
ANALYTICAL CONSIDERATIONS OF THE STRETCHED 

EXPONENTIAL/POWER LAW EXPONENTIAL RELATIONS USED FOR TIME-

RATE DECLINE CURVE ANALYSIS 

 

A Thesis 

by 

ALVARO DAVID BETANCOURT SANCHEZ 

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

Chair of Committee, Thomas A. Blasingame 

Committee Members, I. Yucel Akkutlu 

 Maria A. Barrufet 

 Peter Valkó 

Head of Department, A. Daniel Hill 

 

August 2017 

 

Major Subject: Petroleum Engineering 

 

Copyright 2017 Alvaro David Betancourt Sanchez 

 



ii 

ABSTRACT 

 

 

Since their introduction to the petroleum literature in 2008/2009, the stretched exponential (SE) and the 

power-law exponential (PLE) relations have become the "conservative" standard for time-rate (decline 

curve) analysis of well performance data from low/ultra-low permeability reservoirs.  The origins of the SE 

relation can be traced to Rudolf Kohlraush circa 1854; however, its use as an expression for time-rate 

production data analysis essentially began in 2009 with Valkó.  The PLE time-rate relation, on the other 

hand, was derived empirically (and independently) from observations of well performance data by Jones in 

1942 and by Ilk and Blasingame in 2008.  To date, there is no "proof" of the SE/PLE from a theoretical 

basis; however, there are many references devoted to the characteristic functions which have been proposed 

or derived from the given form of these relations. 

 

In this work, we attempt to provide analytical and semi-analytical bases/relations for the SE/PLE functional 

form to deliver insight on its mathematical behavior and to offer an understanding of its performance as a 

production forecasting tool.  Our first approach consists on approximating the SE/PLE relation by a 

truncated sum-of-exponentials providing that the SE/PLE model behave as a linear superposition of 

exponentially decaying functions.  For completeness, we extend this work to approximate the hyperbolic 

and modified hyperbolic time-rate relations with this mentioned sum-of-exponentials function. 

 

Next, we develop numerical approximations of the SE/PLE relation in the Laplace domain using three 

approaches — using the Taylor series expansion, the Laguerre quadrature, and applying the methodology 

proposed by Blasingame which transform a piecewise power-law function into the Laplace domain.  Our 

goal in this section is to use the Laplace transform and the convolution identity to resolve the SE/PLE decline 

model in the Laplace domain with the perspective that there may be some sort of diagnostic capability or 

another sort of mathematical identity, which in the process, may arise. 

 

The last part of this work is devoted to "reverse engineer" the flowing bottomhole pressure required to 

generate a specific SE/PLE case using numerical reservoir simulation.  By means of the pseudosteady-state 

flow equation, the material balance equation, and a prescribed time-rate model (for our case, the SE/PLE, 

and the hyperbolic time-rate relations), we are able to get a mathematical expression for the flowing 

bottomhole pressure as a function of time.  This mathematical model will be compared against well 

performance obtained from numerical reservoir simulation.  This part of the "reverse engineering" approach 

provides a "proof of concept" of the validity of the SE/PLE time-rate relation and corroborates the derived 

functional form of the flowing bottomhole pressure. 
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CHAPTER I 

INTRODUCTION 

 

I.1 Motivation 

 

The stretched exponential (SE) relation (and the power-law exponential (PLE) relation by extension) have 

been used to model various physical phenomena since the nineteenth century.  In the petroleum industry, 

the SE/PLE relation has been the "conservative" standard for decline curve analysis of production data from 

low/ultra-low permeability (unconventional) reservoirs.  Although empirical in nature, the SE/PLE relation 

has proven effective in describing oil and gas production from transient to boundary-dominated flow 

regimes.  The motivation of this work comes from this accurate performance of the SE/PLE relation.  

However, to date, has no formal proof and raises questions about the fundamental principles that govern its 

behavior.  We attempt to provide analytical and semi-analytical insight/bases on the SE/PLE relation as our 

primary goal, opening the path for subsequent research to understand the fundamental principles that yield 

this particular and elegant mathematical expression for well performance. 

 

I.2 Objectives 

 

The primary objective of this work is to provide analytical and semi-analytical bases/relations for the 

SE/PLE relation and to deliver insight on its mathematical behavior as a mechanism for production 

forecasting and estimated ultimate recovery (EUR) computation.  To achieve this primary objective, we 

provide the following supporting or specific objectives: 

● To derive semi-analytical approximations for the SE/PLE relation in terms of exponential series.  For 

the SE relation, the exponential series formulation has been suggested by many authors, and in many 

different fields, the goal of this objective is to prove this formulation (if possible). 

● To generate the SE/PLE rate solution in the Laplace domain so that this relation can be solved for the 

pressure response function.  In short, to create SE/PLE pressure solution(s) in the real domain. 

● To "reverse engineer" the bottomhole pressure profile required to generate a specific SE/PLE case.  

This requires the use of a reservoir model and depends (very) heavily on the well configuration and 

the particular flow regime (i.e., transient, pseudosteady-state, or a transition regime). 

 

I.3 Statement of the Problem 

 

Ilk et al. (2008) developed the PLE time-rate decline model from empirical observations to analyze well 

performance data from low/ultra-low permeability reservoirs where production exhibits a non-hyperbolic 

behavior.  This model is based on the observed behavior of the decline coefficient (Eq. 1.1), which starts as 

a decaying power-law function transitioning to a constant value at later times (D∞) giving the traditional 

exponential decline relation.  This characteristic provides the PLE relation the ability to model transient to 
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boundary-dominated flow behavior.  The PLE decline parameter model is specifically given as, 

 

1ˆ1 −+∞=−= n
tiDnD

dt

dq

q
D  .................................................................................................................. (1.1) 

 

Integrating Eq. 1.1 we obtain the time-rate relation for the PLE decline model as follows, 

 

]ˆexp[ˆ)( ntiDtDiqtq −∞−= , ........................................................................................................................ (1.2) 

 

where q�i is the initial rate coefficient, D∞ is the terminal decline coefficient, iD̂  is the decline coefficient, and 

n is the time exponent. 

 

Valkó (2009) introduced the SE decline model in the petroleum literature (Eq. 1.3) while working on an 

extensive production data set from the Barnett Shale.  Valkó stated that this model is completely empirical 

— as is the original Arps' decline models.  The mathematical expression for the SE decline model is given 

by, 

 






















−=
n

i
t

qtq
τ

expˆ)( , ........................................................................................................................ (1.3) 

 

where q�i is the initial production rate, n is the time exponent, and τ is the "characteristic time" or time 

coefficient.  The stretched exponential decline (SE) model is identical to the power-law exponential (PLE) 

model when the terminal decline coefficient, D∞, is equal to zero (i.e., neglecting the terminal exponential 

decline that Ilk et al. (2008) employed to represent boundary-dominated flow behavior).  Assuming D∞ = 0, 

Eq. 1.2 becomes, 

 

]ˆexp[ˆ)( n
ii tDqtq −=  ............................................................................................................................... (1.4) 

 

By inspection, Eq. 1.3 and Eq. 1.4 are equivalent if the decline coefficient for the PLE model is given by, 

 

n

iD 






=
τ
1ˆ  ............................................................................................................................................. (1.5) 

 

Eq. 1.4 is our base mathematical expression.  Transforming Eq. 1.4 into a dimensionless form, we define 

the following dimensionless variables for rate and time: 

 

iq

tq
Dq

ˆ

)(= , ............................................................................................................................................ (1.6) 

 

n
iD

t
Dt /1ˆ −= , ........................................................................................................................................ (1.7) 
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and substituting these relations into Eq. 1.4 to yields, 

 

] exp[)( n
DtDtDq −=  ................................................................................................................................. (1.8) 

 

Eq. 1.8 is the dimensionless form of the SE/PLE decline model.  For reference, we present, graphically, the 

behavior of Eq. 1.8 for various time exponent, n, values in Fig. 1.1. 

 

 

 

 
 

Figure 1.1 — Dimensionless rate functions, various SE/PLE Cases. 
 

 

 

Approximation by Sum-of-Exponentials: 

Our efforts are focused on the approximation of the SE/PLE by a sum-of-exponentials function.  In 

particular, we propose that the SE/PLE model behaves as a linear superposition of exponentially decaying 

functions — given mathematically as, 

 

] exp[)( n
DtDtDq −=
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∑
∞

=
−≡

1

] exp[)(

i
DticiaDtDq , .................................................................................................................. (1.9) 

 

where the ai and ci parameters in Eq. 1.9 are the coefficients to be determined.  Considering Eq. 1.9, for a 

given value of the time exponent n, there is a particular approximation by sum-of-exponentials (i.e., a 

specific set of ai and ci coefficients).  Another issue is that we cannot determine an infinite number of 

coefficients, and we will need to establish a minimum number of coefficients that can be determined.  In 

this sense, Eq. 1.9 is now written as an approximation, 

 

∑
=

−≈
max

1

] exp[)(

i

i
DticiaDtDq , ............................................................................................................. (1.10) 

 

For completeness, the approximation by sum-of-exponentials is extended to the cases of the hyperbolic 

(HYP) and modified-hyperbolic (MH) decline models.  The original dimensionless hyperbolic decline 

model is given, by Arps, as, 

 

b
Dbt

DtDq
/1]1[

1
)(

+
=  ........................................................................................................................ (1.11) 

 

The so-call dimensionless modified-hyperbolic (MH) decline model is given by, 

 

iDlimDDlimD

b

Dlimqb
Dt

b
DlimDDlimq

limDDDDlimD
tDtlimDDlimDq

limDDDD
b

Dbt
DtDq

/

1
11

lim

/1
][

)(][exp[

)(
/1]1[

1

)(

=

















−













=

=

























≥−−

<
+≡  ............ (1.12) 

 

An example of the time-rate decline models considered in this work (exponential, hyperbolic, modified-

hyperbolic, and power-law exponential time-rate models) are shown in dimensionless format in Fig. 1.2. 

 

Laplace Transform of the SE/PLE Functions: 

The Laplace transform has been widely used in the petroleum literature to solve flow problems that are not 

well-posed for real domain solutions.  The primary advantage of the Laplace transform is that it can be used 

to reduce certain partial differential equations into a form where an analytical solution can be obtained in 

the Laplace domain.  The "trick" then becomes the inversion of the Laplace domain solution into the real 

domain, and this often requires the use of (approximate) numerical inversion algorithms. 

 

Another application of the Laplace transform that is very popular in the petroleum literature is the practice 

to resolve variable-rate/variable-pressure drop problems in using the convolution identity — which in the 

real domain is a "convolution" integral, but in the Laplace domain, this identity becomes a multiplication of 
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two functions in the Laplace domain.  Our goal is to use the Laplace transform and the convolution identity 

to resolve the SE/PLE decline model in the Laplace domain with the perspective that there may be some 

sort of diagnostic capability or another sort of mathematical identity which may arise.  Also, we can use the 

convolution identity to try to establish if the SE/PLE decline model has some unique relationship with either 

a constant rate or constant pressure formulation. 

 

 

 

 
 

Figure 1.2 — Dimensionless rate function, various time-rate models (exponential, 

hyperbolic, modified-hyperbolic, and power-law exponential). 
 

 

 

In particular, the constant rate/constant pressure formulation in the Laplace domain is given as, 

 

)(2

1
)(

uDcpqu
uDcrp =  ........................................................................................................................... (1.13) 

 

In simple language, there is no direct Laplace transform of the general form of Eq. 1.8 (i.e., for a general 

value of the time exponent, n) — except for very specific cases (e.g., n = 1/2 or 1).  To develop a 

comprehensive understanding of the behavior of Eq. 1.8 in the Laplace domain, we will test three different 
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numerical approaches in order to find an approximation in Laplace domain: 

 

● Approximate the SE/PLE relation by Taylor series expansion, and then take the Laplace transform. 

● Use the Laguerre quadrature formulation to transform a general function into the Laplace domain. 

● Use the Blasingame (1995) approach to take the Laplace transform of a piecewise power-law function. 

