables

whose multivariate domain encompasses the n-dimensional hypervolume defining the

"fundamental niche" of mourning dove (Grinnell 1917, Hutchinson 1957). To identify

those variables defining the fundamental niche of mourning dove in Texas, and to make

inference across the broader species range, requires an individualistic

perspective (Gleason 1926, Whittaker 1956, 1967). Gleason’s (1926) individualistic

concept allows us to focus attention on the identification of underlying biotic and abiotic

variables that influence mourning dove abundance. Further, the individualistic concept
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provides the multivariate basis for the spatial delineation of similar environmental

conditions (i.e., biotic and abiotic conditions), and thus areas of relatively homogeneous

experimental material that can define experimental units in studies of population

abundance (Goodall 1954, Bray and Curtis 1957, Whittaker 1967, Greig-Smith 1980,

Gauch 1982).

Researchers have previously evaluated classifications schemes for use as

experimental units in mourning dove research. Blankenship et al. (1971) compared the

physiographic classification of Fenneman (1928, 1931, 1938), the potential natural

vegetation classification of Küchler (1964), and a modification of the Küchler

classification which accounted for cultural land use changes (agriculture) using

nationwide mourning dove call-count survey results. Dove relative abundance (dove

heard; 1964–1968) was analyzed by ANOVA using classification categories as treatment

factors, where a higher F-ratio indicated minimization of the error variance, and therefore

a better partitioning (homogeneity) of the response variable by the classification scheme.

Results indicated the modified Küchler, and the original Küchler (1964) classification,

were superior to the Fenneman (1928, 1931, 1938) classification in minimizing the error

variance, and therefore better suited for use as experimental units in the analysis of

nationwide call-count survey data (Blankenship et al. 1971). Similarly, Grue et al. (1976,

1981, 1983) conducted a study of mourning dove habitat in Texas and compared

classification schemes by Fenneman (1928, 1931, 1938), Carr Jr. (1967), Godfrey et al.

(1967), and Gould (1962) using the F-ratio technique of Blankenship et al. (1971). The

objective of Grue et al. (1976, 1981, 1983) differed in resolution and extent, but was

otherwise similar to the nationwide experimental design evaluated by Blankenship et al.

(1971). The results of Grue et al. (1976, 1981, 1983) were significant for each

classification scheme tested, with the Gould (1962) classification having the highest

F-ratio (minimized error variance), and therefore the most suitable delineation of dove
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relative abundance in Texas.

I repeated the study of Grue et al. (1976, 1981, 1983) using canonical discriminant

analysis (CDA; Anderson and Robinson 2003, Anderson and Willis 2003) to evaluate 4

contemporary classification schemes (Fenneman 1928, Gould 1962, George 1982,

Omernik 1987) for potential use as mourning dove experimental units within Texas.

These classification schemes are currently used by researchers for monitoring national

mourning dove inventories (Fenneman 1928), vegetational communities (Gould 1962),

regulating dove harvest (George 1982), and for monitoring and management of

environmental resources within Texas and nationwide (Omernik 1987, Griffith et al.

2004, 2007). Unlike Blankenship et al. (1971) or Grue et al. (1976, 1981, 1983), the

present study evaluates classification suitability using multiple environmental variables

collected adjacent to each call-count transect in Texas. Note that, for this purpose, the

assessment of classification categories with multiple habitat variables using CDA,

MANOVA, or other multivariate techniques (Fisher 1936, ter Braak 1995, Legendre and

Legendre 1998, Dale et al. 2002) is analogous to the Blankenship et al. (1971) and Grue

et al. (1976, 1981, 1983) comparison of habitat classification categories using a single

explanatory variable (dove heard) with ANOVA.

While previous research assumed the number of dove heard was both proportional to

dove density and the product of broad-scale biotic and abiotic habitat conditions, the

present study assumes that similar numbers of dove heard or dove seen can arise in areas

with dissimilar mourning dove density due to differences in detectability (Burnham 1981,

Burnham and Anderson 1984, Buckland et al. 2001). Likewise, similar densities may

occur in areas with dissimilar habitat conditions due to chance, or to relative location

within the multivariate domain defining fundamental niche conditions (Gleason 1926,

Hutchinson 1957, ter Braak 1986, Jongman et al. 1995, Legendre et al. 2005).

Regardless, by delineating experimental units based upon multiple habitat variables,
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rather than using a single proxy variable that is a combination of species abundance and

detectability, I hope to alleviate any potential confounding between habitat and mourning

dove abundance in future dove research efforts.

STUDY AREA

The study area covers 695,622 km2 between 25°50’N and 36°30’N latitude (1,270

km north to south), 93°31’W and 106°38’W longitude (1,244 km east to west), within the

southwestern portion of continental North America (Fig. 2.1; Alvarez et al. 2005).

Elevations range from 2,667 m in the west to 0 m along the Gulf of Mexico, with a mean

elevation of 520 m (Arbingast 1976). The climate of Texas is highly variable, with

temperature, frost, and growing season gradients parallel to the northwest to southeast

elevation gradient within the state (Arbingast 1976). A bimodal precipitation pattern

(spring and fall rainfall peaks) covers the majority of the state and droughts are common,

with more years of below average than above average annual rainfall (Gould 1962).

Mean annual precipitation increases from west to east, with the arid west receiving >20

cm/year while the mesic east receives upward of 140 cm/year. The geology of Texas is

diverse, with surface exposures dating back 600 million years (Arbingast 1976). Because

of the complex interactions among climate, surface geology, and vegetation, Texas

contains over 1,300 distinct soil types (Gould 1962, Alvarez and Plocheck 2005). This

variation in biotic and abiotic factors across the study area illustrates the diversity of

habitat conditions that must be partitioned into homogeneous experimental units for any

successful study of mourning dove. The accurate delineation of experimental units is

necessary for assessing spatial-temporal differences in density and detectability for any

species, but is paramount for investigations of habitat generalist, such as the mourning

dove.
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Figure 2.1: Location and extent of study area within the United States for the 2002 mourn-
ing dove habitat study in Texas.
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METHODS

DATA COLLECTION

Four classifications were selected for evaluation based upon contemporary use. The

Fenneman physiographic classification (hereafter Fenneman; Fenneman 1928, 1931,

1938) covers all of North America and delineates areas based on similar geologic

character (Fig. 2.3). It was selected by Foote (Foote 1959, unpublished report) as the

framework for stratified random sampling in the mourning dove call-count survey

(Blankenship et al. 1971, Dolton 1993). The mourning dove hunting zones for Texas

(hereafter Hunt Zone; George 1982, George 1984) was designed to provide a latitudinal

offset in the timing of opening day hunting to protect juvenile mourning dove, distribute

equitable harvest opportunity across the state, and to simplify hunting regulations within

Texas (Fig. 2.2). The Ecoregions of Texas (hereafter Omerik; Griffith et al. 2004, Griffith

et al. 2007) is an integrated refinement of the hierarchical structure established by the

U.S. Environmental Protection Agency, based upon the level III ecoregions initially

defined by Omernik (Omernik 1987, Omernik and Griffith 2014). It was designed to

delineate areas of similar environmental conditions for the research and monitoring of

ecosystems (Fig. 2.4). The Gould classification (hereafter Gould; Gould 1962) covers the

state of Texas and was designed to summarize the environmental factors and ecological

associations defining the 10 vegetational areas within the State (Fig. 2.5).

Original maps representing each classification were compared to a geographic

information systems (TNTmips; www.microimages.com) map layer containing locations

for each mourning dove call-count survey transect in Texas. Routes were placed into

categories for each classification, and all data was stored in a relational database

(Filemaker Pro; www.filemaker.com) for subsequent analysis. The Arizona and New

Mexico Mountains ecoregion of the Omerik classification extends only into the
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Figure 2.2: The George (George 1982) mourning dove hunting zones of Texas, used during
the 2002 mourning dove habitat study in Texas.
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Figure 2.3: The Fenneman (Fenneman 1928) physiographic regions of the United States,
used during the 2002 mourning dove habitat study in Texas.
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Figure 2.4: The Omernik (Omernik 1987) ecoregions of Texas, used during the 2002
mourning dove habitat study in Texas.
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Figure 2.5: The Gould (Gould 1962) ecoregions of Texas, used during the 2002 mourning
dove habitat study in Texas.
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Guadalupe Mountains National Park within Texas, covering a small area that does not

contain a mourning dove call-count route (Griffith et al. 2004, Griffith et al. 2007). As

such, the Omerik classification was analyzed with 11, rather than 12 categories. All other

classifications had at least 1 mourning dove call-count survey route within each category

(Fenneman = 8, George = 3, Omerik = 11, Gould = 10) for analysis.

Habitat data were collected adjacent to each call-count survey route in Texas (n =

133) during the summer of 2002. All routes were located according to the stratified

random sample design of the U.S. Fish and Wildlife Service mourning dove call-count

survey (Dolton 1993). Environmental variables were collected at 2 spatial scales (local

and regional) to assess classification suitability as experimental units for future mourning

dove research. Physiognomic data were collected using the methodology of Grue et al.

(1976, 1981, 1983) to gather data at the local scale, but the technique was modified to

take advantage of handheld devices (HP IPAQ; www.HP.com) for faster data input and to

reduce transcription errors (Fieldworker software; www.Fieldworker.com). Local surveys

obtained physiognomic data, structural features, and locational information (Lat/Long;

WGS84 datum). Regional agricultural and population variables were obtained from the

U.S. Department of Agriculture and the U.S. Census Bureau for each county that

contained a call-count survey route. Climatic variables including annual precipitation,

mean temperature maximum, mean temperature minimum, and 30-year mean

precipitation, maximum temperature, and minimum temperature were obtained from the

PRISM Group at Oregon State University (PRISM Group; www.prism.oregonstate.edu).

All spatial data were georeferenced and extracted (GPS data, raster, and vector

coverages) using geographic information system software (TNTmips;

www.microimages.com), and compiled within a relational database (Filemaker Pro;

www.filemaker.com) for subsequent queries and analyses.

The dichotomous key of Grue et al. (1976, 1981, 1983; Fig. 2.6) was designed to
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exhaustively categorize all physiognomic conditions within North America (562 possible

categories). While similar in outcome to the community classifications of Küchler (1964)

and Daubenmire (1966), the method obtains rapid estimates of physiognomy (structure,

composition, and spatial arrangement) analogous to the relevé method of

Braun-Blanquet (Braun-Blanquet 1932, Westhoff and van der Maarel 1973, van der

Maarel 1979, Gauch 1982). However, the categorical outcomes generated using the Grue

et al. (1976, 1981, 1983) method presented several obstacles to data analysis when used

as independent variables in statistical analyses: (1) the number of possible categorical

outcomes (p = 562; Grue 1977:40) far exceeded the number of samples (n = 133) in the

study, (2) many outcome categories were zero inflated due to limited occurrence, and (3)

the redundancy of information among outcome categories produced large amounts of

collinearity (Legendre and Legendre 1998, Ott and Longnecker 2001, Zuur et al. 2007).

Grue (1977) avoided these problems during his evaluation of classification schemes

through univariate analysis of mourning dove relative abundance, but later acknowledged

that subsequent efforts to correlate habitat outcome categories with dove abundance using

multiple linear regression were likely affected, resulting in spurious correlations and

inflated estimates of explained variation (Grue et al. 1981). To alleviate this problem, I

recoded the categorical outcomes using the decision nodes of the dichotomous key

(Fig. 2.6). This recoding reduced dimensionality, with no loss of information, by

replacing the categorical outcomes with the habitat variables that define the

physiognomic land use types within the original key. The results of this recoding, when

combined with local structural, regional agricultural, and regional climatic variables,

reduced the data set to 91 variables.

The reduced set contained 91 habitat variables, which were evaluated for collinearity

and interpretive suitability. Collinearity among the habitat variables was assessed using

the tolerance statistic (Tolerance = 1 - R2; reciprocal of the variance inflation factor or
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VIF), with values near zero indicating linear dependence, resulting in removal of 1 or

more variables. Through this process, 66 of the 91 variables in the raw data set were

removed due to collinearity. The remaining 25 variables (Table 2.1) were used in the

evaluation of habitat classification schemes. One call-count survey route was not

completed due to hazardous conditions (under repair), bringing the total number of

samples to 132 call-count survey routes. The resulting data set used in subsequent

analyses was a rectangular matrix of 132 sites (n) and 25 variables (p).

DATA ANALYSES

I used canonical analysis of principle coordinates (CAP) to conduct a generalized

canonical discriminant analysis (CDA) of each classification scheme (Anderson and

Robinson 2003, Anderson and Willis 2003). The CAP procedure is a 2-step process that

consists of a principle coordinate analysis (PCoA; also called multidimensional scaling)

followed by a CDA on the unscaled orthonormal principle coordinate axes. The CAP

method differs from parametric discriminant analysis and other multi-response

permutation methods, in that any symmetric distance or dissimilarity coefficient may be

used (McArdle and Anderson 2001, Mielke and Berry 2001). The CDA test statistics

generated by CAP are based upon canonical correlations, are invariant to changes in the

distribution of the original variables, have asymptotic distributions under permutation of

the observations, and group differences are not obscured by correlations among variables

(Anderson and Robinson 2003, Anderson and Willis 2003). As such, the method

overcomes the statistical limitations identified by Grue et al. (1976, 1981, 1983;

collinearity, p ≥ n, lack of normality, and zero inflation). All CDA analyses were based

upon standardized Euclidean distances, as this symmetrical distance coefficient is

appropriate for analysis of environmental descriptors, especially when zero represents the

valid measurement of an environmental variable (Legendre and Legendre 1998).
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Table 2.1: Local and regional habitat variable names and descriptions used during the 2002
mourning dove habitat study in Texas.

Variable Name Description
Paveda length of paved road surface
Gravela length of gravel road surface
Humana length of urban landcover
CanCv0a length of 0%–10% canopy cover
CanCv75a length of >75% canopy cover
CanHt0a length of canopy height <3m
CanHt10a length of canopy height >10m
Graina length of commercial grain crops
DecCCa length of deciduous canopy cover
ConCCa length of coniferous canopy cover
Cact25a length of cactus cover >25%
Interspersionb count of physiognomic changes
P Powb count of parallel powerlines
P Wndbrkb count of parallel windbreaks
Bldgsb count of buildings
Washb count of ephemeral stream beds
Irrigationb number of irrigation units
PopDen2000c county population density in year 2000 (number/sq km)
CntyGravDenc county gravel road density (km/sq km)
CntyPavedDenc county paved road density (km/sq km)
CntyIrrigDenc county irrigation density (ha/sq km)
CntyGraind county dove edible grain crop density (ha/sq km)
elevation(m)e elevation (m)
pptnorms(mm)e average annual precipitation (mm) for 1970–2000
tminnorms(c)e average annual daily minimum temperature (C) for 1970–2000

a Variable length measured adjacent to CCS transect.
b Variable quantity counted adjacent to CCS transect.
c Variable density within the county containing the CCS transect.
d Wheat, oats, barley, rice, sorghum, soybean, and sunflower density within the
county.
e Variable quantity measured at CCS transect midpoint.
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Significance test were generated using 5,000 permutations. The null hypothesis of no

difference among groups was expected to be false for each classification scheme a priori

(i.e., a dull null), but tested for retroduction purposes (Romesburg 1981).

