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ABSTRACT 

 

Single-case experimental designs remain outside of mainstream methodology 

despite their substantial contributions to our understanding of human behavior. An 

obstacle to wider adoption is the lack of consensus regarding the analysis and meta-

analysis of single-case data. Many single-case statistical methods have been proposed; 

nearly all are limited by the incompleteness of their models or their lack of formal 

statistical development, both limitations that inhibit research synthesis and knowledge 

building. 

This dissertation, presented in three manuscripts, introduces a simulation-based 

method of analysis and meta-analysis for single-case experimental designs. Interrupted 

Times-Series Simulation (ITSSIM) estimates treatment effect sizes by modeling level, 

trend, variance, and autocorrelation parameters. Parameter estimates are naturally 

imprecise in brief time-series. ITSSIM compensates for this imprecision by using an 

iterative procedure to model many plausible parameter values given the observed data. 

ITSSIM calculates an effect size by comparing a distribution of plausible “null 

effects”—the no-treatment predictions based on baseline data—to a distribution of 

plausible treatment effects. ITSSIM effect size estimates, reported as correlation 

coefficients, standardized mean differences, or unstandardized effects, are interpretable 

for both clinical practice and quantitative research synthesis.  

Three studies provide evidence for the content validity, construct validity, and 

criterion validity of ITSSIM effect size estimates using theoretical, comparative, and 



 

iii 

deductive strategies, respectively. The first study establishes the theoretical rationale for 

single-case simulation methods generally, and ITSSIM specifically. ITSSIM produced 

effect size estimates comparable to five sophisticated multilevel methods when a study 

of disruptive classroom behavior was reanalyzed. In the second study, ITSSIM produced 

mean effect size estimates consistent with similar meta-analyses of group-design 

research. The third study field tests a new software tool for simulation research of single-

case statistics. ITSSIM performed reliably under a variety of simulation conditions, 

controlling for baseline trend and autocorrelation. 

The results from these three studies indicate that ITSSIM is a powerful, 

comprehensive method for analysis and meta-analysis of single-case experimental 

designs. ITSSIM effect size estimates are consistent with other, previously published 

single-case statistics, and it yields reasonable results even under extreme simulation 

conditions. ITSSIM is recommended to single-case investigators who wish to better 

understand their single-case data and treatment effects.   
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CHAPTER I  

INTRODUCTION  

 

Single-case experimental designs are “poised for a resurgence” in psychological 

research (Smith, 2012, p. 510). Single-subject time-series experiments have a rich 

history in psychology, and they are used with increasing frequency in published studies. 

Many early discoveries in learning, behavior, and cognition were due to carefully 

controlled longitudinal studies of individuals (e.g., Ebbinghaus, 1885; Fechner, 1889; 

Jones, 1924; Piaget, 1952; Watson & Rayner, 1920; Skinner, 1938). Yet these designs 

have failed to achieve mainstream methodological status because of deep 

epistemological differences between the single-case design and groups sample designs, 

which have dominated the field since the mid-20th century (Baer, 1977; Morgan & 

Morgan, 2001). 

Single-case experimental designs have many advantages. Similar to randomized 

controlled trials (RCTs), single-participant interrupted time-series experiments can 

demonstrate causal treatment effects (APA Presidential Task Force on Evidence-Based 

Practice, 2006; Barlow & Hersen, 1984; Campbell & Stanley, 1963). “Gold standard” 

RCTs have been criticized for producing results that are not generalizable to the 

idiosyncratic and idiographic nature of individualized treatment (Castelnuovo et al., 

2004; Garfield, 1996; Seligman, 1995; Westen et al., 2004). However, practitioners in 

applied settings can conduct clinically relevant single-case designs (Hilliard, 1993; Jones 

et al., 1993; Persons & Silberschatz, 1998). Not only is there fidelity between single-case 



 

2 

designs and the settings in which most psychological interventions are delivered to 

consumers, but the studies can also be conducted with a fraction of the resources 

required of “large-n” RCTs (Barlow & Nock, 2009). Single-case research methods are 

also valuable to practitioners who wish to demonstrate their treatment efficacy, given the 

growing emphasis on evidence-based treatments in education and healthcare (Morgan & 

Morgan, 2001; Shadish et al., 2008). 

Validity of Single-Case Statistical Methods 

Most single-case investigators evaluate treatment effects by visual inspection of 

graphed data (Brossart et al., 2006; Busk & Marascuilo, 1992; Kratochwill & Brody, 

1978). Unfortunately, visual analysis is often unreliable, with different judges assigning 

different ratings to the same graphs (Danov & Symons, 2008; DeProspero & Cohen, 

1979; Harbst, Ottenbacher, & Harris, 1991; Park, Marascuilo, & Gaylord-Ross, 1990; 

Lieberman et al., 2010; Ximenes, Manolov, Solanas, & Quera, 2009). Statistical 

methods, on the other hand, are not threatened by inter-rater reliability problems. As 

Franklin et al. (1996) stated, “Analysts using statistical techniques may disagree about 

the appropriate model for evaluating differences in dependent variables but, once 

applied, statistical models always provide the same result when calculated properly” (p. 

150). Statistical methods are a reliable alternative to visual analysis, but reliability does 

not guarantee validity.  

An obstacle to wider adoption of single-case methods is the lack of consensus 

regarding the statistical analysis of brief interrupted time-series single-case data. Large-

sample clinical researchers use statistics to reliably quantify treatment effects and 
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describe participant characteristics. Single-case investigators also need to know if an 

experimental treatment is effective and how effective it is relative to other interventions. 

However, well-established time-series analysis methods (e.g., Box & Jenkins, 1970; 

Glass, Willson, & Gottman, 1975) require longer data sets than are typically available to 

single-case investigators.  

In the absence of one agreed upon analytic approach, a host of single-case 

statistics have proliferated (Brossart et al., 2011; Campbell, 2004; Ma, 2006; Parker et 

al., 2005, 2006, 2007, 2011; Parker & Hagan-Burke, 2007; Manolov & Solanas, 2009, 

2013; Manolov et al., 2011; Parker & Vannest, 2009; Parker, Vannest, & Davis, 2011; 

Shadish, Hedges, & Pustejovsky, 2014; Tarlow, in press; Vannest et al., 2012; Wolery et 

al., 2010). Most methods are similar in that they estimate treatment effects by comparing 

outcomes under a no-treatment condition (i.e., the baseline/A phase) with the outcomes 

from a treatment condition (i.e., the experimental/B phase). However, that similarity 

aside, these statistics differ in as many ways as there are methods. How statistics model 

interrupted times-series data—and the parameters that are included and excluded from 

analysis—is an important point of contrast between effect size indices. Some effect size 

indices quantify treatment effects in terms of average outcomes, or “last day” outcomes, 

or phase nonoverlap between A and B phases, or some other conceptual framework. 

Some methods account for participants’ change over time beyond the effects of 

treatment, which could include baseline trend patterns or autocorrelated error structures 

(i.e., serial dependency). Some methods assume data are normally distributed (an 

assumption with convenient statistical implications), whereas other methods make no 
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such assumption. Some methods make direct A phase-to-B phase comparisons when 

calculating an effect size, whereas other methods contrast observed treatment outcomes 

(i.e., B phase data) with predicted “null effect” outcomes inferred from baseline phase 

observations. Unfortunately, it is rarely clear to the single-case investigator which 

parametric assumptions—and consequently, what statistical methods—are appropriate 

for any given data set. Given the diversity of data analytic approaches to single-case 

designs, it is not surprising that one data set may yield substantially differing estimates 

of treatment effect, depending on the effect size statistic used. Of course there is only 

one true treatment effect for an experiment, but it is rarely known which statistical model 

best represents reality. 

If different statistics give different effect size estimates for the same experiment, 

then not all statistics can be valid for that experiment. Methodologists have tackled this 

problem with theoretical, comparative, and deductive strategies. Respectively, these 

strategies address the content validity, construct validity, and criterion validity of the 

single-case statistical methods.  

Content Validity 

A purely theoretical approach involves deep scrutiny of the assumptions 

underlying different statistics. Methods are rejected when their assumptions are deemed 

untenable for a given experimental design, i.e., they lack the content validity (or face 

validity) necessary for effect size estimation (e.g., Allison & Gorman, 1993; Baer, 1977; 

Tarlow, in press; Wolery et al., 2010).  
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Construct validity  

In comparison-based strategies, the effect size estimates of multiple statistics are 

compared to determine how well different methods concur. When different statistics 

tend to yield the same conclusions (e.g., their effect size estimates are highly correlated), 

convergent validity (an aspect of construct validity) is conferred to the methods, or 

withheld in the case of disagreement (e.g., Brossart et al., 2006; Campbell, 2004; 

Crosbie, 1995; Parker & Brossart, 2003; Parker & Vannest, 2009; Parker, Vannest, & 

Davis, 2011).  

Criterion Validity  

The deductive approach often involves the use of artificial simulated single-case 

data sets with known parameters. A statistical method is used to estimate effect sizes for 

these hypothetical time-series, with an a priori hypothesis about the results based on the 

knowledge of simulation parameters. For example, a “null effect” interrupted-times 

series could be created in which the treatment had no effect on the participant’s 

outcome; however, a baseline trend is included so that the outcome of the hypothetical 

participant is slowly improving throughout both phases of the experiment. In this 

example, the investigator can hypothesize that a valid statistical method should yield an 

effect size estimate of zero. Yet many single-case statistics fail to model baseline trend, 

and would thus yield nonzero positive treatment effect size estimates. These methods 

lack predictive validity (a type of criterion validity). This deductive approach has been 

used to “stress-test” single-case statistics to determine how violations of trend, 

autocorrelation, phase length, and distributional assumptions threaten the methods’ 



 

6 

validity (Allison & Gorman, 1994; Crawford & Garthwaite, 2006; Gorsuch, 1983; 

Manolov & Solanas, 2008, 2009, 2012, 2013; Manolov et al., 2011; Matyas & 

Greenwood, 1990; Smith et al., 2012; Solanas, Manolov, & Onghena, 2010; Tarlow, in 

press; Ugille et al., 2012). 

Replication, Meta-Analysis, and Advanced Statistical Methods 

Single-case research is intrinsically tied to experimental replication (Morgan & 

Morgan, 2001). Investigators wish to find effective treatment protocols for one 

individual, determine if those treatments work in other similar individuals, and when 

they fail to replicate, explore why not in an ideographic way. Single-case research is 

therefore epistemologically—but not always statistically—complementary with meta-

analysis, i.e., the aggregation and synthesis of many research findings, or the “analysis 

of analyses” (Glass, 1976). There are many methods of estimating treatment effect sizes 

in single-case experiments, but only some of those methods permit the quantitative 

synthesis of results across cases and/or studies. Standard meta-analytic methods are not 

practical with many single-case effect size indices because those statistics lack the 

necessary formal statistical development—for example, their distributions may be 

unknown (e.g., unspecified standard errors), or they may fail to adequately model data 

parameters such as autocorrelation, which can influence the weights of combined effects 

(Shadish, 2014b; Shadish et al., 2008). Meta-analysis of single-case research is also 

complicated by an “apples and oranges” problem (Jenson et al., 2007). Effect sizes from 

single-case designs are often nominally larger than those for group design studies, so it is 

unclear how, and if, effects can be aggregated across both types of studies (see also 
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Parker et al., 2005). 

Sophisticated multilevel methods have been applied to single-case data to model 

complex data structures and pool variance from stratified cases in order to improve the 

reliability of parameter estimates (Moeyaert et al., 2014; Rindskopf, 2014; Shadish, 

Hedges, & Pustejovsky, 2014; Shadish, Zuur, & Sullivan, 2014; Swaminathan et al., 

2014; Van den Noortgate & Onghena, 2003, 2007, 2008). One limitation of multilevel 

modeling is the statistical sophistication and interpretive nuance required to conduct 

these analyses. Multilevel methods may not be a realistic option for some single-case 

investigators, who are often practitioners first and clinical scientists second (Parker & 

Vannest, 2012). Simpler statistical methods remain popular in single-case research, 

whereas complex ones (which may be more valid) are neglected due to their lack of 

utility (Schlosser et al., 2008).   

As discussed above, computer-intensive simulation methods are often used to 

evaluate the criterion validity of single-case statistics; however, simulation models can 

themselves be used to estimate treatment effects. Simulation methods are based on 

bootstrapping. Wilcox (2001) stated, “The basic idea behind all bootstrap methods is to 

use the data obtained from a study to approximate the sampling distributions used to 

compute confidence intervals and test hypotheses” (p. 95). Boostrap methods offer a 

conceptual middle-ground between Bayesian estimation, which is based on applying 

prior beliefs to predictions, and frequentism, which emphasizes the probabilities of 

statistics under repeated use (Efron, 2013). In a bootstrap analysis, observed data are 

resampled many times in order to produce a sampling distribution for a statistical metric. 
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This strategy is useful because it does not make strict assumptions about the distribution 

underlying the observed data (as in a frequentist approach)—and in that way observed 

data are treated similarly to Bayesian priors. At the same time, creating a sampling 

distribution from repeated statistical measurements is an essentially frequentist 

strategy—but without the parametric assumptions (normality, etc.) which often vex 

frequentist methods. As Efron put it, “The bootstrap is a frequentist machine that 

produces Neyman-like confidence intervals far beyond the point where theory fails us” 

(p. 140).  

Simulation Modeling Analysis (SMA), developed by Borckardt et al. (2008), is 

the only simulation-based method for single-case effect size estimation that has been 

widely adopted. SMA was developed to address the problem of autocorrelation 

estimation in single-case time-series. Autocorrelation can greatly distort effect size and 

probability estimates when not accounted for in many single-case statistics (Brossart et 

al., 2006; Crosbie, 1987; Ferron, 2002; Manolov & Solanas, 2008; Matyas & 

Greenwood, 1991). Unfortunately, autocorrelation estimation is unreliable in brief time-

series (Huitema & McKean, 1991, 2000a; Solanas, Manolov, & Sierra, 2010). To 

address this problem, SMA uses the autocorrelation estimate from observed data to 

simulate thousands of artificial time-series. Simulated data are then used to create a 

sampling distribution for SMA’s main effect size metric, a Pearson r correlation, which 

will yield probability estimates that are more accurate than standard p values. Simulation 

methods like SMA are useful because they can be easily implemented via user-friendly 

software and they do not require many data sets like multilevel modeling.  
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Summary of the Problem  

Single-case experimental designs are increasingly popular across many fields in 

education and psychology. These designs can aid in the development of clinically 

relevant evidence-based treatments, and they are accessible to a wide range of 

practitioners and applied scientists. However, the lack of agreed upon statistical methods 

is a barrier to wider adoption of single-case designs. While there are many proposed 

statistical methods for single-case effect size measurement, none have emerged as 

superior. Few of the available statistics yield effect size estimates appropriate for meta-

analysis, further complicating quantitative synthesis and knowledge-building. Multilevel 

modeling is one area of recent innovation, but many investigators and research 

consumers may find those methods difficult to implement and interpret. Multilevel 

modeling also requires many single-case data sets, so it is also not a true “N-of-1” 

method. Computer-intensive simulation methods have been applied to single-case data 

analysis with promising results (Borckardt et al., 2008), though this area requires further 

development. New statistical methods, simulation-based or otherwise, should be 

evaluated with theoretical, comparative, and deductive strategies to determine their 

content validity, construct validity, and criterion validity, respectively. 

Plan for Studies 

This dissertation, presented in three manuscripts, proposes a new simulation-

based method of measurement and meta-analysis for single-case experimental designs. 

Interrupted Time-Series Simulation (ITSSIM) models a comprehensive set of data 

parameters, including level, slope, variance, and autocorrelation effects, and its effect 
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size estimates are based on empirical distributions of simulated data, similar to a 

bootstrap design. ITSSIM also yields a standardized mean difference effect size estimate 

that is appropriate for meta-analysis.  

The first manuscript (Chapter II) presents the theoretical rationale for ITSSIM in 

order to provide evidence for content validity of its results. ITSSIM is also compared to 

five multilevel methods outlined in a special issue of the Journal of School Psychology, 

to determine if ITSSIM effect size estimates concur with the results from other 

sophisticated methods.  

In the second manuscript (Chapter III), ITSSIM is used to meta-analyze ten 

recently published single-case studies of cognitive therapy for depression, with 53 total 

cases. The ITSSIM meta-analysis results are also compared to meta-analyses performed 

with five other (non-multilevel) statistical effect size indices. This study provides 

additional evidence of the construct validity of ITSSIM’s effect size estimates. 

The third manuscript (Chapter IV) presents a software tool, Interrupted Time 

Series Lab (ITSLAB), for conducting computer-intensive simulation research on single-

case effect size statistics. ITSLAB is used to “stress test” ITSSIM (via “simulations of 

simulations”) and five other single-case statistics under a range of simulation models. 

This study provides evidence of criterion validity by demonstrating how ITSSIM yields 

the results expected under various parametric assumptions. 
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CHAPTER II  

A COMPREHENSIVE METHOD OF  

SINGLE-CASE DATA ANALYSIS:  

INTERRUPTED TIME-SERIES SIMULATION (ITSSIM) 

 

Abstract 

Single-case experimental data are analyzed with a variety of statistical methods, 

but no one effect size measure has demonstrated clear superiority. The time-series nature 

of single-case designs requires special consideration for deterministic processes like 

baseline trend and autocorrelation when estimating treatment effect size. However, 

standard correction methods are limited because they assume perfectly precise statistical 

estimation. Two emerging approaches address the poor precision of single-case effect 

size indices: multilevel modeling and computer-intensive simulation. A new simulation-

based method, Interrupted Time-Series Simulation (ITSSIM), is introduced and 

compared to multilevel methods. ITSSIM performed similarly to multilevel methods in a 

small field-test. It may be a useful option for single-case investigators because it yields 

easily interpretable effect size and reliability (standard error) estimates and it models 

several important data parameters, including baseline trend, level- and slope-change 

effects, and autocorrelation. ITSSIM is also accessible as a user-friendly standalone 

software application that requires no knowledge of statistical computing or syntax. 

Introduction 

Single-case experimental designs are an increasingly popular method in 
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educational and clinical research (Smith, 2012). Single-case methods can resolve major 

challenges faced by investigators in applied behavioral, educational, and other social 

science fields. Case-based interrupted time-series experiments can demonstrate causal 

treatment effects, similar to randomized controlled trials (APA Presidential Task Force 

on Evidence-Based Practice, 2006; Barlow & Hersen, 1984). Because these designs are 

easy to implement in clinical settings, they can bridge the scientist-practitioner divide 

(Borckardt, 2008). They are also accessible to a broad range of investigators because 

they do not require the considerable resources of large sample studies (Barlow & Nock, 

2009; Morgan & Morgan, 2001). An unresolved issue in single-case research is the lack 

of consensus about the analysis of brief interrupted time-series data. Most single-case 

studies evaluate data with visual analysis—a time-honored but often unreliable approach 

(Brossart, Parker, Olson, & Mahadevan, 2006; Danov & Symons, 2008; DeProspero & 

Cohen, 1979; Harbst, Ottenbacher, & Harris, 1991; Park, Marascuilo, & Gaylord-Ross, 

1990; Lieberman et al., 2010; Ximenes, Manolov, Solanas, & Quera, 2009). Statistical 

methods are a useful complement to visual analysis; however, no single method of 

statistical analysis has demonstrated superiority over the other methods. This is a 

problem for investigators, as different statistical methods may lead to different 

conclusions about the same data. 

An ideal single-case statistical method should meet several criteria. First, a 

single-case statistic should at a minimum yield an easy-to-interpret effect size for 

comparing the magnitudes of experimental treatment outcomes (Maggin & Odom, 

2014). Second, a single-case statistic should quantify the precision of the effect size 
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estimate; for example, small highly reliable effects may be more desirable than large 

inconsistent effects. Reliability indicators, such as a standard error, are also useful for 

meta-analysis of multiple single-case experiments. Third, a good single-case statistic 

should model interrupted time-series data accurately; it should incorporate the data 

parameters which are known to affect participant responses over time. There has been a 

great deal of discussion about which parameters should be included in the statistical 

analysis of single-case data. The most discussed parameters involve deterministic 

processes which affect behavior over time, such as baseline trend and serial dependency 

(i.e., autocorrelation). Trend and autocorrelation are among the most vexing challenges 

to single-case statistical analysis (Tarlow, in press; Wampold, 1988). Fourth, analytic 

methods should be accessible to as wide a range of investigators as possible (Parker & 

Vannest, 2012; Shadish, 2014b). This includes practitioners and applied researchers who 

may or may not have received advanced training in statistical methodology. 

Accessibility is enhanced when investigators can understand and apply statistical 

methods to their own data and interpret results appropriately in order to answer their 

research and/or practice questions. 

Interrupted Time-Series Simulation (ITSSIM) is a new method of statistical 

analysis that aims to address the four criteria outlined above. ITSSIM effect sizes are 

estimated via Monte Carlo simulation modeling, where data parameters are estimated 

from an observed single-case data set and treatment effects are calculated for a range of 

plausible conditions. Essential to the ITSSIM method is the assumption that one 

observed time-series may be explained by many plausible effects and conditions. 
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ITSSIM determines what treatment effect size is most likely (and how reliable that effect 

is) based on the many possible conditions which could plausibly yield the observed data. 

ITSSIM differs from many other single-case statistics in that it does not attempt 

to “control” for data patterns such as baseline trend and autocorrelation. Instead, ITSSIM 

models the uncertainty introduced by these time-dependent processes when calculating 

an effect size. Before ITSSIM is formally introduced, some limitations of conventional 

single-case control methods will be illustrated. These limitations will establish the 

rationale for simulation-based effect size statistics like ITSSIM. 

Limitations of Statistical Control 

Historically, single-case experiments were the primary tool of behavioral 

researchers and applied behavioral analysts. Early operant conditioning researchers 

demonstrated subtle, and often elegant, manipulations of human and animal behavior via 

the controlled case study (e.g., Skinner, 1948). Those investigators, and the applied 

methods they pioneered, emphasized experimental control above nearly all other aspects 

of research. Early behaviorists pointed out that with a very high degree of control over 

the extraneous (and potentially confounding) aspects of the experiment, the investigator 

could uncover the underlying mechanisms of behavior and intervene accordingly to 

produce change in the subject.  

