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ABSTRACT 

  

Horse gram (Macrotyloma uniflorum Lam. Verdc.), although an underutilized 

pulse it is an excellent source of protein, dietary fiber, variety of micronutrients and is also 

traditionally used in various herbal therapeutic formulations. The present study advances 

the knowledge on impact of soaking, germination, cooking and fermentation on major 

bioactive compounds in horse gram seeds. Changes occurring in phenolic compounds, 

protein content, free amino acids, free radical scavenging activity, α-amylase and α-

glucosidase enzyme inhibition activities as well as volatile compounds were determined 

in horse gram seeds as well as sprouts. It was also observed that germination of horse gram 

seeds for 72 h significantly increased DPPH free radical scavenging activity, most of the 

essential amino acids content except threonine, α-amylase and α-glucosidase inhibition 

activity. Cooking significantly increased DPPH free radical scavenging activity of horse 

gram sprouts while free amino acid content, α-amylase and α-glucosidase inhibition 

activity was reduced compared to fresh horse gram sprouts. Fermentation of horse gram 

sprouts by Lb. plantarum NRRL-B-4496 and Lb. plantarum NCDO-1193 for 48h also 

further increased the DPPH free radical scavenging activity, free amino acid content, α-

amylase and α-glucosidase inhibition activity. HPLC-DAD-ESI/MS analysis of all the 

samples indicates changes in phenolic compounds during processes such as germination, 

cooking and fermentation. Such result can be attributed to conversion of glycosylated 

phenolic compounds to their more bioavailable forms i.e. aglycones such as kaempferol.  

Differences in free radical scavenging activity and total phenolic content indicate the 
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presence of certain metabolites other than phenolic compounds with potent antioxidant 

activity. Microbiological analysis determined that both lactic acid bacterial strains were 

able to utilize horse gram sprouts for optimum growth during 48h fermentation period. A 

total of 40 volatile compounds were detected using head-space solid phase micro 

extraction combined with GC-MS. Qualitative as well as quantitative changes in volatile 

compounds was determined during germination and fermentation of horse gram sprouts 

for 24h (day 1), 48h (day 2), 72h (day 3), 96h (day 4), 120h (day 5) by Lb. plantarum 

NRRL-B-4496 and Lb. plantarum NCDO-1193 as well as during natural fermentation. A 

remarkable increase in the amount of some organic acids such as acetic acid, alcohols and 

some volatile phenols such as eugenol was observed with increasing fermentation time. 

The results suggest that germination and lactic acid bacterial fermentation of horse gram 

seeds and sprouts respectively influences the levels of majority of the investigated 

bioactive compounds. Therefore, the present study supports the rationale that conventional 

processes facilitates release of bound compounds, conversion of complex metabolites to 

its more bioavailable form and biosynthesis of certain compounds with sensory as well as 

potential health benefits in addition of delivering probiotic characteristics to the 

consumers. 
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1. INTRODUCTION  

 

The understanding of nutritional and health promoting properties of plant foods 

including legumes has insights from Hippocrates, the father of modern medicine, who 

more than 2000 years ago quoted “Let food be thy medicine, and medicine be thy food”. 

Scientific evidences of  such protective roles for plant based foods in health promotion are 

substantial1. Also the strength of these emerging scientific insights further guides 

worldwide policymaking in diet and health issues that informs and facilitates community 

and local programs to address dietary goals and to increase consumption of fruits, 

vegetables and legumes. These disease preventive food solutions are now integrated with 

traditional nutritional challenges such as hunger particularly hidden hunger and 

malnutrition. Hidden hunger is listed currently among the most serious global problems 

and it is no longer limited to the developing countries. In hidden hunger, high amount of 

calories from refined food is readily available but has micronutrient deficiencies and this 

is afflicting more than 2 billion individuals or one in three individuals, globally2. An 

important solution to these micronutrient deficiencies can be nutritionally enhanced edible 

seeds like legumes (used interchangeably as pulses). Edible legumes offer important and 

affordable source of micronutrients in human diet, as they are rich in proteins, energy, 

dietary fiber, phytochemicals, vitamins and minerals. Overall legumes have been 

recognized as the second most important group of crops after cereals 3, 4. Pulses are seeds 

of annual legumes that include plants such as bambara beans, dry beans, horse gram beans, 

dry chickpeas, cow peas, dry lentils, lupins, dry peas, pigeon peas and vetches commonly 
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used for feeding humans and cattle. Besides basic nutritional benefits pulses provide 

agronomic benefits to the producers, as the rotational cultivation of pulses increase the 

amount of nitrogen in soil, thereby reducing the requirement of additional chemical 

fertilizers. Over last decade global pulses production has been increased from 61.5 million 

ton to 73 million ton with India accounting for a quarter of world production, which makes 

it the world’s largest producer of pulses. India, with the largest vegetarian population  

depends on pulses as an important protein source, also represents more than one-fourth of 

the world total pulse imports followed by European Union, China, Pakistan and Egypt 5. 

However, the overall global consumption rate of pulses has experienced a slow but steady 

decline when compared to the consumption rate of dairy and meat products and this is 

predicted to continue to rise considerably. However in light of global public health 

challenges, nutritional improvements and environmental challenges of reducing carbon 

foot print and improving soil biology for resilience of food production, development of 

pulse crop technologies, provides important opportunities to improve the consumption of 

plant based-foods.6. Although several common proteinaceous edible legumes like 

soybean, beans, peas, chickpea, cowpea and some others are available globally, traditional 

and localized underutilized pulses that are more resilient to climate change challenges and 

with excellent nutrient profiles offer new opportunities to contribute to global food 

security, health and environmental challenges.  

One of such underutilized pulse is commonly known in India as Horse gram 

(Macrotyloma uniflorum (Lam.) Verdcourt (Syn., Dolichos uniflorus Lam., Dolichos 

biflorus auct. non L.). It is a pulse and fodder crop native to Southeast Asia and tropical 
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Africa, but its center of origin is India. The name Macrotyloma is derived from Greek 

word makros which means large, tylos meaning knob and loma means margin referring to 

its knobby statures in the pods 7. It is an adverse climate tolerant pulse well known for its 

drought resistance and favorable agronomic characteristics for cultivation on less fertile 

dry soils. Some studies have shown its ability to improve soil fertility, resistance to abiotic 

stress factors like salinity and pH8, 9. Horse gram seeds are low in fat and are commonly 

consumed among the low income community. It has been reported to have lot of medicinal 

value and known to have relevance and use in traditional herbal compositions for 

treatment of kidney stones, menstrual complexes, diabetes, obesity, hypertension, and 

throat infection, cold and fever 10-13. Due to its potential nutritional and medicinal potential 

and its capability to grow in wide range of adverse climatic conditions, the US National 