Site membership was estimated for each classification (4 thematic map

classifications) using CDA based on differences in local and regional environmental

variables. As such each site provided a multivariate estimate of habitat at each location,

and each classification represented a generalization of predicted habitat conditions across

the state of Texas. Cross-validation results (”leave-one-out” method; Lachenbruch and

Mickey 1968, Seber 1984, Anderson and Robinson 2003) from each CDA were used to

generate error or confusion matrices (rectangular table of categorical membership) for

determining observed agreement (overall accuracy; proportion of all sites correctly

classified), average accuracy (average of the proportions correct for each row and

column), and to derive an unweighted Kappa coefficient (Cohen 1960, Congalton and

Mead 1983, Congalton et al. 1983, Congalton 1991, Foody 2002) for each classification

scheme. Kappa measures the proportion of agreement beyond what is expected by

chance, and the associated P-value tests the null hypothesis of no agreement. Kappa was

appropriate for this comparison due to the independence of raters (thematic classification

versus environmental measurements), the use of unordered (nominal) categories in my

analyses, and the assumption of unequal marginal distributions (disagreements between

raters; Banerjee et al. 1999, Sim and Wright 2005, Vach 2005, Ludbrook 2008, Kottner

and Streiner 2011).

I generated constrained (CDA) and unconstrained (PCoA) ordinations for the

classification scheme with the highest kappa coefficient, and summarized correlations

between the original variables and the CDA axes to identify those variables which

contribute most to discrimination among groups. Analyses and plots were generated

using CAP (Anderson and Robinson 2003, Anderson and Willis 2003), the R language
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for statistical computing (www.r-project.org), and DataGraph software

(www.visualdatatools.com) on an Apple PowerMac workstation (www.apple.com).

RESULTS

All 4 classification schemes (Fenneman 1928, Gould 1962, George 1982, Omerik

1987) produced significant agreement with the multivariate habitat data, and were

retained for further comparisons (Table 2.2). The George classification (Fig. 2.2; George

1982, George 1984) produced the highest average accuracy (80.6%) and observed

agreement (79.5%), but consisted of only 3 latitudinal categories resulting in a low Kappa

value (0.673). The Fenneman classification (Fig. 2.3; Fenneman 1928, 1931, 1938)

contained 8 groups, but produced the lowest average accuracy (60.4%), observed

agreement (69.7%), and Kappa value (0.618) among the classifications tested. The

Omernik classification (Table 2.2, Fig. 2.4; Omernik 1987, Griffith et al. 2004, Griffith et

al. 2007) contained 11 groups, produced a relatively high average accuracy (73.4%),

observed agreement (72.7%) and Kappa value (0.700). Lastly, the Gould classification

(Table 2.2, Fig. 2.5; Gould 1962) contained 10 groups, and produced the highest average

accuracy (78.6%), observed agreement (78.8%), and Kappa value (0.760) among the

classifications tested.

The Omernik (Omernik 1987, Griffith et al. 2004, Griffith et al. 2007) and Gould

(1962) classifications achieved the highest overall classification accuracy and the highest

Kappa scores, and were retained for further comparisons in terms of classification error

among categories. The error matrix for the Omernik classification (Table 2.3, Fig. 2.4)

indicates the greatest confusion (classification error) occurred in the East Central Texas

Plains (category 33; 50.0%), Central Great Plains (category 27; 53.8%), Texas Blackland

Prairies (category 32; 63.6%), Cross Timbers (category 29; 66.7%), and the Edwards

Plateau (category 30; 66.7%) ecoregions. The Gould classification error matrix
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Table 2.2: Summary of the number of categories, average accuracy, overall accuracy,
chance agreement, kappa coefficient, 95 percent confidence limits, and kappa P-values
for each classification tested during the 2002 mourning dove habitat study in Texas.

Omernik Gould Fenneman Hunt Zone
Categories 11 10 8 3
Average accuracya 0.734 0.786 0.604 0.806
Observed agreementb 0.727 0.788 0.697 0.795
Chance agreementc 0.092 0.116 0.207 0.375
Kappad 0.700 0.760 0.618 0.673
95% Lower CLe 0.614 0.681 0.520 0.555
95% Upper CLe 0.781 0.835 0.711 0.782
P-valuef <0.000 <0.000 <0.000 <0.000

a Average of row and column percent correct.
b Overall accuracy = total correct allocations/total number of samples.
c Chance agreement = (column * row)/(total sample size)2.
d Kappa = (overall accuracy-chance agreement)/(1-chance agreement).
e Kappa confidence limits derived by bootstrap resampling (n=1000).
f Kappa test result P-value.
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(Table 2.4, Fig. 2.5) indicates the greatest confusion occurred in the Gulf Prairies

(category 2; 50.0%), Blackland Prairies (category 4; 60.0%), Post Oak Savannah

(category 3; 66.7%), and Edwards Plateau (category 7; 66.7%) ecoregions. Consequently,

the areas of greatest confusion were spatially congruent for both the Omernik (Omernik

1987, Griffith et al. 2004, Griffith et al. 2007) and Gould (1962) classification systems,

and occurred in the central portion of the state. However, the Kappa values indicate the

Gould (1962) classification provided the best partitioning of habitats within Texas, given

the 25 variables selected for CDA analysis. As such, the Gould (1962) classification was

retained for ordination analyses.

I used the PCoA scores from the Gould classification CDA to plot the unconstrained

ordination of the call-count survey routes within Texas (Fig. 2.7). The first 2 PCoA axes

explained 25.1% and 18.8% of the variability in the habitat matrix. The ordination plot

illustrates that most groups are clearly influenced by the moisture gradient within the

state, which is associated with PCoA axis 2 (Fig. 2.7). Similarly, many groups are

strongly correlated with the elevation and temperature gradients associated with PCoA

axis 1 (Fig. 2.7). However, while there is obvious alignment of many groups, distinct

separation among all groups is not apparent in the unconstrained ordination.

I used canonical axis scores from the Gould classification CDA to plot a constrained

ordination (Fig. 2.8) of the call-count survey routes within Texas. The CDA of the Gould

(1962) classification selected m = 25 using the default settings, and explained 100% of

the total variability among groups with squared canonical correlations of 0.945 and 0.882

for the first 2 canonical axes. Overall classification accuracy for m = 25 was 78.8%, and

the canonical plot revealed distinct separation among all 10 groups (Fig. 2.8). While m =

p is permissible for CDA (Anderson and Willis 2003), a value of m that is too large may

include irrelevant information in the constrained ordination. Consequently, I plotted the

residual sum of squares and overall classification accuracy versus all values of m
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Figure 2.7: An unconstrained ordination (principal coordinates analysis or multidimen-
sional scaling) for the Gould (Gould 1962) classification using habitat data from 132
mourning dove call-count survey sites collected during the 2002 mourning dove habitat
study in Texas. Data were standardized and the Euclidean dissimilarity was calculated
between all observations.
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(Fig. 2.9) for the CDA analysis. This revealed m = 17 produced the second highest

overall classification accuracy (77.3%). A CDA using m = 17 yielded squared canonical

correlations of 0.928 and 0.840 for the first 2 canonical axes, and explained 96.1% of the

total variability among groups. Therefore a CDA using m = 17 explained similar portions

of total variability among groups, produced an ordination equivalent to that obtained with

the default settings (m = 25; Fig. 2.8), and did not alter the final interpretation of the

analysis.

Correlations between the habitat variables (Y) and the first 4 canonical axes (Q*;

Table 2.5) indicated that average precipitation, average minimal temperatures, elevation,

availability of commercial grain (density in hectares harvested per square kilometer;

wheat, oats, barley, rice, sorghum, soybean, and sunflower), and irrigation were important

regional variables correlated with the first 3 canonical axes. In terms of structural

variables, the number of parallel power lines and buildings were correlated with the first 3

canonical axes. Finally, the amount of canopy cover (less than 10% or greater than 75%

canopy cover), canopy height (canopy height less than 3 m or greater than 10 m in

height), presence of commercial grain, and the amount of interspersion (changes in

physiognomic class) were important local variables correlated with the first 3 canonical

axes. As such, these variables strongly influenced the discrimination among groups

(Fig. 2.8).

DISCUSSION

I repeated the historic study of Grue et al. (1976, 1981, 1983), and evaluated 4

habitat classification schemes for use as experimental units for mourning dove research in

Texas. Results (Table 2.2) indicate the more recent classification schemes, which used

biotic and abiotic factors to delineate ecological communities (Gould 1962, Omernik

1987), are superior to the older classification based upon physiographic regions
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Figure 2.8: A constrained ordination (canonical discriminant analysis) for the Gould
(Gould 1962) classification using habitat data from 132 mourning dove call-count sur-
vey sites collected during the 2002 mourning dove habitat study in Texas. Data were
standardized and the Euclidean dissimilarity was calculated between all observations.
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Figure 2.9: Residual sums of squares and observed proportion of agreement for all canon-
ical axes (eigenvectors) generated in the canonical discriminant analysis of the Gould
(Gould 1962) classification. Twenty-five habitat variables were collected adjacent to 132
mourning dove call-count survey transects during the 2002 mourning dove habitat study
in Texas. Data were standardized and the Euclidean dissimilarity was calculated between
all observations.
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Table 2.5: Correlations of the first 4 canonical axes (Q*) with 25 habitat variables (Y)
generated in the canonical discriminant analysis of the Gould (Gould 1962) classification.
The habitat variables were collected adjacent to 132 mourning dove call-count survey
transects during the 2002 mourning dove habitat study in Texas. Data were standardized
and the Euclidean dissimilarity was calculated between all observations.

Variable Axis 1 Axis 2 Axis 3 Axis 4
Paveda -0.2020 -0.1762 -0.2372 0.3439
Gravela 0.0786 -0.1018 0.0314 -0.3953
Humana -0.2596 -0.0519 0.0765 -0.0395
CanCv0a 0.3567 0.2184 0.7668 -0.0245
CanCv75a -0.6856 0.1191 -0.1144 0.2263
CanHt0a 0.3284 -0.0062 -0.5216 0.3453
CanHt10a -0.7912 0.5142 -0.1069 0.1604
Graina 0.2432 0.0974 0.5149 -0.0840
DecCCa 0.0522 -0.3979 0.0480 -0.2711
ConCCa -0.4635 0.3250 -0.0776 0.1239
Cact25a 0.1780 -0.3124 -0.3725 0.5195
Interspersionb 0.3242 0.3102 0.6685 -0.3831
P Powb 0.0826 0.1909 0.5202 -0.3229
P Wndbrkb -0.2891 -0.3626 0.2121 -0.6015
Bldgsb -0.6200 -0.0658 0.1273 -0.3317
Washb 0.4400 -0.2208 -0.3783 0.1276
Irrigationb 0.3190 0.3197 0.4385 0.2230
PopDen2000c -0.1553 -0.1987 0.2060 -0.0555
CntyGravDenc -0.0638 0.1767 0.3339 -0.4269
CntyPavedDenc 0.3730 -0.1058 0.1209 -0.1107
CntyIrrigDenc 0.3350 0.3385 0.5499 0.2705
CntyGraind 0.2136 0.0667 0.4874 -0.1070
elevation(m)e 0.7335 0.5727 -0.0981 0.1547
pptnorms(mm)e -0.9032 -0.1064 0.2233 -0.2395
tminnorms(c)e -0.5401 -0.7323 -0.0338 0.2470

a Variable length measured adjacent to CCS transect.
b Variable quantity counted adjacent to CCS transect.
c Variable density within the county containing the CCS
transect.
d Wheat, oats, barley, rice, sorghum, soybean, and sun-
flower density within the county.
e Variable quantity measured at CCS transect midpoint.
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(Fenneman 1928, 1931, 1938) or the Hunt Zone classification used to regulate mourning

dove hunting by the Texas Parks and Wildlife Department (George 1982, 1984). This is

likely due to the increased quality and quantity of the underlying data, the incorporation

of anthropomorphic land use change, and the resolution of the data available to the later

classification studies. Similarly, the George classification (George 1982, George 1984)

produced relatively high average and observed accuracies, but the latitudinal Hunt Zone

divisions were never intended to provide any delineation of habitats within the state (e.g.,

the xeric west Texas desert and the mesic eastern pine forest both occur within the

Central Hunt Zone; Fig. 2.2). This resulted in a low Kappa value (0.673) which suggested

that a substantial portion of the overall allocation accuracy was obtained due to chance.

Examination of the Gould (Fig. 2.5) and Omernik (Fig. 2.4) classification schemes

show that spatial partitioning is very similar, differing mainly in the precise location of

categorical boundaries. The largest difference occurs in the northern panhandle of Texas,

which Gould delineated into 2 ecoregions (High Plains and Rolling Plains, and Omernik

delineated into 3 ecoregions (Western High Plains, Southwestern Tablelands, and Central

Great Plains). Analysis of the Gould classification (Table 2.4, Fig. 2.5) showed that 3 of

10 categories had user accuracy rates below 70% (Post Oak Savannah, Blackland

Prairies, and Cross Timbers Ecoregions, respectively). Confusion within the Omernik

classification also occurred in the central portion of the state (Table 2.3, Fig. 2.4), with 4

of 10 categories having user accuracy values of less than 70%. As such, misclassification

error within both of these classification schemes may be the result of similarities in land

use among survey routes in adjacent habitat areas (particularly anthropomorphic change),

where multivariate differences between habitat units are relatively small (i.e., due to

stationarity).

The CDA results were used to construct constrained and unconstrained ordinations

(Figs. 2.8 and 2.7), and provided correlations between the habitat variables and the first 4
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canonical axes (Table 2.5). The data span a large geographic area where changes in

community composition parallel 3 distinct environmental gradients (temperature,

elevation, and precipitation). Clearly, separation among groups in the unconstrained and

constrained ordinations was similar, due to the alignment of multivariate habitat

differences with the strong underlying environmental gradients (temperature, elevation,

and precipitation). Thus, the direction of differences among groups corresponds with the

axis of greatest variability in the data cloud, providing for the distinctions among some

groups in the constrained ordination (Anderson and Roberson 2003, Anderson and Willis

2003). As a result, percent canopy coverage, canopy height, density of commercial grain,

and interspersion were also strongly associated with the first canonical axis, as

physiognomic differences arise under the influence of precipitation and temperature

gradients in Texas (Figs. 2.10 and 2.11).

