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ABSTRACT

Conformal field theories (CFTs) play central roles in modern theoretical physics. Many

CFTs are strongly coupled and cannot be studied using perturbative method. Conformal

bootstrap provides a non-perturbative approach to study CFTs, which only employs the

crossing symmetry and unitarity while not depending on classical Lagrangian description.

This method has been successfully applied to solve the 3D Ising model and O(N) vector

model. In this thesis, the conformal bootstrap approach will be applied to study the 5D

O(N) vector model and 4D N = 1 supersymmetric conformal field theories (SCFT).

For the 5D O(N) vector model, we bootstrap the mixed four-point correlators of the

leading O(N) vector ϕi and the O(N) singlet σ. By imposing mild gaps in the spectra, we

are able to isolate the scaling dimensions (∆ϕ, ∆σ) in a small island for large N = 500,

which is highly consistent with the results obtained from large N expansion. For smaller

N 6 100, the islands disappear after increasing Λ which suggests a lower bound on the

critical value Nc > 100, below which the interacting O(N) CFTs turn into nonunitary.

To bootstrap SCFTs, it needs analytical expression of the superconformal block func-

tion, which is the summation of several conformal block functions with coefficients de-

termined by supersymmetry. We have calculated the most general 4D N = 1 super-

conformal block function of scalar operators based on the supershadow approach and

superembedding formalism. In superembedding space the 4D N = 1 superconformal

transformation T ∈ SU(2, 2|1) is realized linearly and the superconformal covariant

three-point correlator functions can be constructed directly. Based on these results, the

minimal SCFT with lowest c central charge among all the known 4D N = 1 SCFTs has

been studied through bootstrapping the mixed correlators of the chiral operator Φ and the

ii



operator X ∼ ΦΦ†. The scaling dimensions (∆Φ,∆X) have been isolated into a small

island! The results further confirm the existence of the promising minimal SCFT and

reveal several interesting properties of this theory.
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NOMENCLATURE

AdS Anti de Sitter

CB Conformal block

CFT Conformal field theory

CPW Conformal partial wave

IR Infrared

OPE Operator product expansion

QED Quantum electrodynamics
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Conformal field theories (CFTs) play crucial roles in modern theoretical physics. They

can be used to describe various kinds of phenomena in nature, from the vaporization of

water to the physical processes occurring near the horizon of a black hole. In quantum

field theory (QFT), the evolution of the theory from Ultraviolet (UV) region to Infrared

(IR) region is described by the renormalization group (RG) flow. For a large variety of

QFTs, the RG flows of the coupling constants (beta functions) vanish at the fixed points in

the IR, and the theories become scale invariant. The scale invariant symmetry of the theory

is believed to be enhanced to conformal symmetry. At the IR fixed point, the theory could

be rather different from its UV description given by the Lagrangian. In fact different UV

Lagrangians (but with the same global symmetry) can lead to the same theory at the fixed

point! Such a phenomenon is known as a duality between the Lagrangian theories, and

the “common" fixed point is described as a critical universality. The “universality" classes

unify the core contents in almost all the major directions of physics, such as statistical

physics, condensed matter physics, particle physics, and quantum gravity.

When the QFT is weakly coupled, the RG flow can be evaluated perturbatively. The

fixed point is obtained by solving the equation of vanishing beta function β(λ) = 0.

The solutions can be expanded to higher orders from which we can get better and better

understanding on the critical universality. However, for many interesting QFTs the fixed

points are of strongly coupled. A well-known example is the 3D Ising model with UV

Lagrangian

S =

∫
ddx[

(∂ϕ)2

2
+
gϕ4

4
], (1.1)
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In dimension d = 4− ϵ the one-loop beta function reads

β(λ) = −ϵλ+
9

8π2
λ2. (1.2)

Set β(λ) = 0, the coupling constant g at the fixed point can be solved at the first order

g∗ = 8π2

9
ϵ. Take ϵ = 1, this formula gives a large coupling coefficient g∗ > 1 for 3D

Ising model. Since the theory is strongly coupled one cannot expand the loop corrections

in terms of gn. This theory has been effectively studied in D = 4− ϵ using the ϵ expansion

approach and finally taking ϵ = 1. However, it is questionable if the ϵ expansion remains

valid when ϵ ∼ O(1).

The RG flow approach is considered to be non-essential to study CFTs due to the rea-

son that the conformal symmetry is not directly evolved in the analysis. The perturbative

approach cannot get access to the theories with strong couplings. Moreover, it requires a

classical Lagrangian description of the theory in the UV side, while as we know now there

are lots of interesting CFTs without the UV Lagrangian description. Therefore a more

fundamental approach based on conformal symmetry is needed to completely classify the

CFT landscape. Conformal bootstrap provides a promising non-perturbative approach

on this purpose. Conformal bootstrap was first proposed in [2] which aims to solve the

conformal field theories based on the conformal symmetry even without the knowledge

of Lagrangian. It leads to remarkable success in 2D in solving the rational CFTs [4]. In

2D the global conformal symmetry enlarges to Virasoro symmetry which is of infinite

dimension and makes the theory solvable. However, in higher dimensional spacetime

D > 2, there is no such symmetry enhancement and one cannot directly reproduce the

success on rational CFTs in higher dimensions. In consequence, this non-perturbative

approach did not attract much attention until the breakthrough work [5].
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The modern conformal bootstrap, initiated from [5], only employs consistent condi-

tions on unitarity and crossing symmetry. Crossing symmetry requires the four-point

correlator is invariant when evaluated in different channels, which also relates to the

associativity of conformal operator algebra. Surprisingly, it has been shown that these

simple constraints can generate highly non-trivial bounds on the CFT data, including

operator scaling dimensions and OPE coefficients. Following this discovery, conformal

bootstrap has been revived in the past years and there are lots of exciting developments

in these directions. Specifically, we have the following interesting directions in which the

modern conformal bootstrap plays a key role:

• Classify CFT landscape Classification of CFTs has been partially successful

in 2D [4], and due to the developments in past years, it is possible to classify

CFTs in higher dimensions as well. According to the modern numerical conformal

bootstrap, it only needs to specify the global symmetry of the theory as well as the

mild assumptions on the gap of scaling dimensions between the first few operators

to isolate CFTs in the parameter space. The 3D Ising model and O(N) vector

model have been isolated in small and closed regions using numerical conformal

bootstrap, which give the most precise results on the CFT data up to now [46, 58].

Similar studies based on conformal bootstrap has also been fulfilled on the 5D O(N)

vector model with cubic couplings [69]. The fundamental fields in these models

are scalars which admit rather simple four-point functions [24, 25]. They provide

ideal examples to show the feasibility of numerical conformal bootstrap. Besides

the CFTs constructed by scalars, it is known that in 3D, the QED admits IR fixed

points and shows interesting duality webs [7–10]. The 4D QED does not run to the

IR fixed point, instead the IR theory is composed of free particles. However, the 4D

3



Yang-Mills theory does possess IR fixed point in the so-called “conformal window":

Nf0 < Nf <
11

2
Nc, (1.3)

where the Nf0 is the critical value of flavors below which the IR theory has no fixed

point. In principle the numerical conformal bootstrap can also solve these CFTs

although there are more work to do.

• Solve supersymmetric conformal field theories Supersymmetric quantum field

theories possess several interesting properties. Supersymmetry plays an important

role to protect from the quantum loop corrections which makes the supersymmetric

theories perform more elegantly at quantum level. In particular the space of SCFT-

s can be described by geometrical structures which nicely relate to the algebraic

curves or vertex algebra [12]. Similar to the supersymmetric field theories which

are not too difficult to study but sufficiently interesting to learn the properties of

QFTs, SCFT could be an ideal laboratory to learn the CFT classifications based

on conformal bootstrap. Moreover, it has been shown that there are special SCFT

families which have no classical Lagrangian description. These SCFTs are actually

isolated theories in the SCFT landscape! The most famous non-Lagrangian SCFT is

the 6D (2, 0) SCFT. It describes the IR dynamics of a stack of M5 branes, moreover,

this theory plays a key role in several interesting duality phenomena of QFTs in

lower dimensions. Our understanding on this theory is limited to some special

cases with large central charge or supersymmetric-protected quantities. In the large

central charge approximation the theory can be studied through AdS/CFT. Another

interesting example are the 4D TN theories, which perform as fundamental blocks

to construct 4D S-classes [13]. Fortunately conformal bootstrap does not rely on

classical Lagrangian description therefore it becomes the only technique that works

4



to study the general physical quantities. Moreover, it is quite possible that by using

conformal bootstrap, we can obtain certain isolated SCFTs whose existences were

unnoticed since they cannot be accessed by classical Lagrangian description.

For the SCFTs with classical Lagrangian descriptions, usually the coupling is not

uniquely determined at the fixed point, instead, the coupling coefficient can be varied

continuously (4D N = 2, 4 SCFTs) or discretely (3D N = 6 ABJM theory). The

strong-weak duality can help us to solve the theory perturbatively giving the cou-

pling is sufficient strong. Similarly one may also employ the AdS/CFT correspon-

dence, which relates the strongly coupled CFT to the weakly coupled holographic

theory. However, there is a subtle range interpolating from weak coupling to strong

couple, and in this case, the analytically perturbative approach, even with S-duality

does not work properly. Conformal bootstrap therefore becomes the only reliable

approach to evaluate the CFT data in this transition region.

• Analytical structures of CFT The numerical conformal bootstrap itself is a

numerical laboratory to “test" the power of conformal bootstrap. The numerical

conformal bootstrap has lead to remarkable successes in solving CFTs, however,

we actually do not know the analytical reason why this approach is so powerful.

More than providing the best numerical estimation on the CFT data, the numerical

conformal bootstrap results are rather inspiring that they suggest there are hidden

structures/symmetries in CFTs which make the theory solvable. It is a pivotal prob-

lem to understand the analytical reasons beyond the numerical conformal bootstrap.

In the example of 3D Ising model conformal bootstrap, it needs to bootstrap the

mixed four-point correlators of two scalars with opposite Z2 charges, besides, one

needs to apply mild assumptions on the spectrum that there are only two relevant

scalars in the theory. An analytical study is expected to show why it is sufficient

5



to isolate out the 3D Ising model just based on these conditions. Moreover, to

isolate out extra fixed points, what are the new conditions needed in the conformal

bootstrap? Hopefully the analytical studies will explain the sufficient bootstrap

conditions and provide guidance on the specific bootstrap conditions for different

CFTs. Furthermore, our current numerical conformal bootstrap can be significantly

improved by combining with the analytical properties of CFTs.

A first step to study the possible hidden structures/symmetries beyond the numerical

conformal bootstrap is to solve the crossing equation analytically. Crossing equation

is one of the constraints used in conformal bootstrap∗, and its properties are crucial in

conformal bootstrap. By studying the crossing equation analytically one can obtain

some primary but still non-trivial results on the CFT data. For example, by analyzing

the crossing equation in the light-cone coordinates, the authors in [14, 15] have

obtained spectrum and OPE coefficients of operators with large spin. The Wilson-

Fisher fixed point of Ising model in 4 − ϵ dimension spacetime can be reproduced

at the lower orders purely based on the conformal symmetry without calculating the

Feynman diagrams [22]. A thorough study on the crossing equation is expected to

introduce a more complete understanding on the CFTs.

The ultimate object of conformal bootstrap is to provide a mathematically rigorous

definition of CFT by providing the operators and the their algebra. This is the way

used to define 2D rational CFTs with finite-dimensional operator algebra. Currently

it is not sure how to generalize this method to higher dimensions but the successes

of numerical conformal bootstrap strongly suggest this is possible in higher dimen-

sions. Moreover, it is hoped to generalize the conformal bootstrap to general QFTs,

the so-called S-matrix bootstrap [23], which aims to describe and classify general

∗There is another approach developed recently based on Mellin space [16], in which the crossing equation
is replaced by different consistency equations in the bootstrap condition.
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QFTs based on certain consistent conditions independent of the Lagrangian.

Besides the directions proposed above, there are extra interesting directions closely related

to conformal bootstrap, like the S-matrix bootstrap [23] and the projects to understand

quantum gravity emergence from the bootstrap through AdS/CFT correspondence [17,

21]. However, these problems are not directly relevant to my Ph.D. research so they will

not be discussed in this thesis.

In this thesis, we will mainly focus on the first two directions discussed above. Specif-

ically, we will present the bootstrap studies on the generalization of O(N) vector model to

higher dimension D = 5 and the 4D N = 1 minimal SCFT:

1.2 Bootstrapping 5D O(N) Vector Model

The 3D O(N) vector model has been known to play an important role both in con-

densed matter physics and the AdS4/CFT3 correspondence. It is easy to show that the

classical O(N) free scalar theories perturbed by ϕ4 interaction have no stable IR fixed

point in the spacetime D > 4. In [76] a new cubic model with O(N) vector scalars and an

extra singlet scalar has been proposed

L =
1

2
(∂µϕi)

2 +
1

2
(∂µσ)

2 +
g1
2
σϕiϕi +

g2
3!
σ3 (1.4)

where the fields ϕi constructs an O(N) vector representation while σ is an O(N) singlet.

In D = 6 − ϵ spacetime the cubic scalar interactions are relevant and the theory (1.4)

is shown to admit an IR interacting fixed point from Feynman diagram calculations [76].

The fixed point is suggested to be stable and unitary for sufficient largeN > Nc, whereNc

is the critical value below which the theory ceases to be unitary. Such theory can play an

interesting role in the AdS6/CFT5 correspondence. Their studies are based on the pertur-
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bative approaches: ϵ or largeN expansion and the evaluations on the parameters are largely

affected by the higher loop corrections. Studies based on the nonperturbative functional

renormalization group equations lead to different conclusion on this theory. Therefore as

a nonperturbative and Lagrangian-independent approach, the conformal bootstrap can be

used to study the 5D O(N) fixed point and the critical value Nc.

We will show that for sufficient large N = 500, the scaling dimensions of (∆ϕ,∆σ)

can be isolated in a small island using conformal bootstrap, and the results are highly

consistent with those obtained from perturbative approaches, which suggest that the fixed

point for sufficient large N is unitary and physical. For smaller N 6 100, the fixed point

is still obtained in the bootstrap but it is nonunitary, indicating a rather large critical value

Nc > 100.

1.3 Bootstrapping the Minimal 4D N = 1 SCFT

Evidence of the minimal 4D N = 1 SCFT has already been revealed in the study

of four-point correlator ⟨ΦΦ†ΦΦ†⟩ [32, 62]. Here the scalar operator Φ is chiral which

satisfies the shorted condition: Q̄Φ = 0. Results from conformal bootstrap show that

bound of the scaling dimension ∆X has a kink around (∆ϕ,∆X) ≈ (1.41, 3.14). This

phenomenon reminds us the conformal bootstrap of 3D Ising model and O(N) vector

model, in which the sharp kinks appear at where the physical CFTs locate. Thus it is

tempting to guess that the kink around (∆ϕ,∆X) ≈ (1.41, 3.14) indicates a new N = 1

SCFT. This theory is dubbed “minimal" since its c central charge, which indicates the

degree of freedom of the theory is extremely small ≈ 1/9. It is interesting to study the

mixed correlators of this theory. If the minimal SCFT is true, then the scaling dimensions

of the fundamental scalar operator Φ (∆Φ) and the composite operator X appearing in

the OPE of X ∼ ΦΦ† (∆X) can be isolated into a small region, out of which the scaling
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dimensions cannot satisfy the crossing symmetry so are unphysical.

The mixed correlators of chiral operator Φ and real operatorX consist of the following

three correlators

⟨Φ(x1)Φ̄(x2)Φ(x3)Φ̄(x4)⟩, (1.5)

⟨X(x1)X(x2)X(x3)X(x4)⟩, (1.6)

⟨Φ(x1)X(x2)X(x3)Φ̄(x4)⟩. (1.7)

All other four-point correlators vanish due to U(1)R R-symmetry. To bootstrap the mixed

correlators, the crucial ingredients are the conformal blocks of general scalar four-point

function. For the first two four-point correlators, their conformal blocks have been calcu-

lated in [28, 108]. However, the conformal block of the third correlator was not solved until

our work [109]. In which the 4D N = 1 conformal blocks for the most general scalars

have been calculated. These results are expected to be applied in the mixed correlator con-

formal bootstrap in order to obtain the physically allowed isolated regions of the conformal

scaling dimensions (∆Φ,∆X). Interesting results on this minimal SCFT can be obtained

from modified single correlator bootstrap that the potential region of (∆Φ,∆X) is located

at a sharp tip of upper bound of the scaling dimensions. Through bootstrapping above

mixed correlators we do find that more regions are excluded with suitable assumptions

and the sharp tip can form an isolated island! Our results support the very existence of

the minimal SCFT, which has no classical Lagrangian description and can only be studied

through conformal bootstrap.

On the other side, there is no known candidate UV Lagrangian description of the min-

imal SCFT. Alternatively one may guess that such theory can be constructed through geo-

metric approach, for example, the 6D (2, 0) SCFT compactified on certain 2-dimensional
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manifold, like the geometric configurations used to construct 4D N = 2 S-class SCFTs.

We will work on this problem in future.

This thesis is organized as follows. In chapter 2, we discuss the technical details on

numerical conformal bootstrap which can lead to unexpectedly strong constraints on the

CFT data. In chapter 3 the numerical conformal bootstrap will be applied to study the

5D O(N) vector model and estimate the range of the critical value Nc. In chapter 4 we

calculate the superconformal block function of scalar operators in 4D N = 1 SCFTs

using the superembedding formalism and supershadow approach. In chapter 5 we will

apply the results on 4D N = 1 superconformal block function obtained in chapter 4 to

bootstrap the 4D N = 1 minimal SCFT. We will provide further strong evidence on the

existence of this theory and its properties. Further discussions on conformal bootstrap

will be provided in chapter 6, including the analytical approach to solve crossing equation

perturbatively, bootstrapping the the 3D QED IR fixed point and other interesting SCFTs

in various dimensions and the application of Mellin space, etc. My future research plan

will also be discussed in the last chapter.
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2. REVIEW ON CONFORMAL BOOTSTRAP

2.1 Numerical Conformal Bootstrap

Conformal bootstrap employs the unitarity condition and crossing symmetry. Consider

the following four point function of four scalar ϕis ∗:

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩. (2.1)

This four-point correlator can be calculated using OPEs:

ϕ1(x1)ϕ2(x2) =
∑
O

λ12OCO(x12, ∂x2)O(x2), (2.2)

ϕ3(x3)ϕ4(x4) =
∑
O′

λ34O′CO′(x34, ∂x4)O′(x4), (2.3)

in which xij = xi − xj and Os are conformal primaries with non-zero spin in general.

The contributions from the descendants of conformal primary fields are included in the

functions C(xij, ∂x). Applying the OPEs of ϕ(xi)ϕ(xj), the four-point correlator turns

into

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩ =
∑
O

λ12Oλ34O[CO(x12, ∂y)CO(x34, ∂z)⟨O(x2)O(x4)⟩],

(2.4)

where we have normalized the operators so that

⟨O(x1)O′(x2)⟩ = ⟨O(x1)O(x2)⟩δOO′ . (2.5)

∗Here we have assumed the scaling dimensions of the four scalars are the same for simplicity. For the
more general case, the differences among the scaling dimensions of four operators will slightly affect the
function but not the main gist.
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Figure 2.1: Conformal partial wave expansion of the four-point correlator. Note that the
graph denotes the conformal partial wave expansion instead of the Feynman diagram.

In above formula the coefficients λs are free parameters of CFTs while the functions

CO(xij, ∂x) are completely determined by the conformal symmetry. Besides, the two

point function ⟨OO⟩ can be uniquely fixed according to conformal symmetry. Contri-

butions on the four-point function from each conformal primary family are the conformal

partial waves †, which is almost fixed by the conformal symmetry weighted by the OPE

coefficients. The four-point functions can be expanded in terms of the conformal partial

waves, as graphically shown in the Figure 2.1.

Due to the associativity of the operator algebra, we can also evaluate the four-point

correlator using the OPEs of ⟨ϕ2(x2)ϕ3(x3)⟩ and ⟨ϕ1(x1)ϕ4(x4)⟩, or ⟨ϕ1(x1)ϕ3(x3)⟩ and

⟨ϕ2(x2)ϕ4(x4)⟩. In any channel one should get the same four-point correlator, i.e., we have

the equation on crossing symmetry shown in Figure 2.2.

The crossing symmetry provides highly non-trivial consistency constraint on the CFT

data. However, it is an equation related to infinitely many parameters so it is extremely

difficult to solve it analytically. In fact it is not sure how to get meaningful information on

CFTs in D > 2 dimension spacetime from crossing symmetry equation for decades.

†There is an abuse in the terminology. In many papers the CPW is also called conformal block function.
In this chapter, we will give the definition of conformal block function later, which is different from the
conformal partial wave by a factor constructed from the four coordinates xij .

12



=

∑

O′

λ14O′λ23O′

∑

O

λ12Oλ34O

O
O

′

1

1

2

2

3

3

4

4

Figure 2.2: Crossing equation of the four-point correlator evaluated in 12 − 34 channel and
13− 24 channel.

Let us consider the four-point function with four identical scalars:

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩. (2.6)

In the 12−34 channel, the conformal partial wave expansion of four-point correlator reads

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑
O

λ2O
g∆,ℓ(u, v)

x
2∆ϕ

12 x
2∆ϕ

34

, (2.7)

where ∆ϕ denotes the scaling dimension of scalar ϕ, and ∆, ℓ are the scaling dimension

and spin of the primary operator O, respectively. The cross-ratios u, v are defined as

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (2.8)

The compact term g∆,ℓ(u, v) in (2.7) is the conformal block which is fixed by conformal

symmetry. Similarly, in the 13 − 24 channel, the cross-ratios (u, v) → (v, u) under the
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coordinate transformation 1↔ 3, and the four-point correlator turns into

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ =
∑
O

λ2O
g∆,ℓ(v, u)

x
2∆ϕ

13 x
2∆ϕ

24

. (2.9)

Then the crossing symmetry requires

v∆ϕ − u∆ϕ +
∑
O

λ2O[v
∆ϕg∆,ℓ(u, v)− u∆ϕg∆,ℓ(v, u)] = 0. (2.10)

In the LHS, the term v∆ϕ − u∆ϕ is from the contribution of the unit operator. For any

CFT, its spectra and the OPE coefficients need to be adjusted subtly so that they satisfy the

crossing equation (3.12).

2.2 Conformal Block Function

Conformal block relates to the contribution on four-point function from a conformal

primary operators and its descendants. It is fully determined by the conformal symmetry

instead of the details on any specific CFT. According to the OPEs given in (2.2,5.15), the

conformal block is

g∆,ℓ(xi) = x
∆ϕ

12 x
∆ϕ

34 CO(x12, ∂x2)CO(x34, ∂x4)⟨O(x2)O(x4)⟩. (2.11)

There are several methods to evaluate the conformal block functions analytically or numer-

ically. In [25] a rather simple method has been proposed based on the conformal Casimir

operator C of the conformal algebra SO(d+ 1, 1)

C = −1

2
LabL

ab, (2.12)
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where the operator Lab are the generators of SO(d+1, 1) group. Any conformal operators

O in the irreducible representation (∆, ℓ) are the eigenstate of the Casimir operator C with

eigenvalue

C|O⟩ = (∆(∆− d) + ℓ(ℓ+ d− 2))|O⟩. (2.13)

Use Liab to denote the action of SO(d + 1, 1) generators on operator ϕ(xi) and apply the

equation (2.13) in the four-point correlator with propagating operator O, we have

C⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩|O ∝ −L0abL
ab
0 ⟨ϕ(x1)ϕ(x2)O(x0)⟩⟨O(x0)ϕ(x3)ϕ(x3)⟩ (2.14)

= −(L1ab + L2ab)(L
ab
1 + Lab

2 )⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩|O, (2.15)

where we have applied the following relationship among Liabs

∑
i

Liab⟨ϕ(x1)ϕ(x2)O(x0)⟩ = 0, (2.16)

which is necessarily true to possess conformal invariance.

The conformal block is defined as

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩|O = λ2O
g∆,ℓ(u, v)

x
2∆ϕ

12 x
2∆ϕ

34

. (2.17)

Multiply the Casimir operator on both sides we get the differential equation for the con-

formal block

Dg∆,ℓ(u, v) = (∆(∆− d) + ℓ(ℓ+ d− 2))g∆,ℓ(u, v), (2.18)

15



in which the differential operator D is given by

D = 2(z2(1−z)∂2z−z2∂z)+2(z̄2(1− z̄)∂2z̄− z̄2∂z̄)+2(d−2) zz̄

z − z̄
((1−z)∂z−(1− z̄)∂z̄)

(2.19)

and the variables z, z̄ are related to the cross-ratios u, v through

u = zz̄, v = (1− z)(1− z̄). (2.20)

The Casimir equation has been solved analytically in even dimensions [25],

g∆,ℓ(u, v)|d=2 = k∆+ℓ(z)k∆−ℓ(z̄) + k∆−ℓ(z)k∆+ℓ(z̄), (2.21)

g∆,ℓ(u, v)|d=4 =
zz̄

z − z̄
(k∆+ℓ(z)k∆−ℓ−2(z̄)− k∆−ℓ−2(z)k∆+ℓ(z̄)), (2.22)

in which

ka(x) = x
a
2 2F1(

a

2
,
a

2
, a, x). (2.23)

Unfortunately, in odd dimensions there is no such compact results on the conformal block.

In practical application, the conformal block can be calculated using the series expansion

obtained from the Casimir equation or recursion relations. In [24] a series expansion for

the conformal blocks has been provided

g∆,ℓ = u
∆−ℓ
2

∞∑
m=0

umhm(v), (2.24)

in which the function hm can be calculated recursively. The first term h0(v) reads

h0(v) = (
v − 1

2
)ℓ 2F1(

∆ + ℓ

2
,
∆+ ℓ

2
,∆+ ℓ, 1− v). (2.25)

The series expansion holds in any spacetime dimension and will be quite helpful for
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analytical conformal bootstrap.

2.3 Numerical Solution of the Crossing Equation

As the conformal block functions can be calculated analytically or numerically, the

undetermined factors in the crossing equation (3.12) are the CFT data, including the OPE

coefficients and the scaling dimensions. This is an equation with infinite variables and

infinite degrees, so mathematically the solution set is undetermined. There could be no

solution at all, or finite (even infinite) solutions. Physically we know that there is at least

one solution of the system, the free field theory. However, it is quite obscure to extract

information on interacting CFTs from the crossing equation. In [5] a numerical method

has been proposed which initiates a new stage on conformal bootstrap.

In [5], the authors proposed a numerical approach to test whether the possible CFT data

can satisfy the consistency conditions, including the unitary condition and the crossing

equation. Surprisingly they showed that a large part of the possible CFT data cannot pass

the consistency test so is excluded for any physical CFTs! This approach has been refined

further and now it is sufficiently powerful to exclude almost all the regions of the possible

CFT data except a small isolated region, in which the physical CFT is believed to locate.

