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ABSTRACT

The past few decades witness the burgeoning development of integrated circuit in

terms of process technology scaling. Along with the tremendous benefits coming from

the scaling, challenges are also presented in various stages. During the design time, the

complexity of developing a circuit with millions to billions of smaller size transistors is

extended after the variations are taken into account. The difficulty of analyzing these non-

deterministic properties makes the allocation scheme of redundant resource hardly work

in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from

severe performance degradations owing to their physical attributes which are vulnerable

to aging effects. As such, the post-silicon calibration approach gains increasing attentions

to compensate the performance mismatch. For the user-end applications, additional sys-

tem failures result from the pirated and counterfeited devices provided by the untrusted

semiconductor supply chain. Again analog circuits show their weakness to this threat due

to the shortage of piracy avoidance techniques.

In this dissertation, we propose three adaptive integrated circuit designs to overcome

these challenges respectively. The first one investigates the variability-aware gate imple-

mentation with the consideration of the overhead control of adaptivity assignment. This

design improves the variation resilience typically for digital circuits while optimizing

the power consumption and timing yield. The second design is implemented as a self-

validation system for the calibration of diverse analog circuits. The system is completely

integrated on chip to enhance the convenience without external assistance. In the last de-

sign, a classic analog component is further studied to establish the configurable locking

mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the

difficulty of searching the unique unlocking pattern of non-Boolean variables.
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1. INTRODUCTION OF CIRCUIT ADAPTIVITY IN VERY LARGE SCALE

INTEGRATION

1.1 Significance of Circuit Adaptivity

In adaptive integrated circuits (ICs), the word “adaptive” implies the feature of circuit

modifications after the hardware fabrication. As the increasingly scaling of IC process

technology, the necessity of this feature is enhanced by the exacerbation of parametric

variations in transistors’ attributes, such as geometry size, oxide thickness, doping density,

etc. These interior mismatches further cause the measurable loss to the output perfor-

mance.

For example, when process technology scales down from 350 nm to 90 nm, chip yields

reported by the foundries have reduced from nearly 90% to 50% [4]. This situation is

even worse at Taiwan Semiconductor Manufacturing Company’s (TSMC’s) 10 nm pro-

cess, such that a unexpected low yield rate for Apple’s A10X chips is likely to disrupt

the production schedule of iPad in March 2017 [5]. Besides process variations, aging ef-

fects manifest themselves as another major source of characteristic changes of devices,

particularly analog circuits. For a Class A amplifier designed in a 65 nm process, the sim-

ulation based on the Channel Hot Carrier degradation (CHC) model indicates a significant

gain loss of 15% over ten years’ lifetime [6]. Moreover, the early in-use system failures

caused by the pirated and counterfeited components could be regarded as a severe form

of performance degradation, which has now turned into an emerging threat to the global

IC security. Again, a study by IHS technology [7] presents that analog ICs rank the first

out of five most counterfeited semiconductors due to their relative large size compared to

digital circuits and the shortage of piracy avoidance techniques.

To overcome the above challenges, circuit adaptivity shows its significance in differ-

1



ent stages of the very large scale integrated (VLSI) circuit design. For example, during

the design time, the adaptivity circuits, with the ability of body bias control or voltage

adaptation, are technically introduced to the original system. They will be invoked later

by the timing violation detectors at runtime and compensate the performance degradation

by modifying the body bias or supply voltage. Another scenario to apply the adaptivity

is the post-fabrication tuning. Essentially relying on the in-situ configurable structure,

circuit performance could be calibrated towards the designed specifications whenever it’s

needed before the advent of final wear-out stage. Furthermore, the circuit adaptivity may

contribute to the field of hardware security. Similar to the digital lock, the adaptive circuit

won’t enable the whole design until the correct keys are provided. Otherwise it locks the

system by malfunction or even entire breakdown.

1.2 Difficulties and Algorithms

Despite the significance of circuit adaptivity, to figure out the appropriate ways of

considering the adaptivity is not an easy task under different situations. For instance, to

compensate the variations during the design time, the conventional optimization has to

be re-formulated with the introduction of the variation property. The run-time calibration

method will be limited to the area consumption of the tuning strategy if it is implemented

on chip. And the protection level of the key-lock scheme will be weakened in case the

configurable circuits are not well designed.

In this dissertation, we proposed systematic ways to assign the circuit adaptivity. In

Chapter 2, a Lagrangian Relaxation based algorithm is further improved to optimize the

gate implementation under the process variations. Body bias is applied as an additional

dimension to minimize the system power assumption, while the adaptivity overhead is also

handled in the optimization function. The stochastic evaluation is executed to analyzed

the circuit timing to maintain the performance with a high probability. In Chapter 3, a

2



Figure 1.1: Circuit adaptivity in different scenarios.

self calibration design is implemented on-chip to adjust the performance of analog circuits

towards the designed specifications. The calibration circuit is based on meta-heuristic with

the balance between computation complexity and searching quality. The effectiveness of

the circuit is demonstrated by both the chip measurement and simulation. In Chapter 4,

inspired from the variation-sensitive analog circuits, we upgrade the common used current

mirror as a locking structure to supplement the lack of protection to the analog system.

Depending on the satisfiability module theories, the locking structure is so well designed

that it could only be opened by a unique key out of numerous candidates, while all other

keys will lead to the system malfunction or totally breakdown.
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2. OPTIMIZATION WITH ADAPTIVE CIRCUIT DESIGN*

2.1 Introduction

As a power-efficient approach to variation resilience, adaptive circuit design has been

demonstrated the effectiveness by results from test chips using body biasing [8], voltage

interpolation [9], circuit reconfiguration [10] or a combination of them. The purpose of

these changes is to compensate the performance variability due to manufacturing process

variations [8], device aging effect [11], and thermal fluctuations [12] while to bring power

savings to the whole circuit.

Although numerous adaptive design techniques have been reported, the adaptivity

overhead is only mentioned in several previous works [10, 13, 14], and has rarely been

a main emphasis. Actually, the overhead of adaptive design highly depends on its granu-

larity. Coarse-grained adaptivity, such as uniform adaptivity for an entire processor core,

has relatively small amortized overhead. For example, if a processor core has only one

critical path replica based sensor, the area overhead is only 0.2% [15]. When intra-die

variations are more pronounced [16], fine-grained adaptivity [9, 14] (in blocks of hun-

dreds or thousands of gates) allows the compensation to be applied in a pinpoint manner.

Evidently, fine-grained adaptivity tends to entail large overhead of sensors, voltage reg-

ulators and control circuits. This can cause as much as 50% area overhead for voltage

interpolation [13] and 20% in [10, 14].

In addition to the area overhead, the effectiveness of power saving also largely de-

pends on the granularity. For example, many variation effects are intrinsically fine-grained.

Therefore, two adjacent transistors may have different doping densities due to process fluc-

tuations. If adaptivity is coarse-grained, e.g., an entire processor core adapts uniformly, the

*Reprinted from "Collaborative Gate Implementation Selection and Adaptivity Assignment for Robust
Combinational Circuits", by Hao He, Jiafan Wang, Jiang Hu, c©2015 IEEE.
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adaptation must aim at transistors with the most critical timing requirement on the core.

Evidently, this is hardly an efficient use of power. By contrast, fine-grained adaptivity, in

blocks of hundreds or thousands of gates, speeds up the critical components with the cost

of increasing additional power within a small region while keeps other non-critical com-

ponents working in a large and low power state, thus enables power saving to the whole

circuit in spite of the large area overhead.

Obviously, one prefers the power savings from fine-grained adaptivity but not its large

overhead. Nevertheless, there are very few works on the optimization of adaptive circuit,

especially the control of its overhead. One attempt is to perform gate clustering. In [17],

an algorithm is introduced for joint design-time and post-silicon tuning optimization, but

with little attention on the overhead issue. Moreover, it assumes that gate size can be

continuously changed while most of modern designs are based on highly discrete cell

libraries. The objective of [18, 19] is to minimize the overhead of adaptive body biasing

(ABB). These works attempt to cluster gates with similar timing criticality and variability

and are very useful in deciding adaptivity granularity, but they assume ABB is applied to

all clusters. Another work [20] restricts variation sensors only at timing critical paths so

that the overhead is not excessively large. However, it does not consider control or voltage

generation overhead. Variability-aware discrete gate sizing is discussed in [21, 22]. These

works are focused on how to propagate statistical timing information during sizing without

much emphasis on the optimization aspect.

In this chapter, we develop a general algorithm framework for the optimization of

adaptive circuit design with the consideration of overhead control [1]. Since adaptivity

optimization is closely related with gate implementation selection (gate sizing and thresh-

old voltage assignment), we perform them jointly such that their efforts are concerted with

each other. Evidently, variations must be accounted and make the optimization problem

rather difficult. We make use of Lagrangian relaxation that solves a multi-objective prob-
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lem in two layers – subproblem and dual problem. The subproblem is focused on solution

search while the dual problem can employ variability-aware models to guide the tradeoff

among multiple objectives. As such, accurate models are used in a lightweight manner

without causing too long runtime. The main advantages of our approach includes the

following:

1. Compared to [17], which is restricted to linear and continuous models, our work is

a discrete approach and compatible with realistic models in industry.

2. Our work provides a relatively complete adaptivity assignment solution for general

adaptive circuit designs while the works of [18, 19] focus on clustering and ABB.

3. A new technique to solve the over-counting problem with less cost estimate error

is proposed in our work, without increasing the overall algorithm complexity.

4. Area overhead is explicitly handled in our work but neglected in [17]. Experimental

results on benchmark circuits confirm the effectiveness of our method.

2.2 Background

2.2.1 Timing Constraint and Gate Implementation

One target of the physical design of digital circuits is to derive the timing satisfied

circuit, which defines that all signals arriving at the primary inputs at time a should reach

the primary outputs no later than q, given the gate delay d of each cell. Since the timing

information is only given at the primary inputs and primary outputs, the satisfaction of the

whole circuit is guaranteed by the sufficient and necessary condition that all the arrival

times derived from a in Figure 2.1 (a) shouldn’t be later than the required arrival times

derived from q in Figure 2.1 (b) at every net within the circuit. Since the delay is fixed

when the circuit design is done, this analysis method is also named as the Static Timing

Analysis (STA).

Need to mention that, for the multi-fanin gate, signals might arrive at the input pins of
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Figure 2.1: Static timing analysis. (a) Arrival time analysis by forward traversal from
primary inputs; (b) Required time analysis by backward traversal from primary outputs.

vm at different times in Figure 2.1 (a). Here the latest arrival time at the output of this gate

is considered by am = maxi∈fanin(m)(ai+dm), which could make sure the timing analysis

work under the worst case signal propagation. Similar situation happens in Figure 2.1 (b)

for the gate vm due to its multiple fanouts. Still followed by the worst case guarantee

of signal propagation, the required arrival time at the input of this gate is obtained by

qm = minj∈fanout(m)(qj − dm). Therefore, the time slack defined by (q − a) at each point

in the circuit could be used as a variable to evaluate the gate implementation.

Gate implementation is a classic technique during the physical design of digital cir-

cuits. It determines the gate size and threshold voltage of each gate so as to minimize

the total power consumption of the circuit subject to the timing constraints. Under differ-

ent implementations of each gate size and threshold voltage, the delay information d of

7



an individual gate in Figure 2.1 will vary, and then affect the global timing status of the

circuit.

2.2.2 Adaptive Body Biasing

ABB technique is based on the Metal Oxide Semiconductor Field Effect Transistor

(MOSFET) body effect, which refers to the change in the transistor threshold voltage Vth.

An analytical equation (2.1) shows the dependence of Vth on the source-to-body bias VSB

as follow.

Vth = Vth0 + γ(
√
|VSB − 2φF | −

√
|2φF |), VSB = VS − VB (2.1)

where Vth0 is the threshold voltage with zero body bias (VSB = 0) and is achieved by

tying the substrate on the die to the source, e.g. power supply VDD (in case of PMOS) or

ground (in case of NMOS). φF and γ are the Fermi potential and the body effect parameter,

respectively.

The effect of Vth to the subthreshold leakage current Isubn and the gate delay d is further

revealed in [18]

Isubn = K1e
VGS−Vth
nνT

d =
K2

(VDD − Vth)α
(2.2)

where α is the velocity saturation index, νT is the thermal voltage and n is the subthreshold

swing coefficient. K1 and K2 are the factors related to the original subthreshold leakage

current and gate delay, respectively.

As for the total power model, we apply P = Pdyn + Pleakage, where Pdyn is the dy-

namic power, and Pleakage includes the leakage mechanisms affected by Vth, especially the

subthreshold leakage Psubn = VDDIsubn. For other leakage components, such as body-
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source/drain junction diode leakage, and band-to-band tunneling, we didn’t consider them

in our design, yet the optimization method introduced in Section 2.3 could be extended by

adding them to the target function.

Thus, by manipulating the body voltage VB, the adaptive circuit which consists the

delay sensor and voltage controller is able to adjust all the Vth of NMOS gates in the

dashed line rectangle of Figure 2.2, and then affects the leakage power and circuit delay

in that area. For example, a positive body voltage (VB > 0) will decrease the adjusted

threshold voltage Vth and result in a larger current Isubn and smaller transistor delay d

according to (2.2). This is called the Forward Body Biasing (FBB), while the similar

analysis can be applied to Reverse Body Biasing (RBB) if VB < 0. Need to mention that,

all the gates within the tuning range of the certain adaptive circuit will follow the same

body bias configuration. Therefore, in a FBB-only adaptive circuit, the tuning range is

usually applied to cover to the critical path.

 

 

 

Delay 
Sensor

n
+ p  n

+

VD
VGVB

Voltage 
Controller

�

Vout > 0

Vout < 0

Tuning Range

Figure 2.2: Adaptive circuit with the control of body biasing.
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2.2.3 Adaptivity Assignment Scheme

Regarded as the redundancy to the original circuit design, the adaptive circuit makes

the effectiveness as well as overhead highly dependent on its granularity. Besides, the

existing of adaptive circuit also affects the gate sizing and threshold voltage assignment

within its control range. Therefore, the adaptivity assignment scheme is highly related

with the conventional gate implementation selection.

(a) (b)

(c) (d)

Low 
Vt

Low 
Vt

Low 
Vt

High 
Vt

High 
Vt

High 
Vt

High 
Vt

High 
Vt

High 
Vt

AdaptivityAdaptivity Adaptivity

Adaptivity

Low 
Vt

Low 
Vt

High 
Vt

Adaptivity

Figure 2.3: Different adaptivity assignment schemes. (a) Over-design in gate implemen-
tation selection (gate sizing and Vth assignment); (b) Under-design and coarse-grained
adaptivity; (c) Under design and fine-grained adaptivity; (d) Collaborative gate implemen-
tation selection and fine-grained adaptivity. Reprinted from [1].

Without considering prospective adaptivity, gate implementation selection tends to re-

sult in over-design like in Figure 2.3 (a), which entails large power dissipation. An arbi-

trary anticipation of adaptivity may lead to under design in gate implementation selection.

If the under design is fixed by coarse-grained adaptivity like in Figure 2.3 (b), the power
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efficiency is still poor as the adaptivity power is applied according to the worst place in

a circuit. A fine-grained adaptivity like in Figure 2.3 (c) has a large area overhead for

compensating the under-design. In our proposed collaborative optimization, gate imple-

mentation and adaptivity help each other and thus may provide solution with both high

power-efficiency and low adaptivity overhead like in Figure 2.3 (d).

2.2.4 Lagrangian Relaxation

Lagrangian Relaxation is an efficient mathematical optimization framework used to

solve the optimization problems with tough constraints. For example, the optimization

problem could be formulated as follow

Minimize f(~x) (2.3)

s.t. g1(~x) 6 0, g2(~x) 6 0

~x ∈ X

where f(·) is the objective function related to decision variables x, which belong to the fi-

nite solution spaceX . g1(·) and g2(·) are the “hard to solve” and “easy to solve” inequality

constraints, respectively. By “hard to solve”, we actually mean the constraints similar to

(2.7) or (2.8) which are hardly to be solved in a linear time or denoted by a straightforward

analytical form.