Sidman (1960) stated, “Experimental control is as basic to our understanding of 

behavior as it is to our manipulation of behavior” (p. 342). Skinner (1956) said even 

more succinctly, “Control your conditions and you will see order” (p. 223). Behaviorists 

argued that sufficient experimental control eliminated the need for large samples and 
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statistical analyses. Their position signaled an enduring philosophical divide in 

psychology (see Morgan & Morgan, 2001) between experimental and statistical 

methodologies, described famously by Cronbach (1957): 

The well-known virtue of the experimental method is that it brings situational 

variables under tight control. It thus permits rigorous tests of hypotheses and 

confident statements about causation. The correlational method, for its part, can 

study what man has not learned to control or can never hope to control. (p. 672) 

Single-case research has since outgrown the behavioral laboratory. Brief 

interrupted time-series methods are frequently applied to a host of applied and clinical 

problems that, for ethical and practical reasons, investigators have little hope of 

controlling experimentally (Barlow & Hersen, 1984). And just as Cronbach (1957) 

described, single-case investigators have come to rely on statistical methods to control 

what their designs cannot. 

The following discussion will illustrate the limitations of statistical control with 

two challenges faced by single-case investigators: the problem of baseline trend and the 

problem of autocorrelation. Both problems involve analyzing data that has some time-

dependent deterministic process which confounds a straightforward pre-treatment/post-

treatment (or A phase/B phase) comparison.  

Baseline Trend  

For the trend problem, consider the dilemma of the recovering patient. If prior to 

treatment the patient is already improving during the baseline phase, and then the patient 

fully recovers during treatment, one cannot infer that the recovery was due solely (or 
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maybe even partly) to the effects of the treatment. Perhaps the patient would have 

recovered just the same without intervention. Or perhaps the patient would have 

recovered more quickly were it not for some unexpected noxious effect of the treatment.  

Single-case investigators have proposed a number of statistical trend control 

methods which aim to remove the influence of baseline trend from both phases (Tarlow, 

in press). Most methods control trend by first estimating a baseline trend parameter, and 

then statistically removing the effect of the estimated trend from both A and B phases. In 

theory, the “corrected” baseline data no longer contain observable trend, and whatever 

effects are leftover in the corrected treatment phase data (level-change, slope-change, or 

otherwise) are assumed to exist beyond the influence of baseline trend, which has been 

statistically removed. There is a general consensus about this approach among single-

case statistics that account for baseline trend, though the methods of trend estimation and 

correction vary by method. Most, but not all, proposed trend correction methods assume 

linear trend patterns; trend may be estimated with parametric or nonparametric statistical 

models; it may be assumed that all data are trended and in need of correction, or it may 

be assumed that data are stable and untrended unless proven otherwise.  

Unfortunately, despite the variety of correction methods, few single-case 

statistics explicitly account for the reliability or unreliability of baseline trend estimates. 

This limitation raises several questions. Should any detected trend be corrected? What if 

observed trends are simply due to the chance variability of the sample data, and no real 

trend exists? Parker, Vannest, Davis, and Sauber (2011) recommended that investigators 

control trend when an observed baseline trend coefficient falls above a given cutoff 
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point. But what if the observed trend, which might be based on only a few data points, is 

very different than the true (unobserved) trend value? In that case, the effect size 

calculated from “corrected” data will bear little resemblance to the true treatment effect. 

Tarlow (in press) recommended trend correction only when observed baseline trends 

were statistically significant; essentially, a null hypothesis of no trend must be rejected 

before the investigator alters observed data. While this approach emphasizes the problem 

of low power in trend detection methods, null hypothesis significance testing is not 

guaranteed to yield accurate parameter estimates (Cohen, 1994). An investigator with a 

highly statistically significant baseline trend coefficient may know very little about the 

true trend that needs correction—the investigator knows only that the true trend is 

probably not zero. Other single-case effect size statistics disregard hypothesis testing 

completely, and incorporate a baseline trend correction automatically and regardless of 

the trend’s magnitude or statistical significance (Allison & Gorman, 1993; Manolov & 

Solanas, 2009, 2013; White & Haring, 1980).  

Trend correction is risky when the accuracy of the trend parameter estimate is 

unknown. To illustrate, consider the hypothetical time-series in Figure 1. This time-

series of 100 data points was generated from a random white noise signal with normally 

distributed error residuals and unit variance (s2 = 1.00). The series follows a linear trend 

with slope β = 0.20. Suppose an investigator observes a baseline of ten points from the 

Figure 1 data (the other 90 points are unobserved). What might the investigator conclude 

about trend from the observed data, and how accurately would those observations reflect 

the true trend parameter of β = 0.20?  
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Figure 1. Hypothetical time-series with corrections for trend (n = 100). Original data is 
displayed in the top graph. In the bottom graph, trend was removed using the known 
slope parameter, β = 0.20 (dark line) and removed using an estimated slope from each 
interval of 10 data points (light line), resulting in an unwanted reduction of variance. 

The Figure 1 time-series is partitioned into brief time-series of ten points each. 

Suppose each sample of ten points is corrected for baseline trend via ordinary least 

squares (OLS) regression—but the correction is based only on the estimated trend in the 

ten-point sample, not the “unknown” true parameter of β = 0.20. In some cases, the 

estimated trend will be less than the true parameter, and in other cases it will be greater 

than the true parameter. Presented the bottom graph of Figure 1 are two corrected time-

series. In one corrected series, baseline trend was controlled with the trend estimates of 
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each ten-point sample; in the other, trend was controlled with the true population 

parameter (it is noted that investigators never know the true parameters of their data—

only the precision of their statistical estimates).  

Although the two corrected time-series in Figure 1 appear similar, there is one 

important difference. The variance of the time-series which was corrected with the true 

trend parameter is unchanged from the original data, s2 = 1.00. However, the variance of 

the time-series corrected with the sampled trend parameter estimates was reduced by 

over 20%, s2 = 0.78. The loss of variance represents an overfitting which occurs when 

trend estimates are influenced by random noise in the time-series sample. Simply put, 

this time-series has lost 20% of the information contained in the original data—

essentially, one fifth of the original information was mistaken for trend and removed. 

Any inferences made from the overcorrected data should take into account this reduction 

in variance; failure to do so could distort conclusions about the influence of trend, 

treatment future treatment effectiveness, and any other data properties.  

Here is the crucial point of this heuristic example: nearly all baseline trend 

control methods in single-case research assume that trend estimates are perfectly 

precise. A trend coefficient is estimated and then data are corrected and analyzed. There 

is rarely any account for the unreliability of trend parameter estimates. In addition, as the 

length of baseline series decreases, so does the accuracy of trend parameter estimates. If 

the Figure 1 data were instead partitioned into brief time-series of five points, the 

corresponding reduction in variance from trend correction would increase from 20% to 

nearly 40% (s2 = 0.63). This result should be of great concern to single-case 
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investigators, who may be drawing conclusions from “trend controlled” data that have 

little resemblance to reality.  

Autocorrelation 

Just as single-case methods rarely account for the precision or imprecision of 

trend parameter estimates, the same is true for autocorrelation parameter estimates. 

Some have advocated for ARIMA “back-casting” or “cleansing” autocorrelation before 

single-case data are analyzed	(Parker et al., 2006, 2011). The rationale is similar to trend 

correction: an autocorrelation parameter is estimated from observed data, then data are 

altered to remove the influence of the estimated autocorrelation, then an effect size is 

calculated. Also like trend correction, this type of data cleansing can only be performed 

with an exact estimate of the autocorrelation parameter—i.e., the estimate is assumed to 

be perfectly precise. Unfortunately, autocorrelation estimation requires a very large 

number of data points to yield reliable parameter estimates, far more data points than are 

typically available to single-case investigators (Box & Jenkins, 1970; Glass, Willson, & 

Gottman, 1975). Back-casting may remove the autocorrelation present in the sample—

just as trend control will remove baseline trend in the observed data—but the procedure 

may lead to misleading conclusions about the effect of treatment. 

The hypothetical time-series data in Figure 2 illustrates the hazard of back-

casting to remove autocorrelation from brief time-series. Similar to the example in 

Figure 1, the Figure 2 data was generated using the lag-1 autoregressive parameter φ1 = 

0.20 and unit variance (s2 = 1.00). Two corrected time-series are presented. In one, the 

influence of autocorrelation is “cleansed” using the true φ1 parameter; the total variance 
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of the time-series is nearly unchanged, s2 = 0.96. In the other corrected time-series, 

autocorrelation is cleansed one ten-point sample at a time using the r1 estimator; the 

result is an overall reduction in variance to s2 = 0.79, or again roughly 20%. The results 

from Figure 1 and Figure 2 beg the question: If a large percentage of the information 

contained in the observed data is erroneously discarded during the statistical correction 

process, how useful are the effect size estimates calculated from corrected data? 	

	

	

Figure 2. Hypothetical time-series with corrections for autocorrelation (n = 100). 
Original data is displayed in the top graph. In the bottom graph, trend was removed 
using the known autocorrelation parameter, φ1 = 0.20 (dark line) and removed using an 
estimated slope from each interval of 10 data points (light line), resulting in an unwanted 
reduction of variance. 
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The problem of imprecise autocorrelation estimation is further illustrated in 

Figure 3, which illustrates the confidence intervals for r1 using the error variance 

estimator proposed by Huitema and McKean (1991, 2000a).1 The r1 estimator is quite 

imprecise with the sample sizes typical of single-case experimental designs. While data 

cleansing may appear useful—it does remove the estimated r1 in the observed time-

series—the procedure is unlikely to control for the true φ1 parameter because the 

estimator itself is imprecise with small samples. The single-case investigator may wish 

to control autocorrelation in a brief time-series, but it is rarely clear what value of r1 

should be used for statistical control. Due to the sampling properties of r1, and the brief 

lengths of most single-case studies, a range of r1 values is often plausible for an 

observed single-case data set.  

																																																													
1 Huitema and McKean’s (2000) error variance estimator, var(r1) = [(N – 2)2/N2(N – 1)], demonstrated less 
bias than Bartlett’s (1946) popular statistic, var(r1) = 1/N(1 – r1

2), when applied to the small-sample, low-
autocorrelation time-series that characterize single-case experiments. 
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Figure 3. 95% confidence intervals for the lag-1 autocorrelation coefficient when φ1 = 
0.0. Confidence intervals (illustrated by the dashed lines) are based on Huitema and 
McKean’s (1991, 2000a) r1 variance estimator.  

Simulation Methods Can Address Limitations of Statistical Control 

As the examples above demonstrate, statistical control of brief time-series data is 

limited by the precision of baseline trend and autocorrelation parameter estimates. The 

reliability of those and other parameter estimates are of paramount importance to overall 

analysis, as they determine the degree of confidence one can place in statistical results, 

i.e., the effect size estimate. However, many popular single-case statistical methods 

assume parameter estimates are perfectly precise—even though we know this 

assumption is false (particularly for autocorrelation, but also for trend and other data 
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parameters). In most statistical control methods, a baseline trend and/or autocorrelation 

coefficient is calculated and used to adjust observed data for effect size calculation, but 

those final results are almost never reported within the context of the reliability, or 

unreliability, of the parameter estimates.  

Computer-aided simulation methods have the potential to address this limitation. 

Rather than calculate one effect size from one set of trend and autocorrelation parameter 

estimates that are assumed to be perfectly precise, many effect sizes can be calculated 

from many sets of parameter estimates, with each set of parameters having a different 

probability based on the observed data. It may in fact be quite meaningful for 

investigators to consider the range of plausible treatment effects that might have yielded 

their observed results. Using this approach, investigators would be informed about the 

reliability of their effect size estimate (e.g., “The calculated effect size suggested an 

effective treatment, but the range of plausible effects was large and included the 

possibility that the true effect of treatment is trivially small”). A simulation approach, 

based on the assumption that many different effects could plausibly lead to the observed 

data, offers context for interpretation absent in most single-case statistical analyses.  

Multilevel Modeling 

Another approach to single-case measurement and meta-analysis is multilevel 

modeling, which has recently grown in popularity (Shadish et al., 2008). Multilevel 

models increase the efficiency of parameter estimation by pooling data within and across 

cases (Van den Noortgate & Onghena, 2003). Whereas simulation methods like ITSSIM 

assume many effects could plausibly lead to the observed data, multilevel models 
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assume many single-case participants share some fixed underlying parameters that can 

be estimated by pooling data across groups of cases. Multilevel methods are a powerful 

tool for synthesizing single-case research findings; however, they often require multiple 

(sometimes many) cases in order to yield accurate effect size estimates (Ugille et al., 

2012; Shadish et al., 2014). In a sense, multilevel modeling is not a true “N-of-1” single-

case method, as this approach requires many data from many cases. For this reason, 

multilevel methods have been criticized for being inaccessible to clinical scientists and 

investigators who lack large single-case data sets or the statistical training to conduct and 

interpret multilevel studies. Parker and Vannest (2012) described this as a distinction 

between “bottom-up” and “top-down” research synthesis: 

The bottom-up strategy is distinct from a top-down strategy in which an overall 
or omnibus analytic model is fit to the entire design. Whereas top-down appears 
more elegant, it entails a marked risk, which is to ignore the idiosyncrasies or 
uniqueness of a design and its data patterns. It is true that any template can be 
modified, but to do so in [multilevel modeling], for example, requires statistical 
skills beyond those of most interventionists. This raises the broadest concern 
with the top-down analytic strategy because the behavior analyst is not able to 
maintain decision-making control, may not even be able to confirm the 
legitimacy of a model fit, and may not even be able to interpret the results. (p. 
263) 

Multilevel methods have a unique potential for organizing the emerging field of single-

case meta-analysis. However, investigators would be remiss to ignore the essentially 

pragmatic nature of single-case research (Iwakabe & Gazzola, 2009; Fishman, 2005; 

Shadish & Rindskopf, 2007). Sophisticated methods which can be applied to true “N-of-

1” single-case experiments, and are accessible to applied researchers and practitioners, 

would be a valuable supplement to multilevel modeling. ITSSIM aims to be such a 

method. 
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Interrupted Time-Series Simulation: ITSSIM 

Interrupted Time-Series Simulation (ITSSIM) follows a three-stage process to 

yield an effect size estimate for an interrupted (AB) time-series design. The three stages 

of ITSSIM are: (1) parameter estimation, (2) time-series simulation, and (3) effect size 

calculation. In the first stage, estimates and standard errors are calculated for seven data 

parameters (A phase level, B phase level, A phase trend, B phase trend, A phase error 

variance, B phase error variance, and cross-phase autocorrelation). These parameter 

estimates are used to construct two models. A null effect model (based on the A phase 

data) describes the participant’s response pattern prior to treatment. An experimental 

effect model (based on the B phase data) describes the participant’s response pattern 

during/after treatment. In the second stage of ITSSIM, time-series data sets are simulated 

from the null effect model and experimental effect model. This stage yields thousands of 

artificial time-series that represent the null effect and treatment effect within a range of 

plausible parameter values. Essentially, the simulation stage produces two distributions 

of time-series, one representing the range of possible outcomes without treatment, and 

one representing the range of possible outcomes with treatment. In the third stage, the 

null effect distribution and the experimental effect distribution are compared for a 

standardized mean difference effect size (essentially a Cohen’s d-type statistic). Due to 

its desirable statistical properties, this effect size statistic is suitable for meta-analysis. 

How Is ITSSIM Different from Other Single-Case Statistics? 

While reviewing the ITSSIM method below, it is useful to keep in mind three 

differences between ITSSIM and other single-case statistics. First, the ITSSIM effect 
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size is not calculated from exact estimates of level, trend, etc., nor is it calculated 

directly from observed data. Instead, the ITSSIM effect size is calculated from many 

simulated time-series that are based on a range of parameter values which could 

plausibly account for the observed data. For example, rather than fit a single estimate of 

trend to a small sample of data points, ITSSIM models a range of many trend values that 

could fit the data, with more likely trend values occurring more frequently among the 

simulated cases. If observed data lead to very precise parameter estimates with small 

standard errors (e.g., “From the twenty baseline data points, I am confident that the true 

linear baseline trend coefficient lies somewhere close to β1 = 0.30”), then simulated data 

sets will reflect that confidence. In this way, unlike many other methods, ITSSIM 

incorporates the reliability of the parameter estimates into effect size estimation.  

Second, ITSSIM effect size estimates are calculated from predicted data rather 

than controlled data. Many single-case statistics that model trend or autocorrelation do 

so by “correcting” observed data points to make comparisons between A and B phases 

more tenable (e.g., calculating an effect size from linear regression/ARIMA residuals). 

This approach is used because A phase and B phase observations are recorded at 

different time intervals, and time confounds direct A-to-B phase data comparisons when 

data points are changing deterministically over time (as with baseline trend or 

autocorrelation). ITSSIM instead simulates B phase data from both the null effect model 

and the experimental effect model. These artificial B phase time-series, which are 

simulated predictions, are directly comparable without “correction” because they are 

predictions for the same time interval. This strategy is similar to single-case effect size 
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methods proposed by Gorsuch (1983), Allison and Gorman (1993), and Manolov and 

Solanas (2013), where B phase observations are compared to data predicted by baseline 

observations.   

Third, the ITSSIM effect size is not calculated by a comparison of A phase and B 

phase data. Instead, a ITSSIM effect size is calculated from distributions of simulated 

time-series. The null effect distribution (based on A phase data) and the experimental 

effect distribution (based on B phase data) are both composed of simulated time-series—

predictions—for the B phase time interval. These distributions do not directly represent 

baseline and experimental phase data, but they do represent a range of plausible data 

parameters based on the A and B phases, respectively.  

The three stages of the ITSSIM procedure are discussed further below, and the 

Appendix demonstrates the exact ITSSIM calculations using a hypothetical data set. 

However, Figure 4  presents a simplified illustration of the three ITSSIM stages.  
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Original Data 

 

 
I. Parameter Estimation 

 
 
Figure 4. Simplified illustration of ITSSIM stages. 
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II. Time-Series Simulation 

 

 
III. Effect Size Calculation 

 
 

Figure 4 Continued 
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Stage I: Parameter Estimation 

A statistical model represents an implicit model of reality (Thompson, 2006), or 

put another way, models “bring nature and theory into closer and closer agreement” 

(Kuhn, 1996, p. 27). Models based on unrealistic parameters—or models based on an 

insufficient number of realistic parameters—will do a poor job of describing reality. 

There has been considerable discussion about which parameters should be included in 

the analysis of single-case data. Many agree the most fundamental parameters in an 

interrupted (AB) time-series design are level and trend. Clinical treatments are often 

expected to affect either the level (i.e., magnitude) of the outcome variable, the trend 

(i.e., slope) of the outcome variable over time, or both.  

Level and trend alone may be insufficient to comprehensively model single-case 

data. Table 1 presents the parameters for analysis recommended by several well-cited 

single-case methodology publications. Variability, also described as stability, describes 

the amount of variance or “bounce” in time-series data. Autocorrelation, or serial 

dependency, is the degree of correlation between past and future error residuals, i.e., the 

degree to which past fluctuations in the time-series are carried over into future data 

points. Overlap, similar to level, is a popular metric for single-case effect size 

measurement that accounts for the amount of A phase and B phase data points that fall 

within a common overlapping range. Periodicity describes cyclical or seasonal patterns 

in data over time (i.e., higher-order autocorrelation). Immediacy is the duration between 

the introduction of treatment and the treatment response. 
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Table 1  

Single-Case Data Parameters Recommended for Analysis 
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Campbell & Herzinger (2010) X X  X    

Jones et al. (1977) X X  X    

Hartmann et al. (1980) X X  X    

Hayes (1981) X X X     

Parsonson & Baer (1992) X X X X X   

Kazdin (1982) X X X X    

Kratochwill et al. (2010) X X X  X  X 

Smith (2012) X X  X    

Shadish (2014b) X X  X  X  

 

 

Four parameters were selected for the ITSSIM model: level, trend, variability, 

and autocorrelation. Together these parameters offer a comprehensive description of an 

interrupted (AB) time-series. For an AB single-case design, coefficients for level, trend, 

and variability are estimated separately for each phase; autocorrelation is estimated for 

the whole series after controlling for the other three variables.2 This procedure leads to 

																																																													
2 Autocorrelation is estimated across both phases because of the low power of autocorrelation estimators 
in brief time-series (see discussion above, e.g., Figure 3). The ITSSIM model assumes autocorrelation is 
relatively stable from phase to phase.  
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an estimation of seven total coefficients: A phase level, A phase trend, A phase 

variability, B phase level, B phase trend, B phase variability, and across-phase 

autocorrelation.  

The order that parameters are estimated is important. For example, the presence 

of trend can grossly distort estimates of autocorrelation (Huitema & McKean, 1998). 

Trend should be estimated and then removed from the time-series in order to accurately 

measure the degree of autocorrelation. Within-phase variability should also be controlled 

before estimating cross-phase autocorrelation, because heteroscedasticity within a time-

series could distort the estimated autocorrelation coefficient. Given these constraints, a 

ITSSIM analysis is conducted with the following steps. 

Estimate level and slope parameters: Theil-Sen robust regression. Regression 

models have been widely used in single-case measurement and simulation methods 

(Huitema & McKean, 2000b). Regression is useful for single-case designs because it 

models both trend and level changes. However, OLS regression is limited by its 

assumptions and sensitivity to outliers (Brossart et al., 2011). Nonparametric robust 

regression is a promising alternative to OLS regression in single-case research because it 

makes fewer distributional assumptions and is less sensitive to outliers. Theil-Sen 

nonparametric regression (Sen, 1968; Theil, 1950) is used in ITSSIM analysis because it 

is robust, yields a relatively small standard error, and is efficient in small samples 

(Wilcox, 1998, 2001). Theil-Sen regression has been applied to single-case behavioral 

data (Tarlow, in press; Vannest et al., 2012) and has been used in other fields to analyze 

autocorrelated, non-normal, monotonically-trended time-series data (e.g., Yue et al., 
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2002).  

Theil-Sen level and trend (i.e., intercept and slope) coefficients are therefore 

estimated for observed A and B phase data separately. Standard errors for these 

coefficients are then calculated using a bootstrap procedure (Wilcox, 2001).  

Estimate variability parameters: error variance. Variability within each phase 

is calculated as the variance of the Theil-Sen regression residuals. Both the phase error 

variance (s2) and its standard error are calculated using ordinary least squares methods.	

Estimate lag-1 autocorrelation coefficient: unbiased r1. An unbiased r1 

estimator (Ferron, 2002; Huitema & McKean, 1991, 2000a) is calculated across both A 

and B phase data after standardizing the Theil-Sen residuals (i.e., dividing residuals by 

their within-phase standard deviation). There are several ways to estimate the standard 

error of the r1 statistic, with Bartlett’s (1946) method being the most popular. However, 

Huitema and McKean (1991) demonstrated that Bartlett’s method was biased in small 

samples; their modified var(r1) estimator is used in the ITSSIM model. 