Let us consider the four-point correlator of four identical scalars ϕ with OPE

ϕϕ ∼ 1 + λσσ + · · · . (2.26)

Here the scalar σ is the first non-trivial conformal primary in the OPE. Its scaling dimen-

sion ∆σ, in the free theory limit is ∆σ = 2∆ϕ. This relation is modified in an interacting

CFT. Conformal bootstrap finds that there is a strong constraint on the (∆ϕ,∆σ) relation.

Any physical scaling dimensions (∆ϕ,∆σ) should be consistent with the crossing equation
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(3.12)

∑
O

λ2OF∆,ℓ(u, v) ≡ v∆ϕ − u∆ϕ +
∑
O

λ2O[v
∆ϕg∆,ℓ(u, v)− u∆ϕg∆,ℓ(v, u)] = 0. (2.27)

However, if there is a linear functional α satisfying

α(F0,0(u, v)) > 0, unitary operator,

α(F∆,0(u, v)) > 0, for any scalar with scaling O dimension ∆ > ∆σ,

α(F∆,ℓ(u, v)) > 0, for any spinning operators (ℓ is even) ℓ 6 L,

then the LHS of the crossing equation (2.27) is strictly positive, and the equation can never

be satisfied, which means the assumed scaling dimensions (∆ϕ,∆σ) are not physical. The

crossing equation (2.27) contains infinite many spinning operators. In practice, the spectra

are truncated to a finite spin L, which is sufficient large to capture the numerical behavior

of the whole spectra. The linear functional α can be chosen freely. A convenient choice is

the derivatives on the cross-ratios u, v

α =
∑

m+n6Λ

amn∂
m
u ∂

n
v |u=v= 1

2
. (2.28)

In the numerical program the derivatives are taken up to the order Λ. The program can

generate more precise results with larger Λ. According to the previous studies, significant

results can be obtained around Λ = 15. The subscript indicates that the derivatives are

taken at the symmetrical point u = v = 1/2. If we do find such a linear functional α, then

the crossing equation (2.27) can never be satisfied and initial assumption on the spectra

(∆ϕ,∆σ) have to be abandoned as unphysical.

By slightly adjusting the bootstrap conditions we can also get constraints on the OPE
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coefficients λO in the crossing equation (2.27). To bound the coefficient λO0 of operator

O0 with scaling dimension ∆0 and spin ℓ0, we firstly rewrite the crossing equation as

follows

λ2O0
F∆0,ℓ0(u, v) = −F0,0(u, v)−

∑
O̸=O0

λ2OF∆,ℓ(u, v). (2.29)

If we can find a linear functional α which satisfies

α(F∆0,ℓ0(u, v)) = 1, unitary operator, (2.30)

α(F∆,ℓ(u, v)) > 0, for any other non-unit operators. (2.31)

Then the OPE coefficient λO0 admits an upper bound

λ2O0
= −α(F0,0(u, v))− α(

∑
O̸=O0

λ2OF∆,ℓ(u, v)) 6 −α(F0,0(u, v)). (2.32)

A strict bound on the OPE coefficient λO can be obtained by minimizing −α(F0,0(u, v))

in a set of α which satisfies the constraints (2.30-2.31).
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3. BOOTSTRAPPING 5D O(N) VECTOR MODEL ∗

3.1 Introduction

The conformal bootstrap [1–4] provides a non-perturbative approach to solve CFTs

using general consistency conditions. It has led to great successes in 2D, such as the

seminal work [4] on solving 2D rational CFTs. In recent years the conformal bootstrap

has been revived since the breakthrough discovery in [5], which shows that the crossing

symmetry and the unitary conditions can provide strong constraints on the operator scaling

dimensions without an explicit form of Lagrangian. The crossing symmetry of four-point

correlator leads to an infinite set of constraints on the CFT data. These constraints are diffi-

cult to be solved analytically, instead, they are truncated to a finite set and reformulated as a

convex optimization problem so that they can be solved numerically. Here the convexity of

conformal block functions [24, 25] plays a crucial role. Since then the conformal bootstrap

has been significantly developed and it becomes a remarkably powerful technique to obtain

CFT data, including operator scaling dimensions and operator product expansion (OPE)

coefficients in D > 2 dimensions [26–39, 106, 41–56, 58–68]. Review of previous

developments on conformal bootstrap is provided in [71].

From conformal bootstrap with single correlator ⟨ϕϕϕϕ⟩, one can obtain bounds on the

conformal dimension or OPE coefficient of objective operator. The bounds may exhibit

singular behaviors, such as kinks which are believed to be related to unitary CFTs. One

can expect to obtain more information on CFTs through bootstrapping mixed correlators

like ⟨ϕϕϕ2ϕ2⟩. Conformal bootstrap with mixed operators has been fulfilled in [46, 58] for

3D Ising model and critical O(N) vector models and the results are quite impressive—the

∗This work has been published as an open access article [69] in Journal of High Energy Physics.
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allowed scaling dimensions are isolated in small islands. The accuracy can be improved

further by refining the numerical techniques [55, 68]. Studies on the 3D O(N) vector

models are strongly motivated by their special importance in physics. For small N 6

3 they describe second-order phase transitions occurring in real physical systems [72].

Besides, its O(N)-singlet sector is proposed to be dual to higher spin quantum gravity

in AdS4 with Dirichlet boundary conditions [73]. In the UV side, the 3D O(N) vector

model contains N free scalars ϕi, i = 1, · · · , N perturbed by quartic coupling (ϕiϕi)
2.

The RG flows to an IR fixed point which is strongly coupled. For the critical O(N) vector

models with large N or in D = 4 − ϵ, ϵ ≪ 1 dimensions, one can obtain reliable results

using large N expansion or the well-known Wilson-Fisher ϵ expansion. Actually these

analytical results have been used as consistency checks of conformal bootstrap in [36, 37].

Nevertheless, for the 3D (ϵ = 1) critical O(N) vector models with small N which are

more physically attractive, these perturbative methods turn into less effective. In contrast,

conformal bootstrap remains useful and has provided the most accurate results up to date

[68].

Following the success of conformal bootstrap in critical 3D O(N) vector models, one

may expect to generalize the results to critical O(N) vector models in higher dimensions.

These models, if exist, are expected to provide examples on AdSd+1/CFTd correspondence

in higher dimensions. In 4D there is no criticalO(N) CFT, while inD > 4, the interaction

term (ϕiϕi)
2 is irrelevant in the free O(N) theory so the UV free O(N) theory perturbed

by the quartic interaction does not lead to an interacting fixed point in the IR, instead,

the theory admits a Gaussian fixed point in the IR which flows to an interacting UV fixed

point under (ϕiϕi)
2 perturbation [74, 75]. In D = 4 + ϵ such UV fixed point theory is

weakly coupled for sufficient small ϵ and it requires a negative quartic coupling coefficient,

which may introduce the problem of instability even though the scaling dimensions of the
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operators are above the unitary bound. A UV-completed formulation of the O(N) model

in D > 4 dimensions has been proposed in [76, 77]

L =
1

2
(∂µϕi)

2 +
1

2
(∂iσ)

2 +
1

2
gσϕ2

i +
1

6
λσ3, (3.1)

in which the ϕi constructs fundamental representation of O(N) and the O(N) singlet σ

performs as composite field ϕ2
i in the UV side. The theory contains cubic interaction

terms which are relevant in space with dimension D < 6. Using the combination of ϵ

and large N expansion it has been shown that this theory admits an interacting IR fixed

point [76, 77], which is unitary for N > Nc, while below the critical value N < Nc the

coupling turns into complex and the IR fixed point theory is nonunitary. At one-loop level

the critical value Nc is about Nc ≈ 1038. For 5D (ϵ = 1) critical O(N) theories, the

small ϵ condition for ϵ expansion approach breaks down so the results obtained from ϵ

expansion should be treated carefully. Actually the critical value decreases to Nc ≈ 64

at three-loop level. In [78] the author has obtained a critical value Nc ≈ 400 at four-loop

level based on resummation methods. A non-perturbative method is desirable to determine

the critical value Nc in 5D. The 5D critical O(N) models have been studied using

the nonperturbative functional renormalization group equations [79–84]. In these works

the 5D interacting O(N) fixed points have been obtained while the effective potential is

metastalbe. Specifically the analysis in [84] agrees with the results from the D = 6 − ϵ

perturbative approach when ϵ≪ 1 and predicts the 5D critical value Nc = 1.

The conformal bootstrap approach has been employed to study 5D critical O(N)

models in [43, 53, 54] following the proposal of the cubic model [76, 77]. In [43] the 5D

critical O(N) models have been assumed to saturate the minimum of the O(N) current

central charge cJ for large N and the existence of 5D critical O(N) models are indi-

cated from these minimums obtained from conformal bootstrap. The authors focused
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on bootstrapping the OPE coefficients rather than the scaling dimensions of conformal

primary operators. In 3D conformal bootstrap the interacting O(N) CFTs have been

found to lie at the kinks of the bounds for the scaling dimension ∆σ of the O(N) singlet σ,

which appears as lowest dimension operator in the S channel of the correlator ⟨ϕiϕjϕkϕl⟩.

However, in 5D cubic model the lowest dimension O(N) singlet operator σ performs as

ϕ2
i , ∆σ = 2∆ϕ = 3 at the UV Gaussian fixed point which reduces to ∆σ = 2 + O(1/N)

near the IR fixed point. The IR fixed point is below the upper bound of scaling dimensions

∆σ so there is no clue on the fixed point theory in the bound of scaling dimensions. This

problem has been overcome in [53, 54] by imposing a gap on the scaling dimensions

of σ and the second lowest O(N) singlet conformal primary scalar. With a reasonable

assumption on the gap, the allowed region of the scaling dimensions (∆ϕ,∆σ) can be

carved out and forms two sharp kinks. The UV Gaussian fixed point lies at the higher kink

while the lower kink agrees with the large N expansion predictions on IR interacting fixed

point theories. Furthermore, the kink disappears for small N ≈ 15 which may indicate a

small critical value Nc [54].

However, one should be careful to consider the kinks in conformal dimension bound or

the minimum of central charges as unitary CFTs. From perturbative methods it is known

that in D = 6 − ϵ, ϵ ≪ 1 the IR fixed point of cubic O(N) models is endowed with

complex critical couplings for N 6 1000 ∗. Nevertheless, in [54] a sharp kink is still

generated from conformal bootstrap for D = 5.95, N = 600 which is much lower than

the threshold value and should be nonunitary. The reason seems to be that the precision

adopted in [54] is not high enough to detect the small violation of unitary. A more powerful

bootstrap approach is needed to study the 5D O(N) models, especially on its critical value

∗CFTs in fractional dimensions are known to be nonunitary even with real couplings [85, 86]. However,
the unitarity is violated by operators with high scaling dimensions so they are more difficult to be tested
through conformal bootstrap approach.
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Nc.

In this work, we will study the conformal bootstrap with multiple correlators of con-

formal primaries ϕi and σ: ⟨ϕiϕjϕkϕl⟩, ⟨ϕiϕjσσ⟩, ⟨σσσσ⟩. Since there are more operators

involved in the bootstrap program, it is expected that the results will provide more rigid

restrictions on the scaling dimensions of (∆ϕ,∆σ). Actually we find that the scaling

dimensions (∆ϕ,∆σ) obtained from bootstrapping multiple correlators of 5D O(500)

model is isolated in a rather small island, which is nicely compatible with the perturbative

results. We also study the critical value Nc in 5D. In preliminary numerical calculations

we find small islands on the allowed scaling dimensions (∆ϕ,∆σ) for allN > 1. However,

these islands disappear after improving the bootstrapping precisions. Taking N = 100 for

example, it shows an apparent kink in the bound from bootstrapping single correlator

⟨ϕiϕjϕkϕl⟩. Using multiple correlator conformal bootstrap with small Λ, we obtain an

island on (∆ϕ,∆σ) plane close to the kink from single correlator conformal bootstrap,

while it vanishes after increasing Λ even though we relax the conformal dimension gap

to ∆ϕ′
i
> 5.0 and ∆σ′ > 3.3 †. Therefore our results suggest a rather large critical

value Nc > 100 unless the perturbative methods have drastically overestimated the scaling

dimensions.

This chapter is organized as follows. In section 2 we briefly review the cubic model

of O(N) vector model in 4 < D < 6 and the perturbative results on scaling dimensions

of lowest primary scalars. The scaling dimensions (∆ϕ,∆σ) obtained from large N and ϵ

expansions provide consistency checks for the results from conformal bootstrap. In section

3 we introduce the numerical conformal bootstrap equations for 5D O(N) vector models

and their numerical implementation. Our results are presented in section 4. We show

that through bootstrapping the multiple correlators the scaling dimensions (∆ϕ,∆σ) are

†As a comparison, ∆ϕ′
i
≈ 5.39 up to the order 1/N and ∆σ′ ≈ 3.68 up to the order 1/N2 from

perturbative methods.
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isolated in a small island for large N = 500, while disappear with larger Λ for N 6 100.

Conclusions are made in section 5.

3.2 Perturbative Results for 5D Critical O(N) Models

The critical O(N) vector model with quartic interaction in arbitrary dimensions D =

4 − ϵ has been analyzed using the large N expansions [87–93, 95–98]. In 2 < D < 4

(ϵ > 0), the quartic interaction is relevant and the RG flows from UV Gaussian fixed point

to interacting IR fixed point perturbed by this coupling. The quartic interaction is irrelevant

in 4 < D < 6 (ϵ < 0) so the long-range physics is described by free field theory. The

quartic coupling generates RG flow from the IR Gaussian fixed point to an interacting UV

fixed point. The perturbative result for small ϵ shows the interaction coupling is negative at

interacting UV fixed point which may lead to the stability problem. However, the scaling

dimensions of scalar operators obtained from the large N expansion are still above unitary

bound and the unitary conditions remain unbroken for sufficient large N . One may expect

the interacting UV fixed point from quartic model describes a universality class withO(N)

global symmetry in 4 < D < 6 whose stable or metastable formulation may be realized

in different model.

In D = 5 spacetime, the conformal dimensions of ϕi and σ have been evaluated at

three-loop level

∆ϕ =
3

2
+

0.216152

N
− 4.342

N2
− 121.673

N3
+ · · · (3.2)

∆σ = 2 +
10.3753

N
+

206.542

N2
+ · · · (3.3)

∆σ2 = 4− 13.8337

N
− 1819.66

N2
+ · · · (3.4)

According to above 1/N expansion, the conformal dimension of ϕi is above the unitary
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bound (∆ϕ > 3/2 for scalar fields) given N > 35. The critical value Nc = 35 can be

significantly modified by by higher order corrections. Actually the 5D 1/N expansions

converge much slower than those in 3D [76].

Alternatively, the 5D quartic theory can also be studied using ϵ expansion [99]. Con-

formal dimensions of ϕi and ϕ2 (σ) have been calculated up to five-loop [100]:

∆ϕ = 1− ϵ

2
+

N + 2

4(N + 8)2
ϵ2(1 + a1ϵ+ a2ϵ

2 + a3ϵ
3) + · · · , (3.5)

where

a1 =
−N2 + 56N + 272

4(N + 8)2
,

a2 = − 1

16(N + 8)4
(5N4 + 230N3 − 1124N2 − 17920N − 46144

+384ζ(3)(N + 8)(5N + 22)),

a3 = − 1

64(N + 8)6
(
13N6 + 946N5 + 27620N4 + 121472N3 − 262528N2

−2912768N − 5655552− 16ζ(3)(N + 8)(N5 + 10N4 + 1220N3 − 1136N2

−68672N − 171264) + 1152ζ(4)(N + 8)3(5N + 22)

−5120ζ(5)(N + 8)2(2N2 + 55N + 186)
)
, (3.6)

and

∆σ = 2− ϵ+ N + 2

N + 8
ϵ
(
1 + c1ϵ+ c2ϵ

2 + c3ϵ
3 + c4ϵ

4
)
+ · · · , (3.7)
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where

c1 =
13N + 44

2(N + 8)2
,

c2 = − 1

8(N + 8)4
(3N3 − 452N2 − 2672N − 5312 + 96ζ(3)(N + 8)(5N + 22)),

c3 = − 1

32(N + 8)6
(
3N5 + 398N4 − 12900N3 − 81552N2 − 219968N − 357120

+16ζ(3)(N + 8)(3N4 − 194N3 + 148N2 + 9472N + 19488)

+288ζ(4)(N + 8)3(5N + 22)− 1280ζ(5)(N + 8)2(2N2 + 55N + 186)
)
,

c4 = − 1

128(N + 8)8
×

(
3N7 − 1198N6 − 27484N5 − 1055344N4 − 5242112N3

−5256704N2 + 6999040N − 626688− 16ζ(3)(N + 8)×

(19004N4 + 102400N3 + 13N6 − 310N5 − 381536N2 − 2792576N − 4240640)

−1024ζ(3)2(N + 8)2(2N4 + 18N3 + 981N2 + 6994N + 11688)

+48ζ(4)(N + 8)3(148N2 + 3N4 − 194N3 + 9472N + 19488)

+256ζ(5)(N + 8)2(155N4 + 3026N3 + 989N2 − 66018N − 130608)

−6400ζ(6)(2N2 + 55N + 186)(N + 8)4

+56448ζ(7)(14N2 + 189N + 526)(N + 8)3
)
. (3.8)

Besides, for the next O(N) vector operator ϕ′
i ≡ ϕ4ϕi, its scaling dimension has been

provided in [94] at the first order

∆ϕ′
i
= 5− ϵ

2
+

12

N + 8
ϵ+ · · · . (3.9)

Taking ϵ = −1 the results can be interpolated to 5D. For large N the higher order coeffi-

cients cis are of order 1/N . In this case the ϵ expansion performs worse asymptotically in

5D comparing with the large N expansion. While for small N it is not clear at this stage

which approach can provide better estimation. These perturbative results will be useful to
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estimate the conformal dimension gap which can be applied in the conformal bootstrap to

improve the numerical efficiency.

Both the large N expansion and the ϵ expansion contain negative terms at higher

loop level. For small Ns these negative contributions may play dominating roles in the

perturbative expansion and result in negative anomalous dimension. Specifically the five-

loop result (3.5) shows the conformal dimension ∆ϕ < 3/2 for N 6 14 [76]. In [54]

the conformal bootstrap with single correlator has been applied to generate bound on ∆σ.

Interestingly the bounds are featured with kinks which are expected to relate to certain

unitary fixed point theories while the kinks disappear near N ≈ 15, close to the critical

value estimated from ϵ expansion. However, as in the large N expansion, the ϵ expansion

in 5D is not converged up to fifth order and the contributions from higher loops are likely

to modify the threshold value Nc significantly.

The cubic O(N) model (3.1) provides an approach to realize stable interacting O(N)

fixed point in 5D [76, 77]. The authors show that at one of the IR fixed point the cubic

O(N) model shares the same relevant critical exponents with the quartic O(N) model so

the two models are expected to describe the same universality class.‡ Like the quartic

O(N) model, the cubic O(N) model also requires a critical value Nc from unitarity

constraint. In the cubic model, the unitarity is violated in the way that the coupling

coefficients acquire imaginary part when N < Nc. In [76, 77] the critical value Nc is

evaluated up to order ϵ2 in arbitrary dimensionD = 6−ϵ. Four-loop results which include

corrections on Nc at order ϵ3 have been calculated in [78]

Nc = 1038.26605− 609.83980ϵ− 364.17333ϵ2 + 452.71060ϵ3 +O(ϵ4). (3.10)

‡The renormalization group approach suggests the cubic model admits an extra RG relevant direction
with positive critical exponent at the IR fixed point [84]. In this sense the universality class of the quartic
O(N) model is a subset of that of cubic O(N) model.
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As usual, above perturbative result is not sufficient to make a solid estimation on 5D (ϵ =

1) Nc due to its asymptotic performance. It is tempting to evaluate the critical value Nc

using non-perturbative method. Besides the above interacting IR fixed point, the cubic

model also admits extra fixed points with different critical value N ′
c; however, they are not

corresponding to the classical interacting quartic fixed point and will not be studied in this

chapter.

3.3 Conformal Bootstrap with Multiple Correlators

Conformal bootstrap with multiple correlators has been developed in [46, 58] which

aimed to solve the 3D Ising model and O(N) vector model. This approach has obtained

the most accurate solutions on 3D Ising model and O(N) vector model up to date [68].

Here we briefly introduce the conformal bootstrap program for 5D O(N) vector model

analogous to that for 3D O(N) vector model [58]. More details on this program are

provided in [55].

3.3.1 Bootstrap Equations from Crossing Symmetry

Conformal partial wave function is the crucial ingredient for conformal bootstrap. In

even dimensions D = 2, 4, 6, the conformal partial wave functions have been solved

analytically [24, 25]. In odd dimensions there is no analytical expression for conformal

partial wave function; however, it can be calculated recursively with arbitrary precision

[36, 46, 101]. § The general four-point function of scalar operators can be expanded in

§Details on calculating conformal block function in arbitrary dimensions are provided in [51] as part of
an open-source numerical conformal bootstrap program JuliBootS. In this work we will use the JuliBoots
code to calculate the conformal block functions of scalar operators in 5D.
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terms of conformal partial waves

⟨σ1σ2σ3σ4⟩ =
1

x∆1+∆2
12 x∆3+∆4

34

(
x24
x14

)∆12
(
x14
x13

)∆34 ∑
O

λ12Oλ34Og
∆12,∆34

∆,ℓ (u, v), (3.11)

where σis are scalar operators with conformal dimension ∆i (∆ij = ∆i − ∆j) and O is

the conformal primary operator appears in the OPE expansion of σ1σ2 ∼ λ12OO (and also

σ3σ4 ∼ λ34OO), whose conformal dimension and spin are (∆, ℓ). The conformal invariant

cross ratios u, v are of the standard form u =
x2
12x

2
34

x2
13x

2
24

and v =
x2
14x

2
23

x2
13x

2
24

, xij = |xi − xj|.

The four-point function can be evaluated equivalently in different channels, as suggest-

ed by crossing symmetry, and it leads to the following equations

∑
O

(
λ12Oλ34OF

12,34
∓,∆,ℓ(u, v)± λ32Oλ14OF

32,14
∓,∆,ℓ(u, v)

)
= 0, (3.12)

in which

F 12,34
∓,∆,ℓ(u, v) = v

∆2+∆3
2 g∆12,∆34

∆,ℓ (u, v)∓ u
∆2+∆3

2 g∆12,∆34

∆,ℓ (v, u). (3.13)

To study the 5D O(N) vector model, we apply the crossing relations for correlators

⟨ϕiϕjϕkϕl⟩, ⟨σσσσ⟩ and ⟨ϕiϕjσσ⟩. The O(N) indices in the correlators are decomposed

into three irreducible structures: theO(N) invariant, traceless symmetric and antisymmet-

ric tensors. The conformal primaries appearing in the OPE ofO(N) vector representations

ϕi can be classified into three irreducible representations:

ϕi × ϕj ∼
∑
S

λϕϕOS
Oδij +

∑
T

λϕϕOT
O(ij) +

∑
A

λϕϕOA
O[ij], (3.14)

in which S, T and A denote O(N) singlet, traceless symmetric tensor and anti-symmetric

tensor representations. Consequently, the four-point correlator ⟨ϕiϕjϕkϕl⟩ and its crossing

symmetric partners are separated into three channels: S, T,A. For the mixed four-point
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correlator ⟨ϕiσϕjσ⟩, one needs to consider the OPE ϕiσ ∼
∑

V λϕiσOi
Oi which introduces

the vector representations (denoted by V ) as propagating operators in the mixed four-point

correlator and its crossing symmetric partner.

The crossing relations for bootstrapping 5D O(N) critical theories are essentially the

same as those for 3D O(N) vector model [58]. These equations can be written in a

compact form [58] which are presented below for later reference

0 =
∑
OS

(
λϕϕOS

λσσOS

)
V⃗S

 λϕϕOS

λσσOS


+
∑
OT

λ2ϕϕOT
V⃗T +

∑
OA

λ2ϕϕOA
V⃗A,∆,ℓ +

∑
OV

λ2ϕσOV
V⃗V . (3.15)

Explicit forms of the 7-component vectors V⃗S, V⃗T , V⃗A, V⃗V are:

V⃗T =



F ϕϕ,ϕϕ
−,∆,ℓ(

1− 2
N

)
F ϕϕ,ϕϕ
−,∆,ℓ

−
(
1 + 2

N

)
F ϕϕ,ϕϕ
+,∆,ℓ

04×1


, V⃗A =



−F ϕϕ,ϕϕ
−,∆,ℓ

F ϕϕ,ϕϕ
−,∆,ℓ

−F ϕϕ,ϕϕ
+,∆,ℓ

04×1


, V⃗V =



04×1

(−1)ℓF ϕσ,ϕσ
−,∆,ℓ

F σϕ,ϕσ
−,∆,ℓ

−F σϕ,ϕσ
+,∆,ℓ


,
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V⃗S =



02×2 F ϕϕ,ϕϕ
−,∆,ℓ (u, v) 0

0 0

 F ϕϕ,ϕϕ
+,∆,ℓ (u, v) 0

0 0

 0 0

0 F σσ,σσ
−,∆,ℓ (u, v)


02×2 0 1

2
F ϕϕ,σσ
−,∆,ℓ (u, v)

1
2
F ϕϕ,σσ
−,∆,ℓ (u, v) 0

 0 1
2
F ϕϕ,σσ
+,∆,ℓ (u, v)

1
2
F ϕϕ,σσ
+,∆,ℓ (u, v) 0





. (3.16)

Here our convention differs from [58] by a factor (−1)ℓ.

3.3.2 Bounds from Crossing Relations

The equations from crossing symmetry (3.15) provide nontrivial constraints on the

CFT data. The numerical approach to study these equations was first proposed in [5]

and the following developments show this method is extremely powerful. The logic of

numerical conformal bootstrap is firstly to make assumptions on the CFT spectra. If the

assumptions are physical they are required to satisfy the crossing relations (3.15) and the

unitary condition. Numerical conformal bootstrap provides a systematical way to check

the consistency between the assumptions and general constraints on CFTs. Bounds on the

CFT data, including conformal dimensions of primary operators and OPE coefficients can
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be obtained by falsifying possible assumptions on the CFT spectra.