The Lagrangian relaxation is achieved by multiplying the constraint violation with

weighting factors (Lagrangian multipliers), and then moving the weighted terms into the

objective function as penalties. For example, after the relaxation of g1(~x), the optimization

11



problem in (2.3) is converted as follow

Minimize L(~λ, ~x) := f(~x) + ~λ · g1(~x) (2.4)

s.t. g2(~x) 6 0, ~x ∈ X

where L(~λ, ~x) is named the Lagrangian function, and the vector of Lagrangian multipliers

~λ should be non-negative and have the same dimension as g1(~x). The relaxed problem in

(2.4), or namely Lagrangian subproblem, derives the fancy property of concavity since it

is the lower envelope of a finite linear functions of ~λ. Thus, it could be handled by the

well-studied convex optimization algorithms.

Moreover, if λ > 0 and g1(~x) 6 0, then it’s apparent that the objective function

L(~λ, ~x) = f(~x) + ~λ · g1(~x) in the relaxed problem (2.4) is less or equal to f(~x) in the

original problem (2.3). To minimize the gap, the dual problem is defined in (2.5). It could

be further proved that if ~λ∗ is the optimal solution of the dual problem, then the optimal

solution of L( ~λ∗, ~x) will also optimize the original problem.

Maximize L(~λ) := minL(~λ, ~x) (2.5)

s.t. ~λ > 0

2.2.5 Application in Gate Implementation Selection

To formulate the problem of gate sizing and threshold voltage assignment by apply-

ing Lagrangian relaxation, the circuit is first described as a directed acyclic graph (DAG)

G(V,E), where the vertexes set V includes all the gates, and each edge (vi, vj) of set E

represents the wire connection between gate vi and vj [23]. Besides, arrival times a at

the primary input gates I(G) and required arrival times q at the primary output gates of

G are also given. Then, the gate size wi and threshold voltage hi of each gate vi ∈ V is
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determined as

Minimize
∑

vi∈V p(vi) (2.6)

s.t. q(vi) > a(vi), ∀vi ∈ I(G) (2.7)

q(vi) > q(vj) +D(vj, vi), ∀(vj, vi) ∈ E (2.8)

wi ∈ Wi, hi ∈ Hi ∀vi ∈ V (2.9)

where p(vi) is the summation of dynamic and leakage power on gate vi, and D(vj, vi)

shows the delay from vj to vi. W and H are the discrete sets of gate size and threshold

voltage provided by the process technology library, respectively.

To solve this problem, the timing constraints are relaxed by multiplying the penalty of

Lagrangian multiplier ~λ and then integrated into the cost function [24]. The Lagrangian

function is given as

L(~λ, ~w,~h,~a, ~q) =
∑

vi∈V p(vi) +
∑

vi∈I(G) λi0(ai − qi)

+
∑

(vj ,vi)∈E λji(qj +D(vj, vi)− qi) (2.10)

The Lagrangian function in (2.10) is further simplified by the algebraic transformation

in [23], and thus becomes the LR subproblem in (2.11) given the multiplier ~λ. The La-

grangian dual problem in which the ~λ is determined to maximize the Function (2.5) could

be solved by the subgradient method and is elaborated in Section (2.5).

Minimize L(~λ, ~w,~h) =
∑

vi∈V p(vi) +
∑

(vj ,vi)∈E λjiD(vj, vi) (2.11)

s.t. wi ∈ Wi, hi ∈ Hi ∀vi ∈ V
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2.2.6 Process Variation Modeling

In order to deal with the performance variability during the circuit design, the sources

of the variations are analyzed and could be mainly classified into two types. The first one

is the inter-die variation which differs from die to die and keeps the identical variation

effect to all the gates’ parameters on a single die. e.g., the timing analysis on the data path

of the design manufactured through the same mask. The second type is intra-die variation

which affects the gates’ parameters on the same die differently, e.g., the metal width of

two inverters locating in different grids.

As for inter-die variation, it is relatively easy to handle with in a variation-aware circuit

design algorithm, due to its uniform feature across the entire chip. By contrast, the spatial

correlations need to be considered in the intra-die variation. For example, the the delay of

a single gate is modeled as [25]

d = d0 +
∑
i

∂d

∂pi
(pi − µpi) +N(0,Σ) (2.12)

where d0 is the nominal delay, and i is the index of the grid in the circuit. The pi denotes

a location-dependent random component whose mean value and gradient are equal to µpi

and ∂d
∂pi

, respectively.

Especially, the reason to use grid index i to represent the location-dependent random

component is that we assume all gates locate within the same grid will have identical

variation distributions. Therefore, it can conclude that there is only one random component

in one grid for each random component, or say the grid index i is one-to-one mapping to

the random component. As forN(0,Σ), it represents the normal distribution of the random

components, and Σ is the covariance matrix. For example in Figure 2.4, a chip die with

3row × 3col = 9 grids, will have a 9× 9 covariance matrix Σ.
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Figure 2.4: Chip die with 9 grids and its corresponding 9× 9 covariance matrix.

2.3 Problem Formulation

The input to our algorithm is a combinational logic circuit C, which has been clustered

into a set of blocks B = {B1, B2, ...} [18], timing constraints and adaptivity policy. An

adaptivity policy is to control circuit tuning according to results from variation sensors.

All gates in the same block follow the same adaptivity configuration. We assume that

adaptivities of blocks are independent of each other. If a block is assigned with adaptivity,

its tuning is based on its own sensors. This is often true in practice as people tend to avoid

high complexity unless it is very necessary. Our algorithm decides whether or not to assign

adaptivity to each block. Its objective and constraints include power, timing, robustness to

variations and adaptivity area overhead.

2.3.1 Overview of Algorithm Flow

In Figure 2.5, the overall algorithm iterates between gate implementation selection and

adaptivity assignment. The gate implementation selection part is handled by Lagrangian

relaxation. Its formulation is to minimize power dissipation subject to timing constraints

with consideration of variations. Area is not explicitly in the formulation as power and area

are correlated in gate sizing. A main reason to use LR here is the runtime cost of timing

analysis. For adaptive circuit optimization, variations must be considered and statistical
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static timing analysis (SSTA) is computationally expensive. By solving the problem in two

layers of Lagrangian subproblem and dual problem, the calls to SSTA can be restricted to

the dual problem part. Then, the subproblem can be solved using simple models while

the overall solution quality is not compromised due to the SSTA guidance in solving the

dual problem. The problem size of adaptivity assignment is significantly smaller and al-

lows SSTA to be called more frequently. Therefore, the adaptivity assignment is solved

by a sensitivity-based heuristic. In the adaptivity assignment, adaptivity area overhead is

explicitly treated as a constraint. The overall flow of our algorithm is shown in Figure 2.5.

The outer iteration between gate implementation selection and adaptivity assignment is

conducted for only a few times. More iterations are performed within the gate implemen-

tation selection part.

Gate implementation 
selection

Initialization

Lagrangian 

subproblem

Adaptivity assignment

Lagrangian 

dual problem

Timing analysis

Figure 2.5: Overview of the adaptivity-aware gate implementation selection algorithm
flow. Reprinted from [1].
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2.3.2 Variation-aware Gate Implementation

Gate implementation selection is to select size and threshold voltage for each gate in

a given circuit according to a cell library. Compared to previous works, our method must

be adaptivity-aware. That is, if a block is assigned with adaptivity, our implementation

selection must be performed with anticipation of performance-power changes due to the

adaptivity. Of course, our selection algorithm must take variations into account as well.

We make such sophisticated enhancement over a previous work of deterministic gate im-

plementation selection [24]. Moreover, we propose a new technique to avoid redundant

counting when candidate solutions are propagated in circuit traversals.

The input includes a combinational logic circuit represented by a directed acyclic

graph (DAG) G(V,E), where V is the set of gates and E is a set of edge connections.

For each gate vi ∈ V , we need to select an implementation ξ(vi), including size and

threshold voltage, from a given cell library. The circuit is partitioned into a set of blocks

B = {B1, B2, ...}. There is a binary parameter Φi ∈ {0, 1} to tell if block Bi is assigned

adaptivity. If a block is assigned adaptivity, all gates in the block are tuned uniformly ac-

cording to a given adaptivity policy. We use ϕ(Bi) ∈ {φ0, φ1, ..., φmax} to denote adaptive

tuning effort level. For example, φ0 means zero body bias and φmax indicates the maxi-

mum forward body bias. Then, the delay of a gate vi depends on both its implementation

and adaptivity, and is represented by dvi(ξi, ϕi). Of course, a gate delay is also affected

by its input slew and load capacitance. For the sake of brevity, we omit them in the nota-

tion. Similarly, the power dissipation, including dynamic and static power, of a gate vi is

denoted by wvi(ξi, ϕi).

When variations are considered, delay dvi(ξi, ϕi) becomes a random variable. We em-

ploy statistical static timing analysis (SSTA) [25] to capture the variability-aware timing

behavior with consideration of spatial correlations. If a block is assigned adaptivity, ac-
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cording to SSTA and the adaptivity policy, we can estimate the probability that a block is

at certain tuning level, i.e., P (ϕ(Bi) = φj). Then, we can obtain the expected power of a

gate as w̄vi(ξi) =
∑max

j=0 Pvi(φj) · wvi(ξi, φj). For timing, we only evaluate the case where

the maximal tuning effort level is applied if a block has adaptivity. There are two reasons.

First, we focus on design-time optimization and only search for a solution that can con-

form to timing constraints at runtime. If an adaptivity is assigned, an adaptivity policy can

always apply the maximal level to satisfy timing constraints based on our solutions. Sec-

ond, considering probability of tuning configurations on top of probability of variations

causes very high estimation complexity and risk of inaccuracy. Our algorithm accommo-

dates general delay, power and variation models, although the Elmore delay model is used

here and random variables are assumed to follow Gaussian distributions.

Here is the problem formulation for the gate implementation selection:

Min
∑

vi∈V w̄vi(ξi) (2.13)

s.t. au + du,v(~ξ, ϕu(Φu)) ≤ av,∀(u, v) ∈ E (2.14)

P (av ≤ Qv) ≥ Υ,∀v ∈ PO(V ) (2.15)

ϕu(Φu) =

 φmax if Φu = 1

φ0 if Φu = 0
(2.16)

where P (.) indicates probability, au is the arrival time at gate u, ~ξ represents the gate

implementation selections for all gates, Qv is the required arrival time, Υ is the constraint

for timing yield and PO(V ) means primary output gates. If the probability distribution is

Gaussian, the probability percentile constraint can be easily represented in terms of mean

and standard deviation σ. For example, Υ = 99.7% requires the mean plus 3σ delay

satisfies the required arrival time constraint.
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2.3.3 Variation-aware Lagrangian Relaxation

This problem is transformed by Lagrangian relaxation [23] to minimize the following

Lagrangian function.

L~λ(~ξ) =
∑
vi∈V

w̄vi(ξi) +
∑

(u,v)∈E

λu,v(au + d̃u,v(~ξ, ϕu(Φu))− av) (2.17)

where ~λ is the vector of Lagrangian multipliers and d̃ indicates the mean plus certain σ

delay. This is the so-called Lagrangian subproblem. The problem of finding the ~λ to

maximize the optimal solution to the subproblem is the Lagrangian dual problem. Like

in [23, 24], we solve the Lagrangian dual problem using subgradient method guided by

SSTA. By doing so, the Lagrangian subproblem is allowed to use simple and less accurate

timing and variability models.

By applying the Kuhn-Tucker conditions [23], the subproblem can be further reduced

to minimize:

L~µ(~ξ) =
∑
vi∈V

w̄vi(ξi) +
∑

(u,v)∈E

µu,vd̃u,v(~ξ, ϕu(Φu)) (2.18)

where ~µ is a simple function of ~λ [23]. We solve the reduced subproblem L~µ(~ξ) by

Joint Relaxation and Restriction (JRR) [24]. JRR is a dynamic programming-like solu-

tion search. It iteratively propagates candidate solutions in reverse topological order and

topological order traversals ofG. Such propagation of multiple solutions on a DAG is very

challenging as history conflict may happen for solution merging at reconvergence nodes.

The work of [24] relaxes the constraint of history consistency in the first reverse topolog-

ical order search and restores the consistency in subsequent topological order search. In

later iterations, additional restrictions are applied so that history conflict no longer occurs.
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2.4 Subproblem Solution

For the sake of clarity, only the gate size w is the solution for each gate in the circuit

and the threshold voltage h is omitted. To find out the best solutions for all gates, the

algorithm first performs a backward search from the primary output to the primary input,

and then traces back from the primary input to the primary output.

2.4.1 Backward Search with Inferior Pruning

�� ��

�� ��
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BA
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w2=A or B

w5=A or Bw3=A or B

w1=A or B

AA BA
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�

�

A BA

A BB

BA

�

1st process direction

Figure 2.6: Backward topological traverse with inferior pruning.

In Figure 2.6, to find out the w selection for each cell, which has only two options A

and B, we starts from the primary output, e.g. v4. Then, all the solution combinations

are evaluated among the fanin cells of v4 as well as their fanout cones. e.g., v2 and v4 are

evaluated together, and totally four combinations are generated. After the inferior pruning,

one of the four solutions is preserved as (w2 = A, w4 = A). Similar process is used to v3
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and v5. Thus another four combinations are generated, and still only one solution (w3 = B,

w5 = B) is assumed to be kept. Next, when either v2 or v3 is under the calculation, v1, v2

and v3 are evaluated together, since v1 is the common fanin cell for v2 and v3. Therefore,

the combinations at v1 are derived, and the one with the minimal cost function and no

timing violation is selected as the best solution.

Obviously, without the inferior pruning method, the reverse topological traverse in

Figure 2.6 suffers from the exponential solutions at the fanin gate with the increase of

circuit hierarchy. Therefore, inferior pruning at the fanin gate is necessary to reduce the

process time and storing space. Proved in [24], for a specific size wi of any gate vi, at most

one non-inferior solution at vi can be preserved after pruning. This property is justified by

the fact that, each solution of a cell v could be represented by the pair of capacitance c and

required arrival time q, and then only the solution with the maximum q is not pruned out.
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Figure 2.7: Forward topological traverse with solution back trace.
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After that, since each solution at v1 keeps all the historical information, a forward

tracking is available in Figure 2.7, and all the solutions for the gates from v1 till the primary

outputs could be determined.

2.4.2 Solution Inconsistence and Forward Restoration

The backward search with inferior pruning works well until it comes to a problem

when reconvergence path exists, i.e., the multi-fanin gate. For example in Figure 2.8,

suppose after the backward search, the best solution w1 is get at the primary input v1,

and the forward tracking determines the solutions of v2 and v3 as w2 = A and w3 = B,

respectively. However, it fails to tell the w of v4, since the best solutions for v2 and v3 are

based on different w of v4 in the reverse topological traverse.
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Figure 2.8: Forward topological traverse with solution inconsistence.

A restoration method is applied to solved the solution inconsistence during the forward

tracking in Figure 2.9. For the multi-fanin gate v4, instead of simply applied the solutions
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inherited from its different fanin cells v2 and v3, we derive v4’s solution w4 by a further

calculation based on the best solutions w2 = A and w3 = B for fanin gates v2 and v3,

respectively. By this way, the w solution for v4 is determined as the one that leads to the

minimal cost, and the solution inconsistence is solved.
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Figure 2.9: Forward topological traverse with solution restoration.

2.4.3 Iterative Refinement

Need to mention that, once the best solution of v4 is achieved after the forward restora-

tion, the best solutions for the gates v2 and v3 in Figure 2.9 may mismatch with those in

the backward search, since they are based on different solution of v4. In Figure 2.10, this

disadvantage could be alleviated by performing the 3rd round of backward search during

which the solutions are fixed for all the multi-fanin gates. Similarly, the 4th round forward

restoration is also needed since the best solutions of v2 and v3 are likely changed, and v4 is
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affected so on so forth. This iterative refinement [24] is performed until the solutions are

converged or the iteration limit is reached.
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Figure 2.10: Backward topological traverse followed by iterative refinement.