At the end of the parameter estimation stage, the ITSSIM analysis will yield 

seven coefficients and their standard errors. These parameter estimates comprise the null 

effect and experimental effect models. Table 2 presents a set of hypothetical parameter 

estimates, organized into the two statistical models. While these models are based on 

data observed at different time intervals (the A and B phases, respectively), they may be 

used to make predictions at any point in time—though the predictions become less 

precise the farther away in time they are from the observed data on which each model 

was based. 
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Table 2 

Hypothetical Parameter Estimates in an ITSSIM Analysis 

  Coefficient Std. Err. 
Null Model intercept 5.375 (2.752) 
 slope -0.083 (0.540) 
 s 2.092 (0.501) 
Exp. Model intercept 0.375 (1.604) 
 slope -0.125 (0.489) 
 s 0.845 (0.295) 
Autocorrelation r1 0.133 (0.244) 

Stage II: Time-Series Simulation 

It is useful to note that, at the end of the parameter estimation stage, the 

investigator is left with a time-series that has unit variance and an estimated 

autocorrelation value. It would be possible at this point to work backwards through the 

parameter estimation stage, restoring the within-phase error variance and then blending 

the residuals with the Theil-Sen regression coefficients, to return these standardized 

residuals to the original data set. In fact, using only the parameter estimates and standard 

errors from Stage One (e.g., Table 2), it would be possible to work backwards from an 

artificial white noise signal and arrive at a time-series very similar to the original data 

set, with differences due only to random variability in the initial standardized residuals. 

This process of “working backwards” is essentially how the time-series simulation stage 

of ITSSIM works. 
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Randomly sample simulation parameters. A white noise signal is created with 

a preset degree of autocorrelation, and then within-phase variability, trend, and level are 

added. But instead of using the parameter estimates of the original data set (e.g., Table 

2), new coefficients are randomly drawn from the estimated parameters’ sampling 

distributions. These new level, trend, variability, and autocorrelation coefficients—

though not the exact values calculated from the observed data—plausibly represent the 

true nature of the participant’s response pattern given the known precision of the original 

parameter estimates. This procedure is arithmetically simplified because the sampling 

distributions of Theil-Sen, variance, and lag-1 autocorrelation coefficients are normal 

(Anderson, 1942; Cox, 1966; Mann, 1945; Sen, 1968).  

This step is iterated 100,000 times each with the null model and experimental 

model estimates, yielding two sets of intercept, slope, error variance, and autocorrelation 

coefficients. The first set of 100,000 coefficients represents the plausible range of 

participant responding in the absence of treatment, i.e., the null effect. The second set of 

100,000 randomly sampled coefficients represents the plausible range of participant 

responding under the effect of treatment, i.e., the experimental treatment effect. Using 

each set of sampled coefficients, a random white noise signal could then be manipulated 

into a brief interrupted time-series with the specified level, trend, variability, and 

autocorrelation. However, instead of creating AB data sets (like the original observed 

data), the ITSSIM method uses these simulated parameters to create simultaneous B 

phase time-series. 

Simulate B phase time-series. Recall from earlier that ITSSIM does not control 
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for time-dependent data patterns like trend or autocorrelation. Instead, ITSSIM makes 

predictions using estimates of trend, autocorrelation, and other parameters. Predictions 

based on the A phase baseline data are compared to predictions made from the B phase 

experimental phase data. In order to make the two sets of predictions directly 

comparable, they are simulated for the same interval of time. After coefficients are 

randomly drawn from the parameters’ sampling distributions, a corresponding B phase 

time-series is generated from each of the 100,000 simulated null effect models and 

simulated experimental effect models. The result is 100,000 null effect time-series and 

100,000 experimental effect time-series, all corresponding to the same interval of time—

the time interval of the B phase. 

Stage III: Effect Size Calculation 

Calculate standardized mean difference from simulated time-series means. 

To find a treatment effect size, the mean of each simulated B phase time series is first 

calculated. This yields two distributions of means—one for the set of null effect time-

series and one for the set of experimental effect time-series. The distributions of means 

are approximately normal due to the Central Limit Theorem. Thus, as with any large 

sample study of control group and experimental group data, the ITSSIM null effect 

distribution and the experimental effect distribution may be compared to find a 

standardized mean difference, d (see Figure 4), which is interpreted as the size of 

treatment effect accounting for level-, trend-, and variability-changes as well as lag-1 

autocorrelation. The d-statistic may also be converted to an equivalent R2 effect size for 
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investigators who may wish to communicate their effect as a percentage of variance 

accounted for by the treatment effect.  

An unstandardized mean difference, D, may also be reported as an effect size. 

This statistic describes the change in participant’s response due to treatment after 

modeling level, trend, variability, and autocorrelation effects. The unstandardized effect 

size, reported in the original metric of the observed data (e.g., “D fewer intervals of 

disruptive behavior”), may be particularly relevant to practitioners wishing to 

communicate their treatment results in a clinically relevant way, though it is less useful 

for synthesizing results across studies with different designs and outcome measures.  

Meta-Analysis with ITSSIM  

An area of growing interest is the meta-analysis of single-case research. 

Synthesizing results across single-cases experiments is one area where statistical 

methods are expected to be superior to visual analysis (Beretvas & Chung, 2011; Busk & 

Serlin, 1992; Maggin & Odom, 2014; Scruggs & Mastropieri, 2001). That said, many 

single-case effect size statistics do not possess the statistical properties necessary for 

meta-analysis. However, the standardized mean difference d-statistic produced by 

ITSSIM is ideal for aggregating results across studies. 

There are two levels of consideration when combining single-case experimental 

effects. The most general level is the aggregation of effect sizes across cases (or 

individuals). However, there may also be multiple effects measured for each individual 

case in a single-case experiment. Take for instance a reversal ABAB design. In an 

ITSSIM analysis there will be one effect size for the first AB phase contrast, and a 
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second effect size for the second AB phase contrast. These effect sizes can be combined 

to find a meta-analytic mean effect size. Combining effects within individuals and across 

cases may require multilevel estimation methods. 

ITSSIM Software 

ITSSIM is accessible to single-case investigators via free software download at 

http://www.ktarlow.com/stats/itssim (Tarlow, 2017a). This is a standalone program that 

does not require additional statistical computing software. When opened, the program 

prompts the user to enter A phase and B phase data. After the observed data are inputted, 

the program estimates the model parameters and performs the simulation. All 

coefficients, their standard errors, and the standardized mean difference effect size are 

reported as output. ITSSIM software requires no computing code or syntax to use, and 

should be easy to implement for applied researchers and practitioners without statistical 

computing experience. An example of ITSSIM software input and output is presented in 

Figure 5.  
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Figure 5. Example of ITSSIM console with input and output. Software is available for 
download at http://ktarlow.com/stats/itssim (Tarlow, 2017a).  
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Assumptions and Limitations 

ITSSIM has several statistical assumptions and limitations. The violations of 

some assumptions, such as the expectation of stable autocorrelation across phases, may 

not greatly affect results (the degree of autocorrelation observed in brief time series is 

relatively small, e.g. Shadish & Sullivan, 2011, so cross-phase differences are also 

expected to be minimal). The violation of other assumptions, like the assumption of 

linear trends, may lead to gross distortions of results. A list of ITSSIM assumptions is 

presented below, and should be considered before the method is applied to experimental 

data. More investigation is needed to determine how violations may affect results, and to 

that end, another paper is currently being prepared that uses simulation methods to 

determine how ITSSIM functions under a range of different parametric conditions.  

Some ITSSIM assumptions are: 

• A linear trend model is assumed, and ITSSIM analysis may give misleading 

results when applied to data with nonlinear trends and/or pronounced ceiling 

and floor effects. However, the Theil-Sen estimator finds a best-fit line for 

any monotonic (i.e., linear or nonlinear) trend pattern, so the error introduced 

by nonlinear trends are expected to be reduced. 

• Lag-1 autoregressive error is assumed to be unaffected by treatment. This 

assumption is consistent with the general view that autocorrelated behavior is 

a function of the organism under study rather than an effect of treatment (e.g., 

Baer, 1988). An example of a single-case effect size that makes a similar 

assumption is the Bayesian model proposed by Swaminathan, Rogers, and 
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Horner (2014), described in more detail below.  

• Only lag-1 autoregressive error structures (φ1) are modeled. Moving average, 

integrated, and higher-order error structures are not considered. Other single-

case statistics which model autocorrelation often assume a lag-1 

autoregressive error structure (e.g., Moeyaert et al., 2014; Shadish, Hedges, 

& Pustejovsky, 2014). The issue of error model identification has been 

underexplored in single-case research, and single-case investigators would be 

wise to consult the time-series analysis and multivariate literature which 

demonstrate that covariance structures are difficult to identify correctly (Sivo 

& Willson, 2000; Velicer & Harrop, 1983).  

• The outcome variable is assumed to be continuous. Investigators analyzing 

time-series with count data (or other non-continuous data) should exercise 

caution in interpreting results. Future updates of the ITSSIM software should 

include options for non-continuous data modeling. 

• Normally distributed data are assumed in the current version of ITSSIM 

software. Future software releases should include options for modeling non-

normal data distributions (e.g., Poisson, binomial, etc.). 

• During the data simulation procedure of a ITSSIM analysis, the level, trend, 

error variance, and autocorrelation parameters are assumed to be independent 

from each other. There is little published research to suggest, one way or 

another, if this assumption is tenable. It is expected that relationships between 

these parameters vary from study to study, though more exploration is needed 
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to determine if and how violations to this assumption would impact statistical 

results.  

• The current version of the ITSSIM software does not permit missing data—

i.e., all observations are assumed to be recorded at equal intervals in time.  

Revisiting the Journal of School Psychology Special Issue 

This is the first in a series of papers that aim to evaluate ITSSIM and its utility 

for single-case data analysis. The primary goal of this paper is expository, to introduce 

the rationale for simulation methods in single-case analysis and explain ITSSIM’s use 

and interpretation. However, an initial field test of ITSSIM was conducted to determine 

if it performed similarly to other sophisticated single-case analytic methods. 

The Journal of School Psychology published a special issue, Analysis and Meta-

Analysis of Single-Case Designs (Shadish, 2014), in which five research teams 

independently analyzed the same single-case data set with different statistical methods. 

The methods used in the special issue represent the cutting edge of single-case data 

analysis. They are more sophisticated than the simpler methods which tend to be more 

studied but also more statistically limited (e.g., Parker, Vannest, & Davis, 2011). 

The data set used in the special issue was reanalyzed with ITSSIM, and results 

were compared with the five previously published methods. It was hypothesized that 

ITSSIM would produce comparable results, given that it models data parameters similar 

to the other methods (level, trend, variability, autocorrelation), albeit with a different 

statistical framework.  
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Data for Analysis 

Five single-case research teams analyzed the same data set in a special issue of 

the Journal of School Psychology (Shadish, 2014a). That data set was revisited for this 

study and reanalyzed to determine if ITSSIM would yield results similar to other 

sophisticated analytic methods. All six methods (ITSSIM and the five previously 

published ones) were used to analyze data from Lambert, Cartledge, Heward, and Lo’s 

(2006) single-case study of the effects of response cards on disruptive behavior by 

fourth-grade math students. Nine participants were treated with an ABAB reversal 

design. Data were extracted from the published graphs using GetData Graph Digitizer 

(2013). All extracted data sets were visually compared with the original published 

graphs to confirm an accurate data extraction.    

Overview of the Meta-Analytic Methods 

In the 2014 special issue of Journal of School Pyschology (Shadish, 2014a), five 

single-case research teams applied their novel statistical analyses to the Lambert et al. 

(2006) data. Analytic approaches varied, with some methods yielding standardized effect 

sizes and others yielding unstandardized effects. Two groups took a Bayesian approach 

to data analysis. All methods used multilevel models to detect effects within and across 

individuals. A brief summary of each method follows, with attention given to the unique 

strengths and limitations of each analysis. 

Shadish, Hedges, and Pustejovsky (2014). This method yields a d-type 

standardized mean difference effect size aggregated across multiple ABk (i.e, AB, 

ABAB, ABABAB, etc.) cases. Kratochwill and Levin (2014) pointed out that, while the 
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Shadish et al. d-statistic may be useful for synthesis of multiple single-case studies, it is 

less useful in applied clinical settings. In order to calculate the d-statistic, at least three 

single-case studies are required. Investigators intending to study only one participant (a 

true “single-case” experiment) would require other methods. The d-statistic models 

level, autocorrelation, and within- and between-case variability effects. However, the d-

statistic does not model trend. While Shadish et al. did not find evidence of trend in the 

Lambert et al. (2006) data, their method may be inappropriate for data sets with trend.  

 Shadish, Zuur, and Sullivan (2014). This method applies generalized additive 

models (GAM), which are similar to linear regression-based models but use smoothing 

functions to model nonlinear trend over time. In this case, GAMs can also account for 

non-normal distributions of outcome data—an important issue in single-case research 

given the prevalence of count data and other non-continuous outcome measures. In the 

first step, Shadish et al. test the statistical fit of four GAMs that predict outcome by 

different arrangements of time, treatment condition, and participant variables. Second, 

after selecting the best-fitting model, seven additional GAMs are tested, all variations on 

the best-fit model from step one that add predictor variable interactions and 

autocorrelation effects. Finally, a best-fitting model is selected from step two and its 

results are interpreted. 

  The methods offered by Shadish, Zuur, and Sullivan (2014) are quite 

sophisticated, and while they have the potential to reveal useful insights about within- 

and across-case treatment effects, they require a high level of statistical expertise to 

implement and interpret. For example, the authors emphasize one strength of GAM is 
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that they do not require the investigator to know the functional form of trend and other 

data patterns—they can test many models and select the one that best fits the observed 

data. The drawback of this approach is that many models must be conceived, built, and 

tested—a process that, as the authors demonstrated, requires time, skill, and nuance.  

The clear strength of this approach is that GAMs do a good job of modeling 

nonlinear trends. However, the authors point out the approach is not well-suited for 

meta-analysis across studies with different outcome measures (it does not easily yield 

standardized effect sizes). Mixed models that accounted for autocorrelation were also 

discarded from the study because the Lambert et al. (2006) data lacked a sufficient 

number of observations to model complex error structures. In order to simplify analyses, 

data from longer time series were also discarded to make all cases have an equal number 

of observations—a restriction that regrettably removed over 10% of the data from the 

study. 

Rindskopf (2014). This analysis applies Bayesian methods to single-case data. 

Instead of estimating a fixed parameter (e.g., effect size), Bayesian statistics emphasize 

the estimation of probabilities—for example, how likely is a participant in the Lambert 

et al. (2006) study to respond with disruptive behavior (the outcome measure)? And how 

much more likely is disruptive behavior during a treatment phase? As Rindskopf points 

out, Bayesian methods are well-suited for analyzing small sample sizes. This is because 

they take into account data from all analyzed cases when modeling a single individual; 

however, all cases are not constrained to have the same characteristics.  

On limitation of Rindskopf’s approach may be that many researchers are 
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unfamiliar with Bayesian methods. Rindskopf also chose not to model trend in the 

Lambert et al. (2006) data for the sake of simplicity. It is possible to account for trend 

with a Bayesian model, although this adds additional work for the investigator. 

Rindskopf’s approach also does not model autocorrelation. 

Moeyaert, Ferron, Beretvas, and Van Den Noortgate (2014). Just as ITSSIM 

emphasizes an analysis of the range of plausible parameter values, the method proposed 

by Moeyaert et al. instructs single-case investigators to consider results from a range of 

plausible statistical models and assumptions. In addition to considering different models, 

Moeyaert et al. use a two-level design to combine effects within and across cases.  

Four mixed/multilevel models are specified for use with continuous single-case 

data. The models vary from simple to complex. The simplest analysis includes only 

level-change effects, within and across individuals. Autocorrelation, variance, and trend 

effects are then added in subsequent models. Finally, the authors add a class effect term 

to specify differences between different groups of cases. Two logistic models are also 

provided for non-continuous/count data—the first is a simple two-level model offering 

only level-change terms; the second allows for level-change effects to vary within 

individuals (A1B1 vs. A2B2 effects).  

In most cases a single-case investigator will not know the true parameters 

underlying observed data—hence the need to investigate multiple models. When several 

models with differing assumptions converge on a narrow range of effect size results, 

there is evidence that the true effect lies somewhere near that range. Moeyaert et al. 

suggest that, in the absence of this convergence, investigators should report results from 
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all models. This approach has the advantage of not limiting the investigator to a strict set 

of statistical assumptions which may or may not be true depending on the nature of the 

experiment at hand. The authors point out this approach may lack sufficient statistical 

power when the number of observations (i.e., phase lengths) or the number of cases is 

small. This approach also requires familiarity with SAS statistical software.  

Swaminathan, Rogers, and Horner (2014). Similar to Rindskopf (2014), 

Swaminathan et al. use a Bayesian approach to measure and combine single-case effect 

sizes. Two multilevel models are proposed, one that accounts for level- and slope-

change effects, and the other including only level-change effects. Both models 

incorporate estimates of lag-1 autoregressive error structures. As the authors stated, “The 

Bayesian procedure is intuitively meaningful and appealing, but it is mathematically 

complex” (p. 220). Bayesian methods are in many ways attractive for single-case 

investigators—they are statistically powerful in small samples and may provide results 

that are interpretable and immediately relevant for practitioners. Implementation of these 

methods, however, requires some knowledge of Bayesian statistics. 

Plan for Analysis 

  The purpose of reanalyzing the Lambert et al. (2006) data is to determine if 

ITSSIM effect size results are comparable to the five other methods introduced in the 

special issue of the Journal of School Psychology. Shadish (2014a) found the results of 

those five methods “reasonably consistent with each other” (p. 112), and similar ITSSIM 

effect size estimates would suggest the simulation method is worthy of future study. All 

five previously published methods yield unstandardized effect sizes, so this will be one 
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point of comparison. However, not all methods gave an equivalent standardized effect. 

Some approaches, like ITSSIM, yield standardized mean differences, which are 

straightforward to compare across studies. Others methods gave log-odds ratios as the 

standardized outcome metric, which are less intuitive when describing treatment effects. 

The ITSSIM unstandardized effect size, D, will be compared to the unstandardized 

results of the other five studies, and the standardized mean difference, d, will also be 

compared to the two other studies which reported results in a similar standardized 

metric.   

Results 

Data from the nine students in Lambert et al.’s (2006) study were analyzed with 

ITSSIM simulation software (Tarlow, 2017a). The study used a reversal ABAB design 

for each student, so a total of 18 AB phase contrasts were analyzed. Results of the 

ITSSIM analyses are presented in Table 3. The A1B1 standardized effects ranged from d 

= 1.60 to 4.66; all A1B1 effects were statistically significant at the p < .05 level. The 

A2B2 standardized effects ranged from d = -0.39 to 6.89; seven of the nine A2B2 effects 

were statistically significant. The fixed effects mean of the A1B1 treatment effects was d 

= 2.47, p < .001, 95% CI [1.98, 2.96] (Q = 12.70, df = 8, p = 0.122); the mean of the 

A2B2 treatment effects was d = 1.75, p < .001, 95% CI [1.30, 2.21] (Q = 56.23, df = 8, p 

< 0.001).  



 

50 

Table 3  

ITSSIM Standardized Effect Sizes for Lambert et al. (2006) Data  

 A1B1 Effect A2B2 Effect 

Participant d SE d SE 

Student A1 1.63 0.65 3.71 0.80 

Student A2 3.06 0.82 5.68 1.81 

Student A3 1.90 0.73 3.72 0.85 

Student A4 2.28 0.75 1.83 0.64 

Student B1 2.76 0.71 3.20 0.72 

Student B2 4.48 1.10 1.16 0.57 

Student B3 4.66 1.07 6.89 1.32 

Student B4 1.60 0.62 -0.39ns 0.52 

Student B5 2.77 0.71 0.83ns 0.54 

Combined Effect 2.47 0.25 1.75 0.23 

ns not statistically significant at p < .05 

An unstandardized treatment effect, D, was also calculated for each of the 18 AB 

phase contrasts. The mean unstandardized effects for ITSSIM and the other five methods 

is presented in Table 4, in addition to the mean standardized effects (for the methods that 

yielded an interpretable d-type effect size). Several of the multilevel models did not 

account for trend, autocorrelation, or both.  
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Table 4 

Six Analyses of Lambert et al. (2006) Data 

Study 
Unstandardized  
Effect Size 

Standardized  
Effect Size 

Shadish, Hedges, & Pustejovsky (2014) a 5.46 2.51 

Shadish, Zuur, & Sullivan (2014) b 6.70 - 

Rindskopf (2014) a, b 5.70 - 

Moeyaert et al. (2014): continuous outcome 5.10–5.76 (A1B1) 
4.92–5.77 (A2B2) 

- 

Moeyaert et al. (2014): logistic outcome a, b 5.61 - 

Swaminathan et al. (2014) 5.38 (A1B1)  
5.03 (A2B2) 

2.47 (A1B1) 
2.34 (A2B2) 

ITSSIM 7.59 (A1B1) 
8.47 (A2B2)  

2.47 (A1B1) 
1.75 (A2B2) 

a Trend not modeled 
b Autocorrelation not modeled 

Discussion 

The purpose of this study is to introduce a computer simulation method, ITSSIM, 

for the measurement and meta-analysis of single-case experimental data. ITSSIM is a 

comprehensive effect size metric which incorporates baseline trend, level- and slope-

change, within-phase error variance, and autocorrelation parameters. The simulation 

method assumes that one observed time-series may be explained by many plausible 

treatment effects and conditions. ITSSIM simulates many plausible conditions which 

could yield the observed data, and outputs the most likely treatment effect size based on 

the precision of the various parameter estimates. While ITSSIM can be used to analyze 
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data from a single case, its standardized mean difference effect size, d, can also be used 

to synthesize effects across cases and studies using standard meta-analytic methods.  

Single-case data from Lambert et al.’s (2006) study were analyzed with five 

multilevel modeling methods in a special issue of the Journal of School Psychology 

(Shadish, 2014a). Effects size estimates from those methods were reasonably consistent, 

indicating an effective treatment which led to a drop in disruptive behavior. The Lambert 

et al. data were re-analyzed using ITSSIM software (Tarlow, 2017a) to determine how 

consistent the results from this simulation approach were to the other five methods. 

Comparison of Effect Size Indices 

The results presented in Table 4 suggest two tentative conclusions about ITSSIM 

compared to the other five effect size methods presented in the special issue. The 

standardized effects were quite similar—all methods that yielded a d-type effect size 

produced average effects between 1.75 and 2.51 standard deviations of improvement. 

