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ABSTRACT

This dissertation focuses on the choice of priors in Bayesian model selection and their

applied, theoretical and computational aspects. As George Box famously said “all models are

wrong, but some are useful"; many statisticians and scientists are aware of the importance of

model selection. In a Bayesian perspective, however, it is challenging to choose the prior on the

parameters involved in model selection or how to evaluate the criterion on the prior, especially

when the number of models to be compared is massive or when a nonparametric model is

considered.

For high-dimensional Bayesian model selection for linear models, my dissertation studies

theoretical perspectives of the choice of the prior on the regression coefficient. Especially, I

consider the nonlocal prior densities that assign zero density around the null value, which is

typically 0 in model selection settings. When certain regularity conditions apply, I demonstrate

that the model selection procedure based on the nonlocal priors is consistent for linear models

even when the number of covariates p increases sub-exponentially with the sample size n. I

investigate the asymptotic form of the marginal likelihood based on the nonlocal priors and

show that it attains a unique penalty term that adapts to the strength of signal corresponding

variable in the model, and I remark that this term cannot be attained from local priors such as

Gaussian prior densities.

Another topic of my dissertation is about computational aspects of Bayesian model selec-

tion under high-dimensional settings. A full posterior sampling using existing Markov chain

Monte Carlo (MCMC) algorithms to explore high-dimensional model space is highly ineffi-

cient and often not feasible from a practical perspective. To overcome this issue, I propose a

scalable stochastic search algorithm called Simplified Shotgun Stochastic Search with Screen-

ing (S5), which efficiently explores the model space. The S5 algorithm dramatically reduces
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the computational burden to search the neighborhood of a model by considering a screening

step within the algorithm. Its empirical performance is examined in several examples, and it

outperforms existing algorithms in the sense that S5 is computationally fast while it efficiently

searches the model space. S5 is used to implement the model selection procedures introduced

in this dissertation, including linear and nonparametric model selection. The computing func-

tions are provided in the R package BayesS5 in CRAN (https://cran.r-project.org).

For nonparametric regression models, I introduce a new shrinkage prior on function spaces,

the functional horseshoe prior, that encourages shrinkage towards parametric classes of func-

tions. When the true underlying function is in the parametric class, improved estimation per-

formance is obtained relative to classical nonparametric procedures. The proposed prior also

provides a natural penalization interpretation, and casts light on a new class of penalized like-

lihood methods for function estimation. I theoretically exhibit the efficacy of the proposed

approach by showing an adaptive posterior concentration property.

The last topic of the dissertation is about a novel extension of the nonlocal idea to functional

spaces, called the nonlocal functional prior, which is suitable for nonparametric Bayesian hy-

pothesis testing (model selection) problems. I illustrate the asymptotic rate of the Bayes factor

defined by the proposed prior for nonparametric hypothesis testing problems. I apply the pro-

posed prior densities for high-dimensional model selection of nonparametric additive models,

and investigate the model selection consistency of the resulting model selection procedure. I

provide some simulation studies and real data examples that show that the proposed model

selection procedure outperforms state-of-the-art methods in finite samples.
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1. INTRODUCTION

1.1 A Brief Review of Bayesian Model Selection

Suppose that a set of H models M = {M1, . . . ,MH} is considered for observed data y.

Under a model Mh 2 M, the density function of y is L(y | ✓h,Mh), where ✓h is a vector of

unknown parameters under model Mh. For Bayesian inference, priors should be fully specified

by assigning a prior distribution ⇡(✓m | Mh) to the parameters of each model and a model prior

⇡(Mh) to each model. The posterior probability of model Mh conditionally on the observed y

can be expressed as

⇡(Mh | y) = mMh
(y)⇡(Mh)P

h0 mM
h0 (y)⇡(Mh0)

, (1.1)

where

mMh
(y) =

Z
L(y | ✓h,Mh)⇡(✓h | Mh)d✓h

is the marginal likelihood of a model Mh. Based on these posterior model probabilities, pair-

wise comparison of models M1 and M2 is conducted by the posterior odds that can be expressed

as a product between the ratio of marginal likelihoods and the model prior odds; i.e.,

⇡(M1 | y)
⇡(M2 | y)

=
mM1(y)

mM2(y)
⇥ ⇡(M1)

⇡(M2)
.

In particular, the ratio of marginal likelihoods mM1(y)/mM2(y) is called the Bayes factor

and it determines the decision rules for Bayesian hypothesis testing problems as discussed in

Kass and Raftery (1995) and Jeffreys (1961). The higher the Bayes factor value supports, the

more evidence in favor of M1. In Kass and Raftery (1995), a rough descriptive statement of
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some decision rules regarding Bayes factors was empirically addressed as

logBF10 Evidence against H0

0 to 1 Not worth more than a bare mention

1 to 3 Positive

3 to 5 Strong

> 5 Very strong.

More discussions and empirical examples regarding Bayes factor are provided in Kass and

Raftery (1995).

Throughout this dissertation, I assume that one of considered models is the true model that

represents the data-generating process, which is a setting called the “M-closed" framework as

proposed in Bernardo and Smith (1994). This in itself is somewhat controversial, because the

true model might not exist or it might not be one of those under consideration. However, it is

a helpful viewpoint for at least thinking through the consequences of a true Bayesian model

selection procedure and desirable qualities.

I now introduce a desirable asymptotic property for Bayesian model selection procedures

called model selection consistency that can be defined as follows.

Definition 1. (Model Selection Consistency) Suppose that t is the true data-generating model.

Then, if

⇡(t | y) p! 1,

as n ! 1, the Bayesian model selection procedure is called “consistent".

From a theoretical point of view, when the number of models is fixed regardless of the

sample size n, Schwarz (1978) showed that the model selection procedures defined by some

general classes of priors; e.g. Gaussian priors achieve the model selection consistency. How-

2



ever, when I allow the number of models to increase at a certain rate of n, the asymptotic

behavior of the posterior probability of the true model is not clear. This situation is commonly

faced in high-dimensional variable selection problems for regression models due to the fact

that the total number of models for variable selection is 2p, where p(� n) is the total number

of variables .

For the Bayesian framework, the uncertainty of the model space can be represented by

the posterior model distribution ⇡(M1 | y), . . . , ⇡(MH | y). By considering ⇡(Mh | y) as

a measure of the "truth" of model Mh, a natural strategy for model selection is to choose the

model that attains the largest posterior model probability. This model is called the maximum

a posteriori (MAP) model, i.e. cMMAP = argmax
h
⇡(Mh | y). These posterior probabilities

are also important for full posterior inference in prediction using Bayesian model averaging

(Raftery et al., 1997), which is quantified by the posterior predictive distribution as p(ypred |

y) =
P

h0 ⇡(ypred | Mh0 ,y)⇡(Mh0 | y) for a future observation ypred.

1.1.1 Bayesian Model Selection for the Linear Regression Model

Consider the standard setup of a Gaussian linear regression model with a univariate re-

sponse and p candidate predictors. Let y = {y1, . . . , yn}T denote a vector of responses for n

individuals and X an n⇥ p matrix of covariates. Let � = {�1, . . . , �p}T denote the regression

coefficients. The linear regression model for the data is given by

y = X� + ✏, (1.2)

where ✏ ⇠ Nn(0, �2In). However, in high-dimensional settings (n ⌧ p), the unique MLE does

not exist and a MLE fails to achieve consistency of estimation. To overcome this issue, from

a Bayesian perspective, one can consider a sparsity inducing prior (Castillo et al., 2015) that

restricts the size of a given model k and puts zero prior probability on other parameters that are

3



not in model k. More precisely, for a given model k, the prior is

⇡(� | k) / ⇡k(�k)�0(�kc) (1.3)

where the term �0(�kc) implies the coordinates �kc = {�j : j 2 kc} being zero and ⇡k(�k)

is a prior on the nonzero regression coefficients �k = {�j : j 2 k}. This class of priors

includes many instances such as Zellner’s g-prior (Zellner, 1986), mixtures of g-priors (Liang

et al., 2008) and discrete mixtures of spike and slab priors (Ishwaran and Rao, 2005). With

a slight abuse of the notation, I denote the prior on the model space as ⇡(k) for a model k.

By following the definition of the posterior model probability in (1.1), the resulting posterior

probability of model k is defined as

⇡(k | y) = mk(y)⇡(k)P
l ml(y)⇡(l)

,

where the marginal likelihood of a model k is given by

mk(y) =

Z
L(y | �,k)⇡(� | k)d�,

for the likelihood function for model k, L(y | �,k). More practically, when �2 is unknown,

a prior on �2 can be deployed and the corresponding marginal likelihood can be defined by

integrating with respect to the prior on �2. The posterior model probability can be used to select

variables that are associated with the response. The simplest approach to the best model is to

consider the MAP model that maximizes the posterior model probability. An other option is to

utilize the marginal inclusion probabilities {qj : j = 1, . . . , p}, where qj =
P

k:j2k ⇡(k | y) for

j = 1, . . . , p. The median probability model is defined as the set of variables whose marginal

inclusion probability is larger than 0.5. Barbieri and Berger (2004) showed that the median

probability model is optimal in a predictive sense when only a single model is considered .
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Some desirable theoretical properties of the posterior inference with some choices of the

prior specification (1.3) have been discussed in high-dimensional settings. Johnson and Rossell

(2010) proposed a class of prior densities called nonlocal prior densities for ⇡k(�k | k). Nonlo-

cal prior densities are density functions that are identically zero whenever a model parameter is

equal to its null value, which is typically 0 in model selection settings. More formal definition

is as follows:

Definition 2. Suppose that ✓ is a parameter supported in ⇥ and ✓0 is the null value. Consider

a hypothesis test H0 : ✓ = ✓0 versus H1 : ✓ 6= ✓0. Under the alternative hypothesis, a

prior density ⇡ is nonlocal, if for every ✏ > 0, there is � > 0 such that ⇡(✓) < ✏ for all ✓ 2 ⇥

such that |✓ � ✓0| < �.

Conversely, local prior densities are positive at the null parameter value. In Johnson and

Rossell (2012), it was shown that Bayesian model selection procedures based on nonlocal

priors achieve model selection consistency when p = O(n). However, when p increases at

a sub-exponential rate of n, i.e. log p = O(nc) for some 0  c < 1, its posterior model

consistency has not been derived.

Also, under increasing p at a sub-exponential rate of n, Narisetty and He (2014) investigated

the asymptotic behavior of model selection procedure based on a Gaussian prior with diverging

variance as n grows. Castillo et al. (2015) discussed some general conditions on priors on

the coefficient and models for the optimal rate of posterior contraction and model selection

consistency. All priors considered in the literature were local priors.

1.1.2 Bayesian Model Selection in the Nonparametric Regression

Consider a simple nonparametric regression model defined according to a response y =

{y1, . . . , yn} and a univariate predictor X = {x1 . . . , xn}

y = F + ✏, (1.4)
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where ✏ ⇠ N(0, �2In) and F = {f(x1), . . . , f(xn)} with the unknown regression function f .

From a practical point of view, a practitioner should decide whether the shape of f is specified

by a parametric from such as linear or quadratic function, or a nonparametric representation

using splines, wavelet, Gaussian processes etc. This argument can be formalized as a model

selection problem by writing

H0 : F 2 L versus H1 : F 62 L, (1.5)

where L is a class of the parametric functions that are specified in advance. For example, if a

practitioner is interested in whether F is linear or not, L can be defined as L = {�0 + �1X :

�0, �1 2 R}. Under H0, the resulting model is simply a univariate linear regression model.

Under H1, one can model the unknown function f as spanned by a set of pre-specified basis

functions {�j}1jKn
, where Kn is the number of basis functions, as follows:

f(x) =
KnX

k=1

�k�k(x). (1.6)

I shall work with the B-spline basis (De Boor, 1978) in the sequel, although the method-

ology generalizes to a larger class of basis functions. The B-splines basis functions can be

constructed in a recursive way. Let the positive integer q denote the degree of the B-spline

basis functions satisfying Kn > q + 1. Without loss of generality, assume that xi 2 [0, 1] for

i = 1, . . . , n. Define a sequence of knots 0 = t0 < t1 < · · · < tKn�q = 1. In addition, define

q knots t�q = · · · = t�1 = t0 and another set of q knots tKn�q = · · · = tKn
. As in De Boor
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(1978), the B-spline basis functions are defined as

�k,1(x) =

8
>><

>>:

1, tk  x < tk+1,

0, otherwise,

�k,q+1(x) =
x� tk

tk+q � tk
�k,q(x) +

tk+q+1 � x

tk+q+1 � tk+1
�k+1,q(x),

for k = �q, . . . , Kn�q�1. I reindex k = �q, . . . , Kn�q�1 to k = 1, . . . , Kn and the number

of basis functions is Kn. Letting � = (�1, . . . , �Kn
)T denote the vector of basis coefficients

and � = {�k(xi)}1in,1kKn
denote the n ⇥ Kn matrix of basis functions evaluated at the

observed covariates, I model F = ��.

Even though parametric models might fail to capture important features of the data when

they do not fit into the parametric form, the asymptotic behavior of the parametric model is

superior to the nonparametric counterparts when the data-generating model is in the class of

the parametric models or it is close enough to the class. In Ghosal and van der Vaart (2007), it

was shown that the contraction rate of the posterior distribution defined by isotropic Gaussian

priors for the nonparametric regression model in (1.4) is n�↵/(1+2↵), where ↵ > 0 quantifies the

smoothness of the function, which is slower than the parametric optimal rate n�1/2. In practice,

nonparametric models also require extra steps to choose the tuning parameter that controls

the smoothness of the estimated function, and they are usually challenging in computational

and practical senses. Furthermore, in many cases, parametric shapes of F have advantages

for interpretation of the regression function. For example, the slope parameter of the linear

regression model represents the linear association between the response and the covariate.

In the Bayesian paradigm, the evidence in favor of each model in (1.5) is naturally quanti-

fied by Bayes factor that was introduced in Jeffreys (1961) and defined as

BF10 =
m1(y)

m0(y)
,
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where m1(y) and m0(y) are the marginal likelihoods under H1 and H0; i.e. m1(y) =
R
L(y |

�, H1)d⇡NP (�) and m0(y) =
R
L(y | ✓, H0)d⇡P (✓), where ⇡NP is a prior on the B-spline

coefficient � and ⇡P is a prior on the parameter ✓ 2 Rd0 for the parametric model in L.

For the hypothesis test in (1.5), Choi et al. (2009) considered a semiparametric model

that has an additive form between a parametric function and a nonparametric function. They

investigated the asymptotic behavior of the Bayes factor defined by Gaussian priors on the

coefficients of the basis functions. More general theoretical results regarding Bayes factor

were provided in Choi and Rousseau (2015), which showed that the resulting Bayes factor

achieves consistency in the sense that BF10 converges to zero in probability when the true

data-generating process supports H0 and BF10 diverges to infinity in probability, otherwise.

When multiple predictors are considered, the nonparametric additive model (Hastie and

Tibshirani, 1986) can be considered, which is expressible as

y =
pX

j=1

fj(Xj) + ✏, (1.7)

where ✏ ⇠ N(0, �2In) and fj is the j-th marginal regression function. Also, Xj is the j-th

covariate among p covariates. The setting for (1.4) can be naturally extended to the additive

model by modeling each component function as a linear combination of the B-spline basis

functions, i.e. fj(Xj) =
P

Kn

k=1 �k(Xj)�jk = �j�j , where �j = {�j1, . . . , �jKn
} and �j =

{�1(Xj), . . . ,�Kn
(Xj)} for 1  j  p. Similar to the model selection procedures discussed in

Section 1.1.1 for linear models, I am interested in selecting variables that are associated with

the response y, and the uncertainty identification of the model space is also my concern.

From a frequentist perspective, there have been several studies regarding the additive model

selection in high-dimensional settings, including Ravikumar et al. (2009), Meier et al. (2009),

and Huang et al. (2010). Many procedures use the group Lasso penalty proposed in Yuan and

Lin (2006) to induce the sparse representation of the component function. Theoretical proper-
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ties of associated estimation and model selection properties have been investigated in Raskutti

et al. (2012) and Yuan and Zhou (2016). In Bayesian frameworks, Shang and Li (2014) consid-

ered the Bayesian additive model in high-dimensional settings and provided some conditions

on the prior on the basis coefficient necessary to achieve model selection consistency. How-

ever, in Shang and Li (2014), the practical guideline regarding the choice of prior on the spline

coefficients is unclear, and the computational challenges are not resolved, since the proposed

algorithm is based on an MCMC algorithm that is inefficient in high-dimensional settings.

1.2 Research Challenges and Main Contributions

1.2.1 Linear Model Selection in High-dimensional Settings

The Choice of Priors

For high-dimensional linear model selection problems, there is a rich literature regarding

the choice of prior on the regression coefficient and the model space. In Castillo et al. (2015),

a class of model priors called complexity priors was defined as

⇡(k) /
✓

p

|k|

◆�1

a�|k|p�b|k|,

for some constants a, b > 0. I note that the Bernoulli-uniform prior discussed in Scott and

Berger (2010), ⇡(k) /
�

p

|k|

��1, is a special case of the complexity prior with a = 1 and b = 0.

Castillo et al. (2015) provided tail conditions on the prior on the coefficients and sufficient

conditions on the hyperparameter of a class of model priors to guarantee the optimal posterior

concentration rate and model selection ocnsistency. Narisetty and He (2014) investigated the

asymptotic behavior of model selection procedures based on the Bernoulli-uniform model prior

and a Gaussian prior with variance that increases faster than p2+✏ for any small ✏ > 0.

For linear models, the posterior model probability based on priors discussed in Castillo et al.

(2015) and Narisetty and He (2014) (or Zellner’s g-prior Zellner (1986)) can be asymptotically
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expressed as

log ⇡(k | y) ⇡ lk(b�k)� |k|cn,p + C, (1.8)

where lk is the logarithm of the likelihood function under a model k and b�k is the maximum

likelihood estimator of �k under model k for some sequence cn,p > 0 and a constant C. For ex-

ample, as shown in Narisetty and He (2014), if �k | k ⇠ N(0, pc) for some constant c > 0 and

the Bernoulli-uniform prior is imposed on the model space, then the logarithm of the resulting

posterior model probability is asymptotically equivalent to lk(b�k)� (1 + c/2)|k| log p+ C. It

is interesting to note that this expression is exactly the same as penalized likelihood procedures

with a L0 penalty (e.g., Zhang et al. (2010), Chen and Chen (2008), Kim et al. (2012)).

The main property of the form in (1.8) is that the penalty strength on model k is determined

solely by its size |k|, regardless of the marginal strength of the regression coefficient in the

model. For example, suppose that two different models with the same model size are consid-

ered. One model consists of predictors that are strongly associated with the response, and the

other model contains only some of strongly associated variables and the rest of variables in the

model are weakly associated with the response. Under objective function in (1.8), two models

would be penalized by the same amount, because the model size is the same. Even though the

model with weakly associated variables will be strongly penalized by the log-likelihood func-

tion, the model selection criterion with the penalty that only depends on the model size might

not be able to select important variables and might fail to control the multiplicity in a practical

sense since there are too many models to be compared in the model space in high-dimensional

settings.

In this dissertation, certain sufficient conditions on the nonlocal priors defined in Defini-

tion 2 will be provided to allow the resulting model selection procedure to achieve the model

selection consistency when log p = O(nc) for some 0  c < 1. Also, the asymptotic form
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of the posterior model probability defined by the nonlocal priors will be discussed, and I will

point out that the asymptotic form of the posterior model probability contains a unique form

of penalty on the regression coefficient. The form of penalty cannot be attained by local priors

that have been used previously in the literature.

The asymptotic form of the logarithm of the posterior model probability defined by the

nonlocal prior on the regression coefficients can be expressed as

log ⇡(k | y) ⇡ lk(b�k)�
|k|X

j=1

⌧
e�2
k,j

+ log ⇡(k) + C 0, (1.9)

where e�k,j = b�k,j + Op

�
(n/⌧)�1/4

�
and ⌧ is the hyperparameter for the nonlocal prior, which

controls the parsimony of model selection. Also, b�k,j denotes the j-th element of b�k.

While model selection procedures defined by local priors penalize a model only by the

size of the model, the penalty
P|k|

j=1 ⌧/
e�2
k,j in the objective function in (1.9) is adaptively

determined by the strength of the marginal signal that is measured by the e�2
k,j term and imposes

different penalties on each predictor in the given model. This adaptive term encourages the

model selection procedure to select variables with strong signals. This property has not been

previously discussed in the original literature (Johnson and Rossell, 2010), and it explains why

the nonlocal prior shows empirically outstanding performance in model selection.

A Scalable Computation

Even though sparsity inducing priors in (1.3) enjoy desirable theoretical properties, the

practical implementation of Bayesian model selection procedures based on these priors is

computationally challenging due to the discrete nature of the prior. Since the total number

of possible models is enormous (2p) even for a moderate dimension p, it is not computationally

practical to calculate all possible marginal likelihoods to evaluate the exact posterior model

probabilities. Thus, algorithms to efficiently explore the model space to reduce the computa-
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tional burden are needed. One might consider reversible jump Markov chain Monte Carlo pro-

posed in Green (1995) for posterior inference, but that algorithm is inefficient and impractical,

especially in high-dimensional settings. A Gibbs sampling based algorithm called the Stochas-

tic Search Variable Selection (SSVS) was proposed in George and McCulloch (1993), but its

computational efficiency decreases as the number of predictors increases. Besides Markov

Chain Monte Carlo (MCMC) approaches, Hans et al. (2007) introduced Shotgun Stochastic

Search (SSS) to efficiently search the model space and approximate posterior model probabili-

ties. However, the computational demands of SSS significantly increases as dimension grows.

More recently, some deterministic approaches, such as Rockova and George (2014) and Car-

bonetto and Stephens (2012), were used to find the MAP model. Those algorithms only find a

single model and do not provide posterior model probabilities, so it is challenging to quantify

the uncertainty on the model space.

To ameliorate these computational issues, several continuous shrinkage priors have been

proposed, including the Bayesian Lasso (Hans, 2009; Park and Casella, 2008), the horseshoe

prior (Carvalho et al., 2010), the generalized double Pareto shrinkage prior (Armagan et al.,

2013) and the Dirichlet-Laplace prior (Bhattacharya et al., 2015). Those priors can be ex-

pressed as scale mixtures of Gaussian distributions, so the resulting marginal priors are con-

tinuous. By avoiding the structure of the discrete mixtures, those continuous shrinkage priors

provide a computational advantage, and efficient MCMC algorithms are available for sampling

from the corresponding posterior distribution; e.g. Bhattacharya et al. (2016). However, pos-

terior inferences obtained under these continuous priors do not induce any posterior model

probabilities. Nor is it straightforward to choose a model or select variables.

In this dissertation, a scalable stochastic model search algorithm called Simplified Shotgun

Stochastic Search with Screening (S5) is proposed, and its empirical performance is examined.

S5 is a simplified version of SSS and it utilizes a screening step embedded in the algorithm

to reduce the model space to be searched. Even though S5 is motivated by SSS, its efficiency
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in searching interesting regions in the model space is remarkably improved by adopting a

screening algorithm. For linear model selection in high-dimensional settings, the S5 algorithm

often finds the MAP model hundreds of times faster than SSS does, but it identifies the same

MAP model as SSS in all data sets examined in this dissertation. Furthermore, S5 accurately

approximates posterior model probabilities and approximated posterior model probabilities

are almost identical to those obtained from SSS. This algorithm is applicable to any variable

selection procedures as long as a sound screening procedure is available. That is, it can be used

for logistic regression models and nonparametric additive models. I extend the S5 algorithm to

search the space of nonparametric additive models by adding a nonparametric screening step

in the algorithm, and used it to implement the nonparametric model selection procedure that is

described in the following sections.

An R functions that implements S5 is available in the R package BayesS5 in CRAN

(https://cran.r-project.org). This package includes a parallelized version of the

code, which lets multiple independent chains search the model space simultaneously. This al-

lows the algorithm explore a wider range of interesting regions in the model space. Simple

tutorials about the package are also provided in this dissertation.

1.2.2 Nonparametric Model Selection in High-dimensional Settings

A Novel Shrinkage Prior for Nonparametric Regression

Frequently, practitioners face the problem of choosing between a parametric model and

a nonparametric model, where the parametric model is nested within a more general class

of functions. For example, a simple linear regression model or a nonparametric regression

model might be considered for a data set, and the linear regression model is a special case of

the nonparametric model. However, sometimes building a reasonable criterion for the choice

between the parametric form and nonparametric form of the function is not evident, especially

when multiple functions are involved in the model.
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From a frequentist perspective, there has been a surge of interest in solving this problem us-

ing various forms of penalized estimation via the group Lasso (Yuan and Lin, 2006). Variable

selection based on the group Lasso for partially linear additive models was studied in Zhang

et al. (2011), where it was shown that the resulting procedure identifies the underlying true

model structure correctly and at the same time estimates the multivariate regression function

consistently. For variable selection problems in high-dimensional additive models, several pe-

nalized likelihood approaches using the group Lasso penalty have been proposed in Ravikumar

et al. (2009); Meier et al. (2009); Huang et al. (2010). These approaches force the objective

function to shrink only towards the zero function, and cannot impose shrinkage towards a

more general class of functions, which is useful in many practical examples. For example,

in log-density estimation problems, when the logarithm of a density function is quadratic, the

resulting density function is Gaussian. This means that if we let the log-density function shrink

towards a class of quadratic functions, the resulting estimated density can converge a Gaussian

density. However, shrinkage procedures that accomplish this more general form of shrinkage

have not been investigated in either Bayesian and frequentist frameworks.

In this dissertation, I propose a new shrinkage prior called functional horseshoe prior (fHS)

that encourages shrinkage of the function towards a general class of functions including zero,

constant, linear and quadratic functions. The resulting posterior mean of the function ob-

tained from the fHS prior is expressed as a mixture of nonparametric and parametric estimators.

Hence, by using the fHS prior, when the true function is in a class of parametric functions that

are specified in advance, the posterior distribution of the function behaves as if the parametric

model is used, and when the true function is strictly separated form the class of parametric

functions, the resulting posterior distribution holds its nonparametric properties.

To construct the fHS prior, I introduce a novel semi-norm that measures the discrepancy

between a function and a class of parametric functions. For the nonparametric regression model

in (1.4), the semi-norm is F T(I�Q0)F , where Q0 is the projection matrix of the null covariates
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that span the class of parametric functions. For example, the semi-norm can be interpreted as

F is linear () F T(I �Q0)F = 0, (1.10)

by setting Q0 to be the projection matrix of {1, X}. The above relation is natural, because any

linear function that is expressed as a + bX for some a, b 2 R must have zero sum of square

residuals from a linear model, which is F T(I � Q0)F = 0. Unlike existing shrinkage priors

for shrinkage on a parameter towards zero such as the horseshoe prior (Carvalho et al., 2010),

the shrinkage of the fHS prior acts on this semi-norm of the function and compels shrinkage

towards the class of parametric functions (linear functions in the above example). Further, the

proposed prior provides a natural connection to a new class of penalized likelihood methods

which can be interpreted from a frequentist perspective.

Theoretical properties of the fHS priors are studied, and it is shown that under some mild

conditions the posterior contraction rate achieves the parametric optimal rate n�1/2 under the

L2 norm when the true function lies on the class of pre-specified parametric functions. That is,

resulting inferences maintain the optimal nonparametric rate up to a logarithm term of n when

the underlying function is not parametric. This result suggests that the use of the fHS prior can

improve the estimation performance when the underlying function is parametric, and it does

not degrade the estimation when the underlying model is nonparametric. The product of the

fHS priors can be applied to the additive models in (1.7) to select variables by letting each

component function shrink towards the zero function (Q0 = 0). I evaluate the performance

of this methodology through multiple real and simulated data sets. In terms of estimation

and model selection, the proposed prior outperforms the state-of-the-art alternative methods

including the standard horseshoe prior and the penalized likelihood procedure using the group

Lasso.
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A Novel Nonlocal Prior for Nonparametric Model Selection

As briefly discussed in Section 1.1.2, for nonparametric hypothesis testing problems in

(1.5), Choi et al. (2009) and Choi and Rousseau (2015) have shown that Bayes factors defined

by certain classes of priors achieve consistency. Even though these approaches showed that the

convergence rate of Bayes factors in favor of alternative hypotheses increases at exponential

rate of n under a true alternative hypothesis, they did not address the asymptotic behavior of

the Bayes factor under true null hypothesis. This asymptotic study of Bayes factors under true

null hypothesis is important, especially when the number of functions to be tested increases as

sample size n grows.

I show that local prior densities, which assign positive probability around a null function

in nonparametric Bayesian hypothesis tests, provide exponential accumulation of evidence in

favor of an alternative hypothesis under a true alternative hypothesis, but only a polynomial

rate of accumulation in favor of null hypothesis under true null. This imbalanced behavior has

been noted also in parametric hypothesis testing problems as discussed in Johnson and Rossell

(2010).

For parametric hypothesis testing problems (Johnson and Rossell, 2010), the nonlocal prior

densities defined in Definition 2 were proposed to improve the convergence rate of the Bayes

factor under a true null. These priors ameliorates the imbalanced behavior of the convergence

rate of Bayes factor. Johnson and Rossell (2012) showed that the application of nonlocal

priors to linear model selection procedures resulted in consistency in high-dimensional settings,

whereas procedures based on local priors failed to be consistent.

To improve the convergence rate of nonparametric Bayes factor and pursue a consistent

model selection procedure for nonparametric models in high-dimensional settings, the same

strategy as nonlocal priors seems compelling in nonparametric settings. However, the appli-

cation of the nonlocal idea to nonparametric models has been challenging. Unlike the null
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hypothesis for scalar valued parameters, the nonparametric null hypothesis in (1.5) is compos-

ite. This means that the null hypothesis does not define a unique density for generating the

data. Thus, the null space of functions is difficult to be parameterized, and this has hindered a

consideration of an extension of nonlocal prior densities to nonparametric models.

In this dissertation, by using a novel semi-norm F T(I�Q0)F introduced in (1.10), I define

the null space of functions in (1.5) as {F : F T(I �Q0)F = 0}. I then construct a new class of

nonlocal priors called nonlocal functional prior densities for nonparametric hypothesis testing

and model selection problems. I provide the convergence rate of Bayes factors based on the

nonlocal functional priors. When the true data-generating process is from the null model, I

show that the convergencerate is much faster than that obtained from local priors. Finally,

I apply the nonlocal functional prior to variable selection problems for the additive model

in (1.7). Under mild regularity conditions, the consistency of the resulting model selection

procedure is shown in high-dimensional settings where the number of predictors p increases

at sub-exponential rate of n. A wide range of simulated and real data sets are considered to

examine the model selection performance of the nonlocal functional prior, showing that it has

better or comparable performance compared to all of its current competitors.

1.3 Outline

In Chapter 2, I consider model selection consistency for nonlocal prior densities in high-

dimensional settings where the dimensionality p is allowed to increase at sub-exponential rate

in n. Under suitable regularity conditions, the asymptotic form of the logarithm of the posterior

model probability based on the nonlocal prior is illustrated. I show that it contains a unique

form of adaptive penalty that cannot be derived from local priors.

In Chapter 3, I provide a detailed description of the S5 algorithm. Its efficiency is examined

by using simulated and real data sets. Also, I provide examples of the implementation of the

S5 algorithm using the R package BayesS5.
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In Chapter 4, I propose a new class of shrinkage densities called the fHS prior for non-

parametric models. These shrinkage priors bridge the gap between parametric functions and

nonparametric functions. Under mild conditions, I show that when the true underlying func-

tion has a parametric form that is pre-specified in advance, the resulting posterior distribution

contracts at the parametric optimal rate n�1/2 under the L2 norm, and that it achieves the opti-

mal nonparametric rate when the true function is strictly separated from the class of parametric

functions. I apply the fHS prior to additive models to improve estimation and select variables.

For several real and simulated data sets, it shows outstanding performance in both estimation

and model selection.

In Chapter 5, the nonlocal functional prior is proposed for nonparametric hypothesis testing

(or model selection). I show that local prior densities, which assign positive probability around

a null function in nonparametric Bayesian tests, provide exponential accumulation of evidence

in favor of an alternative hypothesis under a true alternative hypothesis, but only a polynomial

rate of accumulation in favor of a null hypothesis under a true null. This imbalanced behavior

of the convergence rate of Bayes factor can be ameliorated by nonlocal I functional priors, and

the resulting hypothesis testing procedures strongly penalize cases where the null hypotheses

are rejected. I apply the proposed prior densities for high-dimensional model selection of

nonparametric additive models and investigate model selection consistency of the resulting

model selection procedures. I provide simulation studies and real data examples wher the

proposed model selection procedure outperforms state-of-the-art methods.

The proofs of theoretical results in this dissertation appear in Appendix A, while the tech-

nical details of computation are presented in Appendix B.
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2. NONLOCAL PRIOR DENSITIES FOR HIGH-DIMENSIONAL LINEAR MODEL

SELECTION

2.1 Introduction

In the context of hypothesis testing, Johnson and Rossell (2010) defined nonlocal (alterna-

tive) priors as densities that are exactly zero whenever a model parameter equals its null value.