My study capitalized on the original work of Grue et al. (1976, 1981, 1983) and

Blankenship et al. (1971) to provide an analytical paradigm for the statistical assessment

of classification schemes. I used habitat data to evaluate classifications for use as

experimental units. The ANOVA paradigm used by Blankenship et al. (1971) and Grue

(1977) assumed an equal probability of detection for dove heard across all experimental

units, and the average number of doves heard (relative abundance) on each call-count

survey route contained sufficient information to delineate habitat differences within the

fundamental niche of mourning dove. Subsequent studies have since contested the

assumption of equal detection probabilities (Burnham 1981, Burnham and Anderson

1984, Buckland et al. 2001, Bart and Earnst 2002, Farnsworth et al. 2002, Rosenstock et

al. 2002, Thompson 2002). Similarly, the assumption that relative abundance (dove

heard) provides sufficient information for delineating habitat is contradicted by Baskett

(1993), who concluded that unequal sex ratios, the proportion of mated to unmated

males, and the stage of reproductive cycle produced high variability in dove cue rates
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Figure 2.10: Thirty year normal average annual precipitation (1981–2010; PRISM 2013)
for the United States.
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Figure 2.11: Thirty year normal average annual temperature (1981–2010; PRISM 2013)
for the United States.
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unrelated to habitat. As a result, variability in dove heard confounded with unequal

detection probabilities may have limited the resolution (i.e., discrimination) obtainable

under the ANOVA paradigm for evaluation of experimental units.

I used multivariate analysis techniques that overcame the statistical limitations

prohibiting the use of multiple habitat variables for the delineation of experimental units;

collinearity, p ≥ n, lack of normality, and zero inflation. By recoding the data obtained

using the decision nodes of the Grue et al. (1976, 1981, 1983; Fig. 2) habitat key, I

reduced the number of variables within the original data set (p = 562 to p = 25 variables;

Table 1) with no loss of information. The use of CAP to conduct a CDA based upon

multivariate distances alleviated concerns associated with the distribution of habitat

variables and bias due to correlation among variables (Anderson and Robinson 2003,

Anderson and Willis 2003). Further, CDA provided cross-validation results that were

used to generate error matrices and estimates of Kappa for each classification scheme

(Table 2.2). Kappa incorporates the off-diagonal or misclassification values in the error

matrix, and provides an estimate of agreement after adjusting for the probabilities of

random assignment of classes (Cohen 1960, Congalton and Mead 1983, Congalton et al.

1983, Congalton 1991, Foody 2002). As a result, classifications with differing numbers

of categories could be compared in an objective manner.

The need for additional information to better manage mourning dove populations

has become evident (National Mourning Dove Planning Committee 2004). Research that

can adequately address this need requires the identification of homogeneous experimental

habitat units from within which replicate samples may be derived. Of particular concern

is the association between habitat variables and call-count survey results, as the latter are

unlikely to share equal probabilities of detection across diverse habitat conditions.

Because location within the fundamental niche constrains demographic outcomes,

delineating experimental units based upon multiple habitat variables alleviates potential
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conflicts between habitat and mourning dove abundance in future dove research. Further,

stratification based upon environmental conditions will allow for the generation of

probability density functions to correct abundance estimates for those factors responsible

for imperfect detection (e.g., distance sampling), and should reduce error variance in

demographic estimates for this species.

These results provide a framework for the evaluation of multivariate habitat based

experimental units in autecological research. Because habitat is the essential factor

regulating population trends, the impact of anthropomorphic land use requires period

reassessment of experimental units relative to harvest and other demographic parameters,

if we are to understand mourning dove population trends, and if we intend to properly

manage mourning dove populations. The results presented here identify optimal

experimental units, based upon habitat congruent with call-count survey routes, and

therefore provide the foundation for future mourning dove research efforts in Texas and

elsewhere.

MANAGEMENT IMPLICATIONS

Through use of habitat variables and appropriate statistical techniques, this study

capitalized on the original work of Grue et al. (1976, 1981, 1983) and Blankenship et al.

(1971), and provides an analytical method for assessing experimental units. My results

indicate the Gould (Gould 1962; Fig. 2.5) and Omernik (Omernik 1987, Griffith et al.

2004, Griffith et al. 2007; Fig. 2.4) classifications are currently the most suitable of those

evaluated for use as experimental units for mourning dove in Texas. However, while the

Gould (1962) classification ranked higher, the Omernik classification has received broad

acceptance as a common (standardized) classification of land cover nationwide, and

should serve well as the basis for research throughout North America.

It is imperative that future researchers understand that species-habitat relationships
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are in constant flux, but constrained by the tolerances of each species (Gould 1983). It is

also clear that as human populations grow, it will become harder to differentiate

background habitat matrices from the perturbations caused by anthropomorphic

influences. Because classification schemes are implicit hypotheses concerning spatial

delineation of habitat, CDA (Anderson and Robinson 2003, Anderson and Willis 2003)

provides a useful mechanism for the multivariate evaluation of experimental units, an

intuitive requirement in all autecological studies.

40



CHAPTER III

ASSESSING NORTHERN BOBWHITE HABITAT

SYNOPSIS

Grassland birds are declining at an alarming rate, commensurate with the loss of

grassland habitat. An icon of grassland birds, the northern bobwhite (Colinus

virginianus), is one of the most intensively studied bird species, with over 3,500

publications dedicated to its natural history, autecology, and management. Yet, despite

this enormous amount of research, the species has undergone a substantial long-term

decline. While previous research has identified several biotic factors which influence

abundance in a stochastic manner (i.e., short and long term weather fluctuations, disease),

researchers have speculated that habitat loss due to anthropogenic land use change is the

most likely cause for the long-term decline. Because land use change is both spatially and

temporally variable, monitoring efforts over broad spatial and temporal scales are needed

if we are to identify the signs or symptoms of impending habitat loss. As such, my efforts

were not to attack the problem by attempting to characterize the macro and micro habitat

variables defining the Gleasonian optimum for bobwhite. Rather, I tested familiar

landscape variables that correlate with anthropogenic shifts in land use. I used canonical

discriminant analysis to compare economic, agricultural, and anthropogenic metrics

among ecoregions in Texas over a 20-year period (1993–2012). My comparison indicates

the first 4 axes explained 88.6% of the total variance among ecoregions during that

period, and the average number of frost free days, proportion of area classified as

woodland, cattle density, and deviation from 30 year normal precipitation was influential

in the discrimination (P < 0.0002, nperm = 4999). Redundancy analysis indicated the

first 2 canonical eigenvalues explained 74.5% of the variance in bobwhite relative
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abundance during this period, as measured by the Breeding Bird Survey and Texas Parks

and Wildlife Department Annual Quail Survey (P < 0.0018, nperm = 4999). Most

metrics of anthropogenic land use were negatively correlated with quail relative

abundance. These results indicate that land values (market value and production value per

hectare) and human population density may signal the onset of anthropogenic land

conversion, and might be used to predict future changes that will impact grassland bird

species and other natural resources.

INTRODUCTION

Grassland bird conservation is a growing concern due to range contraction and/or

continued declines in abundance for several species as a result of habitat loss and

fragmentation (Knopf 1994, Peterjohn and Sauer 1999, Brennan and Kuvlesky 2005,

With et al. 2008). Among grassland birds, the northern bobwhite (Colinus virginianus;

hereafter bobwhite) is one of the most intensively studied species, with over 3,500

publications dedicated to its natural history, autecology, and management (Scott 1985,

Hernández and Peterson 2007). Yet despite this volume of published research, bobwhite

have undergone a decline in abundance throughout their range since the early 1900’s

(Leopold 1931, Lehmann 1937, Stoddard 1931), with substantial declines in recent

decades (Brennan 1991, Peterjohn and Sauer 1999, Peterson et al. 2002). These

long-term trends are frequently attributed to habitat loss associated with anthropogenic

land use change and habitat fragmentation (Brennan 1991, Peterson et al. 2002, Williams

et al. 2004b, With et al. 2008, Lohr et al. 2011), while short-term variations in abundance

have been correlated with natural weather cycles (Bridges et al. 2001, Guthery et al.

2002, Lusk et al. 2002, Tri et al. 2012), hunting pressure (Roseberry and Klimstra 1984,

Peterson and Perez 2000, Peterson 2001, Williams et al. 2004a, Tomecek et al. 2015),

and grazing management (Campbell-Kissock et al. 1984, Bock and Bock 1999, Taylor
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et al. 2012). Combined, these factors likely account for much of the spatial-temporal

variation in quail abundance noted by early quail researchers (Leopold 1931, Stoddard

1931, Jackson 1960, Rosene 1969, Lehmann 1984, Roseberry and Klimstra 1984).

To understand and reverse declines in grassland bird abundance will require

comparative estimates of temporal and spatial abundance, paired with ancillary

measurements of biotic and abiotic habitat variables. Unfortunately reliable estimates of

quail abundance are limited (e.g., American Breeding Bird Survey, Christmas Bird

Count, and Texas Parks and Wildlife Roadside Quail Survey), particularly over large

areas and long periods of time (Butcher et al. 1990, Peterson 2001, Bart 2005, Link et al.

2008, Sauer et al. 2013). However, metrics defining anthropogenic land use are available

from many sources (e.g., U.S. Geological Survey, U.S. Department of Agriculture), and

previous researchers have used these data to define contractions in the range of bobwhites

(Peterson et al. 2002, Okay 2006, Rho et al. 2015).

Human activity is characterized and measured by various agencies with other

interests, such as the U.S. Department of Agriculture, the U.S. Census Bureau, and the

Internal Revenue Service. These entities either enhance, or plague our lives, depending

upon perspective. What can not be disputed is the information they collect monitors

human activity in a meticulous manner. If population density and anthropogenic land use

are the primary casual factors behind habitat degradation and loss, then monitoring

societal metrics may provide an early warning of when and where habitat change will

likely occur. Given the data available, I believe that refocusing research efforts toward the

identification of factors portending degradation in habitat quality will provide the most

pragmatic strategy for reversing the decline in grassland birds, especially northern

bobwhite.

I suggest a change in our collective research focus is necessary, if we are to halt and

reverse declines in grassland bird species. I utilize data from a recent multi-year survey of
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land trends (Anderson et al. 2014) to demonstrate the utility of commonly available

anthropogenic metrics for detecting early signs of impending land use change and

potential degradation of grassland bird habitat. I limit my discussion to northern

bobwhite across 6 Ecoregions of Texas (Gould 1962, 1975), but acknowledge that early

detection of habitat degradation is desirable for evaluating all natural resource use and

conservation efforts. My objective is to demonstrate that common anthropogenic land use

variables may be a cost effective and highly efficient method for monitoring threats to

habitat quality for all grassland bird species. However, my objective is not to minimize

the importance of intensive demographic research, nor to quell perseverations on harvest

regulations and disease; rather it is to point out their limitations in terms of protecting the

quality and quantity of the resources which support grassland species. Ultimately I seek

to encourage debate, promote the development of new techniques, and illustrate

alternative solutions for future researchers and research efforts.

STUDY AREA

I collected data from counties within Texas (169 of 254) whose geographic centers

are congruent with the Gulf Coastal Prairies and Marshes, Cross Timbers, South Texas

Plains, Edwards Plateau, Rolling Plains, and High Plains Ecoregions of Texas (Gould

1962, 1975). The study covered an area of between 25°50’N and 36°30’N latitude (1,270

km north to south), 93°31’W and 106°38’W longitude (1,244 km east to west), within the

southwestern portion of continental North America (Alvarez and Plocheck 2005).

Elevations range from 2,667 m in western Texas to 0 m along the Gulf of Mexico, with a

mean elevation of 520 m (Arbingast 1976). The climate within Texas is highly variable,

with the northwest to southeast elevation gradient roughly paralleled by similar

temperature, frost, and growing season gradients. Most of the state has a bimodal

precipitation pattern (spring and fall rainfall peaks), due to the annual advance and retreat

44



of the subtropical high pressure zone. As a result, precipitation is particularly variable

across Texas and droughts are common, with more years below, than above, average

annual rainfall (Gould 1975). Mean annual precipitation increases from west to east, with

the arid west receiving >20 cm per year while the mesic east receives upward of 140 cm

per year. The geology of Texas also is varied, with surface exposures dating back 600

million years in geologic time (Arbingast 1976). Because of the complex interactions

among climate, surface geology, and vegetation, over 1,300 distinct soil types occur in

Texas, which arguably is the greatest natural resources within the state (Gould 1962,

1975, Arbingast 1976, Alvarez and Plocheck 2005). While my description of the study

area is general by necessity, it fairly illustrates the variability of habitat conditions across

Texas.

METHODS

The database used in this study was compiled from data obtained from the U.S.

Department of Agriculture (USDA National Agricultural Statistics Service; USDA

Natural Resource Conservation Service), U.S. Geological Service (USGS Land Cover

Institute), U.S. Census Bureau, Texas State Comptroller of Public Accounts, and the

Texas Almanac, using methods previously described in Kjelland et al. (2007). These data

were available either for Independent School Districts (ISDs) or counties, and were

obtained in either text, raster, vector, or pdf format. Data in pdf format required

transformation to a text format prior to manipulation, while data in text, vector, and raster

formats could be downloaded and manipulated directly. Metrics were compiled by county

or ISD, and aggregated by Gould Ecoregions for 1997, 2002, 2007, and 2012 to coincide

with USDA Census of Agriculture data. Assignments to ecoregions were made using a

spatial join of counties or ISD to ecoregions by geographic information system (ArcGIS

or R). Data were extracted for the 6 ecoregions surveyed for northern bobwhite by the
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Texas Parks and Wildlife Department (TPWD) each year (Peterson and Perez 2000).

I obtained the number of frost free days, human population density, livestock density,

the proportion of woodland, cropland, pastureland, average value, average production

value, deviation from 30-year normal precipitation, Breeding Bird Survey average birds

per route, and TPWD average birds per route for Texas counties, ISDs, or ecoregions

from 1997 to 2012. Average number of frost free days for each of the 254 Texas counties

were obtained from the Texas Almanac. Census data for each Texas county was obtained

from the Texas State Data Center (U.S. Census Bureau). Livestock (sheep, goats, and

cattle), agricultural land use (woodland, pastureland, cropland) and ownership sizes for

each county were obtained from the USDA Agricultural Statistics Service. Average land

value data and coverages for Texas ISDs were obtained from the Texas State Comptroller

of Public Accounts. Annual precipitation and 30-year average annual precipitation data

were obtained from Oregon State University (PRISM), and annual precipitation

anomalies were generated by subtraction of the 30-year normal coverage (1981–2010)

from annual data for each year. Breeding Bird Survey relative abundance data for

northern bobwhite (birds per route) were obtained from the U.S. Geological Survey

(Patuxent Wildlife Research Center, North American Breeding Bird Survey). Texas Parks

and Wildlife Department Roadside Quail Survey relative abundance data for northern

bobwhite (birds per route aggregated by ecoregion) was obtained from TPWD.

I evaluated the resulting 12 habitat variables for collinearity using the variance

inflation factor (VIF), estimated by sequential regression of each habitat variable against

the remaining habitat variables in the data set within a general linear model. VIF values

greater than 10 indicated linear dependence, or collinearity, among variables. When this

occurred, I eliminated or retained variables of a collinear pair based upon ecological

interpretive suitability. Through this process 4 variables in the raw data set were

eliminated due to collinearity. The resulting data sets used in subsequent analyses were
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composed of a rectangular X(env) matrix (n = 24, p = 8), an X(eco) matrix (n = 24, p = 1;

codes for ecoregion), an X(yr) matrix (n = 24, p = 1; codes for year), and rectangular

Y(quail) matrix (n = 24, p = 2) containing bobwhite relative abundance indices for each

ecoregion and year.