2.4.4 Solution for Redundant Counting

The candidate solution propagations on a DAG faces another problem. That is, a cost

may be over-counted repeatedly. For example, let us consider the propagation of cost L

on a simple DAG in Figure 2.11 (a) in reverse topological order. The L here corresponds

to the L~µ to be minimized in the reduced Lagrangian subproblem. Cost Ld at node d is

propagated to both node b and c. When solutions from b and c are merged at node a, Ld

is counted twice. In some cases, the count may happen more than twice. This problem is

noticed more than two decades ago in works on technology mapping [26]. It was solved

by splitting the cost at multi-fanin nodes like Figure 2.11 (b). This cost splitting can
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avoid the redundant counting. However, some cost estimate, like those at node b and c in

Figure 2.11 (b), may see significant error and result in solution quality loss.

a
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d

La+Lb+Lc+2Ld

Lb+Ld

Lc+Ld

Ld
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c

d

La+Lb+Lc+Ld

Lb+Ld/2

Lc+Ld/2

Ld

a

b

c

d

La+Lb+Lc+Ld

Lb+Ld

Lc

Ld

(a) (b) (c)

Figure 2.11: Backward topological order solution propagation on DAG. (a) Cost Ld is
double-counted at node a. (b) Conventional approach to avoid double counting. (c) Prop-
agation only on spanning tree (in solid edges). Reprinted from [1].

We propose a new technique to solve the over-counting problem with less cost esti-

mate error. This technique is also simple to implement and does not increase the overall

algorithm complexity. It consists of the following key steps.

1. Construction of spanning tree. Before the solution search, we perform a depth first

search (DFS) on G. During the DFS, when the target node of an edge has already

been visited, this edge is added into set E. After the DFS, by removing E from G,

we obtain a normal spanning tree T , whose edges are solid in Figure 2.11 (c).

2. Cost propagated on T . Cost LT is propagated only along edges in T so that no

double counting can happen. This is illustrated in Figure 2.11 (c).

3. Cost for pruning. Another cost Lp is maintained for solution pruning at each node.

For a single-fanout node, like b and c in Figure 2.11, its Lp is the sum of its local

cost and fanout node Lp cost. For example, Lp at node c is Lc + Ld. At a multi-
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fanout node, its Lp is the sum of its local cost and its fanout LT cost. For example,

the Lp at node a is La+ Lb+ Lc+ Ld.

The purpose of LT is to avoid the double counting while Lp is to reduce under-estimate

due to the removal of E. For example, Ld needs to be counted for the pruning at node c

even though edge (c, d) is not in T .

2.5 Dual Problem Solution

As formulated in Equation (2.11), L(~λ) := minL(~λ, ~w,~h) features the concavity over

~λ > 0. Therefore, in order to maximize L(~λ), the steepest descent algorithm is reasonable

to come up with. However, considering that the L(~λ) is not differentiable in the general

case, we apply the subgradient based algorithm, which updates the ~λ iteratively following

the direction of subgradient.

The pseudo code is given by Algorithm 1, which could be divided into two parts, the

update of Lagrangian multipliers and the satisfaction to KKT condition. In Steps 1-16,

all the edges are evaluated, and each edge e(u, v) denoted by the source gate u and the

target gate v is corresponding to one Lagrangian multiplier λe(u, v). The update function

of λe(u, v) is given by

λe(u,v) :=


λe(u,v) + ρ(au −Qu), if v ∈ PO(V )

λe(u,v) + ρ(au +Dv − av), if v /∈ PO(V ) && u /∈ PI(V )

λe(u,v) + ρ(Dv − av), if u ∈ PI(V )

(2.19)

according to [23], where PO(V ) and PI(V ) represent the primary output gates and pri-

mary input gates, respectively. ρ is the step size. The nonnegativity of Lagrangian multi-

pliers λe(u, v) is guaranteed by Steps 13-15. Steps 17-28 are used to adjust the λe(u, v) in

order to satisfy the KKT condition [23] that
∑

eo∈output(u) λeo =
∑

ei∈input(u) λei ,∀u ∈ V .
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Input : Combinational circuit G(V,E), cell library L, gate size w and threshold
voltage h solution for each u, v ∈ V , and the timing info ~a at each net as
well as the ~Q at the primary output of G

Output: ~λ for each timing constraint

1 for each e(u, v) ∈ E do
2 if u.type = Primary_Input then
3 au ← 0;
4 else
5 au ← u.a;
6 end
7 if v.type = Primary_Output then
8 av ← Qv; dv ← 0;
9 else

10 av ← v.a; dv ← v.R(wv, hv)×
∑

m∈fanout(v)(m.C(wm, hm));
11 end
12 λe(u,v) ← λe(u,v) + step_size× (au + dv − av);
13 if λe(u,v) < 0 then
14 λe(u,v) ← 0;
15 end
16 end
17 for each u ∈ V do
18 λout ← 0; λin ← 0;
19 for each eo ∈ out_edge(u) do
20 λout ← λout + λeo;
21 end
22 for each ei ∈ in_edge(u) do
23 λin ← λin + λei;
24 end
25 for each ei ∈ in_edge(u) do
26 λei ← λei × (λout/λin);
27 end
28 end
29 return ~λ;

Algorithm 1: Subgradient-based approach for updating Lagrangian multipliers.
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2.6 Experiment Results

In order to evaluate the effectiveness of our algorithm, we attempt to compare it with

other approaches in experiments. To the best of our knowledge, there is no previous work

on joint gate implementation selection and adaptivity assignment with consideration of

overhead control. Therefore, we compare with the following approaches.

1. Baseline. Variability-aware gate implementation selection without adaptivity. This

is to emulate conventional non-adaptive designs.

2. Naïve adaptivity assignment. If only forward body bias (FBB) is considered, adap-

tivity is assigned to any block that has negative slack in terms of mean plus certain

σ value. This is to emulate what designers may do for adaptive circuit design with-

out adaptivity optimization tools. In ABB where both FBB and reverse body bias

are allowed, the naïve method simply assigns adaptivity for all blocks. Actually,

this is the approach of [18].

In the experiments, gates are modeled by RC switches and the Elmore delay model is

employed. We extend a previous SSTA work [25] to perform timing analysis and estimate

timing yield as well as variability-aware delay d̃u,v(~ξ, ϕu(Φu)). We consider gate length

variations with standard deviation σ being 5% of nominal value, and gate width variations

with σ of 2.7% of nominal width. We use adaptive body bias (ABB) [8, 18] as adaptivity.

The power model, including dynamic and leakage power, and impact of ABB on delay

and power are based on [18]. The adaptivity area overhead includes two parts. Per-gate

overhead due to manufacturing process requirement is derived from [18]. Per-block over-

head due to sensor and tuning circuits is estimated according to [8]. The experiments

are performed on ISCAS85 and ISPD13 [27] benchmark circuits. The largest circuit in

the ISPD13 suite has about 150K gates. All methods are implemented with C/C++ and

the experiments are performed on AMD Opteron processor with 2.2GHz frequency and
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Table 2.1: Experimental results of Naïve method with only forward body bias (FBB). Total
area overhead and power overhead are denoted by ∆A and ∆W , respectively. Reprinted
from [1].

Baseline Naïve
Circuit #gates |B| Yield Yield ∆A ∆W CPU (s)
c432 171 4 94.9% 99.3% 707 6564 1
c499 218 5 91.6% 97.7% 1433 10975 1
c880 383 5 96.3% 98.9% 809 5123 1
c1355 562 4 88.8% 99.9% 1587 26442 2
c1908 972 6 75.9% 99.9% 1380 19049 4
c2670 1287 5 94.6% 98.2% 947 6156 5
c3540 1705 5 73.6% 99.9% 1759 21952 8
c5315 2351 6 90.9% 99.8% 2602 29364 10
c6288 2416 6 93.9% 99.9% 1931 50323 11
c7552 3625 5 41.8% 99.9% 3291 42878 18

fft 32281 20 81.2% 99.1% 15742 194576 310
cordic 41601 20 73.9% 99.5% 22618 443511 493

des_perf 112644 22 83.5% 99.2% 43608 204159 750
matrix_mult 155325 20 44.0% 99.1% 78028 1382050 1378

Average 80.4% 99.3% 12603 174509 214

Linux operating system. The gate implementation selection for each method is performed

with 14 iterations, i.e., Lagrangian multipliers are updated 14 times. The best solution in

terms of problem formulation is selected. In our collaborative optimization approach, the

iteration between gate implementation selection and adaptivity assignment is conducted

twice.

The first two experiments are to evaluate the effectiveness of our approach for forward

body bias (FBB)-only and ABB, which allows both forward and reverse body bias (RBB).

Relatively tight timing constraints are applied to FBB cases as FBB is mostly for timing

improvement. The ABB cases have relatively loose timing constraints to see the effect of

RBB on leakage power reduction. The results are shown in Table 2.1 and 2.3. In both

tables, the number of gates and blocks of each circuit are displayed in the second and
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Table 2.2: Experimental results of our method with only forward body bias (FBB). Gate
area, total area and power overhead are denoted by ∆Ag, ∆A, and ∆W , respectively.
Reprinted from [1].

Baseline Ours
Circuit #gates |B| Yield Yield ∆Ag ∆A ∆W CPU (s)
c432 171 4 94.9% 99.9% 7% 323 2524 1
c499 218 5 91.6% 99.9% -26% 355 3688 3
c880 383 5 96.3% 99.3% 14% 504 1790 3
c1355 562 4 88.8% 99.4% -17% 388 12922 5
c1908 972 6 75.9% 99.8% -5% 762 9162 9
c2670 1287 5 94.6% 99.1% -7% 176 544 12
c3540 1705 5 73.6% 99.6% -13% 603 13924 16
c5315 2351 6 90.9% 99.2% 0% 293 3350 24
c6288 2416 6 93.9% 98.9% 4% 1248 10549 24
c7552 3625 5 41.8% 99.9% -16% 404 20053 40

fft 32281 20 81.2% 99.2% 0% 10376 32167 759
cordic 41601 20 73.9% 99.1% 0% 9590 146446 1141

des_perf 112644 22 83.5% 99.4% 0% 15060 5726 1795
matrix_mult 155325 20 44.0% 99.0% -15% -47184 -200650 3193

Average 80.4% 99.4% -5.23% -558 4443 502
% difference vs. naïve = (ours-naïve)/ |naïve| -104.4% -97.5%

third column. The fourth column is for timing yield of the baseline, where no adaptivity is

applied. Columns 5-8 provide results from the naïve method and the rightmost 5 columns

are the results from our method. For each method, we examine the power overhead ∆W

and total area overhead ∆A in addition to timing yield and CPU runtime. For our method,

we also show the gate area overhead ∆Ag. All overheads are with respect to the baseline

results. Second to the last row in each table provides the average results and the last row

tells the percentage difference of our method versus the naïve approach. In both tables, the

top 10 cases are from ISCAS85 benchmark and the last 4 are ISPD13 cases.

For the cases of FBB, our methods can reduce power and area overhead by around

100% compared with the naïve approach. Due to the collaboration between gate imple-

mentation selection and adaptivity assignment, our method often reduces gate area from
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Table 2.3: Experimental results of Naïve method with forward body bias and reverse body
bias (ABB). Total area and power overhead are denoted by ∆A and ∆W , respectively.
Reprinted from [1].

Baseline Naïve
Circuit #gates |B| Yield Yield ∆A ∆W CPU (s)
c432 171 4 99.7% 99.5% 689 1857 1
c499 218 5 99.9% 99.9% 1358 664 1
c880 383 5 99.9% 99.6% 921 1452 1
c1355 562 4 99.8% 99.1% 1354 271 2
c1908 972 6 99.5% 99.2% 1550 2623 4
c2670 1287 5 99.9% 99.9% 1543 -435 5
c3540 1705 5 99.9% 99.7% 1821 -1481 7
c5315 2351 6 99.9% 99.9% 2668 -3949 10
c6288 2416 6 99.9% 99.9% 2175 -8302 11
c7552 3625 5 99.9% 99.9% 3103 -3307 17

fft 32281 20 99.8% 99.7% 41061 -137438 297
cordic 41601 20 99.5% 99.3% 43106 -160335 488

des_perf 112644 22 99.4% 99.4% 67013 -204797 734
matrix_mult 155325 20 99.0% 99.3% 90859 -287264 1336

Average 99.7% 99.6% 18516 -57174 209

the baseline. Of course, both methods can largely fix the timing problem from the base-

line. In the ABB cases, our method causes 85% less area overhead than the naïve method.

It has 42% less power savings than the naïve method, but the power savings compared to

the baseline is still significant.

The third experiment is to investigate the power/area versus timing tradeoff of our

approach. The result from ISCAS85 circuit C7552 is plotted in Figure 2.12. We relax

the required arrival time on the primary outputs of C7552, and then observe the area and

power resulted from our algorithm. The result shows that both the area and power increase

with increasingly tight timing constraint as expected.

In the last experiment, we investigate the impact of adaptivity granularity. That is, we

vary the number of adaptivity blocks |B| of ISPD13 circuit fft and examine the effect on
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Table 2.4: Experimental results of our method with forward body bias and reverse body
bias (ABB). Gate area, total area and power overhead are denoted by ∆Ag, ∆A and ∆W ,
respectively. Reprinted from [1].

Baseline Ours
Circuit #gates |B| Yield Yield ∆Ag ∆A ∆W CPU (s)
c432 171 4 99.7% 99.3% 0% 0 0 2
c499 218 5 99.9% 99.1% 0% 0 0 3
c880 383 5 99.9% 99.0% -3% -43 -71 3
c1355 562 4 99.8% 99.1% 0% 0 0 5
c1908 972 6 99.5% 99.1% 0% 0 0 9
c2670 1287 5 99.9% 99.7% 0% 458 -562 12
c3540 1705 5 99.9% 99.5% -2% 522 -1378 16
c5315 2351 6 99.9% 99.8% 0% 0 0 24
c6288 2416 6 99.9% 99.9% -29% -1595 -7791 25
c7552 3625 5 99.9% 99.9% -9% 925 -6316 40

fft 32281 20 99.8% 99.5% 0% 22368 -91955 824
cordic 41601 20 99.5% 99.3% -7% -1050 -63189 1121

des_perf 112644 22 99.4% 99.3% 0% 19979 -79359 1805
matrix_mult 155325 20 99.0% 99.3% -9% -2734 -213180 3203

Average 99.7% 99.4% -4.2% 2774 -33129 507
% difference vs. naïve = (ours-naïve)/ |naïve| -85.0% 42.1%

power and area overhead. The results from our method are plotted in Figure 2.13. A small

(large) number of blocks means coarse-grained (fine-grained) granularity. One can see that

the power/area overhead is high when the granularity is too coarse or too fine. When the

granularity is too coarse, each block is relatively large and must involve nodes of different

timing behaviors. The adaptive tuning in this case must be targeted toward the worst case

gates and unnecessary power and area overhead are paid on non-critical gates. When the

adaptivity is too fine-grained, the per-block overhead due to sensors, control and tuning

circuits becomes very large. Therefore, there is sweet spot for adaptivity granularity.
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Figure 2.12: Power/area-timing tradeoff for circuit c7552. Reprinted from [1].

Figure 2.13: Power/area vs. granularity for circuit fft. Reprinted from [1].
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3. BUILT-IN SELF OPTIMIZATION FOR VARIATION RESILIENCE

OF ANALOG FILTERS*

3.1 Introduction

Nowadays, analog integrated circuit (IC) design continues to be a great challenge. Dif-

ferent from the streamlined digital design using standard cells and automatic tools, analog

IC design still relies on hand calculation, SPICE simulation, and designers’ personal ex-

periences. In order to improve the efficiency of analog design, automatic optimization

methods have been explored. For example, [28] studied analog circuit sizing, which can

changes the dimension of transistors, capacitors or resistors. However, as the IC process

technology scales down into deep submicron regime, manufacturing process variations

become pronounced and often result in remarkable performance deviation from specifi-

cations. Moreover, device aging [29], such as bias temperature instability (BTI) and hot

carrier injection (HCI), causes additional characteristic changes over time. Circuit opti-

mization techniques have attempted to address these issues [30, 31]. However, design-

time optimization implies a uniform solution, which is difficult to achieve for all different

variation cases.