Nonlocal priors were extended to model selection problems in Johnson and Rossell (2012),

where product moment (pMoM) prior and product inverse moment (piMoM) prior densities

were introduced as priors on a vector of regression coefficients. In p  n settings, model

selection procedures based on these priors were demonstrated to have a model selection prop-

erty: the posterior probability of the true model converges to 1 as the sample size n increases.

More recently, Rossell et al. (2013) and Rossell and Telesca (2017) proposed product expo-

nential moment (peMoM) prior densities that have similar behavior to piMoM densities near

the origin. However, the behavior of nonlocal priors in p � n settings remains understudied

to date (particularly in comparison to other commonly used variables selection procedures),

which serves as the motivation for this dissertation.

I undertook a detailed simulation study to compare the performance of nonlocal priors in

p � n settings under sparsity with a host of penalization methods including the least abso-

lute shrinkage and selection operator (Lasso; Tibshirani (1996)), smoothly clipped absolute

deviation (Scad; Fan and Li (2001)), adaptive Lasso (Zou, 2006), minimum convex penalty

(MCP; Zhang (2010)), and the reciprocal Lasso (rLasso), recently proposed by Song and Liang

(2015). The penalty function of the rLasso is equivalent to the negative log-kernel of nonlocal

prior densities; further connections are described in Section 2.5. As a natural Bayesian com-

petitor, I also considered the widely used g-prior (Zellner, 1986; Liang et al., 2008), which is

a local prior in the sense of Johnson and Rossell (2010). I used precision-recall curves (Davis
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and Goadrich, 2006) as a basis for comparison between methods. These curves eliminate the

effect of the choice of tuning parameters for each method so that the comparison across differ-

ent methods is transparent. In cases where only a tiny proportion of variables are significant,

precision-recall curves are more appropriate tools for comparison than are the more widely

used receiver operating characteristic curves (Davis and Goadrich, 2006). While ROC curves

present a trade-off between the type I error and the power of a decision procedure, precision-

recall curves examine the trade-off between the power and the false discovery rate.

My studies indicate that Bayesian procedures based on nonlocal priors and the g-prior per-

form better than penalized likelihood approaches in the sense that they achieve a lower false

discovery rate while maintaining a given level of statistical power. Furthermore, I find that pos-

terior distributions on the model space based on nonlocal priors are more tightly concentrated

around the maximum a posteriori model than the posterior based on g-priors, implying that

they have a faster rate of posterior concentration. I also identified the oracle hyperparameter

that maximizes the posterior probability of the true model for the Bayesian procedures. The

growth-rate of these oracle hyperparameters with p also offers an interesting contrast between

nonlocal and local priors. In the case of g-priors, the oracle value of g varied between 7.83⇥108

and 4.29 ⇥ 1013 as p ranged between 1000 and 20000 in a variety of simulation settings. For

the same range of p, the oracle value of ⌧ varied between 1.97 and 3.60, where ⌧ is the tuning

parameter for nonlocal priors described in Section 2. George and Foster (2000) argued from

a minimax perspective that the g parameter should satisfy g ⇣ p2, which explains the large

values of the optimal g. However, using asymptotic arguments to obtain default hyperparame-

ters is difficult because the constant of proportionality is typically unknown. Moreover, when

g is very large, the g-prior assigns negligible prior mass at the origin, essentially resulting in a

nonlocal like prior. A similar point can be made about the recently proposed Bayesian shrink-

ing and diffusing (BASAD) priors Narisetty and He (2014). On the other hand, the optimal

hyperparameter value for the nonlocal priors is stable with increasing p, growing at a very slow
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rate.

Motivated by this empirical finding, I studied properties of two classes of nonlocal priors

allowing the hyperparameter ⌧ to scale with p. Using a fixed value of ⌧ , it seems that model

selection consistency is possible only when p  n (Johnson and Rossell (2012)). In this

article, I establish that nonlocal priors can achieve model selection consistency even when

the number of variables p increases sub-exponentially in the sample size n, provided that the

hyperparameter ⌧ is asymptotically larger than log p. This theoretical result is consistent with

my empirical finding.

2.2 Nonlocal Prior Densities for Regression Coefficients

I consider the standard setup of a Gaussian linear regression model with a univariate re-

sponse and p candidate predictors. Let y = {y1, . . . , yn}T denote a vector of responses for

n individuals and X an n ⇥ p matrix of covariates. I denote a model by an index set of

variables k = {k1, . . . , k|k|}, with 1  k1 < . . . < k|k|  p. Given a model k, let Xk

denote the design matrix formed from the columns of X corresponding to the model k and

�k = {�k,1, . . . , �k,|k|}T the regression coefficient for the model k. Under each model k, the

linear regression model for the data is

y = Xk�k + ✏, (2.1)

where ✏ ⇠ Nn(0, �2In). Let t denote the true, or data-generating model and let �0
t be the true

regression coefficient under model t. I assume that the true model is fixed but unknown.

Given a model k, the product exponential moment (peMoM) prior density (Rossell et al.,

2013; Rossell and Telesca, 2017) for the vector of regression coefficients �k is defined as

⇡(�k | �2, ⌧,k) = C�|k|
|k|Y

j=1

exp{��2
k,j/(2�

2⌧)� ⌧/�2
k,j}. (2.2)
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Figure 2.1: Nonlocal prior density functions for a single regression coefficient with ⌧ = 5; for
the piMoM prior, r = 1.

The normalizing constant C can be explicitly calculated as

C =

Z 1

�1
exp{�t2/(2�2⌧)� ⌧/t2}dt = (2⇡�2⌧)1/2 exp{�(2/�2)1/2}, (2.3)

since
R
exp{�µ/t2 � ⇣t2}dt = (⇡/⇣)1/2 exp{�2(µ⇣)1/2}.

Second, for a fixed positive integer r, the product inverse-moment (piMoM) prior density

(Johnson and Rossell, 2012) for �k is given by

⇡(�k | �2, ⌧,k) = C⇤�|k|
|k|Y

j=1

[(�k,j)
�2r exp{�⌧/�2

k,j}], (2.4)

where C⇤ = ⌧�r+1/2�(r � 1/2) for r > 1/2 and �(·) is the gamma function.

The piMoM and peMoM prior densities are nonlocal in the sense that the density value

at the origin is exactly zero. This feature of the densities for a single regression coefficient

is illustrated in Figure 2.1. Since the piMoM prior densities and the peMoM prior densities

have the same term exp{�⌧/�2} that controls the behavior of the density function around the

origin, they attain almost the same shape of the density function at the origin, which yields the
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similar properties. Further details regarding this point are discussed in Section 2.4.

I focus on these two classes of nonlocal priors in the sequel. Note that in both (2.2) and

(2.4), ⇡(�k) = 0 when �k = 0; a defining feature of nonlocal priors. The distinction between

the peMoM and the piMoM priors mainly involves their tail behavior. Whereas peMoM priors

possess Gaussian tails, the piMoM prior densities have inverse polynomial tails. For example,

piMoM densities with r = 1 have Cauchy-like tails, which has implications for their finite

sample consistency and asymptotic bias in posterior mean estimates of regression coefficients.

Because similar constraints are imposed on the hyperparameter ⌧ appearing in both (2.2) and

(2.4), at the risk of some ambiguity I use the same symbol for the two hyperparameters in these

equations.

In addition to imposing priors on the regression parameters given a model, I need to place

a prior on the space of models to complete the prior specification. I consider a uniform prior

on the model space restricted to models having size less than or equal to qn, with qn < n, i.e.,

⇡(k) / I(|k|  qn), (2.5)

where I(·) denotes the indicator function and with a slight abuse of notation, I denote the prior

on the space of models by ⇡ as well. Similar priors have been considered in the literature by

Jiang (2007) and Liang et al. (2013). Since the peMoM and piMoM priors already induce a

strong penalty on the size of the model space (see Section 2.4), I do not need to additionally

penalize larger models using, for example, model space priors of the type discussed in Scott

and Berger (2010).

Under a peMoM prior (2.2) on the regression coefficients, the marginal likelihood mk(y)

under model k given �2 can be obtained by integrating out �k, resulting in

mk(y) = (2⇡�2)�
n

2 C�|k| Qk exp{� eRk/(2�2)},
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where

eRk = yT (In � ePk)y, ePk = Xk(X
T
kXk + 1/⌧ Ik)

�1XT
k ,

Qk =

Z
exp{�(�k � e�k)Te⌃�1

k (�k � e�k)/(2�2)�
|k|X

j=1

⌧/�2
k,j}d�k, (2.6)

e�k = (XT
kXk + 1/⌧ Ik)

�1XT
ky, e⌃k = (XT

kXk + 1/⌧ Ik)
�1.

Similarly, the marginal likelihood using the piMoM prior densities (2.4) can be expressed

as mk(y) = (2⇡�2)�
n

2 C⇤�|k| Q⇤
k exp{�R⇤

k/(2�
2)}, where

R⇤
k = yT(In � Pk)y, Pk = Xk (X

T
kXk)

�1 XT
k ,

Q⇤
k =

Z |k|Y

j=1

��2r
k,j exp{�(�k � b�k)T⌃⇤�1

k (�k � b�k)/(2�2)�
|k|X

j=1

⌧/�2
k,j}d�k, (2.7)

b�k = (XT
kXk)

�1XT
ky, ⌃⇤

k = (XT
kXk)

�1.

The integrals for Qk and Q⇤
k cannot be obtained in closed form, so for computational purposes

I make Laplace approximations to mk(y). The expressions for the marginal likelihood derived

here is nevertheless important for theoretical studies in Section 2.4.

2.3 Numerical Results

2.3.1 Simulation Studies Using Precision-Recall Curves

To illustrate the performance of nonlocal priors in ultrahigh-dimensional settings and to

compare their performance with other methods, I calculated precision-recall curves Davis and

Goadrich (2006) for all selection procedures. A precision-recall curve plots the precision =

TP/(TP + FP) versus recall (or sensitivity) = TP/(TP + FN), where TP, FP and FN respectively

denote the number of true positives, false positives, and false negatives, as the tuning parameter

is varied. The efficacy of a procedure can be measured by the area under the precision-recall
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curve; the greater the area, the more accurate the method. Since both precision and recall take

values in [0, 1], the area under the curve for an ideal precision-recall curve is 1. I used two

(n, p) combinations, namely (n, p) = (400, 10000) and (n, p) = (400, 20000), and plotted the

average of the precision-recall curves obtained from 100 independent replicates of each pro-

cedure. To evaluate the marginal likelihood of each model, I used the Laplace approximation

method.

I compared the performance of peMoM and piMoM priors to a number of frequentist penal-

ized likelihood methods: Lasso (Tibshirani, 1996), adaptive Lasso (Zou, 2006), Scad (Fan and

Li, 2001), and Minimax Concave Penalty (MCP) (Zhang, 2010). I used the R package ncvreg

to fit these penalized likelihood methods. I also included the reciprocal Lasso in the simulation

studies. However, due to computational constraints involved in implementing the full rLasso

procedure, I followed the recommendation in Song and Liang (2015) and instead implemented

the reduced rLasso. The reduced rLasso procedure is a simplified version of rLasso that uses

the least square estimators of � when minimizing the rLasso objective function.

I considered Zellner’s g-prior Zellner (1986); Liang et al. (2008) as a competing Bayesian

method, with �k | k, �2 ⇠ N(0, g�2(XT
kXk)�1) and g a tuning parameter. With the prior

⇡(�2) / 1/�2, the marginal likelihood mk(y) / (1 + g)�|k|/2{1 + g(1 � D2
k)}�(n�1)/2 can

be obtained in a closed form; see for example, (Liang et al., 2008, pp 412), where D2
k is the

ordinary coefficient of determination for the model k.

A uniform model prior (2.5) was considered for all Bayesian procedures. This prior was

chosen for several reasons. First, construction of the PR curves requires maximization over

model hyperparameters, which is most easily achieved if there is only one unknown hyperpa-

rameter. I also wished to avoid providing an advantage to the Bayesian methods by introducing

additional tuning parameters into these methods that were not present in the penalized likeli-

hood methods. Furthermore, the use of non-uniform priors on the model space introduces (at

least) one more degree of freedom into the comparisons between methods, and my intent was
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to compare the effects of the penalties imposed on regression coefficients by both penalized

likelihood and Bayesian methods. At first blush, this might appear to put Bayesian methods

like those based on the g-prior at a disadvantage, since such methods do not yield consistent

variable selection even in p < n settings without prior sparsity penalties on the model space

(when g is held fixed as n increases). However, in the construction of PR curves, I allowed prior

hyperparameters to increase with n, which effectively allowed the Bayesian methods to impose

additional sparseness penalties through the introduction of large hyperparameter values.

I arbitrarily fixed r = 1 for the piMoM prior (2.4) and used an inverse-gamma prior on �2

with parameters (0.1, 0.1) for the peMoM, piMoM priors, and g-priors. Posterior computations

for the peMoM, piMoM and g-priors were implemented using the Simplified Shotgun Stochas-

tic Search with Screening (S5) algorithm described in Chapter 3. The maximum a posteriori

model was used in each case to summarize the model selection performance. The precision-

recall curves are drawn by varying the hyperparameters (⌧ for the nonlocal priors and g for the

g-priors) so the comparison between the model selection based on the nonlocal priors and the

g-prior is free of the choice of hyperparameters. Because of their high computational burden, I

could not include BASAD Narisetty and He (2014) in the comparisons.

For each simulation setting, I simulated data according to a Gaussian linear model as in

(2.1) with the fixed true model t = {1, 2, 3, 4, 5} with the true regression coefficient �0
t =

(0.50, 0.75, 1.00, 1.25, 1.50)T and � = 1.5. Also, the signs of the true regression coefficients

were randomly determined with probability one-half. Each row of X was independently gen-

erated from a N(0,⌃) distribution with one of the following covariance structures:

Case (1): compound symmetry design; ⌃jj0 = 0.5, if j 6= j0 and ⌃jj = 1, 1  j, j0  p.

Case (2): autoregressive correlated design; ⌃jj0 = 0.5|j�j
0|, 1  j, j0  p.

Case (3): isotropic design; ⌃ = Ip.

Figure 2.2 plots the precision-recall curves averaged over 100 simulation replicates for the
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different methods across the two (n,p) pairs and the three covariate designs. From Figure 2.2,

it is evident that the precision-recall curves for the peMoM and piMoM priors have an overall

better performance than the penalized likelihood methods Lasso, adaptive Lasso, Scad, and

MCP. For decision procedures having the same power, this implies that the nonlocal priors

achieve lower false discovery rates. As discussed in Section 2.5, since the reduced rLasso

shares the same nonlocal kernel as the nonlocal priors, it has a similar selection performance.

The figure also shows that Zellner’s g-prior attains comparable performance with the nonlocal

priors in terms of the precision-recall curves.

2.3.2 Further Comparison with Zellner’s g-prior

The similarity of the performances of the g-prior and the nonlocal priors in terms of precision-

recall curves begs for closer comparisons of these procedures. For this reason, I also investi-

gated the concentration of the posterior densities around their maximum models. To this end,

I fixed p = 20, 000 and varied n from 150 to 400; the data generating mechanism was exactly

the same as in Section 2.3.1. The left column of Figure 2.3 displays the posterior probability

of the true model under the peMoM, piMoM and g-prior models versus n for the three covari-

ate designs in Section 2.3.1. The plot shows that the posterior probability of the true model

increases with n for all three methods, with the peMoM and piMoM priors almost uniformly

dominating the g-prior, implying a higher concentration of the posterior around the true model

for the nonlocal priors.

This tendency is confirmed in the right panel of Figure 2.3, where I plot the number of

models k which achieve a posterior odds ratio ⇡(k | y)/⇡(bk | y) > 0.001, where bk is the

maximum a posteriori model. This plot clearly shows that the posterior distribution on the

model space from the g-priors is more diffuse than those obtained using the nonlocal prior

methods. These comparisons were based on fitting the hyperparameters g and ⌧ at their oracle

value, i.e., the value which maximized the posterior probability of the true model for a given
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Figure 2.2: Plot of the mean precision-precision curves over 100 datasets with (n, p) =
(400, 10000)(first column) and (n, p) = (400, 20000)(second column). Top: case (1); mid-
dle: case (2); bottom: case (3).
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Figure 2.3: Averaged posterior true model probability and the number of models which attain
the posterior odds ratio, with respect to the maximum a posteriori model, larger than 0.001
with the fixed p = 20000 and varying n. Top: case (1); middle: case (2); bottom: case (3).
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Table 2.1: Optimal hyperparameters for Bayesian model selection methods

The number of predictors
Case p = 1000 p = 2000 p = 5000 p = 10000 p = 20000
(1) peMoM 2.24 2.72 2.88 3.32 3.60

piMoM 2.16 2.59 2.70 3.04 3.26
g-prior 7.83⇥ 108 2.87⇥ 109 3.05⇥ 109 9.66⇥ 109 1.70⇥ 1010

(2) peMoM 1.97 2.29 2.34 2.75 3.00
piMoM 1.97 2.20 2.32 2.66 2.86
g-prior 8.56⇥ 109 2.55⇥ 1010 2.62⇥ 1010 6.58⇥ 1010 1.25⇥ 1011

(3) peMoM 2.66 3.00 3.00 3.10 3.60
piMoM 2.61 2.94 2.94 2.94 3.46
g-prior 1.26⇥ 1012 8.84⇥ 1012 9.67⇥ 1012 6.81⇥ 1012 4.29⇥ 1013

value of n.

The magnitudes of the oracle hyperparameters under each model also present an interesting

contrast between the local and nonlocal priors. I observed that the oracle value of g increased

rapidly with p, whereas the oracle value of ⌧ was much more stable. This phenomenon is illus-

trated in Table 2.1, which shows the oracle hyperparameter value averaged over 100 replicates

for the three different covariate designs in Section 2.3.1. For this comparison, I fixed n = 400

and varied p between 1000 and 20, 000; five representative values are displayed. The oracle

values for g are on a completely different scale from the oracle values of ⌧ , and they vary

more with p. This table confirms the recommendations in George and Foster (2000) for set-

ting g = p2 based on minimax arguments. However, the finite sample behavior of the optimal

choice of g is unclear, which means that the large variance of the optimal hyperparameter value

is likely to hinder the selection of g in real applications. Finally, I note that such large values

of g effectively convert the local g-priors into nonlocal priors by collapsing the g-prior density

to 0 at the origin.

30



2.4 Model Selection Consistency

The empirical performance of the peMoM and piMoM priors suggests that the hyperpa-

rameter ⌧ should be increased slowly with p. While Johnson and Rossell (2012) were able to

show strong selection consistency with a fixed value of ⌧ , it is not clear whether their proof can

be extended to p � n cases. Motivated by the empirical findings of the last section, I next in-

vestigated the strong consistency properties of peMoM and piMoM priors when ⌧ was allowed

to grow at a logarithmic rate in p. I found that in such cases, both peMoM and piMoM priors

achieve model selection consistency under standard regularity assumptions when p increases

sub-exponentially with n, i.e., log p = O(n↵) for ↵ 2 (0, 1).

Henceforth, I use ⌧n,p instead of ⌧ to denote the hyperparameter in the peMoM and piMoM

priors in (2.2) and (2.4) respectively. The normalizing constants for these priors are now de-

noted by Cn,p and C⇤
n,p

, respectively. Before providing my theoretical results, I first state a

number of regularity conditions. Let ⌫j(A) denote the j-th largest nonzero eigenvalue of an

arbitrary matrix A, and let

⌫k⇤ = min
1jmin(n,|k|)

⌫j(X
T
kXk/n), ⌫⇤k = max

1jmin(n,|k|)
⌫j(X

T
kXk/n). (2.8)

For sequences an and bn, an ⌫ bn indicates bn = O(an), and an � bn indicates bn = o(an).

With this notation, I assume that the following regularity conditions apply.

Assumption 1. There exists ↵ 2 (0, 1) such that log p = O(n↵).

Assumption 2. log p � ⌧n,p � n.

Assumption 3. |k|  qn, where qn � ⌧n,p

log p .

Assumption 4. min
k:|k|qn

⌫k⇤ � ⌧n,p

n
.
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Assumption 5. C1 < ⌫t⇤  ⌫⇤t < C2 for some positive constants C1 and C2.

Several comments regarding these conditions are worth making. Assumption 1 allows

p to grow sub-exponentially with n. My theoretical results continue to hold when p grows

polynomially in n, i.e., at the rate O(n�) for some � > 1. Assumption 2 reflects the empirical

findings about the oracle ⌧ ⌘ ⌧n,p in Section 2.3.1, which was observed to grow slowly with

p. I need the bound on qn in Assumption 3 to ensure that the least square estimator of a

model is consistent when a model contains the true model. In the p  n setting, Johnson and

Rossell (2012) assumed that all eigenvalues of the Gram matrix (XT
kXk)/n are bounded above

and below by global constants for all k. However, this assumption is no longer viable when

p � n and I replace that by Assumption 4, where the minimum of the minimum eigenvalue

of (XT
kXk)/n over all submodels k with |k|  qn is allowed to decrease with increasing n

and p. Assumption 4 is called the sparse Riesz condition and is also used in Chen and Chen

(2008) and Kim et al. (2012). Narisetty and He (2014) showed that Assumption 4 holds with

overwhelmingly large probability when the rows of the design matrix are independent with an

isotropic sub-Gaussian distribution. Even though the assumption of sub-Gaussian tails on the

covariates is difficult to verify, the results in Narisetty and He (2014) show that Assumption 4

can be satisfied for some sequence of design matrices.

I now state a Theorem that demonstrates that model selection procedures based on the

peMoM and piMoM nonlocal prior densities achieve strong consistency under the proposed

regularity conditions. A proof of the Theorem is provided in the Appendix.

Theorem 1. Suppose �2
is known and that Assumptions 1 – 5 hold. Let ⇡(t | y) denote the

posterior probability of the true model obtained under a peMoM prior (2.2). Also, assume a

uniform prior on all models of size less than or equal to qn, i.e., ⇡(k) / I(|k|  qn). Then,

⇡(t | y) converges to one in probability as n goes to 1.
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Corollary 2. Assume the conditions of the preceding Theorem apply. Let ⇡(t | y) denote the

posterior probability of the true model obtained under a piMoM prior density (2.4). Then,

⇡(t | y) converges to one in probability as n goes to 1.

I note that these results apply also if a beta-Bernoulli prior is imposed on the model space

as in Scott and Berger (2010), because the effect of that prior is asymptotically negligible when

|k|  qn � n.

In most applications, �2 is unknown, and it is thus necessary to specify a prior density on it.

By imposing a proper inverse gamma prior density on �2, I can obtain the model consistency

result stated in the Theorem below. The proof is again deferred to the Appendix.

Theorem 3. Suppose �2
is unknown and a proper inverse gamma density with parameters

(a0, b0) is assumed for �2
. Also, let ⇡(t | y) denote the posterior probability of the true model

evaluated using peMoM priors. Then if Assumptions 1 – 5 are satisfied, ⇡(t | y) converges to

one in probability as n goes to 1.

Corollary 4. Suppose the conditions of the preceding Theorem apply, but that ⇡(t | y) now

denotes the posterior probability of the true model obtained under a piMoM prior density.

Then ⇡(t | y) converges to one in probability as n goes to 1.

2.5 Connections Between Nonlocal Priors and Reciprocal Lasso

In this section, I highlight the connection between the rLasso in Song and Liang (2015)

and Bayesian variable selection procedures based on nonlocal priors. I begin by noting that the

objective function g(�k;k) of rLasso on a model k can be expressed as follows:

g(�k;k) =
��y �Xk�k

��2
2
+

|k|X

j=1

⌧n,p/|�k,j|. (2.9)

The optimal model is selected by minimizing this objective function with respect to �k and

k. It is clear that the penalty function
P|k|

j=1 ⌧n,p/|�k,j| in (2.9) is similar to the negative log-
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density of piMoM nonlocal priors as proposed in (Johnson and Rossell, 2012, pp 659) and

(Johnson and Rossell, 2010, pp 149). The main difference between the nonlocal prior version

of rLasso and the piMoM-type prior densities proposed in the previous section is the power

of � in the exponential kernels. For the rLasso penalty this power is 1, while for piMoM-

type prior densities it is 2. The implications of this difference are apparent from the following

proposition.

Proposition 5. For a given model k, suppose that e�⇤
k is the minimizer of the objective function

(2.9), and again let b�k denote the least square estimator of � under model k. Assume that

⌧n,p � n, and there exist strictly positive contants CL and CU such that CL < ⌫k⇤  ⌫⇤k < CU .

Then, for any ✏⇤
n
� (⌧n,p/n)1/3,

P
h
e�⇤
k /2 R

�b�k; ✏⇤n
�i

! 0,

where R(u; ✏) = {x 2 R|k| : |xj � uj|  ✏, j = 1, . . . , |k|}.

This proposition shows that under standard conditions on the eigenvalues of the Gram ma-

trix XT

kXk/n, the estimator derived from (2.9) is asymptotically within (⌧n,p/n)1/3 distance of

the least squares estimator b�k. On the other hand, results cited in the previous section show

that maximum a posteriori estimators obtained from the piMoM-type prior densities reside at

an asymptotic distance of (⌧n,p/n)1/4 from the least squares estimator. Variable selection pro-

cedures based on both forms of piMoM priors thus achieve adaptive penalties on the regression

coefficients in the sense described in Song and Liang (2015).

Although rLasso is proposed as a penalized likelihood approach, the computational pro-

cedure to optimize its objective function is quite different from the other penalized likelihood

methods. The resulting computational complexity of this optimization procedure, which con-

tains a discontinuous penalty function, is NP-hard. This suggests that the formulation of this

nonlocal penalty in a penalized likelihood framework is unlikely to provide significant compu-
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tational advantages over related Bayesian model selection procedures, even though the infer-

ential advantages of the Bayesian framework are lost.

2.6 An Adaptive Form of Asymptotic Marginal Likelihoods Based on Nonlocal Priors

From Lemma A.1.1 in the Appendix, it follows that the asymptotic log-marginal likelihood

of a model k based on a peMoM or piMoM prior density can be expressed as

log ⇡(k | y) = l(b�k) + logQk � |k| logCn,p

⇡ l(b�k)�
|k|X

j=1

p⌧n,p

�b�k,j
�
+ C,

for some constant C, where b�k is the maximum likelihood estimator under model k, i.e. b�k =

(XT

kXk)�1XT

k y, and

p⌧n,p

�b�k,j
�
⇡

8
>><

>>:

(n⌧n,puk)1/2, if |b�k,j| < c
�
nuk
⌧n,p

��1/4

⌧n,p/b�2
k,j, if |b�k,j| � c

�
nuk
⌧n,p

��1/4
,

(2.10)

for some constant c and some arbitrary sequence uk with ⌫k⇤  uk  ⌫⇤k. I note that the

strength of the correlation between the variables in model k affects the behavior of uk, and

(nuk/⌧n,p)�1/4 converges to zero as n tends to infinity due to Assumption 4 described in Sec-

tion 2.4.

On the other hand, the penalty term in the other Bayesian model selection approaches is

quite different from that of the nonlocal priors as in (2.10). The marginal likelihood based on

the g-prior when �2 is known can be expressed as

l(b�k)� |k| log(1 + g)/2.

Narisetty and He(2014) demonstrated that BASAD achieves model selection consistency.
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This consistency follows from that the fact that the BASAD “penalty” is asymptotically equiv-

alent to

l(b�k)� c|k| log(p), (2.11)

where c is some constant. Yang et al. (2016) and Castillo and van der Vaart (2012) also con-

sidered a similar penalty term on the model space, which implies that the posterior probability

for their procedures can be expressed in the same form as (2.11). When g = p2c, the marginal

likelihood based on a g-prior is asymptotically equivalent to (2.11).

This asymptotic term of the marginal likelihoods is quite different from that of the nonlo-

cal priors, since the penalty terms in the other Bayesian approaches only focus on the model

size without considering the different weights on variables in the model. The marginal like-

lihoods based on nonlocal priors, however, impose different penalties on each predictor in

the given model. When the MLE of the regression coefficient in the model is asymptotically

close to zero (|b�k,j| < c(nuk/⌧n,p)�1/4), the model that contains the corresponding variable

would be strongly penalized by (n⌧n,puk)1/2. In contrast, when the MLE is asymptotically

significant (|b�k,j| � c(nuk/⌧n,p)�1/4), the penalty attains a different weight based on the MLE

(p⌧n,p
(b�k,j) ⇡ ⌧n,p/b�2

k,j).

This analysis highlights the fact that the nonlocal priors are able to adapt their penalty for

the inclusion of covariates based on the observed data, whereas local priors must instead rely

on a prior penalty that encourages non-sparse models.

2.7 Real Data Analysis

2.7.1 Analysis of Polymerase Chain Reaction (PCR) data

Lan et al. (2006) studied coordinated regulation of gene expression levels on 31 female

and 29 male mice (n = 60). A number of psychological phenotypes, including numbers of
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stearoyl-CoA desaturase 1 (SCD1), glycerol-3-phosphate acyltransferase (GPAT) and phos-

phoenopyruvate carboxykinase (PEPCK), were measured by quantitative real-time RT-PCR,

along with 22,575 gene expression values. The resulting data set is publicly available at http:

//www.ncbi.nlm.nih.gov/geo (accession number GSE3330).

Zhang et al. (2009) used penalized orthogonal components regression to predict the three

phenotypes mentioned above based on the high-dimensional gene expression data. Bondell and

Reich (2012) also used the same data set to examine their model selection procedure based on

penalizing regression coefficients within a (marginal or joint) credible interval obtained from a

ridge-type prior. For brevity, I restrict attention here to SCD1 as the response variable.

Since the ground truth regarding the true significant variables is not known for this data, I

compared my approach with a host of competitors on predictive accuracy and parsimony of the

selected model.

Prior to analyses, I standardized the covariates and randomly split the data set into 5 test

samples and 55 training samples to evaluate the out-of-sample mean square prediction error

(MSPE)

MSPE =
X

i2Ttest

(yi �XT

i
b�tr

bk )
2/|Ttest|,

where Ttest is the index set of the test samples and b�tr

bk is the least square estimator under the

estimated model bk based on the training samples. To avoid sensitivity to a particular split, I

considered 100 replications of the training and test sample generation. To measure the stability

of model selection, I considered the number of variables that were (i) selected at least 95 times,

and (ii) at least once, out of the 100 replicates.

Due to the high-computational burden of the penalized credible interval approach (Bondell

and Reich, 2012), I followed the pre-processing step suggested in that article to marginally

screen variables to reduce to 2000 variables (1999 genes and gender). For all the other ap-

proaches, all 22,575 genes were used. For the nonlocal prior method, I considered both the
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MAP estimator and the least squares (LS) estimator from the MAP model. For the g-prior, I

set g = p2 as recommended in George and Foster (2000). For the penalized likelihood proce-

dures, I used ten-fold cross validation to choose the tuning parameter.

To choose the hyperparameter ⌧n,p for the nonlocal priors, I used a procedure proposed by

Nikooienejad et al. (2016). That procedure sets the hyperparameter so that the L1 distance

between the posterior distribution on the regression parameters under the null distribution (i.e.,

� = 0) and the nonlocal prior distributions on these parameters is constrained to be less than

a specified value (e.g., p�1/2). The average value of the hyperparameter values chosen by this

procedure were ⌧n,p = 1.12 and ⌧n,p = 1.16 for piMoM and peMoM priors, respectively.

To make the comparison between the nonlocal priors and the g-prior more transparent, I

used the same beta-binomial prior on the model space in both models, rather than the uniform

prior on the model space described previously. The form of the beta-binomial prior was given

by

⇡(k) / ⇢|k|(1� ⇢)p�|k|I(|k|  qn), (2.12)

with a uniform prior on ⇢ and qn = 40. I note that this prior does not strongly induce sparsity as

does, for example, the prior obtained by imposing a Beta(1, pu), u > 1 prior on ⇢, as suggested

in Castillo et al. (2015).

Table 2.2 summarizes the results from the analysis of the gene expression data set. On

average, the nonlocal priors simultaneously produced the lowest MSPE and the most parsimo-

nious model. The other model selection methods selected a wide array of different variables

for different splits of the data set. In particular, Lasso and the penalized credible region ap-

proach selected more than 180 different variables from 100 repeated splits, while the average

size of the selected model was less than 20 and the number of frequently selected variables was

only zero or one, indicating a potentially large number of false positives picked up by these
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Method MSPE MS FS TS
piMoM(MAP) 0.283 (0.17) 1.00 (0.00) 1 1
piMoM(LS) 0.282 (0.17) 1.00 (0.00) 1 1

peMoM(MAP) 0.291 (0.18) 1.02 (0.14) 1 2
peMoM(LS) 0.287 (0.17) 1.02 (0.14) 1 2

g-prior 0.368 (0.20) 4.07 (0.56) 1 133
Lasso 0.542 (0.39) 17.97 (8.62) 1 211
Scad 0.308 (0.23) 12.66 (7.62) 2 163
MCP 0.308 (0.21) 2.20 (0.94) 0 29

Marginal(p = 2000) 0.456 (0.40) 17.47 (11.16) 0 273
Joint(p = 2000) 0.440 (0.40) 16.42 (11.06) 1 185

Table 2.2: Analysis of the PCR data. Marginal and Joint refer to the variable selection proce-
dures Bondell and Reich (2012) based on Bayesian marginal credible set and Bayesian joint
credible set, respectively. MS is the average size of the selected model. FS is the number of
frequently selected variables, i.e., that were selected at least 95 times in 100 repetitions. TS
refers to the total number of variables selected at least once from 100 repetitions. Standard
errors are provided in parenthesis.

methods.