Specifically for any hypothetical spectra (∆ϕ,∆σ) above the unitary bounds, they

should be consistent with the crossing relations (3.15). However, if there are linear func-

tionals α⃗ = (α1, α2, · · · , α7) satisfying

( 1 1 ) α⃗ · V⃗S,0,0

 1

1

 = 1,

α⃗ · V⃗S,∆,ℓ ≽ 0, ∆ > ∆∗
S,0 for the O(N) singlet scalars except σ,

α⃗ · V⃗T,∆,ℓ > 0, (3.17)

α⃗ · V⃗A,∆,ℓ > 0,

α⃗ · V⃗V,∆,ℓ > 0, ∆ > ∆∗
V,0 for the O(N) vector scalars except ϕi,

α⃗ ·

V⃗S,∆σ ,0 + V⃗V,∆ϕ,0 ⊗

 1 0

0 0


 ≽ 0,

then the crossing relations (3.15) can never be satisfied and initial assumption on the

spectra (∆ϕ,∆σ) have to be abandoned as unphysical. In the bootstrap conditions (3.17),

we have required the O(N) singlet scalars (except σ) have conformal dimensions above

a lower bound ∆∗
S,0, and similarly a lower bound for ∆∗

V,0 for O(N) vector scalars in

addition to ϕi. Besides, we have implicitly assumed that all the extra operators accord

with the unitary bound. In the last equation of (3.17), it is the summation of contributions

in S (from σ) and V channels (from ϕ) that is required to be positive-semidefinite due to

the equality of OPE coefficients λϕϕσ = λϕσϕ.

The bootstrap conditions in (3.17) are not the only way to break the crossing relations

(3.15). In particular, to bootstrap certain OPE coefficient of operator (∆0, ℓ0) in channel

X , one may set α⃗ · V⃗X,∆0,ℓ0 = 1 instead of choosing the unit operator as in (3.17).
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The bootstrap conditions are further refined in [68]. The lower bounds ∆∗
S,0 and ∆∗

V,0

introduced in (3.17) are necessary to isolate the conformal dimensions (∆ϕ,∆σ) in a

small island. A higher but remaining physical lower bound can improve the numerical

efficiency to carve out the allowed parameter space. For sufficient large N , these lower

bounds can be justified from perturbative expansions. TheO(N) singlet scalar next to ϕ2 is

ϕ4 in the quartic model, and its conformal dimension can be evaluated through the large N

expansion (3.4). In the cubic theory (3.1) this is given by a mixing of σ2 and ϕ2. One of the

linear combination of σ2 and ϕ2 is actually the descendent of σ, while another orthogonal

mixing constructs a primary O(N) singlet that shares the same conformal dimension as

obtained from quartic theory [76, 77]. The candidate of next O(N) vector scalar ϕ′
i is

ϕ2ϕi (or σϕi in the cubic theory). However, as argued in [58] for the 3D theories, in

D = 6 − ϵ, ϵ ≪ 1 dimension the quartic theory generates the following equation of

motion for ϕi:

∂2ϕi ∝ ϕ2ϕi, (3.18)

which suggests that the operator ϕ2ϕi is a descendent of ϕi rather than a conformal primary

scalar. One can get the same conclusion in cubic theory (3.1) with replacement ϕ2 → σ.

The next candidate is ϕ4ϕi (in D = 6 − ϵ, ϵ ≪ 1 dimension operators with derivatives,

like ϕ2∂2ϕi, (∂µϕ)
2ϕi have different bare conformal dimensions given ϵ ̸= 0 so they do

not mix with ϕ4ϕi). At the interacting fixed point, the conformal dimension of ϕ4ϕi has

been studied in [94]. At tree level the conformal dimension of ϕ2 near the interacting fixed

point is 2, so the conformal dimension of ϕ4ϕi is 5.5 with 1/N corrections, as shown in

(3.9). In the cubic theory the potential second O(N) vector scalar is a mixing of σ2ϕi and

ϕ2ϕi, which has not been explicitly studied yet. One can expect that one of the mixing

is actually a descendent of ϕi while another primary mixing has the same conformal

dimension as ϕ4ϕi in quartic theory, like the quadratic and cubic O(N) singlet operators
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[76, 77]. The lower bound of the ϕ4ϕi conformal dimension would be rather subtle for

small N . Fortunately we will show that a unitary interacting fixed point disappears even

for N = 100 (corresponding to ∆ϕ′
i
= 5.39 at order 1/N ), indicating a large critical value

Nc.

3.3.3 Numerical Implementation of Conformal Bootstrap

Equations from crossing symmetry (3.15) provide an infinite set of constraints (3.17)

on the CFT data. For the numerical implementation the constraints need to be truncated

to a large but finite set. In (3.17) the constraints are parameterized by (∆, ℓ). The spins ℓ

construct an infinite tower of spectra while in conformal bootstrap only these spectra with

small ℓ will be considered. Contributions from operators with large spin are exponentially

suppressed. The linear functionals α⃗ can be expanded as

αi =
∑

m+n6Λ

aimn∂
m
z ∂

n
z̄ , (3.19)

where (z, z̄) are defined in terms of (u, v) through: u = zz̄, v = (1−z)(1− z̄). Moreover,

for the linear functional αi, the number of derivatives is also truncated up to Λ. Taking

higher order of derivatives in (3.19), we have more chances to find the linear function

satisfying (3.17). As a result, the conformal bootstrap program can exclude larger regions

in parameter space. In practice the parameter Λ is restricted by computation power. The

setups of parameter Λ and spins used in this work are as follows

SΛ=19 = {0, 1, · · · , 30} ∪ {49, 50},

SΛ=21 = {0, 1, · · · , 30} ∪ {47, 48, 49, 50, 51, 52},

SΛ=23 = {0, 1, · · · , 30} ∪ {47, 48, 49, 50, 51, 52, 53, 54},

SΛ=25 = {0, 1, · · · , 30} ∪ {47, 48, 49, 50, 51, 52, 53, 54, 55, 56}. (3.20)
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The problem to find the linear functions α⃗ under truncated constraints can be solved with

SDPB program [55].

3.4 Results

3.4.1 Bootstrapping 5D O(500) Vector Model

The 5D O(500) vector model has been studied in [43, 53, 54] using conformal boot-

strap with single correlator ⟨ϕiϕjϕkϕl⟩. At the fixed point the conformal dimensions

(∆ϕ,∆σ) of the lowest O(N) vector ϕi and O(N) singlet σ can be evaluated from the

large N expansion in (3.2, 3.3) or the ϵ expansion in (3.5, 3.7). Taking N = 500, we

get (∆ϕ,∆σ) = (1.500414, 2.02158) from 3-loop large N expansion and (∆ϕ,∆σ) =

(1.500400, 2.02156) from 5-loop ϵ expansion. These predictions will be compared with

the results obtained from conformal bootstrap.

In Figure 3.1 we present the bounds on (∆ϕ,∆σ) obtained through bootstrapping the

single correlator ⟨ϕiϕjϕkϕl⟩ (light blue region) and the multiple correlators (dark blue

island). To bootstrap the single correlator we have assumed that the next O(N) singlet

scalar has dimension above the gap ∆∗
S,0 = 3.965, which can be justified from the large N

expansion result (3.4): ∆σ2 ≈ 3.972. This gap is also employed in [54]. The upper part of

light blue region is similar to the bound provided in [54]. Besides, there is an extra kink

in the lower region and the whole region actually forms a sharp tip like presented in [53],

although a much larger gap was used in that work. Results of perturbative methods are also

shown in Figure 3.1. Prediction from the large N expansion (denoted by the black cross)

lies in the allowed region while prediction from the ϵ expansion (denoted by the black

dot) is outside of the bound so is excluded. According to the conformal bootstrap results,

the large N expansion does provide a better estimation on the conformal dimensions for

large N = 500. Difference between the two perturbative approaches appears at the order
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Figure 3.1: Bounds on the conformal dimensions (∆ϕ,∆σ) in the interacting 5D O(500)
CFT. The colored regions represent the conformal dimensions allowed by conformal boot-
strap. Specifically the light blue region is obtained from single correlator bootstrap, while
the dark blue island is isolated through bootstrapping the multiple correlators. We used the
derivative at order Λ = 19 and spins SΛ=19 in the numerical calculations. Besides, we
assumed a gap ∆∗

S,0 = 3.965 in the S-channel. An extra gap ∆∗
V,0 = 5 has been used in

the V-channel for bootstrapping multiple correlators. The black dot and cross relate to the
predictions from ϵ expansion and large N expansion, respectively.
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Figure 3.2: Isolated regions for the conformal dimensions (∆ϕ,∆σ) in 5D O(500) vector
model. The light, medium and dark blue regions are corresponding to the results from multiple
correlator conformal bootstrap with Λ = 21, 23, 25, respectively. In the graph we have used
the dimension gaps ∆∗

S,0 = 3.965 and ∆∗
V,0 = 5. The black cross denotes the prediction from

large N expansion.

10−5 ≈ O(1/N2), as discussed before.

Remarkably, the allowed region of (∆ϕ,∆σ) obtained from the multiple correlator

bootstrap is enclosed in a small island, which is colored in dark blue in Figure 3.1. Besides

the dimension gap ∆∗
S,0 = 3.965 in S-channel, we have employed another dimension gap

∆∗
V,0 = 5 in V-channel that the next primary O(N) vector scalar has dimension ∆ >

5. The dark blue island lies in the center of the tip, and the black cross denoting the

large N prediction is rather close to the center of this island. Such a high coincidence
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is extraordinary in view of only crossing symmetry and unitary condition are applied to

carve out the island. On the other hand, the conformal bootstrap result also shows that the

large N expansion is reliable at third order.¶

However, it should be careful to make statement based on results from conformal

bootstrap with lower order of derivatives. Actually in preliminary study we have obtained

isolated islands even for N = 1 with Λ ∼ 15; however, they disappear after increasing

Λ. As to the model with N = 500, we have checked the performance of the island with

larger Λ. The results are provided in Figure 3.2. The allowed regions shrink notably from

Λ = 21 to Λ = 25. Interestingly, the fixed point predicted by large N expansion remains

located in the center of the small island even though the allowed region has contracted

significantly.

3.4.2 Bootstrapping 5D O(N) (N 6 100) Vector Models and the Critical Nc

In 5D there is an interesting problem on the unitarity of the interacting O(N) CFTs,

that there is a threshold value Nc below which the CFTs become nonunitary [76, 77]. In

contrast, the interacting O(N) CFTs in 3D are unitary for any integer N > 1. Prior to our

work, there are several evidences from conformal bootstrap which prefer to small Nc [43,

53, 54]. There are also some clues from perturbative results that the critical value Nc <

100. In this part we apply the conformal bootstrap with multiple correlators to study the 5D

O(N) vector model for small Ns. The multiple correlator conformal bootstrap involves in

more O(N) sectors and provides stronger constraints on the CFT data comparing with the

conformal bootstrap with single correlator only.

We have searched the allowed regions on (∆ϕ,∆σ) plane for N 6 100. The isolated

islands can be obtained for smallNs with assumptions on the dimension gaps (∆∗
S,0,∆

∗
V,0).

¶Strictly speaking, such consistency check is not completely self-contained since we have already used
the large N expansion result in setting the dimension gaps.
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Figure 3.3: From top to bottom, the islands represent the allowed regions of (∆ϕ,∆σ) in
the 5D O(N) N = 40, 60, 70 vector models. The results are obtained from conformal
bootstrap with Λ = 19 and spins SΛ=19. The black dots and crosses denote predictions from
ϵ expansion and large N expansions, respectively. The dimension gaps used in conformal
bootstrap program are: (∆∗

S,0,∆
∗
V,0) = (3.4, 4.1) for N = 40, (∆∗

S,0,∆
∗
V,0) = (3.5, 4.3) for

N = 60, 70. The perturbative methods, especially the large N expansion get abnormal and
stay away from the region allowed by conformal bootstrap at N = 40.
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However, these islands disappear after increasing the number of derivatives Λ. For N ∼

O(10) or smaller, the perturbative approaches cannot provide an approximate estimation

on the conformal dimension ∆σ2 . One may argue that the islands disappear due to the

reason of the unphysical dimension gaps (∆∗
S,0, ∆∗

V,0) used in the bootstrap program

instead of the nonunitarity of the CFTs. While for sufficient large Ns the perturbative

predictions are expected to provide rough estimations on the fixed point. This can be

seen from the fact that the isolated islands obtained from conformal bootstrap are close

to the perturbative predictions before vanishing. In Figure 3.3 we present the isolated

regions for N = 40, 60, 70 from conformal bootstrap ∥. At derivative order Λ = 19,

the conformal bootstrap program generates closed regions on the (∆ϕ,∆σ) plane, which

disappear for larger Λ > 23. According to the results from conformal bootstrap, for

N = 60, 70 the perturbative approaches can still provide approximate estimations on the

conformal dimensions at the interacting fixed points, although the theories are likely to

be nonunitary. While for N = 40, the perturbative approaches, especially the large N

expansion cannot provide reliable estimations on the interacting fixed point. One may

note that the island corresponding to N = 40 shown in Figure 3.3 is rather close to the

kink from single correlator bootstrap presented in [54], where the kink was considered to

indicate a unitary CFT. However, our studies based on multiple correlator bootstrap show

that bootstrap results from single correlator or mixed correlators with low derivatives can

be significantly modified in a more precise evaluation.

In fact there is no stable island from conformal bootstrap even at N = 100. The

perturbative methods predict that the interacting O(100) fixed point locates in the position

with conformal dimensions (∆ϕ,∆σ) = (1.50161, 2.124) from large N expansion and

∥The perturbative results on conformal dimension gaps are subtle for not so large Ns, and it is possible
that the gaps used in Figure 3.3 are unphysical, however, in this figure we are more interested in the
comparison with the predictions from perturbative approach. We will adopt more “safe" scaling dimension
gaps for N = 100 to study the unitarity problem.
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Figure 3.4: Bounds on the conformal dimensions (∆ϕ,∆σ) in 5D O(100) vector model.
The light blue region is obtained from single correlator bootstrap. The multiple correlators
bootstrap leads to a small island colored in dark blue. In the bootstrap program we adopt the
setup with Λ = 19 and the correspond spins provided in (3.20). We apply a dimension gap
∆∗

S,0 = 3.6 in the S-channel. Besides, an extra dimension gap ∆∗
V,0 = 5 has been used in

the V-channel for bootstrapping multiple correlators. The black dot and cross relate to the
predictions from ϵ expansion and large N expansion, respectively.
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(∆ϕ,∆σ) = (1.50162, 2.122) from ϵ expansion. In Figure 3.4 we show the conformal

bootstrap results of O(100) vector model with Λ = 19. The single correlator conformal

bootstrap generates a kinked bound similar to that of O(500) vector model. The isolated

region from multiple correlator conformal bootstrap lies in the middle of the tip. Here

we have assumed a dimension gap ∆∗
S,0 = 3.6 in the S-channel, lower than the large N

prediction ∆σ2 ≈ 3.68. Besides, in the V-channel a dimension gap ∆∗
V,0 = 5 has been

used, much lower than the one loop prediction ∆ϕ′
i
≈ 5.39. Predictions from large N

and ϵ expansions are presented in the graph, both of which are nicely consistent with

the conformal bootstrap bounds. In particular they locate in the isolated small island.

All these features indicate a promising fixed point satisfying the crossing symmetry and

unitarity constraints. However, the island disappears by taking higher order of derivatives

Λ = 23! No isolated region can be found at Λ = 25 even we relax the S-channel gap

to ∆∗
S,0 = 3.3. Unless the “true" island shrinks so drastically at certain order of Λ that it

is hardly to be detected by scanning the parameter space, our bootstrap results disprove a

unitary 5D O(N) vector model even with N = 100!

Vanishing of the “allowed region" for N 6 100 suggests that the theories with small

N actually are not unitary. The violation of unitarity is rather small so that it cannot

be uncovered by the bootstrap program with smaller Λ. This reminds us other exam-

ples on “pseudo" unitarity in conformal bootstrap. In [37] the O(N) vector models in

fractional dimensions 2 < D < 4 have been studied using conformal bootstrap. In the

work pronounced kinks are obtained in the bounds of conformal dimension of the lowest

O(N) singlet σ and are well consistent with the results obtained from extra approaches.

However, careful studies in [85, 86] have shown that the CFTs in fractional dimensions are

necessarily to be nonunitary, which are too subtle to be discovered in numerical conformal

bootstrap. In the 5D O(N) single correlator conformal bootstrap [54], sharp kinks are
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also generated in the fractional dimension D = 5.95 with N = 600, notably lower than

the critical value Nc ≈ 1000. We have studied this model through bootstrapping multiple

correlators. There remains isolated allowed region even at Λ = 21, though it is quite small.

The uncertainty on ∆σ shown in the island is about 2× 10−3, while as shown in [54], the

magnitude of imaginary part in ∆σ is of the same order ∼ 1.5× 10−3 so it is expected that

current conformal bootstrap program cannot capture the tiny unitarity violation unless the

numerical accuracy can be improved significantly.

To summarize, the numerical conformal bootstrap provides a powerful approach to

falsify assumptions on unitary CFTs. However, it is premature to validate the unitary CFTs

using conformal bootstrap due to these “pseudo" unitary solutions. As to the 5D O(500)

model, although our results have provided strong evidence, they are still not sufficient to

make a strict conclusion on its unitarity. On the other hand, it is surprising that the 5D

O(N) vector model is nonunitary even for N = 100. Consequently, the critical value

Nc > 100, which is considerably larger than the value estimated before.

3.5 Conclusions

In this work, we have studied the interacting 5D CFTs with global O(N) symmetry

using the conformal bootstrap with multiple correlators. The multiple correlator conformal

bootstrap has been developed in [46, 58] and obtained remarkable successes in 3D Ising

and O(N) vector models. The approach employs the correlators of the O(N) vector

scalar ϕi as well as the O(N) singlet scalar σ. Since there are more operators involved

in the crossing symmetry relations, the new method is expected to generate more strong

constraints on the CFT data. Indeed the allowed regions on (∆ϕ,∆σ) plane is limited in a

small island under reasonable assumptions on the dimension gaps.

Specifically, in this study we have shown that by bootstrapping multiple correlators
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from the interacting 5D CFTs with O(N) symmetry (N = 500), the allowed conformal

dimensions (∆ϕ,∆σ) are strongly limited in a closed region, which is highly consistent

with predictions from large N expansion. In order to uncover the isolated region we

also applied assumptions on the dimension gaps both in the O(N) singlet sector and the

O(N) vector sector. Our results suggest that the interacting fixed point of O(N) vector

model is unitary for sufficient large N and support the asymptotic free 5D O(N) cubic

model proposed in [76, 77]. Evidence of such fixed point has already been shown in the

single correlator conformal bootstrap studied in [43, 53, 54]. The island obtained in this

work is rather close to the kink in the bound of conformal dimension ∆σ obtained from

bootstrapping correlator of four ϕis [54]. We have studied the performance of the island

under higher order of derivatives Λ. The island shrinks notably from Λ = 19 to Λ = 25,

while the largeN expansion predictions remain staying in the center of the allowed region.

Such coincidence is surprising in considering of that only crossing symmetry and unitary

conditions are employed to generate the allowed region. Besides we only input the O(N)

global symmetry for this model while even did not use its Lagrangian at all.

We are particularly interested in the critical value Nc of 5D O(N) vector model below

which the interacting fixed point theory loses unitarity. The problem on the critical value

Nc can also be seen from the perturbative expansions of conformal dimension ∆ϕ, that

below the critical value the scalar ϕi acquires conformal dimension smaller than the unitary

bound and breaks the unitary condition. However, in 5D the perturbative expansions

converges much slower comparing with these of 3D. In [76, 77] the critical value Nc

has been evaluated based on large N expansion in D = 6− ϵ spacetime. The critical value

Nc ≃ 1038 at one-loop level; however, it oscillates drastically order by order. Conformal

bootstrap provides a nonperturbative approach to study CFTs, and it has been applied to

estimate Nc in [54]. The authors found that the pronounced kink in the bound of ∆σ
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disappears near N ∼ 15, which may suggest Nc ∼ 15 in view of the observation that

the singular behaviors, like kink in the dimension bound usually relate to unitary CFTs.

In 3D such observation has helped to numerically solve the Ising model [41] and O(N)

vector model [36]. However, the unitarity condition becomes subtle for 5D CFTs and

the unitarity violation may be too small to be detected by the bootstrap program with low

order of derivatives. Therefore a kink does not necessarily guarantee unitarity, instead, it

may relate to an interacting but nonunitary CFTs.

We have searched the allowed regions using multiple correlator conformal bootstrap

for 1 6 N 6 100. The isolated regions on the (∆ϕ,∆σ) plan can be obtained from

conformal bootstrap program with lower order of derivatives. Moreover, the islands ac-

tually locate in the position close to the predictions from perturbative approaches given

the Ns are not too small. However, the islands disappear after increasing the number

of derivatives in bootstrap program. We believe these islands relate to interacting while

nonunitary CFTs and the violation of unitarity can not be observed unless the program is

equipped with sufficient high precision. In particular, our results suggest the critical value

Nc > 100, much larger than the value estimated before. The bounds of Nc is expected

to be improved further using conformal bootstrap. However, for larger N the unitarity

violation in O(N) fixed point theory gets smaller and more difficult to be detected. It

requires higher accuracy in the bootstrap program to determine the critical value Nc and

we leave this problem for future work. On the other hand, for a sufficient large Nc, the

large N expansion approach is validated. The critical value Nc can be effectively studied

based on this perturbative approach as well. Due to the asymptotic behavior of perturbative

expansions in 5D, probably one needs to calculate several orders higher than in [76–78]

to get a sufficient good estimation.
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4. SUPERCONFORMAL BLOCK FUNCTION OF SCALAR OPERATORS IN 4D

N = 1 SCFT ∗

4.1 Introduction

The conformal bootstrap program, which was initially proposed for two dimensional

conformal field theories (CFTs )[1–3], has been found to be a remarkably powerful tool

to study CFTs in higher dimensional spacetime [5]. The crossing symmetry and unitarity

condition can provide strong constraints on the operator scaling dimensions, coefficients

in operator product expansion (OPE), and the central charges [26–39, 106, 41–56, 58–68].

The most striking results are obtained in [46, 58], in which the classical 3D Ising and

O(N) vector models are studied through bootstrapping the mixed correlators. It has been

shown that by imposing certain reasonable assumptions on the spectrum, the CFT data can

be isolated to small islands. These results are expected to be generalized to supersymmet-

ric theories. Supersymmetry provides strong constraints on quantum dynamics and leads

to abundant conformal theories. The supersymmetric conformal bootstrap is especially

important for 4D theories since most of the known 4D CFTs are of supersymmetric

conformal field theories (SCFTs).

The critical ingredient utilized in conformal bootstrap is the convexity of conformal

blocks [5]. The four-point function can be decomposed into conformal partial waves

which describe the exchange of primary operators together with their descendants. It can

be shown from superconformal algebra that a superconformal primary multiplet can be

decomposed into several conformal primary multiplets. Consequently, the superconfor-

mal block is the summation of several conformal blocks with coefficients restricted by

∗This work has been published as an open access article [109] in Journal of High Energy Physics.
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supersymmetry. Previous results on 4D superconformal blocks have been presented in

[28, 102–106] based on the superconformal Casimir approach. These studies are primarily

focused on the four-point function of chiral-antichiral fields or conserved currents, which

are protected by short-conditions or symmetries. Superconformal invariants appearing

in the superconformal blocks cause the traditional superconformal Casimir approach to

become less helpful for the four-point functions of more general fields. Recently, a new

covariant approach based on the supershadow formalism has been proposed in [107] and

applied in [108] forN = 1 superconformal blocks corresponding to exchange of operators

neutral under the U(1)R symmetry.

The new covariant approach generalizes the embedding and shadow formalisms pro-

posed for CFTs and applies it to supersymmetric theories. The embedding formalism

[110–116] realizes conformal transformations linearly and provides a convenient way to

construct conformally covariant correlation functions. Specifically, the conformal co-

variance of correlation function is mapped into the Lorentz covariance of the correlation

function in embedding space. Recently, the embedding formalism has been widely used

to study the conformal blocks of spinor and tensor operators [117, 118, 61, 119? –121].

The SU(2, 2|N ) superconformal symmetry transformations can be linearly realized in the

supersymmetric generalization–superembedding space [122–126]. The shadow formalism

was first proposed in [127–129] and has been recently applied to computing conformal

blocks [116]. Using the shadow operators, one can construct projectors of the four-point

function which decomposes the four-point function into conformal blocks represented

by the exchanged primary operator. This provides an analytical method to compute the

conformal blocks. Its supersymmetric generalization gives a systematic method to study

the N = 1 superconformal blocks.

In this work we will apply the supershadow formalism to study the most general N =
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1 four-point functions of scalars, ⟨Φ1Φ2Φ3Φ4⟩, where the scalars Φi have independent

scaling dimensions and R-charges. The only constraint is from the vanishing net R-charges

of the four scalars so that the U(1)R symmetry is preserved. Through partial wave de-

composition the four-point function gives rise to the most general superconformal blocks,

which provide crucial ingredients for N = 1 superconformal bootstrap. Our results are

especially important for bootstrapping mixed correlators of scalars with arbitrary scaling

dimensions and R-charges, which are beyond previous results on N = 1 superconformal

blocks. An interesting problem is to bootstrap the mixed correlators between chiral and

real scalars which appear in the minimal 4D N = 1 SCFT [32, 62, 131].

The structure of this chapter is as follows: in section 2 we briefly review the su-

perembedding space, supershadow formalism and their roles in computing N = 1 super-

conformal partial waves; in section 3 we study the most general three-point correlators

consisting of two scalars and a spin-ℓ operator with arbitrary scaling dimensions and

U(1) R-charges; in section 4 we compute the superconformal partial waves, which are

the supershadow projection of the four-point function and obtained from products of two

three-point functions; in section 5 we present the final results on superconformal blocks,

and compare our general superconformal blocks with known examples as a non-trivial

consistent check. Conclusions are made in section 6. We will follow the conventions used

in [107, 108] throughout this thesis.

4.2 Brief Review of Superembedding Space and Supershadow Formalism

We briefly review the superembedding space and supershadow formalism, especially

for the techniques needed in our computation. More details on these topics are presented

in [122, 123, 116, 107, 108].

49



4.2.1 Superembedding Space

There are two equivalent ways to construct superspace in which the 4D N = 1

superconformal group SU(2, 2|1) acts linearly. A natural choice is to construct (anti-)

fundamental representation of SU(2, 2|1), the (dual) supertwistor YA ∈ C4|1 (ȲA):

YA =


Yα

Y α̇

Y5

 , ȲA =

(
Ȳ α Ȳα̇ Ȳ 5

)
, (4.1)

where Yα and Y α̇ are bosonic complex components while Y5 is fermionic. Representation

for extended supersymmetry N > 1 can be realized with more fermionic components in

the supertwistors.