To address the individual process variations, [32] studied post-silicon tuning tech-

niques where circuits are designed with a certain configuration, which is performed at

manufacturing testing. Each chip instance is tested and tuned by test equipment to com-

pensate for its own variations. As testing is performed only once before chips are inte-

grated into their systems, such tuning is not adequate for tackling aging effects that change

over time. An alternative approach is self-tuning, which can be performed at any time in

product life. One such approach [33] is self-tuning in communication circuits where the

*Reprinted from "Built-In Self Optimization for Variation Resilience of Analog Filters", by Jiafan
Wang, Congyin Shi, Edgar Sánchez-Sinencio, Jiang Hu, c©2015 IEEE.
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configuration search is undertaken by the baseband digital signal processor (DSP). Evi-

dently, the dependence on a DSP restricts applications of this technique. A built-in self

tuning technique for A/D converter design is described in [34]. The tuning objective func-

tion is a parasitic mismatch, which is relatively simple compared to the overall analog

system performance, such as gain, linearity, phase margin, etc. A recent work [35] at-

tempts to achieve a built-in self tuning of general analog circuit performance. The tuning

is controlled by a neural network circuit, whose training needs external assistance.

In this work, we explore a general framework of build-in self optimization for variation

resilience of analog ICs. By “optimization” instead of “tuning”, our framework contains a

digital circuit that implements an optimization algorithm rather than simple if-then rules.

This is a powerful approach that can handle cases where both performance function and

variation-performance relation are complicated. The study platform here is band-pass fil-

ter, which is a common analog module existing in many analog IC designs. The filter is

designed with configurable parasitics, such as capacitors and resistors. We define a cost

function that can capture the mismatch of its frequency response from the specification.

The configuration search is realized by a simulated annealing (SA) based approach. Both

the cost function and the SA-based configuration search are implemented by digital cir-

cuits. As transistor feature size keeps shrinking, more silicon estates become available to

support these digital self optimization circuits. Even so, we still strive hard to minimize

circuit overhead. The effectiveness of conventional SA is hampered by the limited area

budget. To this end, we devise algorithmic techniques that significantly improve search

quality. Since the digital optimizer circuit is invoked occasionally, it can be power gated

to minimize its power overhead. The main advantages of our approach includes the fol-

lowing:

1. It does not require the test equipment, host processor or training, and is therefore a

truly autonomous approach.
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2. It captures compounding variation effects without relying on any models but very

limited historical information.

3. It is flexible when used in different kinds of analog circuits with only change of the

cost function.

3.2 Background

3.2.1 System Architecture

An overview of the proposed built-in self optimization architecture is depicted in Fig-

ure 3.1. It consists of an on-chip analog test bench and a digital optimization circuit. In the

analog part, a stimulus generator produces a clock signal and a sinusoidal waveform, both

of which have the same frequency. The sinusoidal waveform is fed into the circuit-under-

test (CUT) and stimulates the CUT to generate an output. A multiplier, which adopts

the self-mixing technique in [36], and an analog-to-digital converter (ADC) are employed

for measuring the output response. In addition, the measurement path can be selected by

an input/output selector. Moreover, coherent detection is used, and an I/Q selector can

shift the multiplier’s clock by 0 or 90 degrees. I/Q data, which is related to the signal

modulation in communication systems, can be retrieved by the ADC, indicating the phase

and amplitude changes of the input and the output waveform. Later, the amplitude of the

waveform is calculated by the digital part. Compared to the pure analog approach in [36],

the digital approach reduces the complexity of the analog parts and is more scalable for

advanced IC technologies.

The analog and digital circuits cooperate in a closed loop to perform the self optimiza-

tion procedure. Based on the CUT’s output responses measured by the ADC, a main part

of the digital circuit computes the cost function f(~x), which is to be minimized by the

optimization. The value of the cost function depends on a vector of CUT configuration

variables, ~x, whose values are to be decided by the optimization engine. We developed a
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Figure 3.1: Overview of the proposed built-in self optimization system architecture.
Reprinted from [2].

digital circuit optimizer based on a hybrid multi-start meta-heuristic. The optimization is

an iterative procedure where various configurations of ~x are applied to CUT till the one

that minimizes f(~x) is found or the limit to iterations is reached. Apart from the cost

function and the core optimization engine, a control logic is needed to coordinate the tim-

ing of the entire system. In the proposed approach, the optimization engine is generic for

almost any type of analog circuits, while the cost function circuit needs be customized for

different analog circuits.

3.2.2 Programmable Bandpass Filter

The second order band-pass filter (BPF) is chosen as the analog circuit platform for

our study, because it is a very common module in many analog circuit systems, and its

performance description as well as its relation with variations are not straightforward. The

schematic of a fully programmable Tow-thomas active-RC band-pass filter (BPF) biquad

is illustrated in Figure 3.2. All the resistors and capacitors are digitally controlled arrays.
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In this design, a 5-bit resistor bank and a 3-bit (k = 3) capacitor bank are implemented.

From Figure 3.2, we derive the transfer function of the whole BPF, assuming the amplifiers

are ideal.
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Figure 3.2: Second-order band-pass filter and the configurable resistance/capacitor array
structure. Reprinted from [2].
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and

GBPF = −RQ

RK

, ω0 = 1√
R1R2C1C2

, Q =

√
R2
QC1

R1R2C2

where GBPF is the gain, ω0 is the central angular frequency, and Q is the quality factor of

the BPF. Particularly, if we set RQ = RK = Rx1 , R1 = R2 = Rx2 , and C1 = C2 = C;

then, we theoretically have GBPF = −1, ω0 = 1/
√
Rx1C, and Q = Rx1/Rx2 . Here, Rx1

and Rx2 are chosen as the “tuning knobs" of the BPF, which can control the shape of the

frequency response. In our design, they’re digitally controlled resistor arrays with 5-bit

control words; thus, later integer numbers x1 and x2 will be used to present the control

words instead of the resistance values. Additionally, a fixed C is selected to reduce the

number of dimensions for the optimization problem, because x1 is sufficient to control the

BPF central frequency.

3.2.3 Non-ideal Effects

Ideally, the frequency response of a BPF is well defined by (3.1), and deterministically

depends on the resistor and capacitor values, which can be properly chosen at design time.

But unfortunately, non-idealities in the IC chips will introduce more complexity. Firstly,

the amplifiers are not ideal. They have limited gains, limited output impedance and their

own frequency responses, which are usually low-pass. The frequency response of the

amplifiers are annotated as A1(s) and A2(s) in Figure 3.2, which should be inserted into

(3.1). But even worse is that A1(s) and A2(s) will change due to the aging effects of the

MOSFETs in the amplifiers [29]. Moreover, as illustrated in Figure 3.2, MOS switches

MR in the resistor bank and MC in the capacitor bank introduce ON resistance in series

with the resistor and capacitor separately. The parasitic capacitance in these switches also

need to be considered. Nevertheless, the most important thing is the process variation.
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On the one hand, the transistors are affected by the variations. Simulation reveals 6.4%

deviation on the bandwidth of the amplifiers, and 2.7% deviation on the amplifiers’ DC

gain among chips. However, feedback loop technique is used in the BPF design and,

thus, the circuit is robust against variations of MOSFETs. But on the other hand, the

standard deviation of the absolute resistance value is about 8% of the model parameter,

and it is 3.5% for the capacitance value. These are the main error sources for an on-chip

BPF. In other words, deterministic resistor/capacitor values, i.e., fixed x1 and x2 values,

provide little assurance for the desired frequency response. Therefore, a self optimization

mechanism, which finds a proper set of component values and can operate for individual

chip instances, is necessary.

The effect of variations, compounded with non-ideal conditions, can be quite com-

plex. It may distort the frequency responses in various ways such as deviating the gain

at the central frequency, shifting the central frequency, changing the bandwidth. More-

over, the Q-factor may be affected as well. It is very difficult, if not impossible, to find

analytical functions to describe how the performance deviation depends on the variations.

This is why we take a model-free multi-start meta-heuristic optimization approach, in this

framework.

3.3 Cost Function Design and Implementation

3.3.1 Optimization Cost Function

In general, optimization is a procedure to find values for a set of decision variables ~x

such that certain objective function Φ(~x), which is also called a cost function, is minimized

subject to certain constraints. The definition of the cost function plays a fundamental role

in guiding the optimization solution search. For an analog circuit system, we wish the

actual circuit characteristics to match well with the specifications. Hence, a general tem-

plate of cost function is the mismatch between the actual characteristics and corresponding
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specifications, and can be described by

Φ(~x) = ‖β1φ1(~x), β2φ2(~x), . . . , βnφn(~x)‖2 (3.2)

φi(~x) = gi(~x)− αiGi, i = 1, 2, · · · , n

where φi(~x) indicates the mismatch between the actual characteristic gi(~x) and the corre-

sponding specification Gi, and i is the index for the total n measurements. αi and βi are

constant weighting factors.

For the BPF design described in Section 3.2.2, the decision variables ~x determine the

resistor configuration. Frequency response is a main performance metric for the BPF.

According to the transfer function (3.1). The highest gain gs2 should be obtained at the

central frequency s2. 3dB gain degradation is expected at the two bandwidth frequencies,

s1 and s4, and we have s1 < s2 = s3 < s4. Thus, the cost function for the BPF is defined

to be the mismatch of gains gs1 , gs2 , gs3 and gs4 .

Instead of directly implementing the cost function as in (3.2), we make a couple of

changes in order to limit the circuit implementation overhead. First, the L2-norm ‖ · ‖2 is

replaced by |·| so as to reduce the circuit complexity. Second, our cost function focuses on

the normalized frequency response curve, where only the central frequency location and

the gain drops at s1 and s4 matter. In fact, we just enforce based on the gain at s2 being

3dB greater than those at s1 and s4. The vertical offset of the response curve can be easily

handled, and we merely include a penalty term in the cost function to make the measured

gain at s2 to be greater than 1. Therefore, the cost function for the BPF is defined as
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ΦBPF (~x) = β1

∣∣∣∣A(s2)out
A(s2)in

− α1
A(s1)out
A(s1)in

∣∣∣∣
+β2

∣∣∣∣A(s3)out
A(s3)in

− α2
A(s4)out
A(s4)in

∣∣∣∣
+β3

∣∣∣∣A(s1)out
A(s1)in

− α3
A(s4)out
A(s4)in

∣∣∣∣
+β4

∣∣∣∣A(s2)out
A(s2)in

− α4
A(s3)out
A(s3)in

∣∣∣∣+ P (3.3)

where A(si)out and A(si)in are the signal amplitudes at the ith frequency point for the

output and the input, respectively. The ratio A(si)out/A(si)in is the measured gain gsi(~x)

at frequency si. The last term, P , in the right-hand side of (3.3) is the penalty function,

which deals with any violation to the constraint that the gain at s2 must be no less than

1. This is an effective technique in the optimization theory to simplify the constrained

problem into an unconstrained one. Especially, it is described by

P =


0 if A(s2)out

A(s2)in
> 1,

1− A(s2)out
A(s2)in

otherwise.
(3.4)

The constant coefficients in (3.3) are decided as follows. We set α1 = α2 =
√

2

and α3 = α4 = 1 such that the gains at s1 and s4 are the same and both have 3dB drop

compared to the gain at s2. We set {β1, β2, β3, β4} = {1, 1, 1, 1} for our case of BPF.

3.3.2 Circuit Implementation

To implement the cost function equation in (3.3), Figure 3.3 illustrates the complete

circuit diagram with an area-saving manner. Generally, the dashed and light-shaded rect-

angle, or namely gain module g(·), transforms the measured I/Q data into the amplitude

A(si) and then calculates the frequency gain gsi by A(si)out/A(si)in at frequency point si.
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Finally, the summation circuit belove g(·) generates Φ(~x) and forwards it to the optimiza-

tion engine introduced in Section 3.4.

������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������

I(si)out

I(si)in

Reg3

Square Root

Reg0

Reg2
Reg1

Reg7

Reg4

Reg6
Reg5

Division

Q(si)out

Q(si)in

gs1 gs2 gs3 gs4

Mux41

Multiplication

Mux21 Mux21 Mux41

Reg8

Sum

+/-

Mux41

�1 �2 �3 �4

Mux41

�1 �2 �3 �4

Mux21

�(x)-

A(si)out A(si)in
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Figure 3.3: Cost function circuit diagram. Each gray rectangle is an arithmetic block, and
each white rectangle is a register. “Reg” implies the resistor, while “Mux21” and “Mux41”
represent the 2-to-1 and 4-to-1 multiplexers, respectively.

To be specific, during the transformation of g(·) in Figure 3.3, data of I(si)out and

Q(si)out is first stored in “Reg0” and “Reg2”, respectively. Then they are delivered to the

“Square Root” process. Later, the derivedA(si)out updates “Reg0” and thus needs no extra

register. Similar process will be applied to “Reg1” and “Reg3”. After they keep the input

data of I(si)in and Q(si)in, respectively, “Reg1” will be updated with A(si)in created by

the “Square Root” process. Finally, A(si)out and A(si)in are provided to the “Division”

process, and the gain gsi is obtained.
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Notice that, the transformation of g(·) in Figure 3.3 could be regarded as the function

of frequency point si. Therefore, to get another gain gsj , we first save gsi 6=j in one of the

registers, e.g., Reg4, · · · , Reg7 in Table 3.1, and then reuse the gain module by invoking

it upon the new I/Q data measured at frequency point sj . As such, only a outer logic

to control the frequency si is added, and this minor change to g(·) simplifies the overall

circuit.

Table 3.1: Usage of registers within the summation circuit.

registers g(·) stage intermediate stage summation stage

Reg0 α1·Reg4 |Reg4|
Reg1 α2· Reg7 |Reg5|
Reg2 α3· Reg7 |Reg6|
Reg3 α4· Reg6 |Reg7|
Reg4 gs1 gs2− Reg0 β1·Reg0
Reg5 gs2 gs3− Reg1 β2·Reg1
Reg6 gs3 gs1− Reg2 β3·Reg2
Reg7 gs4 gs2− Reg3 β4·Reg3

Reg8 0 P P +
∑7

i=4Regi
* Note: In each stage, registers update from top to bottom.

Moreover, after all the gsi’s are collected, the rest part of the calculation in (3.3) could

be done through the circuit below the g(·) block in Figure 3.3. As in Table 3.1, reusing

resisters in the g(·) block, e.g., Reg0, · · · , Reg3, could maintain the intermediate result

of αiA(sj)out/A(sj)in and avoid extra registers. Thus, the circuit size is further reduced.

Eventually, the cost function result Φ(~x) is stored in “Reg8”.
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3.3.3 CORDIC Algorithm Based Calculation

The value ofA(si) is obtained by computing
√
I2 +Q2, where the I/Q data is retrieved

from the measurement of analog circuit, which has been discussed in Section 3.2. A direct

computing of
√
I2 +Q2 with square and square-root units entails a large circuit area.

Instead, we adopt the CORDIC (COordinate, Rotation DIgital Computer) algorithm [37],

which is an iterative procedure of addition/subtraction and shifting. The pseudo code for

computing
√
I2 +Q2 is given by Algorithm 2 where N is the number of iterations, and i

indicates the current step.

Input : I/Q data stream I0 and Q0

Output: Amplitude of the I/Q modulation

1 if |Q0| > |I0| then
2 temp← |I0|; I0 ← |Q0|;Q0 ← temp;
3 end
4 for i← 0 to N − 1 do
5 di = −sign(IiQi);
6 Ii+1 = Ii − 2−idiQi;
7 Qi+1 = Qi + 2−idiIi;
8 end
9 return IN ;

Algorithm 2: CORDIC-based Square Root of Power Sum.

The main idea of Algorithm 2 is to change the point (I0, Q0) by a series of rotations

along the circumference of a circle, which has the radius of
√
I20 +Q2

0 and is centered

at (0, 0), until its y-coordinate reaches 0. Then the absolute value of its x coordinate is

equal to the desired result. The entire rotation process takes the total N iterations. In each

iteration, the point (Ii, Qi) is rotated by an angle of arctan(2−i), and the direction of the

rotation is determined by the sign of IiQi. The rotated angle keeps decreasing and, finally,
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Ii converges to K
√
I20 +Q2

0, where K is a constant and can be omitted since we care only

the amplitude ratio in (3.3). It should be noted that the swap of operands in Steps 1 and

2 is critical for an implementation with limited precision. If I0 < Q0 and the swap are

not performed, after several right shifts in Step 7, Ii would reduce to 0, and Qi would not

converge. Empirically, we set N = 8 and find it suffices to make the algorithm converge.