2.7.2 A Simulation Study Based on the Boston Housing Data

I next examined the Boston housing data set that contains the median value of owner-

occupied homes in the Boston area, together with several variables that might be associated

with their median value. There were n = 506 median values in the data set, and I considered

10 continuous variables as the predictor variables: crim, indus, nox, rm, age, dis, tax,

ptratio, b, and lstat. This data set has been used to validate a variety of variable selection

methods; some recent examples include Radchenko and James (2011), Yuan and Lin (2005),

and Rockova and George (2014).

To examine the model selection performance in high-dimensional settings, I added 1,000

noise variables that were generated independently from a standard Gaussian distribution (p =

1, 010). The same competitors from the previous subsection were used with the aforementioned

choice of hyperparameters. For nonlocal priors, the hyperparameter value was chosen by the
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aforementioned procedure Nikooienejad et al. (2016); the average of the chosen hyperparame-

ter values were ⌧n,p = 2.01 and ⌧n,p = 0.47 for piMoM and peMoM priors, respectively. Prior

to analyses, I standardized the covariates and considered a simulation test size of 100 samples.

Methods MSPE MS-O MS-N FS-O TS-O
piMoM(MAP) 24.281 (9.01) 5.05 (0.22) 0.01 (0.10) 5 6

piMoM(LS) 24.265 (9.04) 5.05 (0.22) 0.01 (0.10) 5 6
peMoM(MAP) 24.156 (9.02) 5.02 (0.14) 0.00 (0.00) 5 6
peMoM(LS) 24.165 (9.00) 5.02 (0.14) 0.00 (0.00) 5 6

g-prior 26.314 (9.87) 3.10 (0.44) 0.00 (0.00) 3 5
Lasso 30.243 (11.82) 5.07 (0.87) 7.77 (11.16) 4 8
Scad 33.993 (10.66) 5.39 (0.57) 31.60 (28.28) 5 7
MCP 26.191 (9.87) 4.66 (0.74) 0.54 (1.04) 3 6

Marginal 26.612 (10.16) 3.74 (0.88) 0.41 (0.72) 3 7
Joint 26.385 (10.25) 3.77 (0.94) 0.02 (0.20) 3 6

Table 2.3: The Boston Housing data set: MS-O and MS-N refer to the average number of
selected original variables and selected noise variables, respectively. FS-O is the number of
original variables that are frequently selected at least 95 times out of 100 repetitions. TS-O
refers to the number of original variables selected at least once from 100 repetitions.

The results of are analysis are summarized in Table 2.3. The conclusions are similar to those

reported in Section 8.1; the nonlocal priors consistently choose more parsimonious models and

had better predictive performance. The model selection procedure resulting from the nonlocal

prior selects almost the same variables across the 100 repetitions. The average number of the

original variables selected more than 95 times over 100 repetitions is 5, which is close to the

average model size. It is also reliable in the sense that the average number of the original

variables that are selected at least once across the repetitions is only 6. This means that model

selection based on the nonlocal prior selects the same model in most data splits. On the other

hand, penalized likelihood methods such as Lasso and Scad tend to select a large number of

noise variables.
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2.8 Conclusion

This dissertation described theoretical properties of peMoM and piMoM priors for variable

selection in ultrahigh-dimensional linear model settings. In terms of identifying a “true” model,

selection procedures based on peMoM priors are asymptotically equivalent to piMoM priors

in Johnson and Rossell (2012) because they share the same kernel, exp{�⌧n,p/�2}. I demon-

strated that model selection procedures based on peMoM priors and piMoM priors achieve

model selection consistency in p � n settings.

In Section 2.3.1, precision-recall curves were used to show that the model selection pro-

cedure based on a g-prior can achieve nearly the same performance in identifying the MAP

model as nonlocal priors when an optimal value for the hyperparameter g is chosen. However,

as shown in Section 2.3.2, the value of the hyperparameter that maximizes the posterior prob-

ability of the true model is very large and has high variability, which may limit the practical

application of this method. To overcome this problem, one can consider mixtures of g-prior as

in Liang et al. (2008), but the asymptotic behavior of Bayes factor and model selection con-

sistency in ultrahigh-dimensional settings have not been examined for hyper-g priors, and they

are difficult to implement computationally.

In Section 5.5.3, I proposed an efficient and scalable model selection algorithm called S5.

By incorporating the SSS with a screening idea and a temperature control, S5 was able to

accelerate the computation speed without losing the capacity to explore the interesting region

in the model space. Under some simulation settings, it outperformed the SSS in a sense that

not only did S5 search the MAP model much faster than the SSS, but it also found exactly the

same MAP model that was identified by the SSS.

Because the explicit form of the marginal likelihood of the nonlocal priors is not available,

I used the Laplace approximation throughout this chapter. Barber et al. (2016) studied the ac-

curacy of the approximation in Bayesian high-dimensional variable selection, especially when
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the dimension of the approximation (which is qn) and n are both increasing. However, their

results do not apply to the case of the nonlocal priors, since the nonlocal priors violate their

regularity condition (nonzero density at the origin). While empirical results in this chapter

and Johnson and Rossell (2012) suggest that the use of the Laplace approximation is reason-

able, in future work it is still worth paying attention to the approximation error of the Laplace

approximation to the marginal likelihood of the nonlocal priors.

The close connection between my methods and the reduced rLasso procedures provides

a useful contrast between Bayesian and penalized likelihood methods for variable selection

procedures. According to the evaluation criteria proposed in Section 2.5, the two classes of

methods appear to perform quite similarly. A potential advantage of the reduced rLasso proce-

dure, and to the lesser extent the rLasso procedure, is reduced computation cost. This advantage

accrues primarily because the reduced rLasso can be computed from the least squares estimate

of each model’s regression parameter, whereas the Bayesian procedures require numerical op-

timization to obtain the maximum a posteriori estimate used in the evaluation of the Laplace

approximation to the marginal density of each model visited. However, the procedures used to

search the model space, given the value of a marginal density or objective function, are approx-

imately equally complex for both classes of procedures. There are also potential advantages

of the Bayesian methods. For example, it is possible to approximate the normalizing constant

of the posterior model probability from the models visited by S5 algorithm, and to use this

normalizing constant to obtain an approximation to the posterior probability assigned to each

model. In so doing, the Bayesian procedures provide a natural estimate of uncertainty associ-

ated with model selection. These posterior model probabilities can also be used in Bayesian

modeling averaging procedures, which have been demonstrated to improve prediction accu-

racy (e.g., Raftery et al. (1997)) over prediction procedures based on maximum a posteriori

estimates. Finally, the availability of prior densities may prove useful in setting model hyper-

parameters (i.e., ⌧n,p) in actual applications, where scientific knowledge is typically available
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to guide the definition of the magnitude of substantively important regression parameters.

I also developed an R package BayesS5 that provides all computational functions used

in this dissertation, including a support of parallel computing environments. It is available on

the author’s website and on CRAN (https://cran.r-project.org).
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3. SIMPLIFIED SHOTGUN STOCHASTIC SEARCH WITH SCREENING

ALGORITHM FOR HIGH-DIMENSIONAL BAYESIAN MODEL SELECTION

3.1 Introduction

In p � n settings, full posterior sampling using existing Markov chain Monte Carlo

(MCMC) algorithms is highly inefficient and often not feasible from a practical perspec-

tive. Due to this limitation, several deterministic approaches to find the maximum a poste-

riori (MAP) model have been proposed, e.g. Carbonetto and Stephens (2012), Liu and Ihler

(2013) and Rockova and George (2014). However, those procedures only provide a single

model without considering uncertainty on the model space. This lack of assessment of model

uncertainty can be problematic, particularly if one wishes to average over models to improve

prediction performance (Raftery et al., 1997). To overcome this issue and approximate full

posterior model probabilities, I propose a scalable stochastic search algorithm aimed at rapidly

identifying regions of high posterior probability and finding the MAP) model for linear model

selection problems. My main innovation is to develop a stochastic search algorithm combining

isis-like screening techniques (Fan and Lv, 2008) and temperature control procedure similar to

those used in global optimization algorithms like simulated annealing (Kirkpatrick and Vecchi,

1983).

To describe my proposed algorithm, note that the MAP model bk that can be expressed as

bk = argmax
k2�⇤

{⇡(k | y)}, (3.1)

where �⇤ is the set of all models assigned non-zero prior probability.

3.2 Shotgun Stochastic Search Algorithm (SSS)

Hans et al. (2007) proposed the shotgun stochastic search (SSS) algorithm in an attempt
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to efficiently navigate through very large model spaces and identify global maxima. Letting

nbd(k) = {�+,��,�0}, where �+ = {k [ {j} : j 2 kc}, �� = {k \ {j} : j 2 k}, and

�0 = {[k \ {j}] [ {l} : l 2 kc, j 2 k}, the SSS procedure is described in Algorithm 1.

Algorithm 1 Shotgun Stochastic Search (SSS)

Choose an initial model k(1)

For i = 1 to i = N � 1
Compute ⇡(k | y) for all k 2 nbd(k(i))
Sample k+, k�, and k0, from �+, ��, and �0, with probabilities proportional to ⇡(k | y)
Sample k(i+1) from {k+,k�,k0}, with probability proportional to
{⇡(k+ | y), ⇡(k� | y), ⇡(k0 | y)}

The estimated MAP model is defined as the model that achieves the largest posterior prob-

ability among those searched models only.

3.3 Simplified Shotgun Stochastic Search Algorithm with Screening (S5)

SSS is effective in exploring regions of high posterior model probability, but its compu-

tational cost is still expensive because it requires the evaluation of marginal probabilities for

models in �+, ��, and �0 at each iteration. The largest computational burden occurs for the

evaluation of marginal likelihood for models in �0, since |�0| = |k|(p � |k|). To improve the

computational efficiency of SSS, I propose a modified version which only examines models in

�+ and ��. These sets have cardinality p � |k| and |k|, respectively. However, ignoring �0

in the sampling updates can make the algorithm less likely to explore “interesting” regions of

high posterior model probability. The algorithm would therefore be more likely to get stuck

in local maxima. To counter this problem, I introduce a “temperature parameter” analogous to

simulated annealing that allows the algorithm to explore a broader spectrum of models.
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Even though ignoring models in �0 reduces the computational burden of the SSS algorithm,

the calculation of p posterior model probabilities in every iteration is still computationally

prohibitive when p is very large. To further reduce the computational burden, I borrow ideas

from the Iterative Sure Independence Screening (isis; Fan and Lv (2008)) and consider only

those variables that have a large correlation with the residuals of the current model. More

precisely, I examine the products |rTkXj|, where rk is the residual of the model k, for j =

1, . . . , p, after every iteration of the modified shotgun stochastic search algorithm, and then

restrict attention to variables for which {|rTkXj| : j = 1, . . . , p} is large (I assume that the

columns of X have been standardized). This yields a scalable algorithm even when the number

of variables p is large.

With these ingredients, I propose a new stochastic model search algorithm called Simplified

Shotgun Stochastic Search with Screening (S5). This algorithm is described in Algorithm 2.

Algorithm 2 Simplified Shotgun Stochastic Search with Screening (S5)

Set a temperature schedule t1 > t2 > . . . > tL > 0
Choose an initial model k(1,1) and a set of variables after screening Sk(1,1) based on k(1,1)

For l = 1 in l = L
For i in 1, . . . , J � 1
Compute all ⇡(k | y) for all k 2 nbdscr(k(i,l))
Sample k+ and k�, from �+

scr
and ��, with probabilities proportional to ⇡(k | y)1/tl

Sample k(i+1,l) from {k+,k�}, with probability proportional to
{⇡(k+ | y)1/tl , ⇡(k� | y)1/tl}
Update the set of considered variables Sk(i+1,l) to be the union of variables in k(i+1,l) and
the top Mn variables according to {|rT

k(i+1,l)Xj| : j = 1, . . . , p}

In S5, Sk is the union of variables in k and the top Mn variables obtained by screening

using the residuals from model k. The screened neighborhood of model k can be defined as

nbdscr(k) = {�+
scr

,��}, where �+
scr

= {k [ {j} : j 2 kc \ Sk}.
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Even though this algorithm is designed to identify the MAP model, it also provides an ap-

proximation to the posterior model probability of each sampled model. The uncertainty of the

model space can be measured by approximating the normalizing constant from the (unnormal-

ized) posterior probabilities of the models explored by the algorithm.

Denoting the computational complexity of the evaluation of the unnormalized posterior

model probability of the largest model among searched models by En, the computational com-

plexity of the SSS algorithm can be expressed as the product of the number of models explored

by the algorithm and En, which is [O{Np}+O{Nqn}+O{N(p� qn)qn}]⇥En, where qn is

the maximum size of model among searched models and qn < n ⌧ p.

S5 only considers Mn variables after the screening step in each iteration, which dramati-

cally reduces the number of models to be considered in constructing the neighborhood,

O{JL(Mn � qn)}+O(JLMn). Therefore, the resulting computational complexity is

[O{JL(Mn � qn)}+O(JLMn)]⇥ En +O(JLnp),

where qn < Mn. When the computational complexity for screening steps, O(JLnp), is domi-

nated by the other terms, the computational complexity is almost independent of p. As a result,

the proposed algorithm is scalable in the sense that the resulting computational complexity is

typically robust to the size of p.

3.4 Performance Comparisons Between S5 and SSS

I examined the computational efficiency of S5 to SSS in identifying the MAP model under

a piMOM prior with ⌧n,p = log n log p and r = 1. I generated data according to Case (1) in

Section 2.3 with a fixed sample size (n = 200) and a varying number of covariates p. I set

Mn = 20, L = 20, and J = 20 for S5. To match the total number of iterations between

S5 and SSS, I set N = 400 for SSS. All computations were implemented in R on a machine

containing 16 CPU cores (Intel(R) Xeon(R) CPU E5-2690 @ 2.90GHz with 64GB of DDR3
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Figure 3.1: (a) Average computation time to first find the MAP model; (b) Average number of
models searched before hitting the MAP model. The left y-axis is on a logarithmic scale and
the right y-axis is on the raw scale.

@ 1600Mhz).

Figure 3.1 shows the average computation time and the number of models searched before

hitting the MAP model for the first time for the S5 and SSS algorithms. All averages were

based on 100 simulated datasets, and both algorithms found the same MAP model in all data

sets. Panel (a) shows that the computation time of SSS increases roughly at a p2 rate, but that

the computation time for S5 was nearly independent of the number of covariates p (about 4

seconds). For example, when p = 2, 000, SSS first found the MAP model in an average of

1,360 seconds (about 23 minutes), whereas S5 hit the MAP model after about only 4 seconds.

Interestingly, panel (b) of Figure 3.1 shows that the S5 algorithms explored only 181 models

on average before finding the MAP model, whereas SSS typically visited slightly more than

38,000 models. Thus, not only is S5 much faster than SSS in identifying the MAP model, but

it also visited far fewer models before visiting the MAP model.

To see how sensitive the efficiency of the S5 algorithm is to the choice of the screening set
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Figure 3.2: Correlation between the top 10 posterior model probabilities estimated from SSS
and S5 with different screening set sizes.

size, Figure 3.2 reports the average correlation between the top 10 posterior model probabilities

approximated from S5 and SSS with varying screening set sizes. This figure shows that even

when the screening set size is small in comparison to the true model size (|t| = 5), the correla-

tion of the top 10 posterior model probabilities from S5 and SSS is at least 0.99 (the horizontal

green line in the figure is located on 0.99). Thus, the resulting posterior model probabilities are

almost same as those of SSS. At least in this example, S5 is not sensitive to the choice of the

screening set size. However, for real data sets, I recommend examining output from multiple

screening set sizes.

3.4.1 Application to Real Data Examples

In this subsection, I apply the S5 algorithm to Bardet-Biedl syndrome gene expression data

that was first reported in Scheetz et al. (2006). The data set contains microarrays expression

values from eye tissue of 120 twelve-week old male rats. a total of 31,042 different probe sets

were used to analyze the RNA values from the tissue. The intensity values were normalized

using the robust multi-chip averaging method (Irizarry et al., 2003). This microarray data set
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has been considered in multiple papers, including Huang et al. (2008), Kim et al. (2008) and

Fan et al. (2011). As in those papers I am interested in finding a subset of the probe sets that

are associated with the probe set is 1389163_at, which corresponds to the expression of gene

TRIM32. This gene is related to Bardet-Biedl syndrome, a hereditary disease of the retina.

The data set was first ranked all other probes according to the absolute value of the marginal

correlation to 1389163_at and selected the top 200 probes (n = 120 and p = 200). The

screened data set is available in the R package flare.

I also considered a simulated data set based on the Boston housing data set that was used

in Section 2.7.2 by adding 1000 spurious variables to the original Boston housing data set

(n = 506 and p = 1010).

For S5 and SSS, the settings usedin the previous simulation study section were again used.

I repeatedly ran S5 and SSS for 30 replicates starting from different initial models. Table

3.1 reports the average time of the computation (Time) over 30 replicates, the logarithm of

the (unnormalized) posterior probability of the MAP model found by each algorithm (Log-

post), and the average number of models searched to find the MAP model by each algorithm

(Avg.#models). S5 found exactly the same MAP model searched by SSS for each data set, and

the computation time of S5 is much shorter than SSS. For the Bardet-Biedl syndrome data, S5

is 29 times faster than SSS and 84 times faster for the Boston housing data. Moreover, S5 finds

the MAP model after visiting far fewer models than SSS. This shows that S5 very efficiently

explores the model space.

Bardet-Biedl Syndrome Data Boston Housing Data
Method Time (sec) Log-post Avg.#models Time (sec) Log-post Avg.#models

S5 61.4 199.746 1198.0 54.6 -1115.34 442.9
SSS 1767.4 199.746 21423.8 4569.8 -1115.34 40406.9

Table 3.1: Comparisons between S5 and SSS using the Bardet-Biedl syndrome data and the
Boston housing data.
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3.5 R Package: BayesS5

In this section, I provide tutorials about how to use an R package called BayesS5 (Shin

and Tian, 2017) to implement the S5 algorithm for high-dimensional Bayesian model selection

problems. This package is available from CRAN (https://cran.r-project.org). In

the following subsections, I provide examples that demonstrate how to use the package in

several model selection problems.

To illustrate the use of the package, I consider the Boston data set that was used in Section

2.7.2. To examine high-dimensional settings, I added 500 spurious variables to the original

data set, so that p = 510 and n = 506. The following code imports the data set in R.

R> library(BayesS5); library(MASS)

R> data(Boston); attach(Boston)

R> X = cbind(crim,indus,nox,rm,age,dis,tax,ptratio,black,lstat)

R> X = scale(X)

R> y = medv; y = y-mean(y)

R> n = nrow(X)

R> set.seed(291287)

R> X = cbind(X,matrix(rnorm(500*n),n,500)); X = scale(X)

R> p = ncol(X)

3.5.1 S5 Function

Without specifying the priors, the simplest implementation with the default setting can be

conducted with the following command:

R> fit_default = S5(X,y)

The default setting is the piMOM prior in (2.4) for regression coefficients and the beta-

uniform prior in (2.12). The hyperparameter value of the piMOM prior is automatically chosen
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by the procedure proposed in Nikooienejad et al. (2016). The default setting for iterations is

Mn = 20, L = 20, and J = 20, and the default choice of temperature schedule is the square

inverse of the equi-spaced sequence from 0.4 to 1 with size 20. For every transition between

temperatures, the function prints out the current status of the model selection. An example of

this output looks like this:

[1] "#################################"

[1] "Inverse Temperature"

[1] 0.16

[1] "The Selected Variables in the Searched MAP Model"

[1] 3 4 6 8 10

[1] "The Evaluated Object Value at the Searched MAP Model"

[1] -1111.231

[1] "Current Model"

[1] 4 8 10

[1] "The Evaluated Object Value at the Current Model"

[1] -1118.82

[1] "The Number of Total Searched Models"

[1] 341

During the run, the S5 function outputs the inverse of the current temperature used in

the algorithm, and it provides the MAP model and its (unnormalized) log-posterior model

probability, logmk(y) + log ⇡(k). For example, in the above output, the model of 3, 4, 6, 8

and 10 indicates the model defined by the third, fourth, sixth, eighth and tenth covariates, and

�1111.231 is the (unnormalized) log-posterior model probability of the model {3, 4, 6, 8, 10}.

The "Current Model" is the model that the algorithm is currently visiting. Its log-posterior

model probability is also listed. The final line of the output is the number of models that have

been searched by the algorithm.
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The object of S5 (e.g. fit_default in the above code) contains the list of the searched

models that are identified by binary vectors and their (unnormalized) log-posterior model prob-

abilities. To approximate the full posterior model probabilities of each model, one extra step is

required:

R> res_default = result(fit_default)

[1] "# of Searched Models by S5"

[1] 1291

[1] "The MAP model is "

[1] 3 4 6 8 10

[1] "with posterior probability 0.739"

The result shows that the MAP model is {3, 4, 6, 8, 10} and its posterior model probability

is 73.9%. In this case, the selected model does not include any of the 500 spurious variables that

are generated independently from the response variable. The total number of models explored

by S5 was 1,291. The result function also provides the marginal inclusion probabilities for

each variable. These probabilities are defined as

qj =
X

k:j2k

⇡(k | y),

for j = 1, . . . , p. The command to generate these values is given by

R> mar_default = res_default$marg.prob

R> print(which(mar_default>0.5))

[1] 3 4 6 8 10

R> plot(mar_default, ylim=c(0,1), xlab="covariate index",

ylab="marginal inclusion prob", pch=3)

Figure 3.3 is the output of the above command presenting the marginal inclusion probabil-
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Figure 3.3: Marginal inclusion probabilities approximated by S5 for the synthesized Boston
housing data set.

ities.

I note that full posterior model probabilities searched by the S5 algorithm can be calculated

by using the result function. The below code provides the top three models that have highest

posterior model probabilities.

R> gam_default = res_default$gam

R> post_default = res_default$post

R> round(post_default[1:3], 3)

[1] 0.739 0.192 0.012

R> which(gam_default[,1] == 1)

[1] 3 4 6 8 10

R> which(gam_default[,2] == 1)

[1] 3 4 6 8 9 10

R> which(gam_default[,3] == 1)

[1] 3 4 6 8 9 10 179
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In the above code, gam_default contains the binary vectors that identify the correspond-

ing models (1 indicates the corresponding variable is in the model, and 0 means it is not in

the model). The object post_default stores the posterior probabilities of models identi-

fied by binary vectors in gam_default. As shown in the previous code, the MAP model

is {3, 4, 6, 8, 10} with 73.9% posterior probability, and the second most significant model is

{3, 4, 6, 8, 9, 10} with probability 19.2%. The third highest posterior model probability model

is {3, 4, 6, 8, 10, 179} with 1.2% posterior probability. This model includes a spurious variable

X179. The S5 algorithm searched a total 1, 291 models; the posterior probabilities of models

not visited are approximate by 0.

The S5 package also provides other priors for Bayesian model selection procedure. These

includes the peMOM priors in (2.2) and Zellner’s g-prior. For example, the g-prior can be

applied to S5 by the following code:

R> tuning = p^2 # tuning parameter g for g-prior

R> ind_fun = ind_fun_g # choose g-prior for the regression coef

R> model = Uniform #choose the uniform model prior

R> fit_g = S5(X,y,ind_fun=ind_fun,model=model,tuning=tuning)

3.5.2 S5_parallel Function for Parallel Computing Environments

The S5 algorithm is efficient and fast in exploring the model space. However, it may not

be fast enough to implement in practice when the data set is high-dimensional and variables

are highly correlated. To overcome this problem, it is reasonable to use multiple independent

chains to search the model space. The S5 parallel function permits S5 to be ran in parallel com-

puting environments. The following command can be used to implement the parallel version

of S5 using 20 cores.
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R> NC = 20 # the number of cores that will be used

R> fit_parallel = S5_parallel(NC=NC, X, y)

R Version: R version 3.3.3 (2017-03-06)

snowfall 1.84-6.1 initialized (using snow 0.4-2):

parallel execution on 20 CPUs.

Library Matrix loaded.

Library Matrix loaded in cluster.

user system elapsed

0.090 0.004 153.129

Stopping cluster

R> res_parallel = result(fit_parallel)

[1] "# of Searched Models by S5"

[1] 6840

[1] "The MAP model is "

[1] 3 4 6 8 10

[1] "with posterior probability 0.736"

In the single processor version of S5, 1, 291 models were visited. In this 20 CPU appli-

cation, 6, 840 models were visited. This is more than five times the number of visited models

using the same amount of real time. The MAP model found by the parallel version is exactly

the same with the MAP model by the standard S5, and its posterior probability is 73.6%; this

is slightly smaller than the 73.9% that was estimated from the single chain. The code to extract

these results follows:

R> gam_parallel = res_parallel$gam

R> post_parallel = res_parallel$post

R> round(post_parallel[1:3], 3)

[1] 0.736 0.191 0.012
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R> which(gam_parallel[,1] == 1)

[1] 3 4 6 8 10

R> which(gam_parallel[,2] == 1)

[1] 3 4 6 8 9 10

R> which(gam_parallel[,3] == 1)

[1] 3 4 6 8 9 10 179
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4. FUNCTIONAL HORSESHOE PRIOR FOR NONPARAMETRIC SUBSPACE

SHRINKAGE

4.1 Introduction

Since the seminal work of James and Stein (1961), shrinkage estimation has been im-

mensely successful in various statistical disciplines and continues to enjoy widespread atten-

tion. Many shrinkage estimators have a natural Bayesian flavor. For example, one obtains the

ridge regression estimator as the posterior mean arising from an isotropic Gaussian prior on

the vector of regression coefficients (Jeffreys, 1961; Hoerl and Kennard, 1970). Along similar

lines, an empirical Bayes interpretation of the (positive part) James–Stein estimator can be ob-

tained (Efron and Morris, 1973). Such connections have been extended to the semiparametric

regression context, with applications to smoothing splines and penalized splines (Wahba, 1990;

Ruppert et al., 2003). Over the past decade and a half, a number of second-generation shrink-

age priors have appeared in the literature for application in high-dimensional sparse estimation

problems. Such priors can be almost exclusively expressed as global-local scale mixtures of

Gaussians (Polson and Scott, 2010a); examples include the relevance vector machine (Tip-

ping, 2001), normal/Jeffrey’s prior (Bae and Mallick, 2004), the Bayesian Lasso (Park and

Casella, 2008; Hans, 2009), the horseshoe priors (Carvalho et al., 2010), normal/gamma and

normal/inverse-Gaussian priors (Caron and Doucet, 2008; Griffin and Brown, 2010), general-

ized double Pareto priors (Armagan et al., 2013) and Dirichlet–Laplace priors (Bhattacharya

et al., 2015). These priors typically have a large spike near zero with heavy tails, thereby pro-

viding an approximation to the operating characteristics of sparsity inducing discrete mixture

priors (George and McCulloch, 1997; Johnson and Rossell, 2012). For more on connections

between Bayesian model averaging and shrinkage, refer to Polson and Scott (2010a).

A key distinction between ridge-type shrinkage priors and the global-local priors is that
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while ridge-type priors typically shrink towards a fixed point–most commonly the origin– the

global-local priors shrink towards the union of subspaces consisting of sparse vectors. The

degree of shrinkage to sparse models is controlled by certain hyperparameters (Bhattacharya

et al., 2015). In this dissertation, I further enlarge the scope of shrinkage prior by imposing a

class of functional shrinkage priors, called the functional horseshoe priors (fHS). fHS priors

facilitate shrinkage towards pre-specified subspaces. The shrinkage factor (defined in Section

3) is assigned a Beta(a, b) prior with a, b < 1, which has the shape of a horseshoe prior (Car-

valho et al., 2010). While the horseshoe prior shrinks towards sparse vectors, the proposed fHS

prior enforces functions to shrink towards arbitrary subspaces.

To illustrate the proposed methodology, consider a nonparametric regression model with

unknown regression function f : X ! R given by

Y = F + ", " ⇠ N(0, �2In), (4.1)

where Y = {y1, . . . , yn}T, F = {f(x1), . . . , f(xn)}T = E(Y | x), and the covariates xi 2

X ⇢ R.

In (4.1), one can either make parametric assumptions (e.g., linear or quadratic dependence

on x) regarding the shape of f , or one may model it nonparametrically using splines, wavelets,

Gaussian processes, etc. Scatter plots or goodness of fit tests can be used to ascertain the

validity of a linear or quadratic model in (4.1), but such procedures are only feasible in rela-

tively simple settings. In complex and/or high dimensional problems, there is clearly a need

for an automatic data-driven procedure to adapt between models of varying complexity. With

this motivation, the fHS priors encourage shrinkage towards a parametric class of models em-

bedded inside a larger semiparametric model, as long as a suitable projection operator can be

defined. For example, in (4.1), f will be shrunk towards a linear or quadratic function if such

parametric assumptions are supported by the data, and will remain unshrunk otherwise. As
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noted already, my approach is not limited to the univariate regression context and can be ex-

tended to the varying coefficient model (Hastie and Tibshirani, 1993), density estimation via

log-spline models (Kooperberg and Stone, 1991) and additive models (Hastie and Tibshirani,

1986), among others. Further details are provided in Section 4.4. In the additive regression

context, the proposed approach performs well compared to state-of-the-art procedures like

Sparse Additive Model (SpAM) of Ravikumar et al. (2009) and High-dimensional Generalized

Additive Model (HGAM) by Meier et al. (2009).

I provide theoretical justification for the method by showing an adaptive property of the ap-

proach in the context of (4.1). Specifically, I show that the posterior contracts at the parametric

rate if the true function belongs to the pre-designated subspace, and contracts at the optimal

rate for ↵-smooth functions otherwise. In other words, my approach adapts to the paramet-

ric shape of the unknown function while allowing deviations from the parametric shape in a

nonparametric fashion.

4.2 Preliminaries

I begin by introducing some notation. For ↵ > 0, let b↵c denote the largest integer smaller

than or equal to ↵ and d↵e denote the smallest integer larger than or equal to ↵. Let C↵[0, 1]

denote the Hölder class of ↵ smooth functions on [0, 1] that have continuously differentiable

derivatives up to order b↵c, with the b↵cth order derivative being Lipschitz continuous of

order ↵ � b↵c. For a vector x 2 Rd, let
��x
�� denote its Euclidean norm. For a function

g : [0, 1] ! R and points x1, . . . , xn 2 [0, 1], let
��g
��2
2,n

= n�1
P

n

i=1 g
2(xi); I shall refer to

�� ·
��
2,n

as the empirical L2 norm. For an m ⇥ d matrix A with m > d and rk(A) = d, let

L(A) = {A� : � 2 Rd} denote the column space of A, which is a d-dimensional subspace of

Rm. Let QA = A(ATA)�1AT denote the projection matrix on L(A).
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4.3 Functional Horseshoe Prior

In the nonparametric regression model in (4.1), I model the unknown function f as spanned

by a set of pre-specified basis functions {�j}1jKn
as follows:

f(x) =
KnX

j=1

�j�j(x). (4.2)

I work with B-spline basis functions (De Boor, 1978) for illustrative purpose here. However,

the methodology generalizes to a larger class of basis functions. The details about B-spline

basis functions were described in Section 1.1.2. Letting � = {�1, . . . , �Kn
}T denote the vector

of basis coefficients and � = {�j(Xi)}1in,1jKn
denote the n ⇥ Kn matrix of B-spline

basis functions evaluated at the observed covariates. Model (4.1) can then be expressed as

Y | � ⇠ N(��, �2In). (4.3)

A standard choice for a prior on � is a g-prior � ⇠ N(0, g(�T�)�1) (Zellner, 1986). The

g-priors have been commonly used in linear models since they incorporate the correlation

structure of the covariates inside the prior variance. The posterior mean of � with a g-prior

can be expressed as {1�1/(1+ g)}b�, where b� = Q�Y is the maximum likelihood estimate of

�. Thus, the posterior mean shrinks the maximum likelihood estimator towards zero, with the

amount of shrinkage controlled by the parameter g. Bontemps (2011) studied asymptotic prop-

erties of the resulting posterior by providing bounds on the total variation distance between the

posterior distribution and a Gaussian distribution centered at the maximum likelihood estima-

tor with the inverse Fisher information matrix as covariance. In his work, the g parameter was

fixed a priori depending on the sample size n and the error variance �2. The results in par-

ticular imply minimax optimal posterior convergence for ↵-smooth functions. Among related

work, Ghosal and van der Vaart (2007) established minimax optimality with isotropic Gaussian
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priors on �.

My goal is to define a broader class of shrinkage priors on � that facilitate shrinkage towards

a null subspace that is fixed in advance, rather than shrinkage towards the origin or any other

fixed a priori guess �0. For example, if I have a priori belief that the function is likely to attain

a linear shape, then I would like to impose shrinkage towards the class of linear functions. In

general, my methodology allows shrinkage towards any null subspace spanned by the columns

of a null regressor matrix �0, with d0 = rank(�0) equal to the dimension of the null space.