Academy of Sciences had considered Horse gram as a “Potential food source of for the 

future” 14. Horse gram seeds have been extensively consumed in the past (2000 BC) and 

holds potential to be used as a “Food for millennia” 12. Despite of being a potential source 

of protein and other nutrients, horse gram also contains certain phytochemicals such as 

phytic acid, tannins, saponins and flatulence causing oligosaccharides with anti-nutrient 

effects that limits the overall nutritional value of this pulse. However, such anti-nutrients 

or non-nutrient bioactive compounds have been recently considered to possess several 

health benefits especially when biologically processed and modified through germination, 

cooking and fermentation prior to consumption. Several scientific reports have supported 

processing mediated improvement in common legume based food products15-18, however 

very little information is available in relation to effect of processing on major bioactive 
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compounds of horse gram seeds. Therefore, further scientific validation of these processes 

to enhance value of horse gram seeds has great potential not only to increase global 

awareness about such underutilized pulse for possible health benefits but also encourage 

cultivation around the world as a locally grown and environmental-friendly crop. 
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2. REVIEW OF LITERATURE  

 

Horse gram seeds can potentially become integral part of common as well as 

nutrient rich diet. Since they exhibit strong free radical scavenging capacities which makes 

them useful for food supplements, natural antioxidant and therapeutic purposes for human 

health benefits12. Horse gram seeds are commonly popular for high protein comprises 

higher lysine content than pigeon pea and chickpea making it a good complement to a 

cereal based diet19. Nevertheless, they are also rich in tannins and polyphenols compared 

to the other legumes13. Such polyphenols and tannins are synthesized by plants for 

protection against predators and also in response to various stress conditions and 

accumulate phenolic compounds as part of their metabolism13. Such bioactive compounds 

undergo dormant stage as the soft seeds from the pods are subjected to drying for long 

term storage to produce hard though edible seeds. However, several factors like variety, 

environmental as well as agricultural condition and location of cultivation, affect overall 

nutritional profile of these seeds. For example horse gram black seeds contain relatively 

high levels of total phenolics and tannins compared to brown seeds, since they are different 

varieties evolved from different ecological adaptations20. Similarly, processing conditions 

also critically influences the levels of bioactive compounds in these seeds. Dried horse 

gram seeds have been reported by several researcher to be excellent source of dietary 

antioxidants as well as possess good antimicrobial activity against pathogens21. Raw seeds 

have also been studied to possess bioactive compounds for treatment of diabetes, 

hypercholesterolemia and obesity10, 11, 22, 23. Despite the numerous health benefits of raw 
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seeds, the major drawback in using the raw grain is that they are not easily rehydrated and 

difficult to cook, as the seed coat is hard and requires longer cooking time. In order to 

render dry horse gram seeds edible and palatable, soaking, sprouting and cooking is 

generally practiced. Therefore, certain conventional processing methods like soaking, 

germination and cooking is proposed in the present study to evaluate the changes in the 

nutritional quality of this poor man’s pulse food. 

 

2.1 Soaking 

Soaking of grain legume is generally practiced before they are germinated or 

cooked, in order to make them consumable and ensure sensory quality. It is one of the 

important steps in production of legume-derived food products such as tempeh since 

improper soaking affects body and texture defects in the final product24. Optimum 

presoaking conditions facilitates cooking, germination and fermentation processes in the 

legumes. Soak water may or may not be discarded in traditional practices, however some 

studies showed decrease in polyphenol content of horse gram and some other lentils during 

soaking which is attributed to leaching of polyphenols in the in the external medium, hence 

it is suggested to reuse the soaked water instead of draining 25-28.  

As discussed before, since dried horse gram seeds has high amount of antioxidants 

that are concentrated in the seed coat, consumption of foods prepared with unprocessed 

raw horse gram seeds have showed hyperglycemic properties29. Moreover, during 

conventional processing methods like soaking, germination and cooking dry seeds 

undergo important chemical changes resulting in better texture, improved digestibility and 
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palatability26, 30. Such changes during germination positively affect the bioavailability 

mainly due to extensive metabolic modification. Some reports have suggested both horse 

gram seeds and sprouts to be excellent examples of ‘functional foods’ as it has the potential 

to lower the risk of various diseases and exert health promoting benefits in addition to 

basic nutrition31. Since longtime, traditional processing methods like soaking, cooking, 

germination and fermentation have provided wide range of opportunities to exploit the 

actual potential of legumes. 

 

2.2 Germination 

Germination is one of the most simple and effective process to improve the overall 

nutritional value of pulses. During germination, the seed dormant reserve nutrients present 

in endosperms like starch, proteins and lipids are metabolized in the cotyledons and the 

products formed are translocated to the developing axis that nourishes sprouts to grow into 

a seedling and subsequently into a new plant. Therefore, the sprouted seeds or pulse 

sprouts have gained  importance not only due to it higher nutritional value but also exerting 

value added health benefits 32. In a previous study31, horse gram sprouts showed higher 

total phenolic content as well as in vitro antioxidant activity compared to raw seeds. Such 

an increase was suggested to be due to the metabolic changes in dormant raw seeds as it 

undergoes the process of hydration followed by sprouting which led to synthesis or release 

of several bound bioactive compounds with good antioxidant activity. Germination also 

dramatically increased total phenolic compounds and total flavonoids in mung bean 

sprouts with increasing germination period, up to 4.5 and 6.8 times higher than original 
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concentration of mung bean dry seeds, respectively. The total antioxidant activity of mung 

bean sprouts was increased by 6 fold higher than that of raw mung bean seeds. Apart from 

antioxidant activity, germination of lentils also brings about an increase in the levels of 

amino acids, vitamins like ascorbic acid, riboflavin, thiamin and niacin 28, 33. Several other 

studies demonstrated the effect of germination on dry legume seeds17, 33, 34, however very 

few studies have reported constructive effect of germination on horse gram dry seeds25, 26. 

Therefore, the present study further adds to the rationale towards proposing that the 

germination process significantly increases phytochemical content and antioxidant 

activities in legumes or pulses particularly horse gram.17, 35.   

 

2.3 Cooking  

Cooking quality of seeds is one of the important parameters of legumes, its 

commonly practiced to improve seed texture, digestibility and palatability. However, 

cooking quality varies to very high extent among all the legumes and it is critical to 

determine the acceptability of the seeds for human consumption30. Depending on the 

cooking quality of the legumes, cooking time differs widely among genotypes and is 

affected by the permeability of seed coat and the cotyledons to hot water 30. Thermal 

processes like cooking not only structurally modifies the legume seeds but also modifies 

functional properties which in turn increases digestibility of seeds. Several reports showed 

significant decrease in certain heat-labile nutrients during cooking of 36seeds or sprouts25, 

37-39, while some studies suggested thermal processes to be responsible for remarkable 

increase in the phytochemicals in sprouts18. In a previous study25 it was observed that 
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cooking decreased polyphenol content in moth bean and horse gram which could be 

attributed to either binding of polyphenols with other organic substances like protein or 

structural alterations of polyphenols that render them incapable of giving the chemical 

color reaction measured by the analytical method. However interestingly, in the same 

study it was also observed that the loss of polyphenols was much less in the moth bean or 

horse gram sprouts compared to raw seeds cooking, suggesting cooking sprouts could be 

a beneficial choice over cooking legume seeds.   