 

Prediction of Flowing Bottomhole Pressure (assuming pseudosteady-state flow behavior): 

Using known solutions (i.e., reservoir models), we substitute the SE/PLE decline model as flowrate for a 

variety of cases to establish the flowing bottomhole pressure trends.  This is a "reverse engineering" problem 

because we know the properties of the reservoir, and we are attempting to determine if there are any unique 

features of the bottomhole pressure response generated using an imposed SE/PLE flowrate model.  As an 

example, for the case of an imposed exponential decline flowrate model, the bottomhole pressure response 

during pseudosteady-state is constant (this can be easily derived from the material balance relation and the 

pseudosteady-state flow relation). 

 

Using a similar concept as the derivation of the exponential decline flowrate relation, we will begin with the 

oil material balance relation and the oil pseudosteady-state flow relation, these are, 

 









=−=

tNcoiB

oB
pssompNpssomipp

1
 , where    ,  (oil material balance relation), and ......................... (1.14) 
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
























+














=+= s

wr

A

ACekh

oBo
pssoboqpssobwfpp

2

14
ln 

2

1
 141.2 ,where  , γ

µ
 

(oil pseudosteady-state flow relation)  ............................ (1.15) 

 

Combining Eq. 1.14 and Eq. 1.15 we obtain, 

 

pNpssomoqpssobipwfp  , , −−=  ...................................................................................................... (1.16) 

 

Eq. 1.16 is rigorous for pseudosteady-state flow in an undersaturated black-oil reservoir.  We now begin the 

"reverse engineering" process by using the SE/PLE flowrate and cumulative production profiles, where these 

relations are given as, 

 

]ˆexp[ˆ)( ntiDoiqtoq −=  (SE/PLE flowrate relation)  ........................................................................... (1.17) 

 
















Γ−






Γ
−

= ntiD
nn

n
i

oitpN
n

D
q ˆ,

1
 

1
/1

)(  
ˆ

 ˆ  (SE/PLE cumulative production relation) ........................... (1.18) 

 

Finally, substituting Eq. 1.17 and Eq. 1.18 into Eq. 1.16 we obtain, 
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As with Eq. 1.16, Eq. 1.19 is rigorous for the conditions of pseudosteady-state flow behavior in an 

undersaturated black-oil reservoir.  While there is no empiricism in Eq. 1.19, we would have to adhere 

specifically to the stated conditions for an exact solution.  Our "reverse engineering" approach will be to 

impose Eq. 1.17 (i.e., the SE/PLE flowrate relation) on a numerical reservoir simulation model, and validate 

the pressure profile given by Eq. 1.19.  We will also use simplified models to represent these generated 

pressure profiles to assess whether or not we can establish a time-dependent, flowing bottomhole pressure 

condition that will produce the SE/PLE time-dependent flowrate profile. 

 

I.4 Organization of the Thesis 

 

This thesis manuscript is organized in chapters with the following structure: Chapter I provides the 

introductory section which includes a brief motivation statement for this work, the general and specific 

objectives to achieve, and a comprehensive description of the problems at hand.  Chapter I serves as an 

outline of our work which will be further developed in following chapters. 

 

Chapter II presents in detail the literature reviewed and analyzed for the topics presented in this work, 

starting with the history of the stretched exponential function, following with the historical and modern time-

rate analysis in the petroleum literature.  Chapter III covers the main study of the stretched exponential 

(SE)/power-law exponential (PLE) function.  In this chapter, we divide our work into three categories: first 

the SE/PLE approximation by sum-of-exponentials function, followed by the Laplace transform of the 

SE/PLE model, to finalize with the prediction of the flowing bottomhole pressure response that a specific 

SE/PLE case would generate. 

 

Finally, Chapter IV provides a summary of the study, detailed concluding remarks, and recommendation 

statements.  Closing this manuscript, we have the nomenclature and references sections which are followed 

by four appendices.  Appendix A presents the dimensionless hyperbolic, modified hyperbolic, and power-

law exponential decline models approximation by a sum-of-exponentials function.  Appendix B describes 

the Laplace transform of the dimensionless stretched exponential/power-law exponential decline model with 

n = 0.50.  Appendix C presents the dimensionless power-law exponential decline model in Laplace domain 

approximations.  Finally, in Appendix D we show the validation of time-rate flow relations assuming 

pseudosteady-state flow behavior: exponential, hyperbolic, and stretched exponential/power-law exponen-

tial cases. 
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CHAPTER II 

LITERATURE REVIEW 

 

II.1 Stretched Exponential Function History 

 

The first introduction of the stretched exponential function is attributed to Rudolf Kohlrausch (1854) when 

attempting to interpret charge relaxation in a Leiden jar (a device used to store electric charge between two 

electrodes).  His mathematical expression is,  

 

]exp[ αBtoQtQ −=  ................................................................................................................................ (2.1) 

 

Time later, the stretched exponential was "rediscovered" by Williams and Watts (1970), who independently 

developed an empirical dielectric decay function, given by, 

 

])0/(exp[)( βτγ tt −= , ............................................................................................................................ (2.2) 

 

to model relaxation phenomena of amorphous polymers.  Since then, the stretched exponential was also 

known as the William-Watts function or the Kohlrausch-Williams-Watts function.  As an aside, we notice 

that the stretched exponential is a complementary cumulative distribution for the Weibull density (Weibull 

1951), mathematically expressed as, 

 

αβ )/(1)( xexD −−= , ............................................................................................................................ (2.3) 

 

which has been applied in many science and engineering fields.  The mathematical behavior of Eq. 2.3 is 

presented graphically in Fig. 2.1.  An essential reference of the stretched exponential function is the one 

given by Palmer et al. (1984) where they used the stretched exponential as an anomalous relaxation law for 

strongly interacting glassy materials.  Although these researchers mentioned Kohlrausch as the first 

introduction of the function, their citation mentioned his 1847 work (Kohlrausch 1847).  In reviewing this 

paper (written in German) we could not find a specific mathematical expression related to the stretched 

exponential.  For completeness, we notice that some references mention the work of Friedrich Kohlrausch 

(1863), the son of Rudolf Kohlrausch, in mechanical relaxation of galvanometric threads as the first 

introduction of the stretched exponential, mistakenly.  Additionally, the phrase "stretched exponential" 

seems to first appear in the work of Chamberlin et al. (1984) when referring to a functional form to model 

time decay of the remnant magnetization in spin-glasses; their mathematical expression is given by, 

 

)]1/()(exp[ 1
0  ntC n

TRM −−= −ωσσ  .................................................................................................. (2.4) 

 

In the petroleum literature, Arps (1945) gave, as part of his review of development of decline-curve analysis, 
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a rate-time model attributed to Jones (1942) as follows, 
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Which was defined as an approximation for wells declining at variable rates whereby the decline-time 

relationship follows a straight line on log-log paper.  Finally, there is the decline model presented by Valkó 

(2009) using the stretched exponential for low/ultra-low permeability reservoirs, presented in more detail in 

the next section. 

 

 

 

 
 

Figure 2.1 — Weibull cumulative distribution function behavior. 
 

 

 

II.2 Historic Time-Rate Analysis 

 

Decline curve analysis — better known by its initials DCA — is a methodology, commonly used in the 

petroleum industry, based on the analysis of historical production rates of oil and gas wells and the 

extrapolation of their future performance.  Using a graphical approach as the preferred diagnostic tool, 

αβ )/(1)( xexD −−=
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stabilized production trends are identified, and rate-time decline models are selected to fit those trends.  Once 

the decline model is calibrated, the extrapolation of rate in future time to an economic limit provides the 

estimated ultimate recovery (EUR) of the well under analysis.  Many time-rate models have been developed 

since the early twentieth century, and they have evolved to capture contemporary trends in well performance 

as the industry departs from the conventional to the low/ultra-low permeability unconventional resources.  

We trace decline curve analysis from the initial attempts to describe well performance to more sophisticated 

developments in time-rate models. 

 

The beginnings of production data analysis can be traced to the seminal work of Lewis and Beal (1918) in 

which the authors used their so-called appraisal curves to make estimates of future production by 

constructing percentage decline curves and cumulative percentage curves.  Their idea behind using percent 

flowrate was to compare different wells with different performance by looking at their decline tendency.  

Additionally, the authors stated that many production records from various wells yield straight lines in a 

logarithmic plot, making the extrapolation process more straightforward and accurate.  Later, Cutler (1924) 

delivered a broad review — prepared for the US Bureau of Mines — on the estimation of future production 

and reserves using production-decline curves.  The author acknowledges the value — and better accuracy 

than others to-date methods — of decline models as a forecasting tool whenever adequate data is available.  

In his work, it was noted that production trends assume approximately the shape of a hyperbola; therefore, 

the extrapolation of production in time could be done linearly in a log-log plot avoiding sources of error. 

 

Johnson and Bollens (1927), acknowledging that there were limitations to extrapolating rate in time when 

there is no clear straight line in a logarithmic plot, first presented the loss ratio and the loss ratio derivative 

concepts — mathematically expressed in Eqs. 2.6, and 2.7; which are the basic functions that define the 

modern decline parameters; i.e.: the decline coefficient (D(t)) and the decline exponent (b(t)) — to overcome 

the irregularity and lack of accuracy in flowrate data.  The authors worked with yearly production data and 

found the derivatives in a finite difference fashion to extrapolate the loss ratio and then compute future 

flowrates. 
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Arps (1945), after assembling a comprehensive compilation of decline-curve analysis developments, 

presented, "formally", the basic decline relations (i.e., exponential and hyperbolic) to determine the well's 

most likely future production.  His approach was to consider that the most readily accessible variable 

characteristic of a producing well is its production rate and that by extrapolating this variable — against 
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time or cumulative production — yields the economic limit of such.  Arps noted that the basic reservoir 

characteristics needed to deal with decline curves are: a close reservoir, pressure is proportional to the 

amount of remaining oil, and production rates are proportional to reservoir pressure.  The empirical character 

of this approach reflects that future behavior is governed by past performance.  The exponential and 

hyperbolic decline relations are presented in Eq. 2.8, and Eq. 2.9, respectively, 

 

]exp[)( tiDiqtq −= , ................................................................................................................................ (2.8) 

 

btibD

iq
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where, Di is the initial decline coefficient, and b is de decline exponent.  Arps stated that if the loss ratio is 

constant or nearly constant, then the well performance is exponential; whereas, if the loss ratios indicate a 

regular arithmetic series and the derivatives of the loss ratios (b values) are constant, then the well 

performance is hyperbolic.  Additionally, he noted that most hyperbolic decline curves appear to be 

characterized by decline exponents between 0 and 1, with the majority between 0 and 0.4.  Arps also 

presented the mathematical expressions for cumulative production time-rate relations for the exponential 

and hyperbolic decline models as follows, 

 

[ ])exp(1)( tiD
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tQ −−= , ..................................................................................................................... (2.10) 

 





 −+−

−
= b

tibD
iDb

iq
tQ

/11
)1(1

)1(
)(  ..................................................................................................... (2.11) 

 

Some researchers worked describing the influence that reservoir properties have on decline curves; Gentry 

and McCray (1978) were some of them.  Using numerical simulation they found that relative permeability 

changes (reservoir heterogeneity) have a significant impact on the decline exponent, b, producing slightly 

larger values than 1 in some cases, while fluid characteristics have a bearing on the initial flowrate, qi, and 

the decline coefficient, Di.  Following this work, Maley (1985) established that the decline exponent, b, often 

does exceed the value of 1 analyzing low-permeability fractured tight gas wells exhibiting linear flow.  

Therefore, Arps' equations were unsuitable — and need improvement — to be used in the decline analysis 

of flowrate from a low-permeability reservoir. 