For example in the linear case, I define the null space as L(�0) with �0 = {1,x} 2 Rn⇥2,

where 1 is a n⇥ 1 vector of ones and d0 = 2. Shrinkage towards quadratic, or more generally

polynomial, regression models are achieved similarly.

With the above ingredients, I propose the fHS prior through the following conditional spec-

ification:

⇡(� | ⌧) / (⌧ 2)�(Kn�d0)/2 exp

⇢
� 1

2�2⌧ 2
�T�T(I�Q0)��

�
, (4.4)

⇡(⌧) / (⌧ 2)b�1/2

(1 + ⌧ 2)(a+b)
1(0,1)(⌧), (4.5)

where a, b > 0. Recall that Q0 = �0(�T
0�0)�1�T

0 denotes the projection matrix of �0.

When �0 = 0, (4.4) is equivalent to a g-prior with g = ⌧ 2. The key additional feature in

my proposed prior is he introduction of the quantity (I � Q0) in the exponent, which enables

shrinkage towards subspaces rather than a single point. Although the proposed prior may be

singular, it follows from subsequent results that the joint posterior of (�, ⌧ 2) is proper. Note that

the prior on the scale parameter ⌧ follows a half-Cauchy distribution when a = b = 1/2. Half-

Cauchy priors have been recommended as a default prior choice for global scale parameters

in the linear regression framework (Polson and Scott, 2012). Using the reparameterization

! = 1/(1 + ⌧ 2), the prior in (4.5) can be interpreted as the prior induced on ⌧ through a

Beta(a, b) prior on !. I work in the ! parameterization for reasons to be evident shortly.
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Exploiting the conditional Gaussian specification, the conditional posterior of � is also

Gaussian, and can be expressed as

� | Y,! ⇠ N(e�!, e⌃!), (4.6)

where

e�! =

✓
�T�+

!

1� !
�T(I�Q0)�

◆�1

�TY, e⌃! = �2

✓
�T�+

!

1� !
�T(I�Q0)�

◆�1

.

(4.7)

I now state a lemma which delineates the role of ! as the parameter controlling the shrinkage.

Lemma 1. Suppose that L(�0) ( L(�). Then,

E [�� | Y,!] = �e�! = (1� !)Q�Y + !Q0Y,

where Q� is the projection matrix of �.

The above lemma shows that the conditional posterior mean of the regression function

given ! is a convex combination of the classical B-spline estimator Q�Y and the parametric

estimator Q0Y . The parameter ! 2 (0, 1) controls the shrinkage effect; the closer ! is to 1, the

greater the shrinkage towards the parametric estimator. I learn the parameter ! from the data

with a Beta(a, b) prior on !. The hyperparameter b < 1 controls the amount of prior mass near

one.

Figure 4.1 illustrates the connection between the choice of the hyperparameters a and b and

the shrinkage behavior of the prior. The first and the second column in Figure 4.1, with a fixed

at 1/2 shows that the prior density of ! increasingly concentrates near 1 as b decreases from

1/2 to 10�1. The third column in Figure 4.1 depicts the prior probability that ! > 0.95 and
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Figure 4.1: The first two columns illustrate the prior density function of ! with different hyper-
parameters (a, b): (1/2, 1/2) for the first column and (1/2, 10�1) for the second column. The
third column shows the prior probability that ! > 0.95 (solid line) and ! < 0.05 (dotted line)
for varying b and a fixed a = 1/2.

! < 0.05. Clearly, as b decreases, the amount of prior mass around one increases, which results

in stronger shrinkage towards the parametric estimator. In particular, when a = b = 1/2, the

resulting “horseshoe" prior density derives its name from the shape of the prior on ! (Carvalho

et al., 2010).

When L(�0) ( L(�), one can orthogonally decompose Q� = Q1+Q0, where the columns

of Q1 are orthogonal to Q0, i.e., QT
1Q0 = 0. For L(�0) ( L(�), this follows because we can

use Gram-Schmidt orthogonalization to create e� = [�0;�1] of the same dimension as � with

�T
1�0 = 0 and L(�) = L(e�). Let Q1 denote the projection matrix on L(�1). Simple algebra

shows that

⇡(! | Y ) =

Z
⇡(!, � | Y )d� =

⇡(!)

m(Y )

Z
f(Y | �,!)⇡(� | !)d�

= !a+(Kn�d0)/2�1(1� !)b�1 exp{�Hn!}/m(Y ), (4.8)

where Hn = Y TQ1Y/(2�2) and m(Y ) =
R 1

0 !
a+(Kn�d0)/2�1(1� !)b�1 exp {�Hn!} d!.

To investigate the asymptotic behavior of the resulting posterior, it is crucial to find tight

two-sided bounds on m(Y ). Such bounds are specified in Lemma 2.
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Lemma 2. (Bounds on the normalizing constant) Let An and Bn be arbitrary sequences satis-

fying An ! 1 as n ! 1 and Bn = O(1).

Let tn =
R 1

0 !
An�1(1� !)Bn�1 exp{�Hn!}d!. Then,

�(An)�(Bn)

�(An +Bn)
exp{�Hn}(1 +QL

n
)  tn  �(An)�(Bn)

�(An +Bn)
exp{�Hn}(1 +QU

n
),

where,

QU

n
=

Bn

An +Bn

exp(Hn),

QL

n
=

BnHn

An +Bn

+
DBn(Bn + Tn)�An

(An +Bn)3/2
�
exp{Hn}� 1�Hn � (Tn + 2)�1/2

�
+
,

Tn = max{A2
n
, 3 dHne} and D is some positive constant.

By setting An = a+Kn/2 and Bn = b, Lemma 2 shows that the magnitude of the normal-

izing constant m(Y ) in (4.8) is determined by an interplay between the relative sizes of b and

exp(Hn). When b is small enough to dominate exp(Hn), m(Y ) ⇡ Be(a+Kn/2, b) exp(�Hn),

where Be(·, ·) denotes the beta function. Otherwise, ignoring polynomial terms, m(Y ) ⇡

Be(a + Kn/2, b)b. This asymptotic behavior of m(Y ) is the key ingredient to identify the

posterior contraction rate of the fHS prior. I also note that the magnitude of a does not affect

the strength of shrinkage for large n as long as a is a fixed constant, since the prior contribution

!a�1 is dominated by the likelihood contribution !Kn/2.

4.3.1 Posterior Concentration Rate

I first state a set of assumptions that have been used by others (Zhou et al., 1998; Claeskens

et al., 2009) to prove minimax optimality of B-spline estimators. Assume that the following

conditions hold:
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(A1). Let u = max1j(Kn�1)(tj+1 � tj). There exists a constant C > 0, such that

u/min1j(Kn�1)(tj+1 � tj)  C and u = o(K�1
n

).

(A2). There exists some distribution function G with a positive continuous density such

that

sup
x2[0,1]

|Gn(x)�G(x)| = o(K�1
n

),

where Gn is the empirical distribution of the covariates {xi}1in, which are assumed to be

fixed by design.

Under (A1) and (A2), Zhou et al. (1998) showed that the mean square error of the B-spline

estimator Q�Y achieves the minimax optimal rate. If the true function f0 2 C↵[0, 1] is ↵-

smooth and the number of basis functions Kn ⇣ n1/(2↵+1), then Zhou et al. (1998) shows

that

E0

h��Q�Y � F0

��2
2,n

i
= O

�
n�2↵/(1+2↵)

�
, (4.9)

where E0(·) represents an expectation with respect to the true data generating distribution of

Y .

I now state main results on the posterior contraction rate of the functional horseshoe prior.

Theorem 6. Consider the model (4.1) equipped with the functional horseshoe prior (4.4)-(4.5).

Assume (A1) and (A2) hold and L(�0) ( L(�). Further assume that for some integer ↵ � 1,

the true regression function f0 2 C↵[0, 1] and the B-spline basis functions � are constructed

with Kn � b↵c knots and b↵c � 1 degree, where Kn ⇣ n1/(1+2↵)
. Suppose that the prior

hyperparameters a and b in (4.5) satisfy a 2 (�, 1 � �) for some constant � 2 (0, 1/2), and
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Kn logKn � � log b � (nKn)1/2. Then,

E0

h
P
n���� � F0

��
2,n

> Mn(f0)
1/2 | Y

oi
= o(1), (4.10)

where

Mn(f0) =

8
>><

>>:

⇣nn�1, if F0 2 L(�0),

⇣nn�2↵/(1+2↵) log n, if F T
0 (I�Q0)F0 ⇣ n,

and ⇣n can be any arbitrary sequence that diverges to infinity as n tends to 1.

Theorem 6 exhibits an adaptive property of the fHS prior. If the true function is ↵-

smooth, then the posterior contracts around the true function at the near minimax rate of

n�↵/(2↵+1) log n. However, if the true function F0 belongs to the finite dimensional subspace

L(�0), then the posterior contracts around F0 in the empirical L2 norm at the parametric

1/
p
n rate. I note that the bound Kn logKn � � log b � (nKn)1/2 is key to the adaptiv-

ity of the posterior, since the strength of the shrinkage towards L(�0) is controlled by b. If

� log b � Kn logKn, then the shrinkage towards L(�0) is too weak to achieve the paramet-

ric rate when F0 2 L(�0). On the other hand, if � log b � (nKn)1/2, the resulting posterior

distribution would strongly concentrate around L(�0), and it would fail to attain the optimal

nonparametric rate of posterior contraction when F0 62 L(�0).

I ignore the subspace of functions such that {F 2 Rn : F T(I�Q0)F = o(n), F 62 L(�0)}.

I only focus on the function space that can be strictly separated from the null space L(�0).

However, I acknowledge that it would be meaningful to illustrate the shrinkage behavior when

the regression function f approaches the null space in the sense that F T(I � Q0)F/n ! 0 as

n ! 1.
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4.4 Simulation Studies for Univariate Examples

In this section, I examine the performance of the functional horseshoe prior on various

simulated data sets. I consider three models as follows:

(i) simple regression model: Yi = f(xi) + ✏i (4.11)

(ii) varying coefficient model: Yi = wif(xi) + ✏i (4.12)

(iii) density function estimation: p(Yi) =
exp{f(Yi)}R
exp{f(t)}dt

. (4.13)

In scenario (i) and (ii), ✏i
i.i.d⇠ N(0, �2) for i = 1, . . . , n. In (iii), p(·) is the density function of Y .

The varying coefficient model (Hastie and Tibshirani, 1993) in (4.12) reduces to a linear model

when the coefficient function f is constant, and the density function p is Gaussian when the

log-density function f is quadratic in the log-spline model in (4.13); (Kooperberg and Stone,

1991). These facts motivate the use of the fHS prior in these examples to shrink towards the

respective parametric alternatives. For each setting, I considered the case corresponding to the

relevant parametric model.

For (i) and (ii), I generated the covariates independently from a uniform distribution be-

tween �⇡ and ⇡ and set the error variance �2 = 1. For each scenario (i) - (iii), I considered

three parametric choices for f . For scenario (i), I considered f to be linear, quadratic, and sinu-

soidal. For (ii), I considered constant, quadratic and sinusoidal functions. For (iii), I considered

normal, log-normal and mixture of normal distributions. For the first two cases, I standardized

the true function so as to obtain a signal-to-noise ratio of 1.0.

I used the B-spline basis with Kn = 8 in (4.2) to model the function f in each setting.

To shrink the regression function in (4.11) towards linear subspaces, I set �0 = {1,x} in

the fHS prior (4.4). For the varying coefficient model (4.12), I set �0 = {1} to shrink f

towards constant functions, whence the resulting model reduces to a linear regression model.
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Table 4.1: Results of univariate examples

True function Method n = 200 n = 500 n = 1000

Linear fHS 0.93 (0.81) 0.44 (0.45) 0.17 (0.17)
B-spline 3.57 (1.60) 1.54 (0.74) 0.76 (0.38)

Quadratic fHS 3.63 (1.73) 1.55 (0.74) 0.77 (0.37)
B-spline 3.59 (1.60) 1.56 (0.74) 0.78 (0.38)

Sine fHS 3.64 (1.58) 1.50 (0.74) 0.75 (0.36)
B-spline 3.57 (1.60) 1.53 (0.74) 0.76 (0.38)

Constant fHS 0.13 (0.15) 0.06 (0.08) 0.03 (0.04)
B-spline 1.33 (0.63) 0.48 (0.26) 0.25 (0.13)

Quadratic fHS 1.35 (0.62) 0.51 (0.27) 0.27 (0.13)
B-spline 1.36 (0.64) 0.51 (0.26) 0.27 (0.13)

Sine fHS 1.35 (0.63) 0.48 (0.26) 0.25 (0.13)
B-spline 1.33 (0.63) 0.48 (0.26) 0.25 (0.13)

Normal fHS 1.34 (1.35) 0.59 (0.52) 0.35 (0.31)
B-spline 10.30 (5.00) 3.68 (1.42) 1.96 (0.77)

Log-normal fHS 5.15 (2.70) 3.35 (1.14) 2.91 (0.98)
B-spline 6.37 (4.21) 3.27 (1.86) 2.83 (1.14)

Mixture fHS 4.42 (2.18) 1.79 (0.85) 1.04 (0.39)
B-spline 5.31 (3.61) 1.85 (0.93) 1.04 (0.39)

Finally, I set �0 = {1, Y, Y 2} to shrink f towards the space of quadratic functions in (4.13),

which results in the density p being shrunk towards the class of Gaussian distributions. I

note that the prior for p in (4.13) is data-dependent. An inverse-gamma prior with parameters

(1/100, 1/100) was imposed on �2 for the fHS prior in (i) and (ii). In all three examples, I

set b = exp{�Kn log n/2} to satisfy the conditions of Theorem 6 and arbitrarily set a = 1/2.

Although Theorem 6 only applies to the regression model (4.11), the empirical results for these

hyperparameter choices are promising for the varying coefficient model and the log-density

model as well.

I imposed Jeffrey’s prior, ⇡(�, �2) / 1/�2, on the B-spline coefficients for the simple

regression model and the varying coefficient model as a competitor to the fHS prior. Following

Ghosal et al. (2008), I assigned independent U(�⇡, ⇡) priors on the B-spline coefficients,
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which are known to guarantee the minimax rate of posterior convergence rate for the log-

density model. For each prior, I used the posterior mean f̂ as a point estimate for f , and report

the empirical Mean Square Error (MSE), i.e.
�� bf � f

��2
n,2

.

In Table 4.1, I report 100 times MSE of the posterior mean estimator and its standard

deviation over 100 replicates in estimating the unknown function f for all three models, for

sample sizes n = 200, 500, and 1000. The first top three rows are for the simple regression

model; the second three rows for the varying coefficient model; the last three rows for the

density estimation. “Mixture" in the last row indicates a mixture of Gaussian densities as

0.3N(2, 1) + 0.7N(�1, 0.5). In all three settings, when the true function f belongs to the

nominal parametric class, the posterior mean function resulting from the functional horseshoe

prior clearly outperforms the B-spline prior. When the true function does not belong to the

parametric model, the functional horseshoe prior performs comparably to the B-spline prior.

Figure 4.2 depicts the point estimate (posterior mean) and pointwise 95% credible bands

for the unknown function f for a single data set for each of the three examples when the true

function belongs to the parametric class; that is, a linear function in (4.11), a constant function

in (4.12), and a quadratic function in (4.13). Figure 4.3 depicts the corresponding estimates

when the data generating function does not fall into the assumed parametric class. It is evident

from Figure 4.2 that when the parametric assumptions are met, the fHS prior performs similarly

to the parametric model. THis fact empirically corroborates my findings in Theorem 6 that the

posterior contracts at a near parametric rate when the parametric assumptions are met. It is also

evident that the fHS procedure automatically adapts to deviations from the parametric assump-

tions in Figure 4.3, again confirming the conclusion of Theorem 6 that when the true function is

well-separated from the parametric class, the posterior concentrates at a near optimal minimax

rate. I reiterate that the same hyperparameters a = 1/2 and b = exp{�Kn log n/2} for the

fHS prior were used in the examples in Figure 4.2 and Figure 4.3.
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Figure 4.2: Examples when the underlying true functions are parametric. Posterior mean of
each procedure (red solid), its 95% pointwise credible bands (red dashed), and the true function
(black solid) from a single example with n = 200 for each model. The top row is for the
simple regression model; the second row is for the varying coefficient model; the last row is
for the density estimation. The Bayesian B-spline procedure, the Bayesian parametric model
procedure, and functional horseshoe priors are illustrated in the first, second, and third columns,
respectively.
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Figure 4.3: Examples when the underlying true functions are nonparametric. Posterior mean
of each procedure (red solid), its 95% pointwise credible bands (red dashed), and the true
function (black solid) from a single example with n = 200 for each model. The top row is
for the simple regression model; the second row is for the varying coefficient model; the last
row is for the density estimation. The Bayesian B-spline procedure, the Bayesian parametric
model procedure, and functional horseshoe priors are illustrated in the first, second, and third
columns, respectively.
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4.5 Applications to Additive Models

My regression examples in the previous subsection involved one predictor variable. In

the case of multiple predictors, a popular modeling framework is the class of additive models

(Hastie and Tibshirani, 1986), where the unknown function relating p candidate predictors to a

univariate response is modeled as the sum of p univariate functions, with the jth function only

dependent on the jth predictor Xj = {x1j, . . . , xnj}. In this section, I apply the fHS prior to

additive models and compare results obtained under this prior to several alternative methods.

To be consistent with my previous notation, I express additive models as

Y =
pX

j=1

Fj + ✏, (4.14)

where Fj = {fj(x1j), . . . , fj(xnj)} for j = 1, . . . , p and ✏ ⇠ N(0, �2In). I let �j denote the

spline basis matrix for Xj and let �j = {�j1, . . . , �jKn
} denote the corresponding coefficient.

In general, each component function can be modeled nonparametrically, for example, using the

B-spline basis functions as described in the previous section, fj(x) =
P

Kn

l=1 �jl�l(x) = �j�j

for j = 1, . . . , p. However, if there are many candidate predictors, then nonparametrically

estimating p functions may be statistically difficult and in addition, may result in a loss of

precision if only a small subset of the variables are significant. With this motivation, I extend

the fHS framework to additive models, where I assign independent fHS priors to the fj’s with

Q0 = 0 in (4.4) to facilitate shrinkage of each of these functions towards the null function.

Therefore, the resulting prior specification can be expressed as

⇡(� | ⌧ 2, �2) / exp

(
� 1

�2

pX

j=1

�T
j
�T

j
�j�j
⌧ 2
j

)

⇡(⌧j) /
(⌧ 2

j
)b�1/2

(1 + ⌧ 2
j
)(a+b)

1(0,1)(⌧j),
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for j = 1, . . . , p. This prior imposes a shrinkage effect on each
��fj
��2
2,n

= �T
j
�T

j
�j�j towards

the null function. Thus, the resulting posterior distribution of Fj concentrates on the zero

function when the marginal effect of Fj is negligible.

4.5.1 A Comparison to the Standard Horseshoe Prior

For the additive model in (4.14), one can impose a product of standard horseshoe (HS)

priors (Carvalho et al., 2010) on the spline coefficients as

⇡(� | �, w, �2) / exp

(
� 1

�2�2

pX

j=1

KnX

l=1

�2
jl

 2
jl

)

� ⇠ C+(0, 1)

 jl ⇠ C+(0, 1), (4.15)

where C+(0, 1) is the half-Cauchy distribution and �jl is the l-th spline coefficient for the com-

ponent function of the j-th covariate for j = 1, . . . , p and l = 1, . . . , Kn. Polson and Scott

(2010b) states that this prior imposes global-local shrinkage rules. The parameter � serves a

global shrinkage parameter controlling the concentration near zero, while the  jl’s are local

shrinkage parameters that control the tail heaviness of the individual coefficients. The use of

the standard horseshoe prior would impose strong shrinkage effects towards zero on each co-

efficient, but it does not take into account the grouping structure in the spline expansions of the

components. From a frequentist perspective, this issue was addressed in Huang et al. (2010).

There, the authors stated that the standard Lasso (Tibshirani, 1996) with sparsity constraints

on individual marginal coefficients is not appropriate for additive models. The group Lasso

penalties (Yuan and Lin, 2006) on the spline coefficients achieve much better performance in

prediction and model selection compared to the standard Lasso in such settings. The same

illustration can be applied to the Bayesian additive model. The use of the standard horseshoe

prior might degrade the estimation performance due to the ignorance of the grouping structure
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in the spline coefficients. In the following sections, I provide simulated and real examples

where the standard horseshoe prior does not perform well for additive models, but the proce-

dure based on the fHS prior shows excellent performances compared to other state-of-the-art

methods.

4.5.2 Simulation Studies

For additive models, Ravikumar et al. (2009) proposed penalized likelihood procedures

called Sparse Additive Models (SpAM) that combine ideas from model selection and additive

nonparametric regression. The penalty term of SpAM can be described as a weighted group

Lasso penalty (Yuan and Lin, 2006) in which the coefficients for each component function fj

for j = 1, . . . , p are forced to simultaneously shrink towards zero. Meier et al. (2009) proposed

High-dimensional Generalized Additive Model (HGAM) that differs from SpAM because its

penalty term imposes both shrinkage towards zero and regularization on the smoothness of

the function. Huang et al. (2010) introduced a two step procedure of adaptive group Lasso

(AdapGL) for additive models. The first step estimates the weight of the group penalty, and the

second step applies it to the adaptive group Lasso penalty. Since the performance of penalized

likelihood methods is sensitive to the choice of the tuning parameter, in the simulation studies

that follow I considered two criterion for tuning parameter selection: AIC and BIC. R packages

SAM, hgam, and grpLasso were used to implement SpAM, HGAM, and AdapGL, respec-

tively. I also considered the standard HS prior. Its computation was implemented by the R

package monomv. For the fHS prior and the HS prior, I imposed a prior on ⇡(�2) proportional

to 1/�2. I used 20, 000 samples from the MCMC algorithms after 10, 000 burn-in iterations to

estimate the posterior mean estimator.

I define the signal-to-noise ratio as SNR = Var(f(X))/V ar(✏), where f is the true under-

lying regression function, and I examine the same simulation scenarios that were considered in

Meier et al. (2009) as follows:
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Scenario 1: (p = 200, SNR ⇡ 15). This is the same as Example 1 in Meier et al. (2009). A

similar scenario was also considered in Härdle et al. (2012) and Ravikumar et al. (2009). The

true model is

Yi = f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4) + ✏i,

where ✏i
i.i.d⇠ N(0, 1) for i = 1, . . . , n, with

f1(x) = � sin(2x), f2(x) = x2 � 25/12, f3(x) = x,

f4(x) = exp{�x}� 2/5 · sinh(5/2).

The covariates are independently generated from a uniform distribution between �2.5 to 2.5.

Scenario 2: (p = 80, SNR ⇡ 7.9). This is equivalent to Example 3 in Meier et al. (2009) and

similar to an example in Lin and Zhang (2006). The true model is

Yi = 5f1(xi1) + 3f2(xi2) + 4f3(xi3) + 6f4(xi4) + ✏i,

where ✏i
i.i.d⇠ N(0, 1.74) for i = 1, . . . , n, with

f1(x) = x, f2(x) = (2x� 1)2, f3(x) =
sin(2⇡x)

2� sin(2⇡x)
,

f4(x) = 0.1 sin(2⇡x) + 0.2 cos(2⇡x) + 0.3 sin2(2⇡x)

+0.4 cos3(2⇡x) + 0.5 sin3(2⇡x).

The covariate xj = {x1j, . . . , xnj}T for j = 1, . . . , p is generated by xj = (Wj + U)/2, where

W1, . . . ,Wp and U are independently simulated from U(0, 1) distributions.
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Scenario 3 (p = 60, SNR ⇡ 11.25). This scenario is equivalent to Example 4 in Meier

et al. (2009), and a similar example was also considered in Lin and Zhang (2006). The same

functions and the same process to generate the covariates used as in Setting 2 were used in this

scenario. The true model is

Yi = f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4)

+1.5f1(xi5) + 1.5f2(xi6) + 1.5f3(xi7) + 1.5f4(xi8)

+2.5f1(xi9) + 2.5f2(xi10) + 2.5f3(xi11) + 2.5f4(xi12) + ✏i,

where ✏i
i.i.d⇠ N(0, 0.5184) for i = 1, . . . , n.

To evaluate the estimation performance of the fHS prior, I report the MSE for each method.

To measure the performance of variable selection, I examined the proportion of times the true

model was selected, as well as Matthews correlation coefficient (MCC; Matthews (1975)),

defined as,

MCC =
TP · TN � FP · FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP, and FN denote the number of true positive, true negatives, false positives,

false negatives, respectively. MCC is generally regarded as a balanced measure of the perfor-

mance of classification methods, which simultaneously takes into account TP, TN, FP, and FN.

I note that MCC is bounded by 1, and the closer MCC is to 1, the better the model selection

performance is.

For variable selection using the fHS prior and the HS prior, I used 95% pointwise credible

bands for each component function to exclude component functions whose credible bands

uniformly contained the zero function on the entire support of the corresponding covariate. To

77



n

log
 M

SE

●

●

●

●

●

●

● ● ●
●

200 300 400 500 600

−2
−1

0
1

2

n

M
CC

● ● ● ● ●

●

● ● ● ●

200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

Pr
op

or
tio

n

●

●

● ●

●

●
●

● ● ●

200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

log
 M

SE

●

●
● ●

●

●

●
● ● ●

200 300 400 500 600

−2
−1

0
1

2

n

M
CC

●
●

● ● ●

●

●
● ● ●

200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

Pr
op

or
tio

n
●

●

● ● ●
● ●

● ● ●

200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

log
 M

SE

●

●

●

●

●

●

●

●

●

●

200 300 400 500 600

−2
−1

0
1

2

n

M
CC

●
●

● ●
●

●
●

●
● ●

200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

Pr
op

or
tio

n

● ● ● ● ●● ● ● ● ●

200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

Partial−Oracle
fHS
HS
SpAM
HGAM
AdapGL

Figure 4.4: The first column illustrates the logarithm of the MSE of each method; the second
column displays the MCC; the third column is the proportion of times the each procedure se-
lected the true model. The top row, the middle row, and the bottom row represent the Scenario

1, Scenario 2, and Scenario 3, respectively. For penalized likelihood methods, AIC (black) and
BIC (grey) were used to choose the tuning parameter.
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investigate the performance achieved by the proposed method, I compared it to a “partial oracle

estimator". The partial oracle estimator refers to the B-spline least squares estimator when the

variables in the true model are given, but the true component functions in the additive model

are not provided.

Results from a simulation study to compare these methods are depicted in Figure 4.4. In

all three settings,the procedure based on the fHS prior has smaller MSE than the estimator

based on the horsehoe prior and the penalized likelihood estimators. The proposed procedure

also provides comparable or better variable selection than the other methods. I note that the

SpAM procedure with tuning parameter selected by BIC provides comparable variable selec-

tion performance to the fHS prior in Scenario 1, yet its MSE is at least 8 times larger than that

of the procedure based on the fHS prior (note that the reported results are on the logarithmic

scale). The results suggest that the fHS prior provides improvement over the penalized like-

lihood methods in terms of both MSE and model selection performance in these simulation

scenarios.

4.5.3 Real Data Analysis: Boston Housing Data and Ozone Data

In this section, I apply the functional horseshoe prior to two well known data sets: the first

concerns ozone levels and the second considers housing prices in Boston. Both data sets are

available in the R package mlbench. These two data sets have been previously analyzed by

various researchers, including Buja et al. (1989), Breiman (1995), Lin and Zhang (2006) and

Xue (2009). Following the pre-processing step in Xue (2009), I standardized both the response

and independent variables prior to my analyses.

I first consider the Boston housing data set that contains the median value of 506 owner-

occupied homes in the Boston area, together with several variables that might be associated

with the median value. To examine the performance of my method in eliminating extraneous

predictors, I added 40 spurious variables generated as i.i.d. standard Gaussian deviates. Using
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the standard notation for the variable in this data set, I then assumed a model of the following

form:

medv = �0 + f1(crim) + f2(indus) + f3(nox) + f4(rm) + f5(age) + f6(dis)

+f7(tax) + f8(ptratio) + f9(b) + f10(lstat) + ✏,

where ✏ ⇠ N(0, �2In). Each component function was modeled by the B-spline bases with

Kn = 8. Fifty test data points were randomly selected to estimate the out-of-sample prediction

error. Five hundreds simulations of each procedure were used to generate the plots in Table

4.2.

I also modeled the ozone data set using each of the procedures that were applied the housing

data. The ozone data consists of the daily maximum one-hour-average ozone readings and nine

meteorological variables for 330 days in the Los Angeles basin in 1976. The model applied to

these data can be expressed as follows:

ozone = �0 + f1(height) + f2(wind) + f3(humidity) + f4(temp1)

+f5(temp2) + f6(inv height) + f7(gradient) + f8(inv temp)

+f9(visibility) + ✏.

Like the Boston Housing data case, I added 40 spurious variables generated as i.i.d. standard

Gaussian deviates. I used B-spline bases with Kn = 5 to model the component functions. I

performed a cross-validation experiment to assess the predictive performance of the compet-

ing methods. In each of 500 simulated data sets, I held out 30 data values as the test set and

used the remaining observations to estimate the model. The parameter settings described in

Section 4.5.2 were again used for the functional horseshoe prior. Also, for each training data

set I generated 30, 000 posterior samples by following the MCMC algorithm described in the
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Table 4.2: Results of real data examples

Boston Housing Data
Method Test Error NN Selected Model
Original 0.156(0.065)

fHS 0.154(0.067) 0.00 crim, nox, rm, dis, ptratio, lstat
HS 0.180(0.081) 0.00 crim, nox, rm, dis, ptratio, lstat

SpAM(AIC) 0.224(0.072) 21.06 All
SpAM(BIC) 0.344(0.093) 2.00 crim, nox, rm, dis, ptratio, lstat
HGAM(AIC) 0.212(0.095) 37.49 All
HGAM(BIC) 0.222(0.115) 1.06 indus, nox, age, dis, tax, ptratio

AdaptGL(AIC) 0.579(0.214) 40.00 All
AdaptGL(BIC) 0.218(0.144) 4.17 nox, rm, dis, tax, ptratio, lstat

Ozone Data
Original 0.311(0.085)

fHS 0.278(0.092) 0.02 temp2, gradient
HS 0.294(0.296) 0.00 temp2

SpAM(AIC) 0.427(0.156) 20.67 All but height and inv temp

SpAM(BIC) 0.624(0.213) 0.07 temp1, temp2, gradient
HGAM(AIC) 0.298(0.109) 23.12 All but gradient
HGAM(BIC) 0.631(0.260) 0.208 humidity, temp1

AdaptGL(AIC) 0.359(0.131) 21.91 All but height and inv temp

AdaptGL(BIC) 0.341(0.142) 2.252 humidity, temp1, temp2, inv height,
gradient, visibility

Appendix, and only the last 20, 000 samples were used in the analysis. I compared the perfor-

mance of the procedure based on the proposed priors with that of SpAM, HGAM, AdapGL and

the classical B-spline estimator. The classical B-spline estimator was fit without the spurious

noise variables. For the penalized likelihood methods, AIC and BIC were used to choose tun-

ing parameters. Table 4.2 displays the average of test set errors, the average number of selected

noise variables, and the most frequently selected model for each method.

In Table 2, “Test Error" refers to the average of empirical L2 test errors, and “NN" rep-

resents the averaged number of selected spurious variables. “Original" indicates the B-spline

least square estimator from the original model without spurious variables. Table 2 shows that
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for both data sets the procedure based on the fHS prior achieved the smallest test errors, and it

also selected the minimum number of spurious variables. Moreover, its test error was smaller

than that of the original estimator that was estimated without the spurious variables. The HS

prior also selects parsimonious models in the sense that the average number of selected spuri-

ous variables is close to zero, but its prediction error is much larger than the fHS prior. For both

data sets, the model selected by the fHS prior was similar to that chosen by SpAM with BIC.

However, the test error of the SpAM procedure was roughly twice that of fHS. More generally,

the fHS procedure outperformed all of the other procedures in these examples.

4.6 Conclusion

I have proposed a class of shrinkage priors which I call the functional horseshoe priors.

When appropriate, these priors imposes strong shrinkage towards a pre-specified class of func-

tions. The shrinkage term in this prior is new. It directly allows the nonparametric function to

shrink towards parametric functions. By so doing, it preserves the minimax optimal parametric

rate of posterior convergence n�1/2 when the true underlying function is parametric, and it also

comes within O(log n) of achieving the minimax nonparametric rate when the true function is

strictly separated from the class of parametric functions.

The novel shrinkage term contained in the proposed prior, F T(I � Q0)F (i.e., (4.4)), can

be naturally applied to a new class of penalized likelihood methods having a general form

expressible as

�l(Y | F ) + p�
�
F T(I�Q0)F

�
,

where l(Y | F ) is the logarithm of a nonparametric likelihood function and p� is the penalty

term. In contrast to other penalized likelihood methods, this form of penalty allows shrinkage

towards the space spanned by a projection matrix Q0, rather than simply a zero function.
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5. NONLOCAL FUNCTIONAL PRIORS FOR NONPARAMETRIC HYPOTHESIS

TESTING AND HIGH-DIMENSIONAL MODEL SELECTION

5.1 Introduction

Consider the following nonparametric additive model (Hastie and Tibshirani, 1986) that

was discussed in Chapter 4; i.e., for a response variable y = {y1, . . . , yn} and the covariates

X = {X1, . . . , Xp},

y =
pX

j=1

fj(Xj) + ✏,

where ✏ ⇠ N(0, �2In), and fj is the j-th marginal regression function. Also, Xj is the j-th

covariate for j = 1, . . . , p. I assume that some of the functions fj are nonzero and the rest are

zero functions.