 

2.4 Fermentation 

Fermentation is one of the oldest techniques used traditionally and commercially 

for food preservation. It is also considered as a simplest way to naturally derive 

nutritionally improved food products. It improves nutritional, organoleptic, technological 

and shelf life attributes in diverse range of fermented foods and beverages. There are 

approximately 5000 varieties of fermented foods consumed worldwide 40. Such fermented 

food products comprise delicacies made from milk (dairy products), fruits (wine), 

vegetables (sauerkraut), fish (bagoong, colombo cure), meats (salami) and legumes (soy 

natto, soy miso). Similar to germination, fermentation also have been practiced to enhance 

the nutritional importance of legumes and legume based products for human 

consumption28, 34, 41. This crucial metabolic process also decreases the levels of certain 

anti-nutritional compounds like flatulence causing oligosaccharides and phytic acid 42 as 

the same time significantly increase the levels of bioavailable phenolic compounds43. 

However, selection of microorganism to be used as starter culture for fermentation of 
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legumes is an important constraint to its success, since legumes are considered to be a 

hostile environment for typical fermentation bacteria like lactic acid bacteria (LAB). 

Majority of dairy and food industries use lactic acid bacteria (LAB) as starter culture for 

fermentation. Such lactic acid fermentation primarily focusses on acidification in the raw 

ingredients through production of organic acids from carbohydrates with simultaneous 

breakdown of secondary metabolites to develop essential biomolecules which are referred 

to as bioactive compounds44. These bioavailable form of compounds are readily accessible 

by the consumer’s body as well as possess several health benefits from prevention of 

cancer, chronic diseases like diabetes, CVD and obesity to improvement of general well-

being of the consumer15, 45, 46. This is one of the main reason certain lactic acid bacteria 

have a huge market as probiotics, live microorganisms in products, which when 

administrated in adequate amounts confer a health benefits to the host”47. The effect of 

natural and LAB mediated fermentation on phenolic contents and antioxidant activity have 

been reported in several previous studies28, 48. Some studies reported fermentation 

increased total phenolic content (TPC) 15, 49 during fermentation while some studies found 

a slight decrease in TPC in naturally and LAB-fermented lentils 15. However, the latter 

study mainly investigated TPC in the soluble fraction of fermented legumes, while LAB 

can also produce enzymes that can metabolize or transform soluble polyphenols to free 

form or other compounds better than naturally fermenting bacteria. Therefore, the present 

study is designed to simultaneously analyze changes occurring in bioactive compounds in 

naturally fermentation and LAB-mediated fermentation. 
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2.4.1 Lactobacillus plantarum 

The genus Lactobacillus comprises variety of different species that display large 

degree of diversity. Among these groups, Lactobacillus plantarum is the most flexible 

and versatile species found in diverse environment like dairy, meat, plants or vegetables 

50. However, it is most frequently found as natural inhabitant of human gastrointestinal 

tract51, therefore strains like Lb. plantarum 299v, Lb. plantarum PS128, Lb. plantarum 

NRRL-B 4496 are popularly recognized as  probiotic bacteria that may confer numerous 

health benefits to the consumers47, 52. Lactobacillus plantarum is a gram positive 

facultative heterofermentative lactic acid bacteria. A complete genome sequencing study 

53 for Lactobacillus plantarum WCFS 1 revealed that it contains 3052 protein-encoding 

genes and the genome encodes all enzymes required for the glycolysis and 

phosphoketolase pathways. It also encodes a large pyruvate-dissipating potential, leading 

to various end products of fermentation. It was demonstrated that this microbe focuses 

mainly on carbon catabolism, which is explained by its ability to import and utilize 

various sources of carbon. It also corresponds to the presence of potentially highly 

expressed genes encoding for enzymes required for central carbon metabolism, and 

exceptionally high number of sugar import systems including phosphoenolpyruvate 

(PEP) dependent sugar phosphotransferase systems. The presence of large group of 

surface-anchored proteins also indicates that Lb. plantarum has the potential to adhere to 

a large variety of surfaces and substrates for growth. Such ability might depict the higher 

scope of Lb. plantarum spp. for commercial utilization as starter culture to develop non-

dairy probiotic products. During anaerobic fermentation, it utilizes various carbon 
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sources (carbohydrates) to convert into chiral configuration of lactate and alcohols due 

to genes ldhL and ldhD genes encoding lactate dehydrogenase. However, unlike some 

other lactobacillus spp. Lb. plantarum is also able to degrade lactate into acetate, ethanol, 

acetoin, formate and 2,3-butanediol under aerobic conditions, due to number of pyruvate 

dissipating enzymes. In addition, it also can produce hydrogen peroxide and carbon 

dioxide as byproducts, which potentially kills or inhibits undesirable bacterial growth, 

especially acid tolerant spoilage yeast and mold during fermentation. Hence, preliminary 

study involved two Lactobacillus plantarum spp. probiotic strain along with 

Lactobacillus helveticus spp.  

 

2.5 Proposed Metabolic pathways 

2.5.1 Deglycosylation 

Fermentation hydrolyzes complex polyphenols into simpler and biologically more 

active compounds due to the ability of fermenting bacteria of deglycosylation54. It has 

been reported that conjugate glycosides are not readily absorbed intact across the intestine 

of healthy adults and they need to be hydrolyzed, releasing aglycones which are more 

bioactive forms of polyphenols that can be easily absorbed by the intestinal lining to confer 

proposed health benefits to the consumers55. Most of the Lactobacillus strains possess 

enzymes associated with the metabolism of phenolic compounds, while some of these 

enzymes are primarily described for Lactobacillus plantarum54. It has been reported that 

Lactobacillus plantarum spp. are able to decarboxylate the hydroxycinnamic acids, p-
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coumaric and caffeic acids56. Molecular characterization studies on L. plantarum revealed 

that this bacterium species possess inducible gene encoding p-coumarate decarboxylase 

(PadA) having p-coumaric acid decarboxylase (PAD) activity, but interestingly these 

enzymes were found to be different in structure, specificity of substrate, expression and 

N-terminal amino acid sequence compared to other characterized decarboxylases from 

Saccharomyces cerevisiae, Bacillus pumilus and Psuedomonas fluorescens. Such results 

promoted use of lactic acid bacteria for fermentation of legumes over other microorganism 

in order to develop functional foods. A study observed an increase in the bioactive 

compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiate [L]) due 

to fermentation by Lactobacillus plantarum CECT 748 T, this strain was able to efficiently 

convert glycosylated isoflavones into bioactive aglycones 44. Another study 43 investigated 

the effect of L. plantarum fermentation on the content of phenolic compounds in Vigna 

sinensis flours and suggested fermentation as an appropriate and effective process for 

increasing nutritional and biological quality due to not only their bioavailability but also 

improvement in the concentration of phenolic compounds. 