3.4 Optimization Engine and Implementation

3.4.1 Hybrid Optimization Algorithm

The proposed optimization engine is a multi-start meta-heuristic [2] composed by sim-

ulated annealing (SA) and sensitivity-based search. SA [38] is a famous stochastic search

algorithm that can reduce the chance of being trapped at a local optimal solution. The

stochastic nature of SA requires many iterations to obtain good coverage of the solution

space. To overcome this drawback, we repeat multiple SA procedures with different initial

solutions that are randomly distributed in the solution space. This is why our optimization

is a multi-start approach. In general, it often takes many iterations for SA to reach near

global optimal solution. In order to accelerate the convergence, we run a limited num-

ber of SA iterations and then take the best solution to start a sensitivity-based search. A

sensitivity-based search is good at carefully searching a local solution space. Although it

can be easily trapped at local optima in general, this weakness is largely avoided when

combined with SA. Neither SA nor sensitivity-based searches depend on system models.

Therefore, they can be directly applied with measurement based cost function.

The pseudo code for the multi-start meta-heuristic is provided in Algorithm 3. Vector

~x denotes decision variables {x1, . . . , xl, . . .}, where xl is a multi-bit control signal for

the lth tuning knob. The two tuning knobs for the BPF are Rx1 and Rx2 as described in

Section 3.2.2. Φ(~x) is the cost function to be minimized and is defined in (3.3). T is the

temperature in simulated annealing, and t is the temperature decrease at each SA iteration.
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Input : Initial temperature Tmax, cooling speed t, iteration limit M in one
procedure of SA search, max number of SA iterations MAX_SA, max
number of SS iterations MAX_SS and cost function threshold θ

Output: The best solution ~xbest and the corresponding cost function value Φbest

1 Initialize Φbest ←∞ and set global counter i← 0
2 while i < MAX_SA and Φbest > θ do
3 if mod(i,M) == 0 then
4 ~xnew ← ~xold ← RANDOM ; T ← Tmax;
5 Φnew ← Φold ← Φ(~xold);
6 else
7 ~xnew ← Neighbor(~xold, T );
8 Φnew ← Φ(~xnew);
9 if P (Φold,Φnew, T ) > random(0, 1) then

10 (~xold,Φold)← (
−→
V new,Φnew);

11 end
12 end
13 if Φnew 6 Φbest then
14 (~xbest,Φbest)← (~xnew,Φnew);
15 end
16 T ← T − t; i+ +;
17 end
18 for i = 0,Φtmp ←∞; i < Max_SS and Φbest < Φtmp; i+ + do
19 Φtmp = Φbest;
20 for each neighbor ~xj of ~xbest do
21 if Φ(~xj) < Φbest then
22 (~xbest,Φbest)← (~xj,Φ(~xj));
23 end
24 end
25 end
26 return (~xbest,Φbest);

Algorithm 3: Multi-start meta-heuristic.

If the cost function value is smaller than threshold θ, the SA search is terminated.

After the initialization, algorithm 3 begins with MAX_SA iterations of SA, which

could be decomposed into dMAX_SA/Me fundamental blocks of SA search from Steps

3-16. Within each SA search block, it is only in the first iteration that the temperature T
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is reset to Tmax, and an initial solution ~xnew starts from a random selection. Other M − 1

iterations in Steps 7-11 perform the key functionality of SA search. For example, in Step 7,

a new candidate solution ~xnew, which is T distance away from ~xold, is randomly selected

for the subsequent evaluation. To be specific, assuming ~xold has two decision variables

(x1, x2), then the random update to (x′1, x
′
2) could be made by (x′1, x

′
2) = (x1, x2) + (a, b)

and |a| + |b| = T . The meaning of this process is illustrated in Figure 3.4 (a), where the

signs of two random variables a and b define one of the four directions on the 2-Dimension

plane, and their magnitudes denote the step size.

Steps 9-11 are the essential part of SA. The new candidate ~xnew derived from Fig-

ure 3.4(a) will be accepted with the probability P (Φold,Φnew, T ), which is defined as

P (Φold,Φnew, T ) = min(1, exp(−∆Φ/T )), where ∆Φ = Φnew − Φold. As shown in Fig-

ure 3.4(b), it’s clear that the new candidate ~xnew with smaller cost Φnew, or say ∆Φ < 0, is

always adopted; as for those higher cost candidates, they could be accepted with a proba-

bility which is related to the cost increment ∆Φ and temperature T , i.e., with the same ∆Φ,

Prob1 is higher than Prob2 when T1 > T2. Moreover, to avoid large circuit area, we imple-

ment the exponential function exp(−∆Φ/T ) by Taylor expansion
m∑
i=0

(−∆Φ/T )m/m!. By

keeping only the 0th and the first order term, i.e., m = 1, it is approximated by 1−∆Φ/T .

As the probability precision is not critical to the solution search, such approximation is

reasonable.

After multi-start SA reaches the iteration limit or the cost Φ(~xbest) is within the ac-

ceptance range defined by θ, Steps 18-25 in Algorithm 3 continue as a local exploiter

to perform MAXSS iterations of sensitivity-based search upon the best solution ~xbest ac-

quired from SA. The main effort is focused on Step 20, where every immediate neighbor

of the current solution is examined. By “immediate", we mean the Hamming distance be-

tween ~xj and ~xbest is 1 as depicted in Figure3.4(c). Different from multi-start SA search,

we terminate SS immediately when there is no improvement to the cost function thus to
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avoid any redundant search.

1
xbest

xj

four neighbors of 

xbest during SS

0

1
Accept probability

Prob1 =min(1,e-��/T1)

�� = �(xnew) - �(xold)

��

0 1 0 1 1 0 0 1

LFSR random generator

(1) direct ion (2) distance

|a|

|b|

(1,1) (x’1,x’2)
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(0,0)

(1,0)

(0,1)

(a) (b)

(c) (d)

Prob2 =min(1,e-��/T2)

T1>T2

Figure 3.4: Specific processes during the multi-start meta-heuristic. (a) random update to
SA neighbor (x′1, x

′
2) based on the old solution and temperature T in SA. (b) curve of SA

acceptance probability based on ∆φ and the temperature T . (c) all four neighbors around
the ~xbest during the SS. (d) LFSR based pseudo random process.

Need to mention that, in Algorithm 3, all the random process related steps, such as

Step 4,7,9, are realized by the pseudo random number generator based on the linear feed-

back shift register (LFSR) as drawn in Figure 3.4 (d). In our design, an 8-bit generator

provides enough randomness in the proposed hybrid algorithm.

3.4.2 State Machine Diagram

The optimization engine is designed as a high-level state machine depicted in Fig-

ure 3.5. CF_ready and Φnew are the input from cost function, outputx is the solution
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delivered to BPF and others are all registers. This process starts from “Idle” when Reset

signal is low and then keeps on waiting for the Φnew in “Tuning_SA” after ~xnew is sent.

Once Φnew is available for reading by a notice of CF_ready signal, it’s used to update

~xbest in “Update_SA”. The acceptance probability is computed in “Compare” and shows

whether to update ~x by ~xnew in “Accept_SA”. “Judge_SA” works as a controller to select

“Neighbor” to continue in the current SA or “Multi_Start” to open a new SA or “Sensitiv-

ity” to begin the local search.

Immediate

Multi-Start

Finish

Tuning_SA

outputx = x 

outputx = xnew 

!CF_ready Compare

Update_SA

x = xbest; � = �best; i=0

xbest = xnew; �best = �new

CF_ready && 

�new ≤ �best 

CF_ready && !(�new ≤ �best) Accept(�new, �, T) 

Judge_SA

!Accept(�new, �, T) 

Neighbor

x = xnew;

� = �new

Sensitivity

i < SA_iter# 

&& j < M

i < immediate#

 T= T- t; i=i+1; j=j+1;

xnew = neighbor(x, T)

i < SA_iter#

&& j == M 

xnew = x = RANDOM; 

i=i+1; j=0;T=T0; � = MAX  i == SA_iter#

i=i+1; xnew = immediate(x) 
Tuning

!CF_ready

outputx = xnew

Update

xbest = xnew; �best = �new

CF_ready 

&& �new < �best
Improve Judge

CF_ready &&

 !(�new < �best)

!(i < immediate#)

�best < �

!(�best < �)

!Reset

Accept_SA

Idle

i=0;j=0;T=T0

xnew = initial_point;

�best = � = MAX; 

Reset

Figure 3.5: The high-level state machine of multi-start meta-heuristic, in which the up-
per multi-start SA and the lower sensitivity-based searches are divided by the horizontal
dashed line. Reprinted from [2].

While in the “Sensitivity” state, Φbest will be backup in Φ before enumerating each

1-distance neighbor in “Immediate”. The Φnew of each immediate neighbor is recorded
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during “Tuning” state and helps to improve ~xbest in “Update”. “Judge” guarantees that all

the neighbors are covered and then moves ahead to “Improve”. “Improve” compares the

Φbest with its old backup Φ and then decides to go on to “Sensitivity” or stop in “Finish”

in which ~x is reported as the best found solution.

3.5 Reconfigurable Circuit Design and Implementation

3.5.1 Post-silicon Configuration

The art of the circuit design coming from the reconfigurability after the fabrication. For

the cost function circuit in Figure 3.3, by changing the value of vector {β1, β2, β3, β4}, it

could be reconfigured for different types of filters. For example, we set the control pattern

as {1, 1, 1, 1} for the band-pass filter. By changing the pattern to {0, 1, 0, 1}, we make

the effect of gs1 which is the gain calculated at the lower 3dB frequency point s1, ignored

from the Equation (3.3). After that, since the effect of the higher 3dB frequency point s4

still exists, the modified Equation (3.5) now contributes as a low-pass filter. With similar

analysis to pattern {1, 0, 0, 1}, it could be figured out as the control patterns for a high-pass

filter due to the removal of effect at higher 3dB frequency point gs4 .

ΦLPF (~x) = β2

∣∣∣∣A(s3)out
A(s3)in

− α2
A(s4)out
A(s4)in

∣∣∣∣
+β4

∣∣∣∣A(s2)out
A(s2)in

− α4
A(s3)out
A(s3)in

∣∣∣∣+ P (3.5)

The optimization engine in Algorithm 3 could also be configured to different algo-

rithms by modifying the iteration parameters MAX_SA, MAX_SS and M . e.g., simply

to letMAX_SA = 0 orMAX_SS = 0, this configuration will turn off one of the search-

ing methods in the hybrid algorithm and form the stand-alone SS search or SA search ac-

cordingly. Furthermore, if MAX_SA < M , the multi-start property of the SA search is

prohibited, and thus leads to the single-start SA.
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3.5.2 General Microprocessor

However, the above reconfigurability is still not enough to the requirement of a com-

plete change of the cost function structure or the optimization algorithm for the calibration

of a general CUT. Inspired from the Field Programmable Gate Array (FPGA), which is

programmable after fabrication, we replace the digital circuits of cost function and opti-

mization engine in Figure 3.1 with the reconfigurable chip structure depicted in Figure 3.6.

Figure 3.6: Components of the designed microprocessor and its working flow.

The microprocessor in Figure 3.6 consists of four components, namely the SRAM I/O,

SRAM, micro processor and Analog I/O. It has two modes, i.e., “loading” and “working”

modes which are differentiated by the horizontal dashed line. During the loading mode,

only the SRAM I/O and SRAM components are activated, while in the working mode, the

components included in the shaded area participate.

Especially, in the loading mode, the bit steams are serially loaded from the external

computer to the SRAM I/O component, and parsed as SRAM address and the processor-
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recognizable data. Next the data part is loaded to the SRAM component with the guidance

of the address through the internal parallel connections. When all the data is loaded, the

microprocessor will receive a start signal and then switch to the working mode. In the

second mode, the microprocessor retrieves binary data from SRAM, performs as the cost

function (Section 3.3) and optimization engine (Section 3.4), and collaborates with the

analog tested circuit by retrieving the ADC samplings and sending the tuning vector ~x.

The high-level state machine of the microprocessor is shown in Figure 3.7.
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Figure 3.7: High-level state machine of the microprocessor and 16-bit instructions.

In Figure 3.7, the microprocessor stays at “Idle” with the pc pointer set to the zero

address of the SRAM. When the start signal is high, the state machine begins the process

loop which consists of five states. In the “Fetch” state, The SRAM data is fetched into the

register ins from the address indexed by pc, and each SRAM address keeps 16 bits data.

The next state is “Decode”. During this state, the first 5 bits of the register ins is analyzed

as the instruction ID, based on which one of the two instruction patterns is chosen to parse

the rest bits. Then, two registers A and B are updated with the values patterned in the
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11 bits. Later in the state “Execute”, some simple calculations, e.g., A ± B, A ⊕ B etc.,

could be performed, and the result is saved in register alu. After that, in the “Record”

state, the n-th element of the register array is checked and recorded as the value of alu if

necessary. Finally, the m-th element of the SRAM is checked and written as the value of

alu if necessary, while the pc pointer is also increased by 1 in the “WriteW” state. This

five-state process loop continues until pc pointer reaches its limit. By then, “Fetch” state

will jump back to “Idle” and keep waiting there for another start signal.

3.6 Experiment Results for Non-Reconfigurable Circuit

3.6.1 Test Chip Measurement Results

The proposed built-in self optimization system with BPF as CUT was fabricated using

180 nm IBM process technology. Measurement was performed on-chip to confirm that

the system works as expected. Set the central frequency fc = 31MHz and the bandwidth

BW = 8MHz. We first enumerated all combinations of the tuning knobs x1 and x2 and

measured the BPF frequency response for each configuration. Based on the measurement

results, we plotted the cost function ΦBPF (~x) in Figure 3.8. We found that the global

minimum of the cost function is at ~x = (22, 13). The chip testing results showed that our

optimization engine was able to find this global minimum solution.

We set the BPF according to the global minimum cost function where ~x = (22, 13),

and measured the frequency response from 20MHz to 42MHz. The results are plotted as

the red curve with small circles in Figure 3.9. Its central frequency is near 31MHz and the

3dB drop frequencies are at 27.5MHz and 36MHz. Thus, the bandwidth is 8.5MHz,

which is very close to the specification. We also measured and plotted frequency responses

for two other solutions at ~x = (20, 13) and ~x = (12, 26). They are shown as the blue curve

with small triangles and the black curve with small squares, respectively, in Figure 3.9.

The solution at ~x = (20, 13) has a bandwidth of 7MHz, which implies a small deviation
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Figure 3.8: Cost function Φ(~x) for decision variables ~x = (x1, x2) corresponding to Rx1

and Rx2 in the BPF with fc = 31MHz and BW = 8MHz. The measurements are based
on the test chip. Reprinted from [2].

compared to the optimal solution, while the frequency response for ~x = (12, 26) is not

only far from the optima, it is also not a BPF response. These results confirmed that our

cost function definition leads to desired BPF performance.

3.6.2 Evaluation of Variation Resilience

To validate the effectiveness of our approach on handling variations, applying statis-

tical results to different instances of the CUT are necessary. We performed the statistical

analysis through Monte Carlo simulations. Based on the variation data collected from the

circuit simulation of the SPICE model, a 5,000-run Monte Carlo simulation for the BPF

design was performed. We evaluated the mean squared error (MSE) of frequency response,

which is similar to results of (3.2). The probability density functions of the MSE before

and after the self optimization are plotted in Figure 3.10. On average, the self optimization

can reduce the mean of MSE by around 71.3%.
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Figure 3.9: Frequency responses under different decision variables. The design target is
the BPF with fc = 31MHz and BW = 8MHz. Reprinted from [2].
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Figure 3.10: Probability density functions of frequency response mean squared error
(MSE) before and after the self optimization from the 5, 000-run Monte Carlo simulation
on BPF with fc = 25MHz and BW = 15MHz. Reprinted from [2].
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3.6.3 Verification of Reconfigurable Circuit

Instruction Based Cost Function

In order to verify the cost function implemented by the microprocessor, we compare

it with the multi-start meta-heuristic circuit towards the CUT of BPF. Similar to the mea-

surement in Section 3.6.1, we enumerated all the combinations of the tuning knobs x1 and

x2, measured the BPF frequency response for each configuration, and saved the response

data into a look up table (LUT) indexed by the tuning vector (x1, x2). Here, the BPF that

we measured has central frequency fc = 74MHz and the bandwidth BW = 13MHz.