For additive models, significant progress in selecting a subset of variables has been made

over the past decades under high-dimensional settings. From a frequentist perspective, this

problem has been examined in Ravikumar et al. (2009), Meier et al. (2009), and Huang et al.

(2010). Theoretical properties of associated estimation properties have been investigated in

Raskutti et al. (2012) and Yuan and Zhou (2016). In a Bayesian framework, Shang and Li

(2014) investigated asymptotic properties of high-dimensional model selection procedures de-

fined by Gaussian priors.

From a Bayesian perspective, Choi et al. (2009) investigated the asymptotic property of

nonparametric Bayesian testing procedure. More recently, Choi and Rousseau (2015) studied a

Bayesian hypothesis test on the regression function in partially linear models using a Gaussian

process prior and showed its consistency. However, neither Choi et al. (2009) or Choi and

Rousseau (2015) provided the exact convergence rate of the evidence when the null hypothesis
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is true.

In this dissertation, I propose new classes of prior densities called nonlocal functional prior

densities for nonparametric Bayesian hypothesis testing problems, and I apply the proposed

prior to the model selection procedure for additive models under high-dimensional settings. I

investigate theoretical properties of the resulting Bayesian model selection procedure and show

its model selection consistency under high-dimensional settings when the number of covariates

p increases at an sub-exponential rate of n.

The proposed prior densities are a novel extension of nonlocal priors (Johnson and Rossell,

2010) to nonparametric settings. For parametric models, a family of nonlocal prior densities as-

signs negligible density around the null value of the parameter, and Johnson and Rossell (2010)

showed that the Bayes factor based on the nonlocal priors penalizes the alternative hypothesis

at a faster rate than that of local prior density functions that are strictly positive at the null value,

when the data-generating process is consistent with the null hypothesis. For high-dimensional

linear model selection problems, Johnson and Rossell (2012) and Shin et al. (2017) provided

desirable theoretical properties of model selection procedures based on nonlocal priors. How-

ever, their extension to nonparametric models has been hindered because it is not clear how to

define the null space to construct nonlocal prior densities on the space of functions due to the

fact that the null hypothesis is composite for nonparametric hypothesis tests.

I first introduce a novel discrepancy quantity between the null space of functions and the

function objective to be inferred, and construct nonlocal functional prior densities based on the

null space defined by the discrepancy. I then show the theoretical properties of the Bayesian

hypothesis test (model selection) based on the proposed priors for univariate nonparametric

regression models. I derive the asymptotic rate of the Bayes factor in favor of the alternative

based on the local prior densities, e.g. g-priors Zellner (1986), and show that it diminishes

only at a polynomial rate under a true null, but increases at an exponential rate of the sample

size under a true alternative. On the other hand, when data sets are generated from the null
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hypothesis, the Bayes factor based on the proposed prior densities not only achieve a faster

rate than that from existing local priors, but also can attain a sub-exponential rate, rather than

a polynomial rate, under some conditions. I provide description of these properties detailed in

Section 5.3. I also discuss some applications of the proposed priors and test their finite sample

behavior by simulation studies in Section 5.4.

I apply the proposed nonlocal functional prior density to additive model selection problems

under high-dimensional settings. In Section 5.5.1 I show that the resulting model selection pro-

cedure is consistent in the sense that the posterior model probability of the true data-generating

model converges to one in probability under mild regularity conditions. In Section 5.5.2, I

also provide a convergence rate of the logarithm of posterior model probabilities defined by

the nonlocal functional priors, and I show that this rate can be decomposed as a sum of the

logarithm of posterior model probabilities from local priors (e.g. Gaussian priors) and an ad-

dtional penalty term on the model. It is shown that the additional penalty term is adaptively

determined by the marginal effect of the B-spline estimator, and this property explains why

the model selection procedure based on the proposed priors outperforms the other methods in

simulation studies and real data examples.

Choosing an appropriate hyperparameter for the prior densities is important when imple-

menting a Bayesian models selection (hypothesis testing). In Section 5.5.5, I propose a practi-

cal procedure to choose the hyperparameter of the nonlocal functional priors by comparing the

null distribution and the prior density of the discrepancy measure. For computation, I describe

a scalable algorithm that is a modified version of the Simplified Shotgun Stochastic Search

with Screening (S5) (Shin et al., 2017). Originally, S5 was designed to efficiently explore the

space of linear models. Here, I modify the S5 to be suitable for nonparametric additive model

selection. All computational functions used in this dissertation are available in the R package

BayesS5.
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5.2 Bayesian Nonparametric Hypothesis Testing Procedures

To illustrate the idea of nonlocal functional priors, I assume the nonparametric univariate

regression model with the regression function f can be expressed as

yi = f(xi) + ✏i, (5.1)

where ✏i
i.i.d⇠ N(0, �2) for i = 1, . . . , n. I suppose that the predictor is compactly supported,

and assume without loss of generality that xi 2 [0, 1] for each i. I denote y = {yi}i=1,...,n,

x = {xi}T
i=1,...,n and F = f(x) = {f(x1), . . . , f(xn)}T. For simplicity, I assume that �2 is

known. By using B-spline basis functions, I model F =
P

Kn

j=1 �j�j(x) = ��, where �j denote

the j-th B-spline basis for j = 1, · · · , Kn, � = {�1, . . . , �Kn
}, and � is the n⇥Kn matrix of

the B-spline bases.

I aim to test if the regression function F belongs to a certain class of parametric functions

that can be linearly spanned by a design matrix �0 with a dimension d0. So, the null space of the

corresponding hypothesis test can be defined as L(�0) = {F 2 Rn : F = �0↵ for some ↵ 2

Rd0}. For example, any linear function of x can be expressed as a1 + bx for some a, b 2 R,

where 1 indicates the vector with all entries of 1, which means that the null space of a linearity

test of F is defined by L(�0) = {F : F = �0↵ for some ↵ 2 R2} with �0 = {1,x}.

A general class of hypothesis tests on F to examine if F belongs to a pre-specified class of

parametric functions can be defined as

H0 : F 2 L(�0) vs. H1 : F /2 L(�0). (5.2)

A common Bayesian hypothesis testing procedure is based on Bayes factor (Jeffreys, 1961)

which measures the evidence in favor of the alternative hypothesis. Given the hypotheses in

(5.2), the Bayes factor in favor of H1, denoted by B10(y), is defined by the ratio of the marginal
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likelihoods of the null and the alternative, m0(y) and m1(y), respectively. This is expressible

as

B10(y) =
m1(y)

m0(y)
=

R
L(y | �, H1)⇡1(�)d�R
L(y | ↵, H0)⇡0(↵)d↵

,

where L(y|·) is the likelihood function resulting from each hypothesis, and ⇡0 and ⇡1 denote

the prior densities under the null and the alternative hypothesis. Note that the large value

of B10(y) indicates a strong evidence in support of H1 while values closer to zero indicate

evidence in favor of the null hypothesis.

I note that F T(I�Q0)F = 0 if and only if F 2 L(�0), where Q0 is the projection matrix of

the null regressor �0, i.e., Q0 = �0(�T
0�0)�1�T

0 . By using this fact, I redefine the hypothesis

tests in (5.2) as

H0 : F
T(I�Q0)F = 0 vs. H1 : F

T(I�Q0)F 6= 0.

Under H0, the resulting model is thus the parametric regression model with F = �0↵ for

some ↵ 2 Rd0 . By using the semi-norm F T(I � Q0)F , I consider the null space of the

hypothesis as {F 2 Rn : F T(I�Q0)F = 0}.

In testing a point null hypothesis of a scalar-valued parameter, i.e., H0 : ✓ = 0 versus

H1 : ✓ 6= 0 for some parameter ✓ 2 R, Johnson and Rossell (2010) pointed out that the Bayes

factor based on local prior densities in favor of H0 is Op(n�1/2) when the true parameter is the

null value. However, when data are generated from alternative hypotheses, the Bayes factor in

favor of H1 increases at an exponential rate of n as discussed in Walker (2004). Johnson and

Rossell (2010) showed that the convergence rate of the Bayes factor based on the nonlocal prior

densities can be more equitably balanced under the true null and true alternative hypotheses. In

Section 5.3, I observed the similar imbalance of the asymptotic rate of the Bayes factor from
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the local prior even in nonparametric Bayesian testing. To ameliorate the asymmetry of the

convergence rate, I extend the original idea of nonlocal prior densities to functional spaces and

introduce nonlocal functional prior densities on the coefficient � defined as follows:.

Definition 3. Let Q0 be the projection matrix of the null regressor �0. If for any ✏ > 0, there

exists � > 0 such that ⇡(�) < ✏ for any � with �T�T(I�Q0)�� < �, then I define ⇡(�) to be

a nonlocal functional prior density.

In contrast, local prior densities have strictly positive values of �T�T(I � Q0)�� even on

the null space {� 2 RKn : �T�T(I � Q0)�� = 0}. I propose a nonlocal functional prior

density ⇡NL(�) as the product of a nonlocal kernel h(�) and a local prior density ⇡L(�) as

⇡NL(�) = E⇡L
{h(�)}�1h(�)⇡L(�), (5.3)

where E⇡L
(·) denotes the expectation with respect to the local prior density ⇡L. Also, the

nonlocal kernel h(�) satisfies the condition that for any ✏ > 0, there exists � > 0 such that

h(�) < ✏ for any � with �T�T(I�Q0)�� < �, so the resulting prior ⇡NL attains the nonlocal

property.

In this dissertation, I consider Gaussian priors as the local base priors to define nonlocal

prior densities as in (5.3), which can be expressed as

⇡L(�) ⇠ N
�
µ, �2⌃n

�
, (5.4)

where µ 2 RKn and ⌃n are the mean and the covariance of the Gaussian distribution, respec-

tively.

Under the alternative hypothesis, a natural choice of the local prior is Zellner’s g-prior

Zellner (1986) that is a special case of (5.4) with µ = 0 and ⌃n = gn(�T�)�1 with a hy-

perparameter gn. For the null hypothesis, I also impose a g-prior, N{0, �2gn(�T
0�0)�1} on
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the regression parameters in (5.1). The resulting marginal likelihood is m0(y) =
R
L(y |

↵, �2, H0)⇡0(↵)d↵. In the same way, the marginal likelihood of the alternative hypothesis is

defined as m1(y) =
R
L(y | �, �2, H1)⇡1(�)d�, where ⇡1 is the prior on the B-spline coeffi-

cients. I denote the marginal density as mL

1 (y) under the alternative hypothesis if the prior on

coefficients is local, and mNL

1 (y) if the prior is nonlocal.

I propose two classes of nonlocal functional prior densities defined from the following

nonlocal kernels in (5.3).

First, r-th moment functional prior densities can be defined by the nonlocal kernel

hr

M
(� | r) = {�T�T(I�Q0)��}r, (5.5)

so the resulting nonlocal functional prior density is

⇡Mr(� | �2, µ,⌃n) / {�T�T(I�Q0)��}r exp
⇢
� 1

2�2
(� � µ)T⌃�1

n
(� � µ)

�
. (5.6)

Second, I introduce inverse moment functional prior densities by applying the nonlocal

kernel

hI(� | ⌧n) = exp
⇥
��2⌧n{�T�T(I�Q0)��}�1

⇤
, (5.7)

to obtain the nonlocal density function

⇡I(� | �2, ⌧n, µ,⌃n) / exp

⇢
� 1

2�2
(� � µ)T⌃�1

n
(� � µ)� �2⌧n

�T�T(I�Q0)��

�
. (5.8)
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5.3 Convergence Rates of Bayes Factor

5.3.1 Preliminaries

I define some notation that will be used in the following sections. For sequences an and bn,

an � bn and an � bn indicate bn = O(an) and bn = o(an), respectively, and an ⇣ bn means

that an = O(bn) and bn = O(an).

I define the functional space C↵[0, 1] to be the space of ↵0 times continuously differentiable

functions f with ||f ||↵ < 1, where ↵0 is the greatest integer less than ↵ and the semi-norm

|| · ||↵ is defined by

kfk↵ = sup
{(x,w):x 6=w}

|f (↵0)(x)� f (↵0)(w)|
|x� w|↵�↵0

.

I also define the empirical L2 norm as ||f ||2
n,2 =

P
n

i=1 f
2(xi)/n for some function f .

Let P0 denote the probability measure that generates data y under the null hypothesis,

having true regression function f0 and F0 = {f0(x1), . . . , f0(xn)}T. Let E�|y(·) denote the

expectation operator with respect to the posterior distribution of � induced by the local prior

⇡L. Let E⇡L(·) indicate the expectation operator with respect to the local prior ⇡L.

5.3.2 Local Priors

I now state a theorem that demonstrates the convergence rate of Bayes factor based on local

priors (5.4).

Theorem 7. Consider the nonparametric regression model (5.1) and a hypothesis test on the

regression function in (5.2). Suppose that the prior on the B-spline coefficients is the local

prior in (5.4) with µ = 0 and ⌃n = gn(�T�)�1
under the alternative hypothesis, and consider

a g-prior on the coefficients with a hyper parameter gn for the null hypothesis. Assume that �2

is known and L(�0) ( L(�). Then for any diverging sequence vn ! 1,

P0

����log
⇢
mL

1 (y)

m0(y)

�
� Tn

���� > {2F T
0 (Q� �Q0)F0/�

2 +Kn � d0}1/2vn
�
= o(1),
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where mL

1 (y) is the marginal likelihood based on the local prior under the alternative hypoth-

esis and

Tn = �Kn � d0
2

log(1 + gn) +
gn

2(1 + gn)

�
F T
0 (Q� �Q0)F0/�

2 +Kn � d0
 
,

where d0 = rank(Q0).

Theorem 7 states that asymptotic behavior of the Bayes factor that is derived from the local

prior densities is determined by the interplay between F T
0 (Q� �Q0)F0, Kn and gn. Under H0,

the fact that F T
0 (Q� �Q0)F0 = 0 implies that the logarithm of the Bayes factor approximately

concentrates on �(Kn � d0) log(1 + gn)/2 + gnKn/{2(1 + gn)}, and this quantity would be

dominated by the first term �(Kn�d0) log(1+gn)/2 when gn � Kn. On the other hand, under

H1 there exists a constant � such that F T
0 (Q� � Q0)F0/n > � for any n, so the convergence

rate of the Bayes factor is dominated by F T
0 (Q� � Q0)F0/(2�2) ⇣ n when Kn log gn � n.

When gn = O(n) as recommended in Zellner (1986) and George and Foster (2000), this

means that the asymptotic behavior of the Bayes factor in favor of alternative hypotheses can

be summarized as follows.

• For a true null hypothesis, the Bayes factor in favor of the alternative hypothesis de-

creases only at rate Op(n�(Kn�d0)/2)

• For a true alternative hypothesis, the Bayes factor in favor of the alternative hypothesis

increases at rate Op(exp{cn}) for some constant c.

Because Kn should be chosen to be much smaller than n, these Bayes factor rates imply

that the resulting hypothesis testing procedure highly tends to provide stronger evidence in

favor of a true alternative hypothesis than it does for a true null hypothesis.

These asymptotic results are similar to those obtained from the Bayesian parametric hy-

pothesis tests using local prior densities on a scalar-valued parameter as described in Bahadur
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and Bickel (1967), Walker (1969), and Johnson and Rossell (2010). The Bayes factor in favor

of alternative hypotheses, when data are generated under an alternative hypothesis, increases

exponentially fast. The Bayes factor, when the null hypothesis is true, decreases only at a

polynomial rate of n. In nonparametric hypothesis testing, Choi et al. (2009) and Choi and

Rousseau (2015) provided similar results of consistency of Bayes factor for semiparametric

regression model and partially linear models. Yet neither article discussed the convergence

rate of Bayes factor under the true null. Scott and Walker (2015) also derived a similar rate of

Bayes factor for a monotonicity test for regression function.

As discussed in Rossell and Telesca (2017), the Bayes factor based on nonlocal priors

can be decomposed into a product between the Bayes factor defined by a local prior and the

ratio between the posterior expectation and the prior expectation of a nonlocal kernel h. In

other words, the Bayes factor BFNL

10 (y) based on the nonlocal prior derived from (5.3) can be

expressed as

BFNL

10 (y) =
mNL

1 (y)

m0(y)
=

mL

1 (y)Dn(h;y)

m0(y)
= BFL

10(y)Dn(h;y), (5.9)

where BFL

10(y) be the Bayes factor resulting from the local prior in (5.4), i.e., BFL

10(y) =

mL

1 (y)/m0(y), and Dn(h;y) = E�|y{h(�)}/E⇡L
{h(�)}. Recall that two classes of the nonlo-

cal kernel h are introduced in (5.5) and (5.7). The decomposition in (5.9) means that the Bayes

factor BFNL

10 (y) based on the nonlocal prior with the nonlocal kernel h only differs from the

Bayes factor based on the local prior by a product of Dn(h;y). Thus, the asymptotic proper-

ties of the Bayes factors derived from the nonlocal priors can be identified by the asymptotic

behavior of Dn(h;y) that will be discussed in the following subsections.

5.3.3 Moment Functional Prior Densities

Theorem 8. Assume that the conditions of Proposition 7 apply. Consider the moment nonlocal

function prior ⇡Mr in (5.6) with the nonlocal kernel hr

M
in (5.5), with µ = 0 and ⌃n =
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gn(�T�)�1
. Suppose gn ! 1 as n ! 1. Then, for any diverging sequence vn ! 1,

P0

⇥��Dn(h
r

M
;y)� T r

n,M

�� > {gn(Kn � d0)}�r/2(T r

n,M
)1/2vn

⇤
= o(1),

where

T r

n,M
=

⇢
F T
0 (Q� �Q0)F0 +Kn � d0

gn(Kn � d0)

�r

,

for r = 1, 2.

Theorem 8 states that the rate of Dn(hr

M
;y) is determined by the interplay between F T

0 (Q��

Q0)F0 and gn. Under H0, F T
0 (Q� � Q0)F0 = 0 so that the rate of T r

n,M
is g�r

n
. On the

other hand, under H1, if F T
0 (Q� � Q0)F0 � Kn, the rate of Bayes factor is governed by

F T
0 (Q��Q0)F0. The condition F T

0 (Q��Q0)F0 � Kn is reasonable in the sense that the scale

of F T
0 (Q� �Q0)F0 is in the order of n(� Kn), when the true function f0 is fixed.

Corollary 9. Assume that the conditions of Theorem 8 apply. Under H1, assume that F0 and

the B-spline basis function satisfy that F T
0 (Q��Q0)F0 ⇣ n. Suppose that gn ⇣ n and Kn � n.

Then, under H1, Dn(hr

M
;y) = Op(1), and under H0, Dn(hr

M
;y) = Op(n�r) for r = 1, 2.

Corollary 9 considers a simple setting that F T
0 (Q� � Q0)F0 ⇣ n under the alternative

hypothesis with the choice of the hyperparameter gn ⇣ n. For this setting, the hypothesis test

procedures based on moment functional prior densities enjoys the extra penalty Op(n�r) on

the Bayes factor in favor of the alternative compared to that from the local prior densities. On

the other hand, Corollary 9 states that the convergence rate of Bayes factor is asymptotically

invariant compared to that based on the local priors, under a true alternative hypothesis. This

indicates that using nonlocal functional prior densities in nonparametric hypothesis tests not

only improves the convergence rate of the Bayes factor by a polynomial rate when the null is

true, but also does not attenuate the rate when the alternative is true, at least in an asymptotic

sense.

93



5.3.4 Inverse Moment Functional Prior Densities

Theorem 10. Assume that the conditions of Theorem 8 apply, but now consider the inverse

moment functional prior densities in (5.8) with the nonlocal kernel hI in (5.7), with µ = 0 and

⌃n = ⌧n(�T�)�1
. Then, for any diverging sequence vn,

P0


Mn,I

� logDn(hI ;y)
> vn

�
= o(1),

where Mn,I = ⌧n(dn + �2(ndn)1/2)�1
for dn = F T

0 (Q� �Q0)F0 + �2(Kn � d0).

This theorem shows that the under H0 with F T
0 (Q� �Q0)F0 = 0, the rate of

{� logDn(hI ;y)}�1 is asymptotically bounded by (nKn)1/2⌧�1
n

in probability, while un-

der H0 with F T
0 (Q� � Q0)F0 = 0 � Kn, it is asymptotically bounded by (nF T

0 (Q� �

Q0)F0)1/2⌧�1
n

. The following corollary provides a simpler setting to evaluate the convergence

rate of Dn(hI ;y).

Corollary 11. Assume that the conditions of Theorem 10 apply. Suppose that under H1,

F T
0 (Q��Q0)F0 ⇣ n. Assume that ⌧n ⇣ n and Kn � n. Then, under H1, Dn(hI ;y) = Op (1),

and under H0, Dn(hI ;y) = Op(exp{�cn1/2K�1/2
n }) for some positive constant c.

Corollary 11 shows that under H0, the Bayes factor based on the inverse moment func-

tional prior achieves an exponentially faster convergence rate Op(exp{�cn1/2K�1/2
n }) than

does the Bayes factor based on the local priors. Moreover, the use of the inverse moment

functional prior does not degrade the convergence rate of the Bayes factor in an asymptotic

sense when the alternative is true because Dn(hI ;y) = Op (1). Therefore, we can expect sig-

nificant improvement in the convergence rate of the Bayes factor under true null hypotheses

and asymptotically the same convergence rate as when the local prior is deployed under true

alternative hypotheses.
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5.3.5 The Choice of Kn

The asymptotic behavior of Bayesian nonparametric inference based on B-spline basis

functions was well-studied in Bontemps (2011) and Ghosal and van der Vaart (2007). In

particular, Ghosal and van der Vaart (2007) showed that the minimax rate of n�↵/(1+2↵) for

posterior concentration under the L2 norm can be achieved by setting Kn ⇣ n1/(1+2↵) when

f0 2 C↵[0, 1]. Similar results were obtained in a frequentist perspective in Zhou et al. (1998);

Claeskens et al. (2009). However, the asymptotic results regarding the Bayes factors that are

discussed in this section do not require the optimal condition on Kn (⇣ n1/(1+2↵)). The follow-

ing proposition illustrates why this is so.

Proposition 12. Suppose that f0 2 C↵[0, 1] and Kn ! 1 as n tends to 1. Then, F T
0 (Q� �

Q0)F0 ⇣ F T
0 (I �Q0)F0.

This proposition shows that the asymptotic behavior of F T
0 (Q� � Q0)F0 is solely deter-

mined by F T
0 (I �Q0)F0, without any dependence on the rate of Kn. Even though the asymp-

totic estimation performance would be sub-optimal when the rate of Kn is misspecified, the

convergence rates of the Bayes factors discussed in the previous theorems are still valid. When

the data are generated under true alternative hypotheses (i.e. F T
0 (I � Q0)F0 ⇣ n), Proposi-

tion 12 guarantees that the condition F T
0 (Q� � Q0)F0 ⇣ n in Corollary 9 and Corollary 11 is

satisfied. Therefore, the results of these corollaries hold with any diverging Kn.

5.4 Examples of Bayesian Hypothesis Tests Using Nonlocal Functional Priors

In this section, I examine the behavior of Bayes factors based on different priors in finite

samples. I first consider a simple hypothesis setting to test the sparsity of the regression func-

tion in (5.1).

H0 : F = 0 vs. H1 : F 6= 0. (5.10)
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Here, the projection matrix on the null space Q0 is equivalent to a matrix with all zero entries,

resulting in �T�T(I � Q0)�� = �T�T��. Another example is a hypothesis test for linearity

specified as

H0 : F is linear vs. H1 : F is not linear. (5.11)

In this case, the null regressors �0 can be defined as {1,x} and Q0 is the projection matrix

derived from �0.

I also consider a hypothesis test on the coefficient function in a varying coefficient model

as introduced in Hastie and Tibshirani (1993). This model can be defined as yi = tif(xi) + ✏i,

where ✏i is i.i.d N(0, �2). I also assume that x = {xi}1in and t = {ti}1in are independent

variables. Some practitioners might be interested in testing if F is constant so that the resulting

model is equivalent to a simple linear regression model. To test this hypothesis, I construct the

contrasting hypotheses on the coefficient function F .

H0 : F is constant vs. H1 : F is not constant. (5.12)

The resulting nonlocal prior densities can be generated by setting �0 = {1}.

To compare the performance of the local and nonlocal functional prior densities, I consid-

ered several functions for the hypothesis tests as follows:

fSp(u) = 0, fQ(u) = u2

fC(u) = 1, fs(u) = sin(u)

fL(u) = u, fpL(u) = (u� ⇡/3)+ � (�⇡/3� u)+, (5.13)

where u 2 [�⇡, ⇡] and (·)+ is the truncation function on negative values by zero. The null
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Figure 5.1: When the null hypothesis is true, the averaged logarithm of Bayes factor in favor of
the alternative hypothesis based on the nonlocal prior and the local prior densities for sparsity,
linearity, and varying coefficient test with varying sample size n. “MOM" and “iMOM" indi-
cate the moment functional prior and the inverse moment functional prior. The two horizontal
green lines are on -3 and -5 of Bayes factor.

functions of the hypothesis tests for sparsity, linearity, and varying coefficient are fSp, fL, and

fC , respectively. I generated independent variables x and t from a uniform distribution on

(�⇡, ⇡). Given a regression function f , the corresponding dependent variable is generated

from yi = Af(xi) + ✏i, where ✏i follows a N(0, �2) with � = 1/2 for i = 1, · · · , n and A is

a constant that models V ar{Af(x)} = 1. This specification controls the signal-to-noise ratio

for different regression functions. For varying coefficient models, I simulated the dependent

variable by setting yi = Rxif(ti) + ✏i, where R is chosen by solving V ar{Rxf(t)} = 1. One

hundreds replicated data sets were used for each simulation setting with sample sizes varying

from 10 to 400. I also set Kn = 4, gn = n/Kn and ⌧n = n. I use a simple Monte Carlo

simulation to evaluate the Bayes factors. Because the posterior distribution of � based on the

local prior has a closed form (Gaussian), the posterior expectation of the nonlocal kernels can

be easily evaluated from the Gaussian samples of the posterior distribution.

The performance comparison between the nonlocal functional priors and the local priors

is illustrated in Figure 5.1 for data generated under the null hypothesis. As Figure 5.1 shows,

evidence in favor of the alternative hypothesis resulting from the local prior density in (5.4)
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Test Sparsity Linearity VC
True function fL fs fpL fQ fs fL fs

(n = 50) logBFL 48.27 43.02 0.49 35.87 1.40 38.22 37.10
MOM r=1 1.18 1.15 -0.60 1.64 0.79 0.21 0.16
MOM r=2 1.99 1.92 -1.62 2.62 0.96 -0.05 -0.16
iMOM 1.54 1.41 -3.67 2.28 0.55 -0.36 -0.53

(n = 100) logBFL 193.18 187.94 11.18 176.85 66.80 181.67 177.99
MOM r=1 1.12 1.10 -0.68 1.72 0.80 0.17 0.18
MOM r=2 1.85 1.80 -1.96 2.76 0.93 -0.16 -0.16
iMOM 1.59 1.56 -5.62 2.66 0.95 -0.33 0.31

(n = 400) logBFL 789.47 780.95 55.07 778.07 293.74 775.11 733.18
MOM r=1 1.10 1.10 -0.75 1.78 0.82 0.18 0.14
MOM r=2 1.80 1.78 -2.16 2.87 0.95 -0.15 -0.24
iMOM 1.62 1.61 -7.63 2.77 1.12 -0.24 -0.38

Table 5.1: Under alternative hypotheses, the expectation of logarithm of Bayes factor and the
Dn(h;y) for nonparametric Bayesian hypothesis tests: Sparsity test in (5.10), Linearity test in
(5.11), and Varying Coefficient test (VC) in (5.12). logBF⇡L denotes the averaged logarithm
of Bayes factor in favor of the alternative hypothesis based on the local prior. MOM r=1,
MOM r=2, and iMOM indicates the average of the logarithm of Dn(hr=1

M
;y), Dn(hr=2

M
;y),

and Dn(hI ;y), respectively, for each alternative function over 100 replicates, and the data-
generating true function fL, fs, fpL and fQ are defined in (5.13).
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decreases much slower than that of the moment functional prior or the inverse moment func-

tional prior densities when the data were generated from a model that is consistent with the null

hypothesis. Even with small size of samples the moment or inverse moment functional prior

provided “very strong" support in favor of the null hypothesis. The logarithm of the Bayes fac-

tor in favor of the alternative was less than �5. On the other hand, the local prior (5.4) requires

a relatively large sample size to attain the same strength of evidence of the null hypothesis as

the nonlocal functional priors do. Moreover, as discussed by Johnson and Rossell (2012) in

parametric model selection, the local prior densities provide evidence in favor of the null which

is not strong enough so that it fails to achieve desirable model selection consistency when a

diverging number of models or hypotheses is considered.

I note that nonlocal functional prior densities often provide stronger evidence in favor of

the null hypothesis, especially when the discrepancy of the true regression function and the null

space, F T
0 (I�Q0)F0/n, is expected to be small. In Table 1, most considered alternative models

showed negligible differences between the Bayes factors based on the nonlocal prior and the

local prior densities. However, when the piece-wise linear function fpL was adopted as an

alternative hypothesis for the linearity test, the Bayes factor in favor of alternative hypotheses

based on the inverse moment nonlocal priors is significantly attenuated compared to that of

the local prior densities. This result stems from the fact that the shape of the piece-wise linear

function is quite similar to that of a linear function. So, the discrepancy measure fpL(x)T(I �

Q0)fpL(x)/n is expected to be much smaller than that from the other alternative functions

considered, resulting in non-negligible logDn(hI ;y).

5.5 Nonparametric Additive Model Selection Using Nonlocal Functional Priors

In this section, I apply the proposed nonlocal functional priors to model selection problems

for high-dimensional nonparametric additive models as in (4.14). I denote the true model,

which is the index set of variables involved in the data-generating process, by t. I denote the
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true marginal regression function of Xj for j 2 t by f0,j and the true regression function by

f0 =
P

j2t f0,j . I also denote the empirical realization of the true regression function and the

true marginal regression functions by F0 and F0,j , respectively.

I model each marginal regression function Fj by a linear combination of B-spline basis

functions of the term Fj = �j�j for �j 2 RKn . Here, �j = {�l(xj)}l=1,...,Kn
, and �l is the

l-th B-spline basis function for l = 1, . . . , Kn and j = 1, . . . , p. I define �k to be a set of basis

function for the covariates in model k, i.e., �k = {�j}j2k.

For a given model k, let

b�k = (�T
k�k)

�1�T
ky, bFk = �k

b�k, and Pk = �k(�
T
k�k)

�1�T
k. (5.14)

For 1  j  p, define

b�j = (�T
j
�j)

�1�T
j
y, bFj = �j

b�j, and Pj = �j(�
T
j
�j)

�1�T
j
. (5.15)

Given a model k, I consider a nonlocal functional prior for the additive model that is a

product of independent inverse moment functional priors (5.8) as

⇡NL(�k | k, �2, ⌧n) /
Y

j2k

exp

⇢
�
�T
j
�j

2�2⌧n
� �2⌧n
�T
j
�T

j
(I �Q0)�j�j

�
. (5.16)

Here, �j is a Kn-dimensional coefficient vector for the B-splines basis functions corresponding

to xj for j = 1, . . . , p and Q0 is the projection matrix of an n-dimensional one vector. This

prior assigns zero density to the space of constant functions since F T(I � Q0)F = 0 when F

is constant. A constant marginal regression function implies that the corresponding covariate

is not associated with the response. Thus, the proposed prior for the additive model induces a

nonlocal functional prior for model selection. For high-dimensional additive model selection,

I only focus on the inverse moment prior. Even though model selection procedures based on
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the moment functional priors are computationally efficient to implement, the convergence rates

resulting Bayes factor are not strong enough to control for multiplicity. The resulting model

selection procedures thus fail to achieve model selection consistency in high-dimensional set-

tings.

In addition to imposing priors on the B-spline coefficients given a model, I place a prior on

the model space to complete the prior specification. I consider a uniform prior on the model

space restricted to models having size less than or equal to qn, with qn < n. That is, the prior

on the model space can be written as

⇡(k) / I(|k|  qn), (5.17)

where I(·) denote the indicator function. With a slight abuse of notation, I denote the prior on

the space of models by ⇡ as well.