 

2.5.2 Proteolysis 

It is strongly believed that during germination, proteases released are responsible 

for inactivation of proteinaceous anti-nutritional factors like lectin, amylase and trypsin 

inhibitors in seeds and also for breakdown of complex storage proteins into simpler 

peptides and free amino acids57. According to an earlier study, there are three crucial 

phases of proteolysis during seed germination58. First stage of hydrolysis involves release 
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of amino acids that can be further used for the synthesis of enzymes catalyzing the 

conversion of complex reserve nutrients into simpler form for transport, secondly bulk 

hydrolysis occurs when protein complexes hydrolyze into amino acids required for 

growing sprouts, at the end of sprouting, cellular proteins as well as enzyme proteins are 

further broken down into additional amino acids that are used by the seedling before the 

onset of photosynthetic growth58. Germination is known to have very little effect on crude 

protein content.  A study reported 1.4% increase in protein content of green gram during 

germination, whereas another study59 reported an increase of 2.5% in mung beans. Such 

an increase was attributed to biosynthesis of enzymes and protein during germination and 

compositional changes following the degradation of other constituents35. However, such 

an increase in crude protein content during seeds germination may not be necessarily due 

to an increase in true protein as most of analysis measure total nitrogen content of the 

samples that can be either due to presence of nucleic acid, free amino acids and 

polypeptides in legumes. Therefore, in the present study, chromatographic analysis to 

evaluate the changes in amino acid composition during germination, cooking and 

fermentation is of greater interest. Similar results were reported for significant increase in 

the amount of amino acids during germination of mung beans59, while such rise 

corresponds with increasing germination time35. It was observed that leucine, 

phenylalanine and threonine were significantly higher in sprouts, although the amount of 

cysteine, methionine and lysine was found to be very low in mung sprouts. 

Lactic acid fermentation has also been known to affect the amounts of amino acids 

in cereals and legumes. Bacterial fermentation usually involves optimum proteolytic 



 

15 

 

activity, while yeast mainly degrades carbohydrates. Hence the changes in amino acids 

composition during bacterial and yeast fermentation differ significantly; therefore, 

bacterial fermentation must be given more importance to control nutritional improvement 

of legumes over yeasts. Lactic acid bacteria particularly are equipped with protein-

degradation system, although some strains of Lb. plantarum lack genes encoding 

extracellular proteases required for primary breakdown of protein, but interestingly they 

possess 19 highly expressed genes encoding intracellular peptidases and uptake systems 

for peptides, which aids in further degradation of peptides formed during germination into 

simpler amino acids in the course of fermentation. Despite of protein breakdown 

machinery, some genomic sequencing studies52, 53 also revealed that Lb. plantarum 

possess genes that encodes for comprehensive pathways for de novo biosynthesis of amino 

acids.  

 

2.6 Volatile Compounds 

The consumer inclination towards products and ingredients of natural origin over 

synthetic has driven attention towards natural production of flavor and aromatic 

compounds. Lactic acid bacteria are known to produce a wide range of volatile organic 

compounds including several flavor and aromatic compounds60. As discussed before, Lb. 

plantarum is highly heterogeneous and highly adaptable species to different habitats, as 

well as possess pyruvate dissipating potential that leads to production of wide range of 

fermentation products. Such versatile nature of this bacteria employs it to be part of several 

non-dairy based fermented products that aids in production of various desired flavor and 
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aromatic compounds in different substrates. Volatiles are believed to be products or by-

products of metabolic pathways such as generation of hydrocarbons, aliphatic alcohols 

and ketones from fatty acid biosynthesis, flavors formation from amino acid 

transformation. Keto acids most commonly formed due to conversion of amino acids by 

various enzymes, like aminotransferases, amino acid oxidases and dehydrogenases. 

Phenylalanine is known to be converted to phenyl pyruvic acid (PPA) by 

aminotransferases cell extract of Lb. plantarum and it is further transformed to 

benzaldehyde which holds a large market in the flavor industry61. In a study, it was 

observed that Lb. plantarum was able to produce high amount of lactate along with 

diacetyl, acetate, ethanol, acetaldehyde, acetone and acetoin in Obushera, a fermented 

sorghum beverage, while yeast produced high amounts of acetaldehyde and methyl 

alcohols which indicates Lb. plantarum spp. can be healthier alternative to yeasts for plant-

based food fermentation62. 

 

2.6.1 Headspace solid-phase micro extraction (HS-SPME) with Gas Chromatrography-

Mass Spectrometry (GC-MS) 

Quantitative as well as qualitative analysis of those volatile compounds is also a 

challenge in regards to obtaining reproducible results for each fermentation batch, as large 

discrepancies in results can occur due to less sensitive volatile compounds extraction 

methods. Hence solid-phase micro extraction (SPME) method coupled with gas 

chromatography mass spectrometry can be a highly sensitive analytical method for 

analyzing volatile compounds of complex products like fermenting foods and require 



 

17 

 

small amount of sample for analysis63. An improved simple, rapid, precise and sensitive 

method proposed for semi-quantitative determination of wheat bread volatile compounds 

was based on headspace solid phase micro extraction-gas chromatography-mass 

spectroscopy64. In addition to extraction method and bacterial metabolism differing 

metabolite profile among similar food products, to some extent SPME fiber type also 

influences detection of bacterial volatile compounds. SPME fibers are available in variety 

of coating with different selectivity strength. Two SPME fiber type carbowax-divinyl 

benzene and carboxen-polydimethylsiloxane are popular choices for analyzing bacterial 

volatile compounds, although choice of GC column has less effect than SPME fiber type 

and fermenting medium on the volatile profile detected for a particular product65.  

Overall environmental factors act as crucial external factors for germination of 

seeds, therefore water intake for weakening the seed coat, metabolism and seed growth, 

light and air supply for respiration and temperature are considered as important factors for 

optimum metabolism during germination. Also modification in quantitative and 

qualitative phenolic and amino acid composition of legumes would considerably depend 

on the type of legume. Similarly, starter culture selection is necessary to ensure 

reproducibility of any fermented food product and compatibility of the growth 

requirements of bacteria in the fermenting environment for optimum survivability until 

consumption. Hence processing conditions and probiotic strain selection are important 

parameters in order to evaluate changes in the bioactive compounds during germination 

and fermentation. This led to some preliminary experiments prior to the final study.  
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Several researchers have reported the effect of soaking, germination, cooking and 

fermentation on bioactive compounds of common legumes42, 48, 66 however there is very 

little information available on underutilized pulse horse gram (Macrotyloma uniflorum) 

and impact of processing on the nutritional value of this crop25. Therefore, the present 

study was undertaken to advance the knowledge of impact of some common processes 

such as soaking, germination and fermentation on major bioactive compounds of horse 

gram seeds and sprouts. The primary goal of this study is to exploit the nutritional potential 

of the poor man’s pulse in order to obtain a position in the list of common pulses around 

the world along with being an efficient medium for probiotic bacteria to the general 

population as well as celiac and lactose intolerant consumers.   
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3. GERMINATION AND LACTIC ACID BACTERIAL FERMENTATION 

ENHANCES BIOACTIVE COMPOUNDS IN AN UNDERUTILIZED HORSE 

GRAM- Macrotyloma uniflorum 

 

3.1. Abstract 

Horse gram (Macrotyloma uniflorum Lam. Verdc.), an underutilized pulse and 

fodder crop, is native to Southeast Asia and tropical Africa. Impact of germination, 

cooking and lactic acid bacterial fermentation on health promoting bioactive compounds 

were determined through analyzing changes in phenolic compounds, protein content, 

amino acids, free radical scavenging activity, hyperglycemia relevant α-amylase and α-

glucosidase enzyme inhibitory activities of both horse gram seeds and sprout extracts. 