The well-known 4D N = 1 chiral superspace (xα̇α+ , θαi ) can be reproduced from a pair

of supertwistors Ym
i , m = 1, 2, with following constraints

ȲnAYm
A = 0, m, n = 1, 2. (4.2)

Here one needs to fix the GL(2,C) gauge redundancy arising from the rotation of the two

supertwistors, and similarly for the dual supertwistors. Taking the gauge named “Poincaré

section", the supertwistor and its dual are simplified into

Ym
A =


δα

m

ixα̇m+

2θm

 , ȲnA =

(
−ixnα− δnα̇ 2θ̄n

)
. (4.3)

In the “Poincaré section" the constraints (4.2) turn into x+ − x− − 4iθ̄θ = 0 and can be
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solved by the chiral-antichiral coordinates of 4D N = 1 superspace.

The superembedding space provides another way to realize superconformal transfor-

mations linearly. Its coordinates are bi-supertwistors (X , X̄ )

XAB ≡ Ym
A Yn

Bϵmn, X̄AB ≡ Ȳ iAȲjBϵij, (4.4)

By construction, the bi-supertwistors are invariant under SL(2,C)× SL(2,C) and signif-

icantly reduce the gauge redundancies of supertwistors, besides, they satisfy the “null"

conditions

X̄ABXBC = 0. (4.5)

Superconformal invariants are obtained from superstraces of successive products of X ’s

and X̄ ’s. For example, the two-point invariant ⟨2̄1⟩ ≡ Tr(X̄2X1)
∗ is

⟨2̄1⟩ ≡ X̄AB
2 X1BA = −2(x2− − x1+ + 2iθ1σθ̄2)

2, (4.6)

where the last step is evaluated in the Poincaré section and it is easy to show that

⟨2̄1⟩† = ⟨1̄2⟩. (4.7)

TheN = 1 superconformal multiplets can be directly lifted to superembedding space.

There are four parameters to characterize a 4D N = 1 superconformal primary superfield

O: the SL(2,C) Lorentz quantum numbers ( ℓ
2
, ℓ̄
2
), the scaling dimension ∆ and U(1)R

charge RO. For SCFTs, usually it is more convenient to use superconformal weights q, q̄

q ≡ 1

2

(
∆+

3

2
RO

)
, q̄ ≡ 1

2

(
∆− 3

2
RO

)
(4.8)

∗Here and after the indices (j, k̄, · · · ) denote the superembedding variables (Xj , X̄k, · · · ).
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rather than the scaling dimension ∆. Given a superfield ϕβ̇1···β̇ℓ̄
α1···αℓ : ( ℓ

2
, ℓ̄
2
, q, q̄), its map in

superembedding space is a multi-twistor Φ A1···Aℓ
B1···Bℓ̄

(X , X̄ ) with homogeneity

Φ(λX , λ̄X ) = λ−q− ℓ
2 λ̄−q̄− ℓ̄

2Φ(X , X̄ ). (4.9)

The twistor indices make the computations cumbersome, especially for operators with

large spin ℓ. Such difficulty is overcome in [114] based on an index-free notation for

non-supersymmetric CFTs. The index-free notation is further generalized for N = 1 4D

SCFTs in [107]. The authors introduced pairs of null auxiliary twistors SA, S̄A : S̄ASA =

0, which are used to contract with twistor indices of lifted fields

Φ(X , X̄ ,S, S̄) ≡ S̄Bℓ̄ · · · S̄B1Φ A1···Aℓ
B1···Bℓ̄

SAℓ
· · · SA1 . (4.10)

By construction, Φ(X , X̄ ,S, S̄) is a polynomial of SA, S̄A while with no tensor index, and

conversely, one can reproduce the initial superfield from the index-free superembedding

fields Φ(X , X̄ ,S, S̄) through

ϕβ̇1···β̇ℓ̄
α1···αℓ

=
1

ℓ!

1

ℓ̄!

(
X̄
−→
∂S̄

)β̇1

· · ·
(
X̄
−→
∂S̄

)β̇ℓ̄

Φ(X , X̄ ,S, S̄)
(←−
∂SX

)
α1

· · ·
(←−
∂SX

)
αℓ

∣∣∣∣
Poincaré

.

(4.11)

To fix gauge redundancies in the lifted fields the auxiliary fields are set to be transverse

X̄ S = 0, S̄X = 0.

Strings with auxiliary fields, like S̄ijk̄l · · · m̄Sn are superconformal invariant so they

provide a new type of superconformal invariants besides the supertraces of superembed-

ding coordinates. Correlation functions are built from the two kinds of superconformal

invariants. In particular, the two-point function can be completely determined by imposing

homogeneity conditions.

52



It gets more difficult to evaluate three-point functions ⟨Φ1(1, 1̄)Φ2(2, 2̄)Φ3(3, 3̄)⟩. For

nonsupersymmetric CFTs, conformal symmetry and homogeneities of lifted fields are

sufficient to fix three-point functions up to a constant. For SCFTs, the degree of freedoms

of superembedding coordinates are notably enlarged by fermionic components, and it is

possible to construct superconformal invariant cross ratio even for three-point correlator.

In contrast, in CFTs it is impossible to construct conformal invariant cross ratio with fields

less than 4. The invariant cross ratio is built from supertraces [132, 133, 123]

u =
⟨12̄⟩⟨23̄⟩⟨31̄⟩
⟨21̄⟩⟨32̄⟩⟨13̄⟩

, (4.12)

which has no contribution on the homogeneity. As a consequence, the three-point function

can be arbitrary function of the cross ratio u. Denoting

z =
1− u
1 + u

, (4.13)

one can show that z is proportional to the fermionic components θi, θ̄i and satisfies

z3 = 0, z|1↔2 = z† = −z. (4.14)

Therefore the most general function of z appearing in the three-point function is up to

the second order. Considering its symmetry property under permutation 1 ↔ 2, there

are four free parameters in the general three-point functions [108]. Additional restrictions

like chirality can provide strong constraints on the parameters and simplify the three-point

functions drastically. More details on the three-point correlators of general scalars will be

studied in Section 3.
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4.2.2 Supershadow Formalism

The supershadow approach is based on the observation that two operatorsO : ( ℓ
2
, ℓ̄
2
, q, q̄)

and Õ : ( ℓ̄
2
, ℓ
2
, 1− q, 1− q̄) share the same superconformal Casimir so have non-vanishing

two-point function. Then the operator Õ, which is referred to shadow operator of O,

can be used to project the correlation functions onto irreducible representation of O,

i.e., the superconformal partial wave corresponding to exchange primary field O and its

descendants.

The shadow operator Õ can be constructed from O through

Õ(1, 1̄,S, S̄) ≡
∫
D[2, 2̄]

O†(2, 2̄, 2S̄, 2̄S)
⟨12̄⟩1−q+ ℓ

2 ⟨1̄2⟩1−q̄+ ℓ̄
2

, (4.15)

where D[2, 2̄] gives the superconformal measure. One can show that the operator obtained

from (4.15) has the expected quantum numbers of shadow operator Õ. Then it is straight-

forward to write down the projector

|O| = 1

ℓ!2ℓ̄!2

∫
M

D[1, 1̄]O(1, 1̄,S, S̄)⟩
(←−
∂S1
−→
∂T

)ℓ (←−
∂S̄ 1̄
−→
∂T̄

)ℓ̄

⟨Õ(1, 1̄, T , T̄ ) , (4.16)

in which the denotation M indicates “monodromy projection" [116]. By inserting the

projector |O| into the four-point function ⟨Φ1Φ2Φ3Φ4⟩ one can get the superconformal

partial waveWO

WO ∝ ⟨Φ1Φ2 |O|Φ3Φ4⟩, (4.17)

which corresponds to exchange O and its descendants. Here the supershadow projector

reduces the four-point function into a product of two three-point functions ⟨Φ1Φ2O⟩ and

⟨ÕΦ3Φ4⟩, which, as discussed before, can be easily obtained from superembedding for-

malism.

54



The remaining problem is to evaluate the integration in superembedding space. Nor-

mally the integrations involve both bosonic and fermionic components and are rather com-

plex, while for the scalar four-point functions, where the external fermionic components of

Φi are vanished θi ≡ θext = 0, it was proved in [107] that the integrations can be simplified

into non-supersymmetric cases

∫
D[Y , Ȳ ]g(X , X̄ )|θext=θ̄ext=0 =

∫
D4X∂2X̄g(X, X̄)|X̄=X , (4.18)

where the embedding coordinatesX’s are the bosonic part of superembedding coordinates

X ’s. Right hand side integration in embedding space has been comprehensively studied in

[116].

Combining all these materials together one can study the N = 1 superconformal

blocks analytically, and the results can be expressed in a compact form. Superconformal

partial wave WO for real (U(1)R neutral) O has been studied in [108]. In the following

part we will apply this method to solve the most general superconformal partial waves.

4.3 General Three-Point Functions

In this section we analyze the most general three-point function ⟨Φ1(1, 1̄)Φ2(2, 2̄)O(0, 0̄)⟩.

The scalars Φ1, Φ2 have independent superconformal weights (q1, q̄1) and (q2, q̄2), re-

spectively. The exchanged superprimary operator O has quantum numbers ( ℓ
2
, ℓ
2
,∆, RO),

where its U(1)R charge is RO = 2
3
R ≡ 2

3
(q̄1 + q̄2 − q1 − q2). From superembedding

coordinates, we can construct superconformal invariants ⟨ij̄⟩ with i, j ∈ 0, 1, 2, two

elementary tensor structures

S ≡ S̄12̄S
⟨12̄⟩

, S|1↔2 = S† ≡ S̄21̄S
⟨21̄⟩

, (4.19)
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and also the invariant cross ratio z. For superprimary operators O with spin-ℓ, it is use-

ful to construct following “eigen" tensor structures with parity ±(−1)ℓ under coordinate

interchange 1↔ 2:

Sℓ
− =

1

2

(
Sℓ + (−1)ℓ(1↔ 2)

)
,

S+S
ℓ−1
− =

1

2ℓ

(
Sℓ − (−1)ℓ(1↔ 2)

)
. (4.20)

All the spin-ℓ tensor structures Sm
+S

ℓ−m
− with m > 2 vanish due to the null condition of

S+.

The most general three-point function is constructed in terms of supertraces, invariant

cross ratio and tensor structures as follows:

⟨Φ1(1, 1̄)Φ2(2, 2̄)O(0, 0̄,S, S̄)⟩ =(
λ
(0)
Φ1Φ2O + λ

(1)
Φ1Φ2Oz + λ

(2)
Φ1Φ2Oz

2
)
Sℓ
− + λ

(3)
Φ1Φ2OS+S

ℓ−1
−

(⟨10̄⟩⟨20̄⟩)δ ⟨12̄⟩q1−δ⟨21̄⟩q2−δ⟨02̄⟩(q̄2−q1)+δ⟨01̄⟩(q̄1−q2)+δ
, (4.21)

where δ ≡ 1
4
(∆ + ℓ − R). The numerator contains four free coefficients according to the

properties of spin-ℓ tensor structures and invariant cross ratio z. It is straightforward to

show that the denominator satisfies the homogeneity conditions of the three operators,

but this is not the only choice. The homogeneity conditions can only fix the powers

of supertraces ⟨ij̄⟩ up to a free parameter. Specifically, one can adjust the powers of

supertraces through the identity

(
⟨12̄⟩
⟨10̄⟩⟨02̄⟩

)2a

=

(
⟨12̄⟩⟨21̄⟩

⟨10̄⟩⟨02̄⟩⟨01̄⟩⟨20̄⟩

)a

(1− 2az + 2a2z2), (4.22)

in the meanwhile, the coefficients λ(i)Φ1Φ2O will be transformed linearly. In (4.21) we have

adopted a particular gauge that the supertraces ⟨10̄⟩ and ⟨20̄⟩ have identical power. It will
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be more convenient to compute superconformal integration in this gauge.

4.3.1 Remarks on the Complex Coefficients

For the three-point correlator of scalars with arbitrary superconformal weights, it needs

to clarify the relationship between (λ
(i)
Φ1Φ2O)

∗ and λ(i)
Φ†

2Φ
†
1O† .

Let us evaluate three-point correlator ⟨Φ†
2(1, 1̄)Φ

†
1(2, 2̄)O†(0, 0̄)⟩. We can directly

apply Eq. (4.21) with the quantum numbers (0, 0, q̄2, q2), (0, 0, q̄1, q1), ( ℓ2 ,
ℓ
2
,∆,−RO):

⟨Φ†
2(1, 1̄)Φ

†
1(2, 2̄)O†(0, 0̄)⟩ =(

λ
(0)

Φ†
2Φ

†
1O† + λ

(1)

Φ†
2Φ

†
1O†z + λ

(2)

Φ†
2Φ

†
1O†z

2
)
Sℓ
− + λ

(3)

Φ†
2Φ

†
1O†S+S

ℓ−1
−

(⟨10̄⟩⟨20̄⟩)δ
′
⟨12̄⟩q̄2−δ′⟨21̄⟩q̄1−δ′⟨02̄⟩(q1−q̄2)+δ′⟨01̄⟩(q2−q̄1)+δ′

, (4.23)

where δ′ ≡ 1
4
(∆ + ℓ+R).

Alternatively, we can also solve above three-point correlator by taking Hermitian con-

jugate on (4.21) and then permuting coordinates 1 ↔ 2. Both the invariant cross ratio z

and the spin-ℓ tensor structure S are invariant under the combination actions of Hermitian

conjugate and coordinate permutation 1↔ 2, the new three-point function turns into

⟨Φ†
1(2, 2̄)Φ

†
2(1, 1̄)O†(0, 0̄)⟩ =(

(λ
(0)
Φ1Φ2O)

∗ + (λ
(1)
Φ1Φ2O)

∗z + (λ
(2)
Φ1Φ2O)

∗z2
)
Sℓ
− + (λ

(3)
Φ1Φ2O)

∗S+S
ℓ−1
−

(⟨01̄⟩⟨02̄⟩)δ ⟨12̄⟩q1−δ⟨21̄⟩q2−δ⟨10̄⟩(q̄2−q1)+δ⟨20̄⟩(q̄1−q2)+δ
.

(4.24)

To compare Eq. (4.24) with Eq. (4.23), we need to make a transformation (4.22) in E-

q. (4.24) with parameter

a =
q2 + q̄2 − q1 − q̄1

2
= −r

2
, (4.25)
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then the two equations share exactly the same denominator. Identifying the tensor struc-

tures in their numerators, we obtain following linear relationships among the complex

coefficients

λ
(0)

Φ†
2Φ

†
1O† = (λ

(0)
Φ1Φ2O)

∗,

λ
(1)

Φ†
2Φ

†
1O† = r(λ

(0)
Φ1Φ2O)

∗ + (λ
(1)
Φ1Φ2O)

∗,

λ
(2)

Φ†
2Φ

†
1O† =

1

2
r2(λ

(0)
Φ1Φ2O)

∗ + r(λ
(1)
Φ1Φ2O)

∗ + (λ
(2)
Φ1Φ2O)

∗ +
1

2
r(λ

(3)
Φ1Φ2O)

∗,

λ
(3)

Φ†
2Φ

†
1O† = (λ

(3)
Φ1Φ2O)

∗. (4.26)

By taking above complex conjugate transformation of the coefficients twice, we go back to

the original coefficients, as expected. The linear transformation turns into trivial (λ(i)Φ1Φ2O)
∗ =

λ
(i)

Φ†
2Φ

†
1O† given r = 0, i.e., scalars Φ1 and Φ2 share the same scaling dimension.

4.3.2 Three-point Functions with Chiral Operator

Three-point function can be significantly simplified if there is a chiral or anti-chiral op-

erator. Results obtained from these short multiplets will provide key elements to compute

the most general superconformal blocks.

Let us consider the three-point correlator ⟨Φ(1)X(2, 2̄)O(0, 0̄)⟩ which will be needed

to compute the shadow coefficients. The three-point correlator contains a chiral field Φ :

(0, 0, q1, 0), a general fieldX : (0, 0, q2, q̄2) and a spin-ℓ operatorO : ( ℓ
2
, ℓ

2
, ∆+R

2
, ∆−R

2
),

where R = q̄2 − q1 − q2. From the chirality of Φ, we can obtain the simplified three-point

function

⟨Φ(1)X(2, 2̄)O(0, 0̄,S, S̄)⟩ =

λΦXO S
ℓ

⟨12̄⟩ 12 (q1+q2+q̄2−∆−ℓ)⟨10̄⟩ 12 (q1−q2−q̄2+∆+ℓ)⟨20̄⟩q2⟨02̄⟩ 12 (−q1−q2+q̄2+∆+ℓ)
. (4.27)
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Taking the transformation (4.22) with a = 1
4
(∆ + ℓ + 2r + R), where r = q1 − q2 − q̄2,

the above equation turns into

⟨Φ(1)X(2, 2̄)O(0, 0̄,S, S̄)⟩ =

= λΦXO
(1− 2az + a (2a− ℓ)z2)Sℓ

− + ℓS+S
ℓ−1
−

⟨12̄⟩q1−q2−a⟨21̄⟩−a(⟨10̄⟩⟨20̄⟩)a+q2⟨01̄⟩a⟨02̄⟩a+q2+q̄2−q1
, (4.28)

which is consistent with the general three-point function (4.21) given q̄1 = 0, δ = a+ q2.

The four free coefficients are fixed by the chirality condition up to an overall constant.

Such a three-point function with real X appears in bootstrapping the mixed correlator of

minimal 4D N = 1 SCFT. In the theory, the scalar X appears in OPE Φ × Φ† so is real:

q2 = q̄2.

Similarly, one can use anti-chirality condition to partially fix the coefficients in three-

point function ⟨Φ(1̄)†X(2, 2̄)O(0, 0̄)⟩:

(λ
(0)

Φ†XO, λ
(2)

Φ†XO, λ
(1)

Φ†XO, λ
(3)

Φ†XO) = λΦ†XO(1, a
′(2a′ − ℓ), −2a′, ℓ), (4.29)

where a′ = 1
4
(∆ + ℓ−R), R = q̄1 + q̄2 − q2.

4.4 Superconformal Partial Waves

Now we are ready to study the most general four-point correlator

⟨Φ1(1, 1̄)Φ2(2, 2̄)Φ3(3, 3̄)Φ4(4, 4̄)⟩, (4.30)

where Φi have arbitrary superconformal weights (qi, q̄i) constrained by vanishing net R-

charges ∑
i

qi −
∑
i

q̄i = 0. (4.31)
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Here we are interested in the superconformal partial wave which gives the amplitude of

exchanging an irreducible representation of the N = 1 superconformal group. Let us

denote such irreducible representation by its superprimary field O : ( ℓ
2
, ℓ
2
,∆, RO). By

inserting the projector constructed from O and its shadow operator Õ into the four-point

correlator, the superconformal partial waveWO becomes

WO ∝ ⟨Φ1Φ2 |O|Φ3Φ4⟩ =
∫
D[0, 0̄]⟨Φ1Φ2O(0, 0̄,S, S̄)⟩

←→
Dℓ⟨Õ(0, 0̄, T , T̄ )Φ3Φ4⟩

=
1

⟨12̄⟩q1−δ⟨21̄⟩q2−δ⟨34̄⟩q3−δ′⟨43̄⟩q4−δ′

∫
D[0, 0̄] (4.32)

N f
ℓ

(⟨10̄⟩⟨20̄⟩)δ(⟨30̄⟩⟨40̄⟩)δ′⟨02̄⟩δ+q̄2−q1⟨01̄⟩δ+q̄1−q2⟨04̄⟩δ′+q̄4−q3⟨03̄⟩δ′+q̄3−q4
,

where δ = ∆+ℓ−R
4

, δ′ = 2+R+ℓ−∆
4

and
←→
Dℓ ≡ 1

ℓ!4
(∂S0∂T )

ℓ(∂S̄ 0̄∂T̄ )
ℓ. N f

ℓ represents the

tensor structures as defined in [108]:

N f
ℓ =

(
(λ

(0)
Φ1Φ2O + λ

(1)
Φ1Φ2Oz + λ

(2)
Φ1Φ2Oz

2)Sℓ
− + λ

(3)
Φ1Φ2OS+S

ℓ−1
−

)
←→
Dℓ

(
(λ

(0)

Φ3Φ4Õ
+ λ

(1)

Φ3Φ4Õ
z̃ + λ

(2)

Φ3Φ4Õ
z̃2)T ℓ

− + λ
(3)

Φ3Φ4Õ
T+T

ℓ−1
−

)
. (4.33)

In (4.33) we have applied the three-point function

⟨Φ3(3, 3̄)Φ4(4, 4̄)Õ(0, 0̄, T , T̄ )⟩ =(
λ
(0)

Φ3Φ4Õ
+ λ

(1)

Φ3Φ4Õ
z̃ + λ

(2)

Φ3Φ4Õ
z̃2
)
T ℓ
− + λ

(3)

Φ3Φ4Õ
T+T

ℓ−1
−

(⟨30̄⟩⟨40̄⟩)δ
′
⟨34̄⟩q3−δ′⟨43̄⟩q4−δ′⟨04̄⟩(q̄4−q3)+δ′⟨03̄⟩(q̄3−q4)+δ′

, (4.34)

where (z̃, T ℓ
±), like (z, Sℓ

±) in (4.21), are invariant cross ratio and tensor structures. Tensor

structures in N f
ℓ consist of the polynomial Nℓ

Nℓ ≡ (S̄12̄S)ℓ
←→
Dℓ(T̄ 34̄T )ℓ (4.35)
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and its coordinate exchanges. Giving θext = θ̄ext = 0 and X0 = X̄0, Nℓ reduces to

Nℓ = y
ℓ
2
0 C

(1)
ℓ (y0), (4.36)

where C(λ)
ℓ (y) are the Gegenbauer polynomials and

x0 ≡ − X13X20X40

2
√
X10X20X30X40X12X34

− (1↔ 2)− (3↔ 4) , (4.37)

y0 ≡
1

212
X10X20X30X40X12X34. (4.38)

For the four-point function of scalars, we are only interested in the lowest component

of a supermultiplet. To throw away irrelevant higher dimensional components, we set the

fermionic coordinates θext = θ̄ext = 0. The bi-supertwistorsXAB and X̃AB degenerate into

twistors Xαβ and Xαβ which are equivalent to the six dimensional vector representations

of SU(2, 2) ∼= SO(4, 2), and the supertraces ⟨ij̄⟩ become inner products of vectors Xij ≡

−2Xi ·Xj . Moreover, under the restriction θext = θ̄ext = 0 the superconformal integration

(4.33) can be simplified into nonsupersymmetric conformal integration, as suggested in

(4.18). To summarize, the superconformal partial waveWO is

WO|θext=0 ∝
1

Xq1+q2−2δ
12 Xq3+q4−2δ′

34

∫
D4X0 ∂

2
0̄

N f
ℓ

Dℓ

∣∣∣∣∣
0̄=0

, (4.39)

and Dℓ denotes the products of supertraces containing X0 or X̄0

Dℓ ≡ (X10̄X20̄)
δ(X30̄X40̄)

δ′Xδ+q̄2−q1
02̄

Xδ+q̄1−q2
01̄

Xδ′+q̄4−q3
04̄

Xδ′+q̄3−q4
03̄

. (4.40)

As shown in (4.39), there are only two steps to accomplish the superconformal integration

forWO: partial derivatives on N f
ℓ /Dℓ and conformal integration. The partial derivatives
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are straightforward to evaluate. The conformal integration related to Gegenbauer polyno-

mial C(1)
ℓ (x0) has been detailedly studied in [24, 116]. Since the result is fundamental for

our study we repreat it here for convenience

∫
M

D4X0
(−1)ℓC(1)

ℓ (x0)

X
∆+r
2

10 X
∆−r
2

20 X
∆̃+r̃
2

30 X
∆̃−r̃
2

40

= ξ∆,∆̃,r̃,ℓ

(
X14

X13

) r̃
2
(
X24

X14

) r
2

X
−∆

2
12 X

− ∆̃
2

34 gr,r̃∆,ℓ(u, v),

(4.41)

in which r ≡ ∆1 −∆2, r̃ ≡ ∆3 −∆4 and

ξ∆,∆̃,r̃,ℓ ≡
π2Γ(∆̃ + ℓ− 1)Γ(∆−r̃+ℓ

2
)Γ(∆+r̃+ℓ

2
)

(2−∆)Γ(∆ + ℓ)Γ( ∆̃−r̃+ℓ
2

)Γ( ∆̃+r̃+ℓ
2

)
. (4.42)

The conformal blocks gr,r̃∆,ℓ(u, v) are defined as usual

gr,r̃∆,ℓ(u, v) =
ρρ̄

ρ− ρ̄
[k∆+ℓ(ρ)k∆−ℓ−2(ρ̄)− (ρ↔ ρ̄)] ,

kβ(x) = x
β
2 2F1

(
β − r
2

,
β + r̃

2
, β, x

)
, (4.43)

where u, v are the standard conformal invariants and u = ρρ̄, v = (1− ρ)(1− ρ̄).

To apply the above results on conformal integrations, it is crucial to write the integrand

into a compact form in terms of Gegenbauer polynomials.

Giving θext = θ̄ext = 0, the only non-vanishing fermionic coordinates are θ0 and θ̄0

from bisupertwistors X0 and X̄0. Superconformal invariants proportional to the fermionic

coordinates therefore vanish at third and higher orders. Moreover, as shown in [108],

the tensor structure terms in N f
ℓ can be separated into symmetric (N+

ℓ ) or antisymmetric

(N−
ℓ ) parts according to their performances under coordinate interchange 1↔ 3, 2↔ 4:

N f
ℓ = N+

ℓ +N−
ℓ , (4.44)
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in which

N+
ℓ = Sℓ

−
←→
DℓT

ℓ
−

(
λ
(0)
Φ1Φ2Oλ

(0)

Φ3Φ4Õ
+ λ

(2)
Φ1Φ2Oλ

(0)

Φ3Φ4Õ
z2 + λ

(0)
Φ1Φ2Oλ

(2)

Φ3Φ4Õ
z̃2

+λ
(1)
Φ1Φ2Oλ

(1)

Φ3Φ4Õ
zz̃
)
+ Sℓ

−
←→
DℓT+T

ℓ−1
− λ

(1)
Φ1Φ2Oλ

(3)

Φ3Φ4Õ
z

+S+S
ℓ−1
−
←→
DℓT

ℓ
−λ

(3)
Φ1Φ2Oλ

(1)

Φ3Φ4Õ
z̃ + S+S

ℓ−1
−
←→
DℓT+T

ℓ−1
− λ

(3)
Φ1Φ2Oλ

(3)

Φ3Φ4Õ
, (4.45)

and

N−
ℓ = zSℓ

−
←→
DℓT

ℓ
−λ

(1)
Φ1Φ2Oλ

(0)

Φ3Φ4Õ
+ z̃Sℓ

−
←→
DℓT

ℓ
−λ

(0)
Φ1Φ2Oλ

(1)

Φ3Φ4Õ

+Sℓ
−
←→
DℓT+T

ℓ−1
− λ

(0)
Φ1Φ2Oλ

(3)

Φ3Φ4Õ
+ S+S

ℓ−1
−
←→
DℓT

ℓ
−λ

(3)
Φ1Φ2Oλ

(0)

Φ3Φ4Õ
. (4.46)

Contributions of the symmetric terms N+
ℓ on the superconformal partial wave WO

have been studied in detail in [108] under the restrictions

q1 = q̄2, q2 = q̄1, q3 = q̄4, q4 = q̄3. (4.47)

Under above restrictions, the coordinate interchange symmetry in N+
ℓ is further realized

in the whole integrand of superconformal partial waveWO. Due to this symmetry, it gets

much simpler to evaluate contributions on WO from the symmetric terms. For the most

general superconformal partial waves we do not have such restrictions on the superconfor-

mal weights, nevertheless, there is a free parameter related to the transformation (4.22),

and we can choose the gauge in which X10̄ (X30̄) and X20̄ (X40̄) have the same power,

then it is straightforward to calculate contributions of these terms onWO. More details on

the calculations are provided in Appendix B.