One might also consider nonuniform model priors on the model space. For instance, the

following model prior is introduced by Castillo et al. (2015) in high-dimensional model selec-

tion for linear models:

⇡(k) /
✓

p

|k|

◆�1

a�|k|
1 p�a2|k|, a1, a2 > 0. (5.18)

This prior strongly penalizes large-sized models when p is large. Castillo et al. (2015) de-

rived the posterior contraction rate and model selection consistency for linear model selection

problems based on this model prior. However, for nonparameteric additive model selection in

high-dimensional settings, the asymptotic properties of the procedure have not been investi-

gated. In contrast, I show that the model selection procedure based on the nonlocal functional

priors can achieve model selection consistency without the stronger prior on the model space.
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Based on the defined priors, the posterior distribution is defined by

⇡(k | y) = mk(y)⇡(k)P
l ml(y)⇡(l)

,

where mk(y) =
R
L(y | k, �k, �2)⇡(�k | k, �2)d�k.

In the following sections, I illustrate some desirable theoretical properties of the model

selection procedure based on the proposed prior in (5.16).

5.5.1 Additive Model Selection Consistency for High-dimensional Settings

I first state the regularity conditions that are assumed.

(A1) The true model t is fixed regardless of n and p.

(A2) For any k with |k|  qn, where qn is defined in (5.17), there exist positive sequences ⇣n⇤

and ⇣⇤
n

such that

⇣n⇤

|k|X

j=1

�T
j
�T

j
�j�j  �T

k�
T
k�k�k  ⇣⇤

n

|k|X

j=1

�T
j
�T

j
�j�j.

for any �k = {�j}j2k.

(A3) There exist positive constants �⇤ and �⇤ such that,

n�⇤
Kn

�T�  min
j=1,...,p

�T�T
j
�j�  max

j=1,...,p
�T�T

j
�j�  n�⇤

Kn

�T�,

for any � 2 RKn .

(A4) For any k with |k|  qn and j 62 k, �T�T
j
Pk�j�  �T�T

j
(I � Pk)�j� for any � 2 RKn .

(A5) For j 2 t, F T
0 PjF0/n converges to some constant cj as n tends to 1, and for j 62 t,

F T
0 PjF0 � log p. Also, mink:t 6⇢k,|k|qn

{F T
0 (Pk[t � Pk)F0} � n/ log n and

maxk:|k|qn
{F T

0 (Pk[t � Pt)F0} � qn log p.

The condition (A2) is essential for model identifiability. When some basis functions evalu-
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ated at the observed covariates are extremely correlated, any model selection procedure for the

additive models would fail to distinguish the corresponding variables with the highly correlated

basis functions. This results in identifiability issues between marginal functions. The condition

(A3) uniformly controls the maximum and minimum eigenvalues of marginal basis matrices

�j , for j = 1, . . . , p. As stressed in Ghosal and van der Vaart (2007), the B-spline basis matrix

for a single covariate is asymptotically isotropic, i.e., there exist constants C1 and C2 such that,

as n increases for any � 2 RKn ,

C1
n

Kn

�T�  �T�T��  C2
n

Kn

�T�,

where � is the B-spline basis matrix of a single variable. However, this result does not as-

sure that the isotropic property holds uniformly over all basis matrices under high-dimensional

settings. Since the marginal likelihoods contains the determinant of the basis matrix corre-

sponding to a model, it is necessary to set (A3) as a regularity condition on the basis matrices

to evaluate the convergence rate of the marginal likelihoods.

Let ⇡(t | y) denote the posterior model probability of the true model obtained under the

product of inverse moment functional prior densities in (5.16) on the B-spline coefficients and

a truncated uniform prior on all models of size less than or equal to qn in (5.17). I now illustrate

that model selection procedures based on the product of inverse moment functional priors is

consistent in the sense that the posterior true model probability converges to one in probability

as n increases, even when the number of predictors increases at sub-exponential rate.

Theorem 13. Suppose (A2)–(A5) hold with Kn � min{n1/2, log p} and qn � log n. Assume

�2
is known. Suppose that there exists ⌘ 2 (0, 1) such that log p = O(n⌘). Assume that

⇣n⇤ � log p/{n(log n)2} and ⇣⇤
n
= O(1). If ⇣�1/2

n⇤ u1/2
n (⇣�1

n⇤ +Kn + log p)1/2n1/2 log p � ⌧n �
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⇣�1/2
n⇤ (⇣�1

n⇤ +Kn + log p)1/2n3/2/ log n, where un = q2
n
(log n)2,

⇡(t | y) p! 1.

Theorem 13 imposes constraints on the hyperparameter ⌧n that are determined by the di-

mension p, Kn and ⇣n⇤. In particular, when some basis functions evaluated at the observed

covariates are highly correlated in the sense that ⇣n⇤ decreases at a faster rate than those of Kn

and log p, the rate of ⌧n resulting model selection consistency is asymptotically determined by

the rate of ⇣n⇤.

5.5.2 Asymptotic Rates of Marginal Likelihood for Additive Models

In this section, I discuss a unique property of nonlocal functional priors that distinguishes

it from the local priors for additive models. I shall show that the marginal likelihood from the

nonlocal functional prior attains a very different form from that of local priors (5.21).

For a given model k, the convergence rate of the logarithm of the marginal likelihood

mL

k(y) based on the local prior with a hyper parameter gn in (5.21) can be expressed as

logmL

k(y) ⇡ logL(y | b�k,k)�
|k|Kn

2
log gn, (5.19)

where �k is defined in (5.14) and ⇡(k) is a model prior. An important point is that the penalty

on the model k depends solely on the model size |k|. In other words, adding one extra variable

to a model penalizes the marginal likelihood by (Kn log gn)/2, regardless of the strength of the

signal from the estimated marginal regression function.

On the other hand, the the asymptotic rate of the logarithm of the marginal likelihood based

on the nonlocal function prior involves a totally different penalty on model k. This penalty is

adaptively determined by the estimated marginal function bFj for j 2 k. Under the regularity

conditions considered in Section 5.5.1, the asymptotic marginal likelihood mNL

k (y) from the
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nonlocal functional priors can be written as

logmNL

k (y) ⇡

(A)z }| {
logL(y | b�k,k)�

|k|Kn

2
log ⌧n

(B)z }| {

�
X

j2k

c�2⌧n
bF T
j
(I �Q0) bFj + ✏n

, (5.20)

where bFj is defined in (5.15) and ✏n = {n bF T
j
(I � Q0) bFj}1/2. This can be shown by us-

ing Lemma A.3.1 in Appendix. The term (A) in (5.20) is exactly the same as the rate of

marginal likelihoods defined by local priors. Additional to (A), the rate of the marginal like-

lihood based on the nonlocal prior attains an extra penalty term (B). This penalty term adapts

to the semi-norm bF T
j
(I � Q0) bFj for eah j 2 k. When j 2 t, the assumption (A5) im-

plies that the marginal penalty term for the j-th variable is Op(⌧n/n). On the other hand,

when j 62 t, the marginal term is Op(⌧n/(nmin{Kn, log p, ⇣�1
n⇤ })1/2) since bF T

j
(I �Q0) bFj fol-

lows a noncentral chi square distribution �2
Kn

(Rn), where the noncentral parameter is Rn =

F T
0 Pj(I �Q0)PjF0 � log p. The latter property again follows from the assumption (A5. This

property of nonlocal functional priors shows that a model containing variables in the true model

will be weakly penalized, and a model with any spurious variables will be strongly penalized,

since min{Kn, log p, ⇣�1
n⇤ } � n. This property results in a promising performance of model

selection by nonlocal functional priors with finite samples. Simulated and real data sets are

provided to examine the model selection performance of my procedure in Section 5.5.4 and

Section 5.6.

The posterior model probability ⇡(k | y) of a model k is proportional to the product of

the marginal likelihood and the model prior. In the above cases, under a uniform model prior,

i.e. ⇡(k) / 1, the logarithm of the posterior model prior is asymptotically equivalent to the

logarithm of the marginal likelihood. One can also consider a nonuniform model prior in (5.18)

on the model space. By using Stirling’s approximation, one can show that that model prior is

asymptotically equivalent to a�|k|
1 p�(1+a2)|k|. The rate of marginal likelihood can be matched
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to the rate of the model prior. For example, the logarithm of the model prior for a1 = 1 and

a2 = 1, plus the log-marginal likelihood with the local prior for gn = n, is asymptotically

equivalent to the logarithm of the marginal likelihood of the local prior for gn = np4/Kn . Since

the logarithm of the marginal likelihood of the nonlocal functional prior can be expressed as the

sum of the logarithm of the marginal likelihood of the local prior and the extra penalty term,

the model prior in (5.18) is embedded in the marginal likelihood of the nonlocal functional

prior.

5.5.3 Computational Strategy Using S5

In the previous sections, I have discussed desirable theoretical properties of nonlocal func-

tional priors. From a computational viewpoint, implementing Bayesian variable selection pro-

cedures for high-dimensional additive models is a challenging problem. For high-dimensional

model selection, full posterior sampling using Markov Chain Monte Carlo (MCMC) algo-

rithms, such as the reversible jump MCMC (Green, 1995), is highly inefficient and often not

feasible from a practical perspective. Recently, Shin et al. (2017) proposed a scalable algo-

rithm called the Simplified Shogun Stochastic Search with Screening (S5) that is optimized

to efficiently explore high-dimensional model spaces in Bayesian variable selection for lin-

ear models. The S5 algorithm is a simplified version of an existing search algorithm, Shogun

Stochastic Search (SSS) by Hans et al. (2007) and utilizes a screening step. The screening

step is embedded in the algorithm to reduce the model space to be searched. Shin et al. (2017)

empirically showed that S5 efficiently searches the model space and dramatically reduces the

computational burden in exploring linear models.

Here, I modify S5 to be suitable for high-dimensional additive models by adding a non-

parametric screening step called the Iterative Nonparametric Independence Screening (INIS;

Fan et al. (2011)). For a given model k, the first step in INIS is to calculate the residual rk of

the additive model using its B-spline least square estimator. Second, the residuals are used to
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evaluate the nonparametric screened set SINIS

k (M) with a screening size M defined as

SINIS

k (M) = {j 2 {1, . . . , p} : rank(k bFk,jk2n,2)  M},

where bFk,j = Pjrk for j = 1, . . . , p. The function rank(aj) for some aj in {al}1lp is a

rank function that evaluates the decent order of aj in {al}1lp. This screened set SINIS

k (M)

includes the M top variables that have the large empirical L2 norm of teh estimated marginal

function. I then restrict the S5 algorithm to the screened set of variables SINIS

k (M) whose

cardinality is M (⌧ p), so that the target model space can be significantly reduced and the

computation can be highly accelerated. The screening step is performed and the screened set is

updated in every iteration in S5, so even when some significant variables are ignored in early

iterations, they can re-enter the model in subsequent iterative screening. The formal statement

of the algorithm is provided in Appendix. For more details and discussions about S5, see

Section 3.

To evaluate the marginal likelihood for each model, I used the Laplace approximation. The

derivation of this procedure is described in Appendix. All computational functions used in this

dissertation are provided in the R package BayesS5.

5.5.4 Simulation Studies

To examine the performance of the model selection procedure based on the nonlocal func-

tional priors, I considered several simulations settings that were perviously proposed by others.

However, I used a different sample size n and dimension p for each setting to examine high-

dimensional settings. Let SNR = Var(f0(x))/V ar(✏) denote the signal-to-noise ratio, where

f0 is the true underlying function; i.e. f0 =
P

j2t fj(Xj).
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Scenario 1: (n = 150, p = 3000, SNR ⇡ 15) The true model is

yi = f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4) + ✏i,

where ✏i
i.i.d⇠ N(0, 1) for i = 1, . . . , n, with

f1(x) = � sin(2x), f2(x) = x2 � 25/12, f3(x) = x,

f4(x) = exp{�x}� 2/5 · sinh(5/2).

The covariates are independently generated from a uniform distribution between �2.5 to 2.5.

Similar settings with this were considered in multiple articles such as Härdle et al. (2012),

Meier et al. (2009) and Ravikumar et al. (2009).

Scenario 2: (n = 150, p = 3000, SNR ⇡ 6.7) The same scenario was considered in Meier

et al. (2009), but the dimension and the sample size in that paper are different from this sce-

nario (n = 100 and p = 1000 in Meier et al. (2009)). This scenario is similar to Scenario 1,

but the covariates are instead generated from a Gaussian distribution with a covariance matrix

⌃, where ⌃k,j = 0.5|k�j| for 1  k, j  p; i.e., xi ⇠ N(0,⌃) for i = 1, . . . , n.

Scenario 3: (n = 200, p = 3000, SNR ⇡ 3.11). I consider a scenario that was examined in

Huang et al. (2010). The true model is

yi = 5f5(xi1) + 3f6(xi2) + 4f7(xi3) + 6f8(xi4) + ✏i,
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where

f5(x) = x, f6(x) = (2x� 1)2, f7(x) = sin(2⇡x)/(2� sin(2⇡x)),

f8(x) = 0.1 sin(2⇡x) + 0.2 cos(2⇡x) + 0.3 sin(2⇡x)2 + 0.4 cos(2⇡x)3 + 0.5 sin(2⇡x)3.

The covariates are generated as follows. First, I generate Wij , Vi, and Ui independently from

s N(0, 1) truncated to the interval, [0, 1] for i = 1, . . . , n and p = 1, . . . , p. Then I set xij =

(Wij + Ui)/2 for j = 1, . . . , 4 and xij = (Wij + Vi)/2 for j = 5, . . . , p. This guarantees that

the variables in the true model and the spurious variables are independent.

Scenario 4: (n = 400, p = 1000, SNR ⇡ 11.25) This scenario was considered in Meier et al.

(2009), and a similar example was also considered in Lin and Zhang (2006). The same func-

tions are used as in Scenario 3 and the covariates are independently and uniformly generated

on the interval (0,1). The model is

yi = f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4)

+1.5f1(xi5) + 1.5f2(xi6) + 1.5f3(xi7) + 1.5f4(xi8)

+2.5f1(xi9) + 2.5f2(xi10) + 2.5f3(xi11) + 2.5f4(xi12) + ✏i,

where ✏i
i.i.d⇠ N(0, 0.5184) for i = 1, . . . , n.

For comparisons with a classical local prior, I consider a simple local prior defined by a

product of g-priors, expressible as

⇡L(�k | k, �2) /
Y

j2k

exp

⇢
�
�T
j
�T

j
�j�j

2�2gn

�
. (5.21)

To my best knowledge there do not exist references regarding theoretical properties about

the model selection procedure using the prior in (5.21) for high-dimensional additive mod-
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Scenario 1 Scenario 2 Scenario 3 Scenario 4

Methods MSE MSPE MSE MSPE MSE MSPE MSE MSPE
NLfP 0.147 1.270 0.162 1.649 0.891 3.127 0.271 0.927
g-prior 0.148 1.270 0.157 1.649 0.916 3.052 0.268 0.924
HGAM 2.128 6.501 1.706 5.905 1.236 3.544 0.656 1.452
SpAM 0.496 2.189 0.575 3.347 0.740 3.294 0.271 1.161

AdapGL 0.492 1.989 0.563 2.873 0.902 3.939 0.305 1.293

Table 5.2: Optimal MSE and MSPE of each method for the considered settings.

els. However, the use of the prior is natural for the variable selection in additive models since

each component function is modeled by a linear combination of B-spline basis functions. For

the Bayesian procedures, I used a noninformative prior on �2 proportional to 1/�2. I set the

number of the basis functions Kn = 5 for all simulation scenarios.

I compared results from the Bayesian procedures to several penalized likelihood approaches.

These approaches included the following. Ravikumar et al. (2009) introduced a penalized like-

lihood method called Sparse Additive Model (SpAM) for model selection for additive mod-

els. The penalty term of SpAM can be expressed as a weighted group LASSO penalty (Yuan

and Lin, 2006). Meier et al. (2009) proposed High-dimensional Generalized Additive Model

(HGAM) combining sparsity on the coefficients of basis functions and regularization on the

smoothness of the marginal regression function. Huang et al. (2010) introduced a two-step

procedure using adaptive group LASSO (AdapGL) for variable selection in additive models,

which first derives the weights of the group penalty, then applies it to the adaptive group

LASSO penalty. In the simulations, I used the R packages SAM, hgam and grpLasso to

implement SpAM, HGAM, AdapGL, respectively.

To compare the performances of the procedures independently of the choice of tuning

parameters, I used Precision-Recall (PR) curves. PR curves plot the precision=TP/(TP+FP)

versus the recall (or senstivity)=TP/(TP+FN), where TP, FP and FN respectively denote the

number of true positives, false positives and false negatives, as the tuning parameter varies
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Figure 5.2: The first column illustrates the PR curve of each method; the second column dis-
plays proportion of selecting the true model versus recall. The results of Scenario 1 and Sce-

nario 2 are represented in the first row and the second row, respectively. “NLfP" denotes
the model selection procedure based on the product of inverse moment functional priors, and
“g-prior" is the model selection procedure defined by the product of g-priors as in (5.21).
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Figure 5.3: The results of Scenario 3 and Scenario 4 are represented in the first row and the
second row, respectively. The detailed description of this figure is given in the caption of Figure
5.2.
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from a large value to a small value. Since precision is 1 - False Discovery Rate (FDR) and

recall is 1-Type II error rate, a PR curve illustrates the trade-off between the False Discovery

Rate (FDR) and the Type-I error rate. The performance of a procedure can be measured by the

area under the PR curve. The greater the area, the more accurate the method in model selec-

tion. In Davis and Goadrich (2006), PR curves were proposed as alternatives to the Receiver

Operating Characteristic (ROC) curves in high-dimensional settings. Shin et al. (2017) also

considered this measure in their simulation studies of model selection for high-dimensional

linear regression models. I plotted the proportion times each procedure selected the true model

versus recall as its tuning parameter varies. For each method, the curve is drawn by varying

different tuning parameters, so the comparison of the model selection procedures is free from

the choice of tuning parameters. I report the averaged results over 100 independent replicates

for each scenario.

Figure 5.2 and Figure 5.3 demonstrate the PR curves and plots the proportion times the

true model is selected versus recall. The performance of the model selection based on the

nonlocal functional prior was better than the penalized likelihood estimators in the sense that

they achieve a larger area under the PR curve. In addition, they more frequently selected the

true model at any recall level. This follows from the the plot of the proportion times the true

model selected that showed that the curve of the nonlocal procedure fully covered these curves

of the penalized likelihood methods on any recall value. Compared to the Bayesian procedure

based on the g-prior, the nonlocal procedure performed similiarly in all scenarios except the

third, where the nonlocal prior performed better.

In Table 5.2, I report the Mean Square Error (MSE) and the Mean Square Predictive Error

(MSPE) for each procedure. The tuning parameter used in Table 5.2 were chosen to minimize

the MSE, i.e.,

b� = argmin
�

E0(kF0 � eF�k2n,2),
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where eF� is the estimated additive regression function with a tuning parameter �. For the

Bayesian procedures, maximum a posteriori (MAP) estimators were used to evaluate the MSE

and the MSPE. These results suggest that the model selection procedure based on the nonlocal

functional prior shows promising performance compared to the penalized likelihoods proce-

dures, and its estimation and prediction performances are almost same as those based on the

product of g-priors.

5.5.5 Practical Selection of Hyperparameter Values

In the simulation studies, it was not necessary to choose a specific hyperparameter ⌧n be-

cause PR-curves were free from the choice of the hyperparameter. However, in practice one

must choose a value for the hyperparameter.

To choose an appropriate hyperparameter ⌧n, I used a procedure in which I compared the

null density of the maximum likelihood estimator (MLE) of the discrepancy measure F T(I �

Q0)F/�2 to the prior density of �T�T(I � Q0)��/�2 under the alternative hypothesis where

�T�T(I � Q0)��/�2 > 0. Both densities were evaluated from randomly selected covariates.

This idea stems from Nikooienejad et al. (2016) who proposed a general idea for selecting a

hyperparameters in linear models. I extend their idea to nonparametric settings by using the

semi-norm F T(I�Q0)F . Under the additive regression model in (4.14), I first evaluated b�2 by

using a few variables chosen by INIS. I then defined the null distribution of bF T(I �Q0) bF/b�2,

where bF denotes the B-spline MLE of F under the null hypothesis where y = ✏ for ✏ ⇠

N(0, b�2I), so that the null distribution follows �2
Kn�1. For a given ⌧n and estimated b�2, I

randomly sampled a j 2 {1, . . . , p} and a �j from the prior density proportional to

exp

⇢
�
�T
j
�j

2b�2⌧n
� b�2⌧n
�T
j
�T

j
(I �Q0)�j�j

�
.

I evaluated �T
j
�T

j
(I�Q0)�j�j/b�2 by plugging the sampled �j in the discrepancy measure,

and repeated this procedure many times to approximate the prior density of the discrepancy
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Figure 5.4: The black line and the blue line are the density functions of the null and the prior
distribution of F T(I �Q0)F/b�2, respectively, for a given ⌧n and b�2

measure.

Figure 5.4 illustrates the resulting null density and the prior density on the discrepancy

measure F T(I � Q0)F/b�2 for some ⌧n and b�2. I numerically determined the value of the

hyperparameter so that the overlap of the null density and the prior density of the discrepancy

(red-colored in Figure 5.4) falls below a certain threshold t. For example, I took t = p�1. By

choosing ⌧n to be large enough so that the intersection of these two densities is smaller than

the specified threshold, I was able to approximately bound the probability of false positives in

the model. As the threshold t decreases to zero, the prior density deviates more from the null

distribution. This results in a model selection procedure that strongly penalizes models with

covariates that have a smaller discrepancy measure than the intersection point between the null

distribution and the prior distribution on the discrepancy.

I applied this procedure to choose the hyperparameter for the nonlocal functional priors in

the following the section for real data analyses.
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5.6 Applications to Real Data Sets

5.6.1 Bardet-Biedl Syndrome Gene Expression Data

I considered again the Bardet-Biedl syndrome data set that was used in Section 3.4.1. The

detailed description of this data set is provided in Section 3.4.1.

5.6.2 Near Infrared Spectroscopy Data

I also evaluated Near Infrared (NIR) Spectroscopy data set. This data set has previously

analysed in Liebmann et al. (2009) and Curtis et al. (2014), and is available from the R package

chemometrics. The NIR data includes glucose and ethanol concentration (in g/L) for 166

alcoholic fermentation mashes of different feedstock (rye, wheat and corn). The data set is

modeled by 235 NIR spectroscopy absorbance values acquired in the wavelength range of

115-2285 nanometer (nm) by a transflectance probe (Liebmann et al., 2009). I implement

my model selection procedure on the data values with response variables defined by ethanol

concentrations (n = 166 and p = 235). I set the training and test set size to be 146 and 20,

respectively.

5.6.3 Technical Details and Results

For all data sets, the response variable was centered so that its sample mean was zero, and

each covariate was standardized so that its sample mean and standard deviation are zero and

one. Each model selection procedure was conducted on the training data set and the perfor-

mance of the procedures was examined on the test samples, and I repeated this process for

200 replicates. I report the out-of-sample prediction error (PE), which is the sum of square

prediction errors divided by the test sample size, and the average of model size (MS) in Table

5.3. I set Kn = 5, and assumed ⇡(�2) / 1/�2.

Following procedures described in Huang et al. (2008), I choose the tuning parameters

for the penalized likelihood approaches using Bayesian Information Criterion (BIC) (Schwarz,
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Bardet-Biedl Data NIR Data
Method PE MS PE MS
NLfP 1.667 (3.77) 6.00 (1.51) 1.220 (0.61) 5.80 (0.78)

g-prior(gn = n) 93.636 (459.82) 16.97 (0.31) 2.634 (2.01) 9.23 (1.26)
g-prior(gn = p) 82.186 (378.09) 16.92 (1.04) 2.302 (1.71) 8.70 (1.24)

g-prior(gn = p5/4) 32.829 (200.49) 5.24 (1.12) 1.718 (1.31) 6.86 (1.12)
g-prior(gn = p3/2) 3.705 (34.03) 2.05 (0.57) 1.428 (1.08) 5.83 (1.03)
g-prior(gn = p2) 1.804 (3.13) 1.01 (0.07) 1.395 (0.81) 4.14 (0.61)
HGAM(EBIC) 1.882 (1.76) 2.74 (3.66) 1.941 (0.97) 47.14 (3.41)
HGAM(BIC) 1.846 (1.72) 3.38 (4.70) 1.925 (0.96) 47.61 (3.17)
SpAM(EBIC) 2.904 (26.17) 5.86 (2.01) 54.52 (47.91) 9.05 (9.42)
SpAM(BIC) 2.931 (27.35) 5.89 (1.99) 17.101 (21.21) 16.00 (11.02)

AdapGL(EBIC) 2.301 (8.86) 6.80 (8.59) 23.299 (18.57) 5.11 (0.56)
AdapGL(BIC) 16.404 (92.11) 15.73 (7.58) 8.093 (7.19) 7.35 (1.57)

Table 5.3: Real data examples. PE and MS indicate the out-of-sample prediction error and
the average of model size; the PE for the Bardet-Biedl Data is scaled by 10�2. The standard
deviation of each quantity over 200 replicates is noted in parentheses.

1978) and Extended BIC (EBIC) (Chen and Chen, 2008) for the penalized likelihood methods.

These criteria can be expressed as

BIC(�) = log(RSS�) + |bk�|Kn(log n)/n

EBIC(�) = log(RSS�) + |bk�|Kn(log n)/n+ ⌫|bk�|Kn(log p)/n,

where 0  ⌫  1 is a constant and � is a tuning parameter. RSS� and bk� are the residual sum of

square and the selected model for a given �, respectively. As in Huang et al. (2010), I use ⌫ =

0.5 for the EBIC. Also, I have considered multiple hyperparameters (gn = {n, p, p5/4, p3/2, p2})

for the model selection procedure based on g-priors. The hyperparameter ⌧n for my approach

was chosen by the procedure described in Section 5.5.5. For Bayesian procedures, I used the

MAP estimators to summarize PE.

Table 4.2 summarizes the results from these studies. In both data sets, the model selection
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procedure based on the nonlocal functional prior led to the smallest values of PE. In particular,

my procedure showed better prediction performance compared to the considered penalized

likelihood procedures. Even though multiple hyperparameters were considered for the g-priors,

these procedures had larger prediction errors than the nonlocal procedure. The g-prior results

were very sensitive to the choice of the hyperparameter gn.

5.7 Conclusion

This dissertation has proposed new classes of nonlocal functional prior densities that have

favorable asymptotic properties for nonparametric Bayesian testing problems. I have discussed

their advantages over local alternative priors with respect to the convergence rate of Bayes fac-

tors. I have focused on B-spline based nonparametric models. However, my methodology can

be applied to general classes of nonparametric functional models including Gaussian process

regression models. I suggested three natural examples for the usage of the proposed priors.

These included sparsity and linearity tests for the nonparametric simple regression models,

and a constant function test for the varying coefficient model.

In Section 5.5, I applied one of the proposed priors (the inverse moment functional prior)

to additive model selection problems for high-dimensional settings. I showed that the result-

ing model selection procedure achieved consistency in the sense that the posterior true model

probability converged to one in probability under certain regularity conditions. I provided a

procedure to select an appropriate hyperparameter ⌧n. I also have examined its finite sample

performance in model selection using simulated data sets and real data sets. The model selec-

tion procedure based on my inverse moment functional priors performed better according to

several measures that several alternative procedures.

Finally, I have proposed a scalable computation algorithm that is a modified version of

S5. The computational functions for the additive model selection procedure described in this

dissertation are available in the R package BayesS5.
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APPENDIX A

PROOFS OF THEORETICAL RESULTS

A.1 Nonlocal Prior Densities for High-dimensional Linear Model Selection

Preliminary Results

Lemma A.1.1. For Qk defined in (2.6),
Q

k

j=1 Q
L

k,j  Qk 
Q

k

j=1 Q
U

k,j ,

where

QL

k,j = c1(�
2)1/2(n⌫⇤k + 1/⌧n,p)

�1/2 exp{�⌧n,p/e�⇤2
k,j},

QU

k,j = c2(�
2)1/2(n⌫k⇤ + 1/⌧n,p)

�1/2 exp{�⌧n,p/(|e�k,j|+ e✏n)2},

and e✏n ⇣ (n⌫k⇤/⌧n,p)�1/4
, with e�⇤

k,j 2 [e�k,j � e✏n, e�k,j + e✏n] \ (�e✏n,e✏n)c for some positive

constants c1 and c2.

Proof. Recall e⌃k = (XT

kXk +1/⌧n,pIk)�1. From (2.8), all eigenvalues of (e⌃k)�1 are bounded

between n⌫k⇤+1/⌧n,p and n⌫⇤k+1/⌧n,p, which implies for all x 2 R|k|, (n⌫k⇤+1/⌧n,p)xTx 

xT (e⌃k)�1x  (n⌫⇤k + 1/⌧n,p)xTx. Let T1n = {(n⌫⇤k + 1/⌧n,p)/�2}1/2 and T2n = {(n⌫k⇤ +

1/⌧n,p)/�2}1/2. Substituting the above inequality in the expression for Qk, we have

|k|Y

j=1

g1(e�k,j)  Qk 
|k|Y

j=1

g2(e�k,j), (A.1)

where

gi(e�k,j) =
Z 1

�1
exp{�T 2

in
(�k,j � e�k,j)2/2� ⌧n,p/�

2
k,j}d�k,j, (A.2)

for i = 1, 2. We establish the lower bound first by showing that g1(e�k,j) � QL

k,j for all j =
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1, . . . , |k|. Recall e✏n ⇣ (n⌫k⇤/⌧n,p)�1/4 from the statement of the Lemma. We have

g1(e�k,j) �
Z

[e�k,j�e✏n,e�k,j+e✏n]\(�e✏n,e✏n)c
exp{�T 2

1n(�k,j � e�k,j)2/2� ⌧n,p/�
2
k,j}d�k,j

� exp{�⌧n,p/e�⇤2
k,j}

Z

[e�k,j�e✏n,e�k,j+e✏n]\(�e✏n,e✏n)c
exp{�T 2

1n(�k,j � e�k,j)2/2}d�k,j,

for some e�⇤
k,j 2 [e�k,j �e✏n, e�k,j +e✏n]\ (�e✏n,e✏n)c. Then, the integral in the last line of the above

display is equivalent to

Z

[�e✏n,e✏n]\(�e�k,j�e✏n,�e�k,j+e✏n)c
e�T

2
1nt

2
/2dt � c1T

�1
1n

Z
T1ne✏n

0

e�z
2
/2dz � c2T

�1
1n ,

where c1 and c2 are some positive constants and the last inequality in the above display fol-

lows since T1ne✏n � 1 for large n. Substituting back in the previous display, g1(e�k,j) �

c1T
�1
1n exp{�⌧n,p/e�⇤2

k,j} for some constant c1 > 0, completing the proof of the lower bound.

We now establish the upper bound by showing that g2(e�k,j)  QU

k,j for all j = 1, . . . , |k|. It

is straightforward to see that g2 is a symmetric function (i.e, g2(e�k,j) = g2(|e�k,j|)), so that it is

enough to establish the bound for e�k,j > 0; without loss of generality we assume that e�k,j > 0.

We have

Z 1

�1
exp{�T 2

2n(�k,j � e�k,j)2/2� ⌧n,p�
2
k,j}d�k,j

=

Z 0

�1
exp{�T 2

2n(�k,j � e�k,j)2/2� ⌧n,p/�
2
k,j}d�k,j

+

Z e�k,j+e✏n

0

exp{�T 2
2n(�k,j � e�k,j)2/2� ⌧n,p/�

2
k,j}d�k,j

+

Z 1

e�k,j+e✏n
exp{�T 2

2n(�k,j � e�k,j)2/2� ⌧n,p/�
2
k,j}d�k,j.

Define the first term of the above as W1, the second as W2, and the third term as W3. First, we

shall show that W1  cT�1
2n exp{�T2n(2⌧n,p)1/2} for some positive constant c. By transforming
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the variable t = �k,j � e�k,j ,

W1 =

Z 0

�1
exp{�T 2

2nt
2/2 + T 2

2nte�k,j � T 2
2n
e�2
k,j/2� ⌧n,p/t

2}dt


Z 0

�1
exp{�T 2

2nt
2/2� ⌧n,p/t

2}dt

 c3T
�1
2n exp{�T2n(2⌧n,p)

1/2},

for some constant c3, since
R
exp{�µ/t2 � ⇣t2}dt = (⇡/⇣)�1/2 exp{�2(µ⇣)1/2} for µ > 0

and ⇣ > 0.

Second, by changing the variable z = t� e✏,

W2 =

Z e�k,j

�e✏n
exp{�T 2

2n(z � e�k,j + e✏n)2/2� ⌧n,p/(z + e✏n)2}dz

 exp{�⌧n,p/(e�k,j + e✏n)2}
Z 1

�1
exp{�T 2

2n(z � e�k,j + e✏n)2/2}

 c4T
�1
2n exp{�⌧n,p/(e�k,j + e✏n)2},

for some positive constant c4.