I conducted a canonical redundancy analysis (RDA) to determine if available habitat

metrics could account for the change in northern bobwhite spatial-temporal relative

abundance (Jongman et al. 1995, Legendre and Legendre 1998). I generated a response

matrix representing bobwhite relative abundance Y(quail) and an environmental matrix

representing habitat variables X(env). The response matrix was centered while the

environmental matrix was standardized (z scores), and the analysis was conducted using

Euclidean distances, as this symmetrical distance coefficient is deemed more appropriate

for analysis of environmental descriptors when zero represents a valid measurement

(Legendre and Legendre 1998). Significance test results were generated using 5,000

permutations under a null hypothesis of no relationship between matrices.

Redundancy analysis (RDA) is a direct gradient analysis technique which

summaries the linear relationships between a set of response variables and a set of

explanatory variables. As a result, the method extracts the variation in the response

variables that can be explained by the explanatory variables. RDA is an extension of

multiple linear regression which allows for regression of multiple response variables by

multiple explanatory variables by using matrix regression followed by principle

component analysis. The significance of the RDA model is determined by permutation,

and is interpreted in analogous fashion to multiple linear regression or ANOVA. If the

model is significant, the proportion of constrained variance explained indicates how much

of the total variance may be accounted for by the variables in your model. Ordinations

may focus on sites (distance biplot, scaling 1) or correlations among variables

(correlation biplot, scaling 2), depending on the study requirements (Legendre 1998).
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I used canonical analysis of principle coordinates (CAP) to conduct a generalized

canonical discriminant analysis (CDA) to compare ecoregions and years (Anderson and

Willis 2003, Anderson and Robinson 2003). I generated a design matrix representing

ecoregions X(eco) and years X(yr), and then tested each matrix under a null hypothesis

of no difference among groups using a response matrix Y(env) composed of habitat data.

These analyses were based upon standardized variables (z scores) using Euclidean

distances, as this symmetrical distance coefficient is deemed more appropriate for

analysis of environmental descriptors when zero represents a valid measurement, thus

indicating the true absence of a variable at a sample location (Legendre and Legendre

1998). Significance test results (t2 and t3) were generated using 5,000 permutations.

CAP uses principle coordinate analysis (PCoA) of the response data matrix Y as the

initial step, where the resulting axes (m) are orthonormal and contain sequentially

decreasing amounts of the variance. A constrained ordination of sites (Y) is then

generated using a design matrix X, which represents the group assignment, and the

ordination axes are drawn in order to maximize the differences or discrimination between

groups (X). The number of axes (m) to be used in the canonical analysis is determined by

minimizing the misclassification error via the ”leave-one-out” method (Lachenbruch and

Mickey 1968, Seber 1984, Anderson and Willis 2003), where each observation is

sequentially ”left out” of the ordination procedure, and then classified into the resulting

canonical space. The proportion of incorrect allocations relative to the hypothesized

group structure yields the percent misclassification error. The test statistics (t2 and t3;

Anderson and Robinson 2003) are based upon canonical correlations, and have

asymptotic distributions under permutation of the observations. As a result, these

statistics are invariant to changes in the distribution of the original variables, and group

differences are not obscured by correlations among variables. The trace statistic (t2) is

analogous to Pillais trace in MANOVA, and is the more powerful test when group
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differences occur across more than one dimension. The greatest root statistic (t3) is

analogous to Roys Greatest Root in MANOVA, and is the more powerful test when group

differences occur along a single dimension.

RESULTS

I conducted a RDA of northern bobwhite relative abundance versus habitat variables

covering 6 ecoregions of Texas from 1997–2012. The 2 canonical eigenvectors account

for 71.5% and 2.9% percent of the total variance in quail relative abundance, with an R2

= 74.5% (Radj
2 = 60.8%, P < 0.0016). A biplot of the results showing all variables

within the model indicates that most anthropogenic land trend variables (e.g., Population

Density, Market Value, Production Value) are inversely proportional to quail relative

abundance indices (Fig. 3.1).

I conducted a CDA of habitat metrics by ecoregion for the 6 ecoregions of Texas

from 1997–2012. The program defaults selected m = 4 principal coordinate axes, which

obtained the maximum proportion of correct allocations 100%, and explained 88.6% of

the variability among ecoregions. The first 2 canonical axes had squared canonical

correlations of δ12 = 0.9947 and δ2
2 = 0.9550, and both trace statistics (t2 and t3) were

significant (P < 0.0002). A plot of ecoregions on the first 2 canonical axes scores

illustrates the differences among ecoregions (Fig. 3.2).

I conducted a CDA of habitat metrics by year for the 4 years corresponding to the

Census of Agriculture data for Texas from 1997–2012. The program defaults selected m

= 7 principal coordinate axes, which obtained the maximum proportion of correct

allocations 54.2%, and explained 99.5% of the variability among years. The first 2

canonical axes had squared canonical correlations of δ12 = 0.9500 and δ2
2 = 0.4275, and

both trace statistics (t2 and t3) were significant (P < 0.0167). A plot of years sampled on

the first 2 canonical axes scores illustrates there are differences among years (Fig. 3.3).
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Figure 3.1: Redundancy analysis biplot for 2 quail relative abundance indices (red), and 8
habitat variables (blue) for 6 ecoregions surveyed in Texas during 1997–2012.
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DISCUSSION

Texas is comprised of approximately 56.7 million ha of private farms, ranches and

forests, leading the nation in land area devoted to privately owned working lands

(www.Texaslandtrends.org). These working lands account for 83% of the land area

within the state, and provide substantial economic, environmental, and recreational

resources that benefit many Texans. Further, these private lands provide most of the vital

habitat that supports the native flora and fauna of Texas. Yet these lands are under

increasing land conversion pressure driven by rapid population growth, suburbanization,

and rural development. For instance, during 1997–2012 the Texas population grew from

19 million to 26 million residents, an increase of 36%. My RDA analysis (Fig. 3.1)

clearly indicates that most anthropogenic land use metrics are inversely related to both

indices of quail relative abundance. Habitat variables within RDA analysis explained R2

= 74.5% (Radj
2 = 60.8%, P < 0.0016) of the variance in bobwhite relative abundance

during the 1997–2012 period. The CDA analyses revealed significant differences in

habitat variables among ecoregions (Fig. 3.2), but less substantial differences among the

small sample of years (Fig. 3.3). However, I note that 2012 was arguably the peak of the

recent drought in Texas, and it is distinctly different among the years sampled (Fig. 3.3).

Regardless, my results provide incontrovertible evidence that anthropogenic habitat

degradation and loss is largely responsible for the ongoing decline in northern bobwhite

and other grassland birds.

Large monitoring efforts covering broad regions are typically costly, and focus on

measuring population demographics. These activities generate metrics that characterize

the trajectory, but do not identify causal mechanisms, of species declines. I have

demonstrated that a shift in research focus toward monitoring anthropogenic metrics is

both economically feasible and yields results that can be utilized for crafting responsive
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habitat management. More importantly, by shifting the focus to the monitoring of

anthropogenic land use metrics, I have identified several metrics that can be used to

predict shifts in habitat quality (Human Population Density, Average Market Value per

Hectare, Avg Production Value per Hectare). As such, these analyses provide inputs for

determining where best to utilize conservation capital in order to maximizing return on

investment.

Many grassland bird species are undergoing range contractions and declines in

abundance. One such grassland bird, the northern bobwhite, is among the most studied

species in North America, and yet it continues to decline. To understand these declines in

grassland bird abundance will require the collection of comparative environmental and

synecological information over broad temporal and spatial areas. However, in order to

halt or reverse species declines will require early identification of factors associated with

habitat degradation and loss. As such, my findings are particularly relevant because this

paradigm can easily be incorporated into long-term, broad-scale monitoring efforts for

other species and habitat. And while I have demonstrated that a shift in research focus

toward monitoring anthropogenic metrics is economically feasible and yields useful

results over broad areas, I caution that information is useful only if acted upon in a

deliberate and timely manner.

MANAGEMENT IMPLICATIONS

My results demonstrate: (1) modeling of species relative abundance as a function of

anthropogenic land use metrics indicates habitat change is largely responsible for the

continued decline in northern bobwhite, (2) the monitoring of anthropogenic land use

metrics provides early indication of likely habitat degradation and loss, and (3) the

monitoring of anthropogenic land use metrics is economically feasible and yields

actionable information for habitat management. I therefore believe this shift in research
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focus toward habitat and anthropogenic metrics influencing habitat quality provides a

useful management paradigm that can be applied to other species and ecosystems.

55



CHAPTER IV

ASSESSING NORTHERN BOBWHITE ABUNDANCE

SYNOPSIS

Grassland birds are declining at an alarming rate, commensurate with declines in

grassland habitat. Northern bobwhite (Colinus virginianus) are one of the most

intensively studied grassland bird species, with over 3,500 publications dedicated to its

natural history, autecology, and management. Yet, despite this enormous amount of

research, the species continues to decline. Monitoring efforts are needed over broad

spatial and temporal scales if we are to identify proximate and ultimate causes in order to

halt or reverse these declines. However, the manpower required for this scale of

monitoring is economically daunting. While the incorporation of citizen volunteers has

been proposed as a potential solution, questions remain regarding the accuracy of data

produced by volunteers and the validity of the intended methods. I conducted spring cock

call-counts on 12 ranches within the Rolling Plains of Texas during 2012–2014. I

completed 1,022 total counts, detected 36,415 calls, 4,647 birds, and obtained 4,627

distances. Data were analyzed using program DISTANCE to generate local and regional

estimates of quail density each year, and to assess the feasibility of a double-sample

calibration for the proposed Texas Quail Index. To evaluate potential outcomes for

proposed field and analytical methods, I conducted separate analyses of our distance data

using 3 sampling methods from the literature that utilized fixed distance intervals for

point counts of bobwhite quail. Our results indicate that apriori fixed sampling intervals

obfuscate model fit, often resulting in inaccurate estimates of density. This is particularly

true if the apriori fixed sampling intervals do not match the shape of the detection

function. Our results indicate that double-sampling calibration of point counts, using
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distance sampling with exact distances, provides an economically feasible paradigm for

incorporating citizen science participation into grassland bird monitoring projects. I

discuss some potential problems associated with fixed interval distance sampling in

grassland birds, and the use of double-sampling for calibration and quality control in

citizen-science efforts.

INTRODUCTION

Grassland bird conservation is a growing concern due to range contraction and

continued declines in abundance for several species as a result of habitat loss and

fragmentation (Knopf 1994, Peterjohn and Sauer 1999, Brennan and Kuvlesky 2005,

With et al. 2008). Among grassland birds, the northern bobwhite (Colinus virginianus;

hereafter bobwhite) is one of the most intensively studied species, with over 3,500

publications dedicated to its natural history, autecology, and management (Scott 1985,

Hernández and Peterson 2007). Despite this volume of published research, bobwhite

have undergone a decline in abundance throughout their range since the early 1900’s

(Leopold 1931, Stoddard 1931, Lehmann 1937), with substantial declines in recent

decades (Brennan 1991, Peterjohn and Sauer 1999, Peterson et al. 2002). These

long-term trends are frequently attributed to habitat loss associated with anthropogenic

land use change and habitat fragmentation (Brennan 1991, Peterson et al. 2002, Williams

et al. 2004b, With et al. 2008, Lohr et al. 2011), while variation in abundance among

years has been correlated with natural weather cycles (Bridges et al. 2001, Guthery et al.

2002, Lusk et al. 2002, Tri et al. 2012). Combined, these factors likely account for much

of the spatial-temporal variation in quail abundance noted by early quail researchers

(Leopold 1931, Stoddard 1931, Jackson 1960, Rosene 1969, Lehmann 1984, Roseberry

and Klimstra 1984).

To understand and reverse declines in grassland bird abundance will require
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comparative synecological information from many areas, especially estimates of

temporal and spatial abundance. Unfortunately reliable estimates of animal abundance

are costly to collect, particularly over large areas. To overcome this problem, many

research efforts have utilized volunteers, or citizen-scientists, to provide the manpower

and spatial coverage necessary for data collection over broad spatial and temporal scales

(Greenwood 2007, Couvet et al. 2008, Dickinson et al. 2010, Conrad and Hilchey 2011,

Jiguet et al. 2012). Citizen-science research partnerships have been used to monitor birds

(Audubon Christmas Bird Count, ebird.org, birdsleuth.org), insects (e-butterfly.org,

bumblebeewatch.org, BugGuide.net), marine mammals (wildwhales.org), herptiles

(aza.org/frogwatch), plants (budburst.org), asteroids (cosmoquest.org), and weather

(oldweather.org). These efforts are not exclusive to private interests, as demonstrated by

the European Breeding Bird Surveys (Wretenberg et al. 2006, Jiguet et al. 2012), the

North American Breeding Bird Survey, and the Christmas Bird Count (Butcher et al.

1990, Bart 2005, Link et al. 2008, Sauer et al. 2013). Furthermore, due to geographic

extent and fiscal limitations, the majority of these efforts would not have been undertaken

without the use of volunteer input (Greenwood 2007, Couvet et al. 2008, Dickinson et al.

2010, Conrad and Hilchey 2011, Jiguet et al. 2012).

Research has shown that citizen volunteers are unlikely to have the experience,

training, or expertise necessary to conduct many of the more intensive abundance

estimation techniques (mark-resight, time-to-detection, double-observer; Greenwood

2007, Couvet et al. 2008, Dickinson et al. 2010, Conrad and Hilchey 2011, Jiguet et al.

2012), including the ability to unequivocally discern animal calls or to accurately

estimate distances (Scott et al. 1981, Bart 2005, Alldredge et al. 2007, Efford and

Dawson 2009, Nadeau and Conway 2013). Consequentially, most citizen-science efforts

rely upon the use of relative indices. Yet indices of relative abundance (raw counts) have

been widely criticized for being incomplete counts of unknown proportions of a
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population (Burnham 1981, Anderson 2001, MacKenzie and Kendall 2002, Pollock et al.

2002, Rosenstock et al. 2002, Thompson 2002, Anderson 2003, Ellingson and Lukacs

2003, Buckland and Handel 2006). Without ancillary data for correction, relative indices

are a confounding of detection probability and density. As a result, relative index data

derived from even the most standardized methods are unlikely to be comparable between

areas or between years (Rosenstock et al. 2002, Thompson 2002, Ellingson and Lukacs

2003, Buckland and Handel 2006).