 

II.3 Modern Time-Rate Analysis 

 

Robertson (1988) proposed a more general time-rate equation, the so-called modified hyperbolic decline 

model which combine the hyperbolic and exponential expressions.  This approach provides a mean to extract 

uses a hyperbolic trend at early production times, and "splices" an exponential trend at late time to represent 

a specified "terminal" decline.  Additionally, it is noted by the author that the decline exponent (b) exceeding 
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the value of 1 is most likely associated with multiple strata wells and fractured formations.  The author 

presented the following mathematical expression, 
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where the parameter a is the asymptotic exponential decline rate, and the parameter β is responsible for 

several desirable characteristics of Eq. 2.12 and is determined by abandonment pressure and the rock and 

fluid characteristics.  For the range 0 < β ≤ 1, decline curves are generated from purely exponential to purely 

hyperbolic.  In contrast to Eq. 2.12, the most common form of the "modified hyperbolic" decline model, 

given in a piecewise fashion, is expressed by: 
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where, 
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Ilk et al. (2008) developed a power-law exponential (PLE) decline model relation to analyze well 

performance data from low/ultra-low permeability reservoirs where production has a non-hyperbolic 

behavior.  This model is based on the observed behavior of the decline coefficient (Eq. 2.16) which starts as 

a decaying power-law function transitioning to a constant value at later times (D∞) giving the traditional 

exponential decline relation (graphically in Fig. 2.2). 

 

1ˆ1 −+∞=−= ntiDnD
dt

dq

q
D  ................................................................................................................. (2.16) 

 

Integrating Eq. 2.16 we obtain the relation for the PLE decline model as follows, 

 

]ˆexp[ˆ)(
n

tiDtDiqtq −∞−= .................................................................................................................. (2.17) 

 

In this time-rate model, q�i is the initial rate coefficient, D∞ is the terminal decline coefficient, D� i is the decline 

coefficient, and n is the time exponent. 

 

Later, Valkó (2009), while working on an extensive production history from the Barnett Shale, introduce 
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the stretched exponential (SE) decline model (Eq. 2.18).  Valkó stated that this model is completely 

empirical — as the original Arps' decline models — yet it is based on a defining differential equation that 

is non-autonomous; additionally, he noted that this model was developed for data where time is periodically 

taken.  The mathematical expression for the SE decline model is given by: 

 





















−=
n

i
t

qtq
τ

expˆ)(  ...................................................................................................................... (2.18) 

 

where q�i is the initial production rate, n is the time exponent, and τ is the characteristic number of periods or 

time coefficient.  It is important to note that the stretch exponential decline model is identical to the power-

law exponential decline model when the terminal decline coefficient, D∞, is equal to zero. 

 

 

 

 
 

Figure 2.2 — Observed behavior of the decline parameters (D(t) and b(t)) for the 

SE/PLE decline model. 
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In another publication, Ilk et al. (2010) noted that the stretched exponential model behaves as a superposition 

of exponential decays; given as follows: 
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Therefore, it can be used to model decaying processes in heterogeneous systems which is the case of 

low/ultra-low permeability reservoirs.  These authors matched the production from a tight gas field with a 

single, double and four exponential functions and concluded that it seems to fit.  As comment, the 

"superposition of exponential decays" has been pursued by authors working specifically on the stretched 

exponential model in other fields, Ilk et al. (2010) were just the first to do so in the petroleum literature. 

 

Duong (2011) proposed a novel approach introducing an empirical decline model for fracture-dominated 

wells in tight and shale gas reservoirs.  In his work, the author presents a step-by-step procedure to analyze 

individual wells by fitting a two-coefficient model — the intercept constant, a, and the slope, m.  on a 

specialized plot.  The time-rate mathematical formulation given by Duong is given as follows: 
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Clark et al. (2011) proposed — mentioned by the authors as easy to use and capable — a production 

forecasting model based on a specific subcategory of the generalize logistic growth model called 

hyperlogistics.  The authors used a mathematical expression used in biology (a model for hyperbolic liver 

regrowth) and adapted it to oil and gas variables where the growth, in this case, is the cumulative production, 

to give, 
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Taking the derivative of Eq. 2.21, to obtain flowrate, we have, 
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This model has three parameters: the carrying capacity K, the hyperbolic exponent n, and the constant a.  

Where the production for low/ultra-low permeability reservoirs exhibits a hyperbolical decline, the logistic 

growth model matches well performance with good accuracy. 

 

Fulford and Blasingame (2013) presented the transient hyperbolic relation to analyze rate-time well 

performance from low/ultra-low permeability reservoirs.  This model includes an early and late time 
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hyperbolic behavior which attempts to resemble the flowrate profile in the initial clean-up portion and the 

transitional and final hyperbolic behavior.  The time-rate model is obtained from the transient hyperbolic 

decline exponent (b) given by, 

 

]]]exp[)(exp[exp[)()( minmaxmax γ+−−−−−= effttcbbbtb , ............................................ (2.23) 

 

where bmax is maximum hyperbolic coefficient, bmin is the minimum hyperbolic coefficient, telf is the time to 

end of linear flow, γ is the Euler-Mascheroni constant, and c is the scaling factor given by exp[γ]/1.5telf.  The 

logistic transition of the b-parameter of this model represents the change between binary states in the 

reservoir which is proportional to the transition time. 

 

As concluding remarks, we have covered/reviewed the time-rate models commonly used in the petroleum 

industry.  Many/most of the time-rate models are empirical in nature and we note that there have not been a 

substantial number of studies devoted to the analytical derivation of such models, hence the motivation for 

this research. 
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CHAPTER III 

STUDY OF THE STRETCHED EXPONENTIAL/POWER-LAW EXPONENTIAL 

RELATIONS 

 

III.1 Approximation by Sum-of-Exponentials 

 

To begin our development, we recall the dimensionless form of the stretched exponential/power-law 

exponential (SE/PLE) decline model, 

 

] exp[)( n
DtDtDq −=  ................................................................................................................................. (3.1) 

 

Eq. 3.1 is our base mathematical expression to approximate with the sum-of-exponentials function.  For 

completeness, we recall the dimensionless hyperbolic and modify hyperbolic relations in Eq. 3.2 and Eq. 

3.3, respectively.  For reference, Appendix A presents in detail how we obtain the dimensionless form of 

these decline models. 
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As stated before, we focus on the approximation of the SE/PLE by a sum-of-exponentials function; 

additionally, we extend this work to the hyperbolic and modify hyperbolic decline models.  Recalling that 

the SE/PLE behaves as a linear superposition of exponentially decaying functions, we have this 

mathematical expression as follows, 

 

∑
∞

=
−≡

1

] exp[)(

i
DticiaDtDq  .................................................................................................................... (3.4) 

 

where the ai and ci parameters in Eq. 3.4 are the coefficients to be determined. 
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The primary issue with Eq. 3.4 is that we cannot determine an infinite number of coefficients; hence, we 

truncate the summation in our work to imax = 8, and Eq. 3.4 can be rewritten to give, 
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As comment, Eq. 3.5 is fitted by "brute force" — that is, hand methods were used to establish the initial 

exponential coefficients, where the first term was approximated, then the next, then the next using a log-log 

plot of qD(tD) versus tD.  Once the hand approach provided "close" estimates, the model and data function 

were submitted to a non-linear optimization algorithm to obtain the final coefficients.  The casual observer 

may question the "hand approach", but it is important to note that, no matter what product was used to 

perform the regressions, this problem is so ill-posed that it required the hand manipulation of the coefficients 

prior to the use of regression.   

 

To complete this work, and once the approximation is obtained, we compute Arps D(t) and b(t) functions 

(i.e., loss ratio and loss ratio derivative) as an additional test of the regression analysis and to observe the 

behavior of the sum-of-exponentials function with further mathematical manipulation.  The resulting Arps 

relations, D(t) and b(t), in dimensionless form, when Eq. 3.5 is substituted as the time-rate model are given, 

respectively, as follows, 
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Considering Eq. 3.1 and Eq. 3.5, we realize that for a given value of the time exponent, n, there is a particular 

set of ai and ci coefficients; therefore, we contemplate a practical range of n values for the approximation 

(i.e., n = 0.10, 0.25, 0.50, 0.75, and 0.90).  In this sense, we have developed five sum-of-exponentials 

functions to approximate the SE/PLE time-rate model which are presented in detail in Appendix A.  As 

mentioned, we extend the approximation to the hyperbolic and modify hyperbolic decline models for 

completeness.  This work is also included in Appendix A for reference.  The most representative example 
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is the case for n = 0.5; hence, the results for this case are presented here as follows, 

● Figure 3.1 In Fig. 3.1 we present the dimensionless SE/PLE model for the case of n = 0.5 using 

an eight-term sum-of-exponentials function approximation, where the summation 

and the eight individual trends are each shown.  This plot shows quite clearly that the 

model is matched extremely well by the approximation. 

● Figure 3.2 In Fig. 3.2 we present a semilog plot of the ai and ci coefficients used to match the 

SE/PLE n = 0.5 case.  While the ci coefficients are monotonically decreasing, which 

suggests a coherent performance on a term-by-term basis, the ai coefficients have a 

somewhat quadratic shape, with the third ai coefficient being the maximum.  It is 

unclear if this has any mathematical relevance, but this behavior does imply that the 

ai coefficient will have an element of uncertain (as these coefficients do not 

monotonically decrease).  Efforts were made to try to ensure monotonicity, but these 

were not successful in this particular case. 

● Figure 3.3 The Arps DD(tD) and bD(tD) functions are presented in Fig. 3.3, where both the model 

functions (straight-line trends) and the approximate functions (oscillating curves) 

agree reasonably well — well enough to suggest that the eight-term sum-of-

exponentials approximation is sufficient for the prediction of qD(tD), but less so for 

the Arps DD(tD) and bD(tD) functions.  The oscillatory nature of the sum-of-

exponentials approximations for the DD(tD) and bD(tD) functions suggests the need for 

more terms in the approximation, but attempts to increase the number of terms lead 

to worse results, most likely due to numerical issues. 

 

As a closure statement, we believe that the sum-of-exponentials concept is valid for the representation of 

the SE/PLE decline model, but due to numerical effects, this problem is poorly posed for such 

approximations.  As our work has shown, eight-term sum-of-exponentials approximation is sufficient for 

the prediction of qD(tD). 

 

III.2 Laplace Transform of the Stretched/Power-Law Exponential Function 

 

The Laplace transform has been widely used in the petroleum literature to solve flow problems that are not 

well-posed for real domain solutions.  The primary advantage of the Laplace transform is that it can be used 

to reduce certain partial differential equations into a form where an analytical solution can be obtained in 

the Laplace domain.  The "trick" then becomes the inversion of the Laplace domain solution into the real 

domain, and this often requires the use of (approximate) numerical inversion algorithms. 

 

Another application of the Laplace transform that is very popular in the petroleum literature is its use to 

resolve variable-rate/variable-pressure drop problems in using the convolution identity — which in the real 

domain is a "convolution" integral, but in the Laplace domain this identity becomes a multiplication of two 
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functions in the Laplace domain. 

 

Our goal is to use the Laplace transform and the convolution identity to resolve the SE/PLE decline model 

in the Laplace domain with the perspective that there may be some sort of diagnostic capability or other sort 

of mathematical identity which, in the process, may arise. 

 

 

 

 
 

Figure 3.1 — Dimensionless rate functions for the sum-of-exponentials approximation 

for the n = 0.5 SE/PLE case.  
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Figure 3.2 — Coefficients ai and ci values for the sum-of-exponentials approximation 

for the n = 0.5 SE/PLE case. 
 

 

 

 

 

 

 
 

Figure 3.3 — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the n = 0.5 SE/PLE case.  
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In addition, we can use the convolution identity to try to establish if the SE/PLE decline model has some 

unique relationship with either a constant rate or constant pressure formulation. 

 

In particular, the constant rate/constant pressure formulation in the Laplace domain is given as, 
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In simple language, there is no direct Laplace transform of the general form of Eq. 3.1 (i.e., for a general 

value of the time exponent, n) — except for very specific cases (e.g., n = 1/2 or 1).  To develop a 

comprehensive understanding of the behavior of Eq. 3.1 in the Laplace domain, we will test three different 

numerical approaches in order to find an approximation: 

 

● Approximate the SE/PLE relation by Taylor series expansion, and then take the Laplace transform. 

● Use the Laguerre quadrature formulation to transform a general function into the Laplace domain. 

● Use the Blasingame (1995) approach to take the Laplace transform of a piecewise power-law function. 