Based on the measurement, the cost function ΦBPF (~x) is plotted in Figure 3.11, and the

global minimum is 79 at ~x = (23, 11).
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Figure 3.11: Cost function Φ(~x) for decision variables ~x = (x1, x2) corresponding to Rx1

andRx2 in the BPF with fc = 74MHz andBW = 13MHz. The measurements are based
on the test chip.
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Next, we reprogrammed the microprocessor with the instructions which implement

the functionality of cost function, enumerated all the combinations of the tuning knobs x1

and x2, searched each corresponding data from the LUT according to each tuning vector

(x1, x2), and provided the LUT data to the microprocessor. Based on these steps, the cost

function is depicted in Figure 3.12.
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Figure 3.12: Cost function curve calculated by the microprocessor with the same configu-
ration in Figure 3.11.

Obviously, the cost function curve calculated by the microprocessor is almost the same

as that derived from the integrated circuit. The optimal point which locates at ~x = (23, 11)

in Figure 3.12 is identical to that in Figure 3.11.

Instruction Based Optimization Engine

To verify the microprocessor could work as the optimization engine, we reprogrammed

the microprocessor with the instructions of the multi-start meta-heuristic algorithm. With
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the SA iteration MAX_SA = 160, the temperature Tmax = 32, the cooling speed t = 2,

iteration limit M = 16, the SS iteration MAX_SS = 10, and the cost function threshold

θ = 1, the microprocessor found the optimal point (23,11) at the 66th iteration. The search

trace of the optimization algorithm is shown on the cost function curve in Figure 3.13,

where each black point denotes a tuning variable generated by the microprocessor.
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Figure 3.13: Search trace and optimal point found by the microprocessor.
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3.6.4 Comparison of Algorithm Performance

We further compared our multi-start meta-heuristic with two other optimization ap-

proaches - standalone multi-start sensitivity-based search (Mul-Sen) and standalone SA.

Figure 3.14 shows the cost function value changes over iterations for these methods. It can

be found that the proposed hybrid approach converges to a better solution in less evaluation

iterations.
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Figure 3.14: Cost function changes over iterations for our multi-start meta-heuristic, multi-
start sensitivity and standalone SA on BPF with fc = 23MHz and BW = 6MHz. 
Reprinted from [2].

As a heuristic algorithm, the proposed method has some probability of failing to match

the desired frequency response. The failure rate and the error of the outcome were eval-

uated by performing on 4,000 BPFs, whose central frequencies increase from 12MHz to
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31MHz and Q-factors change from 1 to 4. The cumulative distribution functions from all

three methods are plotted in Figure 3.15, where the horizontal axis indicates the percentage

error from the optimal solution. The results showed that the proposed approach produced

more accurate solutions with lower error. Particularly, 77.6% of the solutions given by the

hybrid algorithm have an error rate of less than 1%. In contrast, the standalone SA and the

standalone sensitivity-based search had only 52.7% and 49.6% solutions with an error rate

of less than 1%, respectively.
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Figure 3.15: Cumulative distribution functions of solution errors vs. the optimal solution
from the simulation performed on 4,000 BPFs. Reprinted from [2].

The area and power consumption comparisons among different meta-heuristics are

summarized in Table 3.2, where each gate count includes 3509 logic gates in the cost

function circuit. A 10MHz clock is used to drive the simulation, and only the processing

time for optimization engine is recorded. Considering that a medium performance ASIC

chip may have millions of gates, thousand gates is a very small chip area overhead. Be-
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sides, since the self optimization is conducted very occasionally for a chip, the power is

also acceptable. As for the processing time, although the proposed method is almost three

times slower than Mul-Sen, it is still feasible because the total time for analog circuits

being stable after each tuning is the dominant part in the whole process.

Table 3.2: Gate count, power and processing time comparison. Reprinted from [2].

Gate Count Power Processing Time
Multi-start Meta-Heuristic 6744 1.15mW 352.8µs

Multi-start Sensitivity 4817 0.56mW 95.6µs
Standalone SA 5439 0.93mW 335.8µs

As for the microprocessor, since all the functionality of cost function and optimization

engine could be implemented by instructions (each of our instruction has 16 bits data, or

namely 2 Bytes), we evaluate the overhead of different algorithms in terms of the SRAM

memory consumption. Note that, the total SRAM memory listed in Table 3.3 is 1024

Bytes, and a 246 Bytes’ cost function nests in each of the algorithm. In our design, the

clock frequency is 50MHz for the whole circuit during the working mode, while in the

loading mode, the frequency is reduced to 1MHz for scan chains which serially load

instructions into the SRAM.

Table 3.3: SRAM memory space consumption for microprocessor.

Memory (Bytes) Percentage
Multi-start Meta-heuristic 626 61.1%

Multi-start Sensitivity 415 40.5%
Standalone SA 450 43.9%
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3.6.5 Die Photographs for Tapeout Chips

Case 1: Integrated Cost Function and Optimization Engine

The integrated cost function/optimization engine design is fabricated in 180nm stan-

dard CMOS technology, and the 1.8mm × 1.8mm chip die photograph is shown in Fig-

ure 3.16. Compared with the analog circuit which totally takes 236, 300µm2, the digital

area is 165, 753µm2.

SAR

ADC

CUT

PLL

Sine-wave

Generator
S/H

1.8

mm

1.8 mm

Cost Function,

Optimization Engine, 

and Scan Chain

Figure 3.16: Chip die photograph of the proposed built-in self-optimization system. CUT
includes the active-RC BPF, and the digital circuits are fully integrated in one block.

Especially, the scan chains used for chip testing are considered as the digital compo-

nents which contribute 33% to the whole digital area consumption. Thus, the area of the

kernel part of the digital circuit including the cost function and optimization engine is just
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111, 054µm2. Therefore, the area ratio between the kernel part of digital circuit and the

analog circuit is about 1:2. The meaning of this ratio represents the area overhead caused

by the additional circuit with respect to the original design. Obviously we hope to make

this ratio as small as possible. One of the approach is to share the digital tuning circuit

with more than one analog CUT. By this way, the analog area will relatively increase while

the ratio could be reduced, and it makes the application of this proposed automatic tuning

mechanism feasible.

Case 2: Reconfigurable Microprocessor with SRAM

Figure 3.17 shows the 1.5mm × 1.5mm chip die photograph of the reconfigurable

circuit design fabricated in 130nm standard CMOS technology. For the test purpose, the

analog counterpart is not integrated but only the digital circuit which includes the micro-

processor, the SRAM, and scan chains.

Figure 3.17: Chip die photograph of the reconfigurable optimization system including the
microprocessor and on-chip SRAM 1024x8 bit.
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Although the digital circuit locates in a 400×400µm2 region in Figure 3.17, the actual

area is just 79, 598µm2 due to a floor plan usage ratio as low as 35%. This low usage ratio

is reasonable in the test chip just for proving the concept of our reconfigurable design.

In order to show the benefit of the reconfigurable design with respect to the integrated

design in the same technology, we synthesize the digital circuit in Case 1 by using the

130nm technology, and make its area decreases from 165, 753µm2 to 71, 088µm2. There-

fore, it is straightforward that the reconfigurable design (79, 598µm2) only increases 12%

of the digital area but provides a reconfigurable feature to the fabricate chip. The designer

could choose either the Case 1 design or the Case 2 design at his/her own discretion.
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4. THWARTING ANALOG IC PIRACY VIA COMBINATIONAL LOCKING*

4.1 Introduction

In addition to the interior technique challenges of IC design discussed in the previous

chapters, the exterior security challenges of IP infringement keep on threatening the semi-

conductor industry. According to SEMI [39], a semiconductor industry consortium, the

annual loss due to semiconductor IP infringement is up to $4 billion. Besides the tremen-

dous economic lost, these products cause even serious casualties when applied for medical

or military. A further study by IHS technology [7] indicates that analog integrated circuit

is the topmost counterfeited among all semiconductor products. An analog IC typically

has hundreds to thousands of transistors of relatively big size while a digital IC could eas-

ily contain millions to billions of usually smaller transistors. Thus, it is conceivable that

this difference makes analog ICs an easy target of reverse engineering, which is a main

approach of chip piracy and counterfeit [40].

Interestingly, most previous works on hardware security are focused on digital ICs

while the security of the topmost counterfeited IC product has received much less research

attention. One related work is [41], which applies split manufacturing to RF circuits for

security defense at untrusted foundry. In [42], a locking technique is introduced for sense

amplifiers in memory circuits to hamper the evil-maid attack [43]. This technique relies on

the use of memristor, whose manufacturing process is not always available, and therefore

is restrictive in applications. The idea of combinational locking for analog biasing circuit

is also reported in [44]. However, it does not show how to make correct key unique and

ensure significant performance degradation for incorrect keys.

In this work, we suggest a combinational locking technique for analog IC security [3].

*Reprinted from "Thwarting Analog IC Piracy via Combinational Locking", by Jiafan Wang, Congyin
Shi, Adriana Sanabria-Borbon, Edgar Sánchez-Sinencio, Jiang Hu, c©2017 IEEE.
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It will mainly defend against reverse engineering and recycling-based counterfeit. The

core idea is to make current mirror, a component existing in many analog ICs, config-

urable and the configuration allowing correct system operation is decided by a digital key.

Without the correct key, it is very difficult to make reverse-engineered or recycled chip

work properly. The locking will also increase the difficulty of piracy and over-production

at foundry, provided that manufacturing test is conducted at separated service company.

To the best of our knowledge, this is the first general locking technique for analog ICs,

where the mainstream CMOS devices suffice and no memristor or other special process is

required.

Combinational locking is a kind of logic locking technique [45, 46, 47] that is origi-

nated from digital IC security†. However, the locking design for analog ICs is quite dif-

ferent from that in digital chips, and in fact significantly more difficult. In a digital circuit,

a single bit error in the key can easily result in malfunction of entire system. In contrast,

a small error in configuration of analog circuit often causes limited deviation in perfor-

mance. Only when the error is large enough, functional failure may happen. As such,

many wrong inputs to the key merely lead to performance degradation of various degrees.

To overcome this difficulty, we make use of Satisfiability Modulo Theories (SMT) to care-

fully design the current mirror configuration circuits such that most wrong inputs result

in large deviation or unacceptable performance. By leveraging existing chip identification

techniques, we can further make the correct key to each chip instance distinctively unique.

Attacks to the locking defense are quite different for analog and digital ICs. First,

it takes much longer time to evaluate analog circuit responses for each attempt of key

input. Second, advanced attack techniques to digital ICs are mostly based on Boolean

logic [47], which are not applicable in analog domain. Overall, locking defense for analog

ICs exhibits considerably different characteristics from its digital counterpart and our work

†A taxonomy of counterfeit digital ICs and review for security techniques are provided in [40].
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is remarkably distinct from the existing techniques for digital circuits.

The proposed technique is implemented and simulated on band-pass filter, class-D am-

plifier and other analog designs. The results show that our technique can generate a unique

key that enables desired performance while all incorrect keys result in large deviation of

circuit characteristics. In addition, circuit output is highly non-monotone with respect to

key values and therefore systematic attack becomes very difficult. Short key bitwidth is

used for small circuits and manual attack to such protection takes a half month to unlock

one specific chip instance. Long key bitwidth is applied to relatively large circuits and

even automated attack normally needs more than a year to unlock entire design. The area

overhead of our technique is usually a few percent.

4.1.1 Previous Works

There are very few previous works on security of analog ICs. A split manufacturing

technique for RF circuits is proposed in [41] for security defense against untrusted foundry.

The work of [42] is a locking technique that uses a memristor-based voltage divider to bias

the body voltage of transistors in an amplifier. The voltage divider output is programed

by a memristor crossbar, which can be properly configured only by a correct 16-bit key.

This scheme conceptually works well, but its practical applicability is quite restrictive

due to its dependence on memristor, which is not widely available yet. The most recent

work [44] proposes the idea of combinational locking on biasing current of analog circuits,

which is similar as ours. A straightforward realization of this idea can easily have three

drawbacks. First, there could be multiple correct keys and therefore the security effect

is weakened. Second, the circuit performance degradation from an incorrect is small and

again the security from such locking is quite limited. Third, all chip instances share the

same keys. As such, a successful attack to one chip instance implies unlocking of all chip

instances. These issues are not discussed in [44] while they are main focus of our work.
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In the past, locking techniques are mostly for digital circuits. Although they are largely

different from our technique for analog circuits, a brief review is provided here to show

the related rationale. An early work of logic locking is [45], where unused states in finite

state machine (FSM) or additional FSMs are used to configure a circuit into a locking

state at power-on or reset, and only certain digital key can change the circuit to normal

operation states. Later, the work of [46] suggests to use additional XOR gates instead of

FSM for the locking. An original signal in a circuit is XOR with a key signal and the

XOR output is the same as the original signal only when the key is correct. Multiple such

XOR gates constitute a long word key. Moreover, the public key technology in cryptog-

raphy is applied in [46] such that even the foundry is not able to unlock a chip without IP

owner’s permission. It is noticed in [47] that an attacker can purchase a functional chip

from market and compare with the chip under attack. Then, by sensitizing a key input

according to manufacturing test principle, the attacker may observe the correct key value

from the functional chip. Such attack takes linear time with respect to the key bit-width.

By increasing the interactions among key bits, the work of [47] can restore the attack com-

plexity back to exponential. More recently, locking techniques are further geared toward

defense against Trojan insertions [48]. In [49], a SAT-based attack method is introduced

and can successfully unlock many circuits defended by the aforementioned techniques.

4.2 Overview and Scope of This Work

An overview of the locking system for analog ICs is depicted in Figure 4.1. It makes

the current mirror, a component available in many analog ICs, configurable. Only the cor-

rect configuration allows the entire system to function properly. The correct configuration

is specified by a common digital key, which is shared by all chip instances of the same

design.

Locking by a common key is often insufficient. If an attacker manages to obtain the
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Figure 4.1: Locking system overview. Reprinted from [3].

common key, the attacker is able to unlock all chips of this design. In order to enforce

a distinctively unique key for each individual chip, we leverage the chip identification

technique as in digital circuits [45]. For each chip instance, we can obtain its unique

identification using existing techniques [50, 51]. Chip identification is XOR with chip key

to produce the common key so that each chip key is distinctively unique. For example, if

the common key for a design is 1010, consider chip A with identification 1100 and chip

B with identification 1001. By the design, the chip keys for A and B are 0110 and 0011,

respectively, as 0110 ⊕ 1100 = 1010 and 0011 ⊕ 1001 = 1010. Please note the common

key is enforced through the configurable current mirror without explicit storage anywhere

and a chip key is provided to only authorized user of the specific chip.

The centerpiece of the locking design, configurable current mirror, is very different

from locking in digital circuits. In digital circuits, a single bit error at the key input can

easily result in malfunction of the entire circuit. In contrast, a small change of the current

mirror may just cause small performance deviation and can be far from locking an ana-

log circuit system. We solve this difficulty using SMT, which will be elaborated in later
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sections.

The proposed locking technique is mostly to defend against reverse engineering and

recycle-based counterfeit. This is different from most locking techniques for digital cir-

cuits, which emphasize protection from piracy and over-production at foundry. However,

our technique can help the security at foundry for the case where manufacturing test is

conducted at a separated service company. This case will be discussed with more details

in Section 4.3.

Our locking technique intends to be applied for relatively large analog and mixed signal

designs. For small designs, the overhead is not well justified. The overhead includes

the area of configurable current mirror, XOR circuit, chip identification generation (or

storage), and additional I/O pin. By serialization, the multi-bit key can be loaded through

a single I/O pin.

4.3 Attack Analysis

Reverse engineering is a primary attack to analog ICs and therefore the major security

scenario that our work is focused on. In reverse engineering, attackers polish chips layer

by layer and attempt to restore circuit netlist according to the layout observed at each

layer [52]. With the proposed locking system, even a netlist is reverse engineered and

chips are reproduced illegally, these chips cannot operate properly without knowing the

common key or how to configure the current mirror. The time and effort for recovering the

correct key is substantial. When attackers attempt to sell recycled analog IC chips with the

locking system, they cannot demonstrate that the chips work properly unless they obtain

the keys for these chips.