The debate concerning the practical tradeoffs between accurate and expensive

estimation techniques, versus inexpensive, but potentially inaccurate, relative indices also

is not new (Caughley 1977, Lancia et al. 1994, Pierce et al. 2012). However, the use of

accurate wildlife research techniques is expensive, requires training and experience to

achieve good results, and the requisite expertise cannot be acquired through short training

sessions (Scott et al. 1981, Alldredge et al. 2007, Freitag and Pfeffer 2013, Paul et al.

2014, Riesch and Potter 2014). Of the various possible solutions, double-sampling is in

many ways the most pragmatic approach for improving grassland bird monitoring efforts

(Neyman 1938, Tikkiwal 1960, Caughley 1977, Eberhardt and Simmons 1987, Collins

2007). Double-sampling is a method for calibrating the results from a simple, inexpensive

method with the results from an intensive, more expensive method (Eberhardt and

Simmons 1987, Bart and Earnst 2002, Pollock et al. 2002, Collins 2007). This

combination of professional expertise and volunteer effort is one of the most efficient

ways to improve data quality (verifying accuracy and/or precision) in broad-scale,

citizen-science monitoring efforts when the underlying assumptions can be met

(Eberhardt and Simmons 1987, Bart and Earnst 2002, Pollock et al. 2002, Collins 2007).

During the most recent bobwhite decline within Texas and Oklahoma (2009–2014) a

privately funded research venture (Operation Idiopathic Decline; OID) was initiated to

determine if epidemiological factors were correlated with declines in quail abundance.
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This required congruent estimates of bobwhite abundance, disease prevalence, and

environmental conditions across a broad geographic area. Because reliable estimates of

animal abundance are costly to collect, OID researchers partnered with Texas AgriLife

Extension to revive a volunteer-based bobwhite abundance and habitat monitoring effort

called the Texas Quail Index (TQI; Rollins et al. 2005, Reyna 2008, Texas A&M

AgriLife Extension 2013). Project managers believed the use of citizen volunteers would

provide the manpower and spatial coverage necessary for data collection at the scale

required to investigate this hypothesis. However, these monitoring efforts may be limited

by the quality of the sampling design and data collection methodology if remedial steps

are not taken (Reyna 2008, Dickinson et al. 2010, Freitag and Pfeffer 2013, Paul et al.

2014, Riesch and Potter 2014).

Distance sampling is but one of several available methods for correcting empirical

counts for incomplete or imperfect detection (Buckland et al. 1993, 2001). Distance

sampling can be conducted using line transects or point counts, may incorporate

covariates (Zerbini 2006, Marques et al. 2007, Rexstad 2007, Johnson et al. 2010), and

can account for heterogeneity in detection through use of mark-resight models (mrds;

Laake et al. 2011). Due to efficacy, ease of use, and perhaps as a shibboleth with respect

to relative indices (Engeman 2003, Hutto and Young 2003, Johnson 2008), various forms

of conventional distance sampling are increasingly used for grassland bird counts in favor

of fixed-radius (Reidy et al. 2011) or variable circular plot indices (Roeder et al. 1987,

Bollinger et al. 1988). However, despite the advent of modern equipment which makes

distance sampling accessible (e.g., laser rangefinders and GPS), several valid issues

brought forth in the debate concerning the utility of relative indices (Thompson 2002,

Johnson 2008) and convenience sampling (Anderson 2001) continue to persist. Principal

among these problems is insufficient sample size (observations; n), insufficient sample

effort (sample points; k), inaccurate distance estimates, and the advent of a new paradigm
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termed convenience analysis, where analytical tools are assumed robust to deficiencies in

sample design, field methodology, or incorrect assumptions concerning detection

function shape with respect to the species of interest (DeSante 1981, 1986, Rollins et al.

2005, Applegate et al. 2011, Murray et al. 2011).

I provide data from a recent multi-year survey of bobwhite in the Rolling Plains

Ecoregion of Texas (Gould 1962, 1975) to demonstrate the utility of the double-sample

calibration approach for citizen-science monitoring of grassland birds. I limit my

discussion to conventional distances sampling of northern bobwhite for simplicity, but

acknowledge that covariate distance sampling, mark-recapture distance sampling,

mark-recapture, double-observer, time-to-detection, and other methods for estimating the

probability of detection are viable alternatives that might be used in a double-sampling

paradigm. Our objective is to demonstrate that contrary to recently published findings

(Rollins et al. 2005, Applegate et al. 2011, Murray et al. 2011, Texas A&M AgriLife

Extension 2013), distance sampling is an efficacious method for monitoring bobwhite

(and other grassland bird) abundance. Further, I assert that successful implementation of

a double-sampling calibration is required for TQI, and similar citizen-science monitoring

efforts, due to spatial-temporal differences in detection probability (i.e., between periods

or among habitat types), and discuss some of the problems with this approach that I feel

are common to point counts for all grassland bird species. Ultimately I seek to encourage

debate, further development of techniques, and illustrate alternative solutions for the use

and incorporation of citizen-scientists into grassland bird monitoring efforts. And to be

clear, I do not condemn, but rather commend the efforts of our colleagues (Rollins et al.

2005, Applegate et al. 2011, Murray et al. 2011, Texas A&M AgriLife Extension 2013)

whose results I use here to illustrate solutions to common sampling problems: it is

through their publications that I am able to identify and overcome obstacles that would

otherwise plague future researchers and research efforts.
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STUDY AREA

The Rolling Plains ecoregion is the semi-arid portion of the Great Plains grassland

that extends into northwestern Texas (Gould 1962, 1975). Elevations range from 200 m

to 950 m, and topography is characterized by flat or gentle rolling plains bisected by

valleys draining in a predominantly southeasterly direction. May and September are the

wettest months, with annual precipitation increasing from 550 mm to 760 mm along a

west to east gradient. Soils vary from neutral coarse sands to slightly basic calcareous

packed grey clays, or red clays and shales. The area is primarily rangeland, with much of

the flatter regions converted to cropland. Prairie communities are dominated by native

bunch grass species, including little bluestem (Schizachyrium scoparium), big bluestem

(Andropogon gerardii), sand bluestem (Andropogon hallii), Indian grass (Sorghastrum

nutans), sideoats grama (Bouteloua curtipendula), switchgrass (Panicum virgatum), hairy

grama (Bouteloua hirsuta), blue grama (Bouteloua gracilis), and western wheatgrass

(Agropyron smithii). On clay soils the common invasive species include Buffalograss

(Buchloe dactyloides), curly mesquite (Hilaria belangeri), tobosa grass (Pleuraphis

mutica), three-awn (Aristida spp.), and sand dropseed (Sporobolus cryptandrus). In

sandy soils sand sage (Artemisia filifolia) and shinnery oak (Quercus harvardii) are

common invasive species. Where heavy grazing occurs sandburs (Cenchrus spp.), red

grama (Bouteloua trifida), Texas grama (Bouteloua rigidiseta), croton (Croton texensis),

western ragweed (Ambrosia psilostachya), and many other common annuals and

perennials increase in frequency. Riparian areas support several woody species including

oaks (Quercus spp.), eastern cottonwood (Populus delitoides), elms (Ulmus spp.), and

junipers (Juniperus spp.).
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METHODS

We conducted spring cock call-counts on 12 study sites within the Rolling Plains of

Texas during 2012–2014. Study sites were selected randomly from a list of 33 privately

owned properties, and ranged in size from 1,600 to over 100,000 ha. The ranches selected

were highly variable in terms of land cover and management, and therefore captured

much of the variability in land conditions across the region (i.e., geology, soil type,

vegetation, and topography). All study sites experienced drier conditions during

2012–2013 due to ongoing drought, and 4 ranches experienced wildfires during 2011 that

removed all vegetation on greater than 50% of each area.

We used GIS (TNTmips; Microimages.com) to delineate non-habitat on each

property and adjacent properties that might influence detectability or quail abundance

(cropland [cotton], buildings, roads, wind turbines, oil field infrastructure, cattle pens),

and distributed 9–12 sample points (depending on site size) adjacent to unimproved ranch

roads or pasture boundaries within the habitat area. All points were placed at least 1 km

apart (euclidean distance, not road length) to minimize counting of the same individuals

at more than one point. As such, study sites were probabilistically sampled, with count

points placed systematically to provide maximal coverage (i.e., a "convenience" sample

with potential habitat bias). However, ranch roads were typically unimproved trails, had

very little traffic, and consisted of two bare wheel tracks with a vegetated median

surrounded by viable quail habitat. As such, quail were frequently seen on and near the

road while conducting counts or while transiting between count locations. We therefore

believe these paths neither attracted nor repelled quail, and thus any perturbation was due

to presence of the observer. Finally, this procedure created count points similar to those

established on ranches by TQI surveyors, and therefore provides inference to results

obtained from methods recommended in this program (Rollins et al. 2005, Reyna 2008,
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Texas A&M AgriLife Extension 2013).

We conducted counts from 10 May to 5 June each year during 20122014. Surveys

started 30 minutes after sunrise and continued until 4 hours after sunrise. Surveys were

replicated 24 times each year, with starting points reversed for each replication. At each

point we recorded the ranch name, point, date, surveyor, start time, wind velocity,

temperature, time interval (0–3 minutes, 3–6 minutes), distance, and bearing to each bird

detected during a 6 minute count period. Environmental metrics were measured using a

handheld weather meter (Kestrel; Kestrelmeters.com). Time intervals and bearings were

measured by stop watch and electronic compass (GPS; garmin.com) attached to each

plastic clipboard (non-magnetic). Upon detection, surveyors turned to face the calling

individual to determine bearing, and then measured distance to the individuals location

using a laser rangefinder (Leupold; leupold.com). Observers watched and listened for

bobwhite as they approached each count location, and recorded any bird seen or heard

that might have been displaced by the approach of the observer (distance and bearing).

During the count, if vegetation blocked the line of sight to a bird or calling location,

observers moved a short distance to a location perpendicular to the count point with clear

visibility to the call origin, and then measured either the distance to the bird or to

vegetation where the calls originated. Birds for which no distance could be obtained were

annotated as such on the data sheets. All calls detected during the count period were

tabulated separately for each time interval using a mechanical tally counter, which

allowed the surveyor to tabulate calls while focusing attention on detecting individuals

(distance and bearing). At the conclusion of each count observers were allowed to verify

or obtain distances to birds they identified during the count period.

All surveyors received extensive field training in the technique prior to the study

using digital callers (Foxpro; gofoxpro.com), and conducted practice counts on live quail

as a group at the start of each field season. Each observer learned the protocol, variations
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in bobwhite calls, distance sampling theory, proper use of a laser range finder and GPS

unit. During training sessions surveyors checked their distance measurements against

known distances to each digital caller from their count point. During practice sessions,

surveyors completed counts at each point individually, and then compared information

(e.g., calls, birds, distances and bearings) with other surveyors in the group. This type of

training provided immediate feedback on possible errors, which is necessary to instilled

confidence and proficiency with all equipment and procedures among surveyors (Gibson

and Bergman 1954, Hodge 1981, Scott et al. 1981, Thompson 1982).

We used Program DISTANCE (version 6; Thomas et al. 2010) to estimate detection

probability and density for each ranch and year. We assessed data for violation of

distance sampling assumptions (Buckland et al. 2001, Buckland and Handel 2006) and

determined truncation width by plotting histograms of the distance data (ungrouped and

grouped) by year and observer. We used conventional distance sampling (CDS) to

generate models using uniform, half-normal, and hazard-rate key functions with a

maximum of 3 cosine, hermite polynomial, or simple polynomial series expansion terms.

Model fit was assessed using QQ plots, histograms of fitted models, and the Cramér-von

Mises test (Darling 1957). Akaikes Information Criterion (AIC) was used to select

among candidate models.

We generated summaries of calls, birds, and average density for each year (regional

estimates) and each ranch x year (local estimates) to assess method precision as well as

spatial-temporal variability in bobwhite relative abundance and density. To quantify

differences in relative indices, we compared the number of calls and the number of birds

detected by year and ranch x year using Kruskal-Wallis test. We compared histograms of

model fits, effective detection radii, and density estimates from our results, to results

generated using three published research methods for bobwhite spring cock call-counts

(Rollins et al. 2005, Applegate et al. 2011, Murray et al. 2011, Texas A&M AgriLife
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Extension 2013). Through comparison we demonstrate potential problems associated

with data collection methods that use, or intend to use, apriori fixed distance intervals.

Further, we discuss how these problems and misconceptions about auditory detection,

distance estimation, and surveyor training, might impact citizen-science results from

point count surveys (Scott et al. 1981, Bart et al. 2004, Alldredge et al. 2007, Nadeau and

Conway 2013).

We used the ratio estimation procedure (Neyman 1938, Caughley 1977, Eberhardt

and Simmons 1987) to assess correlations between average calls and density for

bobwhite in the Rolling Plains. We compare coefficients of determination among

regressions to assess double-sampling calibration, and discuss potential use with respect

to citizen-science monitoring efforts (Eberhardt and Simmons 1987, Bart and Earnst

2002, Pollock et al. 2002, Collins 2007). We use summaries of our findings to address

recent criticisms of distance sampling for quail, and to discuss potential problems

relevant to distance sampling and citizen-science monitoring of bobwhite in Texas.

RESULTS

We conducted spring cock call-counts on 12 ranches within the Rolling Plains of

Texas during 2012–2014. The amount of replication differed between years due to

weather during the count period. We completed 1,022 total counts which detected 36,415

calls, 4,647 birds, and obtained 4,627 distances. The number of calls per point (n = 384,

H2
2 = 59.4978, P < 0.000) and the number of birds per point (n = 384, H2

2 = 72.714,

P < 0.000) differed between years (Table 4.1, Fig. 4.1). Similarly, the number of calls

per point (n = 36, H35
2 = 250.8391, P < 0.000) and the number of birds per point (n =

36, H35
2 = 258.7566, P < 0.000) differed between ranch x years (Table 4.2, Fig. 4.2).

Distances differed among years (n = 4,627, H2
2 = 314.9836, P < 0.000; Fig. 4.3),

and among ranch x years (n = 4,627, H35
2 = 772.6298, P < 0.000; Fig. 4.4). The
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Table 4.1: Mean calls per point and mean birds per point, by year, for all 12 ranches
surveyed in the Rolling Plains of Texas during the spring of 2012–2014.

Year Points Calls Average SD SE Birds Average SD SE
2012 256 6,456 25.22 30.45 1.90 836 3.27 2.52 0.16
2013 382 16,212 42.44 41.77 2.14 1,674 4.38 3.06 0.16
2014 384 13,747 35.80 33.79 1.72 2,137 5.58 4.88 0.25
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Figure 4.1: Mean calls per point and mean birds per point, by year, for all 12 ranches
surveyed in the Rolling Plains of Texas during the spring of 2012–2014.
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Table 4.2: Mean calls per point and mean birds per point by ranch and year for all 12
ranches surveyed in the Rolling Plains of Texas during the spring of 2012–2014.