The major challenge comes from the four terms inN−
ℓ which are anti-symmetric under

the coordinate interchange 1 ↔ 3, 2 ↔ 4 (anti-symmetric terms). For the cases studied
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in [108], due to the restrictions (4.47), Dℓ is invariant under coordinate interchange 1 ↔

3, 2 ↔ 4, and contributions from anti-symmetric terms are cancelled automatically. For

general four-point functions there is no such coordinate interchange symmetry in Dℓ, and

contributions from terms in (4.46) are proportional to the differences of scaling dimensions

r, r̃.

4.4.1 Superconformal Integrations of Anti-symmetric Terms

In this section we evaluate superconformal integrations of the anti-symmetric terms

in (4.46) following the strategy discussed before. However, to apply the conformal inte-

gration formulas in (4.41), we need to figure out relationships between tensor structures in

N−
ℓ and the Gegenbauer polynomials. For tensor structures inN+

ℓ , the polynomials satisfy

coordinate interchange symmetry and can be simplified using Clifford algebra. Neverthe-

less, for tensor structures in N−
ℓ , the polynomials are anti-symmetric under coordinate

permutation and the Clifford algebra cannot help to simplify the polynomials directly.

Instead, we show that these polynomials possesses recursion relations which can be used

to determine the superconformal integrations.

The anti-symmetric terms in (4.46) consist of zNℓ

Dℓ
, z̃Nℓ

Dℓ
, Nℓ

Dℓ
and their coordinate ex-
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changes. The partial differentiations are

∂2
0̄

zNℓ

Dℓ
|0̄=0 = 2δ′

Nℓ

Dℓ

[
X13

X10X30
− X23

X20X30
+

X14

X10X40
− X24

X20X40

]
+
1

2

1

Dℓ

ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )ℓ−1

[
X12

X10X20
X10 (S2̄34̄T )

]
, (4.48)

∂2
0̄

z̃Nℓ

Dℓ

∣∣∣∣
0̄=0

= 2δ
Nℓ

Dℓ

[
X13

X10X30
+

X23

X20X30
− X14

X10X40
− X24

X20X40

]
+
1

2

1

Dℓ

ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )ℓ−1

[
X34

X30X40
X30 (S2̄14̄T )

]
, (4.49)

∂2
0̄

Nℓ

Dℓ

∣∣∣∣
0̄=0

= −Nℓ

Dℓ

[
4δ2

X12

X10X20
+ 4δ′2

X34

X30X40
+ 4δδ′

(
X13

X10X30
+

X23

X20X30
+

X14

X10X40

+
X24

X20X40

)]
+

1

2

1

Dℓ

ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )ℓ−1

[
2δ

X12

X10X20
(X10S2̄34̄T )

+2δ′
X34

X30X40
(X30S2̄14̄T )

]
. (4.50)

For the terms proportional to Nℓ, their conformal integrations can be evaluated directly

using Eq. (4.41). The results are provided in Appendix B. While for extra terms, we need

to find their relationships with Gegenbauer polynomials before we can apply Eq. (4.41).

Tensor structures in (4.46) can be expanded in terms of Nℓ and its coordinate exchanges

as

Sℓ
−
←→DℓT

ℓ
− =

Nℓ

4⟨12̄⟩ℓ⟨34̄⟩ℓ
+ (−1)ℓ(1↔ 2) + (−1)ℓ(3↔ 4), (4.51)

Sℓ
−
←→
DℓT+T

ℓ−1
− =

Nℓ

4ℓ⟨12̄⟩ℓ⟨34̄⟩ℓ
+ (−1)ℓ(1↔ 2)− (−1)ℓ(3↔ 4), (4.52)

S+S
ℓ−1
−
←→
DℓT

ℓ
− =

Nℓ

4ℓ⟨12̄⟩ℓ⟨34̄⟩ℓ
− (−1)ℓ(1↔ 2) + (−1)ℓ(3↔ 4), (4.53)
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which lead to following polynomial terms in the conformal integrand

Rℓ ≡
ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )
ℓ−1×

(X10S2̄34̄T +X20S1̄34̄T −X10S2̄43̄T −X20S1̄43̄T ) , (4.54)

Pℓ ≡
ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )
ℓ−1×

(X30S2̄14̄T +X40S2̄13̄T −X30S1̄24̄T −X40S1̄23̄T ) . (4.55)

Appendix A shows that the above polynomials satisfy the recursion relations

Rℓ = ℓ∆ANℓ−1 +
1

26
(ℓ− 1)X10X20X34∆BNℓ−2 + y0Rℓ−2, (4.56)

Pℓ = ℓ∆BNℓ−1 +
1

26
(ℓ− 1)X30X40X12∆ANℓ−2 + y0Pℓ−2. (4.57)

The conformal integrations related to Rℓ and Pℓ are

∫
D4X0

X12

X10X20

Rℓ

Dℓ

∣∣∣∣
0̄=0

=
8 cℓ ξ∆+2,2−∆,1+r̃,ℓ−1

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2

×[
− 4r̃∆(ℓ+ 1)(∆− ℓ)

(∆− 1)(∆ + r̃ − ℓ)(∆ + r̃ + ℓ)
gr,r̃∆+1,ℓ−1

+
rℓ(∆− ℓ)(∆− r̃ + ℓ)

(∆ + ℓ)(∆ + ℓ+ 1)(∆ + r̃ − ℓ)
gr,r̃∆+2,ℓ

]
, (4.58)∫

D4X0
X34

X30X40

Pℓ

Dℓ

∣∣∣∣
0̄=0

=
8 cℓ ξ∆,4−∆,1+r̃,ℓ−1

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2

×[
−r(∆− 2)(ℓ+ 1)(−∆+ r̃ + ℓ+ 2)(∆− r̃ + ℓ− 2)

4(∆− 1)(−∆+ ℓ+ 1)(−∆+ ℓ+ 2)(∆ + ℓ− 1)
gr,r̃∆+1,ℓ−1

− r̃ℓ(∆− r̃ + ℓ− 2)

(∆ + ℓ− 1)(∆ + r̃ − ℓ− 2)
gr,r̃∆,ℓ

]
, (4.59)

where cℓ = 2−6ℓ. The above equations can be proven using mathematical induction based

on the recursion relations (4.56) and (4.57). Conformal integrations in (4.58) and (4.59),

together with the results presented in Appendix B, provide all the necessary materials to
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compute the superconformal partial wavesWO for general scalars Φi. Here we present the

final results of superconformal partial wave (4.39):

WO ∝ 1

X
∆1+∆2

2
12 X

∆3+∆4
2

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2

×(
a1 g

r,r̃
∆,ℓ + a2 g

r,r̃
∆+1,ℓ+1 + a3 g

r,r̃
∆+1,ℓ−1 + a4 g

r,r̃
∆+2,ℓ

)
, (4.60)

in which the coefficients ai are the abbreviations of following long expressions:

a1 = 2λ
(0)
Φ1Φ2O

[
−δ′

(
1 + 2δ

(2−∆)r̃2 − (ℓ+ 2−∆)(∆ + ℓ)

(∆− 1)(ℓ+ 2−∆)(∆ + ℓ)

)
λ
(0)

Φ3Φ4Õ
+ λ

(2)

Φ3Φ4Õ

+
r̃((∆− 2)R + (−∆+ ℓ+ 2)(∆ + ℓ))

2(−∆+ ℓ+ 2)(∆ + ℓ)
λ
(1)

Φ3Φ4Õ
+
r̃(R + ℓ+ 2−∆)

4(−∆+ ℓ+ 2)
λ
(3)

Φ3Φ4Õ

]
,

(4.61)

a2 = −(∆− 2)(∆− r̃ + ℓ)(∆ + r̃ + ℓ)

4(∆− 1)(∆ + ℓ)(∆ + ℓ+ 1)

×
(
λ
(1)
Φ1Φ2O +

r(∆−R + ℓ)

2(∆ + ℓ)
λ
(0)
Φ1Φ2O

)(
λ
(1)

Φ3Φ4Õ
+
r̃(R + ℓ+ 2−∆)

2(−∆+ ℓ+ 2)
λ
(0)

Φ3Φ4Õ

)
,

(4.62)

a3 = −(∆− 2)(∆− r̃ − ℓ− 2)(∆ + r̃ − ℓ− 2)

4(∆− 1)(−∆+ ℓ+ 1)(−∆+ ℓ+ 2)

×
(
λ
(1)
Φ1Φ2O +

ℓ+ 1

ℓ
λ
(3)
Φ1Φ2O +

r(−∆+R + ℓ+ 2)

2(−∆+ ℓ+ 2)
λ
(0)
Φ1Φ2O

)
×
(
λ
(1)

Φ3Φ4Õ
+
ℓ+ 1

ℓ
λ
(3)

Φ3Φ4Õ
+
r̃(∆−R + ℓ)

2(∆ + ℓ)
λ
(0)

Φ3Φ4Õ

)
, (4.63)

a4 = 2λ
(0)

Φ3Φ4Õ
(∆− 2)(−∆− r̃ + ℓ+ 2)(−∆+ r̃ + ℓ+ 2)(∆− r̃ + ℓ)(∆ + r̃ + ℓ)

16∆(−∆+ ℓ+ 1)(−∆+ ℓ+ 2)(∆ + ℓ)(∆ + ℓ+ 1)

×
[
−δ

(
1− 2δ′

(r2∆− (∆ + ℓ)(−∆+ ℓ+ 2))

(∆− 1)(−∆+ ℓ+ 2)(∆ + ℓ)

)
λ
(0)
Φ1Φ2O + λ

(2)
Φ1Φ2O

+
r(∆(−∆+R + 2) + ℓ(ℓ+ 2))

2(−∆+ ℓ+ 2)(∆ + ℓ)
λ
(1)
Φ1Φ2O +

r(∆−R + ℓ)

4(∆ + ℓ)
λ
(1)
Φ1Φ2O

]
. (4.64)

Several interesting properties appear in the above long expressions of coefficients ai.
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Ignoring the constant term, a1 and a4 are related to each other through a transformation

∆↔ 2−∆, r ↔ r̃, R↔ −R, λ(i)Φ1Φ2O ↔ λ
(i)

Φ3Φ4Õ
, (4.65)

while a2 and a3 are invariant under this transformation. Such symmetry is expected since

it corresponds to exchange the roles of operator O and its supershadow operator Õ.

4.5 Superconformal Blocks

Conformal blocks are obtained from conformal partial waves by dropping some trivial

factors. The N = 1 superconformal block Gr,r̃∆,ℓ is related to the superconformal partial

waveWO through

Gr,r̃∆,ℓ = X
∆1+∆2

2
12 X

∆3+∆4
2

34

(
X24

X14

)− r
2
(
X14

X13

)− r̃
2

WO. (4.66)

By applying the results onWO (4.60-4.64), one can get the superconformal block in terms

of λ(i)Φ1Φ2O and λ(i)
Φ3Φ4Õ

. The supershadow coefficients λ(i)
Φ3Φ4Õ

need to be transformed into

the normal coefficients λ(i)
Φ3Φ4O† . In principle, one can solve the transformation between the

two types of coefficients by inserting the integral expression of the supershadow operator

Õ (4.15) in the three-point function ⟨Φ3(3, 3̄)Φ4(4, 4̄)Õ(0, 0̄, T , T̄ )⟩ (4.34). However it

needs to evaluate a complex superconformal integration to obtain the results. A simpler

method is proposed in [108] which applies the unitarity of SCFTs. In this work, the uni-

tarity of SCFTs is also employed to solve the transformation of supershadow coefficients.

Giving Φ3 = Φ†
2 and Φ4 = Φ†

1, the unitarity of the four-point function ⟨Φ1Φ2Φ
†
2Φ

†
1⟩

requires the coefficients ai (4.61-4.64) of four conformal blocks in Gr,r̃∆,ℓ to be positive. To

apply the unitary condition we need to go back to the coefficients (λ
(i)
Φ1Φ2O)

∗ rather than

use λ(i)
Φ†

2Φ
†
1O† directly. At first it is not clear whether there is a linear map connecting λ(i)

Φ†
2Φ

†
1Õ
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with (λ
(i)
Φ1Φ2O)

∗. Possible transformations among the three types of coefficients are shown

in graph as below

λ
(i)

Φ†
2Φ

†
1Õ

H0
((QQ

QQQ
QQQ

QQQ
QQQ

Q

H1 // (λ
(i)
Φ1Φ2O)

∗

H2

��

λ
(i)

Φ†
2Φ

†
1O†

in which H2 has already been solved in (4.26). Since both H0 and H2 are linear transfor-

mations, H1 = H0 · H−1
2 is linear as well. In practice, we will firstly calculate H1 based

on the unitarity of superconformal partial waves and then solve H0 in terms of H1 and H2.

The transformation H1 has been solved in Appendix C, and the most general N = 1

superconformal block Gr,r̃∆,ℓ is written in terms of λ(i)Φ1Φ2O and (λ
(i)

Φ†
4Φ

†
3O
)∗. Transformation

from (λ
(i)

Φ†
4Φ

†
3O
)∗ to λ(i)

Φ3Φ4O† has been solved in (4.26), its inverse map gives H2(r̃):



(λ
(0)

Φ†
4Φ

†
3O
)∗

(λ
(2)

Φ†
4Φ

†
3O
)∗

(λ
(1)

Φ†
4Φ

†
3O
)∗

(λ
(3)

Φ†
4Φ

†
3O
)∗


=



1 0 0 0

1
2
r̃2 1 r̃ 1

2
r̃

r̃ 0 1 0

0 0 0 1





λ
(0)

Φ3Φ4O†

λ
(2)

Φ3Φ4O†

λ
(1)

Φ3Φ4O†

λ
(3)

Φ3Φ4O†


, (4.67)

and it satisfies

H2(r) ·H2(−r) = I4×4, (4.68)

which is expected since the coefficients are invariant by taking complex conjugate twice.

It is straightforward to get transformation H0 by combining the results of H1 and H2.
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Here we do not present the explicit expression of H0. TheN = 1 superconformal block is

Gr,r̃∆,ℓ = a1 g
r,r̃
∆,ℓ + a2 g

r,r̃
∆+1,ℓ+1 + a3 g

r,r̃
∆+1,ℓ−1 + a4 g

r,r̃
∆+2,ℓ, (4.69)

in which the coefficients of individual conformal blocks ai are written in terms of λ(i)Φ1Φ2O

and λ(i)
Φ3Φ4O†

a1 = λ
(0)
Φ1Φ2Oλ

(0)

Φ3Φ4O† , (4.70)

a2 =
∆+ ℓ

(∆ + ℓ+ 1)(∆−R+ ℓ)(∆ +R+ ℓ)

(
λ
(1)
Φ1Φ2O +

r(∆−R+ ℓ)

2(∆ + ℓ)
λ
(0)
Φ1Φ2O

)
×
(
λ
(1)

Φ3Φ4O† +
r̃(∆ +R+ ℓ)

2(∆ + ℓ)
λ
(0)

Φ3Φ4O†

)
, (4.71)

a3 =
ℓ+ 2−∆

(−∆+ ℓ+ 1)(−∆−R+ ℓ+ 2)(−∆+R+ ℓ+ 2)

×
(
λ
(1)
Φ1Φ2O +

ℓ+ 1

ℓ
λ
(3)
Φ1Φ2O +

r(−∆+R+ ℓ+ 2)

2(−∆+ ℓ+ 2)
λ
(0)
Φ1Φ2O

)
×
(
(λ

(1)

Φ3Φ4O† +
ℓ+ 1

ℓ
λ
(3)

Φ3Φ4O† +
r̃(−∆−R+ ℓ+ 2)

2(−∆+ ℓ+ 2)
λ
(0)

Φ3Φ4O†

)
, (4.72)

a4 =
4(∆− 1)2(−∆+ ℓ+ 2)(∆ + ℓ)

∆2(ℓ+ 1−∆)(∆ + ℓ+ 1)(ℓ+ 2−R−∆)(ℓ+ 2 +R−∆)(∆−R+ ℓ)(∆ +R+ ℓ)
×[

−
(∆−R+ ℓ)

(
R
(
ℓ(ℓ+ 2)−∆

(
∆+ r2 − 2

))
+ (ℓ+ 2−∆)

(
(∆ + ℓ)2 −∆r2

))
8(∆− 1)(ℓ+ 2−∆)(∆ + ℓ)

λ
(0)
Φ1Φ2O

+λ
(2)
Φ1Φ2O +

r(∆(R+ 2−∆) + ℓ(ℓ+ 2))

2(ℓ+ 2−∆)(∆ + ℓ)
λ
(1)
Φ1Φ2O +

r(∆−R+ ℓ)

4(∆ + ℓ)
λ
(1)
Φ1Φ2O

]
×[

(∆ +R+ ℓ)
(
R
(
ℓ(ℓ+ 2)−∆

(
∆+ r̃2 − 2

))
− (ℓ+ 2−∆)

(
(∆ + ℓ)2 −∆r̃2

))
8(∆− 1)(ℓ+ 2−∆)(∆ + ℓ)

λ
(0)

Φ3Φ4O†

+λ
(2)

Φ3Φ4O† +
r̃(∆(−R+ 2−∆) + ℓ(ℓ+ 2))

2(ℓ+ 2−∆)(∆ + ℓ)
λ
(1)

Φ3Φ4O† +
r̃(∆ +R+ ℓ)

4(∆ + ℓ)
λ
(3)

Φ3Φ4O†

]
. (4.73)

Comparing with the superconformal blocks (C.23-C.26) in terms of (λ
(i)

Φ†
4Φ

†
3O
)∗, above

superconformal blocks show improved symmetry that terms appear in pairs with corre-

spondences

λ
(i)
Φ1Φ2O ↔ λ

(i)

Φ3Φ4O† , r ↔ r̃, R↔ −R. (4.74)

Taking r = r̃ = R = 0, the coefficients ai presented in (4.70-4.73) reduce to the
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results obtained in [108]. Under the chirality or current conservation conditions, the results

in [108] can reproduce the four-point function of chiral scalars ⟨ϕϕ†ϕϕ†⟩ [28] and the

four-point function of scalars in the global symmetry current multiplets ⟨J1J2J3J4⟩ [105,

106]. For non-vanishing r, r̃, and R, if certain fields Φ’s in four-point function satisfy

shortening conditions, like chirality, the tensor structures can be simplified and there will

be strong constraints on the coefficients λ(i)ΦiΦ2O. In this case the superconformal blocks

can be conveniently solved through superconformal Casimir approach [107, 57, 63]. As a

non-trivial check, we compare our work with previous results on N = 1 superconformal

blocks obtained from superconformal Casimir approach [57, 63].

In [57] superconformal blocks in SCFTs with four supercharges have been studied.

The authors considered four-point function ⟨Φ1(1)X1(2, 2̄)Φ2(3)X2(4, 4̄)⟩, in which Φ1,2

are chiral, while X1,2 are scalars with arbitrary superconformal weights. As shown in

(4.28), chirality conditions of Φ1 and Φ2 lead to following constraints on the coefficients

(λ
(0)
Φ1X1O, λ

(2)
Φ1X1O, λ

(1)
Φ1X1O, λ

(3)
Φ1X1O) = λΦ1X1O(1, e1(2e1 − ℓ), − 2e1, ℓ), (4.75)

(λ
(0)

Φ2X2O† , λ
(2)

Φ2X2O† , λ
(1)

Φ2X2O† , λ
(3)

Φ2X2O†) = λΦ2X2O†(1, e2(2e2 − ℓ), − 2e2, ℓ), (4.76)

where parameters e1 and e2 are

e1 =
1

4
(∆ + ℓ+ 2r +R), e2 =

1

4
(2−∆+ ℓ+ 2r̃ −R), (4.77)

and here the scaling dimension differences r and r̃ become r = ∆Φ1 −∆X1 , r̃ = ∆Φ2 −

∆X2 . Plugging these constraints in (4.70-4.73), coefficients of conformal blocks in Gr,r̃∆,ℓ
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turn into

a1 = λΦ1X1OλΦ2X2O† , (4.78)

a2 =
(∆ + r + ℓ)(∆ + r̃ + ℓ)

4(∆ + ℓ)(∆ + ℓ+ 1)
λΦ1X1OλΦ2X2O† , (4.79)

a3 =
(∆ + r − ℓ− 2)(∆ + r̃ − ℓ− 2)

4(−∆+ ℓ+ 1)(−∆+ ℓ+ 2)
λΦ1X1OλΦ2X2O† , (4.80)

a4 =
(∆ + r − ℓ− 2)(∆ + r̃ − ℓ− 2)(∆ + r + ℓ)(∆ + r̃ + ℓ)

16(−∆+ ℓ+ 1)(−∆+ ℓ+ 2)(∆ + ℓ)(∆ + ℓ+ 1)
λΦ1X1OλΦ2X2O† ,

(4.81)

which are in agreement with the results obtained in [57]. N = 1, 2 superconformal blocks

of chiral-antichiral scalars are also presented in [63], in which the four-point correlator

⟨Φ1Φ̄2Φ2Φ̄1⟩ consists of chiral-antichiral scalars with arbitrary U(1) R-charges. For the

N = 1 case, the superconformal blocks are related to above coefficients ai with the

constraint r̃ = −r and are well consistent with our results.

4.6 Discussion

In this work we have computed the most generalN = 1 superconformal partial waves

WO ∝ ⟨Φ1Φ2|O|Φ3Φ4⟩, in which the scalars Φi have arbitrary scaling dimensions and

U(1) R-charges. Our computations are based on the superembedding space formalism and

supershadow approach, which provide a systematic way to study N = 1 superconformal

blocks. Unitarity of SCFTs has been used to evaluate the coefficients in the three-point

function of supershadow operator. Besides, it shows deep connections between conformal

field theories and mathematical properties of hypergeometric functions throughout the

computations. Our results nicely reproduce all the known results on the N = 1 super-

conformal blocks under certain restrictions.

The superconformal blocks of operators with arbitrary scaling dimensions and R-
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charges are crucial ingredients for the mixed operator conformal bootstrap, and our results

provide necessary materials for bootstrapping any N = 1 SCFTs. An attractive problem

is the 4D N = 1 minimal SCFT, which has no Lagrangian description and its existence is

only revealed in superconformal bootstrap [32, 62]. More details of the theory are expected

to be studied through bootstrapping the mixed operator correlators [131]. Our current

results on the SCFTs are limited to 4D N = 1 scalars, and obviously it can be generalized

from three aspects: dimension of spacetime, number of supercharges and spin of the fields

in four-point correlator. The supershadow approach has impressive successes in solving

4DN = 1 scalar superconformal blocks, we hope this method, and its generalizations can

be used to obtain the superconformal blocks of spinning operators in other dimensional

spacetime with different supercharges.
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5. BOOTSTRAPPING 4D N = 1 MINIMAL SCFT

5.1 Introduction

Conformal bootstrap has been shown to be powerful to study CFTs in higher dimen-

sions D > 2. Up to now most of the works on conformal bootstrap are targeted on these

CFTs whose existences and properties have already been partially known, such as the

3D Ising model, O(N) vector model [46, 58] and 5D cubic model [69]. The conformal

bootstrap approach is also expected to uncover new CFTs which are not known before

based on the classical approaches. Actually we do have such an example, the so-called 4D

N = 1 minimal SCFT. Evidence on this theory was first shown in [32] by bootstrapping

the four-point correlator ⟨ΦΦ†ΦΦ†⟩. The authors noticed the boundary of the scaling

dimension ∆X (X ∼ ΦΦ†) shows clear kink, which is expected to correspond to an

interacting SCFT. This theory has been studied further in [62], in which it suggests the

theory admits the chiral ring condition Φ2 = 0. The OPE coefficient cΦΦΦ2 admits lower

bound as a function of ∆Φ and it disappears for a special value of ∆Φ = ∆∗
Φ where the

kink locates. Moreover, the scaling dimension of the chiral operator Φ is estimated to

be ∆Φ = 10
7

(we will show that this estimation on ∆Φ actually is not precise.) while

the c central charge is about cm = 1
9

[70]. In [70] the authors bootstrapped the mixed

correlators with operators Φ and X in order to isolate the physically allowed region of

(∆Φ,∆X) into a small island, nevertheless the attempt fails to obtain an isolated region.

The superconformal bootstrap is more difficult than these of non-supersymmetric theories

since the superconformal block function and also the crossing equations are more complex.

In this chapter, we will bootstrap the mixed correlators including both the chiral op-

erator Φ and the first non-unitary scalar operator X from the OPE ΦΦ†. The results
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on superconformal block function obtained in chapter 3 are crucial ingredients for this

study. Specifically, the mixed correlator ⟨ΦXΦ†X⟩ involves the superconformal block

function corresponding to propagating operators with non-vanishing U(1)R charge and

its analytical expression was not known before our work [109]. We will write down the

crossing equations corresponding to the mixed correlators with Φ and X , which form a

7× 1 vector equation. By applying certain mild assumptions on the spectra we will show

that the physically allowed region of (∆Φ,∆X) can be isolated into a rather small island,

or in other word, we are able to solve this minimal SCFT approximately!

5.2 Crossing equations of the 4D N = 1 minimal SCFT

We assume there is one chiral superfield Φ in the minimal SCFT, its OPE reads

ΦΦ† ∼ 1 + λΦΦ†XX + · · · , (5.1)

where the superfieldX is real, besides, the superfield Φ is expected to satisfy the the chiral

ring relation

Φ2 ∼ 0, (5.2)

i.e., there is no extra chiral superprimary multiplet appearing in the OPE of Φ, neither in

the minimal SCFT.