 

In this sense, our first approach will be to develop, analytically, the specific case for n = 0.50 or 1/2 to find 

the Laplace transform and subsequent mathematical analysis as an initial reference for the numerical 

approaches.  Eq. 3.1; hence, becomes, 

 

]2/1exp[)( DtDtDq −=  .......................................................................................................................... (3.9) 

 

Using standard tables, he Laplace transform of Eq. 3.9 is, 
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where Erfc (x) is the complementary error function.  Eq. 3.10 is the dimensionless SE/PLE flowrate in 

Laplace domain for n = 1/2.  Appendix B describes in detail how we get to the previous expression.  As 

stated previously, we attempt to resolve the SE/PLE decline model in Laplace domain; therefore, we replace 

Eq. 3.10 into the "convolution" integral in Laplace domain (Eq.3.8) to obtain the following expression, 
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At this point we have resolve the SE/PLE decline model for the case n = 1/2 in Laplace domain.  This 

problem is not suitable for direct analytical inversion; hence, we use the traditional Stehfest (1970) numerical 

Laplace inversion algorithm to find the results for the "constant rate" pressure and pressure derivative 
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functions.  We present these results in Fig. 3.4. 

 

 

 

 
 

Figure 3.4 — Various functions obtained by using the Laplace transform of the 

SE/PLE relation (n = 0.50). 
 

 

 

As an aside, by observation of Fig. 3.4, it seems that the dimensionless rate in Laplace domain exhibits a 

hyperbolic trend.  In this sense, we raise the question if Eq. 3.10 may be approximated with a simpler 

mathematical expression for computational purposes.  To test this idea, we propose two approximating 

models: a hyperbolic type function and a rational polynomial function, given as follows, 
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where the ai and bi constants are arbitrary regression coefficients used to match the models to the exact 

solution.  The approximation results are presented in Fig. 3.5 and in more detail in Appendix B.  Since these 

results are fairly good, we extend our work to solve analytically the SE/PLE approximating functions we 

propose in Eq. 3.12 and Eq. 3.13 substituting them into the "convolution" integral (Eq. 3.8) and inverting 

the resulting expressions to real domain without the need for a numerical algorithm.  The resulting "constant 

rate" pressure expressions for the hyperbolic and rational polynomial functions are given in Eq. 3.14 and 

Eq. 3.15, respectively. 

 

 

 

 
 

Figure 3.5 — Dimensionless SE/PLE decline model flowrate for the case n = 0.50 and 

approximating hyperbolic and rational polynomial functions. 
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Finally, real domain pressure generated from the approximating functions is computed and plotted along 
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with the one obtained with numerical Laplace inversion using the exact "convolved" pressure in Laplace 

domain (i.e., Eq. 3.11).  These results are presented in Fig. 3.6 and in more detail in Appendix B. 

 

 

 

 
 

Figure 3.6 — Dimensionless SE/PLE decline model "constant rate" pressure for the 

case n = 0.50 and approximating hyperbolic and rational polynomial 

functions. 
 

 

 

At this point we have resolved the SE/PLE model for the special case of n = 0.50 or 1/2.  From our 

observations on Figs. 3.5 and 3.6 we believe that the best approximation for )(uDq is the rational polynomial 

given by Eq. 3.13.  For reference, we present the coefficients ai and bi in Table 3.1. 

 

We recall that for the general SE/PLE expression there is no direct Laplace transform.  Therefore, as 

commented previously, we test three different numerical approaches in order to find an approximation in 

Laplace domain.  The first approach we use is that of the Taylor series expansion, followed by Laguerre 

quadrature, and finally, using the Blasingame (piecewise power-law function) method.  The complete details 

of the mathematical derivation is provided in Appendix C.  We present the general approximating functions 

as follows, 
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Table 3.1 — Regression coefficients, ai and bi, values for the hyperbolic and rational 

polynomial approximating functions of )(uDq . 
 

Hyperbolic 

Approximating Function 
 Rational Polynomial 

Approximating Function 

Coefficient  Value  Coefficient  Value 

a1  1.99995  b1  2.00 

a2  2.194587  b2  0.893318 

a3  1.005188  b3  4.758922 

    b4  0.894517 
 

 

 

Taylor Series Expansion: we first approximate the dimensionless SE/PLE decline model using the Taylor 

series expansion of a real function f(x), in our case qD(tD); then, we are able to compute the Laplace transform 

of the series expression to give, 
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Laguerre Quadrature: also called Gauss-Laguerre quadrature, with this approach we approximate the 

Laplace transform integral definition using a series expansion.  With our working variables, we obtain, 
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where, for this equation, n, is the time exponent from the SE/PLE model and m is the quadrature order of 

the abscissas.  The xi coefficients are the abscissas (the ith zero of the Laguerre polynomials, Lm(x)) and wi 

coefficients are the weights obtained the from the Laguerre polynomials. 

 

Blasingame Method: this approach, idealized by Blasingame (1995), considers the Laplace transform as a 

series of a continuous piecewise power-law function of the form 1)( −= iv
titif α , where we finally get, 
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where Γ(z) is the gamma function, γ(a,x) is the lower incomplete gamma function, and αi and vi are the 

coefficients of Blasingame's continuous data function. 

 

Appendix C provide the results obtained from the three methods previously commented.  We tested these 
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three approaches exhaustively, with a wide range of time exponent, n, values, to find that the Blasingame 

method yields the best results and is, therefore, going to be presented in this section.  The results obtained 

are as follows, 

● Figure 3.7 In Fig. 3.7 we present the dimensionless SE/PLE time-rate model in Laplace domain 

using the Blasingame method approximation, where the trends for a specific time 

exponent value are each shown.  This plot shows quite clearly that the approximation 

is well-behaved and no numerical issues are presented along the logarithmic scale of 

the Laplace variable. 

● Figure 3.8 In Fig. 3.8 we present the "constant rate" pressure in real domain for various time 

exponent values.  We obtained these results from the "convolved" approximation of 

��D(u) (i.e., p�D(u)); then, we use the Stehfest algorithm to invert numerically the 

Laplace domain solution to get pD(tD).  We observe that the trends follow a close 

converging path until tD ≈ 2 and then diverge drastically with a slope depending on 

the time exponent value. 

● Figure 3.9 In Fig. 3.9 we present the "constant rate" pressure derivative (the well-test pressure 

derivative, to be accurate) in real domain.  At small dimensionless time values, the 

pressure derivative trend is dominated by the value of the time exponent suggesting 

some sort of dependency with the flow geometry; however, this is just an observation 

from a "constant rate" result. 

 

III.3 Prediction of Bottomhole Flowing Pressure 

 

Using numerical reservoir simulation, we attempt to "reverse engineer" the bottomhole flowing pressure 

that a specific SE/PLE model flowrate would generate.  As commented before, this is a "reverse engineering" 

problem because we know the properties of the reservoir model, and our efforts are directed to determine if 

there are any unique features of the bottomhole pressure response.  As a starting point example, we recall 

the oil material balance relation and the oil pseudosteady-state (PSS) flow relation, given by, 
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Figure 3.7 — Dimensionless SE/PLE decline model in Laplace domain for various 

time exponent values, n, by Blasingame method approximation.  
 

 

 

 
 

Figure 3.8 — Dimensionless "constant rate" pressure from SE/PLE decline model for 

various time exponent values, n — Blasingame method approximation. 
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Figure 3.9 — Dimensionless "constant rate" pressure derivative from SE/PLE decline 

model for various time exponent values, n — Blasingame method 

approximation. 
 

 

 

Combining Eq. 3.19 and Eq. 3.20 we obtain, 

 

pNpssomoqpssobipwfp  , , −−=  ....................................................................................................... (3.21) 

 

For the case of a constant bottomhole pressure (i.e., dpwf /dt = 0), the derived flowrate model is exponential 

during pseudosteady-state (this can be easily derived from Eq. 3.19 and Eq. 3.20.  See Appendix D).  The 

resulting derived exponential time-rate model is, 

 

] exp[ )( tiDoiqtoq −=  ........................................................................................................................ (3.22) 

 

Eq. 3.21 and Eq. 3.22 are rigorous for pseudosteady-state flow in an undersaturated black-oil reservoir.  

Following similar steps in the previous approach, we can implement a strategy to "prove" a given time-rate 

relation that is not derived from fundamental principles (e.g., the power-law exponential decline model).  

The obvious test would be to compute the flowing bottomhole pressure (pwf) using Eq. 3.21 and compare 

these results to the pressures from observed field data or from a numerical reservoir simulation generated 

using a prescribed reservoir model.  For cases other than the constant bottomhole flowing pressure 

(generated from an exponential decline), Eq. 3.21 could be used — with the appropriate substitutions of qo 

and Np from a prescribed model — as a regression relation to validate the input time-rate model.  Such a 
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"proof" would be somewhat disingenuous given that one would just be proving that the input rate matches 

the concepts of pseudosteady-state flow, but this could be one approach to proving the consistency of a 

given time-rate model. 

 

Another "proof" could be to use the prescribed time-rate model in the pseudosteady-state flow equation (Eq. 

3.20) and compare its performance against numerical reservoir simulation results when solving for ( p – pwf).  

Again, this would be slightly weak as a "proof" of a given model, but it could be used to prove consistency.  

As an example, for the constant pressure case, we substitute the flowrate expression of the exponential 

decline model into Eq. 3.20 to obtain, 

 

] exp[,)( tiDiqpssobwfpp −=−  ............................................................................................................ (3.23) 

 

At this point, our approach is to solve for the flowing bottomhole pressure functional form (pwf (t)) for 

pseudosteady-state flow (i.e., Eq. 3.21), with a prescribed time-rate model so that it can be compared against 

measured or simulated well performance data.  We will test two time-rate models: the traditional hyperbolic 

and the power-law exponential.  We now need to develop the pressure functional form of these decline 

models. 

 

Hyperbolic Time-Rate Model: the hyperbolic time-rate model, derived from empirical observations, and its 

cumulative production form are replaced into Eq. 3.21 to give, 
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Eq. 3.24 is the functional form of the bottomhole pressure using the hyperbolic decline as the prescribed 

time-rate model.  Recasting Eq. 3.24 into a regression relation (i.e., assigning arbitrary parameters for the 

model coefficients) we obtain, 

 

]4/11
)3(1[1 5

4/1
]31[

1
 21)(

a
taa

a
ta

aatwfp
−+−−

+
−=  .......................................................................... (3.25) 

 

Eq. 3.25 represents the generic bottomhole pressure profile that should be obtained for the case of a well 

produced at a rate specified by the hyperbolic time-rate relation.  The parameters a1, a2, a3, a4, and a5 are 

arbitrary coefficients to be determined by regression.  As an aside, we can replace the hyperbolic decline 

model into the pseudosteady-state flow equation to give, 
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Reforming Eq. 3.26 into a regression relation we get, 
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Eq. 3.27 represents the generic (p� – pwf) pressure profile that should be obtained for the case of a well 

produced at a rate specified by the hyperbolic time-rate relation.  The parameters m1, m2, and m3 are arbitrary 

coefficients to be determined by regression.  Details on the above derivations are presented in Appendix D. 

 

Power-Law Exponential Time-Rate Model: the power-law exponential (PLE) time-rate model, derived from 

empirical observations, and its cumulative production form are replaced into Eq. 3.21 (we must assume 

0=∞D in this case) to obtain, 
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Eq. 3.28 is the functional form of the bottomhole pressure using the PLE decline as the prescribed time-rate 

model.  Reforming Eq. 3.28 into a regression relation (i.e., assigning arbitrary parameters for the model 

coefficients) we obtain, 
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Eq. 3.29 represents the generic bottomhole pressure profile that should be obtained for the case of a well 

produced at a rate specified by the PLE time-rate relation.  The parameters c1, c2, c3, c4, and c5 are arbitrary 

coefficients to be determined by regression.  As an aside, we can replace the PLE decline model into the 

pseudosteady-state flow equation to give, 
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Reforming Eq. 3.30 into a regression relation we get, 

 

]4
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Eq. 3.31 represents the generic (p� – pwf) pressure profile that should be obtained for the case of a well 

produced at a rate specified by the PLE relation.  The parameters d1, d2, d3, and d4 are arbitrary coefficients 

to be determined by regression — coefficient d4 (i.e., ∞D ) can be assumed to be zero.  Details on the above 

derivations are presented in Appendix D. 