Germination of horse gram seeds for 72 h significantly increased DPPH scavenging 

activity, essential amino acids content except methionine, tryptophan and threonine, α-

amylase and α-glucosidase inhibitory activity compared to raw seeds. Furthermore, 

cooking also significantly increased DPPH scavenging activity; however, free amino acid 

content, α-amylase and α-glucosidase inhibition activity in sprouts were lower compared 

to fresh horse gram sprouts. Fermentation of horse gram sprouts using Lb. plantarum 

NRRL-B-4496 and Lb. plantarum NCDO-1193 for 48h further significantly increased the 

total phenolic content, DPPH scavenging activity, free amino acid content, α-amylase and 

α-glucosidase inhibitory activity. Results also indicated that fermented sprouts contain 

certain metabolites, other than phenolic compounds, with potent antioxidant activity. The 

fermented horse gram sprouts maintained optimum lactic acid bacterial population after 



 

20 

 

48h fermentation period.  Overall germination and lactic acid bacterial fermentation of 

horse gram seeds and sprouts enhanced targeted health promoting bioactive compounds 

and has potential to deliver probiotic characteristics to the consumers. Possible 

mechanisms for underlying nutritional improvement could be due to release of bound 

compounds, conversion of complex metabolites to its more bioavailable form and de novo 

biosynthesis of certain compounds with health promoting properties.  

 

3.2. Introduction 

Hidden hunger is listed currently among the most serious global problem and it is 

no longer limited to the developing countries. Globally, it is afflicting more than 2 billion 

individuals, who obtain high calorie from refined food but have micronutrient 

deficiencies2. An affordable solution to these micronutrient deficiencies could be 

nutritionally enhanced edible dried seeds using pulses. Generally, legume family offer an 

important and inexpensive source of micronutrients in human diet, as they are rich in 

proteins, energy, dietary fiber, health promoting bioactives, vitamins and minerals. 

Legumes have been recognized as the second most important group of crops after cereals3, 

4. In addition to basic nutritional benefits, pulses provide climate change resilience benefits 

to the producers in response environmental stress and the rotational cultivation of pulses 

increases the amount of nitrogen in soil, thereby reducing the requirement of additional 

fertilizers while improving soil health. Over last decade global pulses production has been 

increased from 61.5 billion kilograms to 73 billion kilograms with India accounting for a 

quarter of world production. While several common proteinaceous edible legumes like 
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soybean, beans, peas, chickpea, cowpea are available globally, traditional and localized 

underutilized pulses that are more resilient to climate change challenges, exhibits excellent 

nutrient profiles and demonstrate the potential to become “Food for millennia”. We 

strongly believe pluses can offer new opportunities to contribute to global food  and 

nutritional security, health and environmental challenges12. Therefore, Horse gram 

(Macrotyloma uniflorum (Lam.) Verdcourt (Syn., Dolichos uniflorus Lam., Dolichos 

biflorus auct. non L.), a pulse with an excellent source of protein, dietary fiber and 

bioactives was investigated20. It is traditionally being used in various herbal therapeutic 

formulations for treatment of kidney stones, menstrual complexes, diabetes, obesity, 

hypertension, throat infection, cold and fever10-12.  Horse gram is also known as an adverse 

climate tolerant pulse well known for its drought resistance and favorable agronomic 

characteristics8. Despite  being a potential source of protein and health promoting 

properties,, horse gram seeds also contain certain non-nutrient compounds such as phytic 

acid, tannins, saponins and flatulence causing oligosaccharides that limits the overall 

nutritional value of this pulse13. However, such non-nutrient compounds have been 

recently investigated to provide several health benefits especially when processed and 

modified through germination, cooking and fermentation prior to consumption48, 67, 68. 

Therefore, further scientific validation of such processes and their metabolic elucidation 

has merit for improving the nutritional value of this underexplored pulse for potential 

health benefits while contributing to advancing climate change resilient crop systems 

around the world. Germination of legume seeds is expected to improve nutritional value 

by activation of certain metabolic pathways and their related enzymes for conversion of 



 

22 

 

bioactive compounds to their simpler or bioavailable forms28. To further enhance health 

promoting properties of plant-based foods, incorporation of lactic acid bacteria (LAB) or 

probiotics is increasingly gaining importance. Additionally, challenges of allergies to 

dairy products, cholesterol intake and consumer’s vegan preferences seem to divert the 

interests of food scientists towards non-dairy based probiotic products. Legumes, being 

good substrate for proliferation of probiotic lactic acid bacteria, legume fermentation using 

LAB has been extensively studied focusing on development of symbiotic functional foods 

with superior nutritional benefits44, 69. One such LAB namely, Lactobacillus plantarum 

spp. is widely accepted as an ideal starter culture for fermentation of plant materials, due 

to its ability of decarboxylation, deglycosylation and peculiar probiotic characteristics70, 

71. Accumulative evidences suggest that soaking, germination, cooking and fermentation 

enhances bioactive compounds of most common pulses; however, very little information 

is available in relation to processing effect on the bioactive compounds of horse gram 

seeds25, 26. This expedition was undertaken with goal to make this poor man’s pulse to be 

a one of the household legumes worldwide and demonstrate its potential for conventional 

as well as industrial applications, thereby highlighting the effect of soaking, germination, 

cooking and lactic acid bacterial fermentation on major bioactive compounds by 

determining changes occurring in phenolic compounds, protein content, amino acids, free 

radical scavenging activity, hyperglycemia relevant α-amylase and α-glucosidase enzyme 

inhibitory activities, amino acids composition of horse gram seeds, sprouts and fermented 

sprouts.  
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3.3. Materials and Methods 

3.3.1. Raw Seeds 

Dry horse gram (Macrotyloma uniflorum) seeds were procured from a local store 

but originally grown in the regions of Tamil Nadu, India. Raw seeds were cleaned and 

ground using coffee bean grinder to obtain fine flour that can pass through a 60 mesh 

sieve. Fine raw seed flour was packed in air tight container and stored at room temperature 

until analysis. 

 

3.3.2. Chemicals 

Folin-Ciocalteu, 3,5-dinitrosalicylic acid, Flavonoids- kaempferol, luteolin, 

apigenin, quercetin. Phenolic acids- gallic acid, p-coumaric acid, chlorogenic acid 

standards were purchased from Sigma Chemical Co. (San Diego, USA). o-pthaladehyde 

(OPA) and amino acids- aspartic acid, glutamic acid, asparagine, glutamine, serine, 

histidine, citruline, glycine, threonine, arginine, alanine, β-alanine, tyrosine, methionine, 

valine, tryptophan, phenylalanine, isoleucine, leucine, ornithine, lysine were purchased 

from Sigma Chemicals Co., (San Diego, USA). Solvents used for HPLC analysis were of 

HPLC grade.  