To bootstrap the minimal SCFT with superprimary fields Φ and X , we study the
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following four point correlation functions

⟨Φ(1)Φ†(2̄)Φ(3)Φ†(4̄)⟩

⟨Φ(1)Φ†(2̄)X(3, 3̄)X(4, 4̄)⟩

⟨X(1, 1̄)X(2, 2̄)X(3, 3̄)X(4, 4̄)⟩

⟨Φ(1)X(2, 2̄)X(3, 3̄)Φ†(4̄)⟩

⟨X(1, 1̄)Φ(2)X(3, 3̄)Φ†(4̄)⟩.

The bootstrap equations for each correlation function are listed as below.

5.2.1 Crossing equations for ⟨Φ(1)Φ†(2̄)Φ(3)Φ†(4̄)⟩

The four point correlation function of Φ has already been solved before [28], the results

are

∑
O∈ΦΦ†

λ2ΦΦ†O


F∆,ℓ

F̃∆,ℓ

H̃∆,ℓ

+
BPS∑

O∈ΦΦ

λ2ΦΦO


0

F2d+ℓ,ℓ

−H2d+ℓ,ℓ

+
non-BPS∑
O∈ΦΦ

λ2ΦΦO


0

F∆,ℓ

−H∆,ℓ

 = 0,

where

F∆,ℓ ≡ F∆,ℓ +
(∆ + ℓ)

4(∆ + ℓ+ 1)
F∆+1,ℓ+1 +

(∆− ℓ− 2)

4(∆− ℓ− 1)
F∆+1,ℓ−1

+
(∆ + ℓ)(∆− ℓ− 2)

16(∆ + ℓ+ 1)(∆− ℓ− 1)
F∆+2,ℓ. (5.3)

Expressions for F̃ and H̃ are similar but with an extra factor (−1)ℓ.
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5.2.2 Crossing equations for ⟨X(1, 1̄)X(2, 2̄)X(3, 3̄)X(4, 4̄)⟩

For this four point correlation function we can directly apply the results presented in

[108], by taking Ai = Bi = X . Firstly, we need to figure out the constraints on the OPE

coefficients λi.

Since each operator is identical with superconformal weights q2, q̄2 = q2, the three

point function of ⟨X(1, 1̄)X(2, 2̄)O(0, 0̄)⟩ reads

⟨X(1, 1̄)X(2, 2̄)O(0, 0̄,S, S̄)⟩ =

(
λ
(0)
XXO + λ

(1)
XXOz + λ

(2)
XXOz

2
)
Sℓ
− + λ

(3)
XXOS+S

ℓ−1
−

⟨12̄⟩q2− 1
4
(∆+ℓ)⟨21̄⟩q2− 1

4
(∆+ℓ)(⟨01̄⟩⟨10̄⟩⟨02̄⟩⟨20̄⟩) 1

4
(∆+ℓ)

,

(5.4)

above three point function should be invariant under transformation 1 ↔ 2. Both z and

S− are antisymmetric under this transformation, while S+ is symmetric. So we have

λ
(1)
XXO = λ

(3)
XXO = 0 for even ℓ (5.5)

λ
(0)
XXO = λ

(2)
XXO = 0 for odd ℓ. (5.6)

There is no limitation on the non-vanishing OPE coefficients.

Plug the constraints on the OPE coefficients in Eq. (5.2) of [108], we get the conformal

block

GN=1|XX;XX
∆,ℓ =

∣∣∣λ(0)XXO

∣∣∣2 g∆,ℓ +

+

∣∣∣(∆ + ℓ)2λ
(0)
XXO − 8(∆− 1)λ

(2)
XXO

∣∣∣2
16∆2(∆− ℓ− 1)(∆− ℓ− 2)(∆ + ℓ)(∆ + ℓ+ 1)

g∆+2,ℓ, (5.7)
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for even ℓ, and

GN=1|XX;XX
∆,ℓ =

∣∣∣λ(1)XXO

∣∣∣2
(∆ + ℓ)(∆ + ℓ+ 1)

g∆+1,ℓ+1

+

∣∣∣λ(1)XXO + ℓ+1
ℓ
λ
(3)
XXO

∣∣∣2
(∆− ℓ− 1)(∆− ℓ− 2)

g∆+1,ℓ−1 (5.8)

for odd ℓ. Note that for odd ℓ it is the conformal block function with even spin (ℓ ± 1)

g∆+1,ℓ±1 involving in the bootstrap, the same as the cases with even ℓ.

Switching 1↔ 2 in the superconformal block expansion gives the crossing relation

∑
O∈X×X

G∆,ℓ(u, v) = (
u

v
)2q2

∑
O∈X×X

G∆,ℓ(v, u). (5.9)

Note that the OPE coefficient λXXO has already been absorbed in the conformal block

G∆,ℓ(u, v). The crossing relation can be further modified as

∑
O∈X×X

∣∣∣λ(0)XXO

∣∣∣2E∆,ℓ(u, v) +

∑
O∈X×X

∣∣∣(∆ + ℓ)2λ
(0)
XXO − 8(∆− 1)λ

(2)
XXO

∣∣∣2
16∆2(∆− ℓ− 1)(∆− ℓ− 2)(∆ + ℓ)(∆ + ℓ+ 1)

E∆+2,ℓ(u, v) = 0,

(5.10)

for even ℓ, and

∑
O∈X×X

∣∣∣λ(1)XXO

∣∣∣2
(∆ + ℓ)(∆ + ℓ+ 1)

E∆+1,ℓ+1 +
∑

O∈X×X

∣∣∣λ(1)XXO + ℓ+1
ℓ
λ
(3)
XXO

∣∣∣2
(∆− ℓ− 1)(∆− ℓ− 2)

E∆+1,ℓ−1 = 0

(5.11)
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for odd ℓ, where

E∆,ℓ(u, v) ≡
v2q2g∆,ℓ(u, v)− u2q2g∆,ℓ(v, u)

u2q2 − v2q2
, (5.12)

E0,0(u, v) = −1. (5.13)

Here we only get one bootstrap equation, while for chiral superprimary field Φ, we get

three bootstrap equations instead. Such difference is reasonable since for Φ, they three

equations are essentially from the different symmetry factors of the U(1) ≃ SO(2), while

the real field X is just the singlet of the U(1) symmetry.

5.2.3 Crossing equations for ⟨Φ(1)Φ†(2̄)X(3, 3̄)X(4, 4̄)⟩

Due to the mixing of two different superprimary fields Φ andX , we need to solve three

different types of four point correlation functions, which are ⟨Φ(1)Φ†(2̄)X(3, 3̄)X(4, 4̄)⟩,

⟨Φ(1)X(2, 2̄)X(3, 3̄)Φ†(4̄)⟩ and ⟨X(1, 1̄)Φ(2)X(3, 3̄)Φ†(4̄)⟩.

5.2.3.1 ⟨Φ(1)Φ†(2̄)X(3, 3̄)X(4, 4̄)⟩:

This channel still belongs to the case already solved in [108] by taking Ai = Φ, Bi =

X . In consequence, the OPE coefficients λi admit the constraints

λ
(1)

ΦΦ†O = −1

2
(∆ + ℓ)λ

(0)

ΦΦ†O,

λ
(2)

ΦΦ†O =
1

8
(∆ + ℓ)(∆− ℓ)λ(0)

ΦΦ†O,

λ
(1)

ΦΦ†O = ℓ λ
(0)

ΦΦ†O,

λ
(1)
XXO = λ

(3)
XXO = 0 for even ℓ,

λ
(0)
XXO = λ

(2)
XXO = 0 for odd ℓ. (5.14)
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Denote λ(0)
ΦΦ†O = λΦΦ†O, the conformal block functions for the correlation function are

GN=1|ΦΦ†;XX
∆,ℓ = λΦΦ†Oλ

(0)
XXO g∆,ℓ

−λΦΦ†O
(∆ + ℓ)2λ

(0)
XXO − 8(∆− 1)λ

(2)
XXO

16∆(∆− ℓ− 1)(∆ + ℓ+ 1)
g∆+2,ℓ (5.15)

for even ℓ and

GN=1|ΦΦ†;XX
∆,ℓ = − λΦΦ†Oλ

(1)
XXO

2(∆ + ℓ+ 1)
g∆+1,ℓ+1

−
λΦΦ†O

(
λ
(1)
XXO + (ℓ+1)

ℓ
λ
(3)
XXO

)
2(∆− ℓ− 1)

g∆+1,ℓ−1 (5.16)

for odd ℓ.

5.2.3.2 ⟨Φ(1)X(2, 2̄)X(3, 3̄)Φ†(4̄)⟩:

As we calculated in the previous note, the conformal block of this four point correlation

function is

GN=1|ΦX;XΦ†

∆,ℓ ≡ Gr,−r
∆,ℓ = gr,−r

∆,ℓ + a1g
r,−r
∆+1,ℓ+1 + a2g

r,−r
∆+1,ℓ−1 + a3g

r,−r
∆+2,ℓ, (5.17)

where λXΦ†O† = λ∗ΦXO and

a1 =
(∆− r + ℓ)(∆ + r + ℓ)

4(∆ + ℓ)(∆ + ℓ+ 1)
,

a2 = −(−∆+ r + ℓ+ 2)(∆ + r − ℓ− 2)

4(−∆+ ℓ+ 1)(−∆+ ℓ+ 2)
, (5.18)

a3 =
(−∆+ r − ℓ)(−∆+ r + ℓ+ 2)(∆ + r − ℓ− 2)(∆ + r + ℓ)

16(−∆+ ℓ+ 1)(−∆+ ℓ+ 2)(∆ + ℓ)(∆ + ℓ+ 1)
,

here q is the conformal weight of chiral field Φ, r = q − 2qX .
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5.2.3.3 ⟨X(1, 1̄)Φ(2)X(3, 3̄)Φ†(4̄)⟩:

It is rather easy to get the conformal block G̃ for this correlation function based on the

last four point function. One can follow the same procedure presented in previous note by

switching 1↔ 2 in the whole calculation, the results are unchanged except the minus sign

in (S2̄10̄34̄S)→ (S1̄20̄34̄S), which accounts an extra sign factor (−1)ℓ

G̃N=1|XΦ;XΦ†

∆,ℓ ≡ G̃−r,−r
∆,ℓ

= λXΦOλXΦ†O†(−1)ℓ
(
g−r,−r
∆,ℓ − a1g−r,−r

∆+1,ℓ+1 − a2g
−r,−r
∆+1,ℓ−1 + a3g

−r,−r
∆+2,ℓ

)
= λΦXOλXΦ†O†

(
g−r,−r
∆,ℓ − a1g−r,−r

∆+1,ℓ+1 − a2g
−r,−r
∆+1,ℓ−1 + a3g

−r,−r
∆+2,ℓ

)
, (5.19)

where we have applied the condition λXΦO = λΦXO(−1)ℓ.

Based on the above conformal blocks, it is straightforward to show the bootstrap

equations. The cross relation of four point function ⟨Φ(1)X(2, 2̄)X(3, 3̄)Φ†(4̄)⟩ is

⟨Φ(1)X(2, 2̄)X(3, 3̄)Φ†(4̄)⟩ =

1

X
q1+2q2

2
12 X

q1+2q2
2

34

(
X14

X13

)− r
2
(
X24

X14

) r
2 ∑
O∈ΦX

λΦXOλXΦ†O†Gr,−r
∆,ℓ (u, v)

(5.20)

⟨Φ(1)Φ†(4̄)X(3, 3̄)X(2, 2̄)⟩ =
1

Xq1
12X

2q2
34

∑
O∈ΦΦ†

λΦΦ†OλXXOG
0,0
∆,ℓ(v, u), (5.21)

where the conformal blocks Gr,−r
∆,ℓ and G0,0

∆,ℓ are from Eq. (5.17) and Eq. (5.15), respec-

tively. Cross symmetry of CFT requires the two formulas in Eq. (5.20) and Eq. (5.21)

identical, therefore we have

∑
O∈ΦX

λΦXOλXΦ†O† v2q2 Gr,−r
∆,ℓ (u, v) =

∑
O∈ΦΦ†

λΦΦ†OλXXO u
q2+

q1
2 G0,0

∆,ℓ(v, u). (5.22)
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The cross relation of four point function ⟨Φ(1)X(2, 2̄)X(3, 3̄)Φ†(4̄)⟩ is

⟨X(1, 1̄)Φ(2)X(3, 3̄)Φ†(4̄)⟩ =

1

X
q1+2q2

2
12 X

q1+2q2
2

34

(
X14

X13

)− r
2
(
X24

X14

)− r
2 ∑
O∈XΦ

λΦXOλXΦ†O†G̃−r,−r
∆,ℓ (u, v)

⟨X(1, 1̄)Φ†(4)X(3, 3̄)Φ(2)⟩ =

1

X
q1+2q2

2
14 X

q1+2q2
2

23

(
X12

X13

)− r
2
(
X24

X12

)− r
2 ∑
O∈XΦ

λΦXOλXΦ†O†G̃−r,−r
∆,ℓ (v, u).

(5.23)

The equation from cross symmetry gives

∑
O∈XΦ

λΦXOλXΦ†O† vq2+
q1
2 G̃−r,−r

∆,ℓ (u, v) =
∑

O∈XΦ

λΦXOλXΦ†O† uq2+
q1
2 G̃−r,−r

∆,ℓ (v, u).

(5.24)

Let’s define

F r,s
±,∆,ℓ(u, v) = vq2+

q1
2 Gr,s

∆,ℓ(u, v)± u
q2+

q1
2 Gr,s

∆,ℓ(v, u)

F r,s
±,∆,ℓ(u, v) = v2q2 Gr,s∆,ℓ(u, v)± u

2q2 Gr,s∆,ℓ(v, u)

F̃ r,s
±,∆,ℓ(u, v) = vq2+

q1
2 G̃r,s∆,ℓ(u, v)± u

q2+
q1
2 G̃r,s∆,ℓ(v, u).

In particular, the conformal block F 0,0
±,∆,ℓ(u, v) ( note the difference between F 0,0

±,∆,ℓ(u, v)

and the classical conformal block F±,∆,ℓ(u, v) used in (5.3)) contains two terms

F 0,0
±,∆,ℓ(u, v) = λΦΦ†Oλ

(0)
XXO D±,∆,ℓ

−λΦΦ†O
(∆ + ℓ)2λ

(0)
XXO − 8(∆− 1)λ

(2)
XXO

16∆(∆− ℓ− 1)(∆ + ℓ+ 1)
D±,∆+2,ℓ (5.25)
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for even ℓ and

F 0,0
±,∆,ℓ(u, v) = − λΦΦ†Oλ

(1)
XXO

2(∆ + ℓ+ 1)
D±,∆+1,ℓ+1

−
λΦΦ†O

(
λ
(1)
XXO + (ℓ+1)

ℓ
λ
(3)
XXO

)
2(∆− ℓ− 1)

D±,∆+1,ℓ−1 (5.26)

for odd ℓ, in which

D±,∆,ℓ(u, v) ≡ vq2+
q1
2 g∆,ℓ(u, v)− uq2+

q1
2 g∆,ℓ(v, u). (5.27)

Note the only difference between D−,∆,ℓ and E∆,ℓ is the power of u, v. From the cross

symmetry equation (5.22), add or subtract its u ↔ v exchanged form, we can get two

equations

∑
O∈ΦX

λΦXOλXΦ†O† F r,−r
−,∆,ℓ(u, v) +

∑
O∈ΦΦ†

F 0,0
−,∆,ℓ(u, v) = 0, (5.28)∑

O∈ΦX

λΦXOλXΦ†O† F r,−r
+,∆,ℓ(u, v)−

∑
O∈ΦΦ†

F 0,0
+,∆,ℓ(u, v) = 0. (5.29)

For F 0,0
±,∆,ℓ(u, v) the OPE coefficients λΦΦ†Oλ

(i)
XXO is contained in its expression so not

shown in above bootstrap equations. While for the cross symmetry equation (5.24), we

get one equation ∑
O∈XΦ

λΦXOλXΦ†O† F̃−r,−r
−,∆,ℓ (u, v) = 0. (5.30)

As discussed before, the OPE coefficients are not contained in the conformal blocks to

show their roles explicitly.

The three equations (5.28, 5.29, 5.30) are the bootstrap equations from mixed operators

⟨Φ(1)Φ†(2̄)X(3, 3̄)X(4, 4̄)⟩. Now we are ready to write down all the bootstrap equations

from three different type of four point correlation functions.
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For even ℓ we have the following bootstrap equation group

0 =
BPS∑

O∈ΦΦ

|λΦΦO|2



0

F2q1+ℓ,ℓ(u, v)

−H2q1+ℓ,ℓ(u, v)

0

0

0

0



+
nonBPS∑
O∈ΦΦ

|λΦΦO|2



0

F∆,ℓ(u, v)

−H∆,ℓ(u, v)

0

0

0

0



(5.31)

+
∑

O∈ΦX

2|λΦXO|2



0

0

0

0

F̃ −r,−r
−,∆,ℓ (u, v)

F r,−r
+,∆,ℓ(u, v)

F r,−r
−,∆,ℓ(u, v)



+
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∑
O∈ΦX

(
λΦΦ†O λ

(0)
XXO λ

(x)
XXO

)




F∆,ℓ(u, v) 0 0

0 0 0

0 0 0



F̃∆,ℓ(u, v) 0 0

0 0 0

0 0 0



H̃∆,ℓ(u, v) 0 0

0 0 0

0 0 0



0 0 0

0 E∆,ℓ(u, v) 0

0 0 E∆+2,ℓ(u, v)



0 0 0

0 0 0

0 0 0




0 −D+,∆,ℓ c1D+,∆+2,ℓ

−D+,∆,ℓ 0 0

c1D+,∆+2,ℓ 0 0




0 D−,∆,ℓ −c1D−,∆+2,ℓ

D−,∆,ℓ 0 0

−c1D−,∆+2,ℓ 0 0







λΦΦ†O

λ
(0)
XXO

λ
(x)
XXO


,

in which we have denoted

λ
(x)
XXO =

(∆ + ℓ)2λ
(0)
XXO − 8(∆− 1)λ

(2)
XXO

4∆
√

(∆− ℓ− 1)(∆− ℓ− 2)(∆ + ℓ)(∆ + ℓ+ 1)
, (5.32)
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and also

c1 =
1

4

√
(∆ + ℓ)(∆− ℓ− 2)

(∆− ℓ− 1)(∆ + ℓ+ 1)
. (5.33)

While for odd ℓ, the bootstrap equations remain the same except the last part, which

turns into

∑
O∈ΦX

(
λΦΦ†O λ

(a)
XXO λ

(b)
XXO

)
M



λΦΦ†O

λ
(a)
XXO

λ
(b)
XXO


, (5.34)
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and the matrix M is

M =




F∆,ℓ(u, v) 0 0

0 0 0

0 0 0


F̃∆,ℓ(u, v) 0 0

0 0 0

0 0 0


H̃∆,ℓ(u, v) 0 0

0 0 0

0 0 0


0 0 0

0 E∆+1,ℓ+1(u, v) 0

0 0 E∆+1,ℓ−1(u, v)


0 0 0

0 0 0

0 0 0


0 c2D+,∆+1,ℓ+1 c3D+,∆+1,ℓ−1

c2D+,∆+1,ℓ+1 0 0

c3D+,∆+1,ℓ−1 0 0


0 −c2D−,∆+1,ℓ+1 −c3D−,∆+1,ℓ−1

−c2D−,∆+1,ℓ+1 0 0

−c3D−,∆+1,ℓ−1 0 0





.
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In (5.34) we have denoted

λ
(a)
XXO =

λ
(1)
XXO√

(∆ + ℓ)(∆ + ℓ+ 1)
, (5.35)

λ
(b)
XXO =

λ
(1)
XXO + ℓ+1

ℓ
λ
(3)
XXO√

(∆− ℓ− 1)(∆− ℓ− 2)
, (5.36)

and also

c2 =
1

2

√
∆+ ℓ

∆+ ℓ+ 1
, (5.37)

c3 =
1

2

√
∆− ℓ− 2

∆− ℓ− 1
, (5.38)

in (5.35).

5.2.4 Extra conditions on the bootstrap equations:

Let’s denote the bootstrap equation group (5.31) for simplicity as follows

0 =
BPS∑

O∈ΦΦ

|λΦΦO|2V⃗B,∆,ℓ +
nonBPS∑
O∈ΦΦ

|λΦΦO|2V⃗T,∆,ℓ +
∑

O∈ΦX

2|λΦXO|2V⃗M,∆,ℓ

+
∑

O∈ΦX,XX

(
λΦΦ†O λ

(a)
XXO λ

(b)
XXO

)
V⃗S,∆,ℓ



λΦΦ†O

λ
(a)
XXO

λ
(b)
XXO


. (5.39)

The bootstrap equations presented in (5.31) are for the general cases, here we need to

apply following constraints on the equations for minimal SCFT:

• For the minimal SCFT we have an assumption on the chiral ring relation Φ2 ≃ 0,
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which means the BPS chiral superprimary field Φ2 does not appear in the OPE of

Φ(1)Φ(2), in consequence, there is no contribution from scalar BPS operator on the

conformal block/bootstrap equations, i.e., we do not have the first term in the right

hand side of Eq. (5.31) with ℓ = 0, or V⃗B,∆,0 = 0 in (5.39).

• The unitary bound for the remaining non-BPS operators O ∈ ΦΦ satisfy ∆ >

|2q1 − 3| + 3 + ℓ, here q1 = ∆Φ is the conformal weight of Φ. For the operators

O ∈ ΦX, ΦΦ†, XX, · · · , they satisfy the unitary bound ∆ > 2 + ℓ. Moreover,

similar to the 3D Ising model and O(N) vector model, we have a crucial assumption

on the spectrum of the minimal SCFT: there are only three relevant scalar operators

Φ, X and a short multiplet saturating the unitary bound in V⃗T channel, while all the

other scalars have dimension ∆ > 4 (but for the operators with ℓ > 0, they could be

relevant).

• Since X ∈ ΦΦ† with spin ℓ = 0, its dimension should satisfy ∆X > 2, i.e., q2 >

1. Actually according to the results in [62], the dimension of operator X is about

3.2(< 4 so is relevant).

• Since both Φ and X are scalars, therefore the OPE coefficient λΦΦ†X = λΦXΦ† , we

need to apply this condition in our bootstrap equations, this will slightly modify the

bootstrap equations.

Specifically, in the contributions from mixed operators
∑

O∈ΦX

2|λΦXO|2V⃗M,∆,ℓ there

contains a term 2|λΦXΦ† |2V⃗M,q1,0, which can be rewritten as

(
λΦΦ†X λ

(a)
XXX λ

(b)
XXX

)
2V⃗M,q1,0 ⊗


1 0 0

0 0 0

0 0 0



λΦΦ†O

λ
(a)
XXO

λ
(b)
XXO

 ,
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therefore this term can be added on the last part ∝ V⃗S,∆X ,0 (only for O = Φ†, for all

the other O, there is no such addition), and gives

(
λΦΦ†X λ

(a)
XXX λ

(b)
XXX

)
V⃗S,∆X ,0 + 2V⃗M,q1,0 ⊗


1 0 0

0 0 0

0 0 0





λΦΦ†X

λ
(a)
XXX

λ
(b)
XXX

 .

Bootstrap program is to find linear functionals α⃗ = (α1, α2, · · · , α7) with properties

α⃗ · V⃗x,∆,ℓ > 0 to rule out the hypothetical SCFT spectrum. In particular ,we want the
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functionals satisfying

(1 1 0) α⃗ · V⃗S,0,0


1

1

0

 > 0 (or = 1), unit operator: ∆ = 0, ℓ = 0;

(5.40)

α⃗ · V⃗B,∆,ℓ > 0, ∆ = 2∆Φ + ℓ, ℓ = 2, 4, · · · ; (5.41)

α⃗ · V⃗T,∆,ℓ > 0, ∆ = |2q1 − 3|+ 3, ℓ = 0, (5.42)

∆ > ∆∗
T , ℓ = 0,

∆ > |2q1 − 3|+ 3 + ℓ, ℓ > 0;

α⃗ · V⃗M,∆,ℓ > 0, ∆ > ∆∗
M , ℓ = 0, (5.43)

∆ > 2 + ℓ, ℓ > 0;

α⃗ · V⃗S,∆,ℓ ≽ 00, ∆ > ∆∗
S, ℓ = 0, (5.44)

∆ > 2 + ℓ, ℓ > 0;

α⃗ ·

V⃗S,∆X ,0 + 2V⃗M,q1,0 ⊗


1 0 0

0 0 0

0 0 0


 ≽ 0, terms proportional to λΦΦ†X .

(5.45)

The bootstrap conditions are mainly based on the unitarity constraint, moreover, we

have also made certain mild assumptions on the spectra of the CFT:

• In Eq. (5.40), we have adopted the fact λ(2)XXO = 0 when O is the unit operator.

• In Eq. (5.42), we have applied the condition that the unitary bound ∆ > |2q1−3|+3

is saturated by a short multiplet. Evidence of this short multiplet can be uncovered
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from single correlator bootstrap. We also assume that the next scalar operator has

scaling dimension above a threshold value ∆∗
T .

• In Eq. (5.43) and Eq. (5.44), we have assumed scaling dimension gaps ∆∗
M and

∆∗
S in the V⃗M and V⃗S channels, respectively. From single correlator conformal

bootstrap, we can obtain evidence on the scaling dimension gap in V⃗S channel but

not V⃗M channel, since operators in V⃗M channel never appear in the ΦΦ† or ΦΦ

OPEs. However, the final results is not sensitive to the specific value of ∆∗
M so

we may simply adopt the relevant condition ∆∗
M = 4, which indicates there is no

relevant scalar in this channel besides Φ†.

• The Eq. (5.45) is the semi-definite problem for a 7 × 1 matrix with 3 × 3 matrices

as its elements. Actually as pointed out in [46] for the 3D Ising model, here the

condition (5.45) is too strong for bootstrap and can be relaxed. A more efficient

way is to introduce extra θ factors which measure the ratios among the coefficients.

Since we have three independent OPE coefficients here it needs two angle factors

(θ1, θ2). Then we can sample all the possible θs and require

(1 tan θ1 tan θ2) α⃗ ·

V⃗S,q1,0 + 2V⃗M,q1,0 ⊗


1 0 0

0 0 0

0 0 0





1

tan θ1

tan θ2

 > 0. (5.46)

The physically allowed region of (∆Φ,∆X) is the union of the results from each pair

of θs. In this thesis, we will not introduce the θ factors to optimize our results. We

expect to improve our results using this method in our future studies.
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5.3 Results

5.3.1 Bound on the scaling dimension ∆X from single correlator

Evidence of the 4D N = 1 minimal SCFT has been shown in [32] through bootstrap-

ping the single correlator ⟨ΦΦ†ΦΦ†⟩, where the operator Φ (Φ†) is a chiral (anti-chiral)

scalar satisfying the short condition QΦ = 0. The results provide upper bound on the

scaling dimension ∆X of real operator X , which is shown in Figure 5.1. To obtain this

figure, we have adopted the derivatives up to Λ = 17 in the numerical calculation. The

bound shows an apparent kink around ∆Φ = 1.4,∆X = 3.2, indicating a non-trivial

solution of the crossing equation from the single correlator ⟨ΦΦ†ΦΦ†⟩. By taking higher

order of derivatives, the bound and kink can be slightly shifted and converge. In technical

one can trace the shift of the kink under increasing Λ and extrapolate to Λ→∞ to find the

converge position. This method has been used in [62] and it was suggested that the position

of the minimal SCFT in this plan locates at ∆Φ = 10
7

. Nevertheless, the extrapolation is

rather ad hoc and a much better estimation on the (∆Φ,∆X) of the minimal SCFT can be

obtained by bootstrapping mixed correlators, which leads to both upper and lower range

of the scaling dimensions, as will be shown later.