Ranch Year Calls Average SD SE Birds Average SD SE
TX2C 2012 596 27.09 21.25 4.53 81 3.68 2.03 0.43
TX2C 2013 604 27.45 22.72 4.84 75 3.41 2.26 0.48
TX2C 2014 555 16.82 14.10 2.45 98 2.97 1.90 0.33
TX4N 2012 95 4.32 9.32 1.99 19 0.86 1.25 0.27
TX4N 2013 403 18.32 20.82 4.44 51 2.32 2.19 0.47
TX4N 2014 931 28.21 26.63 4.64 147 4.45 3.08 0.54
TX7N 2012 172 7.82 13.62 2.90 22 1.00 1.60 0.34
TX7N 2013 1,299 59.05 44.44 9.48 110 5.00 3.35 0.71
TX7N 2014 3,161 95.79 36.63 6.38 531 16.09 5.09 0.89
TX7S 2012 552 25.09 24.16 5.15 83 3.77 2.84 0.61
TX7S 2013 1,420 64.55 40.74 8.69 128 5.82 2.40 0.51
TX7S 2014 104 3.15 7.78 1.35 11 0.33 0.82 0.14
TX6S 2012 708 35.40 17.65 3.95 88 4.40 1.76 0.39
TX6S 2013 1,479 73.95 38.16 8.53 144 7.20 1.88 0.42
TX6S 2014 1,085 36.17 21.28 3.89 132 4.40 1.79 0.33
TX6C 2012 367 16.68 13.27 2.83 75 3.41 1.89 0.40
TX6C 2013 1,482 33.68 29.99 4.52 177 4.02 2.69 0.41
TX6C 2014 1,106 33.52 22.80 3.97 159 4.97 2.62 0.46
TX2N 2012 1,732 78.73 48.00 10.23 141 6.41 1.94 0.41
TX2N 2013 3,354 76.23 45.68 6.89 283 6.43 2.30 0.35
TX2N 2014 2,298 69.64 31.15 5.42 344 10.42 2.94 0.51
TX1N 2012 106 4.82 7.29 1.56 20 0.91 0.92 0.20
TX1N 2013 1,493 33.93 35.13 5.30 166 3.77 2.97 0.45
TX1N 2014 1,116 33.82 21.03 3.66 196 5.94 3.06 0.53
TX1S 2012 304 13.82 14.31 3.05 64 2.91 2.02 0.43
TX1S 2013 361 8.20 12.34 1.86 73 1.66 1.72 0.26
TX1S 2014 1,055 31.97 24.16 4.20 143 4.33 2.42 0.42
TX4S 2012 998 45.36 31.17 6.65 112 5.09 1.60 0.34
TX4S 2013 1,849 84.05 55.96 11.93 166 7.55 2.58 0.55
TX4S 2014 942 28.55 21.91 3.81 136 4.12 2.45 0.43
TX2S 2012 482 26.78 30.54 7.20 66 3.67 3.07 0.72
TX2S 2013 573 15.92 14.57 2.43 92 2.56 2.16 0.36
TX2S 2014 281 10.41 10.90 2.10 55 2.04 2.24 0.43
TX4C 2012 344 17.20 14.44 3.23 65 3.25 1.55 0.35
TX4C 2013 1,895 47.38 36.68 5.80 209 5.22 3.06 0.48
TX4C 2014 1,113 37.10 29.81 5.44 185 6.17 3.32 0.61
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Figure 4.2: Mean calls per point and mean birds per point, by ranch and year, for all 12
ranches surveyed in the Rolling Plains of Texas during the spring of 2012–2014.
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histogram of 4,627 distances collected during the 3 year study shows that bobwhite

detections increase as a function of radial area out to 70 m, and rapidly declined beyond

100 m (Fig. 4.5). The 95th, 50th, and 25th quantiles for detection occurred at 241 m, 86

m, and 57 m, respectively, with an average detection distance of 105.5 m. The largest

detection distance observed during the 3 year study occurred at 532 m.

Model selection was conducted using exact distances with data truncated at 360 m to

improve model fit (Buckland et al. 2001). A hazard-rate model with a single 4th order

polynomial adjustment term was selected based upon AIC value (AIC = 49,681) and

model fit (Cramér-von Mise, P = 0.05; Fig. 4.6), with a finite detection probability of

0.10 at 360 m (Buckland et al. 2001, Buckland et al. 2006). The effective distance radius

was 113.7 m (SE = 1.37 m), and the coefficient of variation for the slope of the

probability density function evaluated at distance zero, h(0), was 2.4%. Histograms

showed no differences in detection function shape among observers or years, and analysis

by observer and year did not improve model fit. We therefore pooled distances among

observers and years to model the detection function, but stratified encounter rates by year

and ranch x year for estimates of density.

Point estimates of density increased from 2012 to 2014 (Table 4.3), and density

estimates varied among ranch x years (Table 4.4). Coefficients of Variation for regional

density estimates were < 3% for each year (Table 4.3), and < 10% for all but 4 ranches

during the survey period (Table 4.4). We note that changes in precipitation and

differences in grazing management among individual ranches may have influenced

bobwhite abundance and detectability across the region, which has experienced severe

drought since 2009 (Tomeček et al. 2017, submitted). However, we detected no

significant difference in density among years or ranch x years during the drought of

2012–2014 (Table 4.3, Table 4.4).
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Figure 4.3: Boxplots of distances by year for all bobwhite detected during the annual
survey of 12 ranches within the Rolling Plains Ecoregion of Texas during 2012–2014.
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Figure 4.4: Boxplots of distances by ranch and year for all bobwhite detected during the
annual survey of 12 ranches within the Rolling Plains Ecoregion of Texas during 2012–
2014.
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Figure 4.5: Histogram of distances for all bobwhite detected during the annual survey of
12 ranches within the Rolling Plains Ecoregion of Texas during 2012–2014.
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Figure 4.6: Probability density plot from program DISTANCE showing the fit of a hazard-
rate model with one, 4th-order, simple polynomial adjustment term, to the histogram of
distances obtained for all bobwhite detections within 360 m on the 12 ranches surveyed in
the Rolling Plains of Texas during the spring of 2012–2014.
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Table 4.3: Estimates of bobwhite density obtained using exact distances for each year for
all 12 ranches surveyed in the Rolling Plains of Texas during the spring of 2012–2014.

Year Encounter Rate Density %CV df 95% LCL 95% UCL
2012 3.20 0.79 2.52 4,693.15 0.75 0.83
2013 4.32 1.06 2.47 4,939.17 1.01 1.12
2014 5.55 1.37 2.65 4,382.37 1.30 1.44
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We conducted separate analyses of our distance data using 3 techniques suggested

for point counts of northern bobwhite that employed apriori distance intervals during data

collection (Rollins et al. 2005, Applegate et al. 2011, Murray et al. 2011, Texas A&M

AgriLife Extension 2013). All analysis steps were identical, and differed only in the

number and size of distance intervals. This standardized the distance data, and ensured

that identical encounter rates and distances were used for each method (i.e., therefore the

same distribution of observations; 95% of all observations occurred within 241 m).

Model selection differed by method, but each selected a hazard-rate model with either 0,

1, or 2 adjustment terms based on AIC. Model fit was good for all but the method of

Rollins et al. (2005, Texas A&M AgriLife Extension 2013), which exhibited relatively

poor fit near the distance zero (Fig.s 4.7 and 4.8; Table 4.5). We observed differences in

h(0) (the probability density function evaluated at distance zero) among methods due to

sampling methodology (i.e., exact distances vs. apriori distance intervals), which created

differences among density estimates and inflation of variance in the density estimates

(Table 4.6). Results were similar for all but the Rollins et al. (2005) method, which

produced estimates approximately 3 times lower than the other methods (Table 4.5).

The Rollins et al. (Rollins et al. 2005, Texas A&M AgriLife Extension 2013)

method used 3 equal intervals (0-200 m, 200-400 m, and 400-600 m), generated 4150,

464, and 13 detections, and was fit using a hazard-rate model without adjustment terms

(Fig.s 4.7 and 4.8; Table 4.5). The effective detection radius was 176.5 m, and the

coefficient of variation for the slope of the probability density function evaluated at

distance zero, h(0), was 5.74% (Table 4.6).

The method of Murray et al. (2011) used 7 unequal intervals (0-50 m, 50-100 m,

100-150 m, 150-200 m, 200-300 m, 300-400 m, and 400-500 m; note Figure 2 in Murray

et al. 2011 uses only 6 unequal bins, removing the 400-500 m interval) resulting in 853,

1892, 896, 509, 378, 86, and 12 detections, and was fit using a hazard-rate model with 4th
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Table 4.4: Estimates of bobwhite density obtained using exact distances for each ranch
and year for all 12 ranches surveyed in the Rolling Plains of Texas during the spring of
2012–2014.

Ranch Year Density %CV df 95% LCL 95% UCL
TX2C 2012 0.91 5.64 31.34 0.81 1.02
TX2C 2013 0.83 7.30 26.41 0.71 0.96
TX2C 2014 0.72 4.28 68.15 0.66 0.79
TX4N 2012 0.21 8.51 24.79 0.18 0.25
TX4N 2013 0.56 9.67 23.85 0.46 0.68
TX4N 2014 1.10 6.90 41.43 0.95 1.26
TX7N 2012 0.25 11.93 22.81 0.19 0.31
TX7N 2013 1.23 10.50 23.39 0.99 1.53
TX7N 2014 3.96 5.44 49.39 3.55 4.42
TX7S 2012 0.93 10.04 23.63 0.75 1.14
TX7S 2013 1.43 5.11 34.58 1.29 1.59
TX7S 2014 0.08 6.52 42.84 0.07 0.09
TX6S 2012 1.08 4.26 40.83 0.99 1.18
TX6S 2013 1.77 3.44 72.45 1.65 1.90
TX6S 2014 1.08 3.42 112.26 1.01 1.16
TX6C 2012 0.84 5.35 32.92 0.75 0.94
TX6C 2013 0.98 4.78 76.88 0.89 1.08
TX6C 2014 1.21 4.69 58.78 1.10 1.33
TX2N 2012 1.58 3.60 68.15 1.47 1.69
TX2N 2013 1.57 3.07 279.40 1.47 1.66
TX2N 2014 2.52 3.44 121.35 2.35 2.70
TX1N 2012 0.22 4.88 36.60 0.20 0.25
TX1N 2013 0.92 5.94 61.47 0.81 1.03
TX1N 2014 1.46 5.35 50.17 1.31 1.63
TX1S 2012 0.51 6.26 28.88 0.45 0.58
TX1S 2013 0.39 4.79 76.77 0.35 0.42
TX1S 2014 1.07 4.73 58.10 0.98 1.18
TX4S 2012 1.25 3.32 92.27 1.17 1.34
TX4S 2013 1.86 4.67 38.85 1.69 2.04
TX4S 2014 1.01 5.01 53.88 0.92 1.12
TX2S 2012 0.90 14.46 17.98 0.67 1.22
TX2S 2013 0.62 5.65 52.15 0.55 0.69
TX2S 2014 0.49 9.84 29.40 0.40 0.60
TX4C 2012 0.80 4.42 38.31 0.73 0.87
TX4C 2013 1.24 5.10 64.31 1.12 1.37
TX4C 2014 1.50 6.43 39.15 1.32 1.71
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Figure 4.7: Histogram of distances obtained using the method defined by Rollins et al.
(2005) for bobwhite detected during the annual survey of 12 ranches within the Rolling
Plains Ecoregion of Texas during 2012–2014.
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Figure 4.8: Probability density plot from program DISTANCE showing the fit of a hazard-
rate model with no adjustment term, to the histogram of distances obtained using the
method of Rollins et al. (2005) for bobwhite detections within 600 m on the 12 ranches
surveyed in the Rolling Plains of Texas during the spring of 2012–2014.
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Table 4.5: Estimates of bobwhite density obtained using the method of Rollins et al. (2005)
for each ranch and year for all 12 ranches surveyed in the Rolling Plains of Texas during
the spring of 2012–2014.

Ranch Year Density %CV df 95% LCL 95% UCL
TX2C 2012 0.38 7.68 107.17 0.32 0.44
TX2C 2013 0.35 8.91 61.29 0.29 0.42
TX2C 2014 0.30 6.81 366.41 0.27 0.35
TX4N 2012 0.09 9.98 46.84 0.07 0.11
TX4N 2013 0.24 11.02 39.53 0.19 0.30
TX4N 2014 0.46 8.65 101.94 0.38 0.54
TX7N 2012 0.10 13.02 32.35 0.08 0.13
TX7N 2013 0.51 11.72 36.35 0.40 0.65
TX7N 2014 1.64 7.53 179.84 1.42 1.91
TX7S 2012 0.39 11.31 38.09 0.31 0.48
TX7S 2013 0.59 7.30 142.47 0.51 0.69
TX7S 2014 0.03 8.35 114.61 0.03 0.04
TX6S 2012 0.45 6.73 248.16 0.39 0.51
TX6S 2013 0.74 6.25 707.62 0.65 0.83
TX6S 2014 0.45 6.24 1,046.18 0.40 0.51
TX6C 2012 0.35 7.47 124.06 0.30 0.40
TX6C 2013 0.41 7.02 377.16 0.36 0.47
TX6C 2014 0.50 7.01 286.40 0.44 0.58
TX2N 2012 0.66 6.34 600.00 0.58 0.74
TX2N 2013 0.66 6.03 2,672.52 0.59 0.74
TX2N 2014 1.06 6.24 1,139.23 0.93 1.19
TX1N 2012 0.09 7.14 165.93 0.08 0.11
TX1N 2013 0.38 7.91 189.75 0.33 0.45
TX1N 2014 0.61 7.47 188.21 0.52 0.70
TX1S 2012 0.21 8.15 82.60 0.18 0.25
TX1S 2013 0.16 7.08 355.15 0.14 0.19
TX1S 2014 0.45 7.04 278.25 0.39 0.51
TX4S 2012 0.52 6.18 947.87 0.46 0.59
TX4S 2013 0.77 7.00 193.00 0.67 0.89
TX4S 2014 0.42 7.23 229.18 0.37 0.49
TX2S 2012 0.37 15.37 22.96 0.27 0.51
TX2S 2013 0.26 7.65 181.06 0.22 0.30
TX2S 2014 0.21 10.81 50.42 0.17 0.26
TX4C 2012 0.33 6.83 214.94 0.29 0.38
TX4C 2013 0.53 7.28 266.72 0.46 0.62
TX4C 2014 0.63 8.28 107.00 0.54 0.74
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Table 4.6: Estimates of the probability density function evaluated at distance zero, co-
efficient of variation for the probability density estimate, effective detection radius, and
coefficient of variation for the effective detection radius generated using the exact distance
method of the present paper, the Rollins et al. (2005), Murray et al. (2011), Applegate
et al. (2011) methods using distance data obtained from all 12 ranches surveyed in the
Rolling Plains of Texas during the spring of 2012–2014.

Method h(0) %CV EDR %CV
Rollins et al. 2005 0.000064 5.74 176.47 2.87
Murray et al. 2011 0.000152 2.76 114.76 1.38
Applegate et al. 2011 0.000149 3.08 116.05 1.54
Pierce et al. 0.000155 2.40 113.73 1.20

82



and 6th order adjustment terms (Fig.s 4.9 and 4.10; Table 4.7). The effective detection

radius was 114.8 m, and the coefficient of variation for the slope of the probability

density function evaluated at distance zero was 2.76% (Table 4.6).