However, when the unstandardized effects are compared, ITSSIM produced results that 

were somewhat larger than the other methods, by about one to three intervals of 

disruptive behavior.  

These results indicate that larger treatment effects are more plausible under the 

ITSSIM simulation model than with the other estimation methods. However, the effect 

size estimates are less precise with ITSSIM—and less precision means larger standard 

errors, and therefore relatively smaller standardized effects (or in this case, standardized 

effects of comparable size). Put another way, using the ITSSIM framework, the likeliest 
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estimate of treatment effect is relatively large, but so is the degree of uncertainty about 

that estimate. 

This outcome makes sense in light of ITSSIM’s unique approach to parameter 

estimation. Whereas the other five methods take a fully-multilevel approach to effect 

size measurement and meta-analysis—and therefore pool information from all 

participants (using classical or Bayesian analysis) to yield one omnibus effect size 

estimate—ITSSIM instead estimates each effect independently, resulting in decreased 

precision. In addition, the nonparametric estimators used in the ITSSIM model make 

fewer assumptions than least squares methods, and may be more appropriate for some 

single-case time-series data; however, less strict assumptions come at a cost of statistical 

power.  

ITSSIM also models baseline trend, level- and slope-change, and autocorrelation 

effects when estimating effect size—several of the comparison methods excluded one or 

more of those parameters. ITSSIM’s comprehensive modeling approach may account for 

the larger unstandardized effect size estimate. The presence of un-modeled 

autocorrelation may inflate some parametric statistics (Manolov & Solanas, 2008), 

although serial dependency has been shown to attenuate nonparametric effect size 

indices (Tarlow, in press). The effect of un-modeled autocorrelation on multilevel 

methods has not been thoroughly investigated (Ugille et al., 2012).  

The discrepancy in unstandardized effect size could also be in part due to some 

methods’ failure to model trend and slope. This is true in particular for the A2B2 phase 

contrast, where ITSSIM yielded the largest effect and the multilevel methods gave 
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relatively small ones. The Lambert et al. (2006) data sets include an ABAB reversal 

design. A trend is visually apparent in many of the A2 phases as the participants’ 

disruptive behavior returns to the baseline level of functioning. One argument for 

excluding trend from this analysis would be the expectation that disruptive behaviors 

will level off after they return to their baseline level. However, one could also argue that 

effect size indices should account for orthogonal slope changes in the A2B2 phase 

contrast—and that to ignore the influence of slope would lead to an underestimation of 

treatment effect. Ma (2006) and others have explored this very issue as a limitation of 

nonoverlap measures of effect size, in particular when applied to ABAB designs (Allison 

& Gorman, 1993; Schlosser et al., 2008). 

Conclusion  

Additional study of ITSSIM is needed to determine if the findings of this field 

test generalize to other single-case effect size indices and data sets. However, it is 

encouraging that ITSSIM gave effect size estimates similar to the five multilevel 

methods reviewed in the Journal of School Psychology special issue. The similarities 

and differences among these results are interpreted with caution, because of the different 

analytic frameworks implemented by each statistical method. ITSSIM and the five 

multilevel methods are new, and not as well researched as older (often simpler) single-

case statistics. Additional investigation is planned to compare ITSSIM some of those 

more established methods (see Chapters III and IV).  

Given the tentative results of this field test, investigators may consider using 

ITSSIM to analyze their single-case data. The simulation-based method yields effect size 
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estimates that are easy to interpret, either as unstandardized or standardized measures of 

treatment effect. All ITSSIM effect sizes are presented in context of their baseline trend, 

level- and slope-change, error variance, and autocorrelation parameter estimates, which 

may further aid with the interpretation of experimental results. And unlike with 

multilevel methods, ITSSIM does not require the investigator to pool many single-case 

data sets into one omnibus treatment effect estimate. Perhaps most importantly, ITSSIM 

is available to clinicians and applied scientists as a user-friendly standalone application 

that does not require prior familiarity with statistical computing or syntax. Computer 

simulation procedures have the potential to address several of the challenges 

encountered in single-case data analysis, and ITSSIM is one application that may be 

useful to both researchers and practitioners.  
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CHAPTER III  

COGNITIVE THERAPIES FOR DEPRESSION:  

A META-ANALYSIS OF SINGLE-CASE  

EXPERIMENTAL DESIGNS  

 

Abstract 

Single-case experimental designs can offer unique contributions to the field of 

psychotherapy research. These flexible easily implemented designs can test treatment 

outcomes for individuals with complex symptom presentations (e.g., comorbidities) and 

low-incidence clinical populations—both of which are difficult to study with 

randomized controlled trials (RCTs). Single-case designs also offer a cost-efficient way 

of pilot-testing new treatments. Multiple methods for statistical analysis and meta-

analysis of single-case designs have been proposed. This paper advocates for an 

approach that blends the sophistication of multilevel modeling with the utility of single-

case-specific effect size statistics. Meta-analyses were performed on 53 cases from 10 

single-case studies of cognitive therapy for depression. To compare the performance of 

different single-case statistics, all meta-analyses were replicated with six effect size 

indices. Overall, single-case studies of cognitive therapies were associated with 

substantial decreases in depressive symptoms, and effect sizes were similar to meta-

analyses of RCT research (0.58 ≤ ES ≤ 1.48). As expected, evidence of treatment 

efficacy was even clearer when the moderating effect of bipolar diagnosis was included 

in analyses. These methods and results should encourage psychotherapy researchers to 
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consider single-case experiments when designing their studies. Two effect size statistics, 

Baseline Corrected Tau and Interrupted Time Series Simulation (ITSSIM), are also 

recommended for further study and development due to their superior performance.  

Introduction 

Single-case experimental designs are an increasingly popular research method in 

many areas of psychology (Smith, 2012). Single-case designs—which use a combination 

of systematic repeated measurements and experimental controls to test treatment 

outcomes—are powerful because they can demonstrate the causal effects of 

interventions (APA Presidential Task Force on Evidence-Based Practice, 2006; Barlow 

& Hersen, 1984; Campbell & Stanley, 1963), often with a fraction of the resources 

demanded by high-powered randomized clinical trials (Barlow & Nock, 2009). Single-

case experiments are also relatively easy to implement for practitioners who wish to 

demonstrate the efficacy of their treatments (Morgan & Morgan, 2001; Shadish et al., 

2008).  

As these designs grow in popularity, so too does the quantitative synthesis (i.e., 

meta-analysis) of single-case studies (Maggin et al., 2011). Indeed, single-case research 

is philosophically rooted in the replication and synthesis of experimental findings across 

many cases (Morgan & Morgan, 2001). Campbell and Stanley (1963) stated, “It should 

be remembered that … a single [time-series] experiment is never conclusive … [the 

design] is repeated in many different places by various researchers before a principle is 

established” (p. 42). However, the brief interrupted time-series data which characterize 

much of the single-case research literature are difficult to quantify and aggregate using 
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the statistical methods familiar to most investigators trained in large-n between-groups 

methods (Busk & Serlin, 1992; McCleary & Welsh, 1992). Many effect size statistics 

have been proposed for measuring single-case treatment effect sizes, but no method has 

been identified as clearly superior (Brossart et al., 2011; Campbell, 2004; Ma, 2006; 

Parker et al., 2005, 2006, 2011; Parker & Hagan-Burke, 2007; Manolov & Solanas, 

2009, 2013; Manolov et al., 2011; Parker & Vannest, 2009; Parker, Vannest, & Davis, 

2011; Shadish et al., 2014; Tarlow, in press; Vannest et al., 2012; Wolery et al., 2010). 

In addition, many of the statistics proposed for analyzing single-case studies are useful 

in clinical practice, but their lack of formal statistical development complicates 

quantitative synthesis across cases and studies (Shadish, 2014b; Shadish et al., 2008). 

Systematic reviews of single-case meta-analyses found that investigators use a 

number of analytic methods to quantify and synthesize treatment effects (Beretvas & 

Chung, 2011; Maggin et al., 2011). Investigators often report multiple statistical indices 

for the same meta-analysis, given the lack of consensus about an ideal effect size metric. 

One challenge identified in single-case meta-analyses is the synthesis of results from 

complex experimental designs. For example, in an ABAB reversal design, should both 

AB phase contrasts be included? And if so, how should analysts model the statistical 

dependence of intra-subject effects? Some researchers have proposed multilevel 

modeling and Bayesian methods to address the within-subject and within-study 

dependencies which complicate single-case quantitative synthesis (Moeyaert et al., 2014; 

Rindskopf, 2014; Shadish, Zuur, & Sullivan, 2014; Swaminathan et al., 2014; van den 

Noortgate & Onghena, 2003, 2007, 2008).  
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Though multilevel methods have potential for organizing the emerging field of 

single-case meta-analysis, investigators would be remiss to ignore the essentially 

pragmatic nature of single-case research (Iwakabe & Gazzola, 2009; Fishman, 2005; 

Shadish & Rindskopf, 2007). One limitation of multilevel modeling is the statistical 

sophistication and interpretive nuance required to conduct these analyses. Multilevel 

methods may not be a realistic option for some single-case investigators, who are often 

practitioners first and clinical scientists second. Parker and Vannest (2012) described a 

distinction between “bottom-up” and “top-down” methods:  

The bottom-up strategy is distinct from a top-down strategy in which an overall 
or omnibus analytic model is fit to the entire design. Whereas top-down appears 
more elegant, it entails a marked risk, which is to ignore the idiosyncrasies or 
uniqueness of a design and its data patterns. It is true that any template can be 
modified, but to do so in [multilevel modeling], for example, requires statistical 
skills beyond those of most interventionists. This raises the broadest concern 
with the top-down analytic strategy because the behavior analyst is not able to 
maintain decision-making control, may not even be able to confirm the 
legitimacy of a model fit, and may not even be able to interpret the results. (p. 
263) 

To illustrate the practical limitations of sophisticated multilevel methods, 

consider that the Percentage of Nonoverlapping Data (PND; Scruggs, Mastropieri, & 

Casto, 1987) is the most popular statistic for synthesizing single-case research (Beretvas 

& Chung, 2011; Maggin et al., 2011). PND, which may be hand-calculated (or 

calculated via web application to attain p-values; Tarlow & Penland, 2016b), remains 

popular despite its well-documented statistical limitations (e.g., Allison & Gorman, 

1993, 1994; Ma, 2006; Manolov & Solanas, 2009; Tarlow & Penland, 2016a; Wolery et 

al., 2010). Schlosser et al. (2008) stated, “When metrics are discussed in terms of their 

theoretical strengths and weakness alone, divorced from issues of implementation and 
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application, we jeopardize the capability of a particular metric to realize these strengths 

or perhaps minimize weaknesses, whatever they may be” (p. 184). One of the great 

strengths of single-case methodology is its potential to bridge the scientist-practitioner 

gap (Borckardt et al., 2008). Methodologists should be pragmatic when developing new 

techniques for measurement and meta-analysis of single-case designs—and always seek 

to maximize statistical applications for as wide a range of investigators as possible 

(Shadish, 2014b).  

Single-case research and meta-analyses are implemented most in the fields of 

special education and behavior therapy (Maggin et al., 2011; Smith, 2012); however, 

these methods have the potential to contribute clinically useful knowledge to 

psychotherapy research (Hilliard, 1993; Iwakabe & Gazzola, 2009). Case-based methods 

are valuable to psychotherapists because they permit investigators to explore treatment 

effectiveness outside of the limiting and artificial circumstances that characterize many 

randomized clinical trials (Edwards et al., 2004; Persons & Silberschatz, 1998). Single-

case experiments also allow investigators to conduct research with special populations or 

low-incidence disorders which are not numerous enough to be realistically studied with 

large-n group designs. Finally, single-case methods offer a cost-effective way of pilot-

testing new therapies (Borckardt et al., 2008). 

The goals of this paper are twofold. First, the paper will demonstrate how a meta-

analysis of single-case psychotherapy studies may be performed—specifically, for 

single-case studies of cognitive treatments for depression. Case-based methods offer 

promising opportunities for psychotherapists and psychotherapy researchers; however, 
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meta-analyses of single-case studies of psychotherapy are rare. A literature search 

revealed no psychotherapy meta-analyses that utilized single-case research; indeed, 

neglect of the single-case literature was one criticism leveled at Smith et al.’s (1980) 

seminal meta-analysis of psychotherapy outcomes (Wilson & Rachman, 1983). The 

second goal of the paper is to compare six methods for meta-analyzing single-case 

research. Six statistics will be compared, and their practical and statistical strengths and 

limitations will be identified. The distributions of the six effect size statistics will be 

examined for possible ceiling and floor effects, and correlations will be explored to 

determine how well effect size estimates produced by the six metrics concur with each 

other.  

Cognitive Therapy for Depression 

The cognitive model which forms the foundation of modern cognitive 

psychotherapy is most associated with the work of Beck (Beck, 1967, 1976, 2005; Beck 

et al., 1979), who proposed that distortions in information processing lead to 

maladaptive cognitive structures (schemas) and, ultimately, the symptoms of many 

psychological disorders. Cognitive therapies typically include a restructuring of 

maladaptive schemas, with the goal of relieving emotional distress caused by 

misattributions and distortions. 

 Cognitive and cognitive-behavioral therapy (CBT) are among the most 

researched psychological treatments. Cognitive therapies are effective for treating 

unipolar depression and other psychiatric diagnoses (Butler et al., 2006), though not 

necessarily more effective than other psychotherapies (Wampold et al., 2002, 2017). 
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Despite the proliferation of cognitive therapies, there is ongoing demand for modified or 

expanded treatment modalities to address the unique needs of specific demographic and 

diagnostic groups (Beck, 2005; Szentagotai & David, 2010). Single-case experimental 

studies of novel therapy treatments, like the ones included in this meta-analysis, in many 

ways represent the cutting edge of psychotherapy research, with implications for future 

large-scale research and health care policy. 

Methods 

Selection of Studies 

For this paper, articles of interest included single-case studies of cognitive 

treatments for depression. Published studies were identified for inclusion in the meta-

analysis through a database search. The PsycInfo and MEDLINE databases were 

searched for peer-reviewed articles published between 2011 and 2016 with abstracts that 

included the following terms: (“single case” OR “single-case” OR “single subject” OR 

“single-subject” OR “time series” OR “time-series” OR “multiple baseline” OR “open 

case” OR “open-case”) AND (“depression” OR “depressed” OR “depressive”) AND 

(“cognitive”).  

The initial database search identified 99 records. Twenty-two articles were 

removed as duplicates, so 77 records were screened. Records were excluded from the 

meta-analysis for several reasons, the most frequent of which were: articles were not 

psychotherapy outcome studies (e.g., neuroimaging studies were excluded), articles 

lacked time-series data (i.e., were not true interrupted time-series experiments), articles 

did not include a measure of depression in their results or depression was assessed only 
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as a pretest/posttest measure, or articles included only one baseline time point. After 

reviewing and excluding database search records, ten articles with a total of 53 cases 

were identified for inclusion. Figure 6 illustrates the flow of studies searched and 

selected for meta-analysis, and Table 5 summarizes the included studies. 

 

Figure 6. Selection flow diagram for meta-analysis. 
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Table 5 

Summary of Single-Case Studies of Cognitive Therapy Treatments 

Study Authors n Treatment Participants Outcome Measure 

A Holmes et al. (2016) 14 Imagery-focused cognitive 
therapy (Mood Action 
Psychology Programme; 
MAPP) 

Bipolar I or II diagnosis; 
recruited from outpatient clinic 

QIDS-SR 

B Searson et al. (2012) 7 Think Effectively About Mood 
Swings (TEAMS) 

Bipolar I or II diagnosis; 
recruited from outpatient 
clinics 

WSAS 

C Holländare et al. (2015) 4 Internet-based CBT (iCBT) Bipolar II diagnosis; recruited 
from outpatient clinic 

MADRS-S 

D Jones et al. (2015) 4 Telephone-based 
psychotherapy 

Primary brain tumor diagnosis; 
recruited from hospitals, 
neurosurgery clinics, and 
cancer treatment services 

DASS-21 

E Mehranfar et al. (2012) 4 Mindfulness-Based Cognitive 
Therapy (MBCT) 

Mothers of children with 
cancer with co-occurring 
depressive and anxiety 
disorders; recruited from 
radiology clinic 

BDI-II 

F Akbari et al. (2015) 3 Transdiagnostic Treatment of 
Repetitive Negative Thinking 
(TTRNT) 

Co-occurring anxiety and 
depressive diagnoses; recruited 
from university counseling 
center 

BDI-II 

G Cowles & Nightingale (2015) 1 Transdiagnostic CBT Co-occurring panic, anxiety, 
and depression; recruited from 
outpatient clinic 

PHQ-9 
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Table 5 Continued 

Study Authors n Treatment Participants Outcome Measure 

H McManus et al. (2014) 6 Transdiagnostic CBT Co-occurring anxiety disorder 
diagnoses; recruited from 
outpatient clinic and website 

BDI-II 

I Maroti et al. (2011) 2 CBT for insomnia (CBT-I) Co-occurring insomnia, 
anxiety, and depressive 
disorder diagnoses; recruited 
from newspaper advertisement 

BDI-II 

J Beck et al. (2016) 8 Cognitive Trauma Therapy for 
Battered Women (CTT-BW) 

Women with PTSD diagnosis 
stemming from intimate partner 
violence; recruited from 
research clinic 

BDI-II 

Note: BDI-II = Beck Depression Inventory, Second Edition (Beck, Steer, & Brown, 1996); DASS-21 = Depression, Anxiety, 
and Stress Scale (Lovibond & Lovibond, 1995); MADRS-S = Montgomery-Asberg Depression Rating Scale – Self-rated 
(Montgomery & Asberg, 1979); PHQ-9 = Patient Health Questionnaire-9 (Kroenke et al., 2001); QIDS-SR = Quick Inventory 
of Depressive Symptomology Self-Report (Rush et al., 2003); WSAS = Work and Social Adjustment Score (Marks, 1986). 
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Eight of the studies (A-H) were pilot studies of novel treatments, including 

telepsychology interventions (C and D) and transdiagnostic CBT protocols (G, H, and I). 

The remaining two studies (I and J) were conducted to extend and replicate earlier 

findings on new treatments. Half of the studies (D-H) were specifically designed to 

target clinical populations with complex symptom presentations, such as co-occurring 

depression and anxiety diagnoses. This is notable given that RCTs are frequently 

criticized for excluding participants with comorbid disorders—despite the fact that a 

majority of individuals with psychiatric diagnoses meet criteria for multiple disorders 

(Castelnuovo et al., 2004; Garfield, 1996; Seligman, 1995; Westen et al., 2004).  

Raw data was digitally extracted from graphs in the ten selected studies in order 

to re-analyze and synthesize results. Data were extracted using GetData Graph Digitizer 

(2013). Digitization of published time-series graphs is a common procedure in single-

case meta-analysis (Maggin et al., 2011) and methodology research with acceptable 

reliability and validity (Shadish et al., 2009). 

Effect Size Statistics 

Six effect size statistics were selected to analyze and synthesize results from the 

ten articles. Many single-case meta-analyses report multiple statistical effects, although 

it is rare for studies to report three or more effect sizes (Maggin et al., 2011). Effect size 

indices were selected to represent the methodological diversity of the field. Two 

nonparametric effect size statistics were included, Baseline Corrected Tau (Tarlow, in 

press) and the Mean Phase Difference (Manolov & Solanas, 2013). Two fully parametric 

regression-based methods were included, an ordinary least squares (OLS) regression 
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model (Center, Skiba, & Casey, 1985-1986; Allison & Gorman, 1993; Huitema & 

McKean, 1998, 2000b) and White et al.’s (1989) standardized mean difference d 

statistic. Two computer-intensive simulation-based methods were also included, 

Simulation Modeling Analysis (SMA; Borckardt et al., 2008) and Interrupted Time-

Series Simulation (ITSSIM; see Chapter II). Table 6 illustrates some similarities and 

differences between the indices. 

Table 6 

Summary of Effect Size Statistics Included in Meta-Analysis 

Effect Size Estimation Method Models Trend Models Autocorrelation 

Baseline 
Corrected Tau 

Nonparametric Yes; Theil-Sen 
regression 

No; but effect size is 
robust to moderate 
autocorrelation 

MPD Nonparametric Yes; first-order 
differencing 

No; but effect size is 
robust to moderate 
autocorrelation 

OLS R2 Parametric Yes, OLS regression No 

White et al.’s d Parametric Yes; OLS regression No 

SMA Parametric; computer 
simulation 

No Yes; but only in p-value 
calculation 

ITSSIM Both nonparametric and 
parametric estimators 
used; computer 
simulation 

Yes; Theil-Sen 
regression 

Yes 
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Baseline Corrected Tau. Tarlow (in press) proposed Baseline Corrected Tau as 

an improvement to Tau-U (Parker, Vannest, & Davis, 2011; Parker, Vannest, Davis, & 

Sauber, 2011). Tau-U has been popularized as an effect size for single-case research 

because of its conceptual ties to other single-case statistics (Parker et al., 2007; Parker & 

Vannest, 2009), ease of access via an online calculator (Vannest, Parker, & Gonen, 

2011), and suitability for meta-analysis (e.g., Bowman-Perrott et al., 2013). However, 

Tarlow demonstrated that Tau-U can frequently give “out-of-bounds” results that are 

difficult to meaningfully interpret, and Tau-U did a poor job of controlling trend under a 

variety of simulation models. 

Baseline Corrected Tau is similar to Tau-U in that it yields a nonparametric rank 

correlation effect size, Tau. However, the method of modeling baseline trend differs. In 

Baseline Corrected Tau, the existence of monotonic baseline trend is first tested with a 

Tau correlation of the baseline phase data with a session/day/time variable. If there is 

sufficient evidence for monotonic baseline trend, e.g., p < .05, then the investigator 

proceeds to the trend correction step. A nonparametric Theil-Sen regression line is fitted 

to the baseline data. Detrended data are then calculated as the residuals of both phases 

from the baseline Theil-Sen regression line. The detrended data—or, if there was no 

evidence of baseline trend, the original data—are rank correlated with a dummy code 

phase variable (A phase = 0, B phase = 1) to yield a Tau effect size.  