5.3.2 Bounds on the scaling dimensions (∆Φ,∆X) from mixed correlators

Bound from single correlator is quite limited. It indicates a nontrivial solution of the

crossing equation but cannot provide more information about the theory. It is hard to

estimate the error of scaling dimensions of the operators. It would be more striking if the

kink can be further isolated into a small island, like the remarkable results for 3D Ising

model [46] and 3D/5D O(N) vector models [58, 69]. However, the attempt to obtain

isolated island for this minimal 4D N = 1 minimal SCFT has been failed [70]. For
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Figure 5.1: Bounds on the scaling dimensions (∆ϕ,∆X) of operators in the 4DN = 1 SCFT.
The colored regions represent the conformal dimensions allowed by conformal bootstrap. A
kink appears around ∆Φ = 1.4,∆X = 3.2. In this figure the derivative Λ = 17. The position
of the kink can be slightly shifted with higher Λ.
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supersymmetric theories, the spectra and crossing equations are more complex than the

non-supersymmetric theories and it is rather difficult to control the bootstrap conditions to

find the solutions.

Using the crossing equations presented in the last section, the islands are obtained with

mild assumptions on the spectra. The results are shown in Figure 5.2. The islands shrink

notably with increasing Λ. For Λ = 21, we find the scaling dimensions of Φ and X are

about ∆Φ = 1.412(7) and ∆X = 3.174(23). Apparently, previous conclusion on the

scaling dimension ∆Φ = 10
7

[62] lies outside of the island so is falsified.

In the bootstrap setup, we have assumed that in the V⃗T channel, there is a Q̄ exact term

that saturates the unitary bound ∆ > |2q1 − 3| + 3. The operator O appears in the none

BPS channel of the OPE

Φ× Φ ∼ Φ2 +
∑

ℓ=2,4,···

Q̄Oℓ +
∑
O

Q̄2O. (5.47)

Besides, in the superconformal partial wave expansion of the mixed correlator functions,

we only consider the contributions from supermultiplets whose lowest components appear

in the Φ × X OPE. In principle there could be contributions from supermultiplets whose

lowest components have no contribution to the Φ×X OPE, however, their supersymmetric

descendents (Q or Q̄ exact terms) may appear in the Φ × X OPE. Taking the operator

Oα̇α̇1···α̇ℓ;α1···αℓ with q = 1
2
(∆−∆Φ + 3

2
) and q̄ = 1

2
(∆ +∆Φ − 3

2
) for example, its lowest

component is fermionic so has vanishing three point function with Φ and X . However, its

Q̄ descendent Q̄α̇Oα̇α̇1···α̇ℓ;α1···αℓ is a conformal primary operator with integer spin ℓ. Its

U(1)R charge is −2
3
∆, just opposite to the U(1)R charge of the chiral operator Φ so can

have non-vanishing three point function ⟨ΦX(Q̄O)⟩. The superconformal block functions

of these supermultiplets have been calculated in [70]. We also studied the contributions

95



from these operators while they do not introduce notable difference in the results. The

islands remain the same as presented in Figure 5.2. This is not surprise since for the

“minimal" it is totally possible that no relevant spectra in this channel.

5.3.3 Bootstrapping the c central charge of the minimal SCFT

In this part we will show that the crossing equation (5.39) can also lead to strong

constraints on the OPE coefficients. Let us take the coefficient of Φ2 in the Φ × Φ OPE

for example. As we have mentioned, due to the chiral ring condition Φ2 = 0, this OPE

coefficient λΦ2 should vanish at the fixed point, and this fact can be verified from the

bounds of λΦ2 obtained from bootstrap [32, 62]. To get the bound of λΦ2 , we just need

to slightly adjust the setup of bootstrap conditions for scaling dimensions presented in

(5.40-5.45):

α⃗ · V⃗B, ∆Φ2 , 0 = 1; (5.48)

α⃗ · V⃗X, ∆, ℓ 6 0, X ∈ {B, T,M, S} and ∆ /∈ {0,∆Φ2}. (5.49)

In the above formulas we have implicitly adopted the same spectra conditions as in (5.40-

5.45). Then the crossing equation (5.39) suggests

λ2Φ2 = − (1 1 0)× α⃗ · V⃗S, 0, 0 × (1 1 0)T −
∑
O̸=O0

λ2O × α⃗ · V⃗X, ∆, ℓ (5.50)

> − (1 1 0)× α⃗ · V⃗S, 0, 0 × (1 1 0)T , (5.51)

which gives a lower bound on λ2Φ2 . Similarly, we may reverse the inequalities in (5.49)

then the crossing equation (5.39) leads to an upper bound on λ2Φ2 .

Here we are more interested in bootstrapping the c central charge. The c central charge
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Figure 5.2: Bounds on the scaling dimensions (∆ϕ,∆X) from mixed correlators. The light,
medium and dark blue regions correspond to the bounds from mixed correlators with Λ =
15, 17, 21, respectively. To obtain the outer island with light blue, we have applied the scaling
dimension gaps ∆∗

S = 6,∆∗
T = 6 and ∆∗

M = 4. We noticed the island is not sensitive by
replacing the V⃗M channel gap from ∆∗

M = 4 to ∆∗
M = 6. The inner two islands with medium

and dark blue colors relate to gaps ∆∗
S = 6,∆∗

T = 6 and ∆∗
M = 5.5.
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corresponds to the Weyl anomaly when the theory is on a curved background:

⟨T µ
µ ⟩ =

c

16π2
CαβρσC

αβρσ − a

16π2
R̃αβρσR̃

αβρσ, (5.52)

in which Cαβρσ is the Weyl tensor and R̃αβρσ is the dual Riemann tensor. Both a and c

central charges relate to the degree of freedom of the theory. The c central charge appears

as the coefficient in the two point function of stress tensor T µν :

⟨T µν(x)Tαβ(0)⟩ = 40c

π4

Iµα(x)Iνβ(x)

x8
, (5.53)

where the covariant tensor Iµν(x) = ηµν − 2xµxν

x2 . The stress tensor performs as the local

current that generates the dilatation charge D = −
∫
S3 dΩ x̂µx̂νT

µν and Dϕ(0) = ∆ϕϕ(0)

for conformal primary operator ϕ. To fulfill the dilatation action, the OPE with stress

tensor has to be [130]

T µνϕ(0) ∼ − 2∆ϕ

3π2x6
(xµxν − 1

4
ηµνx2)ϕ(0) + less singular terms, (5.54)

and the conformal partial wave of four point function ⟨ϕϕϕϕ⟩ related to the stress tensor

T µν is

⟨ϕϕϕϕ⟩T =
∑

T,PT,···

⟨ϕϕO⟩⟨Oϕϕ⟩
⟨OO⟩

∼
∆2

ϕ

360 c

1

(x12x34)2∆ϕ
g4,2(u, v). (5.55)

Therefore the bound on the c central charge can be obtained through the bound of OPE

coefficient λT in the crossing equation.

In the 4D N = 1 SCFTs, the stress tensor is the spin-2 supercomponent in the

U(1)R supercurrent supermultiplet JR: T ∼ QQ̄JR, therefore the OPE coefficient λT

is determined by the OPE coefficient of superconformal primary operator JR: λJR . The

U(1)R current is neutral under U(1)R symmetry so it does not appear in the superconfor-
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mal partial wave expansion of the mixed correlator ⟨ΦXΦ†X⟩, but it does appear in the

correlators ⟨ΦΦ†ΦΦ†⟩ and ⟨XXXX⟩.

The OPE of chiral/anti-chiral operators is

Φ† ∼
∑
O

(
O + (QQ̄O)ℓ−1 + (QQ̄O)ℓ+1 +Q2Q̄2O

)
. (5.56)

The U(1)R supercurrent JR satisfies the conserved conditions

Q2JR(x) = Q̄2JR(x) = 0, (5.57)

so only the lowest component JR and stress tensor T µν has non-vanishing contributions.

Their OPE coefficients are fixed by supersymmetry

λ2ΦΦ†T =
1

5
λ2ΦΦ†JR

. (5.58)

As solved in (5.4), the three point function of real operatorX could have more independent

OPE coefficients. Since U(1)R supercurrent has spin 1, there are two nonzero OPE

coefficients λ(1)XXJ and λ(3)XXJ . Due to the conservation conditions (5.57) these two OPE

coefficients are not independent. Instead, they satisfy [105]

λ
(1)
XXJ = −2λ(3)XXJ . (5.59)

According to above relation, the superconformal block function of four Xs correlator

function reduces to

GN=1|XX;XX
∆,ℓ =

|λ(1)XXJ |2

20
g4,2(u, v) (5.60)

while the second term corresponds to g4,0 vanishes. This is reasonable as there is no scalar
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conformal primary component in U(1)R current due to the conservation conditions and the

superconformal block function turns into non-supersymmetric case. Comparing with the

conformal partial wave from stress tensor (5.55) one can directly relate the OPE coefficient

λ
(1)
XXJ to the c central charge.

To bootstrap the c central charge, we firstly use the supercurrent operator JR in the

normalization condition:

(
∆Φ

1

5
∆X 0

)
× α⃗ · V⃗S, 3, 1 ×

(
∆Φ

1

5
∆X 0

)T

= 1. (5.61)

For all the other non-unit operators, we set their functional action to be negative (positive)

to generate a lower (upper) bound of the coefficients

1

72c
> − (1 1 0)× α⃗ · V⃗S, 0, 0 × (1 1 0)T . (5.62)

For a given point (∆Φ,∆X) on the island in Figure 5.2, we can apply this procedure to

generate both upper and lower bounds on the c central charge. It would be quite interesting

to obtain a specific range of this value and compare it with the previous estimation c ≈ 1
9
.

In [134, 135] it has been proposed that this minimal SCFT could be obtained by the

N = 2 A2 Argyres-Douglas theory [136] perturbed by N = 1 superpotential. Specifically,

the 4D N = 2 chiral supermultiplet can be decomposed to two scalar N = 1 chiral

multiplet and one N = 1 spinor chiral multiplet (Φ,Ψ, F ). Then the N = 1 deformation

with superpotential W ∼ λΦ2 leads to the chiral ring relation

Φ2 = 0, (5.63)

as expected for the 4D N = 1 minimal SCFT. However, in this construction the scaling
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dimension of the chiral operator ∆Φ = 3
2

and the c central charge is about 0.35. The scaling

dimension ∆Φ lies apart from the isolated island shown in Figure 5.2. As to the c central

charge, it is also notably higher than the lower bound of the c central charge obtained

from conformal bootstrap. We are still working on the upper bound of c central charge

and it is interesting to see how the constraints it will provide on the candidate theories.

The theoretical construction of the minimal SCFT is still mysterious. It would be quite

interesting to see if we can realize this theory through certain geometrical construction,

like by putting the 6D (2, 0) theory on a punctured Riemann surface. This approach is

quite successful in building 4D N = 2 SCFTs, and hopefully, it can be suggestive for us

to construct the N = 1 SCFT.
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6. SUMMARY AND CONCLUSIONS

6.1 CFT Landscape from Conformal Bootstrap

One of the ambitious object of conformal bootstrap is to classify the CFT landscape.

The first step toward this aim is to bootstrap the simplest CFT constructed by scalar

operators, such as the 3D Ising model, which has been numerically solved in [46] and

its generalized form with O(N) global symmetry has been solved in [58]. Following these

landmark works, the next targets are the CFTs constructed by scalars in higher dimensions

D > 3 and the CFTs in D = 3 spacetime constructed by spinning operators. Besides, it is

an interesting question that can we find 3D CFTs beyond the classical Wilson-Fisher fixed

point using conformal bootstrap? In this part I am going to explain my research plan on

these problems.

6.1.1 3D self-dual QED with flavor Nf = 2

The 2 + 1 d interacting conformal field theories can be constructed using supersym-

metry or gauge theories with sufficient large flavor symmetry. Recent studies on gauged

topological insulator have shown that the (2+1) dQED (without supersymmetry) actually

admits interacting IR fixed point even with small flavor symmetry (Nf = 1) [7]. In the

UV side the N = 1 QED is described by the following Lagrangian

L = ψ̄γµ(∂µ − iaµ)ψ +
1

e2
f 2
µν +

i

4π
ϵµνρaµ∂νAρ. (6.1)

The theory is expected to run to the IR fixed point which is also described by a free Dirac

fermion, therefore the above theory is actually the “dual" theory of the free Dirac fermion

theory. This model provides a fermionic version of the classical particle (boson)-vortex
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duality in 2 + 1 dimensions. A larger “web" of 3D particle (fermion)-vortex dualities has

been proposed recently [8, 9]. In particular, the following 2 + 1 d QED with Nf = 2

admits self-duality [9, 10]:

L =ψ̄1γµ(∂µ − ikaµ − i2nBBµ)ψ1 + ψ̄2γµ(∂µ − iaµ)ψ2

+
1

e2
f 2
µν +

inA

4π
ϵµνρaµ∂νAρ + · · ·

(6.2)

where the vector fields Aµ, Bµ are external background U(1) gauge fields while aµ is the

dynamical U(1) gauge field. At the IR fixed point the theory is strongly coupled. Since

the theory is dual to itself, there is no free fermionic description of this theory as we have

for the Nf = 1 theory. Moreover, due to the small flavor number Nf = 2 one cannot study

the theory analytically based on the large-N perturbative approach. For the theory with

large k (the U(1) charge of ψ1), after taking the self-duality, one of the dual fermion has

U(1) charge 1/k in the dual theory so is decouple from the theory by taking k →∞, and

we go back to the 2 + 1 d QED with Nf = 1, which is dual to a free fermion. Therefore

the theory can still be studied in terms of 1/k expansion through duality. While for small

k, the results from 1/k expansion is questionable. The theory near IR fixed point has been

numerically studied using Lattice method [11]. The results suggest the theory indeed runs

into a scale-invariant theory and the anomalous dimensions of certain operators have been

studied.

Conformal bootstrap provides a nonperturbative approach to study the theory at IR

fixed point. In the UV side the theory is gauged and currently, it is difficult to solve

the correlators of operators with gauge charges, however, the gauge invariant fermion

bilinears have power-law correlators so can be studied through bootstrap approach. We

will be particularly interested in the theory with k = 1, which cannot be studied using

1/k expansion, and more importantly, the global symmetry of the theory (6.2) is enhanced
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to O(4) = SU(2) × SU(2) × Z2, where the two SU(2)s are the flavor symmetry of the

two dual theories and the Z2 is their exchange symmetry. It is possible to add an extra

mass term mψ̄iψi in the Lagrangian (6.2), which in SO(4) invariant while breaks the Z2

symmetry. By adding a mass term the theory runs into a fixed point with SO(4) symmetry

and one relevant SO(4) singlet. This CFT is expected to be fundamentally different from

the classical O(4) Wilson-Fisher fixed point theory due to the non-trivial contributions

from the topological term. The O(4) Wilson-Fisher fixed point theory has been perfectly

solved by numerical conformal bootstrap in [58]. It would be extremely interesting to see

whether the conformal bootstrap can solve the novel SO(4) fixed point from the self-dual

QED.

6.2 Solve Supersymmetric Conformal Field Theories

Supersymmetry can be quite helpful in constructing CFTs. For the supersymmetric

theory, its properties under quantum loop corrections are protected by supersymmetry

which makes the theory partially or completely integrable∗. Not surprisingly, the SCFTs

are more likely to be solved by conformal bootstrap. An interesting example has been

proposed in [35], in which the four-point function of the stress tensor supermultiplet of

4D N = 4 SCFT

⟨OI
20′OJ

20′OK
20′OL

20′⟩ =
GIJKL

x412x
4
34

(6.3)

has been bootstrapped†. In RHS of (6.3) the denominator has power 4 since ∆OI
20′

= 2.

Sharp kinks have been observed in the physical bound of the scaling dimensions with

different central charges. The results are nicely fit with the predictions from 4D N = 4

SYMs. Undoubtedly more interesting phenomena on SCFTs can be discovered through

∗Here the “partially integrable" indicates that a subsectors of the theory, like the chiral algebra are subject
to the integrable equations.

†The stress tensor is a spin-2 component of a half-BPS supermultiplet whose superconformal primary
OI

20′ constructs 20′ representation of the SU(4)R R-symmetry.
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conformal bootstrap.

6.2.1 4D N = 2 S-duality from Conformal Bootstrap

The 4DN = 2 SYMs are an affluent topic to study QFTs since the historical discovery

in [137]. For the 4D N = 4 SYM, the supersymmetry is so strong that many complex

phenomena in general QFTs are uniquely fixed, while in the 4D N = 2 SYMs the

supersymmetry is reduced and many interesting field theory phenomena, like the non-

perturbative effect, electric-magnetic duality and confinement appear while the theories

are not too complex to solve due to the remaining supersymmetry. It is well-known that

the N = 4 SYMs admit S-duality with SL(2, Z) symmetry. Interestingly the S-duality

also appears in the N = 2 SU(Nc) SYMs with Nf = 2Nc fundamental hypermultiplets

and it acts on the gauge coupling with symmetry Γ0(2) ⊂ SL(2, Z). The S-duality has

been developed further in [138] and [139], which lead to a large class of strongly coupled

N = 2 SCFTs. The fundamental elements in constructing these SCFTs are the so-called

TN theories, which are 4D N = 2 SCFTs with SU(N)3 global symmetries. It can be

obtained from the 6D (2, 0) SCFTs of type SU(N) compactified on a sphere with three

full punctures. The TN theories do not have classical Lagrangian description so provide

perfect examples for conformal bootstrap study.

To bootstrap the TN theory, one may expect to apply the method used for N = 4

SCFTs in [35], i.e. bootstrap the four-point correlator of the scalar in the stress tensor

supermultiplet J :

J (x, θ, θ̄)| = J(x), J (x, θ, θ̄)|θθ̄ = J ij
µ (x), J (x, θ, θ̄)|θ2θ̄2 = Tµν(x). (6.4)

The scalar component J is a singlet of the SU(2)R × U(1)r R-symmetry therefore its

four-point function ⟨J(x1)J(x2)J(x3)J(x4)⟩ does not contain extra global indices. This
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four-point function seems to be as simple as we have in (2.7) for four identical scalars non-

supersymmetric theories. Unfortunately, this four-point function is actually much more

complex than the non-supersymmetric theories since there are several conformal primaries

contained in each superprimary multiplets. In consequence one needs to account contri-

butions from different components in the superprimary multiplets. There are also extra

invariant cross-ratios besides u, v. Different from the N = 4 SCFTs, the superconformal

block function of this four-point correlator is still unknown yet. We need to calculate the

four-point function of stress tensor supermultiplet before we can get any information from

bootstrapping the correlator.

The difficulty in calculating the superconformal block function is that we need to

evaluate the contributions from each component in the supermultiplet, which belongs

to different conformal primaries and there are several tensor structures related to these

contributions. Therefore it is rather cumbersome to calculate the superconformal block

functions directly. We actually have very powerful techniques based on the supershadow

formalism and superembedding approach in calculating 4D N = 1 superconformal block

functions. These two techniques can be directly generalized for N = 2 SCFTs, however,

they can not reproduce all the N = 2 tensor structures due to the non-Abelian SU(2) ×

U(1) R-symmetry. For these extra components, it is possible to do the calculation in brute

force method.

After solving the conformal blocks of the four-point correlator

⟨J(x1)J(x2)J(x3)J(x4)⟩ =
G(u, v)
x412x

4
34

, (6.5)

it can be subjected to the conformal bootstrap study directly. Hopefully we can get some

strong results on the existence of the TN theories by detecting the kink phenomena in the
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bound of the next scalar operator. Furthermore, we can also bootstrap the OPE coefficients

and get the bounds on the central charges of the theories. More details on the theory can

be solved through extremal functional method.

6.3 Analytical Properties of Crossing Equation

Successes of the numerical conformal bootstrap indicate that crucial information on

CFTs has been encoded in crossing equation. A particularly interesting question is, can

we decode the results on CFTs from the crossing equation analytically? Or alternatively,

can we calculate the CFT data by employing conformal symmetry? For the CFTs with

classical Lagrangian descriptions, the CFT data can be calculated perturbatively using

Feynman diagrams. However, the approach mainly relies on the RG flow while does not

take advantage of the conformal symmetry. In [22] the anomalous dimension of 3D O(N)

vector has been estimated up to the order O(ϵ2) only based on the conformal symmetry

and primary multiplet recombination. Nevertheless, this approach can not give higher

order corrections. This is expected since only three-point function has been used and

crossing symmetry plays no role in the calculation, therefore it cannot get access to the

results obtained by numerical conformal bootstrap. A more complete analytical solution of

CFT requires careful observation and application of the properties of four-point correlator

functions and the crossing symmetry.

6.3.1 Perturbative Solution of the Crossing Equation

For the CFTs with a small parameter, such as the 1/N expansion in the large N

approximation, or ϵ expansion in 4 − ϵ dimensional spacetime, the CFT data can be

perturbatively expanded with this small parameter. Let us take the 3D Ising model to

illustrate the idea of this method. The operators O appearing in the crossing equation

(3.12) are constructed by ϕs. For example, the “double trace" operators with spin ℓ are
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given by

O ∝ ϕ2n ∂µ∂ν . . . ∂γ︸ ︷︷ ︸
ℓ

ϕ. (6.6)

In the free theory limit, its scaling dimension is ∆n,ℓ = 2∆ϕ + 2n + ℓ. Operators with

more traces may also appear in the ϕϕ OPE, like ϕ2n∂lϕ2m∂r · · ·ϕ. However, note that

in Ising model we have Z2 symmetry therefore only operators with even number of ϕs

can appear in the ϕϕ OPE. These multiple trace operators appear in the crossing equation

at higher order of ϵ expansion. At the first order O(ϵ), we only have contributions from

double trace operators, which will be denoted as O(n, ℓ) below.

For an interacting CFT, the scaling dimension of the fundamental scalar ϕ and the OPE

coefficients λn,ℓ can be expanded in the ϵ expansion

∆ϕ = ∆0 + δ1ϕϵ+ δ2ϕϵ
2 + · · · , (6.7)

∆n,ℓ = 2∆0 + 2n+ ℓ+ δ1n,ℓ ϵ+ δ2n,ℓ ϵ
2 + · · · , (6.8)

λn,ℓ = λ0n,ℓ + λ1n,ℓϵ+ λ2n,ℓϵ
2 + · · · , (6.9)

where the parameter λ0n,ℓ is the OPE coefficient in the 4D free theory

ϕϕ ∼ 1 +
∑
n,ℓ

λn,ℓO(n, ℓ). (6.10)

Plugging the ϵ expansion of above CFT data in the crossing equation

v∆ϕ +
∑
O

λ2O v
∆ϕg∆,ℓ(u, v) = u∆ϕ +

∑
O

λ2O u
∆ϕg∆,ℓ(v, u). (6.11)

We expect this crossing equation can be satisfied order by order in the ϵ expansion! At

the lowest order the ϵ expansion reproduces the CFT data of free theory, therefore it
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automatically satisfies above crossing equation. At order O(ϵ), the double trace operators

involve in the crossing equation. The crossing equation is a function of cross-ratios u, v (or

equivalently z, z̄) indexed by two integers. The unknown parameters are provided in (6.7-

6.9) also indexed by two integers (n, ℓ). It is unclear right now will this infinite equation

system leads to zero, finite or infinite solutions.

It needs to be noted that in the crossing equation (6.11),the conformal block functions

from non-unit operators g∆,ℓ(u, v) are infinite series of variables u, v with integer powers.

However, for the contributions from the unite operator u∆ϕ , v∆ϕ , the power ∆ϕ has non-

integer part from ϵ contributions

v∆ϕ = v∆0+δ1ϕϵ+··· = v∆0(1 + δ1ϕ ln(v)ϵ) +O(ϵ2), (6.12)

which contains singularity ln(v) in the limit v → 0, and a similar singular term propor-

tional to ln(u) when u → 0. The RHS of equation (6.11) should reproduce the term v∆ϕ

with singularity, however, this cannot be fulfilled by regular terms vn, n ∈ Z unless this

is a sum of an infinite series and the OPE coefficients λO will have a specific asymptotic

behavior to reproduce the right power of v∆ϕ . It would be quite interesting to find an

effective approach to solve the ϵ expansion equation at higher orders as well!

6.3.2 Conformal Bootstrap in the Mellin Space

Mellin transformation can drastically simplify the scatter amplitudes in AdS spacetime

[18]. It provides an alternative way to express the conformal partial waves besides the

conformal block functions. The conformal partial waves have rather simple form in the

s-channel. In the Mellin space the crossing symmetry of four-point correlator is automati-

cally fulfilled, however, there are spurious terms in the four-point function which need to

be canceled. The cancellation of these spurious terms lead to non-trivial constraints on the
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CFT data and it plays a fundamental role for conformal bootstrap in Mellin space, similar

to the role of crossing symmetry in the conformal bootstrap based on conformal block

functions.

In [16] the four-point function of 3D Ising model has been studied in Mellin space. In

Mellin space, the crossing symmetry of the four-point correlator function is automatically

fulfilled while there are spurious terms u∆ϕ and u∆ϕ ln(u) which should not appear in the

physical amplitudes. By requiring the cancellation of these spurious terms the authors

obtained the CFT data up to the order ϵ3. However, it is rather difficult to generalize

this method to higher order corrections due to the complex calculation in evaluating the

poles of intermediate operators with spin. With or without Mellin space, one of the major

difficulty in the analytical approach is to treat with the the conformal block function. It

requires a concise way to evaluate the function approximately while sufficient to capture

the core information on the CFT. We are working on the perturbative approach to reach

this objective so that we can reproduce the perturbative results on 3D O(N) vector model

without Feymann diagram. The analytical solution is expected to help us to answer the

question: why the conformal bootstrap is so effective?

6.4 Future Research on Conformal Bootstrap

In above sections I have discussed several projects on conformal bootstrap. They are

expected to improve our understanding on CFTs and even QFTs significantly in the near

future. In the last part of this thesis, I would like to briefly discuss my future research on

conformal bootstrap.