 

3.3.3. Processing Methods 

3.3.3.1. Germination and Cooking 

Cleaned and weighed horse gram seeds were washed using 70% ethanol and with 

sterile water (three time), prior to soaking in sterile water (1:5) for 8 h at ambient 
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temperature. After soaking, seeds were placed over moist filter paper in a petri dishes (150 

mm) and allowed germination under dark condition for 72 h in a closed incubator set at 

25-28 °C with sterile water spray (twice/24 h). Duration of germination was selected to be 

72 h based on the preliminary study attempted until 96 h, 72 h germination showed better 

total phenolic content, DPPH scavenging activity as well as absence of leaves. Samples 

for raw, soaked seeds and sprouts for each day were collected in triplicates. All the samples 

were crushed in clean mortar pestle and stored in dark at -20°C until analysis. A portion 

of horse gram sprouts were subjected to conventional cooking method, by boiling in sterile 

water at 95±5°C for 30 min until they appeared tender edible sprouts and allowed to cool 

down to room temperature before adding starter inoculation25.  

 

3.3.3.2. Inoculum preparation and fermentation 

Lactic acid bacterial (LAB) strains Lb. plantarum NRRL-B-4496 and Lb. 

plantarum NCDO-1193 were obtained from Dept. of Plant Sciences, North Dakota State 

University. USA. The frozen cell culture was sub cultured thrice using MRS broth (Sigma, 

USA) by incubating at 37°C for 48 h under micro-aerobic conditions in order to be 

reactivated. The active cells were harvested and re-suspended in sterilized water in order 

to obtain 8 log10 cfu/ml. This cell suspension was used as starter culture for horse gram 

sprout fermentation. Cleaned uncooked horse gram sprouts as well as freshly cooked 

sprouts were weighed and inoculated by addition of lactic acid bacterial cell culture 

suspension (2:3 w/v). Fermentation duration was carried out at 37 °C for 48 h. 

Fermentation time was finalized based on preliminary study that determined LAB 
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population showed decline after 48 h of sprout fermentation.  All the fermentation samples 

were stored at -20°C until further analysis. For natural or spontaneous fermentation, a 

portion of cooked and uncooked horse gram sprouts were inoculated by sterile water, 

volume equal to the amount of culture suspension. Samples of cooked and uncooked, LAB 

mediated and naturally fermented sprouts were collected in triplicates.  

 

3.3.4. Analytical Methods  

3.3.4.1. Water Hydration Capacity and Germination Rate 

Dry horse gram seeds were cleaned by discarding damaged or cracked seeds and 

one hundred and seventy seeds were counted (N) and weighed (W1). Raw seeds were 

soaked in a mason jar filled with sterile water (1:5, w/v) for 8 h at ambient temperature. 

After 8 h, water was drained and superfluous water was removed using paper towel. The 

soaked were weighed (W2) and hydration capacity was calculated using the following 

expressions  

Hydration Capacity (g/seed) =  
𝑊2  −  𝑊1

𝑁
 

 

3.3.4.2. Microbiological analysis and Determination of pH 

The fermented horse gram sprout samples (11g) were suspended in 99 ml 

autoclaved peptone water (0.1%) and mixed well. Serial dilutions of product suspension 

were prepared using sterile peptone water. One ml of appropriate dilutions was added to 

labelled sterile petri dishes followed by pouring molten MRS agar (Sigma, USA). After 

proper mixing of sample dilution and molten agar, all the petri dishes were overlaid by 
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approx. 5ml molten MRS agar and incubated at 37°C for 48 h ± 1 h. The selective colonies 

were counted and expressed as logarithmic colony forming units per gram (log cfu/g) of 

sample. pH of all fermented samples was determined using pH meter. 

 

3.3.4.3. Extraction and Determination of changes in phenolic compounds 

Phenolic compounds were extracted from horse gram raw seeds flour, crushed 

samples of soaked seeds, sprouts, cooked and uncooked fermented sprouts using 80% 

aqueous methanol containing 1% HCl (1:30, w/v) by reflux extraction in a boiling water 

bath for 90 min. The extracts were filtered through Whatman filter paper No. 1 and stored 

in -20°C until further analysis. The total phenolic content in the clear extracts were 

determined according to Folin-Ciocalteu method 72. Gallic acid (GA) was used as the 

reference standard. The concentration of phenolic compounds in each sample was 

expressed as milligrams gallic acid equivalents (GAE)/g of dry weight of sample.    

 

3.3.4.3.1. Quantification of Phenolic compounds by HPLC-DAD 

Quantification of phenolic compounds was achieved by using analytical reversed-

phase chromatography Waters HPLC system equipped with Waters 717 auto sampler, 

Waters binary pump coupled with Waters photodiode array detector, all controlled by 

Empower Pro software as data processor. The auto sampler was set at room temperature, 

while the chromatographic separation was done on Waters Symmetry® C18 (4.6µm x 250 

mm) column with particle size of 5µm. The mobile phase included solvent A-30mM 

phosphoric acid and solvent B-acetonitrile: water (60:40, v/v). The flow rate was set to 
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0.5ml/min for total run time of 32 min and injection volume of 40µl. The elution of binary 

solvent was conducted in gradient pattern, starting 70% of solvent A for 3 min changing 

it to isocratic 100% solvent B for 26min and equilibrated for 6 min to start the next sample. 

Flavonoids and phenolic acids standards were co-eluted therefore UV absorbance of 

340nm was finalized to quantify all phenolic compounds.  

 

3.3.4.4. Determination of changes in free radical scavenging inhibition activity 

The DPPH scavenging activity of the acidic methanolic extracts was determined 

using the modified method73. Sample extracts (10µl) was mixed with methanol (90ul) and 

sample blank by adding 270µl methanol. Ascorbic acid was used as standard (20 µg/mL) 

in varying concentration of 0.1, 0.2, 0.4, 0.8, 1.6, 2µg/ml. The absorbance decrease was 

measured at 515nm in a microtiter plate reader. Free radical scavenging activity was 

expressed as µg of ascorbic acid equivalent/g dry weight of sample.  

 

3.3.4.5. Determination of changes in protein content and free amino acids 

Protein extraction for raw horse gram seeds flour, sprouts, cooked and fermented 

sprout samples was performed by isoelectric precipitation method74 with some 

modifications. The procedure involves adjustment of aqueous sample mixture (1:10) to 

pH 8.5 – 9.0 using sodium hydroxide (1N) solution followed by placing all alkaline sample 

mixture in shaking water bath for 60 min at room temperature for stabilization of protein. 

Centrifugation for 15min at 400g separates sample residues from the stabilized protein 

solution. Further adjustment of pH at 4.3–4.5 using hydrochloric acid (1N) led to 
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precipitation of protein in the mixture. Protein precipitate was separated by repeated 

centrifugation (400g for 15min) obtaining a pellet, which was later washed using acidic 

water (pH 4.5) and then neutralized in filtered deionized water (pH 6.6-7.0). The 

precipitate free clear solution was subjected to protein analysis. Lowry’s Assay75 was used 

to quantify total protein content in the raw seed flour, sprouts, cooked and fermented horse 

gram sprouts samples in order determine the effect of each process on assayable protein 

content. BSA (bovine serum albumin) at 1mg/ml was used as the reference standard. 