Baseline Corrected Tau is useful because it is suitable for non-normally 

distributed data. Although Baseline Corrected Tau does not model autocorrelation, 

simulation research indicated it was robust even to very high levels of it (Tarlow, in 
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press). A weakness of Baseline Corrected Tau is its low power when testing baseline 

trend in small samples. When small or moderate trend is present in very brief time series 

(NA < 10), it is unlikely that a rank correlation will detect it, and the data will be 

analyzed under the assumption of no trend (leading to results that may offer misleading 

conclusions about the efficacy of the treatment). This is not only a limitation for 

Baseline Corrected Tau. Some single-case statistics deal with the low power problem by 

either assuming no baseline trend (see SMA below) or assuming baseline trend (see 

MPD below), and in both cases the statistical model may be improperly specified for a 

given data set. Baseline Corrected Tau is different from the other analyses included in 

this study because it includes a decision tree whereby a baseline trend correction is 

performed only when sufficient evidence suggests the trend exists. 

Tau coefficients may be combined using a variance estimator proposed by 

Kendall (1962). The variance of Tau will vary based on the underlying distribution of 

data. However, Kendall showed that the statistic’s variance cannot exceed (2 / n)(1 – 

Tau2). Tarlow (in press) recommended this variance estimator be used as a conservative 

effect size weight in meta-analyses of single-case data due to the unknown distributions 

of brief interrupted time series data. Tarlow’s (2016) online Baseline Corrected Tau 

calculator (available at http://ktarlow.com/stats/tau) calculates a Tau effect size from raw 

data as well as its standard error, SETau, which may be used for meta-analysis.  

Mean Phase Difference (MPD). Manolov and Solanas (2013) proposed the 

Mean Phase Difference (MPD) effect size, which compares projected baseline trend data 

with observed B phase data to yield a statistic which accounts for both trend and level 
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changes. MPD uses a nonparametric first-order differencing procedure to calculate a 

baseline slope coefficient, where the slope, b, is the average of NA – 1 differences, Yi – Yi 

– 1. Projected B phase data is then calculated as 1 ( 1)
An i Ay y b n i+ = + + - . The mean of the 

projected B phase is subtracted from the mean of the observed B phase. MPD is useful 

because it is easy to calculate and interpret (as difference between projected and actual B 

phase data). MPD is not affected by autocorrelation and may be of particular use to 

practitioners who want a straightforward effect size index that quantifies treatment 

effects in the unstandardized metric of the outcome variable (Manolov & Solanas, 2013; 

Tarlow, in press). 

A limitation of MPD is its lack of statistical development for meta-analysis. The 

MPD effect size, which is a mean difference, may be standardized by dividing the mean 

difference by the variability around estimated trend lines.3 However, its distribution is 

unknown. Rather than weight MPD effects by their inverse variance (which is not 

defined), they are weighted by the total number of time series observations, NA + NB, 

following Faith, Allison, and Gorman’s recommendation (1993). 

Ordinary Least Squares (OLS) R2. A number of similar regression models 

have been proposed to model level- and slope-change effects in brief interrupted time 

series experiments (Center, Skiba, & Casey, 1985-1986; Allison & Gorman, 1993; 

Huitema & McKean, 1998, 2000b). There are slight differences among these 

																																																													
3 For this study, an additional trend line was fitted to the observed B phase data for the sole purpose of 
calculating a standardizing term for the standardized MPD. First-order differencing was applied to B phase 
data just as in the baseline trend estimation step. Difference scores were then calculated within each phase 
as the observed score minus the predicted score (based on the fitted line). A standardizing term was then 
calculated as the standard deviation of the difference scores. This follows the standardizing procedure 
recommended by Maggin et al. (2011) and Swaminathan et al. (2010). 
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approaches, but the models are identical in most ways. Observed data is regressed onto 

four predictor terms, β0, β1, β2, β3, which correspond to baseline level, baseline trend, 

level-change, and slope-change, respectively. The regression model is: Y = β0 + β1T + 

β2D + β3S, where T is a session/day/time variable, D is a dummy code phase variable (A 

phase = 0, B phase = 1), and S is a slope change variable equal to [T – (nA + 1)]D.4 This 

method yields an effect size, R2, interpreted as the variance accounted for by level- and 

slope-change effects. An adjusted R2 was then calculated to account for small sample 

bias (Faith et al., 1996; Manolov & Solanas, 2008). The adjusted R2 may then be 

converted to a standardized mean difference, d, suitable for meta-analysis.   

OLS methods are sensitive to serial dependency. While standard regression 

methods may be suitable for analysis and meta-analysis when autocorrelation is 

minimal, R2 is linearly correlated with lag-1 autocorrelation (Manolov & Solanas, 2008, 

Tarlow, in press). This means that, as autocorrelation increases, so do the estimates of 

effect size (regardless of the true effect). An analysis of autocorrelation in the depression 

data sets was conducted, described below, in order to evaluate the influence of serial 

dependency on effect size estimates. The detection of substantial autocorrelation in the 

analyzed data would raise concerns about the validity of the OLS R2 statistic. 

White et al.’s d. White, Rusch, Kazdin, and Hartmann (1989) offered a 

standardized mean difference statistic, d, for combining single-case effect size estimates. 

White et al.’s d is useful because it models trend effects in a straightforward way. First, 

																																																													
4 Specification of the slope change term, S, is a point of difference among the various OLS models. 
Huitema and McKean (2000) gave a thorough examination of the slope change issue, and their model 
specification is used here. 
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regression lines are fitted to the data in each phase. Then, a data point is predicted for the 

last day of the B phase using each regression line. This is similar in concept to MPD, 

where a baseline phase trend line is used to make predictions in the B phase. In White et 

al.’s d, the two predicted values are differenced, then divided by a standardizing term 

which includes the phases’ pooled standard deviation controlling for across-phase trend. 

The equation for d is 

! = #$ − #&
(1 − )*) (,&* + ,$*)/2

 

where ˆBy  is the outcome variable prediction of the last day of the B phase made with  

the B phase regression line, ˆAy  is the prediction made with the A phase regression line, 

2
As  is the A phase variance, 2

Bs  is the B phase variance, and r is the Pearson correlation 

between the observed outcome variable and the session/day/time variable. 

White et al.’s d does not model autocorrelation, and simulation research by 

Manolov and Solanas (2008) demonstrated its sensitivity to data with an autoregressive 

error structure. Like the regression-based OLS R2 (Center, Skiba, & Casey, 1985-1986; 

Allison & Gorman, 1993; Huitema & McKean, 1998, 2000b), White et al.’s d was 

linearly associated with autocorrelation, though not as severely. The autocorrelation 

analysis described below was designed to determine the level of serial dependency 

present in the depression treatment data sets, and to what degree autocorrelation 

predicted the various effect size statistics.   

Simulation Modeling Analysis (SMA). Borckardt et al. (2008) proposed 

Simulation Modeling Analysis (SMA) to measure treatment effects in brief interrupted 
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time series experiments. SMA yields a Pearson r correlation between observed data and 

a dummy code phase variable (A phase = 0, B phase = 1). However, because hypothesis 

testing with r and other OLS statistics is distorted by serial dependency, SMA uses 

computer simulation methods to account for autocorrelation in the adjusted p-value 

results. To accomplish this, the first-order autoregressive coefficient, φ1, is estimated 

across both A and B phases. Then, thousands of artificial time series are simulated with 

the programmed level of autocorrelation, φ1, with series lengths of NA + NB. Each 

simulated time series has no programmed level- or slope-change effects, only the effect 

of autocorrelation. Each artificial time series in this null effect distribution is then 

correlated with the dummy code phase variable to yield r. The resulting distribution of r 

values is then used to conduct a null hypothesis significance test with the observed 

effect, i.e., the r correlation of the observed data and the dummy code variable. SMA is 

accessible to investigators via a standalone software application (available at 

http://www.clinicalresearcher.org/software.htm). 

A limitation of SMA is it does not explicitly model baseline trend and slope-

change effects. The SMA software allows the investigator to test several different slope 

vectors to determine if within- or across-phase trend is present. However, due to the 

brief nature of many single-case experiments, multiple slope models often fit one data 

set. Effect size values derived from different slope models may also not be directly 

comparable. For example, one hypothetical data set with phase lengths NA = 5 and NB = 

5 may have an effect size r = 0.80 when correlated with a dummy code phase variable 

{0, 0, 0, 0, 0, 1, 1, 1, 1, 1}. A second hypothetical data set of equal phase lengths may 
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also have an effect size r = 0.80, but only when correlated with the slope vector {1, 2, 3, 

4, 5, 6, 7, 8, 9, 10} (Slope Vector 4 in the SMA software). These r values cannot be 

interpreted as similar sized effects; the first one suggests an association between 

outcome and treatment, whereas the second suggests an association between outcome 

and time (i.e., baseline trend).  

Another limitation of SMA is that autocorrelation is estimated without 

controlling trend—a practice which can lead to uninterpretable results (Huitema & 

McKean, 1998). SMA also incorporates autocorrelation estimates only into probability 

testing (i.e., p-values). The reported effect size is not adjusted even when large degrees 

of serial dependency are present in the data, which may lead to interpretation problems. 

Transformation and Comparison of Effect Size Statistics 

The six statistics yield effect size estimates in different metrics. Three of the 

indices yield correlation statistics as results (Baseline Corrected Tau, SMA, and 

ITSSIM). The OLS regression model gives a variance-accounted-for R2 as an effect size. 

White et al.’s method yields a standardized mean difference d statistics. And MPD gives 

an unstandardized effect, where the effect of treatment is expressed in units of the 

original outcome measure. In order to help with comparison and interpretation, the OLS 

regression model, White et al.’s d, and MPD were transformed to correlation 

coefficients, which can be interpreted as the strength of association between treatment 

and outcome (controlling for trend, etc.). Correlation-based measures of effect are in 

some ways easier to interpret with single-case research because effect sizes are bound 

between -1 and +1; standardized mean difference d-type measures often produce single-
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case effects that are quite large and hard to interpret (Jenson et al., 2007; Parker et al., 

2005).	

Effect size estimates from the six indices were tested with correlations to 

determine how well the metrics concurred with each other. In general, single-case 

statistics have demonstrated only moderate agreement (Smith, 2012). The distributions 

of each effects size measure were also visualized with histograms to detect any floor or 

ceiling effects, which are known to occur frequently with non-overlap and other methods 

(Tarlow, in press).  

Meta-Analysis 

Multilevel models are a natural fit for single-case research synthesis, where 

treatment effects are hierarchically nested within studies and cases. For example, one 

study may have several cases, and one case may have more than one treatment effect (as 

in an ABAB reversal design, where there are two phase contrasts). As discussed above, 

multilevel modeling has been critiqued for being too opaque to the majority of scientists 

and practitioners conducting single-case research (Parker & Vannest, 2012).  

This study aims to find a happy medium between fully-multilevel methods and 

designs which do not account for random within-group or within-study effects (e.g., 

Bowman-Perrott et al., 2013; Parker, Vannest, & Davis, 2011; Vannest et al., 2010). In 

fully-multilevel methods, raw data fitted to an omnibus hierarchical model. However, 

this approach often requires the investigator to test multiple models, and excess data are 

frequently discarded. On the other hand, single-level (fixed effects) meta-analyses, 

which comprise most of the single-case quantitative synthesis literature, combine effect 
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size estimates without consideration of the statistical interdependence of effects within 

cases or studies. Treating nested within-group effects as independent when they are not 

can lead to misleading results and drastically inflated error rates (Cook, 2000). In this 

paper, individual effects were obtained from the six effect size indices, and the 

multilevel analysis is used only to aggregate those results across studies.  

Within-study meta-analysis. A one-level fixed-effects model was used to 

estimate the average treatment effect for the cases within each study. It should be noted 

that within-study treatment effects will differ when estimated from a multilevel model, 

as described below. However, it is useful to consider how one investigator might 

aggregate their own results—without access to data from other single-case studies. The 

studies of cognitive treatments for depression included in the meta-analysis were all 

multiple baseline studies with a single baseline-to-intervention AB phase contrast (i.e., a 

single treatment effect per case). Therefore, there was no need to add an additional 

within-case level to account for multiple contrasts.  

The fixed-effects model used was: 

 ESi = β0 + ei 

where ESi is the effect size for case i in the study, β0 is the overall treatment effect for 

the study, and ei is the difference between the case i effect size and the study’s overall 

effect. The ei term is assumed to be random, independent, and normally distributed. 

The R software (R Core Team, 2016) package ‘meta’ (Schwarzer, 2007) was 

used to calculate all fixed-effect means. The package includes the ‘metacor’ function, 

which performs fixed- and random-effects meta-analyses with correlation data.	
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Multilevel meta-analysis. The mixed model used to synthesize cases for an 

overall omnibus effect size assumes hierarchically clustered data with two levels, where 

cases (and their treatment effect sizes) are nested within studies. This is essentially a 

random-effects ANOVA, which yields an overall effect size. The hierarchical model 

used was: 

Level 1 (within study) ESij = β0j + eij  

Level 2 (between studies) β0j = θ00 + u0j 

where ESij is the treatment effect size for case i in study j, β0j is overall effect size for 

study j, eij is the difference between the case i effect size and that case’s study j overall 

effect, θ00 is the overall effect size for all studies, and u0j is the difference between the 

study j effect and the overall effect size for all studies. The eij and u0j terms are assumed 

to be random, independent, and normally distributed. 

Note that Level 1 of the mixed model is identical to the within-study meta-

analysis above. However, all within-study treatment effects, β0j, are distributed around 

an overall effect size for all studies, θ00. 

The SAS PROC MIXED routine was used to perform two-level meta-analyses 

(SAS Institute, 2012). Singer (1998) offered a thorough tutorial for using SAS in 

multilevel modeling. Figure 7 presents the syntax used for this study.  
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Figure 7. Syntax for multilevel modeling with SAS PROC MIXED. 

Potential moderator effects. Moderators are variables that affect the strength 

and/or direction of effect between predictor and dependent variables (Baron & Kenny, 

1986). Moderators of interest to researchers are often categorical variables (e.g., gender, 

race, class) that divide individuals into groups that are meaningful for the treatment 

under study. 

Three potential moderators were initially identified after reviewing the ten 

articles included in this paper. The moderators were: bipolar vs. unipolar depression, 

telepsychology versus in-person treatment, and transdiagnostic CBT versus other 

treatment modality. Only the bipolar diagnosis moderator had sufficient power for 

further analysis, as the other variables had too few cases to reliably fit a hierarchical 

model. Three of the studies (A-C) tested treatments of individuals with a bipolar 

disorder, which included 25 out of the 53 total cases. 

There is strong evidence for cognitive/cognitive-behavioral therapy’s efficacy 

when treating individuals with unipolar depression and anxiety (Butler et al., 2006). 

However, bipolar disorder is more challenging to treat with psychotherapy (Beck, 2005). 
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Scott (1995) identified three obstacles to treating bipolar disorder: the disorder has 

strong genetic/biological correlates which suggest it is more biologically based than 

other affective disorders; there is a false belief among many mental health care providers 

that individuals with bipolar disorder make a full inter-episode recover, and thus would 

not benefit from treatment; there is historically a substantial amount of stigma about 

individual with bipolar disorder, who are seen as poor candidates for psychotherapy. 

Even researchers who have produced evidence of psychotherapy’s efficacy for bipolar 

disorder acknowledge, “new CBT strategies are needed to increase and enrich the impact 

of CBT at posttreatment and to maintain its benefits” (Szentagotai & David, 2010, p. 

66). The three single-case studies of psychotherapeutic interventions for bipolar (A-C) 

are good examples of treatment innovation.  

Weights. Effect size estimates were weighted by their combined phase lengths, 

nA + nB, in the within-study (one-level) meta-analyses, following the suggestion of 

Allison and Gorman (1996). By weighting estimates in this way, effects that were 

estimated from longer experiments were treated as more reliable indicators of overall 

treatment effect. Another possible weighting scheme not investigated here would be to 

weight effects by their baseline phase length only, nA. 

A limitation of the two-level omnibus analysis was that it did not permit case-

specific weights, as did the one-level model. Weighting schemes are possible in 

multilevel meta-analysis (Cheung, 2015). However, they require the same number of 

effects within each cluster, i.e., the same number of cases within each study.  
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Autocorrelation  

Autocorrelation is known to influence the effect size estimates of some single-

case statistics. The degree to which autocorrelation is present in single-case behavioral 

data has been debated at length (e.g., see the special issue of Behavioral Assessment; 

Baer, 1988; Busk & Marascuilo, 1988; Huitema, 1985, 1988; Sharpley & Alavosius, 

1988; Suen, 1987; Suen & Ary, 1987; Wampold, 1988), with an emerging consensus 

that serial dependency should not be ignored. How exactly investigators should handle 

autocorrelation is still unclear. One approach involves identifying statistics which are 

less affected by autocorrelation (Manolov & Solanas, 2008; Parker, Vannest, Davis, & 

Sauber, 2011; Tarlow, in press). A limitation to this approach is that serial dependency 

may nonetheless affect the underlying distribution of these effect size indices, even when 

the size of effect is robust to autocorrelation (Shadish, 2014b). For example, a statistic 

could hypothetically report the same effect size for a series with no autocorrelation and 

another series with a high degree of autocorrelation present—however, the standard 

errors of those effects (and their relative probabilities) may not be equal. A second 

approach is to statistically control autocorrelation, much in the same way that baseline 

trend is statistically controlled in some of the methods discussed above (Parker et al., 

2006, 2011). Unfortunately, autocorrelation estimation is very imprecise in brief 

interrupted time-series, and “corrected” data may do a poor job of reflecting the 

experimental treatment effect (see Chapter II). 

To examine the degree and effect of autocorrelation in this study’s depression 

data sets, r1 (the lag-1 autocorrelation coefficient) was estimated for each of the 53 
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analyzed cases. Autocorrelation estimates were calculated from regression residuals, not 

raw data, as level changes and trend effects greatly distort r1 (Huitema & McKean, 

1998). The standard autocorrelation estimator is biased in small samples, so a corrected 

estimator was used (Huitema & McKean, 1991; Ferron, 2002):  

)0 =
(12)(1230)4

25*
12*4

250
+ 6
7 

where N is the number of observations, et is the residual at time t, and P is the number of 

estimated parameters in the regression model used to extract residuals (in this case, P = 

4). 

Effect size estimates were then correlated with r1 to test for any association 

between treatment effect and serial dependency. Some single-case statistics, including 

the OLS regression method and White et al.’s (1989) d statistic, have demonstrated a 

linear relationship with r1 in simulation studies (Manolov & Solanas, 2008; Tarlow, in 

press).  

Autocorrelation estimators unfortunately have poor precision with brief time 

series. Even when a single-case data set yields a large r1 estimate, quite often the r1 

value has very large standard errors and is not statistically significant. To increase the 

power of autocorrelation detection in the present study, r1 estimates were meta-

analytically combined using a random-effects model. In a large survey of single-case 

research (not limited to depression treatments), Shadish and Sullivan (2011) used a 

similar method to test for autocorrelation. Their analysis of 800 time-series from 113 

studies yielded a mean lag-1 autocorrelation of r1 = 0.20 (p < 0.001); the mean effect 
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also had a statistically significant variance component, indicating that the level of 

autocorrelation was not homogenous across all studies. 

Results 

After transforming all effect size estimates to correlation coefficients, the relative 

associations between statistical methods was examined via correlations. The correlations 

of the six indices and the lag-1 autocorrelation estimates are presented in Table 7. The 

six statistics demonstrated moderate to strong agreement, r values ranging from 0.52 to 

0.93. All correlations between effect size statistics were statistically significant, p < 0.05. 

On the other hand, there was no evidence of association between any effect size statistic 

and the lag-1 autocorrelation estimate. This result is considered cautiously, given 

simulation research which has demonstrated least squares regression-based statistics like 

the OLS model and White et al.’s method are sensitive to lag-1 autocorrelation (Tarlow, 

in press; Manolov & Solanas, 2008). This study may have lacked the sufficient power to 

detect these associations. 
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Table 7 

Pearson Correlation Matrix of Effect Size Statistics and Lag-1 Autocorrelation for 53 
Single-Case Studies of Cognitive Depression Treatments 

Effect Size Statistic (1) (2) (3) (4) (5) (6) r1 

(1) Baseline Corrected 
Tau 

- 0.57 0.75 0.66 0.86 0.72 0.05* 

(2) MPD 0.57 - 0.83 0.90 0.52 0.87 0.00* 

(3) OLS 0.75 0.83 - 0.89 0.65 0.90 0.05* 

(4) White et al. 0.66 0.90 0.89 - 0.54 0.93 0.03* 

(5) SMA 0.86 0.52 0.65 0.54 - 0.57 0.00* 

(6) ITSSIM 0.72 0.87 0.90 0.93 0.57 - -0.03* 

r1   0.05*   0.00*   0.05*   0.03*   0.00*  -0.03* - 

* not statistically significant, p < .05.  

A review of the Table 7 results suggests that the effect size statistics fell into two 

distinct groups. The first group, which included Baseline Corrected Tau and SMA, were 

strongly associated, r = 0.86. These two methods are similar in that they do not model 

baseline trend as aggressively as the other four statistics. SMA does not model trend at 

all. Baseline Corrected Tau uses a nonparametric robust regression method (Theil-Sen) 

to correct for trend, but only when there is a statistically significant trend in the baseline 

phase—in contrast with the remaining four statistics which remove the estimated 

baseline trend from all time-series automatically. Only eight out of the 53 cases (15%) 

had statistically significant baseline trend using the Baseline Corrected Tau method; the 

remaining 45 effects were estimated without corrected for baseline trend. This offers at 
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least a partial explanation for why this statistic was strongly associated with SMA, 

which used no trend correction on all 53 cases.  

The second group of statistics, including MPD, OLS regression, White et al., and 

ITSSIM, were also strongly associated, with r values from 0.83 to 0.93. The high level 

of agreement could be described by the nature of the trend correction procedure, which 

is similar with all four methods. In each case, a trend line is fitted to the baseline data 

and used to make predictions about how the participant would continue to change 

through the duration of the B phase—and predicted “null effect” values are compared to 

the observed treatment effect to find an effect size. The correlations across the two sets 

of statistics (“Conservative/No Baseline Correction” versus “Aggressive Baseline 

Correction”) further suggest these are distinct groups, with relatively moderate r values 

from 0.52 to 0.75.  

Effect size estimates for each of the six statistics were then meta-analytically 

combined within and between studies. The mean effect sizes are summarized in Table 8. 