Third, by changing the variable z = t� e�k,j , there exists some positive constant c such that

W3 =

Z 1

e✏n
exp{�T 2

2nz
2/2� ⌧n,p/(z + e�k,j)2}dz

 exp{�T 2
2ne✏2n/4}

Z 1

�1
exp{�T 2

2nz
2/4}dz

 c5T
�1
2n exp{�c6T2n⌧

1/2
n,p

},

for some constants c5and c6, since e✏n ⇣ (n⌫k⇤/⌧n,p)�1/4. Then,

g2(e�k,j)  c3T
�1
2n exp{�T2n(2⌧n,p)

1/2}+ c4T
�1
2n exp{�⌧n,p/(e�k,j + e✏n)2}

+c5T
�1
2n exp{�c6T2n⌧

1/2
n,p

}.
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Since e✏n ⇣ (n⌫k⇤/⌧n,p)�1/4, when e�k,j < e✏n, ⌧n,p/(e�k,j + e✏n)2 < ⌧n,p/(4e✏2n) ⇣ T2n⌧
1/2
n,p , and

when e�k,j � e✏n, ⌧n,p/(e�k,j + e✏n)2  ⌧n,p/(4e�2
k,j) < T2n⌧

1/2
n,p . In overall, the right-hand side

of the above display would be dominated by the second term, which shows that g2(e�k,j) 

cT�1
2n exp{�⌧n,p/(e�k,j + e✏n)2} for some constant c. When e�k,j < 0, we can show the same

result by following exactly the same steps explained above.

We now present some auxiliary results that are used to prove Theorems 1 and 2. We make

use of the following simple union bound multiple times: for non-negative random variables

V1, . . . , Vm and a > 0,

P (
mX

l=1

Vl > a) 
mX

l=1

P (Vl > a/m)  m max
1lm

P (Vl > a/m). (A.3)

We define some notations that are used in the subsequent proofs. Let t denote the true

data generating model, and let �0
t denote the true regression coefficient corresponding to t. Let

ct = t \ k, ck = k \ t, and u = k [ t. Also, we define the cardinality of a model k as k and

in the same spirit, denote ck = |ck|, ct = |ct|, and t = |t|. {x}j denotes the j-th element of the

vector x, and diag{A}j refers to the j-th diagonal element in the square matrix A. We denote

�2
m
(�) a non-central chi-square distribution with the degrees of freedom m and non-centrality

parameter �; a central chi-square distribution is simply denoted by �2
m

.

An important property that is used in the subsequent proofs concerns the distribution of the

marginal ridge estimator. Let e�k = (XT
kX + 1/⌧n,pIk)�1XT

ky and e�k,j = {e�k}j . Then,

e�k,j ⇠ N(�⇤
k,j, �

2⇤
k,j), (A.4)

where �⇤
k,j = {(XT

kX + 1/⌧n,pIk)�1XT
kXt�⇤

t}j and �2⇤
k,j = �2diag{(XT

kXk + 1/⌧n,pIk)�1}j .

It is also evident that (e�k,j � �⇤
k,j)

2/�2⇤
k,j ⇠ �2

1.
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A set of technical results follow that are used in the proof of the main results. Define

H1n =
X

k:t(k,
|k|qn

mk(y)⇡(k)

mt(y)⇡(t)
=
X

k:t(k,
|k|qn

⇡(k | y)
⇡(t | y) , H2n =

X

k:t*k,
|k|qn

mk(y)⇡(k)

mt(y)⇡(t)
=
X

k:t*k,
|k|qn

⇡(k | y)
⇡(t | y) .

(A.5)

Lemma A.1.2. Fix ✏ > 0. Let �d = {k : |k|  qn, t ( k, |k|� |t| = d} for d =

1, . . . , qn � |t|. Suppose there exist constants c, � > 0 such that maxk2�d
P
�
⇡(k | y)/⇡(t |

y) > ✏p�d/qn
 
 cp�d(1+�)

for d = 1, . . . , qn � |t|. Then, H1n converges to zero in probability

as n tends to 1, where H1n is as in (A.5).

Proof. Clearly, |�d| =
�
p�|t|
d

�
. Using (A.3), we bound

P
n X

k:t(k

⇡(k | y)
⇡(t | y) > ✏

o
= P

n qn�|t|X

d=1

X

k2�d

⇡(k | y)
⇡(t | y) > ✏

o


qn�|t|X

d=1

P
nX

k2�d

⇡(k | y)
⇡(t | y) > ✏/qn

o


qn�|t|X

d=1

✓
p� |t|

d

◆
max
k2�d

P
n⇡(k | y)
⇡(t | y) > ✏p�d/qn

o


qn�|t|X

d=1

cp�d�.

Finally,
P

qn�|t|
d=1 cp�d�  cqnp�� ! 0 as n ! 1.

Lemma A.1.3. Fix ✏ > 0 and let t = |t|. Define �k,ck,ct
= {k : |k|  qn, |k| = k, |k\t| =

ck, |t\k| = ct} for k = 0, . . . , qn; ck = 0, . . . , k; ct = 1, . . . , t. Suppose

max
k2�k,c

k
,ct

P
h⇡(k | y)
⇡(t | y) > ✏n�3p�kn�ckt�t

i
 cp�k(1+�),

with some postive constants c and �. Then, H2n converges to zero as n tends to 1, where H2n

is as in (A.5).
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Proof. Clearly, |�k,ck,ct
| =

�
p

k

��
k

ck

��
t

ct

�
.

P
n X

k:t*k

⇡(k | y)
⇡(t | y) > ✏

o
 P

n qnX
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k
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 P
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k
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qnX
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ct=1

P
n X
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k
,ct
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⇡(t | y) > ✏n�3
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k=1

kX
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pkncktt max
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k
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P
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⇡(t | y) > ✏n�3p�kn�ckt�t

o


qnX

k=1

kX

ck=0

tX

ct=1

pknckttp�k(1+�) ! 0,

as n ! 1.

Lemma A.1.4. Suppose W follows a non-central chi-square distribution with the degree of

freedom mn that is a positive integer and the non-central parameter �n � 0, i.e, W ⇠

�2
mn

(�n). Also, consider wn and tn such that wn ! 0 and tn ! 1 as n tends to 1. Also,

assume that mn � tn. Then,

P (W  �nwn)  c1�
�1
n

exp{��n(1� wn)
2}, (A.6)

And

P (W > �n + tn)  c2

✓
tn
2mn

◆mn/2

exp {mn/2� tn/2}+ c3�
1/2
n

t�1
n

exp

⇢
� t2

n

32�n

�
, (A.7)

where c1, c2, and c3 are some positive constants.

Proof. W can be expressed as W =
P

mn

i=1{Zi + (�n/mn)1/2}2, where Zi

i.i.d⇠ N(0, 1) for

i = 1, . . . ,m. Then, by the fact that P (Z > a)  (2⇡)�1/2a�1 exp{�a2/2} for any a > 0, we
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can show that there exist some positive constants c1 such that

P (W  �nwn) = P
� mnX

i=1

Z2
i
+ 2(�n/mn)

1/2
mnX

i=1

Zi + �n  �nwn

 

 P
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n
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= P
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|Z1| � �1/2

n
(1� wn)/2

 
/2

 c1�
�1
n

exp{��n(1� wn)
2/2},

since Z1 follows a standard normal distribution.

Also, by using Chernoffs’s bound and the fact that P (Z > a)  (2⇡)�1/2a�1 exp{�a2/2}

for any a > 0, one can show that

P (W > �n + tn) = P
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mnX
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Z2
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+ 2(�n/mn)

1/2
mnX
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Zi > tn
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!
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✓
tn
2mn

◆mn/2
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n

t�1
n

exp

⇢
� t2

n

32�n

�
,

where c2 and c3 are some positive constants.

Lemma A.1.5. Consider Qk defined in (2.6) for an arbitrary model k. Fix any � > 0. For any

k with t ( k,

P
⇥
Qk/Qt > exp

�
�|k \ t|⌧ 2/3

n,p
(n⌫k⇤)

1/3 + |t|⌧ 1��/8
n,p

(n⌫k⇤)
�/8
 ⇤

 p�|k\t|(1+�), (A.8)

and for k such that t * k,

P
h
Qk/Qt > exp

n���0
t

��2
2
n⌫u⇤/{2 log(⌧n,p/ log p)}

oi
 p�|k|(1+�). (A.9)
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Proof. By Lemma A.1.1, it is sufficient to show that

P

"
Y

j2t

(QU

k,j/Q
L

t,j) > exp{|t|⌧ 1��/8
n,p

(n⌫k⇤)
�/8}

#

+P

2

4
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j2k\t

QU

k,j > exp{�|k \ t|⌧ 2/3
n,p

(n⌫k⇤)
1/3}

3

5

 p�|k\t|(1+�). (A.10)

We first shall show that the first term in the left-hand side of (A.10) is bounded above by

exp{�cn⌫k⇤} for some constant c.
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> exp
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> exp
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X

j2t

P [|e�k,j � �⇤
k,j| > ✏0] +

X

j2t

P [|e�t,j � �⇤
t,j| > ✏0], (A.11)

for some small enough ✏0 > 0 and some positive constant c0 and e�⇤
k,j 2 [e�k,j � e✏n, e�k,j + e✏n] \

(�e✏n,e✏n)c as defined in Lemma A.1.1, and e�k,j and �⇤
k,j defined in (A.4). The last inequality

in the above display asymptotically holds, since

⌧ 1��/8
n,p

(n⌫k⇤)
�/8 � ⌧n,p/(|�⇤

k,j|� ✏0 � e✏n)2,

for any � > 0.

Since (e�k,j � �⇤
k,j)

2/�⇤2
k,j ⇠ �2

1 and �⇤2
k,j � (n⌫k⇤ + 1/⌧n,p)�1, by using Lemma A.1.4, one

can show that the first term in (A.11) bounded above by exp{�c1✏02n⌫k⇤} for some constant

c1. Similarly, the second term in (A.11) is bounded above by exp{�c2✏02n} for some constant
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c2, since Assumption 5 states that XT
t Xt/n is asymptically isotropic. Therefore, (A.11) is

asymptotically bounded by p�qn(1+�) by Assumption 3.

Next, we shall show that the second term in the left-hand side of (A.10) is bounded above

by exp{�c⌧ 1/3n,p (n⌫k⇤)2/3} for some positive constant c. Since when j 2 k \ t and t ( k,

�⇤
k,j ⇣ n�1,

P

2

4
Y

j2k\t

QU

k,j > exp{�|k \ t|⌧ 2/3
n,p
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3
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e�2
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n
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n,p

�
(n⌫k⇤)

1/3⌧ 2/3
n.p

� log(n⌫k⇤ + 1/⌧n,p)/2 + log c0
��1/2 � e✏n

o2
�


X

j2k\t

P

"
(e�k,j � �⇤

k,j)
2/�⇤

k,j > c00
✓
⌧n,p
n⌫k⇤

◆1/3

(n⌫k⇤ + 1/⌧n,p)/�
2

#
,

for some positive contant c0 and c00. Since (e�k,j � �⇤
k,j)

2/�⇤
k,j ⇠ �2

1, by Lemma A.1.4 the last

quantity in the above display can be bounded by exp{�c⌧ 1/3n,p (n⌫k⇤)2/3} for some contant c. By

Assumption 3, exp{�c⌧ 1/3n,p (n⌫k⇤)2/3} � p�qn(1+�)  p|k\t|(1+�)|, which proves the statement

(A.10).

We now shall show that the equation (A.9) holds for any � > 0. The left-hand side of (A.9)
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can be bounded above by
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X
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P

"
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>
���0
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��2
2
n⌫u⇤/{4|k| log(⌧n,p/ log p)}+ log c

#
(A.12)

+
X

j2t

P
h
|e�⇤

t,j| < c00
���0

t

���1

2
(n⌫u⇤)

�1/2{4|t| log(⌧n,p/ log p)}1/2⌧ 1/2n,p

i
, (A.13)

where c, c0, and c00 are some positive constants.

(A.12) is always zero since the left-hand side in the probability is always negative and the

right-hand side in the probability operator is always positive. So, we focus on (A.13) as below:

Since e�t,j � e✏n  e�⇤
t,j  e�t,j + e✏n implies |e�t,j|� e✏n  |e�⇤

t,j|  |e�t,j| + e✏n, (A.13) can be

bounded above by

X

j2t

P
h
|e�⇤

t,j| < c00
���0
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���1

2
(n⌫u⇤)

�1/2{4|t| log(⌧n,p/ log p)}1/2⌧ 1/2n,p
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X

j2t

P
h
|e�t,j| < c00

���0
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���1

2
(n⌫u⇤)

�1/2{4|t| log(⌧n,p/ log p)}1/2⌧ 1/2n,p
+ e✏n

i
,

where �⇤
t,j is defined in (A.4). Since e�2

t,j/�
2
t,j ⇠ �2

1(�
⇤2
t,j/�

2
t,j) and �2

t,j ⇣ �2/n for j 2 t,

by using Lemma A.1.4 and Assumption 5, one can show that the probability is bounded by

exp{�cn} for some constant c, and it is evident that exp{�cn} � p�|k|(1+�), which completes
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the proof of the Lemma.

Proofs of Main Results

Proof of Theorem 1. We have ⇡(t | y) = mt(y)⇡(t)/{
P

k:|k|qn
mk(y)⇡(k)}, since ⇡(k) =

0 for any k with |k| > qn. Recall H1n and H2n from (A.5) and note that ⇡(t | y) = (1+H1n+

H2n)�1. Hence to show that ⇡(t | y) converges to one in probability, it is sufficient to establish

that H1n and H2n both converge in probability to zero as n tends to 1. We shall prove the

Theorem by showing:

For any � 2 (0, 8/3) and any model k 2 �d (defined in Lemma A.1.2),

P


⇡(k | y)
⇡(t | y) > ✏p�dq�1

n

�
 p�d(1+�), (A.14)

and for any model k 2 �k,ck,ct
(defined in Lemma A.1.3),

P


⇡(k | y)
⇡(t | y) > ✏n�3p�kn�ckt�t

�
 cp�k(1+�). (A.15)

Then, it is evident that H1n and H2n both converge to zero in probability by Lemma A.1.2 and

A.1.3 respectively.

First, we shall show that (A.14) holds. For any k 2 �d, recall that

P
h⇡(k | y)
⇡(t | y) > ✏p�dq�1

n

i
 P

h
C�d

n,p

Qk

Qt
exp

n
� 1

2�2

� eRk � eRt

�o
> ✏p�d/qn

i
.

Since eRk > R⇤
k and eRt < R⇤

t + ⌘, where ⌘ = d1b�T

t
b�t/⌧n,p for some constant d1 and b�t is

the ordinary least square estimator of �t in the true model t, by using (A.3), the term in the last
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display can be bounded above by

P
h
C�d
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�
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�
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(A.16)
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⇥
R⇤

t �R⇤
k > 2�2d(1 + �) log p

⇤
(A.17)

+P
⇥
exp{⌘/(2�2)} > ✏p�

⇤
. (A.18)

By using Lemma A.1.5, (A.16) is less than p�d(1+�) when � < 8/3. Since (R⇤
t � R⇤

k)/�
2 ⇠

�2
|k\t|, by using (A.6) in Lemma A.1.4, we can show that (A.17) is bounded by cp�d(1+�) for

some positive constant c. Since ⌧n,pn⌫t⇤⌘/d1�2  b�T

t X
T

t Xt
b�t/�2 ⇠ �2

|t|
�
�0T
t XT

t Xt�0
t

�
, by

using the inequality (A.7) in Lemma A.1.4, (A.18) can be expressed as
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⇤

 (n� log p)|t|/2 exp{�c1�(n log p)}+ n�1/2(� log p)�1 exp{�c2(n log p)2/n}

 c3p
�|k|(1+�), (A.19)

for some positive constant c1, c2, and c3, which proves that (A.14) holds.
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Next, we consider (A.15). Recall that u = k [ t. By using (A.3), it can be shown that

P
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2
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(A.22)

+P
h
Qk/Qt > exp

n���0
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��2
2
n⌫u⇤/{2 log(⌧n,p/ log p)}

oi
. (A.23)

Since (R⇤
t � R⇤

u)/�
2 follows a �2

|u\t| distribution, (A.20) is also bounded by c1p�|k|(1+�) with

some constant c1. By following the same steps regarding (A.19), one can show that (A.21)

is bounded by c2p�|k|(1+�) for some constant c2. We note that (R⇤
k � R⇤

u)/�
2 ⇠ �2

|u\k|(�n)

with �n = �0T
t XT

t (Pu � Pk)Xt�0
t , where Pk is the projection matrix of Xk. As discussed

in Narisetty and He (2014), �n � n⌫u⇤
���0

t

��2
2
. Hence, by using Lemma A.1.4, one can

show that (A.22) is bounded by exp{�c3
���0

t

��2
2
n⌫u⇤/ log(⌧n,p/ log p)} for some constant c3.

Lemma A.1.5 states that (A.23) is bounded by p�|k|(1+�). In summary, since qn � ⌧n,p/ log p

by Assumption 3, there exists some positive constant c4 such that P [⇡(k | y)/⇡(t | y) >

✏n�3p�|k|n�|k\t||t|�|t|]  c4p�|k|(1+�). which completes the proof of Theorem 1.

Proof of Corollary 2. Recall the penalty term of a model k, Q⇤
k, based on the piMoM priors

is

Q⇤
k =

Z
exp

�
� (�k � b�k)T⌃⇤�1

k (�k � b�k)/(2�2)�
|k|X
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d�k,
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in (2.7). Since, for any ✏ > 0, exp
⇥
�
P|k|

j=1{✏⌧n,p/�2
k,j + r log(�2

k,j)}
⇤

is bounded above with
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j=1(1�✏)⌧n,p/�2
k,j}d�k

for some constant C. Following the exactly same steps in Lemma A.1.1,
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�1/2
Q|k|

j=1 exp{�(1� ✏)⌧n,p/(|b�k,j|+ e✏n)2} for some constant C 0 > 0.

We shall show that the model selection procedure based on piMoM priors as in (2.4) assures

consistency by proving that Q⇤
k and Qk are asymptotically equivalent.

Next, we shall show that Q⇤
k is bounded below by

C(n⌫⇤k)
�1/2

Q|k|
j=1 exp{�(1 � ✏)⌧n,p/b�⇤2

k,j} for some constant C > 0 and b�⇤
k,j 2 [b�k,j �

e✏n, b�k,j +e✏n]. Since exp
�
� ✏⌧n,p/�2

k,j +r log(�2
k,j)
 

can be minimized in [b�k,j �e✏n, b�k,j +e✏n],

by following the proof of Lemma A.1.1,

Z 1

�1
exp{�n⌫⇤k(� � b�k,j)2/(2�2)� ⌧n,p/�

2 � r log(�2)}d�

�
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� C(n⌫⇤k)
�1/2 exp

n
�(1� ✏)⌧n,p/b�⇤2

k,j

o
,

where C is some constant and b�⇤
k,j 2 [b�k,j � e✏n, b�k,j + e✏n] \ (�e✏n,e✏n)c.

Therefore, due to the asymptotic similarity between the ridge estimator and the least square

estimator, the lower and upper bounds of Q⇤
k are asymptotically equivalent to those of Qk with

the penalty parameter (1� ✏)⌧n,p, which assures the strong consistency of the model selection

based on the piMoM priors.
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Proof of Theorem 3. Under a situation where �2 is unknown, it is clear that

mk(y) = ⌧
� |k|

2
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Z
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9
=

; ⇡(�2)d�kd�
2,

where ⇡(�2) is the prior for �2 (Inverse-gamma density with hyperparameters a0 and b0).

First, we shall show that the ratio between marginal likelihoods of a model k and the true

model t can be bounded as

mk(y)

mt(y)
 c

|k|�|t|
2

 
eRk + 2b0
eRt + 2b0

!�n/2�a0

exp

8
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+
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9
=

;

⇥(n⌫k⇤⌧n,p + 1)�|k|/2

(n⌫⇤t ⌧n,p + 1)�|t|/2 , (A.24)

where e�⇤
t,j 2 [e�t,j � e✏n, e�t,j + e✏n] \ (�e✏n,e✏n)c for j 2 1, . . . , |t| and c is some constant. Next,

we shall show that {( eRk + 2b0)/( eRt + 2b0)}�n/2�a0  exp{�( eRk � eRt)/(2�2
0(1 + un))},

where �2
0 is the true regression variance that involves in the data-generating process, and un

is some random variable that is concentrated around a finite value with at least probability

1� exp{�cn} for some constant c. Then, by following the same steps in the proof of Theorem

1, the proof of Corollary 2 is completed.
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By Lemma A.1.1, the marginal likelihood of a model k can be bounded by
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for some constant c1.

Also, by using Lemma A.1.1, one can show that
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where c2 is some constant and e�⇤
k,j 2 [e�k,j�e✏n, e�k,j+e✏n]\ (�e✏n,e✏n)c for j 2 1, . . . , |k|. These

results shows that (A.24) holds.

Next, we consider the asymptotic behavior of {( eRk + 2b0)/( eRt + 2b0)}�n/2�a0 in (A.24).

Define ⇢n as the follows:

⇢n = ( eRt + 2b0)/(n�
2
0)� 1.
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Since � log(1� u) < u/(1� u) for u 2 R,

� log{( eRk + 2b0)/( eRt + 2b0)} = � log[1 + ( eRk � eRt)/{n(1 + ⇢n)�
2
0}]

 ( eRt � eRk)/{n�2
0(1 + un)},

where un = ⇢n + ( eRk � eRt)/(n�2
0).

Since (R⇤
k�R⇤

u)/�
2
0 ⇠ �|u\k|(�n) with �n = �0T

t XT

t (Pu�Pk)Xt�0
t/�

2
0 , by using Lemma

A.1.4 one can show that
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�� > ✏/4
 

 exp{�c00n},

for some constant c0 and c00, and ⌘ is defined in the proof of Theorem 1. Also, by Assumption

5, �n/n will be bounded below and above.

Proof of Corollary 4. Since we showed that the asymptotic equivalence between Qk and Q⇤
k

in the proof of Corollary 2, by following exactly same steps in the proof of Theorem 3 we can

prove the model selection consistency under piMoM prior densities.

Proof of Proposition 5. We shall show that for any ↵k = b�k + ✏n with ✏n = {✏n,j}j=1,...,|k|

and |✏n,j| � ✏⇤
n

for at least one j 2 {1, . . . , |k|}, P{g(↵k;k) < g(e�⇤
k;k)} ! 0 as n tends to

1, where e�⇤
k 2 B(b�k; ✏⇤n) with ✏⇤

n
⇣ (⌧n,p/n)1/3. More specifically, we set e�⇤

k,j = b�k,j + ✏⇤
n

for

j 2 t and e�⇤
k,j = b�k,j for j 2 tc. Without loss of generality, we assume that XT

j
Xj = n for

j = 1, . . . , p.
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Note that

g(↵k;k) = ||Xk↵k �Xk
b�k||22 +

|k|X

j=1

⌧n,p/|↵k,j|+Dn

=
|k|X

j=1

{cjn✏2n,j + ⌧n,p/|b�k,j + ✏n,j|}+Dn,

for some constants cj such that CL < cj < CU for j = 1, . . . , |k|, and some randome variable

Dn that are not relevant to ↵k. Then,

P{g(↵k;k) < g(e�⇤
k;k)}
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2

4
|k|X

j=1

(
cjn✏

2
n,j

+
⌧n,p

|b�k,j + ✏n,j|

)
<

|k|X

j=1

(
cjn✏

⇤2
n
+

⌧n,p

|e�⇤
k,j|

)3

5

 P

"
X

j2S⇤\Sk,n

(
cjn✏

2
n,j

+
⌧n,p

|b�k,j|+ |✏n,j|
� tn,j

)

<
X

j2S⇤\Sk,n

(
cjn✏

⇤2
n
+

⌧n,p

|e�⇤
k,j|

)#
(A.25)

+P

"
X

j2S⇤\Sc

k,n

(
cjn✏

2
n,j

+
⌧n,p

|b�k,j|+ |✏n,j|
� tn,j

)

<
X

j2S⇤\Sc

k,n

(
cjn✏

⇤2
n
+

⌧n,p

|e�⇤
k,j|

)#
(A.26)

+P

"
X

j2S⇤c

(
cjn✏

2
n,j

+
⌧n,p

|b�k,j|+ |✏n,j|
+
X

j2S⇤

tn,j
|S⇤c|

)

<
X

j2S⇤c

(
cjn✏

⇤2
n
+

⌧n,p

|e�⇤
k,j|

)#
, (A.27)

where tn is an arbitrary sequence such that tn,j = n2/3⌧ 1/3n,p ✏n,j , and S⇤ = {j 2 {1, . . . , p} :

|✏n,j| � ✏⇤
n
}, and Sk,n = {j 2 k : |b�k,j| < ✏⇤

n
}. Then, to complete the proof, it is sufficient to
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show that each of (A.25), (A.26), and (A.27) converges to zero.

Since n(b�k,j � �0
t,j)

2/�2 ⇠ �2
1 for j = 1, . . . , |k|,

P (|b�t,j � �0
t,j| > ⇣n)  (⇡n⇣2

n
/2)�1/2 exp{�n⇣2

n
/(2�2)},

for any ⇣n > 0. This implies that Sk,n = t at least probability

1 � |tc|(⇡n✏⇤2
n
/2)�1/2 exp{�n✏⇤2

n
/(2�2)}. Therefore, the equation (A.25) can be asymp-

totically bounded by

X

j2S⇤\t

P

"
cjn✏

2
n,j

+
⌧n,p
2|✏n,j|

� tn,j < cjn✏
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n
|

#


X

j2S⇤\t

P
h
|b�k,j + ✏⇤

n
| < c⌧n,p(n✏

2
n,j

� tn,j + ⌧n,p/|✏n,j|)�1
i
,

for some positive constant c. Consider Lemma A.1.4 with �n = n✏⇤2
n
/�2 and

wn = c2⌧ 2
n,p

/{✏⇤2
n
(n✏2

n,j
� tn,j + ⌧n,p/|✏n,j|)2} for j 2 S⇤ \ t. Since n✏2

n,j
� n1/3⌧ 2/3n,p

for j 2 S⇤ implies wn ! 0, Lemma A.1.4 guarantees that the last display is bounded by

c0|S⇤ \ t|��1
n

exp{��n(1�wn)2} for some constant c0, which means that (A.25) converges to

zero as n tends to 0. By following the same steps, one can show that (A.26) converges to zero.

Also, (A.27) can be asymptotically bounded by

X

j2S⇤c\t

P

"
cjn✏

2
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+
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2
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n
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+
X
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P
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n
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2
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� n✏⇤2
n
+ cmin

j2S⇤
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where c, c0, and c00 are some positive constants. For the first term in the last line of the above dis-

play, by setting �n = n✏⇤2/�2 and wn = c2⌧ 2
n,p

/{✏⇤2
n
(n✏2

n,j
�n✏⇤

n
+cminj2S⇤ tn,j+⌧n,p/|✏n,j|)2},

we can apply Lemma A.1.4. Since wn � ⌧ 2
n,p

(✏⇤
n
minj2S⇤ tn,j)�2 implies wn ! 0, the first term

in the above display converges to zero by Lemma A.1.4. Similarly, the second term also con-

verges to zero.

A.2 Functional Horseshoe Prior for Nonparametric Subspace Shrinkage

Proof of Lemma 1. As discussed in the paragraphs following Lemma 1 when L(�0) ( L(�),

we can generate a new basis e� = [�0,�1] such that �T
0�1 = 0 and L(�) = L(e�), which

implies Qe� = Q�. Then,

�

✓
�T�+

!

1� !
�T(I�Q0)�

◆�1

�T

= e�
✓
e�T e�+

!

1� !
e�T(I�Q0)e�

◆�1

e�T

= [�0,�1]

2

64
(�T

0�0)�1 0

0 (1� !)(�T
1�1)�1

3

75

2

64
�T

0

�T
1

3

75

= (1� !)Qe� + !Q0

= (1� !)Q� + !Q0.

Proof of Lemma 2. From Polson and Scott (2012) it follows that

Z 1

0

!An�1(1� !)Bn�1 exp{�Hn!}d! =
�(An)�(Bn)

�(An +Bn)
exp{�Hn}

1X

m=0

(An)(m)

(An +Bn)(m)

Hn

m

m!
,

where (a)(m) = a(a+1) . . . (a+m�1). We shall show that
P1

m=0

n
(Bn)(m)

(An+Bn)(m)

Hn
m

m!

o
� 1+QL

n
.

By using Lemma A.2.1 and Stirling’s approximation, i.e., m! ⇣ mm+1/2 exp{�m}, it follows
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that

1X

m=0

⇢
(Bn)(m)

(An +Bn)(m)
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m
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= 1 +
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(
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⇢
Hn +D

✓
Bn + 1

An +Bn + 1

◆1/2

(Bn + Tn)
�An

⇥ exp

(
A2

n

2(An +Bn + Tn)

� Tn+1X

m=2

Hn

m

m!

)
, (A.28)

where Tn = max{A2
n
, 3 dHne]}, and D is some positive constant.

Since Hn < (Tn+2) exp{1}, by using the Stirling’s approximation, the term
P

Tn+1
m=2 Hn/m!

in (A.28) can be expressed as follows:

Tn+1X

m=2

Hm

n

m!
= exp{Hn}� 1�Hn �

1X

m=Tn+2

Hm

n

m!

� exp{Hn}� 1�Hn � (Tn + 2)�1/2
1X

m=Tn+2

✓
exp{1}Hn

Tn + 2

◆m

 exp{Hn}� 1�Hn � (Tn + 2)�1/2
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Therefore, (A.28) can be bounded by

1 +
Bn

An +Bn

(
Hn +D

✓
Bn + 1

An +Bn + 1

◆1/2

(Bn + Tn)
�An

⇥
�
exp{Hn}� 1�Hn � (Tn + 2)�1/2

�
+

)

� 1 +
BnHn

An +Bn

+
DBn

(An +Bn)3/2
(Bn + Tn)

�An

�
exp{Hn}� 1�Hn � (Tn + 2)�1/2

�
+
,

where (·)+ denotes the positive hinge function (i.e., for any t 2 R, (t)+ = t, if t > 0, and

(t)+ = 0, otherwise).

Also, since (Bn +m)!/(An +Bn +m)! < 1 for any positive integer m, it follows that

Hn +
1X

m=1


(Bn +m)!

(An +Bn +m)!

Hn

m+1

(m+ 1)!

�
 exp{Hn},

which completes the proof.

Lemma A.2.1. For arbitrary positive sequences un and wn,

✓
1� un

un + wn

◆un+wn

� exp

⇢
�un +

u2
n

2(un + wn)

�
. (A.29)

Proof. By Talyor’s theorem, there exists q⇤
n
2 (0, un/(un + wn)) such that

✓
1� un

un + wn

◆un+wn

= exp

⇢
(un + wn) log

✓
1� un

un + wn

◆�

= exp

⇢
(un + wn)

✓
� un
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+
1

(1� q⇤
n
)2

u2
n

2(un + wn)2

◆�

� exp

⇢
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n
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�
.
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Lemma A.2.2.

n
��Q0�� �Q0Y

��2
n,2

/�2 | Y,! ⇠ �2
d0
,

and

n
��Q1�� � (1� !)Q1Y

��2
n,2

/{(1� !)�2} | Y,! ⇠ �2
kn�d0

.

Proof. Recall that

� | Y,! ⇠ N(e�!, e⌃!),

where

e�! =

✓
�T�+

!

1� !
�T(I�Q0)�

◆�1

�TY, e⌃! = �2

✓
�T�+

!

1� !
�T(I�Q0)�

◆�1

.

As shown in the proof of Lemma 1, �
�
�T�+ !

1�!
�T(I�Q0)�

��1
�T = (1� !)Q� + !Q0,

so

E [Q0�� | Y,!] = Q0Y

Var [Q0�� | Y,!] = �2Q0,

which shows that n
��Q0�� �Q0Y

��2
n,2

/�2 | Y,! ⇠ �2
d0

.

Similarly,

E [Q1�� | Y,!] = (1� !)Q1Y

Var [Q1�� | Y,!] = �2(1� !)Q1,

which proves that n
��Q1�� � (1� !)Q1Y

��2
n,2

/{(1� !)�2} | Y,! ⇠ �2
kn�d0

.
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Proof of Theorem 6. Let �⇤ denote the projection of the true F0 on the basis {�j}1jkn
, i.e.,

�⇤ = argmin
�2Rkn

��F0 � ��
��
2,n

. (A.30)

We shall treat �⇤ as the pseudo-true parameter and study the posterior concentration of �� in

the posterior around ��⇤.

To prove Theorem 6, it is sufficient to show that the posterior probability in the equation

(4.10) converges in probability to zero. The quantity in (4.10) can be decomposed as follows:

P
h���� � F0

��
n,2

> M1/2
n

| Y
i

 P
h���� � ��⇤��

n,2
> M1/2

n
/2 | Y

i
+ 1

h����⇤ � F0

��
n,2

> M1/2
n

/2
i
,

where �⇤ is defined in (A.30) and 1(·) is the indicator function. The second term on the right-

hand side of this expression is always zero when F0 2 L(�0), since we assume that the column

space of �0 is contained in the column space of �, and its expectation with respect to the true

density is asymptotically zero when F T
0 (I�Q0)F0 ⇣ n from (4.9). Therefore, we focus on the

first term on the right-hand side. Since �� = Q1�� +Q0��, by Lemma 1. the first term can

be decomposed as

P
h���� � ��⇤��

n,2
> M1/2

n
/2 | Y

i
= E!|Y

h
P
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n
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where �e�! = (1� !)Q�Y + !Q0Y = (1� !)Q1Y +Q0Y .