Absorbance at 650nm was recorded using microtiter plate reader (BioTek Instruments, 

Inc, USA). Free amino acids extraction was carried out using 80% methanol under ice 

cold conditions. The extraction procedure involved repeated high speed vortexing and 

sonication in ice cold water (60min) followed by high speed temperature controlled 

centrifugation at 4°C (1000rpm for 20min). A modified ninhydrin assay76 was used to 

estimate the amount of free amino acids in the all the samples in order to determine 

changes occurring in peptide complexes due soaking, germination, cooking and 

fermentation processes. Glycine was used as the reference standard. The results for protein 

content and free amino acid is expressed in mg BSA/g of dry weight of sample and mg 

glycine equivalent/ g of dry weight sample respectively. 

 

3.3.4.5.1. Quantification of Amino Acid Composition by HPLC 

Sample extracts were further diluted by adding HPLC grade methanol (80%) and 

centrifuged for 15 min at 400g. Clear diluted extracts were split in two sample vials 

(100µl) for HPLC duplicate injections in order to minimize interaction time between the 
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derivatization and injection on to HPLC system thus limiting any loss in fluorescent signal 

intensity.  Fluorescent derivatization of amino acids is completed using o-phthalaldehyde 

(OPA).  Derivatizing solution was prepared dissolving 50mg of OPA in methanol, 40mM 

sodium borate buffer (pH 9.5), (3.1%) Brij-35 surfactant and 50µl 2-mercaptoethanol to 

make the final working solution, this solution should not be used prior to 8 h and post 72 

h of preparation. The derivatization of each sample extracts was carried out in sample vials 

by addition of equal amount of OPA into each sample vials by an automated fashion using 

Perkin Elmer autosampler set at room temperature.  

 

3.3.4.5.2. Chromatographic system 

Perkin-Elmer HPLC system equipped with an auto sampler, binary pump coupled 

with a fluorescence detector and TotalChrom software (v. 6.3) as data processor was used 

for amino acid analysis. The HPLC method used for chromatographic quantification of 21 

amino acids was adopted from method developed earlier with some modifications77. The 

auto sampler was set at room temperature, while the chromatographic separation of 

derivatized amino acids was done on a C8 column (Agilent Zorbax- Eclipse XDB-C8, 4.6 

x 150mm) with particle size of 5µm and required two mobile phases which includes 

solvent A sodium acetate tetrahydrate buffer with pH adjusted to 5.7 with 2M NaOH and 

solvent B-acetonitrile. The injection volume was 5.0µl and the flow rate was 0.7ml/min 

for total run time of 28 min. The detection was performed flourometrically with an 

excitation of wavelength 240nm and an emission wavelength of 340nm.   
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3.3.4.6. Determination of α-amylase and α-glucosidase enzyme inhibitory activities 

Methanol extracts used for free amino acids analysis were also subjected to 

enzyme inhibition activity analysis. The α-amylase inhibitory activity was determined by 

an assay modified from the Worthington Enzyme Manual78 with some modifications. 

Twenty microliters of sample and substrate 45µl starch solution (1%) was added to only 

sample wells excluding sample blanks. Total volume was made up to 185µl using (0.9%) 

saline and incubated at room temperature for 5 min in 96-wells microtiter plate. After pre-

incubation, 45µl of α-amylase enzyme solution (10mg/ml) was added to all sample wells 

including sample blanks. The reaction mixtures were then incubated at room temperature 

for 60min. The enzyme-substrate reaction was stopped with 50µl 3, 5-dinitrosalicylic acid 

color reagent and incubated at 75°C for 60min. The reaction mixture was then cooled 

down to room temperature prior to measuring absorbance at 540nm in a microtiter plate 

reader (BioTek Instruments, Inc. USA). The absorbance of sample blanks (buffer instead 

of enzyme solution) and control (buffer in place of sample extracts) was recorded and 

calculated to determine % inhibition activity of samples. Acarbose (1mg/ml) used as 

positive control. The α-glucosidase inhibitory activity was determined by an assay 

modified from the Worthington Enzyme Manual78, 79 with some modifications. A volume 

of 50µl of sample extract diluted with 150µl 0.1M potassium phosphate buffer (pH 6.9) 

and varying concentration of acarbose (1mg ml-1) containing 30µl α-glucosidase enzyme 

(0.1U ml-1) was incubated in 96-wells microtiter plate at room temperature for 10min. 

After pre-incubation, 50µl of 4-Nitrophenyl-a-d-glucopyranosidase (NPGP) 2.5mM 

solution in 0.1M potassium phosphate buffer (pH 6.9) was added to all sample and 
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standard wells excluding sample blanks. The reaction mixtures were incubated at room 

temperature for 30min. Control wells containing 50µl of 0.1M potassium phosphate buffer 

(pH 6.9) were treated similar to standards and samples. The absorbance at 405nm was 

recorded by microplate reader (BioTek Instruments, Inc, USA). Acarbose (10 mg ml-1) 

was used as positive control. The α-amylase and α-glucosidase inhibitory activity is 

expressed as percentage of inhibition and calculated according to the equation below.  

% 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  
𝐴𝑏𝑠. (𝑐𝑜𝑛𝑡𝑟𝑜𝑙)  −  𝐴𝑏𝑠. (𝑒𝑥𝑡𝑟𝑎𝑐𝑡)

𝐴𝑏𝑠. (𝑐𝑜𝑛𝑡𝑟𝑜𝑙)
×100 

 

3.3.4.7. Statistical Analysis 

All the experiments and analysis were performed in three independent replications 

with triplicate samples. The results were expressed as mean±standard error. The mean 

comparison was performed using JMP Statistical Discovery™ (SAS) Pro. v.12.0 software 

package and processed by one way analysis of variance (ANOVA) to evaluate significant 

differences (p<0.05) and Student;s t test to compares means of all samples.   

 

3.4. Results and Discussion 

Raw horse gram seeds are reported to be good source of dietary antioxidants as 

well as have compounds with potent antimicrobial activity against several pathogens. It 

has also been reported to possess functional metabolites against serious diseases like 

diabetes, hypercholesterolemia and obesity 12, 13. Despite of numerous health benefits of 

dried edible seeds like horse gram, the major drawback in using the raw grains is that they 

are not readily rehydrated and are difficult to cook, as the seed coat is hard thus requires 
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longer cooking time. Dry horse gram seeds have been reported to contain high levels of 

anti-nutritional compounds like phytic acid, tannins, polyphenols that may challenge 

worldwide acceptance of horse gram for human consumption80. Moreover, there are 

several scientific convincing evidences validating conventional processing methods like 

soaking, germination and cooking which are capable of significantly reducing the content 

of undesirable compounds thus enhancing acceptability and nutritional value of the 

legume13. During such crucial though simple processes, dry seeds undergo critical 

chemical changes resulting in modification of texture, nutritional composition, 

digestibility and palatability 26, 30. Therefore, these conventional processing methods were 

proposed for the present study in order to improve nutritional quality of this poor man’s 

pulse. Soaking of grain legume is generally practiced before dry seeds are germinated or 

cooked, in order to render them edible and ensure sensory quality. Pre-soaking seeds 

facilitates upregulation of the water content in the seed that aids germination process to a 

greater extent, however response to soaking water or hydration varies with different 

species of pulses81. Such response can be measured in terms of hydration capacity (HC), 

explained as the amount of water that whole seeds absorb after soaking in excess water at 

room temperature. Knowledge of hydration capacity of an underexplored pulse like horse 

gram benefits prompt acceptance by food technologists and consumers, since it plays a 

major role in development of appetizing food products. In the present study, hydration 

capacity and germination rate were determined for horse gram seeds. It was observed that 

germination rate under laboratory conditions varied between 94% to 97% and hydration 

capacity was around 0.0334g/seed, similar results were observed in a previous study 
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assessing physiochemical and functional properties of four different varieties of horse 

gram82. Soaking of raw horse gram seeds also led to significantly increase free radical 

scavenging activity while soaked excess water also showed some antioxidant property that 

might be due to leaching of some polyphenols in the external medium during soaking 