The consistency of the statistics when applied to meta-analysis was mixed. The 

magnitude of mean effects varied by statistic, with Baseline Corrected Tau and ITSSIM 

giving more moderate mean effects on average. On all but two of the within-study meta-

analyses (B and J), the six statistics gave mean effects which concurred on the direction 

of treatment effect, i.e., mean effect sizes where all negative (indicating improvement) or 

positive (indicating deterioration of mood). On only three of the studies (A, E and F) did 

all six statistics give mean effect estimates that were statistically significant. Of those 

three studies, one (A) had the largest number of cases, and the other two (E and F) had 
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the largest treatment effects. It is therefore unsurprising that these three studies would 

have statistically significant mean effects, as statistical power increases with both the 

number of cases and effect size.  

When all effects were combined with the two-level model (n = 53), the six means 

once again agreed on the direction of average treatment effect, which was negative 

(treatment associated with a decrease in depression). Mean omnibus effects ranged from 

-0.279 to -0.743. However, only three of the mean effects were statistically significant: 

Baseline Corrected Tau, OLS regression, and SMA.  

The statistics were most consistent when the moderator effect, bipolar diagnosis, 

was taken into account. None of the methods yielded a statistically significant mean 

treatment effect for the bipolar treatment studies (A, B, and C). On the other hand, 

statistically significant treatment effects were detected in the non-bipolar studies (D-J), 

with effects ranging from -0.380 to -0.936. This finding would suggest that single-case 

treatments for depression are effective with individuals not diagnosed with a bipolar 

disorder; there is less evidence of treatment efficacy for individuals diagnosed with a 

bipolar disorder. 
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Table 8 

Mean Effect Sizes by Study with 95% Confidence Intervals 

Study n BC-Tau MPD r OLS r White et al.’s r SMA r ITSSIM r 

One-Level Model (within-study)        

 A (Holmes) 14 -0.297 
[-0.362, -0.228] 

-0.497 
[-0.550, -0.439] 

-0.327 
[-0.391, -0.260] 

-0.586 
[-0.632, -0.536] 

-0.475 
[-0.523, -0.416] 

-0.459 
[-0.515, -0.399] 

 B (Searson) 7 -0.159 
[-0.353, 0.049] 

0.129 
[-0.079, 0.327] 

0.135 
[-0.073, 0.332] 

0.461 
[0.282, 0.609] 

-0.185 
[-0.377, 0.021] 

0.410 
[0.223, 0.568] 

 C (Holländare)  4 0.002 
[-0.372, 0.374] 

0.836 
[0.672, 0.922] 

0.297 
[-0.086, 0.603] 

0.942 
[0.877, 0.973] 

-0.083 
[-0.442, 0.300] 

0.567 
[0.246, 0.776] 

 D (Jones) 4 -0.164 
[-0.425, 0.123] 

-0.548 
[-0.712, -0.316] 

-0.332 
[-0.561, -0.056] 

-0.980 
[-0.988, -0.964] 

-0.221 
[-0.473, 0.064] 

-0.318 
[-0.550, -0.040] 

 E (Mehranfar) 4 -0.735 
[-0.881, -0.464] 

-0.933 
[-0.971, -0.846] 

-0.956 
[-0.981, -0.898] 

-0.993 
[-0.997, -0.984] 

-0.907 
[-0.960, -0.790] 

-0.748 
[-0.887, -0.485] 

 F (Akbari) 3 -0.596 
[-0.767, -0.346] 

-0.922 
[-0.958, -0.855] 

-0.977 
[-0.988, -0.957] 

-0.997 
[-0.998, -0.994] 

-0.709 
[-0.837, -0.507] 

-0.912 
[-0.953, -0.837] 

 G (Cowles) 1 -0.344 
[-0.821, 0.415] 

-0.928 
[-0.985, -0.687] 

-0.917 
[-0.983, -0.646] 

-0.979 
[-0.996, -0.900] 

-0.654 
[-0.919, 0.018] 

-0.778 
[-0.951, -0.236] 

 H (McManus) 6 -0.261 
[-0.459, -0.038] 

-0.188 
[-0.396, 0.040] 

-0.637 
[-0.754, -0.480] 

-0.712 
[-0.808, -0.580] 

-0.296 
[-0.488, -0.075] 

-0.373 
[-0.552, -0.161] 

 I (Maroti) 2 -0.546 
[-0.827, -0.047] 

-0.674 
[-0.882, -0.248] 

-0.720 
[-0.900, -0.330] 

-0.911 
[-0.970, -0.747] 

-0.751 
[-0.912, -0.388] 

-0.479 
[-0.796, 0.044] 

 J (Beck) 8 -0.016 
[-0.200, 0.168] 

-0.146 
[-0.322, 0.039] 

-0.198 
[-0.368, -0.014] 

-0.269 
[-0.432, -0.090] 

-0.284 
[-0.444, -0.105] 

0.218 
[0.035, 0.386] 
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Table 8 Continued 

Study n BC-Tau MPD r OLS r White et al.’s r SMA r ITSSIM r 

Two-Level Model (between-studies)        

 All Studies 53 -0.281 
[-0.450, -0.092] 

-0.433 
[-0.791, 0.146] 

-0.595 
[-0.859, -0.083] 

-0.743 
[-0.968, 0.148] 

-0.475 
[-0.687, -0.187] 

-0.279 
[-0.631, 0.170] 

Moderator Effects        

 Bipolar diagnosis         

  Yes (A, B, C) 25 -0.205 
[-0.607, 0.281] 

0.192 
[-0.960, 0.981] 

-0.071 
[-0.762, 0.696] 

0.341 
[-0.991, 0.998] 

-0.305 
[-0.734, 0.296] 

0.092 
[-0.919, 0.943] 

  No (D, E, F, G, H, I, J) 28 -0.380 
[-0.631, -0.055] 

-0.681 
[-0.907, -0.152] 

-0.789 
[-0.949, -0.300] 

-0.936 
[-0.994, -0.460] 

-0.583 
[-0.819, -0.181] 

-0.529 
[-0.818, -0.028] 

Note: Bracketed terms indicate 95% confidence intervals. Negative effect sizes indicate a decrease in depression, i.e., 
improved mood. Bold effect size estimates are statistically significant, p < .05  
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Distributions of the six effect size statistics are illustrated in Figure 8. Only the 

non-bipolar studies (D-J) are included in the figure. White et al.’s effect size 

demonstrated severe floor and ceiling effects, suggesting it does a poor job of 

discriminating between effects of different sizes (nearly all cases fell near +1.000 or -

1.000). This replicates a similar finding by Parker et al. (2005). The ceiling effect is due 

to the extreme d values produced by White et al.’s method, which were transformed to r 

statistics during the meta-analysis; 45 out of 53 cases (85%) had a d with an absolute 

value greater than 4; 28 cases (53%) had an absolute d value greater than 10. The OLS 

regression model had a similar, though less severe, problem; 16 cases (30%) had 

absolute d values greater than 4. MPD yields unstandardized effects, to be interpreted as 

a change in outcome using the original outcome metric (e.g., “a decrease of 10 points on 

the Beck Depression Inventory”). Manolov and Solanas (2013) suggested it could be 

standardized for quantitative synthesis of single-case research, though results of this 

study suggest it may be more interpretable in its original unstandardized form. Out of 53 

cases, the absolute standardized d value of MPD exceeded 4 on 20 cases (38%). The 

other three statistics showed less evidence of ceiling/floor effects. 
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Figure 8. Histograms of effect size distributions, excluding treatments for bipolar 
disorder (n = 28). Dotted lines indicate multilevel meta-analytic mean effect size; shaded 
regions indicate 95% confidence intervals. 
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Mean autocorrelation estimates are summarized in Table 9. Case-specific 

estimates of lag-1 autocorrelation ranged from -0.238 ≤ r1 ≤ 0.782. As discussed above, 

the autocorrelation estimator is quite imprecise in brief time series. When r1 values were 

combined within studies, they had a more moderate range of -0.046 ≤ r1 ≤ 0.502. The 

overall random effects mean 1r  = 0.313, p < 0.001 (n = 53). This result is similar to 

Shadish and Sullivan’s (2011) meta-analysis of lag-1 autocorrelation in single-case 

studies, where they found 1r  = 0.20, p < 0.001 (n = 800). However, unlike Shadish and 

Sullivan’s survey, the meta-analysis of the cognitive therapy studies did not yield a 

statistically significant variance component of the random effects mean (τ2 = 0.001, Q = 

54.68, df = 52, p = 0.373).  
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Table 9 

Mean Autocorrelation Estimates by Study 

Study n r1 95% CI p 

A (Holmes) 14 0.330 [0.263, 0.394] < 0.001 
B (Searson) 7 0.269 [0.067, 0.450] 0.010 
C (Holländare) 4 -0.049 [-0.471, 0.391] 0.834 
D (Jones) 4 0.120 [-0.166, 0.388] 0.412 
E (Mehranfar) 4 0.006 [-0.408, 0.417] 0.980 
F (Akbari) 3 0.502 [0.221, 0.705] 0.001 
G (Cowles) 1 0.062 [-0.628, 0.697] 0.879 
H (McManus) 6 0.224 [-0.002, 0.427] 0.052 
I (Maroti) 2 -0.046 [-0.545, 0.478] 0.874 
J (Beck) 8 0.469 [0.312, 0.601] < 0.001 

All Studies 53 0.313 [0.259, 0.366] < 0.001 
 

Discussion 

The purposes of this study were (a) to demonstrate how to perform a meta-

analysis of single-case studies of cognitive therapies for depression, and (b) to compare 

effect size statistics for single-case meta-analysis. Single-case experimental methods 

have the potential to contribute clinically relevant knowledge to psychotherapy research, 

but in the past these studies have been difficult to aggregate and synthesize. It is also 

unclear what statistics would be most appropriate for such a meta-analysis, and how 
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results might be interpreted alongside group design effect sizes (the “apples and 

oranges” problem).  

Effect Size Comparison 

The longstanding conventional wisdom of single-case research states “the more 

promising available statistical analysis methods [yield] moderately different results on 

the same data series … each available method is equipped to address only a relatively 

narrow spectrum of data” (Smith, 2012, p. 521). The results of this study suggest 

otherwise. Statistical methods on average gave consistent results when they used similar 

approaches to data modeling and were applied to a homogenous set of research studies 

(e.g., psychotherapy research). Of the six effect size statistics included in this study, two 

distinct groups were identified, distinguished by their approach to baseline trend 

correction. In the first group, Baseline Corrected Tau took a conservative approach to 

baseline trend correction (no correction was performed in 85% of the cases that did not 

have statistically significant baseline trend), and Simulation Modeling Analysis (SMA) 

did not correct for trend at all. The statistics in the second group, Mean Phase Difference 

(MPD), an OLS regression model, White et al.’s d, and Interrupted Time-Series 

Simulation (ITSSIM), took a more aggressive approach, correcting for baseline trend in 

all cases. Within these two groups of statistics, effect size estimates were strongly 

correlated, 0.83 ≤ r ≤ 0.93. 

Converting all statistics to a correlation metric resolved some interpretation 

issues. All effect size correlations were bounded between -1 and +1, and thus were easier 

to compare across methods (the R2 effect size has the same advantage; however, it fails 
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to indicate the direction of treatment effect, positive or negative). Standardized mean 

difference statistics gave extreme values when applied to cases included in this study, 

consistent with other findings (Parker et al., 2005). Correlation effect sizes can be 

interpreted as the association between treatment and outcome (controlling for trend, 

etc.), though making sense of standardized mean differences for interrupted time-series 

data, especially extreme values, is more difficult. For example, interpreting an effect size 

of r = -0.97 is less nettlesome than interpreting d = -10.58, though both are equivalent 

(and were observed in one of the analyzed cases). Three of the statistics, White et al.’s d, 

the OLS regression model, and MPD, yielded d values greater than 4 on over one-third 

of the analyzed cases. Ceiling effects were very pronounced on White et al.’s method, 

where d > 10 for over half of the analyzed cases. These findings support Parker et al.’s 

conclusion that “some effect sizes, notably [White et al.’s d], are relatively meaningless 

unless constrained by information on their reliability” (p. 128). In addition to 

supplementing effect sizes with reliability indicators (like confidence intervals), it is also 

suggested that other standardized effect sizes, like correlation coefficients, can aid with 

interpretation.  

Baseline Corrected Tau and ITSSIM gave the most moderate effect size 

estimates on average (and their estimates were strongly correlated, r = 0.72, p < 0.001). 

Baseline Corrected Tau was the only statistic in this study that did not produce any 

extreme or difficult to interpret effect size estimates. Given concern about the “apples 

and oranges” problem of comparing single-case and group-design effect sizes, it may be 

useful to explore and develop these methods further. SMA effect size estimates were 
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also reasonably distributed and not overly extreme. However, despite this and other 

strengths, SMA does not offer the option for baseline trend correction; it should 

therefore be used with caution when analyzing data that may contain trend.  

Meta-Analysis with Single-Case Effect Size Statistics 

Single-case investigators have pursued two approaches to quantitative synthesis 

of single-case research. Parker and Vannest (2012) contrasted these strategies as “top-

down” versus “bottom-up” approaches:  

Although “top-down” models, for example, multi-level or hierarchical linear 
models, are gaining momentum and have much to offer, interventionists should 
be cautious about analyses that are not easily understood, are not governed by a 
“wide lens” visual analysis, do not yield intuitive results, and remove the analysis 
process from the interventionist, who alone has intimate understanding of the 
design logic and resulting data patterns. “Bottom-up” analysis possesses benefits 
which fit will with [single-case research], including applicability to designs with 
few data points and few phases, customization of analyses based on design and 
data idiosyncrasies, conformation with visual analysis, and directly meaningful 
effect sizes. (p. 254) 

This study took “middle ground” approach to meta-analysis. Single-case effect size 

statistics were used to estimate a treatment effect for all 53 cases, similar to a bottom-up 

strategy. However, like a top-down approach, a hierarchical model was used to combine 

these effects, because it is assumed that cases within studies are statistically dependent 

(the same is true for multiple sequential treatment effects within cases). As Glass et al. 

(1972) pointed out, violating the independence assumption of fixed effect statistical tests 

is “far more serious” than violating other assumptions. Here multilevel methods can help 

by accurately modeling within-study (and within-case) covariances. Rather than take a 

fully-multilevel approach where raw data are fitted to a hierarchical model (e.g., Van 

den Noortgate & Onghena, 2003, 2007, 2008), the single-case indices of within-case 
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effect size were inputted into a multilevel analysis. An advantage of this approach 

(besides correctly modeling within-study dependence) is that omnibus effect size 

estimates from multilevel meta-analysis were in a metric familiar to the single-case 

interventionist (e.g., “an average treatment effect of ITSSIM r = -0.279”). A limitations 

of this approach is the relatively large number of cases needed to have adequate 

statistical power, especially when testing for moderator effects.  

Autocorrelation 

Serial dependency is difficult to estimate reliably in brief time-series. 

Investigators must also account for small-sample bias in autocorrelation estimation when 

working with single-case data (Huitema & McKean, 1991; Ferron, 2002). Lag-1 

autocorrelation estimates from all 53 analyzed cases were aggregated via random-effects 

meta-analysis, similar to strategy used by Shadish and Sullivan (2011). There was a 

mean autocorrelation of 1r  = 0.313, p < 0.001. This replicates Shadish and Sullivan’s 

finding of small-but-significant positive autocorrelation in single-case data, and confirms 

the growing consensus that serial dependency should not be ignored in single-case 

statistical analysis. Unlike Shadish and Sullivan’s results, the mean autocorrelation 

estimate in this study was not significantly heterogeneous. It is hypothesized that this 

result is due to the relative homogeneity of research studies (all were psychotherapy 

studies, etc.) compared to Shadish and Sullivan’s very large survey of single-case 

research, which included over 800 cases from over 100 studies, spanning several 

research domains.  
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Evidence of Treatment Efficacy 

There is a rich history of meta-analyses with group studies of psychotherapy 

outcomes. One need only consult the seminal Benefits of Psychotherapy by Smith et al. 

(1980; see also Smith & Glass, 1977), the first modern meta-analysis, to glimpse the 

breadth and depth of quantitative synthesis in therapy research. However, a literature 

review found no meta-analyses of single-case psychotherapy research—a disappointing 

result given the unique contributions single-case designs can offer the field. 

Studies included in the meta-analysis incorporated innovative treatments, 

complex symptom presentations, and low incidence clinical populations. All studies 

tested the outcome of some cognitive or cognitive-behavioral intervention. Effect size 

estimates for individual cases were highly variable, and to a degree that variability 

limited the precision of within- and between-study effect size means. This supports 

earlier findings that single-case studies, especially those in clinical settings, tend to 

produce effects that are more variable than group designs (Jenson et al., 2007; Parker et 

al., 2005).  

Omnibus mean effects for all 10 studies were large and in the expected direction 

(treatment was associated with a decrease in depressive symptoms/improved mood). 

However, due to the variability of individual cases, some of the mean effects were not 

statistically significant. Excluding White et al.’s effect size metric (for the distributional 

reasons outlined above), the five remaining methods produced a range of omnibus effect 

size estimates for the 10 analyzed studies (n = 53), 0.28 ≤ r  ≤ 0.60. Converted to 

standardized mean difference (d) effect sizes, this is equivalent to 0.58 ≤ ES ≤ 1.48. 
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Despite the “apples and oranges” concern about the typically large values of single-case 

effect sizes relative to group-design effects, this result is remarkably consistent with 

recent meta-analyses of cognitive-behavioral therapy RCT research, which yield effect 

sizes in the 0.71 ≤ ES ≤ 1.86 range (Butler et al., 2006). Smith et al.’s (1980) original 

meta-analysis of psychotherapy outcomes found cognitive and cognitive-behavioral 

treatment outcomes in the 0.51 ≤ ES ≤ 1.82.  

Evidence of single-case treatment efficacy was clearer when the bipolar 

diagnosis moderator was included. Mean treatment effects for the bipolar cases (n = 25) 

were mixed, -0.39 ≤ ES ≤ 0.64 (-0.19 ≤ r  ≤ 0.305), indicating that, on average, 

participants may not have reliably improved during treatment, and may have even 

deteriorated. None of the mean bipolar effect sizes were statistically significant. On the 

other hand, mean effect sizes for the non-bipolar cases (n = 28) were large and 

statistically significant, 0.82 ≤ ES ≤ 2.57 (0.38 ≤ r  ≤ 0.79). 

Overall, these results are consistent with much of the RCT psychotherapy 

research. Single-case studies of cognitive therapies were, on average, associated with 

substantial decreases in depressive symptoms. Similar to previous outcomes research, 

individuals with bipolar disorder did not appear to benefit from psychotherapy 

interventions as much or as reliably as individuals not diagnosed with bipolar disorder.	

Conclusion 

The results of this study indicate single-case experimental designs are a viable 

and valuable tool for psychotherapy research. Meta-analyses that blend multilevel 

modeling with single-case effect size estimation produce results that are statistically 
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reasonable and practically useful. Mean single-case effect sizes were quite similar in 

magnitude to treatment effects in RCT research, suggesting that, with further 

development, it may eventually be possible to synthesize research from different 

designs. While omnibus mean effects were not much larger than those from group-

design meta-analyses, the effect sizes of individual cases were highly variable. 

Fortunately, single-case research allows investigators to examine these case-by-case 

differences within the context of individuals’ demographics, diagnoses, and change over 

time. Two statistical methods used in this study, Baseline Corrected Tau and ITSSIM, 

performed well compared to the other four methods. Both gave a reasonable distribution 

of correlation effect sizes without the pronounced ceiling effects evident in other 

methods, and both can account for baseline trend when estimating treatment effects. One 

method from White et al. (1989) is not recommended due to the extreme, difficult-to-

interpret results it produced.  
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CHAPTER IV  

EVALUATION OF SINGLE-CASE STATISTICAL METHODS  

WITH COMPUTER-INTENSIVE SIMULATION:  

SOFTWARE AND APPLICATIONS 

 

Abstract 

Computer-intensive simulation methods are often used to test and compare effect 

size statistics for singe-case experimental designs. Because there are many established 

single-case statistics, and because no one statistical method has demonstrated clear 

superiority, Monte Carlo simulation studies can clarify the conditions under which 

different methods may be appropriate. Simulations can also test statistical assumptions 

and define distributional properties for single-case effect size indices that are clinically 

useful but not well understood from a research perspective. This paper introduces a free 

software application for conducting simulation research with single-case statistics. The 

application, Interrupted Time-Series Lab (ITSLAB), allows users to manipulate 

parameters (including phase length, baseline trend, level- and slope-change effects, 

autocorrelation, and within-phase error variance) while exploring the distributions and 

statistical power of several popular single-case effect size measures. 

Introduction 

Single-case experimental designs, which have a rich history in behavioral 

science, are an increasingly popular tool of applied researchers in many areas of 

education and psychology (Smith, 2012). Single-case methods permit investigators to 
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establish causal evidence of treatment efficacy (APA Presidential Task Force on 

Evidence-Based Practice, 2006; Barlow & Hersen, 1984), often with a fraction of the 

resources required of large-n group designs (Barlow & Nock, 2009). Brief single-

participant interrupted time-series experiments can also bridge the gap between scientists 

and practitioners because they can be implemented by practitioners in clinical settings 

(Borckardt et al., 2008). Single-case experiments may be of particular use to 

practitioners who wish to demonstrate their treatment efficacy, given the growing 

emphasis on evidence-based treatments in education and healthcare (Morgan & Morgan, 

2001; Shadish et al., 2008).  

An obstacle to wider adoption of single-case experiments is the lack of consensus 

regarding data analytic methods (Smith, 2012). Brief interrupted time-series data violate 

the independence assumptions of most statistics used in large-n between-groups research 

(Borckardt, 2008; Wampold, 1988). In addition, single-case experiments in applied 

psychology and education are often too brief to utilize the time-series analysis methods 

used in other fields (Box & Jenkins, 1970; Glass et al., 1975). As a result, single-case 

researchers have proposed a range of tools for statistically measuring and combining 

single-case experimental treatment effects (Parker et al., 2011; Shadish, 2014). No single 

method has emerged as clearly superior. As a result, single-case investigators must 

assess which statistics are best suited for their experiment or use non-statistical 

evaluation methods like visual analysis, which are often unreliable (Brossart, Parker, 

Olson, & Mahadevan, 2006; Danov & Symons, 2008; DeProspero & Cohen, 1979; 

Harbst, Ottenbacher, & Harris, 1991; Park, Marascuilo, & Gaylord-Ross, 1990; 
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Lieberman et al., 2010; Ximenes, Manolov, Solanas, & Quera, 2009) and poorly suited 

for research synthesis (Beretvas & Chung, 2011; Busk & Serlin, 1992; Maggin & Odom, 

2014; Scruggs & Mastropieri, 2001).  