 

Numerical Reservoir Simulation Results: as stated above, we are to "reverse engineer" the functional form 

of pwf(t) from a prescribed time-rate model by comparing simulated well performance data with the 

regression expressions obtained previously.  To validate this concept, we have prepared a numerical 
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simulation case — to obtain pwf(t) by providing prescribed flowrates — where the reservoir is circular in 

shape with an area of 100 acres and the reservoir thickness is constant with a pay zone of 200 ft., the 

permeability and porosity are constant with a value of 6.1% and 0.10 md, respectively.  The well is vertical 

with no skin factor and located in the center of the reservoir.  We assume an initial pressure, pi, of 10,000 

psia, an initial reservoir temperature of 400°F.  The fluid in the reservoir model is dry gas with no non-

hydrocarbon impurities and a specific gravity of 0.633.  The gas deviation factor (z-factor) is computed with 

Dranchuk-Abou-Kassem (DAK) correlation and viscosity with Lee, et al. correlation.  We have elected to 

utilize a gas reservoir case because it violates the "black oil" assumptions used to derive Eq. 3.21; and hence, 

provides a more stringent test of Eq. 3.25 and Eq. 3.29. 

 

We start by generating three cases of synthetic flowrates from prescribed time-rate models — these data are 

going to be feed to the numerical simulator to obtain their bottomhole pressure response.  The synthetic 

flowrates generated are presented graphically as follows: in Figs. 3.10 we have the exponential decline 

flowrates, in Fig. 3.11 we have the hyperbolic decline flowrates, and finally in Fig. 3.12 the power-law 

exponential decline flowrates.  For reference, the decline parameters of each time-rate model are presented 

in Table 3.2.  Recalling the mathematical expressions for the exponential, hyperbolic, and power-law 

exponential decline models, for gas flowrate, we have, 
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]ˆexp[ˆ)( tDntiDgiqtgq ∞−−=   (power-law exponential) ..................................................................... (3.34) 

 

As commented above, the bottomhole pressure response from an exponential decline flowrate, theoretically, 

should yield a constant value, which is what we expect to find with our numerical reservoir simulation.  This 

is our "calibration" step before obtaining the pressure profile from the hyperbolic and power-law exponential 

time-rate models.  The exponential decline bottomhole pressure profiles are presented in Fig. 3.13.  As we 

can observe, the pressure trends stabilize in near constant value after the transient period is over and 

pseudosteady state flow becomes the dominant regime.  At this point, we have "reverse engineered" the 

flowing bottomhole pressure profiles that the hyperbolic and power-law exponential time-rate models 

generate using the numerical reservoir simulation case prepared. 
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Figure 3.10 — Synthetic gas flowrates from exponential decline model. 
 

 
 

Figure 3.11 — Synthetic gas flowrates from hyperbolic decline model. 
 

 
 

Figure 3.12 — Synthetic gas flowrates from power-law exponential decline model. 
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Table 3.2 — Decline parameters for the exponential, hyperbolic, and power-law 

exponential decline models used in numerical reservoir simulation. 
 

    Case 1  Case 2  Case 3 

Exponential 

Decline 
 giq , Mscf/D 

 3099  3913  4392 

 iD , 1/D 
 1.06×10-5  2.88×10-5  2.38×10-5  

        
Hyperbolic 

Decline 
 giq , Mscf/D 

 3000  3912  4400 

 iD , 1/D 
 3.00×10-5  2.88×10-5  2.70×10-5 

 b   1.5  0.8  0.7  

        
Power-law 

Exponential 

Decline 

 giq̂ , Mscf/D 
 3300  4000  4500 

 iD̂ , 1/D 
 0.09  0.06  0.05 

 n   0.22  0.28  0.30 

 ∞D , 1/D 
 1.00×10-6  1.00×10-10  1.00×10-10 

 

 

 

 

 
 

Figure 3.13 — Exponential decline bottomhole flowing pressure from numerical 

reservoir simulation (solid trends) and constant approximation (dashed 

trends). 
 

 

 

 

These results are presented in Fig. 3.14 and Fig. 3.15 in solid color trends.  Now, we face the problem of 

matching the simulated bottomhole pressures with the functional form obtained in Eq. 3.25 and Eq.3.29.  

We recall Eq. 3.25 and Eq. 3.29 for reference, 
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Using a global minimization algorithm as the regression approach, we were able to match the simulated 

flowing bottomhole pressure with the functional forms given in Eq. 3.25 and Eq. 3.29.  The results are 

presented in Fig. 3.14 and Fig. 3.15 in dashed black trends.  As can be observed, the match agrees very well 

for the cases presented.  We believe that, at least conceptually, this validates our efforts to corroborate the 

hyperbolic and power-law exponential time-rate models for a generic flowing bottomhole pressure profile.  

The regression coefficients found for every analysis are presented in Table 3.3. 

 

 

 

 

Table 3.3 — Regression coefficients for the functional form of the bottomhole 

pressure using the hyperbolic and power-law exponential decline 

models. 
 

Model  Coefficient  Case 1  Case 2  Case 3 

Hyperbolic 

Time-Rate 

Model 

 a1  8000.0  6076.5  5544.1 

 a2  1.642×10-4  1.721×102  1.270×102 

 a3  1.255×10-5  2.524×10-5  4.224×10-5 

 a4  0.803568  0.747904  0.781929 

 a5  14272.5  8996.4  9263.2 
 

 
 

 
     

Power-law 

Exponential 

Time-Rate 

Model 

 c1  8520.3  9231.4  7231.7 

 c2  0.01000  9.5194830  9.5233723 

 c3  7.881×10-6  5.488×10-4  5.633×10-4 

 c4  0.6479819  0.6473913  0.6402972 

 c5  3.245×106  1.204×104  1.040×104 
 

 

 

 

For completeness, we present the numerical simulation results for the pressure difference (p� – pwf) from the 

prescribed hyperbolic and power-law exponential decline models flowrates in Fig. 3.16 and Fig 3.17 (solid 

color trends).  Again, we need to find the coefficient values, through regression, of Eq. 3.27 and Eq. 3.31, 

which are the functional forms from pseudosteady state flow equation and the prescribed time-rate model.  

For reference, we recall Eq. 3.27 and Eq. 3.31: 
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Figure 3.14 — Bottomhole flowing pressure from numerical reservoir simulation (solid 

trends) and match with functional form pwf(t) (dashed trends) from 

hyperbolic time-rate model. 
 

 

 
 

Figure 3.15 — Bottomhole flowing pressure from numerical reservoir simulation (solid 

trends) and match with functional form pwf(t) (dashed trends) from 

power-law exponential time-rate model. 
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The regression results are presented in Fig. 3.16 and Fig. 3.17 in black dashed trends.  The regression 

coefficients found for this part of the study are presented in Table 3.4.  As observed, the simulated data and 

their corresponding model function match very well for both hyperbolic and power-law exponential time-

rate models.  This additional "proof" give some support to the previous work but still it is not a derivation 

from fundamental principles that strictly validates the time-rate models under analysis. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.16 — Pressure difference (p� – pwf) from numerical reservoir simulation (solid 

trends) and match with functional form (p� – pwf)(t) (dashed trends) from 

hyperbolic time-rate model. 
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Figure 3.17 — Pressure difference (p� – pwf) from numerical reservoir simulation (solid 

trends) and match with functional form (p� – pwf)(t) (dashed trends) from 

power-law exponential time-rate model. 
 

 

 

 

 

 

 

 

 

Table 3.4 — Regression coefficients for the functional form of the pressure 

difference (p� – pwf) using the hyperbolic and power-law exponential 

decline models. 
 

Model  Coefficient  Case 1  Case 2  Case 3 

Hyperbolic 

Time-Rate 

Model 

 m1  2088.37 
 

4084.89 
 

4629.28 

 m2  5.506×10-5 
 

3.447×10-5 
 

3.404×10-5 

 m3  1.779046 
 

1.242329 
 

1.363027  

 
 

 
     

Power-law 

Exponential 

Time-Rate 

Model 

 d1  2019.32 
 

1136.09 
 

5091.35 

 d2  0.0468328 
 

0.2063091 
 

0.0978511 

 d3  0.2710893 
 

0.1851144 
 

0.2377925 

 d4  1.000×10-9 
 

1.000×10-10 
 

1.000×10-8 

 

]4
3

2exp[1)( td
d
tddwfpp −−=−
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CHAPTER IV 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

IV.1 Summary 

 

The stated goal of this work is to establish some theoretical basis of the stretched exponential/power-law 

exponential (SE/PLE) flowrate model; unfortunately, there is no clear path to a theoretical "proof."  

However, using the concept of a sum-of-exponentials approximation we were able to demonstrate that such 

an approximation is viable for a number of time exponent values.  As an aside, using the same concept we 

were able to approximate the hyperbolic and modify hyperbolic decline models. 

 

In addition, although we were not able to uniquely resolve each case of the SE/PLE analytically using the 

Laplace transform, we were able to demonstrate the behavior of the n = 0.5 case and we also demonstrated 

the use of numerical approaches to represent the SE/PLE in the Laplace domain.  This work may lead to an 

eventual understanding of the "analytic" behavior of the SE/PLE relation. 

 

Lastly, we demonstrated a "reverse engineering" approach to predict and/or interpret the pressure behavior 

for the case of an SE/PLE flowrate model imposed on a given reservoir model.  While this is also not a 

"proof," this work does provide insight into the pressure behavior of this system, particularly for the case of 

an undersaturated black oil reservoir produced at pseudosteady-state flow conditions. 

 

IV.2 Conclusions 

 

● The SE/PLE approximation by "sum-of-exponentials" is proven by "brute force" — that is, the proposed 

8-term approximations yield reasonably accurate correlations for the specified SE/PLE functions for 

almost all cases that were considered.  However, the DD(tD) and bD(tD) functions show the oscillating 

behavior of the "sum-of-exponentials" formulations that would be expected when more terms are 

required. 

● There is no direct Laplace transform of the SE/PLE decline model (except for the case of n = 0.50) — 

however; this work clearly shows that very accurate approximations can be developed in the Laplace 

domain using numerical approaches, the Blasingame method being the best one. 

● The "reverse engineering" approach of predicting the bottomhole flowing pressure profile for an 

SE/PLE flowrate model imposed on a given reservoir model (numerical or analytical) was shown to be 

successful.  For this work, only the case of an undersaturated black oil reservoir produced to 

pseudosteady-state flow conditions were shown to uniquely match the conceptual model.  In addition, 

other empirical models were considered. 
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IV.3 Recommendations 

 

● This work on the SE/PLE approximation should be continued for dry gas reservoir systems.  While it 

is not obvious that there is a clear path to an analytical (or semi-analytical) solution for the SE/PLE for 

the gas case, there exists a possibility of developing an approximate solution. 