Although piracy at foundry is not the main scenario of our defense, but our locking

system still benefits the case where manufacturing test is performed at a separated service

company. If the manufacturing test is not conducted at the foundry, the common key is not
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provided to the foundry. As such, the foundry cannot unlock the circuits unless its spends

extra effort to reverse engineer the key value. Hence, the foundry piracy becomes more

difficult.

We further discuss possible attack methods and our defense under these attacks as

follows.

• Brute-force attack. An attacker tries all combinations of key values and evaluates the

circuit response for each of them to find the correct key value. Typically, evaluating

analog circuit responses, such as frequency response and settling time, is orders

of magnitude slower than that for digital circuits. As such, brute-force attack to a

32-bit key would normally take one year. Therefore, our locking technique is quite

effective in defense against brute-force attack in reverse-engineering.

• ATPG and SAT attack. The work of [47] suggests to apply ATPG technique to sen-

sitize one key bit and observe the output at a functional chip purchased from market.

It reduces attack complexity from exponential to linear with respect to the bit-width

of key. In [49], a SAT-based attack is developed assuming that attackers have com-

plete access to circuit netlist. Its simulation results show that the SAT attack is

quite successful in unlocking designs protected by many locking techniques. These

attacks are based on Boolean logic and incompatible with analog circuits. More

specifically, analog output responses, such as gain and linearity, are different from

those in digital circuits, and the conversion from one to the other is not straightfor-

ward. Hence, it is not obvious how to launch ATPG/SAT attacks to analog circuits

protected by our locking system.

• Optimization-based attack. An attacker can use optimization algorithms, such as

simulated annealing and genetic algorithm, to search for the correct key value that

minimizes the difference between the actual circuit output and specification. In

general, such attack is effective when the circuit output is well behaved with respect

72



to key values. The well behavior here means the output function exhibits certain

pattern. In our defense, we deliberately design the locking system such that the

output-key function is close to random noise. As such, an optimization attack is still

inefficient and requires very long time to find the correct key value.

• Smart guess by experienced analog IC designer. In such attack, an experienced ana-

log IC designer can make smart guess on the correct configuration of current mirror.

This is somewhat like asking the designer to complete a partial design. Our locking

technique cannot completely defeat such attack, but can raise the bar that makes

the attack non-trivial compared to unprotected designs. Relying on experienced

designer has already made the attack expensive or restrictive.

• SMT attack. SMT is a formal verification technique we employ to design the lock-

ing system. One may consider if an attacker can use the same technique to break

the locking system. The answer is that an attacker can do so under a very restrictive

condition. That is, the attacker needs to know the desired current value of the current

mirrors. Since this value is used only during the original design and not disclosed

in system specification, the attacker has to make guess and rely on design experi-

ence. Having both analog design experience and formal verification knowledge is

evidently a tough requirement to attacks.

Overall, our locking technique can considerably increase the difficulty of reverse engi-

neering and recycle-based counterfeit attack to analog ICs.

4.4 Current Mirror and Its Role in Analog ICs

4.4.1 Basic MOSFET Current Mirror

Current mirror (CM) is a basic circuit block that provides current bias to enable proper

operations of many different types of analog circuits.

A simple current mirror structure is depicted in Figure 4.2. All transistors operate in
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Figure 4.2: Basic MOSFET current mirror with five finger branches. Reprinted from [3].

saturation mode, since their drain-to-gate voltage VDG = 0. The reference current IREF is

equal to the drain current ID0 and satisfies [53]

IREF = ID0 =
1

2
K0(

W0

L0

)(VGS0 − Vth0)2 (4.1)

where K0 is a technology-specific constant, W0 and L0 are respectively the channel width

and the channel length of transistorMN0 . Since the gates of all transistors are tied together,

VGS0 = VGS1 = · · · , we can derive the drain current of M1 as

ID1 =
1
2
K1(α1

W0

L0
)

1
2
K0(

W0

L0
)
ID0 = α1ID0 (4.2)

where α1 is the size ratio between M1 and M0. Similarly, by applying different widths of

αiW0 for Mi, different output current IDi can be obtained for the i-th branch.

Conceptually, branches of PMOS transistors M4,M5 provide negative bias current.
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The negative bias current can be exploited to create non-monotone behaviors in our locking

system and thereby facilitate improved security.

4.4.2 Importance of Bias Current

Bias current largely determines the performance of analog circuits through transcon-

ductance (gm) of MOSFET transistors [53]. Transconductance gm can be estimated by

gm =
dID
dVGS

=

√
2K

W

L
ID (4.3)

This is a fundamental parameter for most analog circuits. For instance, the DC gain of a

differential pair is defined as

Av = gm ·RL (4.4)

where RL is the equivalent load resistance of the differential pair. The gain-bandwidth

product (GBW) is defined as

GBW =
gm

2πCL
(4.5)

where CL is the load capacitance. Moreover, the root mean square (RMS) thermal noise

current density of a transistor is also a function of gm,

i2n = 4βTγgm (4.6)

where β is the Boltzmann constant, T is the temperature, and γ is a process-specific con-

stant.

It should be mentioned that analog circuits are usually designed in a top-down manner.

On one hand, we can generate differential pairs (simple amplifiers) from basic MOSFET

transistors. Amplifiers are then used as the building blocks for constructing more compli-

cated analog systems, such as filters, oscillators, buffers, low-dropout (LDO) regulators,
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and so on. On the other hand, the bias current affects the gm of a MOSFET, and then

Equation (4.4)-(4.6) can be obtained based on gm. These parameters further affect the

performance of higher level systems, e.g., filter transfer function, oscillator’s output fre-

quency, buffer’s drivability, LDO’s stability, etc. To conclude, bias current is so critical

that any significant change on it would remarkably improve or degrade the performance

of entire analog IC system.

4.4.3 Application in Gm-C Band Pass Filter

gm1(s)

gm4(s)

gm3(s)
gm2(s)

Vin

Vout
C1

C2

Figure 4.3: Gm-C implementation of BPF with differential amplifiers. Reprinted from [3].

As a study case, consider the Gm-C biquad filter shown in Figure 4.3. This second

order structure is formed by four operational transconductance amplifier (OTA) and two

capacitors [54]. Figure 4.3 also presents one possible transistor level implementation of

each OTA. Its transconductance is a function of the tail current of the input differential

pair, which is proportional to the bias current. The proportional factor is the current mirror

ratio, which can be modified to make the transconductance tunable in a defined range
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while keeping all transistors operating in the proper region.

The operation of this circuit is based on current-to-voltage transformations and vice

versa. In Figure 4.3, the transconductance gm1 converts the input voltage into current.

Then, that current is integrated in capacitor C1. The transconductor gm3 is connected in

unity feedback in order to mimic a resistor. The combination of gm1 , gm3 and C1 forms a

lossy integrator structure. In a similar way, the output current of gm2 is integrated in C2

to the lossless integrator. The negative feedback loop is completed with gm4 . The transfer

function (at the band pass output) is given by

HGm−C(s) =
Vout(s)

Vin(s)
=

GBPF
ω0

Q
s

s2 + ω0

Q
s+ ω2

0

=
gm1C1s

s2C1C2 + gm3C2s+ gm2gm4

(4.7)

according to [54] and we have

GBPF =
gm1C1

gm3C2

, ω0 =
√

gm2gm4

C1C2
, Q =

1

gm3

√
gm2gm4C1

C2

where GBPF is the gain, ω0 is the central angular frequency, and Q is the quality factor

of the BPF. Particularly, if let C1 = C2 = C and gm1 = gm2 = gm4 = gm then we

theoretically have GBPF = gm/gm3 , ω0 = gm/C, and Q = gm/gm3 .

Therefore, the parameters of the filter are determined by the values of all gm, and

they will be affected by the size ratio of current mirror based on Equation (4.3). Thus, in

our proposed work, the correct bias current is the armor that we employed to protect our

design.
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4.5 Configurable Current Mirror for Locking

Making a circuit configurable is a common approach to locking-based hardware se-

curity, especially for digital ICs [46, 55]. However, a straightforward application of this

technique for analog ICs faces significant difficulties.

4.5.1 Difficulties of Naïve Configurable Design

Suppose we need to design a current mirror that provides current I∗. To make the

current mirror configurable, we can split the current path into multiple branches, each of

which can be turned on/off by an additional transistor switch controlled by a binary bit.

All the control bits together form the combinational lock. A such simple design with 4-bit

control is shown in Figure 4.4, where the four transistors SW1, SW2, SW3 and SW4 are

controlled by digital key lines q1, q2, q3 and q4, respectively. The rest of the current mirror

design is the same as in Figure 4.2.

M1 M2

�1

Iout

�2 �3

M3

�4

M4

SW1 SW2 SW3 SW4

q1

q2

q3
q4

Figure 4.4: A naïve design of configurable current mirror. Reprinted from [3].
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The current provided by this circuit is decided by the transistor sizes and the value

of control key. Let us start with the simplest case where all four branches have the same

transistor size, e.g., α1 = α2 = α3 = α4 = 1. If the desired current I∗ = 3IREF , then we

need to turn on exactly 3 branches. There are totally 16 combinations of keys and 4 keys,

(1 1 1 0), (1 1 0 1), (1 0 1 1) and (0 1 1 1), satisfy this requirement. In other words, there

is 25% of chance that an attacker can enable the desired current. Obviously, the security

from such locking is rather weak. The security improvement from increasing the number

of key bits is also limited.

To allow only a unique (or very few) correct key, one idea is to have non-uniform

transistor sizes among different branches. For the example in Figure 4.4, we can let α1 =

0.5, α2 = 1, α3 = 2 and α4 = 4. As such, only one key (0 1 1 0) can satisfy Iout =

I∗ = 3IREF . However, this approach is not good enough. In this design, even a wrong

key (q1 q2 q3 q4) = (1 0 1 0) causes current of 2.5IREF , which has limited deviation from

the desired value. Therefore, the related analog IC may still function but with some small

performance degradation. This is in sharp contrast to the locking in digital ICs, where one

bit error in the key can completely disallow the circuit to function properly.

The naïve design in Figure 4.4 has another weakness. That is, its output current in-

creases monotonically with respect the number of 1s in the key. This monotone property

allows an attacker to narrow down search space. This problem can be solved by using

PMOS current branches, which effectively generate negative current. Then, the total cur-

rent is no longer monotone function of the key. We will show how to overcome the other

difficulties by exploring a general locking architecture using Satisfiability Modulo Theo-

ries.
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4.5.2 A General Locking Architecture

We propose a general locking architecture that has a large design space for generating

secure lock. This architecture consists of an R×N array of transistors and the connection

between the key lines and the array.

One example of this architecture is illustrated in Figure 4.5. It has an array of 3 × N

control transistors. To allow further flexibility, some transistors in the array can be omitted.

For example, there is no transistor in the second row and the second column. All transistors

in the same branch (or column) have the same size. The sizes can be represented by an

N-dimensional ratio vector ~α = (α1 α2 · · · αN), where αj > 0 and αj < 0 represent the

NMOS branch and PMOS branch, respectively.

M1 M2 MN

�1

Iout

�2 �N

q1

q2

q3

q4

X
RxN

x11

x21

xR1

x12

x22

xR2

x1N

x2N

xRN

qK

Figure 4.5: An example of the proposed locking architecture. Reprinted from [3].
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The architecture has up to K key lines and the key variables are ~Q = (q1 q2 · · · qk),

qk ∈ {0, 1}, k = 1, 2, · · · , K. Please note K can be smaller than the number of con-

trol transistors and one key line can be connected with multiple control transistors. For

example, in Figure 4.5, line q3 is connected with at least two control transistors. The con-

nections can be specified by a control matrix XR×N . Each entry xij ∈ {0, 1, · · ·K} of

the matrix tells which key line the transistor at row i and column j is connected with. If

an entry is 0, the transistor is absent at the corresponding place. The control matrix for

Figure 4.5 is given below.

X3×N =


x11 x12 . . . x1N

x21 x22 . . . x2N

x31 x32 . . . x3N

 =


2 4 . . . 1

3 0 . . . 4

2 5 . . . 3

 (4.8)

For a specific design using this architecture, the bias current is decided by

Iout =
N∑
j=1

αj

R∏
i=1

φ(xij) · IREF (4.9)

where φ(xij) is the control signal at transistor of row i and column j and expressed by

φ(xij) =


qk if xij = k 6= 0,

1 else xij = 0.
(4.10)

Please note the case xij = 0 is for no transistor exists at row i and column j. For given

parameters R, N and K, Equation (4.9) tells that the current is decided by ~α, the control

matrix and the key values.

One may notice that the inputs to transistors in the same branch must be correlated to

turn on the branch and this correlation may exploited by attackers to reduce search space.
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However, circuit netlist and the correlation are not accessible by recycle-based counterfeit

attacks. Moreover, an user of our locking system can always choose R = 1 at his/her own

discretion.

4.5.3 Locking Design by Satisfiability Modulo Theories

The goal for the locking design is to find a Configurable Current Mirror (CCM) design

such that only one key can make the current mirror and thereby the entire analog IC system

function properly and all the other keys would result in large system performance deviation

or failure. In order to quantify the goal, we define parameters ∆ ∈ [0, 1] and Θ ∈ [0,∞] for

specifying the lower and upper ranges of current deviation for incorrect keys, respectively.

More specifically, we wish the current to be I∗ only for the correct key, and to be outside

the range of [1 − ∆, 1 + Θ] · I∗ for the other keys. The design problem to be solved is

formulated as follows.

Secure Configurable Current Mirror (CCM) Design: For a CCM architecture with spe-

cific R, N and K, find branch size vector ~α and control matrix XR×N such that only one

key ~Q∗ = (q1 q2 · · · qK) can make the CCM generate desired current I∗ and all the other

key values result in current outside of range [1−∆, 1 + Θ] · I∗.

This problem here is to find a feasible solution that satisfies some complicated con-

straints involving logic operations on equality and inequality. Mathematical programming

generally handles only equality and inequality constraints. Boolean satisfiability (SAT)

deals with only logic operations on Boolean variables. Therefore, it is difficult for math-

ematical programming or SAT to solve this problem. We propose to solve this problem

using Satisfiability Modulo Theories (SMT) [56], which is a fundamental extension to

SAT. SMT can describe much wider range of properties than SAT. It is usually employed

as a verification tool or constraint solver, which is the case in our work. Given an SMT

constraint, an SMT solver, iSAT [57] which is applied in [58], can find solutions of the
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variables satisfying the constraints, if those solutions ever exist.

4.5.4 Formulation of SMT Constraints

In order to facilitate the SMT solving, Equations (4.8)-(4.10) need to be transformed

into the SMT format. We introduce new variables and detailed mathematical formulations

as follows. First, we introduce a connection variable

yij,k =


1 if transistor tij is connected with key qk

0 otherwise.
(4.11)

Transistor tij is in row i and column j of the array and the values of yij,k can be easily

mapped to control matrix XR×N . In order to ensure that each transistor is connected with

no more than one key line, we enforce the following constraints

∑
∀k

yij,k ≤ 1, ∀i, j (4.12)

Then, the on/off state of transistor tij can be described by an on/off state variable

pij =
∑
∀k

yij,kqk +
∏
∀k

ȳij,k, ∀i, j (4.13)

Please note the last term on the right-hand side of the equation above is the case when no

transistor exists at row i, column j, and this is equivalent to an always-on transistor.

For a key ~Q, the bias current of Equation (4.9) can be rewritten as

I( ~Q) =
N∑
j=1

αj

R∏
i=1

pij( ~Q) · IREF (4.14)

Please note I( ~Q) is also a function of the connection variables yij,k and branch sizes ~α.
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Then, the key SMT constraint is described as

(I( ~Q∗) = I∗) ∧ (I( ~Q1) < (1−∆)I∗ ∨ I( ~Q1) > (1 + Θ)I∗)

∧ (I( ~Q2) < (1−∆)I∗ ∨ I( ~Q2) > (1 + Θ)I∗)

∧ (I( ~Q3) < (1−∆)I∗ ∨ I( ~Q3) > (1 + Θ)I∗)

∧ · · · (4.15)

where ~Q∗ denotes the correct key and ~Qi, i = 1, 2, · · · represent all the other keys. Please

note ~Q∗ is a variable whose value would be found by SMT solver. If ~Q∗ is represented by

(q1 q2 · · · qK), then a key different from ~Q∗ can be obtained by flipping one or multiple

bits of ~Q∗, e.g., (q̄1 q2 · · · qK) and (q1 q̄2 · · · q̄K).