Researchers have relied on several strategies to determine how single-case 

statistics should be used and interpreted given the limitations and assumptions of the 

various effect size indices. One approach involves the evaluation of one or more effect 

size statistics by applying them to a sample of published data sets (Brossart et al., 2011; 

Campbell, 2004; Ma, 2006; Parker et al., 2005, 2006, 2011; Parker & Hagan-Burke, 

2007; Parker & Vannest, 2009; Parker, Vannest, & Davis, 2011; Shadish et al., 2014; 

Tarlow, in press; Vannest et al., 2012; Wolery et al., 2010). This strategy allows 

investigators to understand how methods perform in “real life” applications. Statistical 

results from a range of published studies also help identify clinically useful cutoff points 

and potential limitations of the effect size indices (e.g., Scruggs & Mastropieri, 1998).  

A second strategy involves large surveys of published single-case experiments, 

similar to the approach described above. However, rather than assessing these surveyed 

data sets with single-case effect size metrics, various statistical properties of the data are 

examined (Huitema, 1985; Matyas & Greenwood, 1991; Shadish & Sullivan, 2011; 

Smith, 2012; Solomon, 2013). Systematic reviews of design type, phase length, trend, 

autocorrelation, data distribution, and other parameters help investigators contextualize 

their own research and identify promising statistical metrics for further development. 

A third approach to the study of single-case statistical methods involves the use 

of computer-intensive simulation methods (Allison & Gorman, 1994; Crawford et al., 



 

102 

2006; Gorsuch, 1983; Manolov & Solanas, 2008, 2009, 2012, 2013; Manolov et al., 

2011; Matyas & Greenwood, 1990; Smith et al., 2012; Solanas, Manolov, & Onghena, 

2010; Tarlow, in press; Ugille et al., 2012). In these studies, artificial time-series are 

simulated with fixed parameters and analyzed with different effect size statistics. 

Parameters are then systematically manipulated to determine how changes in trend, 

autocorrelation, phase length, distribution type, and other characteristics influence effect 

size. Because the true parametric properties of “real-life” data are unknown, valuable 

insights can be gained by exploring how outcome metrics perform across a range of 

conditions. Computer-intensive simulation studies can “stress-test” (Solomon, 2013) 

effect size indices by examining how violations of statistical assumptions affect results 

(for example, how effect size measures that do not model slopes are affected by the 

presence of baseline trend). Simulations also help establish the distributional properties 

and statistical power of effect size measures which lack formal theoretical development. 

Manolov and Solanas (2012), who developed many of the simulation methods 

used in single-case simulation research, stated, “It is not likely that applied researchers 

will be easily able to perform the simulations described” (p. 497). Indeed, a limitation of 

simulation methods is their inaccessibility to many practitioners and researchers. 

Investigators who wish to perform computer-intensive simulation research would 

typically need to be fluent in a programming language suitable for high-powered 

scientific computing, such as FORTRAN or C. The lack of software applications for 

conducting single-case simulation research excludes many investigators—and perhaps 

just as importantly, peer-reviewers—from performing and verifying these analyses. As 
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valuable as computer-intensive simulation tools are for single-case research, it remains a 

“black box” method for all but a handful of researchers. 

This paper introduces a new software application with the goal of making single-

case computer-intensive simulation methods accessible to all investigators. Interrupted 

Time-Series Lab (ITSLAB; Tarlow, 2017b) is a user-friendly standalone application 

which allows the user to experiment with several popular single-case statistics by 

manipulating a range of data parameters, including phase length, level- and slope-change 

effects, baseline trend, autocorrelation, and phase variability. No previous experience 

with statistical computing or syntax is required. To demonstrate the utility of ITSLAB, 

this paper will present several simulation studies that are easily performed with the 

application. 

ITSLAB Software 

How to Use ITSLAB 

The ITSLAB software is available for download at the author’s website, 

http://ktarlow.com/stats/itslab (Tarlow, 2017b). Once downloaded, the user runs the 

executable file, which will open a text-based console. The software will prompt the user 

to select an effect size statistic for simulation study. Then, it will prompt the user to enter 

the simulation parameters: A phase length, B phase length, baseline trend (β1), level-

change (β2), slope-change (β3), A phase standard deviation, B phase standard deviation, 

autoregressive error term (φ1), and moving averages error term (θ1). The software will 

then generate 10,000 artificial time-series using the simulation parameters, then analyze 

the simulated time-series with the selected effect size statistic. ITSLAB then outputs the 
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mean effect size value, standard error, statistical power (percent of simulated time-series 

with statistically significant effects), and effect size quartile values.  

ITSLAB (Version 1.0) includes six single-case effect size statistics with the plan 

to add additional indices to future versions. The six statistics included in the initial 

release of ITSLAB are: Tau-U (Parker et al., 2011; Parker, Vannest, & Davis, 2011; 

Vannest et al., 2016), Baseline Corrected Tau (Tarlow, in press), Mean Phase Difference 

(MPD; Manolov & Solanas, 2013), Extended Celeration Line (ECL; White & Haring, 

1980), Percentage of Nonoverlapping Data (PND; Scruggs, Matropieri, & Casto, 1987; 

Tarlow & Penland, 2016), and ITSSIM (see Chapter II). These effect size statistics were 

selected because they are popular in the single-case research literature (e.g., PND; 

Maggin et al., 2011) or have otherwise demonstrated promise for the measurement and 

meta-analysis of single-case data.  

Effect Size Indices 

Tau-U. Parker et al. (2011) and Parker, Vannest, and Davis (2011) proposed 

Tau-U for single-case research, a variant of Kendall’s (1962) rank correlation 

coefficient. There are several variants of Tau-U (Parker, Vannest, Davis, & Sauber, 

2011); however, the coefficient used here is the one that purportedly combines a 

measure of phase nonoverlap with baseline trend control (i.e., Tau-UA vs. B – trend A), which 

can be calculated with an online calculator (Vannest, Parker, & Gonen, 2011). Tau-U is 

calculated as a Tau rank correlation between time-series observations and a specially 

coded phase variable. In a standard rank test of homogeneity, an interrupted time-series 

with nA = nB = 5 would be correlated with the dummy code variable [0, 0, 0 ,0 ,0 / 1, 1, 



 

105 

1, 1 1]. The Tau-U phase variable [5, 4, 3, 2, 1 / 6, 6, 6, 6, 6] would be substituted, 

reversing the order of the time variable for the A phase and repeating the initial value of 

the B phase. Tau-U’s authors suggested an arithmetic adjustment to Kendall’s original 

Tau equation “because KRC [Kendall’s rank correlation] is not designed for dummy-

coded variables” (Parker, Vannest, & Davis, 2011, p. 313). However, Tarlow (in press) 

pointed out that Kendall in fact described several statistical tests that were essentially 

Tau analyses with dummy code variables. Tarlow also found the arithmetic adjustment, 

where the Kendall score (S) is divided by the product A Bn n´  instead of the standard 

denominator, can yield inflated and “out-of-bounds” results. Despite these limitations, 

Tau-U has been widely adopted in single-case research and meta-analysis.   

Baseline Corrected Tau. Tarlow (in press) proposed Baseline Corrected Tau as 

an improved rank correlation coefficient effect size statistic, similar to Tau-U. A two-

step process is followed to calculate Baseline Corrected Tau. First, the baseline phase is 

tested for statistically significant monotonic trend. Baseline trend is tested with a Tau 

correlation of the A phase observations and a time variable. If statistically significant 

trend is detected, both phases are adjusted with a Theil-Sen (Sen, 1968; Theil, 1950) 

nonparametric regression. A Theil-Sen regression line is fit to the A phase data by first 

finding the slopes of all possible pairs of A phase data points; the median slope value is 

the Theil-Sen slope estimate, b. The y-axis intercept of the Theil-Sen regression is the 

median value of all (y – bx) values for each A phase data point. The regression line from 

this procedure is projected into the B phase, and regression residuals are extracted from 

both phases as corrected data. The Theil-Sen regression residuals will tend to minimize 
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monotonic trend in the A phase, thus correcting for baseline trend. Residuals are then 

rank correlated with a phase dummy code variable to produce a Tau effect size. If no 

statistically significant baseline trend is detected, the correction process is skipped, and 

the original raw data are correlated with a phase dummy code variable for an 

uncorrected Tau effect size. Tarlow found that Baseline Corrected Tau outperformed 

Tau-U on real and simulated data sets. One limitation of Baseline Corrected Tau is the 

relatively low statistical power when testing for baseline trend; time series with fewer 

than seven baseline data points rarely yielded statistically significant baseline trend—

and thus, the null hypothesis of no baseline trend was not rejected in the final Tau effect 

size analysis.  

Mean Phase Difference (MPD). Manolov and Solanas’s (2013) Mean Phase 

Difference (MPD) estimates an effect size by first removing baseline trend and then 

comparing the A and B phases. MPD estimates baseline trend by taking the average of 

the first-order differences of the A phase scores. This procedure results in nA – 1 

difference scores, calculated as nt + 1 – nt. Similar first-order differencing methods have 

demonstrated usefulness in other single-case data applications (Manolov & Solanas, 

2009; Solanas, Manolov, & Onghena, 2010). After estimating the baseline trend, b, via 

differencing, a new B phase data series, ŷ , is projected from the baseline phase using 

the equation 1ˆ ( 1)
An i Ay y b n i+ = + + - . The observed B phase data points (yi) are then 

averaged and differenced from the average of the projected B phase data points ( ˆiy ). The 

result, a difference of means, may be interpreted as the change between phases after 

controlling for baseline trend. It is important to note the MPD result is an unstandardized 
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effect in the original metric of the outcome variable. MPD may be standardized, similar 

to a d-type standardized mean difference. For this study, the standardized MPD d was 

then converted to an r correlation, which can be loosely interpreted as the percentage of 

nonoverlap between the projected and observed B phase data (see Cohen, 1969, for 

discussion of r as an overlap statistic).   

Extended Celeration Line (ECL). White and Haring (1980) proposed a “split 

middle” technique for analyzing interrupted single-case data. ECL was also studied as 

“PEM-T”, the Percentage of Data Exceeding a Median Trend (Wolery et al., 2010). 

First, the baseline phase data points are dividing into two halves by time, which gives the 

points (Xi, Yi) in the first half of the baseline and (Xj, Yj) in the second half of the 

baseline. A trend line is then fit to the medians of each half, i.e., the points ( , )i iX Y  and 

( , )j jX Y . Using this method, approximately 50% of the baseline points will fall below 

the line and 50% will fall above the line. This baseline trend line is then extended into 

the treatment phase, and the percentage or proportion of treatment phase points 

exceeding the line is reported as an effect size. Under the null hypothesis of no 

intervention effect, 50% of the treatment phase points are expected to be above the line 

and 50% below, as in the baseline phase. The effect size, originally conceived as a 

percentage, can be scaled into a -1 to +1 metric for easy interpretation and comparison to 

correlation indices (Parker, Vannest, & Davis, 2011). ECL’s strengths as an effect size 

include its simple calculation and straightforward interpretation as the percentage of 

change accounted for by the treatment effect, controlling for baseline trend. 
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Percentage of Nonovlerapping Data (PND). PND (Scruggs, Mastropieri, & 

Casto, 1987) is perhaps the most widely used single-case effect size statistic (Beretvas & 

Chung, 2008; Maggin, O’Keefe, & Johnson, 2011; Parker et al., 2011; Schlosser, Lee, & 

Wendt, 2008). PND is popular because it is easy to calculate and interpret. PND is 

calculated by dividing the number of “nonoverlapping” B phase scores by the total 

number of scores in the B phase—thus, PND is a “percentage of nonoverlap.” 

Nonoverlapping B phase scores are the data points that exceed the most extreme score in 

the A phase (extreme in the direction of treatment effect). PND has been criticized for 

not controlling baseline trend (Allison & Gorman, 1993; Ma, 2006; Salzberg et al., 1987; 

Wolery et al., 2010) and for yielding effect size estimates that are negatively correlated 

with baseline length (Allison & Gorman, 1994). Despite its limitations, it remains a 

popular metric for summarizing single-case research. “In fact,” Schlosser et al. stated, “it 

is unlikely that the field has similar implementation experiences for any other metric at 

this point in time” (p.184). 

Data Generation  

ITSLAB generates artificial time-series with a modified regression model that is 

commonly used in single-case simulation research (Manolov & Solanas, 2008, 2009, 

2012, 2013; Smith et al., 2012; Tarlow, in press). First, error terms are generated from 

random normally-distributed deviates and the user’s inputted lag-1 autocorrelation 

parameter, either autoregressive (φ1) or moving average (θ1): 

AR(1):	() = +, ()-, + /) 

MA(1):	() = 1, (/)-,)  



 

109 

where ut is a random normally distributed term with variance of σ2. Error terms are then 

multiplied by the inputted phase-specific standard deviations. The time-series is then 

generated as 

2) = 3,4) + 3567 + 38 4) − :; + 1 6) + () 

where β1 is the baseline trend, β2 is level-change, β3 is slope change, Tt is the time 

variable, Dt is a dummy code variable for phase, and [Tt – (nA + 1)]Dt is a slope-change 

term.  

Software Validation 

Each ITSLAB effect size module was first validated by entering individual 

single-case data sets and comparing effect size output to hand calculations or peer-

reviewed effect size calculators (Tarlow, 2016; Tarlow & Penland, 2016; Vannest et al., 

2016). After confirming that ITSLAB calculated all effect sizes accurately, the 

simulation procedure was validated by replicating analyses in published single-case 

research articles. Simulation models from Manolov and Solanas (2008) and Tarlow (in 

press) were inputted into ITSLAB and the output was compared to published tables and 

figures for agreement. ITSLAB results were also verified with simulation modeling 

performed in R statistical software (those results not published here). Uncompiled source 

code for ITSLAB (written in C) is also available from the author for independent review.  

Questions for Study 

ITSLAB allows researchers to study a variety of parameter effects and 

interactions on the six included effect size indices. For example, researchers have shown 

a particular interest in the influence of baseline trend and autocorrelation on single-case 
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statistics (Gorsuch, 1983; Manolov & Solanas, 2008, 2009, 2013; Manolov et al., 2011; 

Matyas & Greenwood, 1990; Tarlow, in press). For this paper, the following questions 

are explored: 

Question 1. How are effect sizes influenced by change in level between phases 

(i.e., a treatment effect)? 

Question 2. How are effect sizes influenced by baseline trend? 

Question 3. How are effect sizes influenced by baseline phase length?  

Question 4. How are effect sizes influenced by the presence of lag-1 

autocorrelation, both autoregressive (φ1) and moving average (θ1) models? 

Question 5. How are effect sizes influenced by unequal variance between 

phases? 

Results 

Question 1: Level-change effect. The simplest type of treatment effect is a 

change in level, or magnitude, of the outcome variable. In the absence of trend, 

autocorrelation, or other time-dependent processes, a stable baseline should demonstrate 

a vertical shift in the direction of treatment effect after an effective intervention is 

introduced.  

Question 1 was explored by setting the following ITSLAB parameters: nA = 8, nB 

= 8, β1 (baseline trend) = 0, β3 (slope-change) = 0, sA = 1, sB = 1, φ1 = 0, and θ1 = 0. 

These parameters gave the simplified regression model, Yt = β2Dt + εt. A simulation was 

then performed with varying levels of β2, the level-change term. β2 was increased from 0 
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(no effect) to 4 (four standard deviations) by increments of 0.2. Figure 9 illustrates the 

influence of level-change on effect size.  

 

 

Figure 9. Level-change and effect size. No trend or autocorrelation; nA = nB = 8. 

Question 2: Baseline trend. Treatment effects may be difficult to detect without 

a stable baseline. Consider the methodological challenge posed by the recovering 

patient: if the patient was already improving prior to treatment, can a recovery be 



 

112 

attributed to the treaetment or to the baseline trend already underway? Five of the six 

effect size statistics included in ITSLAB model baseline trend, though their trend models 

differ. How effectively they control for trend may be explored via simulation where the 

degree of trend is systematically manipulated. 

Question 2 was explored with the following ITSLAB parameters: nA = 8, nB = 8, 

β2 = 0, β3 = 0, sA = 1, sB = 1, φ1 = 0, and θ1 = 0. These parameters gave the simplified 

regression model, Yt = β1Tt + εt. The baseline trend coefficient, β1, was increased from 0 

to 2 by increments of 0.2. Figure 10 illustrates the influence of baseline trend on effect 

size.  
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Figure 10. Baseline trend and effect size. No treatment effect or autocorrelation; nA = nB 

= 8.  

Question 3: Baseline phase length. In interrupted time-series designs, baseline 

phase observations are used to infer treatment effects implemented in the treatment 

phase. Kazdin (1982) stated  

The [baseline] data serve as the basis for predicting the level of performance for 
the immediate future if the intervention is not provided … Presumably, if 
treatment is effective, performance will differ from the projected level of 
baseline. (pp. 105-106) 

Following this logic, many single-case statistics use A phase data to model a “null 

effect” which is compared to the B phase observations. One’s model of the null effect 
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tends to be more precise as the number of A phase observations increases, and picture of 

baseline functioning becomes clearer. Investigators are urged to maximize the number of 

baseline observations to increase the statistical power of their effect size tests (e.g., 

Tarlow & Penland). It is helpful to understand how baseline phase length effects both the 

magnitude and precision of single-case effect size indices. 

Question 3 was investigated with the following ITSLAB parameters: β1 = 0, β2 = 

1, β3 = 0, sA = 1, sB = 1, φ1 = 0, and θ1 = 0. These parameters gave the simplified 

regression model, Yt = Dt + εt. This model indicates an interrupted time-series with no 

baseline trend, slope-change, or autocorrelation effects, and a level-change of one 

standard deviation from A phase to B phase. The B phase length was fixed at nB = 8, and 

the A phase length varied from nA = 3 to 20. Figure 11 illustrates the effect of phase 

length on effect size, and Figure 12 illustrates the effect of phase length on the effect size 

standard error. 
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Figure 11. Baseline phase length and effect size. Level-change treatment effect (β2 = 1); 

nB = 8. 



 

116 

 

Figure 12. Baseline phase length and standard error of effect size. Level-change 

treatment effect (β2 = 1); nB = 8. 

Question 4: Autocorrelation. Most single-case effect size statistics do not 

model serial dependency. Simulation research has been a useful tool for understanding 

how those indices are influence by different levels and models of autocorrelation. 

Statistics that are less influenced by autocorrelation are preferable when data are 

expected to be serially dependent. 

To investigate Questions 5 and 6, the following ITSLAB parameters were used: 

nA = 8, nB = 8, β1 = 0, β2 = 1, β3 = 0, sA = 1, sB = 1. These parameters gave the simplified 

regression model, Yt = Dt + εt. This model indicates a level-change effect of one standard 
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deviation. The autocorrelation parameters, φ1 and θ1, varied from -0.9 to 0.9 by 

increments of 0.3. Figure 13 illustrates effect size values for the various levels of 

autoregressive error, and Figure 14 illustrates the effect size values for the various levels 

of moving average error. 

 

 

Figure 13. Lag-1 autoregressive error and effect size. Level-change treatment effect (β2 

= 1); nA = nB = 8. 
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Figure 14. Lag-1 moving average error and effect size. Level-change treatment effect (β2 

= 1); nA = nB = 8. 

Shadish et al. (2008) pointed out the common misperception that the 

independence assumption does not apply to nonparametric and nonoverlap effect size 

estimators (like the Tau-based statistics). In fact, these statistics do assume independence 

of data points—an assumption violated by autoregressive or moving average error 

structures. Most simulation studies of autocorrelation focus on the magnitude of the 

effect under varying levels of autocorrelation, but pay less attention to the distribution of 

the effect size statistic (e.g., Tarlow, in press). Shadish et al. noted that the standard 

errors of the statistics—and not the actual effect sizes—are more sensitive to serial 
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dependency. However, the standard errors of statistics are rarely explored with 

simulation research. (Indeed, the distributional properties are unknown for some 

nonparametric measures.) To explore this issue further, the standard errors of the six 

effect size indices were graphed for the varying levels of autocorrelation, illustrated in 

Figure 15 and Figure 16.  

 

Figure 15. Lag-1 autoregressive error and standard error of effect size. Level-change 

treatment effect (β2 = 1); nA = nB = 8. 
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Figure 16. Lag-1 moving average error and standard error of effect size. Level-change 

treatment effect (β2 = 1); nA = nB = 8. 

Question 5: Heteroscedasticity. Relatively little attention has been paid to the 

effect of phase variance on effect size, despite recommendations about including 

considerations of data spread in single-case analyses (e.g., Kratochwill et al., 2010). The 

nonoverlap-based effect size indices in particular are sensitive to data variability; 

however, the influence of variance and unequal variance (heteroscedasticity) between 

phases is not well understood for most single-case statistics. 

Question 5 was explored with these ITSLAB parameters: nA = 8, nB = 8, β1 = 0, 

β2 = 1, β3 (slope-change) = 0, φ1 = 0, and θ1 = 0, or the regression model Yt = Dt + εt, 
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once again indicating a time-series model with a level-increase of one (baseline phase) 

standard deviation. First, the A phase standard deviation was varied from sA = 0 to 2, 

while keeping the B phase standard deviation set at sB = 1. Then the opposite design was 

implemented, where A phase standard deviation was kept constant and B phase standard 

deviation varied. The results of these simulations are presented in Figure 17 and Figure 

18. 

 

Figure 17. Unequal A phase variance and effect size. Level-change treatment effect (β2 = 

1); nA = nB = 8; sB = 1. 
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Figure 18. Unequal B phase variance and effect size. Level-change treatment effect (β2 = 

1); nA = nB = 8; sA = 1. 

Discussion 

Computer-intensive simulation methods are often used to test and compare 

single-case effect size statistics. Simulation studies allow investigators to understand 

how effect size indices—some of which are not based in formal statistical theory—

perform under different parametric assumptions. The so-called “stress testing” of single-

case statistics under different data models can alert investigators to the limitations of 

their measures. Practitioners may use these insights when designing their studies and 



 

123 

statistical analyses. Researchers can use the results of simulation studies to develop 

better statistical methods for the measurement and synthesis of single-case data. 

The aim of this study was to introduce a new, easy-to-use software application, 

Interrupted Time-Series Lab (ITSLAB), which makes high-powered simulation research 

accessible to a wider range of single-case investigators. To demonstrate the utility of 

ITSLAB, it was used to investigate five research questions regarding the influence of 

level-change, baseline trend, baseline phase length, autocorrelation, and unequal phase 

variance on several single-case effect size statistics. It was possible to determine how the 

effect size indices performed under different data assumptions by systematically 

manipulating ITSLAB simulation parameters.  