● Efforts should be continued on finding a semi-analytical expression for the SE/PLE decline model from 

the standard hyperbolic/modified hyperbolic relation.  This can provide some justification for the 

SE/PLE as a "special case" of the hyperbolic relation. 
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NOMENCLATURE 

 

Field Variables: 
 

 b = Hyperbolic decline exponent, dimensionless 

 bo,pss = Pseudosteady-state flow coefficient, psia/STB/D 

 B = Oil formation volume factor, RB/STB 

 ct = Total compressibility, psia-1 

 = Power-law exponential model initial decline parameter, (1/D)n 

 = Power-law exponential model terminal decline parameter, 1/D 

 h = Reservoir net pay, ft 

 k = Permeability, md 

 m = Quadrature order of the abscissa for the Laguerre polynomials, dimensionless 

 mo,pss = Material balance coefficient, psia/STB 

 n = Power-law exponential model time exponent parameter, dimensionless 

 Np = Cumulative oil production, STB 

p  = Average pressure, psia 

 p = Pressure, psia 

 pwf = Bottomhole flowing pressure, psia 

 q = Flowrate, STB/D or MSCF/D 

 = Stretched exponential/power-law exponential model initial flowrate parameter, MSCF/D 

 rw = Wellbore radius, ft 

 t = Production time, D or hr 
 

Subscripts: 
 

 g = Gas 

 i = Initial or integral  

 o = Oil 
 

Greek: 
 

 Δ = Difference 

 Γ = Gamma function 

 γ = Lower incomplete gamma function 

 τ = Stretched exponential model time coefficient, dimensionless 

 μ = Viscosity, cp 

 

iq̂

iD̂

∞D
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APPENDIX A 

DIMENSIONLESS HYPERBOLIC, MODIFY HYPERBOLIC, AND POWER-LAW 

EXPONENTIAL DECLINE MODELS APPROXIMATION BY A SUM-OF-

EXPONENTIALS FUNCTION 
 

Recalling the mathematical expression for the Power-Law Exponential (PLE) decline model we have, 

 

]ˆexp[ˆ)( n
ii tDtDqtq −−= ∞ , ............................................................................................................... (A-1) 

 

Where: 

iq̂  = initial flowrate coefficient, 

∞D  = terminal decline coefficient, 

iD  = decline coefficient, 

n  = time exponent. 

 

Neglecting boundary-dominated effects — which means that the terminal decline coefficient is zero — Eq. 

A-1 becomes, 

 

]ˆexp[ˆ)( n
ii tDqtq −=  ............................................................................................................................ (A-2) 

 

We select appropriate dimensionless variables for rate and time presented in Eq. A-3 and Eq. A-4, 

respectively, 

 

iq

tq
Dq

ˆ

)(=  ............................................................................................................................................ (A-3) 

n
i

D
D

t
t

/1ˆ −=  ...................................................................................................................................... (A-4) 

 

Replacing time and rate dimensionless variables into Eq. A-2 yields the dimensionless PLE decline model 

as follows, 

 

]exp[)( n
DDD ttq −=  .......................................................................................................................... (A-5) 

 

For different time exponent (n) values, the dimensionless PLE decline model is calculated and presented 

graphically in Fig. A-1. 

 

Recalling the mathematical expression for the Hyperbolic (HYP) (Eq. A-6) and Modify Hyperbolic (MH) 

(Eq. A-7) decline models we have, 
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Where: 

qi = initial flowrate, 

Di = initial nominal decline rate, 

b = decline exponent, 

 

and, for the MH decline model, 
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Using appropriate dimensionless variables for rate and time (Eq. A-10 and Eq. A-11), we can represent the 

HYP and MH decline models in dimensionless terms, mathematically presented in Eq. A-12 and Eq.A-13, 

respectively, to give, 
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where, for the dimensionless MH decline model, 

 

ilimDlim DDD /= , ............................................................................................................................ (A-14) 
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A graphical representation of the dimensionless decline models offered in this section is presented in Fig. 

A-2, including the dimensionless exponential decline mode. 

 

Our goal is to approximate the dimensionless HYP, MH, and PLE decline models with a sum-of-exponential 

function as presented in Eq. A-17. 
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]exp[)(
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The sum allows an infinite number of terms but for our purposes, we develop an 8-term sum.  With this 

consideration, Eq. A-17 becomes, 
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Recalling the mathematical expressions for the loss ratio, D(t), and the loss ratio derivative, b(t), we have, 
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and, 
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We transform D(t), and b(t) (Eq. A-19 and Eq. A-20) to a dimensionless form to have, 
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and, 
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Where, 

n
DD DtDtD /1/)()( =  
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)()( tbtb DD =  

 

Now we compute the specific mathematical expressions for DD(tD), and bD(tD) substituting qD(tD) with a 

prescribed decline model.  For the dimensionless HYP decline model we have, 
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For the dimensionless MH decline model we get, 
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For the dimensionless PLE decline model we have, 
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Additionally, if we replace the 8-term sum-of-exponentials function approximation as a prescribed decline 

model we get, 
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The results for the sum-of-exponentials function approximations are presented graphically in Fig. A-3 for 

the HYP model (b = 0.5), Fig. A-4 for the MH model (b = 0.5, and DDlim = 0.3), and in Figs. A-5 through 

A-9 for the PLE model (n = 0.10, 0.25, 0.50, 0.75, and 0.90).  The regression coefficients a, and c for each 

of the dimensionless decline models used in the analyses, are presented in Tables A-1 and A-2.  The 
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goodness of fit is quantified using statistical analysis including the calculation of the coefficient of 

determination (R2), the root-mean-squared error (RMSE), and the mean absolute percentage error (MAPE).  

Table A-3 presents the values of these parameters for the cases analyzed. 

 

 

 

 

Table A-1 — Sum-of-exponentials function approximation regression coefficients a, 

and c for the dimensionless power-law exponential model — all time 

exponent (n) values. 
 

  n = 0.10  n = 0.25 

i  a-coefficient  c-coefficient  a-coefficient  c-coefficient 

1  9.841353×10-2  6.573365×105  1.097850×10-1  1.334994×104 

2  1.098894×10-1  6.641112×103  1.999069×10-1  1.074632×102 

3  1.094840×10-1  1.534101×102  2.542623×10-1  3.632678×100 

4  1.087172×10-1  6.528884×100  2.214290×10-1  2.694054×10-1 

5  1.068735×10-1  3.399521×10-1  1.297597×10-1  3.377798×10-2 

6  9.472461×10-2  2.063725×10-2  4.808604×10-2  6.032813×10-3 

7  7.859471×10-2  1.476507×10-3  1.067426×10-2  1.390193×10-3 

8  1.229141×10-1  4.626721×10-5  1.188956×10-3  3.404229×10-4 
 

  n = 0.50  n = 0.75 

i  a-coefficient  c-coefficient  a-coefficient  c-coefficient 

1  1.200419×10-1  8.605042×101  1.418404×10-1  9.964773×100 

2  2.752668×10-1  4.684082×100  4.217645×10-1  1.315927×100 

3  3.446412×10-1  7.588249×10-1  3.586537×10-1  5.590372×10-1 

4  1.987149×10-1  2.208953×10-1  7.236349×10-2  3.561238×10-1 

5  4.600016×10-2  9.176576×10-2  3.014942×10-3  2.659094×10-1 

6  3.851469×10-3  4.728950×10-2  1.292699×10-5  2.106522×10-1 

7  1.014553×10-4  2.776573×10-2  1.292699×10-8  1.642442×10-1 

8  5.736669×10-7  1.740180×10-2  1.326987×10-12  1.301183×10-1 
 

  n = 0.90   

i  a-coefficient  c-coefficient     

1  2.113351×10-1  2.422184×100     

2  5.461201×10-1  8.984480×10-1     

3  2.275310×10-1  6.831430×10-1     

4  1.398680×10-2  5.952928×10-1     

5  2.462382×10-5  5.312010×10-1     

6  1.246238×10-9  4.721902×10-1     

7  1.246200×10-14  4.204995×10-1     

8  8.000000×10-20  3.700010×10-1     
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Table A-2 — Sum-of-exponentials function approximation regression coefficients a, 

and c for the dimensionless hyperbolic and modify hyperbolic decline 

models. 
 

Dimensionless Hyperbolic Decline Model 

i  a-coefficient  c-coefficient 

1  1.17841×10-2  6.10804×100 

2  6.17862×10-1  1.26462×100 

3  3.30120×10-1  3.53039×10-1 

4  3.73554×10-2  8.99971×10-2 

5  2.68488×10-3  2.24989×10-2 

6  1.73898×10-4  5.64919×10-3 

7  1.13722×10-5  1.42398×10-3 

8  6.63933×10-7  2.94248×10-4 

 

Dimensionless Modify Hyperbolic Decline Model 

i  a-coefficient  c-coefficient 

1  1.22538×10-1  1.50609 

2  2.66159×10-1  1.12335 

3  3.64880×10-1  0.30000 

4  1.96120×10-1  1.32032 

5  4.63397×10-2  2.12372 

6  3.85836×10-3  7.84564 

7  1.01461×10-4  19.9908 

8  5.73667×10-7  79.9997 

 

 

Table A-3 — Goodness of fit parameters for all dimensionless decline models 

approximation by sum-of-exponentials function. 
 

  HYP  MH  

PLE 

(n = 0.10) 
 PLE 

(n = 0.25) 

R2  0.999996  0.999998  0.999637  0.999717 

RMSE  0.818375  0.000838  0.006587  0.009032 

MAPE  0.001301  0.119020  0.969736  1.459380 

 
        

 

 

PLE 

(n = 0.50)  

PLE 

(n = 0.75)  

PLE 

(n = 0.90)   

R2  0.999933  0.999963  0.999971   
RMSE  0.004784  0.003251  0.002917   
MAPE  0.801292  0.419920  0.350549   
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Figure A-1 — Dimensionless rate functions, various SE/PLE cases. 
 

 

 

 

 
 

Figure A-2 — Dimensionless rate function, various rate-time models (exponential, 

hyperbolic, modified-hyperbolic, and power-law exponential).  
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Figure A-3a — Dimensionless rate functions for the sum-of-exponentials approximation 

for the hyperbolic decline model. 
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Figure A-3b — Coefficient values for the sum-of-exponentials approximation for the 

hyperbolic decline model. 
 

 

 

 

 

 

 
 

Figure A-3c — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the hyperbolic decline case. 
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Figure A-4a — Dimensionless rate functions for the sum-of-exponentials approximation 

for the modified hyperbolic decline model.  



53 

 
 

Figure A-4b — Coefficient values for the sum-of-exponentials approximation for the 

modified hyperbolic decline model. 
 

 

 

 

 

 
 

Figure A-4c — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the modified hyperbolic decline case.  
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Figure A-5a — Dimensionless rate functions for the sum-of-exponentials approximation 

for the n = 0.10 SE/PLE case. 
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Figure A-5b — Coefficients ai and ci values for the sum-of-exponentials approximation 

for the n = 10 SE/PLE case. 
 

 

 

 

 

 
 

Figure A-5c — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the n = 0.10 SE/PLE case.  
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Figure A-6a — Dimensionless rate functions for the sum-of-exponentials approximation 

for the n = 0.25 SE/PLE case. 
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Figure A-6b — Coefficients ai and ci values for the sum-of-exponentials approximation 

for the n = 25 SE/PLE case. 
 

 

 

 

 

 
 

Figure A-6c — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the n = 0.25 SE/PLE case.  
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Figure A-7a — Dimensionless rate functions for the sum-of-exponentials approximation 

for the n = 0.50 SE/PLE case.  
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Figure A-7b — Coefficients ai and ci values for the sum-of-exponentials approximation 

for the n = 50 SE/PLE case. 
 

 

 

 

 

 
 

Figure A-7c — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the n = 0.50 SE/PLE case.  
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Figure A-8a — Dimensionless rate functions for the sum-of-exponentials approximation 

for the n = 0.75 SE/PLE case.  
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Figure A-8b — Coefficients ai and ci values for the sum-of-exponentials approximation 

for the n = 75 SE/PLE case. 
 

 

 

 

 

 
 

Figure A-8c — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the n = 0.75 SE/PLE case.  
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Figure A-9a — Dimensionless rate functions for the sum-of-exponentials approximation 

for the n = 0.90 SE/PLE case.  
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Figure A-9b — Coefficients ai and ci values for the sum-of-exponentials approximation 

for the n = 90 SE/PLE case. 
 