The method of Applegate et al. (2011) used 4 unequal intervals (0-25 m, 25-50 m,

50-100 m, and 100-600 m; note Applegate et al. 2011 used all detections greater than 100

m in their final interval), generated 113, 740, 1892, and 1882 detections, and was fit using

a hazard-rate model without adjustment terms (Fig. 4.11 and 4.12; Table 4.8). The

effective detection radius was 116.1 m, and the coefficient of variation for the slope of the

probability density function evaluated at distance zero was 1.54% (Table 4.6).

We used the ratio method to assess double-sampling for bobwhite with distance

sampling as the intensive method and a relative index derived from birds heard during

timed point counts as the rapid or low cost method (Neyman 1938, Caughley 1977,

Eberhardt and Simmons 1987). Data for this calibration was obtained simultaneously, as

recommended by Eberhardt and Simmons (1987). The intercept for the regression of

average calls per point versus density was not significantly different from zero

(Table 4.9), and logically the calibration should pass through the origin (if density = 0,

then calls = 0; however see Collins 2007). As such, the regression of average calls per

point versus density (Fig. 4.13), through the origin, produced an R2 = 0.925 (Table 4.10).

The coefficient of determination and precision of estimate indicates a double-sample

calibration is both scientifically and economically feasible (Bart and Earnst 2002, Collins

2007). We note that because distance sampling relies upon encounter rate to estimate

density,

D =
E(n) · h(0)

2πk

it is by definition a linear product of encounter rate (birds per point) and h(0), and
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Figure 4.9: Histogram of distances obtained using the method defined by Murray et al.
(2011) for bobwhite detected during the annual survey of 12 ranches within the Rolling
Plains Ecoregion of Texas during 2012–2014.
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Figure 4.10: Probability density plot from program DISTANCE showing the fit of a
hazard-rate model with 4th and 6th order adjustment terms, to the histogram of distances
obtained using the method of Murray et al. (2011) for bobwhite detections within 500 m
on the 12 ranches surveyed in the Rolling Plains of Texas during the spring of 2012–2014.
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Table 4.7: Estimates of bobwhite density obtained using the method of Murray et al.
(2011) for each ranch and year for all 12 ranches surveyed in the Rolling Plains of Texas
during the spring of 2012–2014.

Ranch Year Density %CV df 95% LCL 95% UCL
TX2C 2012 0.89 5.80 35.13 0.79 1.00
TX2C 2013 0.82 7.35 28.48 0.71 0.96
TX2C 2014 0.72 4.59 78.55 0.66 0.79
TX4N 2012 0.21 8.62 26.08 0.17 0.25
TX4N 2013 0.56 9.81 24.78 0.46 0.69
TX4N 2014 1.08 7.03 44.75 0.93 1.24
TX7N 2012 0.24 12.01 23.41 0.19 0.31
TX7N 2013 1.21 10.58 24.19 0.97 1.50
TX7N 2014 3.89 5.61 55.82 3.48 4.35
TX7S 2012 0.91 10.13 24.51 0.74 1.12
TX7S 2013 1.41 5.29 39.70 1.26 1.56
TX7S 2014 0.08 6.66 46.68 0.07 0.09
TX6S 2012 1.06 4.47 49.65 0.97 1.16
TX6S 2013 1.74 3.70 96.97 1.62 1.87
TX6S 2014 1.06 3.68 150.37 0.99 1.14
TX6C 2012 0.82 5.52 37.36 0.74 0.92
TX6C 2013 0.97 4.90 92.40 0.88 1.07
TX6C 2014 1.19 4.88 69.17 1.08 1.31
TX2N 2012 1.55 3.85 89.07 1.44 1.67
TX2N 2013 1.56 3.31 444.60 1.46 1.67
TX2N 2014 2.50 3.68 166.22 2.32 2.69
TX1N 2012 0.22 5.06 42.58 0.20 0.24
TX1N 2013 0.91 6.11 67.99 0.80 1.02
TX1N 2014 1.44 5.52 56.92 1.29 1.60
TX1S 2012 0.51 6.41 31.70 0.44 0.58
TX1S 2013 0.38 4.98 89.70 0.35 0.42
TX1S 2014 1.05 4.92 68.19 0.96 1.16
TX4S 2012 1.23 3.59 125.79 1.15 1.32
TX4S 2013 1.82 4.86 45.79 1.65 2.01
TX4S 2014 1.00 5.20 62.17 0.90 1.11
TX2S 2012 0.89 14.53 18.30 0.65 1.20
TX2S 2013 0.62 5.76 58.98 0.55 0.69
TX2S 2014 0.49 9.57 30.95 0.41 0.60
TX4C 2012 0.79 4.62 45.99 0.72 0.86
TX4C 2013 1.26 5.26 74.30 1.14 1.40
TX4C 2014 1.49 6.58 42.77 1.31 1.70
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Figure 4.11: Histogram of distances obtained using the method defined by Applegate et
al. (2011) for bobwhite detected during the annual survey of 12 ranches within the Rolling
Plains Ecoregion of Texas during 2012–2014.
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Figure 4.12: Probability density plot from program DISTANCE showing the fit of a
hazard-rate model with 4th and 6th order adjustment terms, to the histogram of distances
obtained using the method of Applegate et al. (2011) for bobwhite detections within 500 m
on the 12 ranches surveyed in the Rolling Plains of Texas during the spring of 2012–2014.
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Table 4.8: Estimates of bobwhite density obtained using the method of Applegate et al.
(2011) for each ranch and year for all 12 ranches surveyed in the Rolling Plains of Texas
during the spring of 2012–2014.

Ranch Year Density %CV df 95% LCL 95% UCL
TX2C 2012 0.87 5.96 39.11 0.77 0.98
TX2C 2013 0.81 7.48 30.47 0.69 0.94
TX2C 2014 0.70 4.79 92.91 0.64 0.77
TX4N 2012 0.20 8.73 27.40 0.17 0.24
TX4N 2013 0.55 9.90 25.75 0.45 0.67
TX4N 2014 1.05 7.16 48.18 0.91 1.22
TX7N 2012 0.24 12.09 24.02 0.18 0.30
TX7N 2013 1.18 10.67 25.00 0.95 1.47
TX7N 2014 3.80 5.77 62.60 3.39 4.27
TX7S 2012 0.89 10.22 25.41 0.72 1.10
TX7S 2013 1.38 5.46 45.13 1.23 1.53
TX7S 2014 0.08 6.80 50.67 0.07 0.09
TX6S 2012 1.04 4.68 59.26 0.95 1.14
TX6S 2013 1.70 3.94 124.70 1.57 1.84
TX6S 2014 1.04 3.93 193.34 0.96 1.12
TX6C 2012 0.81 5.69 42.04 0.72 0.90
TX6C 2013 0.95 5.08 107.16 0.85 1.05
TX6C 2014 1.16 5.07 80.31 1.05 1.28
TX2N 2012 1.51 4.08 112.52 1.40 1.64
TX2N 2013 1.53 3.58 593.03 1.42 1.64
TX2N 2014 2.44 3.93 213.65 2.26 2.64
TX1N 2012 0.21 5.24 48.96 0.19 0.24
TX1N 2013 0.89 6.26 74.92 0.78 1.00
TX1N 2014 1.40 5.69 64.05 1.25 1.57
TX1S 2012 0.49 6.55 34.64 0.43 0.56
TX1S 2013 0.38 5.16 103.54 0.34 0.42
TX1S 2014 1.03 5.11 79.00 0.93 1.14
TX4S 2012 1.20 3.84 163.91 1.12 1.30
TX4S 2013 1.78 5.05 53.25 1.61 1.97
TX4S 2014 0.97 5.37 70.98 0.88 1.08
TX2S 2012 0.87 14.59 18.63 0.64 1.17
TX2S 2013 0.60 5.92 65.74 0.54 0.68
TX2S 2014 0.48 9.66 32.22 0.40 0.59
TX4C 2012 0.77 4.82 54.31 0.70 0.85
TX4C 2013 1.23 5.44 84.56 1.11 1.38
TX4C 2014 1.46 6.72 46.52 1.27 1.67
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therefore average birds per point versus density is an unsuitable regression (confounded)

for use in this double-sampling procedure (Fig. 4.14).

DISCUSSION

We used point distance sampling (Buckland et al. 2001) to generate local and

regional estimates of bobwhite density in the Rolling Plains Ecoregion of Texas. We used

2–3 observers each year during a 14 day period, and obtained a sufficient number of

observations (n = 4.627) to generate a model fit (Fig. 4.6) that resulted in relatively

precise estimates of density by year and by ranch x year (Table 4.3, Table 4.4). As such,

our results demonstrate that contrary to published findings (Applegate et al. 2011,

Murray et al. 2011), distance sampling can be successfully and economically

(man-hours) used to obtain estimates of density for northern bobwhite.

Like all methods, distance sampling may fail to provide anticipated results for a

multitude of reasons. However, in many cases it is difficult to tell if the problem lies with

the sample design, field methodology, surveyors, analytical technique, or due to

circumstances beyond the control of the investigators. Common deficiencies include

insufficient sample size, imprecise distance estimation, and "convenience analysis",

where analytical tools are assumed robust to deficiencies in sample design, methodology,

or training. To illustrate, we used our data to generate results with apriori distance

intervals defined in Rollins et al. 2005 (also see Texas A&M AgriLife Extension 2013),

Murray et al. 2011, and Applegate et al. 2011. For point distance sampling the slope of

the probability density function evaluated at distance zero, h(0), is the critical component

for estimating density

D =
E(n) · h(0)

2πk

where E(n) is the expected number of animals in the survey area, and k is the number of
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Table 4.9: Linear regression of density versus average calls per point for each ranch and
year for all 12 ranches surveyed in the Rolling Plains of Texas during the spring of 2012–
2014.

Parameter Estimate Std. Error t value Pr(>|t|)
Intercept 0.196 0.101 1.935 0.061
Average Calls 0.025 0.002 10.659 0.000
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Figure 4.13: Linear regression, through the origin, of the average calls per point versus
density for all 12 ranches surveyed in the Rolling Plains of Texas during the spring of
2012–2014.
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Table 4.10: Linear regression, through the origin, of density versus average calls per point
for each ranch and year for all 12 ranches surveyed in the Rolling Plains of Texas during
the spring of 2012–2014.

Parameter Estimate Std. Error t value Pr(>|t|)
Average Calls 0.029 0.001 20.713 0.000
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Figure 4.14: Confounded linear regression of the average birds per point versus density
for all 12 ranches surveyed in the Rolling Plains of Texas during the spring of 2012–
2014. Because DISTANCE estimates of density are the product of encounter rate (birds
per point) and h(0), the regression of average birds per point versus density is an unsuitable
regression for use in this double-sampling procedure.
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points surveyed (Buckland et al. 2001). It is h(0) that is modeled through use of

distances. Because the coefficient of variation (CV) for h(0) describes model fit in terms

of the relative magnitude of the squared residuals, a lower CV indicates smaller residuals,

and therefore a better fit of the model to the data. Because all of our comparative

estimates were obtained using the same data, the CV for h(0) serves as the ideal metric

for comparing results between these methods.

The methodology proposed by of Rollins et al. (2005) has been expanded to a

statewide citizen-science monitoring effort (Texas A&M AgriLife Extension 2013). It

recommends the use of 3 equal distance intervals for point counts of 5 minutes in

duration. While the authors state that distance sampling is a "labor intensive method" for

estimating quail abundance, and is usually restricted to research projects, we believe it

could be successfully incorporated into a citizen-science survey with proper training and

the application of distance sampling in a double-sampling effort. However, an

examination of their methodology indicates the inappropriate use of apriori distance

intervals to overcome inaccuracy in distance estimation. The 3 proposed distance

intervals (0-200 m, 200-400 m, and 400-600 m) are too broad (Buckland et al. 2001:42),

and appear to have been arbitrarily selected with disregard for the shape of the true

detection function. We used the apriori distance intervals of Rollins et al. (2005, Texas

A&M AgriLife Extension 2013) to generate results using our survey data. The histogram

of distances obtained (Fig. 4.7) showed that 3 intervals were too broad, and the

probability density plot (Fig. 4.8) demonstrated poor model fit despite a large number of

observations (n = 4,627). Results derived from their methodology had a higher CV for

h(0), and therefore higher CV’s for all density estimates (Table 4.6, Table 4.5). As a

result of poor model fit near distance zero, this method produced density estimates 2-3

times lower than those obtained using exact distances (Table 4.4). As such, we believe

the use of distance sampling for this project is limited, unless incorporated as part of a
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double-sampling effort with exact distances collected by trained observers. This is not to

say that distance sampling is too difficult for citizen-scientist, rather there appears to be

no economically feasible paradigm for providing the standardized training and equipment

necessary to obtain adequate results at this time (i.e., the incorporation of rangefinders,

collection of exact distances, and sufficient observer training in the field).

The study of Murray et al. (2011) obtained 925 observations of bobwhites from an

unspecified number of points along 14 routes over 2 years, but recommended use of the

removal method (Farnsworth et al. 2002) due to better precision and suspected violation

of distance assumptions. The authors state that poor sample design (bias due to location

near roadways), movement away from the point in response to the observers, reduced

singing rates in response to observers, and poor accuracy in estimates of distance were

likely responsible for violation of distance assumptions and poor performance of the

distance method. Certainly inadequate sample design, combined with reduced calling

rates and movement away from the observer may have biased estimates, but each should

have been corrected prior to sampling. Likewise, inaccuracy in distance estimation

should have been identified and corrected during training. However, we used the apriori

distance intervals of Murray et al. (2011) to generate results using our data to determine

if their use of distance intervals or models that demonstrated "a lack of fit" near distance

zero (Murray et al. 2011:1076) further influenced their comparison among methods. The

histogram of distances obtained using our data was peaked near 100 m (Fig. 4.9). A

hazard rate model with 2 simple polynomial adjustment terms (4th and 6th order) was

selected via AIC, and the probability density plot (Fig. 4.10) demonstrated a successful

model fit. Results derived using their distance intervals had a slightly elevated CV for

h(0) in comparison with results obtained using exact distances (Table 4.6), and therefore

produce elevated CV’s for most density estimates (Table 4.7). This indicates that while

the apriori distance intervals used by Murray et al. (2011) likely constrained model fit,

96



they happened to capture the shape of the underlying detection function. While

fortuitous, our results demonstrate Murray et al. (2011) were unable to obtain a proper

model fit with their data due to inadequate sample design and methodology, resulting in

violation of distance assumptions and biased results. Clearly apriori fixed distance

intervals can hinder model fit, and may not adequately represent the true detection

function. As such, exact distances should be collected in the field whenever possible,

with post-hoc application of distance intervals for smoothing, when necessary, during the

analytical phase.