The results revealed some unsurprising simulation results, such as the influence 

of level-change treatment effect on single-case statistics. Other results were unexpected, 

such as the effect of autocorrelation on effect size indices’ precision (standard error). 

The primary goal of this paper is instructive—to demonstrate how simulation research 

questions could be investigated with ITSLAB—however, the results of these simulation 

studies will be briefly discussed. 

Question 1: Level-Change Treatment Effect 

As expected, all effect size indices increased with the magnitude of level-change 

treatment effect. Tau-U tended to give larger effect size estimates, whereas ITSSIM and 

MPD effect sizes were more conservative. However, differences between effect size 

estimates were not dramatic when only level-change effects where systematically 

manipulated. 
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Question 2: Baseline Trend 

MPD, ECL, and ITSSIM controlled for baseline trend in all “no treatment effect” 

simulation models. Baseline Corrected Tau effectively controlled baseline trend when 

trend was sufficiently large; however, it was less effective controlling for small amounts 

of baseline trend. This replicates and extends Tarlow’s (in press) simulation study of 

Baseline Corrected Tau, which found the statistic’s ability to detect and correct for trend 

was product of baseline phase length and magnitude of trend. Baseline Corrected Tau 

may not be an appropriate statistic for single-case data analysis when baseline phases are 

very brief and there is the possibility of small, difficult-to-detect baseline trend. 

PND and Tau-U failed to control for baseline trend in all simulation models. 

PND lack of trend modeling is a well-documented limitation of the statistic (Allison & 

Gorman, 1993; Salzberg et al., 1987; Scruggs et al., 1987; Wolery et al., 2010). As the 

simulation results (and decades of commentary) demonstrate, PND should not be used 

when baseline trend is present in single-case data. Manolov and Solanas (2009) proposed 

the Percentage of Nonoverlapping Corrected Data (PNCD) statistic, which combines 

PND with a stochastic trend correction procedure to account for baseline trend. It is 

expected that PNCD will be included in future versions of ITSLAB for additional 

investigation. 

Tau-U’s failure to control for trend is more concerning because it is described as 

a method that accounts for any configuration of baseline trend (Parker, Vannest, & 

Davis, 2011; Parker et al., 2011). Tarlow (in press) described the limitations of Tau-U, 

which included its poor trend control, lack of conventional bounds (Tau-U can exceed -1 



 

125 

or +1), and lack of visual graphing method. This study’s simulation results confirm and 

extend those findings. Single-case investigators are strongly advised to consider other 

effect size statistics, in particular when baseline trend is present. 

Question 3: Baseline Phase Length  

In the simple level-change model under consideration, MPD, ECL, and ITSSIM 

yielded larger effect size estimates as the number of baseline phase observations 

increased. All three of those methods estimate an effect size by comparing the B phase 

observations to predictions based on the A phase, i.e., comparing the observed treatment 

effect to an unobserved, predicted “null effect”. It makes sense that, as the number of 

baseline observations increases, the accuracy of the null effect predictions improves, and 

the effect size estimate grows more precise. 

Baseline Corrected Tau and Tau-U effect size estimates were stable across 

varying baseline phase lengths, at least under the level-change model (no trend and no 

autocorrelation). On the other hand, PND decreased as the number of baseline phase 

observations increased. This replicates findings by Allison and Gorman (1993), who 

criticized PND because, among other limitations, it asymptotically approaches zero as 

the baseline phase grows longer. This occurs because, under normal distribution 

assumptions, the likelihood of observing a large value in the baseline phase increases 

with the number of observations—and the PND value is limited by the maximum 

observation in the baseline phase. Tarlow and Penland (2016) recommended a method 

for null hypothesis significance testing, which in a way can compensate for this 



 

126 

limitation, because the statistical power of PND increases with additional baseline phase 

observations, even as its estimated effect size deceases. 

All effect sizes indices grew more precise with longer baseline phases. This 

suggests that, even with statistics that are nominally unaffected by increasing or 

decreasing baseline phase (e.g., Baseline Corrected Tau, Tau-U), the standard errors 

grow smaller when baselines are longer. This is an important result for both statistical 

significance testing and quantitative synthesis of single-case studies.  

Question 4: Autocorrelation 

Surveys of single-case research suggest brief interrupted time-series behavioral 

data are serially dependent; however, autocorrelation is, on average, small, statistically 

significant, and heterogeneously distributed in different domains of research (Shadish & 

Sullivan, 2011; Solomon, 2013). Effect size estimates from least squares regression-

based methods tend to be linearly related to the magnitude of autocorrelation (Manolov 

& Solanas, 2008; Tarlow, in press). By comparison, the six indices included in this study 

did not yield effect size estimates which were substantially affected by serial 

dependency. In both lag-1 autoregressive and moving average autocorrelation models, 

effect size estimates demonstrated an inverted-U pattern, where the largest effect sizes 

were estimated when the autocorrelation coefficient (φ1 or θ1) was zero (as an exception, 

PND values slightly increased with large positive lag-1 autoregressive error).  

However, despite the lack of linear relationship between serial dependency and 

effect size, the standard errors of the effect sizes did in fact demonstrate a linear 

relationship to autocorrelation. To further complicate this finding, the direction of this 
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relationship depended on whether an autoregressive or moving average error model was 

specified. Standard errors increased with lag-1 autoregressive error (φ1), but they 

decreased with lag-1 moving average error (θ1). Put another way, increased 

autoregressive autocorrelation will lead to increased Type I error, and increased moving 

average autocorrelation will lead to increased Type II error. Autoregressive error models 

are usually assumed in single-case research, but there is little rationale for doing so. 

More investigation is needed to determine how plausible moving average models are in 

behavioral data. Single-case investigators should also heed Shadish’s (2014b) warning 

that nonoverlap and nonparametric statistics are not free of assumptions, and are indeed 

affected by serial dependency.  

Question 5: Heteroscedasticity  

In general, effect size estimates increased with more stable observations, i.e., 

smaller within-phase standard deviations. When unequal variances between phases were 

modeled, baseline phase variability had a larger influence on effect size estimates than B 

phase variability. PND was an exception; PND values increased as B phase variability 

increased (for the same reason as discussed above with regard to baseline phase length). 

ITSSIM demonstrated the smallest effect of B phase variability, though A phase 

variability had a large influence on its effect size estimates.  

Conclusion  

In describing “the shape of things to come” in single-case research, Shadish 

(2014b) stated 

Past SCD effect sizes lacked formal development from clear assumptions in 
statistical theory. As a result, their confidence intervals and significance tests are 
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of unclear validity or are nonexistent, their power to detect effects is unknown, 
and we know little about how they perform in the face of variation in the number 
of observations per phase (phase length), in how observations change 
systematically over time even in the absence of treatment (trend), in how 
correlated observations within each case might be (autocorrelation), and in the 
outcome-measurement metrics (e.g., count, percentage, normally distributed 
data). (p. 142) 

In the same article, Shadish also made an appeal for better specialized single-case 

statistical software, noting “many clinical scientists will understandably use simple 

statistical programs even if they are not state of the art” (p. 144). ITSLAB was 

developed in response to this request and to the lack of clarity regarding the 

nonparametric and nonoverlap statistics which have flourished in single-case research. 

This paper demonstrates how ITSLAB can be used by any investigator, regardless of 

statistical computing experience, to discover useful insights for both research and 

clinical practice.  

For researchers and methodologists, there are many more questions to explore 

with ITSLAB. Interactions between simulation parameters should be explored—for 

example, the interaction between trend and autocorrelation, which are difficult to 

estimate when both are present in time-series data (e.g., Yue et al., 2002). ITSLAB also 

outputs quartiles and statistical power for simulation models, and investigations into the 

distributions and power of single-case effect size indices will be useful. The 

autocorrelation findings in this study suggests that researchers should determine if 

moving average autocorrelation models are plausible in single-case data and, if so, how 

to address that in treatment effect size estimation. Simulation methods like ITSLAB may 

also provide researchers with a tool for converting effect size estimates between the 
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various single-case statistics, which could be useful for the meta-analysis of single-case 

studies. 

For practitioners, ITSLAB’s statistical power results make what-if analyses 

possible when designing a single-case experiment. The results from this study also 

suggest several recommendations to practitioners who wish to integrate statistical 

methods with their single-case designs. First, practitioners should always maximize the 

length of their baseline phases. Gorman and Allison’s (1996) advice is as relevant now 

as it was two decades ago: “Perhaps the strongest suggestion for change that we can 

make is that researchers should collect a greater number of observations” (p. 208). No 

other single design feature is as important in a single-case experiment. Second, baselines 

should ideally be stable, with as little variability as possible. Attaining a stable baseline 

is more important than attaining a stable treatment phase when the goal is to detect 

treatment effects. Third, Tau-U and PND should not be used when there is any 

possibility of baseline trend.  

ITSLAB is a powerful tool for single-case research, and it will be even more 

useful to researchers and practitioners with further development. Future versions should 

include additional effect size indices. It would also be helpful if ITSLAB modeled 

nonlinear trend patterns, and non-normal error distributions such as Poisson and 

binomial distributions. These and other developments would make sophisticated 

computer-intensive simulation methods accessible to virtually any single-case 

investigator.  
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CHAPTER V  

CONCLUSIONS  

 

This dissertation introduced a computer-intensive simulation-based method for 

the analysis and meta-analysis of single-case experimental designs. This method, 

Interrupted Time-Series Simulation (ITSSIM), was compared to several established 

effect size indices using real and simulated single-case data. The results of three studies 

suggest ITSSIM is a flexible metric that yields effect size estimates consistent with both 

simple and sophisticated methods. Unlike most other metrics, ITSSIM fits level, trend, 

variance, and autocorrelation parameters. This comprehensive model is useful when the 

underlying properties of time-series observations are unknown. ITSSIM is also 

accessible to single-case investigators via standalone software (Tarlow, 2017a), which 

does not require prior experience with statistical computing or syntax. 

The first study (Chapter II) reviewed the theoretical rationale for simulation-

based methods in single-case research. Single-case time-series are often brief, and 

therefore difficult to analyze in a precise way. Reliability can be improved with 

multilevel modeling methods, which pool information across cases and studies to give 

more accurate parameter estimates. Computer-intensive simulation offers another 

approach to the precision problem, but has received relatively little attention. While 

ITSSIM does not necessarily improve the precision of parameter estimation, it uses an 

iterative procedure to model many plausible parameter values given the observed data. 

By comparing a distribution of plausible “null effects”—the no-treatment predictions 
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based on baseline data—to a distribution of plausible treatment effects, ITSSIM 

calculates the most likely treatment effect size and, based on the simulated distributions, 

reports how precise the estimate is. Single-case data featured in a special issue of the 

Journal of School Psychology was reanalyzed with ITSSIM and compared to results 

from five sophisticated multilevel analyses of the same data. ITSSIM performed 

similarly to the multilevel methods, yielding similar standardized effect size estimates 

and slightly larger unstandardized estimates. An advantage of ITSSIM compared to 

multilevel modeling is its accessibility (via user-friendly software), easily interpretable 

effect size metrics (unstandardized effects, d-statistic, and R2 or r-statistic), and 

comprehensive simulation model, which includes baseline trend, level- and slope-change 

effects, and autocorrelation. 

The second study (Chapter III) applied ITSSIM to the meta-analysis of 10 single-

case studies of cognitive therapies for depression, including a total of 53 cases. A 

multilevel method was used to synthesize results within- and between-studies. In 

addition to ITSSIM, five other single-case statistics were also included for comparison. 

Excluding one method identified as problematic, the five remaining statistics produced 

mean effect size estimates similar to meta-analyses of RCT psychotherapy research. 

Overall, these results suggest single-case experimental designs are a viable and valuable 

options for psychotherapy researchers who are interested in conducting cost-efficient 

pilot studies of innovative treatments, or studying individuals with complex/co-occurring 

disorders or low incidence clinical populations—both groups that are difficult to study 

with large-group designs. ITSSIM and another single-case statistic, Baseline Corrected 
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Tau, were identified as superior to the other comparison methods because they modeled 

baseline trend, did not produce extreme/uninterpretable values, and did not demonstrate 

ceiling effects. 

The third study (Chapter III), reviewed a software tool for performing computer-

intensive simulation research on single-case statistics, Interrupted Time-Series Lab 

(ITSLAB). ITSLAB was used to test ITSSIM and five other statistics under a range of 

parametric conditions, including manipulations of phase length, baseline trend, level-

change, heteroscedasticity, and autocorrelation. ITSSIM adequately controlled for small-

to-large baseline trend; it produced conservative effect size estimates with shorter 

baseline phases; its effect size estimates were unaffected by autocorrelation, though, 

notably, standard errors were influenced by autocorrelation; and effect size estimates 

were attenuated by increasing variance in the baseline phase. Overall, ITSSIM 

performed reliably well, even under extreme or unlikely simulation models. ITSLAB, 

the first program designed specifically for single-case simulation research, makes 

sophisticated computer-intensive methods accessible to virtually any single-case 

investigator. With tools like ITSLAB, the single-case research community will be better 

equipped to test and validate ITSSIM and other statistical methods. 

 In conclusion, ITSSIM is a powerful method for analysis and meta-analysis of 

single-case experimental designs. Its simulation model includes level, trend, variance, 

and autcorrelation parameters, and is therefore more comprehensive than most single-

case statistics (which include some, but not all, of those critical parameters). ITSSIM 

effect size estimates are generally consistent with results from other, previously 
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validated methods. It also performed predictably under a series of simulation conditions. 

With additional study and application, single-case investigators can continue to evaluate 

ITSSIM’s potential for modeling treatment outcomes and, ultimately, illuminating how 

people get better. 

* * * 

A prediction of what the average individual will do is 
often of little or no value in dealing with a particular 
individual … A science of behavior which concerns 
only the behavior of groups is not likely to be of help in 
our understanding of the particular case. 

—B. F. Skinner, Science and Human Behavior (1953) 
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APPENDIX  

DEMONSTRATION OF ITSSIM CALCULATIONS  

WITH AN EXAMPLE DATA SET 

 

ITSSIM effect size calculations will be demonstrated with the following 

hypothetical single-case interrupted time-series:  

A phase: 5, 8, 5, 4, 6, 3, 4, 9 

B phase: 1, 0, 2, 0, 0 

Stage I: Parameter Estimation 

Step 1: Theil-Sen regression. Estimate Theil-Sen slope and intercept 

coefficients for A and B phase data. The Theil-Sen slope, b, is the median slope of all 

possible pairs of (Tt, Yt) coordinates (Sen, 1968), where Tt is the day/session/time/etc. 

variable at time t, and Yt is the observed score at time t. There are several methods for 

estimating the intercept, a, but the relatively simple procedure from Wilcox (2001) is 

used, 

a = MY – bMT 

where MX and MY are the medians of T (time) and Y (observed scores), respectively. For 

the A phase example data above, a = 5.375, and b = -0.083. For the B phase data, the 

time variable, Tt, is re-centered by subtracting Tt – nA, where nA is the length of the 

baseline phase. Re-centering B phase data allows for a more interpretable comparison of 

A phase and B phase intercept values. Re-centering data does not affect the results of the 

simulation analysis; however, if B phase data are not re-centered, the calculated intercept 
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value will be for Tt = 0 rather than Tt = nA, which corresponds roughly to the immediate 

impact of treatment (for more on this topic, see Huitema & McKean, 2000b). The B 

phase Theil-Sen regression coefficients for the example data are therefore a = 0.375, and 

b = -0.125. 

Step 2: Theil-Sen standard errors. Wilcox’s (2001) bootstrap procedure is used 

to calculate standard errors for the Theil-Sen slope and intercept coefficients. For each 

phase, a set of n coordinates are resampled from (Tt, Yt) with replacement; then a Theil-

Sen slope and intercept are calculated for this new sample of data points. Wilcox 

recommended the bootstrap procedure be performed at least 600 times; however, given 

the brief time series common in single-case experiments, the bootstrap is iterated 10,000 

times. The standard error is then calculated as the standard deviation of the distribution 

of 10,000 coefficients. For the A phase example data, SEa = 2.752, and SEb = 0.540. For 

the B phase data, SEa = 1.604, and SEb = 0.489.  

Step 3: Error variance. Error residuals, εt, are extracted from the observed data 

using the regression equation 

Yt = a + bTt + εt 

When extracting the B phase residuals, the re-centered time variable Tt – nA is 

substituted. For the example data, this yields the residuals 

εA: -0.292, 2.791, -0.126, -1.043, 1.040, -1.877, -0.794, 4.289 

εB: 0.750, -0.125, 2.000, 0.125, 0.250 

The standard deviation of the error residuals is then SDA = 2.092, and SDB = 0.845. 

Step 4: Error variance standard errors. The standard error of the standard 
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deviations is calculated using the least squares method. For the example data, SESD(A) = 

0.501, and SESD(B) = 0.295. 

Step 5: Autocorrelation estimation. Before estimating the lag-1 autocorrelation 

coefficient, r1, the regression residuals are standardized. Standardizing a time series does 

not alter its serial dependency. However, once standardized, autocorrelation can be 

estimated across both phases; increasing the length of the time series (by combining A 

and B phases) improves the precision of the r1 estimate, which is known to be imprecise 

in small samples. The standardized error residuals of the example data are 

zε: -0.140, 1.334, -0.060, -0.499, 0.497, -0.897, -0.380, 2.051, 0.888, -0.148, 2.367, 

0.148, 0.296  

The standard estimator for lag-1 autoregressive error is  

<, =
(=))(=)-,)>

)?5

=)5>
)?,

 

where N is the number of observations in the time-series, and et is the error term at time 

t. However, this estimator is biased in small samples (Anderson, 1942; Matyas & 

Greenwood, 1991). There are several ways to correct for the small sample bias in 

autocorrelation estimation (Solanas et al., 2010). The method recommended by Huitema 

and McKean (1991; Ferron, 2002) was selected due to its simplicity and empirical 

validation. Lag-1 autocorrelation is therefore calculated as 

<, =
(=))(=)-,)>

)?5

=)5>
)?,

+
@
A 

where P is the number of estimated parameters in the regression model used to extract 

residuals; in this case, P = 4. For the example data standardized error residuals, zε, the 
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estimated autocorrelation is r1 = 0.133. 

Step 6: Autocorrelation standard error. The standard error for the 

autocorrelation estimator (Huitema & McKean, 2000; Moran, 1948) is calculated as 

BCDE =
<,

(A − 2)5
(A5)(A − 1)

 

For the example data, 
1r

SE   = 0.244.  

Stage II: Time-Series Simulation 

The parameter estimation stage (Stage I) yields seven parameter estimates and 

their standard errors: A phase level (intercept), A phase trend (slope), A phase standard 

deviation, B phase level (intercept), B phase trend (slope), B phase standard deviation, 

and cross-phase autocorrelation. The A phase estimates are referred to as the null effect 

model. The B phase estimates are referred to as the experimental effect model. These 

coefficients may be reported in a table such as Table 2. The distributions of all 

coefficients are assumed to be normal (Anderson, 1942; Cox, 1966; Mann, 1945; Sen, 

1968). The distributions are assumed to be independent. 

Step 7: Randomly sample model coefficients. Seven coefficients are randomly 

drawn from each of the seven parameter estimates’ distributions—essentially, a data 

point is selected at random from a seven-dimensional multivariate normal distribution. 

For the example data, one hypothetical sample of model coefficients is presented in 

Table 10.  
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Table 10 

Randomly Sampled Parameter Estimates 

  Coefficient 
Null Model intercept 6.762 
 slope -0.698 
 s 1.471 
Exp. Model intercept 1.198 
 slope 0.608 
 s 1.271 
Autocorrelation r1 0.208 

 

Step 8: Simulate autocorrelated time-series. A time-series of length nB with 

lag-1 autoregressive error equal to the randomly sampled r1 value is generated using the 

method of Manolov and Solanas (2008, 2009, 2012, 2013). The time-series is then 

standardized (this does not affect the autocorrelation value). Using the sampled 

coefficients in Table 10, two simulated time series could be 

zε(1): -0.082, -0.205, 1.764, 0.495, -0.907 

zε(2): 0.029, 1.603, -0.636, 0.266, 1.616 

Step 9: Add variance to simulated time-series. The simulated time-series are 

multiplied by the simulated standard deviation terms to give residuals for the null model 

(εNULL) and experimental model (εEXP). Using the example time-series from Step 8 for 

the null model and experimental model, respectively, the time-series would be 
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εNULL: -0.121, -0.302, 2.595, 0.728, -1.334 

εEXP: 0.037, 2.037, -0.808, 0.338, 2.054 

Step 10: Add slope and intercept to simulated time-series. Simulated null 

model observations (YNULL) and experimental model observations (YEXP) are calculated 

using the regression equation in Step 3 and the simulated intercept and slope terms. 

Recall that simulated time series are generated for the time interval of the B phase. 

Under the null model coefficients, the time variable, Tt, is nA + 1, nA + 2…, nA + nB, 

which corresponds to the original B phase time values. For the experimental model 

coefficients, which were estimated from re-centered data, the time variable, Tt, is 1, 2…, 

nB. For the example data, the simulated time series are 

YNULL = 0.359, -0.520, 1.679, -0.886, -3.646 

YEXP = 1.843, 4.451, 2.214, 3.968, 6.292 

 Step 11: Calculate means of simulated time-series. For the example data, 

NULLY  = -0.603, and EXPY  = 3.754.  

Step 12: 100,000 iterations of Steps 7 through 11. Repeating the simulation 

procedures will yield 100,000 null model time-series means (Ni), and 100,000 

experimental model time-series means (Ei). Per the central limit theorem, the two 

distributions of means will be approximately normal.  

Stage III: Effect Size Calculation 

Step 13: Unstandardized effect. Treatment effects are calculated from the 

means and standard deviations of the null model and experimental model mean 

distributions. The unstandardized treatment effect, D, is the difference of the distribution 
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means, i.e., the average change in participant performance over all 100,000 plausible 

simulated time-series. 

6 − CG − AG 

For the example data, D = 0.000 - 4.453 = -4.453. 

Step 14: Standardized effect. The standardized mean difference, d, is calculated 

as 

H =
CG − AG
BIG)JGK

 

where 

BIG)JGK =
:; − 1 L>M

5 + (:N − 1)LOM
5

:; + :N − 2
 

For the example data, d = -1.584. The standardized mean difference, d, can also be 

converted to a Pearson r correlation with the equation 

< =
H

H5 + P
 

where 

P =
(:; + :N)5

:;:N
 

For the example data, r = -0.611. 