We denote

W1 = P
⇣��Q1�� � (1� !)Q1Y

��
n,2

> M1/2
n

/8 | Y,!
⌘
,

W2 = P
⇣��Q1��

⇤ � (1� !)Q1Y
��
n,2

> M1/2
n

/8 | Y,!
⌘
,

W3 = P
⇣��Q0�� �Q0Y

��
n,2

> M1/2
n

/8 | Y,!
⌘
.

The indicator function in the fourth term converges to zero in probability, since
��Q0Y �

Q0��⇤
��2
2,n

achieves the parametric optimal rate. To complete the proof we show that the ex-

pectations of W1, W2, and W3 with respect to the marginal posterior distribution of ! converge

to zero in probability.

First consider W3. Since n
��Q0�� �Q0Y

��2
2,n

/�2 | Y,! ⇠ �2
d0

by Lemma A.2.2, by using

Lemma A.1.4 it follows that

E!|Y [W3] = E!|Y

h
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n��Q0�� �Q0Y
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n

/8 | Y,!
oi
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✓
nMn

64�d0

◆d0/2

exp{�nMn/(128�
2)},

for some constant C.

The last quantity converges to zero as n tends to 1, which implies that E!|Y [W3] = op(1).

Now we obtain the bounds on W1. By Lemma A.2.2 n
��Q1���(1�!)Q1Y

��2
2,n

/{(1�!)�2} |
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kn�d0

. By using Lemma A.1.4, it follows that

W1 
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2
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2
� nMn
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�
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nMn

64�2
(1� !)�1  kn � d0

�
.

We denote the two terms in this expression as W1,1 and W1,2.
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By using Lemma 2 and defining b! = (kn � d0)/{nMn/(64�2) + kn � d0}, it follows that
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=
1

m(Y )


nMn exp{1}
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2
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mn

!a+
kn�d0

2 �1(1� !)b�
kn�d0

2 �1

⇥ exp

⇢
� nMn

128�2
(1� !)�1 �Hn!

�
d!

 1

m(Y )


nMn exp{1}
64�2(kn � d0)

� kn�d0
2
Z 1

mn

!a�1(1� !)b�1 exp {�Hn!} d!

⇥b!
kn�d0

2 (1� b!)�
kn�d0

2 exp

⇢
� nMn

128�2
(1� b!)�1

�

=
1

m(Y )
exp

⇢
� nMn

128�2

�Z 1

mn

!a�1(1� !)b�1 exp {�Hn!} d!, (A.31)

where mn = max[0, 1� nMn/{16�2(kn � d0)}].

Also,
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◆
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�
+

#�1

,

(A.32)

where Tn = max{(a+ (kn � d0)/2)2, 3 dHne} and D is some constant.
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We now consider two cases: (i) when F0 2 L(�0) and (ii) when F T
0 (I�Q0)F0 ⇣ n.

Case (i) F0 2 L(�0):

Recall that in this case Mn = ⇣nn�1 for any arbitrary diverging sequence ⇣n. First, we

show that E!|Y [W1]
p! 0 by proving that E!|Y [W1,1]

p! 0 and E!|Y [W1,2]
p! 0.

Applying Lemma 2, it follows that (A.31) is bounded above by

E!|Y [W1,1] 
C exp {�nMn/(128�2)}

�
1 + b

a+b
exp{Hn}

�

1 + �n + un
Db
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⇢
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128�2
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b

a+ b
exp{Hn}

◆
, (A.33)

where �n = bHn/(a+ b+(kn � d0)/2) and un = (a+ b)(b+Tn)�an�(kn�d0)/2/(a+ b+(kn �

d0)/2)3/2 with Tn = max{(a+ (kn � d0)/2)2, 3 dHne}, and C and D are some constants.

Since 2Hn ⇠ �2
kn�d0

, by Lemma A.1.4 and defining qn = k�1/2
n (log kn)1/2(� log b)1/2, it

follows that

P [Hn > knqn/2]  exp{�cknqn}, (A.34)

for some constant c. Hence, by the condition that kn log kn � � log b, it is clear that b exp{Hn} =

op(1), which shows that E!|Y [W1,1] = op(1).

Similarly, since �(b)�1 ⇣ b, (A.32) is bounded by

C 0b exp{Hn}
✓

nMn

64�2(kn � d0)

◆b�1

,

for some constant C 0. By (A.34), b exp{Hn} = op(1), which implies E!|Y [W1,2] = op(1).

We next show that E!|Y [W2] converges in probability to zero. Applying Lemma 2, it fol-
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lows that
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where C is some constant, and �n and un are defined following (A.33).

From (A.34), it follows that b{nMn/(128�2)}(b�1)/2H1/2
n exp{Hn} is bounded by

b{nMn/(128�2)}(b�1)/2(knqn/2)1/2 exp{knqn/2} with probability greater than 1�exp{�cknqn}

from which it follows that E!|Y [W2] = op(1).

Case (ii) F T
0 (I�Q0)F0 ⇣ n:

Recall that in this case Mn = ⇣nn�2↵/(1+2↵) log n for any arbitrary diverging sequence ⇣n,
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and �n and un are defined following (A.33). From (A.31) it follows that
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Db
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(exp{Hn}� 1�Hn � (Tn + 2)�1/2)+

,

for some constant C.

By Lemma A.1.4, for any sequence wn ! 0, Hn is larger than wnF T
0 Q1F0/�2 with prob-

ability greater than 1 � exp{�cF T
0 Q1F0(1 � wn)2/�2} for some constant c. Since F T

0 (I �

Q0)F0 ⇣ n implies F T
0 Q1F0 ⇣ n, the last line in the above display can be expressed as

C 0 exp

⇢
� nMn

128�2
(kn � d0)

3/2(b+ Tn)
(kn�d0)/2

�
+ op(1),

where Tn = max{(a + (kn � d0)/2)2, 3Hn} and C 0 is some positive constant. Therefore, to

show E!|Y [W1,1]
p! 0, it is sufficient to prove that T (kn�d0)/2

n exp{�nMn/(128�2)} = op(1).

For any ✏ > 0,
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2
⇤
.

Since ⇣n ! 1 as n tends to 1, from (A.7) in Lemma A.1.4, it follows that the first term in

the above display can be bounded above by exp{�c0(n⇣

n
�F T

0 Q1F0/�2)} for some constant c0.

Similarly, from (A.6) in Lemma A.1.4, the second term is bounded by exp{�c00F T
0 Q1F0/�2}

with some constant c00, which proves that E!|Y [W1,1]
p! 0.

Since nMn � kn, the indicator function 1(1 � nMn/(64�2(kn � d0)) � 0) in (A.32) is

zero when n is large enough, which results in E!|Y [W1,2]
p! 0.
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The marginal posterior mean of W2 can be decomposed as

E!|Y [W2]  P!|Y
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16
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n

�
.

Results provided by Zhou et al. (1998) (see equation (4.9) on page 66) show that the second

term in the previous expression is op(1). The first term can be expressed as
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�
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n
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nMn/(256�
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,

for some positive constant D. Since Hn/n = Op(1) and � log b � n1/2k1/2
n , the above quantity

converges in probability to zero, which completes the proof.
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A.3 Nonlocal Functional Priors for Nonparametric Hypothesis Testing and

High-dimensional Model Selection

A set of technical results follow that are used in the proof of the main results. For a given

model k,

e�k = (�T
k�k + 1/⌧nI)

�1�T
ky, eFk = �k

e�k, ePk = �k(�
T
k�k + 1/⌧nI)

�1�T
k,

Dk(y) = E�k|y,k

"
exp

(
�
X

j2k

�2⌧n
�T
j
�T

j
�j�j

)#
, (A.35)

where �k is defined in the second paragraph of Section 5.5.

For 1  j  p, the subvector of e�k corresponding to the covariate xj is denoted by e�k,j ,

and define

e�j = (�T
j
�j + 1/⌧nI)

�1�T
j
y, eFj = �j

e�j,

eFk,j = �j
e�k,j, and ePj = �j(�

T
j
�j + 1/⌧nI)

�1�T
j
, (A.36)

where �j is defined in the second paragraph of Section 5.5. Similarly, we define b�k,j as the

subvector of b�k defined in (5.14) corresponding the covariate xj for j 2 k, and bFk,j = �j
b�k,j .

Recall that P0 denotes the probability measure that generates data y.

For univariate settings, we simply denote the basis matrix by � and the corresponding

coefficients by � 2 RKn . The ridge solution of � is defined by e� = (�T�+ 1/⌧nI)�1�Ty.

Lemma A.3.1. Suppose �⇤ | y ⇠ N
⇣
e�, �⇤2

n
(�T�+ 1/⌧nI)�1

⌘
for some arbitrary e� 2 RKn
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and �⇤2
n

> 0. Let edn = eF T(I�Q0) eF , where eF = �e�. Suppose Kn � ⌧nn�1/2/ log n. Then,
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(A.37)

+exp{�c3n
�1/2⌧n}+ exp{�c4n},

and
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, (A.38)

for some positive constants ci for i = 1, . . . , 5.

Proof. First, we shall show the upper bound (A.37). Since exp{��2⌧n (�⇤T�T(I�Q0)��⇤)�1} 

1 for any �⇤ 2 RKn and �⇤T�T(I�Q0)��⇤  nk��⇤ � eFk2
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eF T(I�Q0) eF , it follows that
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for some constants c1 and c2.

Since nk��⇤� eFk2
n,2/�

⇤2
n

= (�⇤� e�)T�T�(�⇤� e�)  (�⇤� e�)T(�T�+1/⌧nI)(�⇤� e�),

(�⇤� e�)T(�T�+1/⌧nI)(�⇤� e�) | y ⇠ �2
Kn

, and Kn � ⌧nn�1/2/ log n, Lemma A.1.4 implies
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that
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for some constant c3.

Since eF T(I � Q0)(��⇤ � eF ) | y ⇠ N(0, �⇤2
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for some constant c4, by the fact that for z , P (|Z| > z)  (2⇡)�1/2z�1 exp{�z2/2}, where Z

follows a standard Gaussian distribution.

Second, we consider the lower bound (A.38). By Markov’s inequality, it follows that
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for some constant c5.

Lemma A.3.2. Define

tn,j =

8
>><

>>:

qnF T
0 PjF0, if j 2 t,

un(log p+Kn + ⇣�1
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for large enough n. Also,
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for some constant c.
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0 PjF0, Lemma A.1.4 and (A5) imply that
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for some positive constants ci for i = 1, . . . , 5.

Similarly, by Lemma A.1.4, it follows that
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for some constant c.

Lemma A.3.3. Recall that Dk(y) is defined in (A.35). Assume that (A2)–(A3) hold. Let
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n
(log n)2. For k 6= t and a given � > 0, there exist some positive constant c and c0 such

that
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Proof. We note that
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where �⇤
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for j 2 t and some constant c5.
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Plugging the bounds in (A.41), it follows that
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(A.42)

where edk,j = eF T
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eFk,j .
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with probability greater than 1� p�|k|(1+�) for some constants c6, c7, and c8.

Proof of Theorem 7. Since
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it is sufficient to show that for any diverging sequence vn ! 1,

P0

⇣ ��yT(Q� �Q0)y/�
2 �

�
F T
0 (Q� �Q0)F0/�

2 +Kn � d0
 ��

> 2{2F T
0 (Q� �Q0)F0/�

2 +Kn � d0}1/2vn
⌘

= o(1). (A.43)

We note that Birgé (2001) showed the following statements:
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Since bF T(Q� �Q0) bF = yT(Q� �Q0)y, (A.43) completes the proof.
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E⇡L [exp{��2⌧n/{�T�T(I�Q0)��}}] is strictly bounded from zero. So, there exists a strictly

positive constant C such that E⇡L [exp{��2⌧{�T�T(I �Q0)��}�1}] > C > 0.
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Therefore,

P0


Mn,I

� logDn(hI ;y)
> vn

�

= P0

"
logE�|y


exp

⇢
� �2⌧n
�T�T(I �Q0)��

��

> logE⇡L


exp

⇢
� �2⌧n
�T�T(I �Q0)��

��
�Mn,Iv

�1
n

#

 P0

⇢
logE�|y


exp

⇢
� �2⌧n
�T�T(I �Q0)��

��
> C �Mn,Iv

�1
n

�
\ An

�

+P0 [A
c

n
] , (A.44)

where An = {y : yT(I �Q0)y < F T
0 (I �Q0)F0 + �2(Kn � d0) + 2�2{F T

0 (I �Q0)F0/�2 +

(Kn � d0)}1/2 log n}.

Since P0[Ac

n
] = o(1) by (A.43), it is sufficient to show that the first term in (A.44) is o(1).

By (A.37) in Lemma A.3.1, the first term can be bounded above by

P0

"⇢
log

"
exp

(
� �2⌧n

c1�⇤2
n
n�1/2 + edn + c2�⇤

n
(nedn)1/2

)
+ exp

n
�c3

⌧n
n1/2

o#

+exp{�c4n} > C �Mn,Iv
�1
n

�
\ An

#

 I


� c5⌧n
dn + �2(ndn)1/2

> C �Mn,Iv
�1
n

�
, (A.45)

where I(·) is the indicator function, �⇤2
n

= ⌧n�2/(1 + ⌧n) and edn = ⌧ 2
n
bF T(Q� � Q0) bF/(1 +

⌧n)2 = ⌧ 2
n
byT(Q� � Q0)y/(1 + ⌧n)2 for some constants ci for i = 1, . . . , 5. Since Mn,I =

⌧n{dn + �2(ndn)1/2}�1 and v�1 ! 0, it is clear that (A.45) is o(1), which completes the

proof.

Proof of Proposition 12. The asymptotic property of the B-spline approximation De Boor
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(1978) guarantees that if f0 2 C↵[0, 1], there exists some �1 2 RKn , k��1 � F0k1 �

K�↵

n
kf0k↵. By using this asymptotic inequality, it follows that

F T
0 (Q� �Q0)F0 = F T

0 (I �Q0)F0 � F T
0 (I �Q�)F0

� F T
0 (I �Q0)F0 � nk��1 � F0k1

⌫ F T
0 (I �Q0)F0 � nK�↵

n
kf0k↵.

Also, it is clear that F T
0 (Q� �Q0)F0  F T

0 (I �Q0)F0, which completes the proof.

Proof of Theorem 13. To show that ⇡NL(t | y) converges to one in probability, it is sufficient

to show that H1n and H2n in (A.5) both converge zero in probability as n tends to 1. We shall

prove the Theorem by showing the follows:

For any fixed � > 0, ✏ > 0 and any model k 2 �d (defined in Lemma A.1.2),

P0


mk(y)

mt(y)
> ✏p�dq�1

n

�
 p�d(1+�), (A.46)

and for any model k 2 �k,ck,ct
(defined in Lemma A.1.3),

P0


mk(y)

mt(y)
> ✏n�3p�kn�ckt�t

�
 p�k(1+�). (A.47)

Then, it is clear that H1n and H2n both converge to zero in probability by Lemma A.1.2 and

Lemma A.1.3 respectively.

We first show that the normalizing constant of the nonlocal functional prior densities is

asymptotically at rate of (2⇡⌧n)Kn/2, i.e.,
R
exp{��T�/(2⌧n) � �2⌧n/�T�T

j
�j�}d� ⇣ (2⇡⌧n)Kn/2. Let E�[·] and P�[·] be the expecta-

tion and the probability induced by a random variable � ⇠ N(0, �2⌧nI). Then, by using the
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Markov inequality and (A3), it follows that

Z
exp{��T�/(2�2⌧n)� ⌧n/�

T�T
j
�j�}d� = (2⇡⌧n)

Kn/2E�


exp

⇢
� �2⌧n
�T�T

j
�j�

��

� (2⇡⌧n)
Kn/2 exp{��2 log nKn/(�⇤n)}

⇥P�

⇥
exp{��2⌧n/�

T�T
j
�j�} > exp{��2(log n)Kn/(�⇤n)}

⇤

� (2⇡⌧n)
Kn/2 exp{��2(log n)Kn/(�⇤n)}P�

⇥
�T�/(�2⌧n) > 1/(�2 log n)

⇤

� (2⇡⌧n)
Kn/2(1� o(1)),

where �⇤ is defined in (A3). The last inequality is derived by using the fact that P (WKn
<

x)  (x/Kn)Kn/2 exp{Kn/2 � x/2} for WKn
⇠ �2

Kn
and x < Kn. It is also clear that

R
exp{��T�/(2�2⌧n)��2⌧n/�T�T

j
�j�}d�  (2⇡⌧n)Kn/2, since exp{��2⌧n/�T�T

j
�j�}  1

for any � 2 RKn .

Second, we shall show that (A.46) holds. Recall that �d = {k : |k|  qn t ( k, |k|� |t| =

d}. By Lemma A.3.3, (A2) and (A3), it follows that for any k 2 �d, there exists � > 0 such
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that

P0


mk(y)

mt(y)
> ✏p�dq�1

n

�

 P0

"
(c1⌧n)

�dKn/2

✓
|�T

k�k + 1/⌧nI|
|�T

t�t + 1/⌧nI|

◆�1/2✓Dk(y)

Dt(y)

◆

⇥ exp

(
yT( ePk � ePt)y

2�2

)
> ✏p�dq�1

n

#

 P0

"
(c1⌧n)

�dKn/2Q|k|
n⇤Q

⇤�|t|
n

exp

(
yT( ePk � ePt)y

2�2

)

⇥ exp

(
� c2d⌧nu

�1/2
n ⇣1/2n⇤

(Kn + log p+ ⇣�1
n⇤ )1/2n1/2

)
> ✏p�dq�1

n

#

+P0

"
Dk(y)

Dt(y)
> exp

(
� c2d⌧nu

�1/2
n ⇣1/2n⇤

(Kn + log p+ ⇣�1
n⇤ )1/2n1/2

)#

 P0

"
yT( ePk � ePt)y/�

2 > �2d log p� 2 log qn + dKn log ⌧n

⇥+
c2d⌧nu

�1/2
n ⇣1/2n⇤

(Kn + log p+ ⇣�1
n⇤ )1/2n1/2

+ Zn

#

+p�d(1+�),

where Qn⇤ = (⇣n⇤�⇤n/Kn + 1/⌧n)
�Kn/2, Q⇤

n
= (⇣⇤

n
�⇤n/Kn + 1/⌧n)

�Kn/2

and Zn = |k|Kn log(⇣n⇤�⇤n/Kn)� |t|Kn log(⇣⇤n�
⇤n/Kn), for some positive constants c1 and

c2.

Let

tn = �2d log p�2 log qn+dKn log(1+gn)+
c2d⌧nu

�1/2
n ⇣1/2n⇤

(Kn + log p+ ⇣�1
n⇤ )1/2n1/2

+Zn�F T
0 (Pk�Pt)F0.

We note that yT( ePk� ePt)y  yT(Pk�Pt)y+ c0Kn(n⌧n�⇤⇣n⇤)�1yTPty for some constant c0.

Therefore, since yT(Pk � Pt)y/�2 ⇠ �2
dKn

(F T
0 (Pk � Pt)F0), Lemma A.1.4 and (A5) implies
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that

P0

h
yT( ePk � ePt)y/�

2 > F T
0 (Pk � Pt)F0/�

2 + tn
i

 P0

⇥
yT(Pk � Pt)y/�

2 > F T
0 (Pk � Pt)F0/�

2 + tn/2
⇤
+ P0


c0KnyTPty

n⌧n�⇤⇣n⇤
> tn/2

�

 c3(tn/(2dKn))
dKn/2 exp{dKn/2� tn/4}

+c4{F T
0 (Pk � Pt)F0}1/2t�1

n
exp

⇢
� �2t2

n

128F T
0 (Pk � Pt)F0

�
+ exp{�c5n},

for some constant cl with l 2 {3, 4, 5}. Since ⌧n⇣
1/2
n⇤ u�1/2

n (Kn + log p + ⇣�1
n⇤ )

�1/2n�1/2 �

max{F T
0 (Pk � Pt)F0, Zn, log p} by (A5), it follows that the last equation in the above display

is bounded above by p�d(1+�) for any � > 0, which proves (A.46).

Third, we shall show that (A.47) holds. Recall that �k,ck,ct
= {k : |k|  qn, |k| =

k, |k\t| = ck, |t\k| = ct}. By following similar steps used in the previous proof for (A.46),

it follows that for any model k 2 �k,ck,ct
, there exists some � > 0 such that

P0


mk(y)

mt(y)
> ✏n�3p�kn�ckt�t

�

 P0

"
(2⇡⌧n)

�(ck�ct)Kn/2

✓
|�T

k�k + 1/⌧nI|
|�T

t�t + 1/⌧nI|

◆�1/2✓Dk(y)

Dt(y)

◆
exp

n
yT( ePk � ePt)y/(2�

2)
o

> ✏n�3p�kn�ckt�t

#

 P0

"
(cn)�(ck�ct)KnQ|k|

n⇤Q
⇤�|t|
n

exp

⇢
yT( ePk � ePu)y

2�2
� c0ck⌧n⇣

1/2
n⇤ u�1/2

n

(Kn + log p+ ⇣�1
n⇤ )1/2n1/2

+qn log p+ Zn

�
> p�k��

#
(A.48)

+P0

"
Dk(y)

Dt(y)
> exp

(
� c0ck⌧n⇣

1/2
n⇤ u�1/2

n

(Kn + log p+ ⇣�1
n⇤ )1/2n1/2

+ Zn

)#
(A.49)

+P0

"
yT( ePu � ePt)y

2�2
> qn log p

#
, (A.50)
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where u = k [ t and t = |t| for some constant c and c0.

We are going to show that the three terms (A.48), (A.49), and (A.50) all are bounded above

by p�|k|(1+�) for some � > 0. Then, the proof is competed by Lemma A.1.3.

By Lemma A.3.3, (A.49) is bounded above by p�|k|(1+�). Let zn = qn log p � F T
0 (Pu �

Pt)F0/�2. Then, since yT(Pu � Pt)y/�2 ⇠ �2
ckKn

(F T
0 (Pu � Pt)F0/�2), by Lemma A.1.4,

(A.50) also can be shown as

P0

h
yT( ePu � ePt)y/�

2 > 2qn log p
i

 P0

⇥
yT(Pu � Pt)y/�

2 > qn log p
⇤
+ P0


c0KnyTPty

n⌧n�⇤⇣n⇤
> qn log p

�

 c1 (zn/{ckKn})ckKn/2 exp {|k \ t|Kn/2� zn/2}

+c2
�
F T
0 (Pu � Pt)F0/�

2
�1/2

z�1
n

exp
�
�z2

n
/{32F T

0 (Pu � Pt)F0/�
2}
 

+P0


c0KnyTPty

n⌧n�⇤⇣n⇤
> qn log p

�
,

for some constant c1 and c2. Since P [c0Kn/(n⌧n�⇤⇣n⇤)yTPty/y > qn log p]  p�|k|(1+�) by

Lemma A.1.4, |k|  qn and zn ⇣ qn log p by (A5), (A.50) is bounded above by p�|k|(1+�) for

any fixed � > 0.

Also, (A.48) can be bounded above by

P0

"
yT(Pu � Pk)y

�2
< (2 + �)qn log p� 2 log

 
Q|k|

n⇤

Q⇤|t|
n

!
(A.51)

+
c0ck⌧n⇣

1/2
n⇤ u�1/2

n

(Kn + log p+ ⇣�1
n⇤ )1/2n1/2

#
(A.52)

+ P0


c0KnyTPuy

n⌧n�⇤⇣n⇤
> �2Kn log n

�
, (A.53)

for some constant c3. We note that yT(Pu � Pk)y/�2 ⇠ �2
ct
(F T

0 (Pu � Pk)F0/�2). Since

F T
0 (Pu � Pk)F0 � qn⌧n⇣

1/2
n⇤ u�1/2

n /{(Kn + log p + ⇣�1
n⇤ )

1/2n1/2} by (A5), Lemma A.1.4 im-

plies that (A.51) is bounded above by p�|k|(1+�) for some � > 0. Also, since yTPuy/�2 ⇠
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�2
|u|Kn

(F T
0 PuF0/�2), it follows that (A.53) is bounded above by p�|k|(1+�) by Lemma A.1.4.
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APPENDIX B

DETAILS OF COMPUTATION

B.1 Nonlocal Prior Densities for High-dimensional Linear Model Selection

In this section, we provide the Laplace approximation of the marginal likelihoods based on

the nonlocal priors. Because closed form expressions for posterior model probabilities based

on modified peMoM priors and modified piMoM priors are not available, we estimate the

posterior model probabilities using Laplace approximations. For posterior probabilities based

on the peMoM priors, an inverse-Gamma density with parameters (a0, b0) on �2 the Laplace

approximation to the marginal density of the data for model k can be expressed as

⇡(k | y) / (2⇡)|k|/2
��V (�⇤

k, �
2⇤)
���1/2

exp{f(�⇤
k, �

2⇤)}p(k), (B.1)

where

(�⇤
k, �

2⇤) = argmax
(�k,�

2)
f(�k, �

2)

f(�k, �
2) = � (n/2 + |k|/2 + a0 + 1) log �2 � (y �Xk�k)

T (y �Xk�k)/(2�
2)

��T

k �k/(2�
2⌧n,p)�

|k|X

j=1

⌧n,p/�
2
k,j + |k|(2/�2)1/2 � b0/�

2 + |k|(log ⌧n,p)/2,
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and V (�k, �2) is a (|k|+ 1)⇥ (|k|+ 1) matrix with the following blocks:

V11 = XT

kXk/�
2 + Ik/�

2⌧n,p + diag
�
6⌧n,p/�

4
k,j

 
j=1,...,|k|

V12 = XT

k (y �Xk�k)/�
4 � �k/{�4⌧n,p}

V22 = �(n/2 + |k|/2 + a0 + 1)/�4 + (y �Xk�k)
T (y �Xk�k)/�

6 � �T

k �k/⌧n,p

�3|k|21/2��5/4 + 2b0/�
6.

For the piMoM priors on �k, the Laplace approximation of the posterior model probability can

be expressed as in (B.3), but with

f(�k, �
2) = � (n/2 + a0 + 1) log �2 � (y �Xk�k)

T (y �Xk�k)/(2�
2)� b0/�

2

�
|k|X

j=1

�
r log(�2

k,j) + ⌧n,p/�
2
k,j

 
+ |k|

�
(r � 1/2) log ⌧n,p � log�(r � 1/2)

 
,

and V (�k, �2) a (|k|+ 1)⇥ (|k|+ 1) matrix with the following blocks:

V11 = XT

kXk/�
2 + diag

�
6⌧n,p/�

4
k,j � 2r/�2

k,j

 
j=1,...,|k|

V12 = XT

k (y �Xk�k)/�
4

V22 = �(n/2 + a0 + 1)/�4 + (y �Xk�k)
T (y �Xk�k)/�

6 + 2b0/�
6.

B.2 Functional Horseshoe Prior for Nonparametric Subspace Shrinkage

In model (4.1), the conditional posterior distribution of ⌧ based on the functional horseshoe

prior can be expressed as

⇡(⌧ | Y, �) / (⌧ 2)�(kn�d0)/2+b�1/2(1 + ⌧ 2)�a�b exp{��T�T(I�Q0)��/(2�
2)}.
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By reparameterizing ⌘ = 1/⌧ 2, the resulting conditional posterior distribution of ⌘ can be

expressed as

⇡(⌘ | Y, �) / ⌘a+(kn�d0)/2�1 exp{��T�T(I�Q0)��/(2�
2)} 1

(1 + ⌘)a+b
.

As in Polson et al. (2014), a slice sampling method (Neal, 2003) can be used to sample

⌘ from its conditional posterior distribution. The resulting MCMC algorithm is described in

Algorithm 3.

Algorithm 3 MCMC algorithm for simple nonparametric regression models

Choose an initial value �(0) and ⌧ (0).
For l in 0 : (L� 1)

Sample �(l+1) from N(e�!(l) , �2e⌃!(l)), where e�! and e⌃! are defined in (4.7).
(Slice sampling step) Set ⌘ = 1/⌧ 2(l) and t = (⌘ + 1)�a�b.

Sample u ⇠ Unif(0, t) and set t⇤ = u�(a+b)�1 � 1.
Sample ⌘⇤ ⇠ truncated Gamma(a+ (kn � d0)/2, �(l+1)T�T(I�Q0)��(l+1)/(2�2))

on (0, t⇤),
Update ⌧ (l+1) by ⌘⇤�1/2.

End.

In the additive model in (4.14) with a product of the functional horseshoe priors, the con-

ditional posterior distribution of �j given !j and the other coefficients �(�j), for j = 1, . . . , p,

can be expressed as

�j | !j, �(�j), Y ⇠ N
⇣
e�j,!, �2e⌃j,!

⌘
,
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where

e�j,! = e⌃j,!�
T
j
rj, e⌃j,! = (1� !j)

�
�T

j
�j

��1
, rj = Y �

X

l 6=j

�l�l. (B.2)

It follows that sampling Algorithm 3 can be extended to additive regression models to obtain

Algorithm 4 below.

Algorithm 4 MCMC algorithm for additive regression models

Choose an initial value �(0)
j

and ⌧ (0)
j

for j = 1, · · · , p.
For l in 0 : (L� 1)

For j in 1 : p

Sample �(l+1)
j

from N(e�j,!(l) , �2e⌃j,!(l)), where e�j,! and e⌃j,! are defined in (B.2).
End.
For j in 1 : p
(Slice sampling step)

Set ⌘ = 1/⌧ 2(l)
j

and t = (⌘ + 1)�a�b.
Sample u ⇠ Unif(0, t) and set t⇤ = u�(a+b)�1 � 1.
Sample ⌘⇤ ⇠ truncated Gamma(a+ kn/2, �

(l+1)T
j

�T
j
�j�

(l+1)
j

/(2�2)) on (0, t⇤),
Update ⌧ (l+1)

j
by ⌘⇤�1/2.

End.
End.

B.3 Nonlocal Functional Priors for Nonparametric Hypothesis Testing and

High-dimensional Model Selection

B.3.1 Modified Simplified Shotgun Stochastic Search with Screening (S5) for Additive

Models

We consider a sequence of L number of temperatures {tl}l=1,...,L such that t1 > t2 >

. . . > tL > 0. Also, we define a screened set by marginal correlations as SL

k(M) = {j 2
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{1, . . . , p} : rank(|rTkXj|  M)}, where rk is the residual of a model k. Then, letting

nbd(k) = {��,�+
scr

}, where �� = {k \ {j} : j 2 k} and �+
scr

= {k[ {j} : j 2 kc \Sk(M)},

the modified S5 for additive model is illustrated in Algorithm 5.

Algorithm 5 Modified S5 for Additive Models

Set a temperature schedule t1 > t2 > . . . > tL > 0
Choose an initial model k(1,1) and a set of variables after screening Sk(1,1) based on k(1,1)

For l = 1 in l = L
For i in 1, . . . , J � 1
Compute all ⇡(k | y) for all k 2 nbdscr(k(i,l))
Sample k+ and k�, from �+

scr
and ��, with probabilities proportional to ⇡(k | y)1/tl

Sample k(i+1,l) from {k+,k�},
with probability proportional to {⇡(k+ | y)1/tl , ⇡(k� | y)1/tl}

Update the set of considered variables Sk(i+1,l) to be the union of variables in k(i+1,l) and
SINIS

k(i+1,l)(M) [ SL

k(i+1,l)(M).

B.3.2 Laplace Approximations of Marginal Likelihoods Based on Nonlocal Functional

Prior Densities

In this section, we provide the Laplace approximation of the marginal likelihoods based

on the inverse moment functional priors and ⇡(�2) / 1/�2. Because explicit expressions

for marginal likelihoods are not available, we estimate the marginal likelihoods using Laplace

approximations. Letting ⌘ = 1/�2, the Laplace approximation to the marginal density of the

data for model k can be expressed as

mk(y) ⇡ (2⇡)|k|Kn/2 |V (�⇤
k, ⌘

⇤)|�1/2 exp{f(�⇤
k, ⌘

⇤)},
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where

(�⇤
k, ⌘

⇤) = argmax
(�k,⌘)

f(�k, ⌘)

f(�k, ⌘) = (n/2 + |k|/2) log ⌘ � ⌘(y � �k�k)
T(y � �k�k)/2� ⌘�T

k�k/(2⌧n)

�
X

j2k

⌧n/
�
⌘�T

j
�T

j
(I �Q0)�j�j

�
�
X

j2k

logZj,

and V (�k, ⌘) is a (|k|Kn + 1)⇥ (|k|Kn + 1) matrix with the following blocks:

V11 = diag

"⇢
8⌧n�T

j
(I �Q0)�j�j�T

j
�T

j
(I �Q0)�j

⌘(�T
j
�T

j
(I �Q0)�j�j)3

�
2⌧n�T

j
�j

⌘(�T
j
�T

j
(I �Q0)�j�j)2

�

j2k

#

+⌘�T
k�k +

⌘

⌧n
I

V12 = ��T
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.

The prior normalizing constant Zj for j = 1, . . . , p can be approximated by using important

sampling procedures, since Zj = E⇡L [exp{�2⌧n/(�T
j
�j(I�Q0)�j�j)}] and ⇡L ⇠ N(0, �2⌧nI).
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