 

 

 

 

 

Figure A-9c — Arps DD(tD) and bD(tD) functions for the sum-of-exponentials 

approximation for the n = 0.90 SE/PLE case.  
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APPENDIX B 

LAPLACE TRANSFORM OF THE DIMENSIONLESS STRETCHED 

EXPONENTIAL/POWER-LAW EXPONENTIAL DECLINE MODEL WITH n = 0.50 
 

Recalling the expression for the dimensionless stretched exponential/power-law exponential (SE/PLE) 

decline model we have, 

 

]exp[)( n
DtDtDq −= , .......................................................................................................................... (B-1) 

 

where n is the time exponent.  For this specific case, we make n = 0.50 or 1/2; therefore, we get, 

 

]2/1exp[)( DtDtDq −=  ......................................................................................................................... (B-2) 

 

From Laplace transform tables (Oberhettinger and Badii, 1973, Tables of Laplace Transform) we found that 

for the function, 

 

]2/1exp[)( attf −= , ....................................................................................................................... (B-3) 

 

the Laplace transform is, 
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where Erfc is the complementary error function, defined as, 
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Using Eq. B-4, and making a = 1, we get the Laplace transform for the dimensionless SE/PLE decline model 

for the case n = 0.50 as follows, 
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We compute Eq. B-6 for a logarithmic time range and the results are presented graphically in Fig. B-1.  We 

use the "convolution" integral in Laplace domain to obtain the "constant rate" pressure response from the 

dimensionless SE/PLE time-rate model.  Recalling the convolution integral in Laplace domain we have, 
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Therefore, replacing Eq. B-6 into Eq. B-7 we get a dimensionless pressure expression in Laplace domain 

as, 
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We compute Eq. B-8 for a logarithmic time range and the results are presented graphically in Fig. B-2.  

Since there is no direct Laplace transform of Eq. B-8, we use a numerical inversion algorithm to obtain the 

pressure response in real time.  We select the traditional Stehfest algorithm for this section of the work; for 

completeness, we compute the well test pressure derivative as well.  These results are presented graphically 

in Fig. B-3. 

 

By observation of Fig. B-1, it seems noticeable that the trend of the dimensionless SE/PLE rate in Laplace 

domain may be approximated with a hyperbolic function to simplify the mathematical form of Eq. B-6.  

Therefore, an expression with regression coefficients is used to make such approximation, as follows, 
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where a1, a2 and a3 are the regression coefficients used to match the exact rate-time solution.  Performing a 

regression analysis, we obtain the approximation as is presented graphically in Fig. B-4.  The coefficient 

values for the best fit are: a1 = 1.99995, a2 = 2.194587, and a3 = 1.005188.  Furthermore, we obtain the 

dimensionless "constant rate" pressure approximation by substituting Eq. B-9 into Eq. B-7, giving, 
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We compare the results of the dimensionless pressure approximation with the exact pressure solution as can 

be observed graphically in Fig. B-5.  We are able to compute the real time dimensionless pressure response 

from Eq. B-10 since there is a direct inverse Laplace transform expression for this functional form, to give, 
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which was computed using Wolfram Mathematica.  For completeness, we compute the well test pressure 
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derivative from Eq. B-11.  The mathematical expression is given by, 
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In Eq. B-11 and Eq. B-12, Γ(s) is the gamma function and Γ(s,x) is the upper incomplete gamma function.  

The results computed from the pressure and pressure derivative approximations can be observed in Fig. B-

6. 

 

As an additional test, we developed a rational polynomial expression to match the dimensionless SE/PLE 

flowrate trend, observed in Fig. B-1, in the form of, 
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where b1, b2, b3, and b4, are regression coefficients.  Performing the regression analysis, we found that the 

values of these coefficients are: b1 = 2.0, b2 = 0.893318, b3 = 4.758922, and b4 = 0.894517.  The results are 

presented graphically in Fig. B-7.  As with the hyperbolic function approximation, we obtain the functional 

forms of the pressure in Laplace domain (Eq. B-14) and in real time (Eq. B-15) (there is a direct Laplace 

inversion expression), and for completeness the well test pressure derivative (Eq. B-16) is calculated.  These 

mathematical expressions are presented below: 
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The pressure results from the rational polynomial approximation are presented graphically in Fig. B-8 and 

Fig. B-9. 
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Figure B-1 — Dimensionless SE/PLE decline model (n = 0.50) in Laplace domain. 
 

 

 

 

 
 

Figure B-2 — Dimensionless "constant rate" pressure from the dimensionless SE/PLE 

decline model (n = 0.50) in Laplace domain.  
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Figure B-3 — Dimensionless pressure and pressure derivative from the dimensionless 

SE/PLE decline model (n = 0.5) – numerical Laplace inversion using 

Stehfest algorithm. 
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Figure B-4 — Dimensionless SE/PLE decline model (n = 0.50) in Laplace Domain and 

approximation by hyperbolic function. 
 

 

 

 
 

Figure B-5 — Dimensionless "constant rate" pressure from the SE/PLE decline model 

(n = 0.50) in Laplace domain and approximation by hyperbolic function. 
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Figure B-6 — Dimensionless pressure and pressure derivative in real domain from the 

SE/PLE decline model (n = 0.5) and approximation by hyperbolic 

function. 
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Figure B-7 — Dimensionless SE/PLE decline model (n = 0.50) in Laplace Domain and 

approximation by rational polynomial function. 
 

 

 

 

 
 

Figure B-8 — Dimensionless "constant rate" pressure from the SE/PLE decline model 

(n = 0.50) in Laplace domain and approximation by rational polynomial 

function.  
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Figure B-9 — Dimensionless pressure and pressure derivative in real domain from the 

SE/PLE decline model (n = 0.5) and approximation by rational 

polynomial function. 
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APPENDIX C 

DIMENSIONLESS POWER-LAW EXPONENTIAL DECLINE MODEL IN 

LAPLACE DOMAIN APPROXIMATIONS 
 

Recalling the dimensionless form of the Stretched Exponential/Power Law Exponential (SE/PLE) decline 

model — presented in appendix A — we have: 

 

]exp[)( n
DDD ttq −=  .......................................................................................................................... (C-1) 

 

There is no direct Laplace transform of Eq. C-1 (i.e., for a general value of the time exponent, n) — except 

for very specific cases (e.g., n = 1/2 or 1).  To develop a comprehensive understanding of the behavior of 

Eq. C-1 in the Laplace domain, we will test three different numerical approaches in order to find an 

approximation in Laplace domain: 

 

● Approximate the SE/PLE relation by Taylor series expansion, and then take this approximating 

function directly into the Laplace domain. 

● Use the Laguerre quadrature formulation to transform a general function into the Laplace domain. 

● Use methodology proposed by Blasingame (1995) to determine the Laplace transform of a piecewise 

power-law function. 

 

Taylor Series Expansion Approach: 

Recalling the Taylor series expansion of a real function f(x) about a point x = a, we have: 
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Recalling the dimensionless SE/PLE decline model and making a variable of substitution, y = –tD
n, we get: 
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Replacing the real function in Eq. C-3 with Eq. C-4, and making a = 0 gives: 
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Replacing the variable of substation y = –tD
n into Eq. C-5 we get the Taylor series expansion approximation 



74 

of the dimensionless SE/PLE decline model as follows: 
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Figure C-1 — Dimensionless SE/PLE decline model in Laplace domain for various 

time exponent values, n, by Taylor series expansion approximation. 
 

 

 

From Laplace transform tables (Oberhettinger and Badii, 1973, Tables of Laplace Transform) we found that 

for the function: 
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the Laplace transform is, 
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where Γ(v+1) is the gamma function, defined as, 
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By inspection of Eq. C-6 and Eq. C-7, we identify that vtn
Dt ≡ .  Therefore, using Eq. C-8 we get the 

Laplace transform for the dimensionless SE/PLE by Taylor series approximation, as follows: 
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The results obtained from Eq. C-10 — for different SE/PLE time exponent values, n — are presented 

graphically in Fig. C-1.  We observed failed trends that can be attributed to numerical instability at small 

values of dimensionless time. 

 

Laguerre Quadrature Approach: 

Recalling the definition of the Laplace transform we have: 
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We use a variable of substitution x = ut, and we know that dx = udt.  Reviewing the limits of Eq. C-11 as 

well as our variable of substitution we get that t = x/u and dt = dx/u, and that at t = 0, x = 0, and at t = ∞, x = 

∞.  These changes yields: 
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which is of the form, 
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xeuxfxg −= )/()(  ............................................................................................................................ (C-14) 

 

From the Laguerre quadrature definition we have: 
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where xi , the abscissa, is the ith zero of the Laguerre polynomials, Lm(x),and the wi are the weights.  The 

Laguerre polynomials are given by the sum: 

 

∑
=








−=
m

k

k
k

m x
k

m

k
xL

0
!

)1(
)( , ............................................................................................................. (C-16) 

 

and the weights, 
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Combining Eq. C-13 and Eq. C-15 we get, 
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Eq. C-18 is a completely general relation for taking the Laplace transform of a function f(u).  Recalling the 

dimensionless SE/PLE decline model we have: 
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Replacing Eq. C-1 into Eq. C-18 and changing the equation to our working variables yields: 
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Where n is the time exponent from the SE/PLE model and m is the quadrature order of the abscissas.  We 

compute Eq. C-19 for various time exponent values.  The weights, wi, and roots, xi, of the Laguerre 

polynomials are calculated for a quadrature order of m = 1000.  The results are presented graphically in Fig. 

C-2.  We observed failed trends that can be attributed to numerical instability at small values of 

dimensionless time. 

 

Blasingame Method Approach: 
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The first step is to take the Laplace transform of data points as a piecewise power-law continuous function.  

A schematic plot for this approach is shown in Fig. C-3.  The Laplace transform of a piecewise data function 

is given by: 
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where the continuous data function, fi(t), is as follows: 
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Figure C-2 — Dimensionless SE/PLE decline model in Laplace domain for various 

time exponent values, n, by Laguerre quadrature approximation. 
 

 

 

Considering an arbitrary partition, ti-1 < t < ti, and combining Eqs. C-20 and C-21 we have: 
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Considering the limits in Eq. C-22, as well as an arbitrary integrand, i(t), we can write: 
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The integrals in Eq. C-23 can be replaced analytically.  From Gradshteyn and Ryzhik (2014. Table of 

integrals, series, and products.  Saint Louis, US: Academic Press.), we have: 
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Which for our variables, Eq. C-24 through Eq. C-26 become: 
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Substituting Eq. C-27 through Eq. C-29 into Eq. C-23 we get: 
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Substituting Eq. C-30 into Eq. C-22 we have: 
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where: 
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Substituting Eq. C-34 into Eq. C-31 we have, 
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Figure C-3 — Schematic plot of a piecewise power-law data function used for 

Blasingame method numerical Laplace transform. 
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Presenting the first two and last two terms using Eq. C-35 yields: 
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For the last partition, tk ≡ ∞, and recalling the definition of the upper incomplete gamma function, Γ(a,x) = 

Γ(a) – γ(a,x), we consider x = ∞; hence, Γ(a,∞) = Γ(a) – γ(a,∞).  But, Γ(a,∞) = 0; therefore, Eq. C-39 

becomes: 
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Substituting Eq. C-36, Eq. C-37, and Eq. C-40, into Eq. C-20, we have the resulting Laplace transform 

function as follows: 
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or, 
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From the continuous data function—in terms of our working variables: dimensionless time, tD, and 

dimensionless rate, qD, from the SE/PLE decline model data points — we compute the values of αi and vi 

using Eq. C-21 with two contiguous data points as follows, 

 

1)( −= iv
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Solving Eq. C-43 and C-44 we find that: 
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The values of αi are computed from Eq. C-43.  We compute the numerical Laplace transform function — in 

the form of Eq. C-42 as follows: 
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The results obtained from Eq. C-46 — for different time exponent, n, values — are presented graphically in 

Fig. C-4. 
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Figure C-4 — Dimensionless SE/PLE decline model in Laplace domain for various 

time exponent values, n, by Blasingame method approximation. 
 

 

 

"Constant rate" pressure and pressure derivative from SE/PLE in Laplace domain (Blasingame method): 

Recalling the Laplace domain "convolution" mathematical expression, we have: 
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where qDcp(u) is the dimensionless flowrate in Laplace domain from a constant pressure solution and pDcr(u) 

is the dimensionless pressure in Laplace domain from a constant rate solution.  We attempt to resolve the 

dimensionless SE/PLE decline model in Laplace domain; therefore, we replace Eq. C-46 into the 

"convolution" integral in Laplace domain (Eq. C-47) to obtain the following expression: 
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Using Eq. C-48, we compute the "constant rate" pressure from the dimensionless SE/PLE decline model in 

Laplace domain approximation for different time exponent values, n, (i.e.: 0.10, 0.15, 0.20, 0.25, 0.35, 0.50, 

0.75, and 0.90).  These results are presented graphically in Fig. C-5. 