Applegate et al. (2011) obtained 635 observations of bobwhites from 110 points

over 6 years, but recommended that alternatives to distance sampling be used in future

studies due to poor results. An examination of their methodology indicates that detection

function fit was inhibited by poor model selection and inappropriate use of apriori

distance intervals to overcome inaccuracy in distance estimation. The 4 intervals used

(0-25, 26-51, 51-100, and greater than 100 m) were too broad (Buckland et al. 2001:42),

and selected either without knowledge of, or with disregard for, the likely shape of the

true detection function. Their model fitting was limited to half-normal and uniform

functions, when under these constraints a hazard rate function may have provided better

results due to the inherent shape for this family of models (Buckland et al. 2001:47).

Hence, their detection function "shoulder" was obfuscated by the coarse, apriori distance

intervals, resulting in model fits where detection probability increased as a function of

radial distance (i.e., monotonically increasing). When we used the apriori distance

intervals of Applegate et al. (2001) to generate results using our data, the histogram of

distances obtained (Fig. 4.11) was indeed similar to Applegate et al. (2001:118), but the

probability density plot (Fig. 4.12) demonstrated that a relatively successful model fit

could be obtained with appropriate model selection. However, results derived from their

analytical methodology had a higher CV for h(0), and therefore higher CV’s for all
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density estimates (Tables 4.8 and Table 4.6).

Our results demonstrate that calibration of bobwhite relative abundance (raw counts

of birds heard) with density estimates derived from distance sampling is both

straightforward and efficacious (Table 4.10, Fig. 4.13). Further, our results demonstrate

that with a valid sampling design, a distance sampling based, double-sampling procedure

(Neyman 1938, Caughley 1977, Eberhardt and Simmons 1987) can easily be

incorporated into a larger citizen-science monitoring effort for bobwhite in Texas (e.g.,

the Texas A&M AgriLife Texas Quail Index). These findings are relevant because many

research efforts require some measure of abundance or relative abundance to make

management decisions. Yet indices of relative abundance (raw counts) have been widely

criticized for being incomplete counts of unknown proportions of a population. Based

upon our results, and the results of previous research (Bart and Earnst 2002, Collins

2007), we believe double-sampling may be the most practical, yet underutilized solution,

for obtaining reliable knowledge from studies using indices of relative abundance.

Large monitoring efforts covering broad regions are costly, and to overcome this

problem many research efforts have incorporated citizen-scientists to provide the

necessary manpower at reduced costs. However, researchers from various backgrounds

have indicated that citizen volunteers are unlikely to have the experience, training, or

supervision necessary to conduct many of the more intensive abundance estimation

techniques used by professional biologists. Our results agree with the findings of

previous researchers, and demonstrate that it is possible to calibrate metrics obtained

through citizen-science efforts with results obtained by more intensive scientific methods.

As such, our findings support the supposition that citizen-science results can be

economically incorporated into scientific research, so long as the endeavor is buttressed

with reproducible scientific results obtained under a valid sampling design.

Many grassland bird species are undergoing range contractions and declines in
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abundance. One such grassland bird, the northern bobwhite quail, is among the most

studied species in North America, and yet it continues to decline. To understand and

reverse declines in grassland bird abundance will require collection of comparative

environmental and synecological information over broad areas, especially estimates of

temporal and spatial abundance. The scale of these efforts suggests that only participation

by landowners and the public (i.e., citizen scientists) can meet both the fiscal and

manpower requirements of these future projects. Project outcomes will therefore depend

upon the successful conversion of volunteer effort into valuable scientific data, and

consequently the integrity of the experimental design, sampling methodology, training,

and analytical methods.

MANAGEMENT IMPLICATIONS

What we have demonstrated that: (1) distance sampling can be used to obtain

accurate estimates of bobwhite if sufficient observations are obtained for each area of

inference, (2) modeling of the detection function is inhibited by small sample sizes, (3)

modeling of the detection function is inhibited by inappropriate use of apriori distance

intervals (i.e., distance intervals derived to overcome inaccuracy in distance estimation

with disregard for ability to accurately model the shape of the true probability density

function), (4) inappropriate use of apriori distance intervals inflates variance of the

density estimates (information loss due to categorization of a continuous variable), (5)

density estimates derived from distance sampling may be used to obtain a

double-sampling regression with auditory detections (i.e., a common relative index for

grassland birds), and therefore (6) a double-sampling paradigm is likely a pragmatic

solution for obtaining reliable information from citizen-science surveys of northern

bobwhite and other grassland birds.
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CHAPTER V

CONCLUSIONS

MOURNING DOVE

In recent years, the need for additional information to better manage mourning dove

populations has become evident (National Mourning Dove Planning Committee 2004).

Research that can adequately address this need requires the identification of

homogeneous experimental habitat units from within which replicate samples may be

derived. Of particular concern is the association between habitat variables and relative

abundance indices, as the latter are unlikely to share equal probabilities of detection

across diverse habitat conditions. My evaluation of experimental units for mourning dove

research in Texas used habitat variables at 2 spatial scales, but did not incorporate annual

call-count survey (CCS) results into the analysis. This approach assumes a relationship

between habitat and species niche, but alleviates any potential bias due to differences in

detectability among sites and confounding due to tautological incorporation of abundance

survey results into a model that predicts abundance. Through use of habitat variables and

appropriate statistical techniques, this study capitalized on the original work of Grue et al.

(1976, 1981, 1983) and Blankenship et al. (1971), and provides an analytical paradigm

for the statistical assessment of classification schemes.

My results indicate that the (Gould 1962) classification is currently the most suitable

for delineation of experimental units in Texas. However, the vegetation based

classification of Gould (1962, 1975) is only available for Texas. Conversely, the Omernik

(Omernik 1987, Griffith et al. 2004) classification method is standardized and available

for the continental United States. Further, the Omernik (Omernik 1987, Griffith et al.

2004) classification was derived from a cartographic paradigm that included variables for
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potential natural vegetation, soils, physiography, and anthropomorphic land use. In doing

so, Omernik (Omernik 1987, Griffith et al. 2004) acknowledged that land cover

classifications must contain not only habitat variables defining the background state of the

ecological matrix (dominant gradients influencing potential habitat condition), but also

some measure of anthropomorphic effects (contemporary land use), which act to perturb

the underlying system. It is therefore imperative that future researchers understand that

species-habitat relationships are in constant flux, but constrained by the tolerances of

each species. Because classification schemes are implicit hypotheses concerning spatial

delineation of habitat into multivariate experimental units, CDA (Anderson and Robinson

2003, Anderson and Willis 2003) may provide a useful mechanism for the periodic future

assessment of classifications (whether cartographic or quantitatively based).

Finally, these results provide a framework for testing the earlier hypothesis of

Dambach (1948) who concluded that habitat was the essential factor regulating

population trends:

“The chief factor determining long term trends in game populations in Ohio

is land use. Only as far as the major use of the land can be modified to meet

the needs of wildlife can any appreciable influence on game populations be

expressed. Hunting restrictions, artificial propagation, predator control,

winter feeding and related efforts are incidental compared to natural

production.”

I propose that anthropomorphic land use must be periodically evaluated, relative to

harvest and other demographic parameters, if we are to understand ecological trends, and

if we intend to properly manage wildlife, and particularly mourning dove, populations.

Results presented here identify currently optimal experimental units, based upon habitat

congruent with CCS routes, and therefore provide the foundation for future mourning
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dove research efforts in Texas and elsewhere.

NORTHERN BOBWHITE HABITAT

Grassland bird conservation is a growing concern due to range contraction and/or

continued declines in abundance for several species as a result of habitat loss and

fragmentation. These long-term trends are frequently attributed to changing

anthropogenic land use. Texas is comprised of approximately 56.7 million ha of private

farms, ranches and forests, leading the nation in land area devoted to privately owned

working lands. While these working lands account for 83% of the land area within the

state, and provide substantial economic, environmental, and recreational benefits, these

private lands also provide most of the available habitat supporting native flora and fauna.

Yet these lands are being consumed by rapid population growth, suburbanization, and

rural development. Our spatial-temporal analysis of bobwhite habitat clearly indicates

that many contemporary anthropogenic land uses are inversely related to quail abundance.

For instance, our habitat analysis explained R2 = 74.5% (Radj
2 = 60.8%, P < 0.0016) of

the variance in bobwhite relative abundance during the 1997–2012 period in Texas, and

revealed significant regional differences in habitat variables through time. As such, our

results provide incontrovertible evidence that anthropogenic habitat degradation is largely

responsible for the ongoing decline in northern bobwhite and other grassland birds.

The outcome of this research is both informative and hopeful. If the primary cause

of habitat loss is contemporary human land use, then we can work to alter and transform

human land management to minimize negative impacts and maximize our natural

resources. That which has been created by human endeavors, can be altered by human

ingenuity and effort. We therefore suggest that refocusing research efforts toward the

identification of spatial-temporal land management factors that degrade or improve

natural productivity in habitat quality will provide the most pragmatic strategy for
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reversing the decline in grassland birds, especially the northern bobwhite.

The results from my assessment of northern bobwhite habitat in Texas demonstrates

that a shift toward monitoring of anthropogenic metrics is economically feasible, and can

be used to develop new forms of responsible habitat management. More importantly, we

have identified available metrics that can be used to predict shifts in habitat quality

(Human Population Density, Average Market Value per Hectare, Average Production

Value per Hectare). As such, my analyses provide inputs for determining what metrics

can be monitored to assess changes in habitat quality over time, and where to utilize

conservation capital in order to maximizing return on investment.

NORTHERN BOBWHITE ABUNDANCE

Many grassland bird species are undergoing range contractions and declines in

abundance. To understand and reverse these declines will require collection of

environmental and synecological information over broad spatial and temporal scales,

especially estimates of abundance. Yet the manpower required for monitoring at this scale

is large and economically daunting, which suggests that only participation by landowners

and the public citizen scientists can meet both the fiscal and manpower requirements of

these future monitoring efforts. Citizen-science project outcomes will therefore depend

upon the successful conversion of volunteer effort into valuable scientific data.

Numerous research projects have utilized relatively untrained volunteers, often

termed citizen-scientists, to provide the manpower necessary for data collection over

large areas, timescales, and a multitude of species: birds (ebird.org, birdsleuth.org),

insects (e-butterfly.org, bumblebeewatch.org, BugGuide.net), marine mammals

(wildwhales.org), herptiles (aza.org/frogwatch), plants (budburst.org), asteroids

(cosmoquest.org), weather (oldweather.org), and the search for extra-terrestrial

intelligence (seti.org, setiathome.berkeley.edu). However, ecological research has shown

103



that most citizen volunteers are unlikely to have the experience, training, or expertise

necessary to conduct many of the more intensive abundance estimation techniques, such

as mark-resight, time-to-detection, and double-observer (Greenwood 2007, Couvet et al.

2008, Dickinson et al. 2010, Conrad and Hilchey 2011, Jiguet et al. 2012), including the

ability to unequivocally discern animal calls or to accurately estimate distances (Gibson

and Bergman 1954, Scott et al. 1981, Hodge 1981, Alldredge et al. 2007, Efford and

Dawson 2009, Nadeau and Conway 2013). This is not to say that there are not

highly-trained lay individuals, such as many birding enthusiasts, that maintain a better

command of field craft and bird call identification than most scientists. Rather, it

demonstrates the need for incorporation of scientific expertise into citizen-science efforts

to ensure appropriate methodology, experimental design, and training regimes are

established to yield the level of accuracy and precision required for successful analysis

and inference from crowd-sourced data.

I developed a pilot scale study to demonstrate the feasibility of combining scientific

expertise, with citizen-science participation effort, to obtain a regional estimate of

northern bobwhite abundance. Our objective was to use distance sampling density

estimates to calibrate bobwhite call-count surveys within a double-sampling paradigm

(Caughley 1977, Eberhardt and Simmons 1987, Bart and Earnst 2002, Pollock et al.

2002, Collins 2007). Spring cock call-counts were conducted on 12 ranches within the

Rolling Plains of Texas during 2012–2014. This sampling effort collected calls and

distances at each point, yielding 1,022 total counts, detected 36,415 calls, 4,647 birds,

and obtained 4,627 distances (Tables 4.1 and 4.2). Data were analyzed using program

DISTANCE to generate local and regional estimates of quail density for each year

(Tables 4.3 and 4.4), and to calibrate density estimates with birds heard (Fig 4.13). These

results support the findings of previous researchers (Caughley 1977, Eberhardt and

Simmons 1987, Bart and Earnst 2002, Pollock et al. 2002, Collins 2007), and
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demonstrate that it is economically feasible and logistically pragmatic to calibrate metrics

obtained through citizen-science efforts (call-counts; relative abundance) with results

obtained by more intensive scientific methods (distance sampling; density estimates). As

such, our findings support the supposition that citizen-science results can be incorporated

into scientific research, so long as the endeavor is buttressed with reproducible scientific

results, obtained with the proper equipment, methodology, and training, under a valid

sampling design. Finally, our results represent prima facie evidence that with a valid

experimental design and appropriate training, a distance sampling based,

double-sampling procedure can easily be incorporated into a larger citizen-science

monitoring effort for grassland birds, such as the Texas A&M AgriLife Texas Quail

Index.

WILDLIFE MANAGEMENT

This dissertation represents my attempts to address several wildlife management

problems using novel combinations of existing research tools and methodology.

Collectively, these works represent independent research into 3 aspects of autecology that

are central to all wildlife management endeavors: defining experimental units, identifying

habitat factors that regulate populations, and estimating animal abundance.

While I used 2 game bird species as examples (mourning dove and northern

bobwhite), it is important to note the outcomes of each effort have broader ecological

application. The target species within each effort are interchangeable with other bird

species in each guild, and the philosophical approach to each problem is universal

(methodological skepticism). Similarly, the scientific methods used in each of these

research efforts are common, and relevant for both single-species and community

ecology. Yet, both ”game species” and ”single-species management” are viewed with

disdain by many contemporary conservation biologists. This is unfortunate, because
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game species are relatively common and, funding is available due to management

necessities arising from human exploitation. Of greater importance is the ancillary

political shift toward ”community ecology” and ”bioconservation”, as it represents a

further embrace of the Clementian “ecosystems as an organism” perspective, and a move

away from the Gleasonian Individualistic Concept.

To whit; we are now in an age where computational processing power and statistical

advances in multivariate research will allow us to investigate niche interactions as

envisioned by Gleason (1926) and Hutchinson (1957). Therefore, the ability to

investigate multivariate factors defining the fundamental niche of a single species

provides the knowledge necessary to advance our understanding of species interactions

within an ecosystem. As such, to condemn investigations into single species for political

dogma will, to some extent, hinder our ability to elucidate understanding of the natural

world.

My research, and this conclusion, is an argument which attempts to demonstrate the

relevance of wildlife management as a field of scientific endeavor, and to advocate the

need to re-evaluate single species management over time in order to incorporate new

technology and knowledge, and advance human understanding. While I believe I have

adequately made my case, any errors in logical or validity, relative truth of premises, or

interpretation of results, are mine alone.
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