Fruitful results have been obtained using analytical properties of the conformal block

and crossing equation. In [14, 15] the crossing equation has been studied under the

limitation with small conformal cross ratios. The spectrum and anomalous dimensions
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of operators with sufficiently large spin have been obtained. The results have interesting

application in the higher spin AdS/CFT dualities. Moreover, since the conformal block and

crossing equation encode essential dynamics of CFT, their analytical properties can help

us to uncover some profound problems in the dual bulk theory through AdS/CFT duality.

A typical example is provided in [17] that the constraints on the boundary CFT obtained

from conformal symmetry, crossing equation and unitarity agree with the bulk locality. As

suggested in [19, 20], the well-known black hole information loss problem corresponds to

the singularity structure of conformal block in the large central charge limitation, whose

properties may lead to a better understanding on the problem. In [21] the authors have

studied the correlators containing the stress tensor operator and the results show that

constraints from causality and unitarity leads to a unique solution which corresponds to the

Einstein gravity in AdS5. A thorough study on the analytical properties of the conformal

block and crossing equation will significantly improve our understanding on the bulk dual

physics.

The ultimate objective of conformal bootstrap is to find a powerful approach to solve

the CFTs analytically. ‡ It is expected that conformal bootstrap provides a new definition

of CFTs without Lagrangian§ and classification of CFT landscape would be possible based

on conformal bootstrap. Analytical solution of conformal field theory is a fantastic topic

in theoretical physics, which can only be done for certain 2D CFTs with the famous BPZ

method [4]. The infinite dimensional Virasoro algebra is the key to solve these rational

CFTs. The Virasoro algebra is absent for CFTs in D > 2 so there is no similar solutions in

higher dimensions. About 30 years later a numerical bootstrap approach has been shown

that the CFTs in higher dimensions D = 3 or D = 5 can be solved even without the

Virasoro algebra! This is the first light of the coming analytical approach to solve CFTs in

‡Here “solve" means to calculate the CFT data, including the spectra and OPE coefficients.
§Probably it needs to introduce certain extra constraint, like the modular invariance for 2D CFTs.
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higher dimensions. The numerical results have shown that the secrets of CFTs are encoded

in the conformal symmetries and the conformal partial wave functions. It is likely that

there are certain hidden rules in the higher dimensional CFTs which can help us to decode

the CFT data with very few assumptions.
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APPENDIX A

GEGENBAUER POLYNOMIAL AND SOME IDENTITIES

It has been shown in [24, 116, 107, 108] that Nℓ appearing in the superconformal and

conformal partial wave integration directly relates to Gegenbauer polynomial C(λ)
ℓ (x)

Nℓ ≡
(
S̄12̄S

)ℓ←→Dℓ

(
T̄ 34̄T

)ℓ
=

1

ℓ!2
(∂S0∂T )

ℓ (S 2̄10̄34̄T )ℓ = (−1)ℓ y
ℓ
2C

(1)
ℓ (x), (A.1)

in which

x ≡ ⟨2̄10̄34̄0⟩
2
√
y

, y ≡ 1

26
⟨0̄1⟩⟨2̄0⟩⟨0̄3⟩⟨4̄0⟩⟨2̄1⟩⟨4̄3⟩. (A.2)

Giving θext = 0, variables x and y turn into

x −→ x0 ≡ −
X13X20X40

2
√
X10X20X30X40X12X34

− (1↔ 2)− (3↔ 4) , (A.3)

y −→ y0 ≡
1

212
X10X20X30X40X12X34, (A.4)

in which the supertraces ⟨ij̄⟩ have been reduced to inner products of six dimensional vec-

tors Xij . We follow the conventions used in [108] that the super-parameters are replaced

by

S → S, S̄ → S̄, Nℓ → Nℓ (A.5)

after setting θext = 0, and the Gegenbauer polynomial Nℓ reads

Nℓ = (S̄12̄S)ℓ
←→
Dℓ(T̄34̄T )

ℓ =
1

ℓ!2
(∂S0∂T )

ℓ(S2̄10̄34̄T )ℓ. (A.6)
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Giving 0 = 0̄, one can show

S2̄10̄34̄T =
1

4
X10S2̄34̄T −

1

4
X20S1̄34̄T =

1

4
X30S2̄14̄T −

1

4
X40S2̄13̄T (A.7)

based on the Clifford algebra and the transverse conditions of auxiliary fields S0̄ = 0̄T =

0. It clearly shows that S2̄10̄34̄T is antisymmetric under 1↔ 2 or 3↔ 4.

Let us consider following formulas related to the Gegenbauer polynomials

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X10S2̄34̄T +X20S1̄34̄T +X10S2̄43̄T +X20S1̄43̄T ) , (A.8)

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X10S2̄34̄T +X20S1̄34̄T −X10S2̄43̄T −X20S1̄43̄T ) , (A.9)

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X10S2̄34̄T −X20S1̄34̄T +X10S2̄43̄T −X20S1̄43̄T ) , (A.10)

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X10S2̄34̄T −X20S1̄34̄T −X10S2̄43̄T +X20S1̄43̄T ) , (A.11)

which are symmetric or anti-symmetric under coordinate interchanges 1 ↔ 2 and 3 ↔ 4.

These polynomials appear in the conformal integral (4.18) from differentiations (∂0̄z) ·

(∂0̄Nℓ) or (∂0̄ 1
Dℓ
) · (∂0̄Nℓ) and inherit the symmetry properties from tensor structure terms

in (4.45). We need to find their close relationships with Gegenbauer polynomials to

accomplish the conformal integration (4.18).

Formulas in (A.8) and (A.11) are invariant under simultaneous coordinate interchange

1 ↔ 2, 3 ↔ 4, and they can be easily simplified into compact form Nℓ. Specifically, the

formula (A.11) gives

8 (∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ ∝ Nℓ, (A.12)
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while for (A.8), one can show that it reduces to

1

4
(∂S0∂T )

ℓ (S2̄10̄34̄T )
ℓ−1

(X10X34S2̄T +X20X34S1̄T )

=
ℓ(ℓ+ 1)

8
X10X20X34 (∂S0∂T )

ℓ−1 (S2̄10̄34̄T )
ℓ−1

∝ X10X20X34Nℓ−1. (A.13)

In contrast, formulas in (A.9) and (A.10) are antisymmetric under 1↔ 2, 3↔ 4. It is

easy to show that formula (A.10) vanishes.

Similarly, we can reduce following formulas to compact forms proportional to Nℓ:

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X30S2̄14̄T +X40S2̄13̄T +X30S1̄24̄T +X40S1̄23̄T ) , (A.14)

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X30S2̄14̄T +X40S2̄13̄T −X30S1̄24̄T −X40S1̄23̄T ) , (A.15)

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X30S2̄14̄T −X40S2̄13̄T +X30S1̄24̄T −X40S1̄23̄T ) , (A.16)

(∂S0∂T )
ℓ (S2̄10̄34̄T )

ℓ−1
(X30S2̄14̄T −X40S2̄13̄T −X30S1̄24̄T +X40S1̄23̄T ) , (A.17)

except (A.15).

The formulas (A.9) and (A.15) can not be simply written in terms of Nℓ. Nevertheless,

their relationships with the Gegenbauer polynomials are given in the recursion equations,

which can be used to obtain the final results of conformal integrations they involve in.
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Denote

Rℓ ≡
ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )
ℓ−1×

(X10S2̄34̄T +X20S1̄34̄T −X10S2̄43̄T −X20S1̄43̄T ) , (A.18)

Pℓ ≡
ℓ

ℓ!2
(∂S0∂T )

ℓ (S2̄10̄34̄T )
ℓ−1×

(X30S2̄14̄T +X40S2̄13̄T −X30S1̄24̄T −X40S1̄23̄T ) , (A.19)

and

∆A ≡
1

8
(X20X40X13 −X20X30X14 +X10X40X23 −X10X30X24), (A.20)

∆B ≡
1

8
(X20X40X13 +X20X30X14 −X10X40X23 −X10X30X24). (A.21)

Note the sign differences among x0, ∆A and ∆B. The crucial properties of Rℓ and Pℓ are

that they satisfy the following mutual recursion relations:

Rℓ = ℓ∆ANℓ−1 +
1

26
X10X20X34Pℓ−1, (A.22)

Pℓ = ℓ∆BNℓ−1 +
1

26
X30X40X12Rℓ−1, (A.23)

which leads to the independent recursion relations of Rℓ and Pℓ:

Rℓ = ℓ∆ANℓ−1 +
1

26
(ℓ− 1)X10X20X34∆BNℓ−2 + y0Rℓ−2, (A.24)

Pℓ = ℓ∆BNℓ−1 +
1

26
(ℓ− 1)X30X40X12∆ANℓ−2 + y0Pℓ−2. (A.25)

Above two recursion equations are needed to determine the conformal integrations of the

antisymmetric terms in (4.46).
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APPENDIX B

SUPERCONFORMAL INTEGRATIONS OF SYMMETRIC SUPEREMBEDDING

TERMS

The superconformal partial wavesWO are largely determined by the tensor structures

in (4.45). These terms are separated into two parts: invariant and antisymmetric terms

according to their transformations under coordinate interchange 1 ↔ 2, 3 ↔ 4. Here we

show the main steps toward contributions of invariant terms on WO. Due to the gauge

adopted in (4.21), wit is straightforward to obtain the results, similar to the steps used in

[108] but generalized to Φi’s with arbitrary superconformal weights.

As discussed before, there are two steps to accomplish the superconformal integrations

for WO: partial derivatives and conformal integration. The partial derivatives can be

obtained by the same steps provided in [108] with coefficients replacements

ℓ+∆

2
→ 2δ,

2 + ℓ−∆

2
→ 2δ′. (B.1)

The conformal integrations are modified accordingly, specifically there are new terms
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proportional to the scaling dimension differences r, r̃:

∫
D4X0

X12

X10X20

Nℓ

Dℓ

∣∣∣∣
0̄=0

=
cℓ ξ∆+2,2−∆,r̃,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2

gr,r̃∆+2,ℓ(u, v),

(B.2)∫
D4X0

X34

X30X40

Nℓ

Dℓ

∣∣∣∣
0̄=0

=
cℓ ξ∆,4−∆,r̃,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2

gr,r̃∆,ℓ(u, v),

(B.3)∫
D4X0 X12X34

Nℓ−1

Dℓ

∣∣∣∣
0̄=0

=
cℓ−1 ξ∆+1,3−∆,r̃,ℓ−1

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2

gr,r̃∆+1,ℓ−1(u, v),

(B.4)

∫
D4X0

[
X13

X10X30

+
X23

X20X30

+
X14

X10X40

+
X24

X20X40

]
Nℓ

Dℓ

∣∣∣∣
0̄=0

=

cℓ ξ∆+1,3−∆,1+r̃,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2
[
4 (r̃2 + (∆− ℓ− 2)(∆ + ℓ))

(r̃ +∆− ℓ− 2) (r̃ +∆+ ℓ)
gr,r̃∆,ℓ

+
(r2 + (∆− ℓ− 2)(∆ + ℓ)) (r̃ −∆− ℓ) (r̃ −∆+ ℓ+ 2)

4(∆− ℓ− 2)(∆− ℓ− 1)(∆ + ℓ)(∆ + ℓ+ 1)
gr,r̃∆+2,ℓ

+
rr̃ (r̃ −∆− ℓ)

(∆ + ℓ)(∆ + ℓ+ 1) (r̃ +∆− ℓ− 2)
gr,r̃∆+1,ℓ+1

+
rr̃ (r̃ −∆+ ℓ+ 2)

(∆− ℓ− 2)(∆− ℓ− 1) (r̃ +∆+ ℓ)
gr,r̃∆+1,ℓ−1

]
, (B.5)∫

D4X0

[
X13

X10X30

− X23

X20X30

− X14

X10X40

+
X24

X20X40

]
Nℓ

Dℓ

∣∣∣∣
0̄=0

=

cℓ ξ∆+1,3−∆,1+r̃,ℓ

X
1
2
(∆−ℓ)

12 X
− 1

2
(∆+ℓ−2)

34

(
X24

X14

) r
2
(
X14

X13

) r̃
2
[

(∆− ℓ− 2) (−r̃ +∆+ ℓ)

(∆ + ℓ+ 1) (r̃ +∆− ℓ− 2)
×

gr,r̃∆+1,ℓ+1 +
(∆ + ℓ) (−r̃ +∆− ℓ− 2)

(∆− ℓ− 1) (r̃ +∆+ ℓ)
gr,r̃∆+1,ℓ−1

]
. (B.6)
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APPENDIX C

SOLUTION OF THE SHADOW COEFFICIENTS TRANSFORMATION

Here we solve the linear transformation H1 between the supershadow coefficients

λ
(i)

Φ†
2Φ

†
1Õ

and (λ
(i)
Φ1Φ2O)

∗. As proposed in [108], the unitarity of superconformal partial wave

plays a crucial role in determining H1.

The linear transformation H1 is described by a 4× 4 matrix



λ
(0)

Φ†
2Φ

†
1Õ

λ
(2)

Φ†
2Φ

†
1Õ

λ
(1)

Φ†
2Φ

†
1Õ

λ
(3)

Φ†
2Φ

†
1Õ


=



a b e g

c d f h

u v p k

w t q s





(λ
(0)
Φ1Φ2O)

∗

(λ
(2)
Φ1Φ2O)

∗

(λ
(1)
Φ1Φ2O)

∗

(λ
(3)
Φ1Φ2O)

∗


. (C.1)

Note that in [108] the 4× 4 matrix is block diagonal protected by the parity of coefficients

under coordinate exchange in the three-point function. For the three-point function with

general superconformal weights, the coordinate exchange symmetry is broken by arbitrary

superconformal weights. Therefore in our case the 4× 4 matrix is not simply block diag-

onal. Unitarity, together with the extra constraint is still useful to solve the transformation

H1.

Giving Φ3 = Φ†
2 and Φ4 = Φ†

1, unitarity requires that the four coefficients ai of con-

formal blocks appearing in the superconformal blocks Gr,r̃∆,ℓ are positive. By transforming
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coefficients λ(i)
Φ†

2Φ
†
1Õ

to (λ
(i)
Φ1Φ2O)

∗, this is equivalent to the following equations:

(
−δ′

[
(2−∆)r̃2 − (ℓ+ 2−∆)(∆ + ℓ)

(∆− 1)(ℓ+ 2−∆)(∆ + ℓ)
2δ + 1] , 1,

r̃((∆− 2)R+ (−∆+ ℓ+ 2)(∆ + ℓ))

2(−∆+ ℓ+ 2)(∆ + ℓ)
,

r̃(R+ ℓ+ 2−∆)

4(−∆+ ℓ+ 2)

)
·H1 ∝ (1, 0, 0, 0), (C.2)(

r̃(R+ ℓ+ 2−∆)

2(−∆+ ℓ+ 2)
, 0, 1, 0

)
·H1 ∝

(
r(∆−R+ ℓ)

2(∆ + ℓ)
, 0, 1, 0

)
, (C.3)(

r̃(∆−R+ ℓ)

2(∆ + ℓ)
, 0, 1,

ℓ+ 1

ℓ

)
·H1 ∝

(
r(−∆+R+ ℓ+ 2)

2(−∆+ ℓ+ 2)
, 0, 1,

ℓ+ 1

ℓ

)
, (C.4)

(1, 0, 0, 0) ·H1 ∝
(
−δ

(
1− 2δ′

r2∆− (∆ + ℓ)(−∆+ ℓ+ 2)

(∆− 1)(ℓ+ 2−∆)(∆ + ℓ)

)
,

1,
r(∆(−∆+R+ 2) + ℓ(ℓ+ 2))

2(−∆+ ℓ+ 2)(∆ + ℓ)
,
r(∆−R+ ℓ)

4(∆ + ℓ)

)
, (C.5)

in which r̃ = −r. From above equation groups we can solve 15 out of 16 H1’s elements

(except c) up to three re-scaling coefficients.

Then we consider two three-point functions ⟨ΦXO⟩ and ⟨XΦ†Õ⟩, in which Φ :

(0, 0, q1, 0) is a chiral field and X : (0, 0, q2, q2) is real ∗. Such kind of three-point

function has been studied in (4.28). Due to the chirality of Φ, the four coefficients satisfy

the constraint

(λ
(0)
ΦXO, λ

(2)
ΦXO, λ

(1)
ΦXO, λ

(3)
ΦXO) = λΦXO(1, δ(2δ − ℓ), − 2δ, ℓ), (C.6)

(λ
(0)

XΦ†Õ, λ
(2)

XΦ†Õ, λ
(1)

XΦ†Õ, λ
(3)

XΦ†Õ) = λXΦ†Õ(1, δ
′(2δ′ − ℓ), − 2δ′, ℓ), (C.7)

in which δ = ∆+ℓ+R+2r
4

and δ′ = 2−∆+ℓ+R
4

with R = −q1, r = q1 − 2q2. Then the

∗X could be any scalar and the results will be the same, here we set X as real for convenience.
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transformation between coefficients in (C.7) and the complex conjugate of (C.6) gives



1

δ′(2δ′ − ℓ)

−2δ′

ℓ


∝



a b e g

c d f h

u v p k

w t q s





1

δ(2δ − ℓ)

−2δ

ℓ


. (C.8)

Plugging the solutions of equation groups (C.2-C.5) into (C.8), we can solve all of the

16 elements of H1 and the three re-scaling coefficients up to the re-scaling coefficient of

(C.8), denoted as z∗. The results are

α∗ ×


a∗ −8(ℓ−∆+2)(ℓ+∆)

ℓ+∆−R −4r(ℓ(ℓ+2)+(R−∆+2)∆)
ℓ+∆−R −2r(ℓ−∆+ 2)

c∗ d∗ f∗ h∗

u∗ −4r(R+ℓ−∆+2)(ℓ+∆)
ℓ+∆−R p∗ −r2(R+ ℓ−∆+ 2)

w∗
8rRℓ

ℓ+∆−R

4ℓ(Rr2+(ℓ−∆+2)∆(ℓ+∆))
ℓ+∆−R s∗

 (C.9)

where the elements with long expressions are abbreviated as

α∗ =
z∗(∆− 1)(∆−R+ ℓ)

∆(−∆− r + ℓ+ 2)(∆ + r + ℓ)(−∆−R+ ℓ+ 2)(∆ +R+ ℓ)
, (C.10)

a∗ =
R
(
ℓ(ℓ+ 2)−∆

(
∆+ r2 − 2

))
+ (−∆+ ℓ+ 2)

(
(∆ + ℓ)2 −∆r2

)
∆− 1

, (C.11)

d∗ =
R+ ℓ+ 2−∆

(∆− 1)(R− ℓ−∆)

(
∆2

(
r2 −R+ ℓ+ 4

)
−∆3 +∆

((
2− r2

)
R+ ℓ

(
r2 + ℓ

)
− 4

)
+ ℓ(ℓ+ 2)(R− ℓ− 2)

)
,

(C.12)

h∗ =
r(R+ ℓ+ 2−∆)

4(∆− 1)

(
−∆

(
∆2 +∆− 2r2 − 4

)
− (∆− 1)R(∆ + ℓ+ 2)− (∆ + 1)ℓ2 − 2((∆− 1)∆ + 2)ℓ− 4

)
,

(C.13)

u∗ = −
r(R+ ℓ+ 2−∆)

2(−1 + ∆)
(−∆

(
(∆− 3)∆− 2r2 + 4

)
+ (∆− 1)R(ℓ−∆)− (∆ + 1)ℓ2 + 2(∆− 3)∆ℓ), (C.14)

p∗ =
R+ ℓ+ 2−∆

(∆− 1)(R− ℓ−∆)

(
r2(∆(3∆−R− 2) + (3∆− 2)ℓ) + ∆(−∆+ ℓ+ 2)(∆ + ℓ)(∆ +R− ℓ− 2)

)
, (C.15)

s∗ =
1

∆− 1

(
r2((∆− 2)R+∆(∆− ℓ− 2)) + ∆(−∆+ ℓ+ 2)(∆ + ℓ)(∆ +R+ ℓ)

)
, (C.16)

w∗ = rℓ(4∆ + (R+ ℓ−∆)(R+ 2∆)), (C.17)
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and

c∗ =
∆+R− ℓ− 2

8(∆− 1)(ℓ+ 2−∆−R)(∆−R+ ℓ)

(
4(∆− 1)∆r2R3 + (∆− 1)R4(ℓ+ 2−∆)(∆ + ℓ)− 4(∆− 1)∆r2R(

(∆− 4)∆− 2r2 + 3ℓ(ℓ+ 2) + 6
)
+ 2R2(ℓ(ℓ+ 2)(ℓ(ℓ+ 2) + 2) + ∆5 − 5∆4 − 2∆3

(
r2 − 5

)
+2∆2

(
r2 − 5

)
−∆

(
2r4 − 2r2(ℓ+ 1)2 + ℓ(ℓ+ 2)(ℓ(ℓ+ 2) + 2)− 4

)
+ (ℓ+ 2−∆)(∆ + ℓ)

(
∆5 − 5∆4

−2∆3
(
2r2 + ℓ(ℓ+ 2)− 4

)
+ 2∆2

(
6r2 + 3ℓ(ℓ+ 2)− 2

)
+∆

(
4r4 − 4r2(ℓ(ℓ+ 2) + 3) + ℓ3(ℓ+ 4)− 8ℓ

)
−ℓ2(ℓ+ 2)2

))
, (C.18)

f∗ =
R+ ℓ+ 2−∆

2(∆− 1)(∆−R+ ℓ)

(
ℓ(ℓ+ 2)(−R+ ℓ+ 2) + ∆

(
R
(
2r2 − ℓ(ℓ+ 3)− 4

)
+ ℓ

(
−2r2 + ℓ2 + ℓ+ 4

)
+R2 + 4

)
+∆2

(
−2r2 −R2 +R(ℓ+ 2) + (ℓ− 3)ℓ

)
+∆3(ℓ− 3) + ∆4

)
. (C.19)

The transformation H1 presented above seems to be rather cumbersome, however it does

satisfy following simple relation

H1(∆, R, r) ·H1(∆→ 2−∆, R→ −R, r → −r) ∝ I4×4, (C.20)

which is expected since by applying the supershadow transformation twice we go back to

the original coefficients. Setting the Eq. (C.20) to be strictly equal, the overall coefficient

z∗ can be fixed up to a factor zx satisfying

zx(∆, R, r) · zx(∆→ 2−∆, R→ −R, r → −r) = 1, (C.21)

which has no effect on the superconformal block functions.

Besides the three-point correlators ⟨ΦXO⟩ and ⟨XΦ†O⟩, we can also partially fix the

coefficients in the three-point correlators like ⟨Φ†XO⟩ and ⟨XΦO⟩ and their supershadow

duals. Their coefficients are expected to be related to the shadow coefficients by H1 with

proper redefinitions of the parameters r and R. One can show that indeed above solution

of H1 can realize the transformation of shadow coefficients with parameters R→ −R and

r → −r, respectively.
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Under transformation H1, the coefficients λ(i)
Φ3Φ4Õ

in (4.61-4.64) can be mapped to

(λ
(i)

Φ†
4Φ

†
3O
)∗, and now we are ready to write down the most general N = 1 superconformal

block Gr,r̃∆,ℓ in terms of three-point coefficients λ(i)Φ1Φ2O and (λ
(i)

Φ†
4Φ

†
3O
)∗ :

Gr,r̃∆,ℓ = a1 g
r,r̃
∆,ℓ + a2 g

r,r̃
∆+1,ℓ+1 + a3 g

r,r̃
∆+1,ℓ−1 + a4 g

r,r̃
∆+2,ℓ, (C.22)

where the coefficients of individual conformal blocks ai are

a1 = λ
(0)
Φ1Φ2O(λ

(0)

Φ†
4Φ

†
3O

)∗, (C.23)

a2 =
∆+ ℓ

(∆ + ℓ+ 1)(∆−R+ ℓ)(∆ +R+ ℓ)

(
λ
(1)
Φ1Φ2O +

r(∆−R+ ℓ)

2(∆ + ℓ)
λ
(0)
Φ1Φ2O

)
×
(
(λ

(1)

Φ†
4Φ

†
3O

)∗ − r̃(∆−R+ ℓ)

2(∆ + ℓ)
(λ

(0)

Φ†
4Φ

†
3O

)∗
)
, (C.24)

a3 =
ℓ+ 2−∆

(−∆+ ℓ+ 1)(−∆−R+ ℓ+ 2)(−∆+R+ ℓ+ 2)

×
(
λ
(1)
Φ1Φ2O +

ℓ+ 1

ℓ
λ
(3)
Φ1Φ2O +

r(−∆+R+ ℓ+ 2)

2(−∆+ ℓ+ 2)
λ
(0)
Φ1Φ2O

)
×
(
(λ

(1)

Φ†
4Φ

†
3O

)∗ +
ℓ+ 1

ℓ
(λ

(3)

Φ†
4Φ

†
3O

)∗ − r̃(−∆+R+ ℓ+ 2)

2(−∆+ ℓ+ 2)
(λ

(0)

Φ†
4Φ

†
3O

)∗
)
, (C.25)

a4 =
4(∆− 1)2(−∆+ ℓ+ 2)(∆ + ℓ)

∆2(ℓ+ 1−∆)(∆ + ℓ+ 1)(ℓ+ 2−R−∆)(ℓ+ 2 +R−∆)(∆−R+ ℓ)(∆ +R+ ℓ)[
−
(∆−R+ ℓ)

(
R
(
ℓ(ℓ+ 2)−∆

(
∆+ r2 − 2

))
+ (ℓ+ 2−∆)

(
(∆ + ℓ)2 −∆r2

))
8(∆− 1)(ℓ+ 2−∆)(∆ + ℓ)

λ
(0)
Φ1Φ2O + λ

(2)
Φ1Φ2O +

r(∆(R+ 2−∆) + ℓ(ℓ+ 2))

2(ℓ+ 2−∆)(∆ + ℓ)
λ
(1)
Φ1Φ2O +

r(∆−R+ ℓ)

4(∆ + ℓ)
λ
(1)
Φ1Φ2O

]
[
−
(∆−R+ ℓ)

(
R
(
ℓ(ℓ+ 2)−∆

(
∆+ r2 − 2

))
+ (ℓ+ 2−∆)

(
(∆ + ℓ)2 −∆r2

))
8(∆− 1)(ℓ+ 2−∆)(∆ + ℓ)

(λ
(0)

Φ†
4Φ

†
3O

)∗ + (λ
(2)

Φ†
4Φ

†
3O

)∗ − r̃(∆(R+ 2−∆) + ℓ(ℓ+ 2))

2(ℓ+ 2−∆)(∆ + ℓ)
(λ

(1)

Φ†
4Φ

†
3O

)∗

− r̃(∆−R+ ℓ)

4(∆ + ℓ)
(λ

(3)

Φ†
4Φ

†
3O

)∗
]
. (C.26)
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