Since I( ~Q) is also a function of ~α, which is not Boolean variable, this SMT constraint

is difficult to be directly solved by SAT. The logic operations in the constraint are also dif-

ficult for mathematical programming to directly handle. If any feasible solution exists, the

SMT solver would return values for branch sizes ~α, the connection yij,k between control

transistors and key lines, and the unique correct key ~Q∗.

The values of ∆ and Θ affect both security and the chance of finding feasible solution

by SMT. When ∆ and Θ are large, the currents from incorrect keys correspondingly have

large difference from the desired current I∗ and hence imply strong security. However, if

they are too large, it is likely no feasible solution exists for the SMT problem. On the other

hand, feasible SMT solutions can always be found for small ∆ and Θ.

Although this SMT-based approach works in theory, it faces a difficulty in practice.

That is, the number of clauses I( ~Qi) < (1 − ∆)I∗ ∨ I( ~Qi) > (1 + Θ)I∗, i = 1, 2, · · · ,

is exponential to the number key bits. To mitigate this difficulty, we partition a long key

vector into separated groups, and allocate each group to one part of analog circuit design.

We solve the SMT for each group individually, and then chain the solutions from different
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groups together.

4.6 Experiment Results and Discussion

Our proposed combinational locking technique is evaluated on four different analog

IC designs: (1) band pass filter, (2) quadrature oscillator, (3) LC oscillator and (4) class-D

amplifier. In this section, we first describe the experiment results of these four designs,

then attack to our design is discussed and area overhead result is shown at the end.

4.6.1 Experiment Result of BPF (Band-Pass Filter)

This testcase is a 4th order Gm-C BPF, which is characterized by the central frequency

fc = 250kHz, bandwidth BW = 150kHz, transition band 200kHz, and amplitude of

0dB. Implemented by two cascaded stages of 2nd order BPFs, this 4th order BPF has

the capacitances C11 = C12 = 78.95pF , fc1 = 201.6kHz, and BW1 = 83.6kHz in its

first stage, while keeping C21 = C22 = 51.34pF , fc2 = 310kHz, and BW2 = 128.5kHz

in the second stage. According to Figure 4.3, one stage of 2nd order BPF contains four

operational transconductance amplifiers, each of which needs its own bias current. In total,

there are eight current mirrors in the circuit and six of them are made to be configurable.

Let αTi represent the total relative branch size of current mirror i that leads to its desired

bias current. The ideal sizes are αT1 = 60, αT2 = 50, αT3 = 45, αT4 = 70, αT5 = 80 and

αT6 = 55.

The control transistor array XR×N is shared for the 6 current mirrors. We set R = 2

and N = 37. Please note too many control transistors in a branch would degrade the

current mirror performance due to the stacking effect. Hence, R must be a small number.

The number of key bits is set to beK = 33. The 37 branches and 33 key bits are partitioned

into the 6 current mirrors. The lower bound for bias current deviation is set to ∆ = 20%,

which is regarded as significant. Since a positive deviation, even if it is large, would rarely

degrade BPF performance, it is intentionally excluded by using Θ =∞.
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(a) Current mirror with αT1
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(b) Current mirror with αT2
= 50
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= 80

Figure 4.6: Bias currents from different keys for three current mirrors in the 4th order BPF.
Reprinted from [3].

Using our method and the SMT solver [57], the CCM-based lock is designed with a

unique correct key. Figure 4.6 shows the bias currents from different keys for 3 current

mirrors (the other current mirrors are not shown due to space limit). The horizontal solid

lines indicate the desired current levels I∗ while the horizontal dashed lines show the range

of [1 − ∆, 1 + Θ] · I∗. For Θ = ∞, we can see only one key (in red dot) can produce

current at the solid line and all the other keys result in current out of the range specified by
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∆ and Θ. Moreover, the current (or size ratio) is not a monotone function with respect to

key values.
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Figure 4.7: Normalized frequency responses of the 4th-order BPF with fc = 250kHz and
BW = 150kHz, for different keys. Reprinted from [3].

Figure 4.7 presents the frequency response of the 4th order BPF for five different keys.

The response from the correct key (in magenta circles) matches exactly with the ideal

response (the red curve). The responses from the four wrong keys exhibit remarkable

deviations from the desired one.

Statistical results for the 4th order BPF are obtained from by simulating over 8 million

different keys. Among them, results from 3.4M keys with non-zero bias current are shown

in Figure 4.8. The histogram in Figure 4.8 (a) indicates that there exist 96K keys with cen-

tral frequency within the range from 250kHz to 251kHz. However, only one key among

these 96K keys satisfies the specifications of 0dB amplitude and 150kHz bandwidth, as

shown in the histogram in Figure 4.8 (b).
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Figure 4.8: Only one key makes the BPF satisfying fc = 250kHz, BW = 150kHz and
Amplitude = 0dB. Reprinted from [3].
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4.6.2 Experiment Result of Quadrature Oscillator

Another testcase is a resistorless second-order quadrature oscillator, which is used in

many communication circuits for generating sinusoidal signals. According to [59], it con-

sists of two OTAs and two grounded capacitors C1, C2. Similar to the implementation of

OTA in Figure 4.3, each OTA could be represented by the transconductor gm and thus con-

trolled by a CCM-based lock. In our test circuit, the capacitances are C1 = C2 = 68pF ,

transconductances are gm1 = gm2 = 1mS, the target oscillation frequency is fosc =

2.34MHz and the target amplitude is 1V . The ideal sizes of the two current mirrors are

αT1 = 72 and αT2 = 63, and the lower and upper deviation bound are 20% and∞, respec-

tively.

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Time (µs)

A
m

p
lit

u
d
e
 o

f 
o
s
c
ila

ti
o
n
 (

V
)

 

 

Target Oscillation

Correct Key Curve

Wrong Key1 Curve

Wrong Key2 Curve

Wrong Key3 Curve

Wrong Key4 Curve

Figure 4.9: Normalized oscillation frequencies of the quadrature oscillator with fosc =
2.34MHz, affected by different keys. Reprinted from [3].

Figure 4.9 shows output waveforms of the quadrature oscillator for five different keys.
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It is clear that only the correct key can generate the sinusoid wave (in magenta circles)

with the same frequency and amplitude same as the target red curve. All the other key

values lead to waveforms that are quite different from the specification. Figure 4.10 is the

histogram of frequency and amplitude from 32K keys with non-zero bias current while

totally more than 65K keys are evaluated. It indicates that only one key satisfies both

frequency and amplitude specification.

Figure 4.10: Oscillation frequency and amplitude histogram of the quadrature oscillator
with fosc = 2.34MHz, for different keys. Reprinted from [3].

4.6.3 Experiment Result of LC Oscillator

In the LC oscillator, an inductive coil L and a capacitor C form the tank circuit to

store the current oscillating at the resonant frequency fosc = 1
2π
√
LC

. The current mirror

is applied to compensate the power loss during the oscillation and thus stabilizes the fre-
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quency. According to [60], the oscillation amplitude V0 is related to f 2
osc, the reciprocal of

serial resistance Rs, and the bias current I , which could be affected by the CCM. In our

circuit, the inductance L is 2nH and the load capacitance C is 3pF , so the target oscilla-

tion frequency is fosc = 2GHz. The serial resistance Rs is 100Ω, and the target voltage

amplitude is 2.3V . We partition the 8 current mirrors into two groups with ideal sizes

(αT1 αT2 αT3 αT4) = (80 75 52 64) and (αT5 αT6 αT7 αT8) = (50 90 100 67). The bias

current deviation bound is (∆,Θ) = (20%,∞).

In Figure 4.11, all combinations of the six-bit keys for the 7th current mirror are pre-

sented in decimal format along the horizontal axis. Only the correct key (in red dot)

reaches the target voltage V0 = 2.3V , and all the other key values lead to degraded ampli-

tude. Again, the amplitude does not change monotonically with respect to key values.
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Figure 4.11: Oscillation amplitudes of the LC oscillator with fosc = 2GHz for all combi-
nations of 6-bit key for CCM7. Reprinted from [3].
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4.6.4 Experiment of Class-D Amplifier

Before performing signal amplification, a class-D amplifier needs to transform au-

dio input waveform into pulse-width modulation (PWM) signal by comparing it with a

triangular reference signal. Embedded in class-D amplifier [61], the triangle generator

provides this reference signal by connecting the periodic charging current IChg and dis-

charging IDChg current, which are supplied by the CCMs, to a load capacitor CTRI and

extracting the voltage across it. In our test, the circuit is characterized by the clock fre-

quency fREF = 2.5GHz, load capacitance CTRI = 1pF , the high voltage VH = 600mV ,

and the low voltage VL = 400mV . To protect this system, we make the four current mir-

rors configurable. Their ideal sizes are (αT9 αT10 αT11 αT12) = (73 73 92 110). The key

has 74 bits and the other designs are similar to those of the LC oscillator in Section 4.6.3.
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Figure 4.12: Triangular waveforms of the generator for different keys for two current
mirrors, CCM9 and CCM10. Reprinted from [3].
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In Figure 4.12, results for a triangular waveform generator are shown with four differ-

ent keys. In the ideal waveform, since the charging current IChg and discharging current

IDChg are balanced, the voltage over the capacitor exhibits symmetric rising and falling

slopes. Again, only the curve (in magenta circles) for the correct key has the same be-

havior as the specification, and the waveforms from the other keys either has too low

amplitude or amplitude drifting. The amplitude error histogram is shown in Figure 4.13,

where over 65K keys are evaluated and only 56K keys have non-zero bias current. Only

one key induces zero error as expected.
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Figure 4.13: Amplitude error histogram of the triangle generator with ∆ = 30% and
Θ =∞, for different keys. Reprinted from [3].

4.6.5 Security Protection Level and Attack Analysis

Our technique is mainly to defend against reverse engineering and recycle-based coun-

terfeit. In general, the security level or attack effort for the proposed locking system is
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exponential to the key bitwidth. On the other hand, key bitwidth is associated with area

overhead. We design key bitwidth for two different cases.

• Case 1: short key bitwidth, 16 − 32 bits, protecting small analog IC against ad hoc

attacks.

An ad hoc attack is usually by individuals or a small team with very basic equip-

ment. They tend to perform random or brute force attack manually. More specifi-

cally, they input each key value manually and watch circuit output using instrument

like oscilloscope to judge if a key value is correct. Each of inputing key value and

simple analysis of circuit output takes several seconds. Thus, it is reasonable to

spend 10 seconds for evaluating one key value. If one works 12 hours a day to

conduct brute force attack to a 16-bit key, it would take more than a half month to

ensure success in finding the correct key value. Please note such attack can only

find the correct key value of one specific chip. In order to know the correct common

key for all chips of one design, the attackers need to know chip identification, which

is embedded inside each chip. Ad hoc attack teams can only measure signals at chip

I/O pins and hence cannot access chip identification. Spending a half month to un-

lock only one specific small chip is not economically worthwhile. Therefore, short

key bitwidth is generally effective to defend against ad hoc reserve engineering and

recycle-based counterfeit.

• Case 2: long key bitwidth, > 32 bits, protecting large IC against sophisticated at-

tacks.

In this case, an attack is conducted by a team with advanced equipment and related

expertise. As such, they can perform the attack automatically. That is, they can pro-

gram an equipment to generate and feed trial key values to the analog IC and analyze

the output response. In general, analyzing analog output is much more time con-

suming than that for digital circuits. Consider an example that an attacker attempts
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to find the central frequency of BPF. Using Agilent PXA X-Series signal analyzer,

the attacker needs to sweep 10MHz span with a 30kHz resolution bandwidth and

it takes 73.73ms to analyze one output result [62]. Other analog characteristics,

such as settling time and linearity, also require long analyzing time. If one output

evaluation takes 10ms, a 35-bit key would require 10 years of continuous trials to

find the correct key value.

Sophisticated attackers may use optimized approaches instead of brute force method.

Like in [2], they can define the error between observed output and desired output in spec-

ification, and use optimization algorithms, such as simulated annealing and genetic algo-

rithm, to search for the key value that minimizes the error. To defeat such attack, our

design makes the bias current and thereby circuit output non-monotonic and non-convex

with respect to key values. For example, the amplitude mean square error (MSE) of the 4th

order BPF with respect to sub-key values of two current mirrors is plotted in Figure 4.14.
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BW = 150kHz and Amplitude = 0dB. Reprinted from [3].
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In this figure, only one point corresponds to the correct sub-key value while the MSEs

for the other values are not monotone. As such, the required attack time for optimization

algorithms is not much different from brute force search. Please note the complete case of

the 4th order BPF is much more complicated than Figure 4.14 as there are 4 other current

mirrors, and central frequency as well as bandwidth have to be correct in addition. For the

4th order BPF design, we use 33 bits key. To test attack in an easier case, we fix 10 bits of

the key with correct values and apply simulated annealing attack to the remaining 23 bit

keys. Even after 10K iterations, the simulated annealing cannot find the correct key value.

4.6.6 Area and Design Overhead

The area overhead introduced by the combinational locking design mainly includes:

(1) additional current mirror branches, (2) switch transistors, (3) XOR gates, (4) access

circuit, and (5) chip identification such as PUF. Item (1), (2) and (3) are part of our design

and can be estimated directly. We estimate the area of access circuit assuming the use of

scan chain. The chip identification area overhead is based on the PUF design in [63] with

0.18µm technology. The overall area overhead accounting for these 5 items is summarized

in Table 4.1. The 4th order BPF is designed with two cascaded 2nd order BPFs [54].

Table 4.1: Area overhead and key bitwidth. Reprinted from [3].

Original Area Tech. Key
Circuit Area Overhead Percent Node bits

(µm2) (µm2) (µm)
Quadrature Osc. [59] 68,210 3,380 4.96% 0.18 16
2nd order BPF [54] 79,202 4,807 6.07% 0.18 22

4th order BPF 131,126 7,171 5.47% 0.18 33
LC Oscillator [60] 95,000 6,304 6.64% 0.13 46
Class-D Amp. [61] 1,500,000 11,558 0.77% 0.13 74
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Table 4.2 lists the computing runtime for iSAT to solve the CCM design. In this exper-

iment, the SMT based CCM design is implemented in C/C++ and run on a Linux server

with AMD-V 2.3GHz processor. To generate a CCM design and 33-bit key, the SMT

solver [57] takes about 4 minutes runtime and thus the design overhead is small.

Table 4.2: Runtime for solving the SMT for different bitwidths. Reprinted from [3].

16 bits 22 bits 33 bits 46 bits 74 bits
CPU (s) 31.86 96.89 214.80 327.14 462.75
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5. SUMMARY AND CONCLUSIONS

In this dissertation, we discuss three circuit adaptivity applications to overcome the

challenges coming from the variations and pirated devices. Firstly, a variation aware

technique is proposed to achieve the joint gate implementation selection and adaptivity

assignment of adaptive body bias circuit. The novelty of solving the redundant count-

ing on the reconvergence path is included without increasing the time complexity of our

algorithm. Experiments show that this technique leads to the substantial reduce of adap-

tivity overhead. In the second work, we implement an on-chip self validation platform for

the post calibration of diverse analog circuits. The combination of Simulated Annealing

and Sensitivity algorithm provides a balance between exploring the whole solution space

and exploiting a local solution area. The effectiveness of our work is demonstrated by

chip measurement and simulation. A further extension is to implement all the function-

ality through a reconfigurable chip which provides comprehensive flexibility to the cost

function and optimization engine with a feasible cost of area consumption. In the last ap-

plication, we proposed a novel idea to design a digital lock with the current mirror which

is prevailing in analog circuits. The difficulty of finding the unique key as well as the non-

Boolean size of the analog component is solved by the Satisfiability Modulo Theories. The

maximal area overhead of this design is around 7%, yet it could guarantee a more than 10

years’ security level to beat the sophisticated hackers with a negligible design time.
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