 

To find the dimensionless pressure in real time domain, we use a numerical Laplace inversion algorithm 

because of the complexity and inability to invert analytically Eq. C-48.  We choose the traditional Stehfest 

algorithm for the numerical Laplace inversion with 12 extrapolation coefficients, mathematically expressed 

as: 
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where Vi are the Stehfest extrapolation coefficients given by: 
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These results are presented graphically in Fig. C-6.  Additionally, it is possible to compute numerically the 

semi-log pressure derivative knowing that )}0()({)(' 1 =−= − tfuufLtf and dttdptddp /ln/ = ; therefore, 
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These results are presented graphically in Fig. C-7. 
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Figure C-5 — Dimensionless SE/PLE decline model "constant rate" pressure in 

Laplace domain for various time exponent values. 
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Figure C-6 — Dimensionless "constant rate" pressure from SE/PLE decline model for 

various time exponent values. 
 

 

 

 
 

Figure C-7 — Dimensionless "constant rate" pressure derivative from SE/PLE decline 

model for various time exponent values. 
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APPENDIX D 

VALIDATION OF TIME-RATE FLOW RELATIONS ASSUMING 

PSEUDOSTEADY-STATE FLOW BEHAVIOR: EXPONENTIAL, HYPERBOLIC, 

AND STRETCHED EXPONENTIAL/POWER-LAW EXPONENTIAL CASES 
 

Constant pwf Liquid Case (Exponential Decline): 

The oil material balance relation is given as, 

 

pNpssomipp  ,−= , ............................................................................................................................. (D-1) 

 

where the material balance coefficient is, 
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1
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The oil pseudosteady-state flow relation is given as, 

 

oqpssobwfpp  ,+= , ............................................................................................................................ (D-3) 

 

where the pseudosteady-state flow coefficient is, 
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Taking the derivative of the oil material balance relation (Eq. D-1) with respect to time yields, 
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where we note that, 
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and, 
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which reduces to the following form, 
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Similarly, taking the derivative of the oil pseudosteady-state relation (Eq. D-3) with respect to time, we 

have, 
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Substituting Eq. D-5 into Eq. D-6, yields, 
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Rearranging, we obtain, 
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and for completeness, we can also solve Eq. D-7 for the dpwf /dt term, 
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As an aside, setting Eq. D-1 and Eq. D-3 equal, we have, 

 

pNpssoopssowfi mqbppp  , ,)( +=−=∆  ........................................................................................ (D-9) 

 

In addition, if we divide through Eq. D-9 by the flowrate (qo), we obtain the identity, 
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where the form given by Eq. D-10 is the defining relationship for variable-rate, variable pressure drop 

production data analysis.  In addition, solving Eq. D-9 for the flowing bottomhole pressure, pwf, gives us, 

 

pNpssomoqpssobipwfp  , , −−=  ...................................................................................................... (D-11) 

 

At this point, we return to our effort to derive a time-rate relation using Eq. D-8.  To proceed, we must make 

an assumption regarding the behavior of pwf (or more specifically dpwf /dt) — in this case, we specifically 

assume that pwf = constant (i.e., dpwf /dt = 0).  Making this assumption, Eq. D-8 reduces to, 

 

0 , , =−− oqpssom
td
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Rearranging (i.e., moving the constant terms to the right-hand-side), we have, 
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Considering the form given by Eq. D-13, we make the following definition for convenience, 
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Substituting Eq. D-14 into Eq. D-13 yields, 
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Multiplying through Eq. D-15 by the dt term yields our final form of the first order ordinary differential 

equation for time-rate behavior, which is given as, 
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Eq. D-16 can be solved by direct integration as follows, 
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Completing the integration in Eq. D-17, we have, 
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Exponentiating both sides of Eq. D-18 and rearranging terms, we obtain the final form of the "exponential" 

decline relation, 
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At this point, we have demonstrated the process of deriving the exponential decline relation (i.e., Eq. D-19) 

from basic principles.  As bit of housekeeping, we need to define the "initial rate" (i.e., the qoi parameter).  

To begin, we recall Eq. D-3, 

 

oqpssobwfpp  ,+= , ............................................................................................................................ (D-3) 

 

and we note that at t = 0, ipp =  — hence, qo = qoi.  Making these substitutions in Eq. D-3 yields the 

following result, 
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oipssowfi qbpp  ,+=  

 

Solving for the qoi parameter, we obtain, 
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At this point, we have clearly established the identity for qoi.  As an alternate form of Eq. D-20, we solve for 

pi – pwf, which yields, 

 

oiqpssobwfpip  ,)( =−  ....................................................................................................................... (D-21) 

 

We will now proceed to use this result in the defining relations to ensure that we have not violated any 

mathematics in creating Eq. D-19 — specifically, we will "test" Eq. D-19 in the governing relations that we 

used to define Eq. D-19 to ensure that this form is correct.  Taking the derivative of Eq. D-19, we have: 
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Recalling Eq. D-8, 
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Substituting Eq. D-22 into Eq. D-8, we have, 
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Substituting Eq. D-14 into Eq. D-23, we have our first validation of Eq. D-19 (i.e., dpwf /dt = 0) 
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Taking the integral of Eq. D-19, we have, 
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Recalling Eq. D-9 for our next validation, 

 

pNpssomoqpssobwfpipp  , ,)( +=−=∆  ............................................................................................. (D-9) 

 

Substituting Eq. D-25 and Eq. D-14 into Eq. D-9 yields, 
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Substitution of Eq. D-21 into Eq. D-26, we have, 

 

)()( wfpipwfpip −=−  

 

or, 

 

wfpwfp =  ........................................................................................................................................ (D-27) 

 

While trivial, Eq. D-27 does confirm the validity of Eq. D-19. 

 

Before proceeding to other time-rate relations, we need to establish a strategy for how to "prove" a given 

time-rate relation that is not derived from fundamental principles (e.g., the power-law exponential decline 

model).  The obvious test would be to compute the flowing bottomhole pressure (pwf) using Eq. D-11 and 

compare this to the pressures from observed field data or from a simulation generated using a prescribed 

reservoir model.  For reference, Eq. D-11 is given by, 

 

pNpssomoqpssobipwfp  , , −−=  ...................................................................................................... (D-11) 

 

For the case of constant flowing bottomhole pressure (i.e., pwf = constant), Eq. D-11 has been proven (see 

above) to yield " pwf = pwf" which, while trivial, does validate that case.  For cases other than the constant 

flowing bottomhole pressure, Eq. D-11 could be used (with the appropriate substitutions of the prescribed 

qo and Np from time-rate models) as a regression relation to validate the input time-rate model.  Such a 

"proof" would be somewhat disingenuous given that one would just be proving that the input rate matches 
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the concepts of pseudosteady-state flow, but this could be one approach to proving the consistency of a 

given time-rate model. 

 

Another "proof" could be to use the prescribed time-rate model (actually the time-cumulative form of a 

prescribed time-rate model) in the material balance equation (i.e., Eq. D-1) to compare model performance 

and reservoir simulation results.  Again, this would be slightly weak as a "proof" of a given model, but it 

could be used to prove consistency.  Recalling Eq. D-1, we have, 

 

pNpssomipp  ,−=  .............................................................................................................................. (D-1) 

 

For the constant pressure case, we can substitute the appropriate form of Eq. D-25 into Eq. D-1 to obtain, 
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Substituting Eq. D-14 into Eq. D-28, yields, 
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Where the known form for pssooi bq ,  is given by Eq. D-21.  Substituting Eq. D-21 into Eq. D-29 gives us, 

 

]] exp[1[ )( tiDwfpipipp −−−−=  ...................................................................................................... (D-30) 

 

Continuing to reduce terms in Eq. D-30 leads to, 

 

] exp[)( tiDwfpipwfpp −−+=  ........................................................................................................ (D-31) 

 

where it can be noted that Eq. D-31 is the result that one would obtain by directly solving this particular case 

starting with the pseudosteady-state flow equation (i.e., Eq. D-3). 

 

As noted above, our approach is to solve for the pwf form for pseudosteady-state flow (i.e., Eq. D-11), so 

that the model can be compared against measured or simulated well performance data. 

 

Hyperbolic Time-Rate Model 

The hyperbolic time-rate model, derived from empirical observations, is given by, 
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The starting point for this development is to establish the cumulative production form for Eq. D-32.  Taking 

the integral of Eq. D-32, we have, 
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Recalling Eq. D-11, we have, 

 

pNpssomoqpssobipwfp  , , −−=  ...................................................................................................... (D-11) 

 

Substituting Eq. D-32 and Eq. D-33 into Eq. D-11 gives us, 
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Reforming Eq. D-34 into a regression relation (i.e., assigning arbitrary parameters for the model 

coefficients), we obtain, 
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where in Eq. D-35 the parameters a1, a2, a3, a4, and a5 are arbitrary coefficients, to be determined by 

regression.  Recalling the oil pseudosteady-state flow relation, 

 

oqpssobwfpp  ,+=  ............................................................................................................................. (D-3) 

 

Solving for )( wfpp − we have, 

 

oqpssobwfpp  ,)( =−  .......................................................................................................................... (D-36) 

 

Substituting the hyperbolic time-rate relation, gives, 

 

btibDoiqpssobwfpp /1]1[ ,)( −+=−  .................................................................................................. (D-37) 

 

Reforming Eq. D-37 into a regression relation (i.e., assigning arbitrary parameters for the model coefficients) 

we obtain, 
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m
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where in Eq. D-38 the parameters m1, m2, and m3 are arbitrary coefficients, to be determined by regression. 
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Power-Law Exponential Time-Rate Model 

The power-law exponential time-rate model, derived from empirical observations, is given by, 

 

]ˆexp[ˆ)( tDntiDoiqtoq ∞−−=  ............................................................................................................... (D-39) 

 

The specific "objective" of this effort will be to establish the functional form of pwf(t) such that this form 

satisfies the power-law exponential time-rate model (i.e., Eq. D-39).  Recall that for the exponential decline 

case, the specific form of pwf(t) required to satisfy the relation, 
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It is worth noting at this point that the oil material balance relation (Eq. D-1) and the oil pseudosteady-state 

flow relation (Eq. D-3) are rigorous — that is, these relations are not where we propose any empiricism — 

our objective will be to "reverse engineer" the functional form of pwf(t) using Eq. D-11 (which is rigorous 

for pseudosteady-state flow behavior), coupled mathematically with the power-law exponential time-rate 

model (Eq. D-39). 

 

The starting point for this development is to establish the cumulative production form for Eq. D-39.  Taking 

the integral of Eq. D-39, we have (we must assume 0=∞D as the integral for the case where 0≠∞D does 

not exist), 
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Recalling Eq. D-11, we have, 

 

pNpssomoqpssobipwfp  , , −−=  ...................................................................................................... (D-11) 

 

Substituting Eq. D-39 and Eq. D-41 into Eq. D-11 (assuming 0=∞D ) gives us, 
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Reforming Eq. D-42 into a regression relation (i.e., assigning arbitrary parameters for the model 

coefficients), we obtain, 
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where in Eq. D-43 the parameters c1, c2, c3, c4, and c5 are arbitrary coefficients, to be determined by 

regression. 

 

Recalling the oil pseudosteady-state flow relation, 

 

oqpssobwfpp  ,+=  ............................................................................................................................. (D-3) 

 

Recalling the solution for )( wfpp − we have, 

 

oqpssobwfpp  ,)( =−  .......................................................................................................................... (D-36) 

 

Substituting the power-law exponential time-rate relation gives, 

 

]ˆexp[ˆ ,)( tDntiDoiqpssobwfpp ∞−−=−  ............................................................................................. (D-44) 

 

Reforming Eq. D-44 into a regression relation (i.e., assigning arbitrary parameters for the model 

coefficients), we obtain, 
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Where in Eq. D-45 the parameters d1, d2, d3, and d4 are arbitrary coefficients, to be determined by regression 

— coefficient d4 (i.e., ∞D ) can be assumed to be zero. 