(Table 1.). Soaked water may or may not be discarded in traditional practices, some 

scientific studies showed decrease in polyphenol content of horse gram and other lentils 

during soaking, hence it may be better to reuse the soaked water instead of draining25-28, 

83. Furthermore, germination of horse gram soaked seeds in laboratory conditions, 

significantly increases DPPH scavenging activity (138.64 mg AA eq./g DW) of sprouts 

compared to raw seeds (95.97mg AA eq./g DW). Although results of total phenolic 

content did not appreciably showed differences amongst raw, soaked and germinated 

seeds (Table 1), this clearly indicates presence of certain metabolites other than phenolic 

compounds in sprouts with strong antioxidant activity pertaining to the escalation 

observed only in DPPH inhibition during analysis. Such results are in accordance of 

previous studies on horse gram26, 84, soybean sprouts37 and lentils36. Dry seeds store 

reserve nutrients like starch, proteins and lipids that are degraded in the cotyledons or 

endosperms during germination, products released are translocated to the developing axis 

that nourishes the sprout to grow into a seedling and subsequently into a new plant. During 

sprouting, certain compounds are also synthesized or released namely secondary 

metabolites that serve as defense mechanism of the small underdeveloped growing plant, 

protecting it from several stress reactive oxygen species. Therefore, the sprouted seeds or 

pulse sprouts have gained more importance over raw dry seeds not only due to it higher  
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Table 1 Changes in total phenolic content, DPPH free radical scavenging activity, protein 

content, free amino acids due to soaking, germination, cooking and lactic acid bacterial 

fermentation of horse gram seeds. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS-Raw Seeds, SS-Soaked Seeds, SW-Soaked water, GS-Germinated Seeds, CF4496-Cooked sprouts fermented by Lb. plantarum NRRL-B-

4496, CF1193-Cooked sprouts fermented by Lb. plantarum NCDO-1193, UCF4496- Uncooked sprouts fermented by Lb. plantarum NRRL-B-

4496, UCF1193- Uncooked sprouts fermented by Lb. plantarum NCDO-1193, CS-Cooked sprouts, CFN-Cooked sprouts fermented naturally, 

UCFN- Uncooked sprouts fermented naturally.  

Values are means of three independent fermentation batches ± standard error.  

Lower case superscripts indicate significant differences (p<0.05*) among samples. 

Samples* Total Phenolic 

Content 

(mg GAE/g) 

DPPH 

(mg AAE/g) 

Protein Content 

(mg BSA eq./g) 

Free Amino 

Acids 

(mg Gly.eq./g) 

pH Log10 

CFU/ml 

RS 4.67 ± 0.18de 79.37 ± 3.42g 30.54 ± 1.02a 4.98 ± 0.22e 6.32 ± 0.04bc - 

SS 4.51 ± 0.22e 132.47 ± 2.98f 23.76 ± 0.64c 6.18 ± 0.32de 6.52 ± 0.04a - 

SW 0.86 ± 0.06f 23.38 ± 0.05h 8.95 ± 0.51h 0.30 ± 0.01f - - 

GS 5.57 ± 0.19de 164.90 ± 6.30e 27.25 ± 1.96b 16.60 ± 1.02ab 6.27 ± 0.02c - 

CS 4.70 ± 0.19de 228.18 ± 7.73d 15.03 ± 1.13ef 11.12 ± 0.78c 6.43 ± 0.07ab - 

Cooked Fermented sprouts      

CF4496 5.80 ± 0.20d 261.51 ± 8.56c 13.08 ± 0.85fg 6.75 ± 0.23de 4.25 ± 0.04d 7.85 ± 0.11b 

CF1193 5.41 ± 0.16de 264.37 ± 9.12c 11.68 ± 0.61gh 6.61 ± 0.24de 3.76 ± 0.06e 7.93 ± 0.06b 

CFN 7.78 ± 0.98c 316.18 ± 12.55a 14.52 ± 1.13ef 7.06 ± 0.53d 3.33 ± 0.04gh 3.91 ± 0.23c 

Uncooked Fermented sprouts      

UCF4496 7.87 ± 0.24c 265.43 ± 8.53c 17.98 ± 0.77d 16.50 ± 1.19ab 3.48 ± 0.03f 8.08 ± 0.08b 

UC1193 9.24 ± 0.15b 291.26 ± 6.17b 15.7 ± 0.60def 16.16 ± 1.05b 3.41 ± 0.03fg 8.38 ± 0.07a 

UCFN 10.98 ± 0.87a 330.27 ± 6.82a 16.38 ± 0.99de 18.50 ± 0.96 a 3.21 ± 0.07h 4.19 ± 0.07c 
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nutritional value but also due to health promoting benefits32. Such metabolic changes were 

extensively studied in past for common legumes like mung beans, soybeans, however 

there are several factors like genetic make-up of the seed, environment that affects the 

metabolic pathways a dormant seed undergoes during its development into a sprout. A 

study investigated changes in polyphenols and in vitro antioxidant activity during 24 h 

germination of horse gram (Macrotyloma uniflorum) and green gram (Vigna radiata)31. It 

was reported that total phenolic content in horse gram sprouts was higher compared to its 

raw seeds, as well as considerable increase in in vitro antioxidant activity was observed in 

both legumes during germination. Such an increase was accounted to the metabolic 

changes occurring in the dormant raw seeds during the process of sprouting that may have 

formed or released several bioactive compounds with good antioxidant activity. Therefore, 

the current study further adds to the rationale towards proposing that the germination 

process significantly increases antioxidant content in horse gram17, 35. In contradiction to 

this, one study reported lower total phenolic content in horse gram sprouts compared to 

its raw seeds, however such results can be due to protein-phenolic interactions that lead to 

formation of complexes exhibiting structural and functional changes in both the 

compounds. Such complexes formed influence determination of total phenolic content by 

reducing analytical recovery of analytes from food matrix like pulses with high amount of 

protein content. Moreover, taking into account that there are several phenolic compounds 

in horse gram seeds and sprouts investigating the individual phenolic compounds was of 

greater importance in order to clearly understand the effect of germination on horse gram 

seeds.  
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Cooking quality of seeds is one of the important parameters of legumes that varies 

to very high extent among all the legumes. Depending on the cooking quality of the 

legumes, cooking time differs widely among genotypes and is affected by the permeability 

of seed coat and the cotyledons to hot water 30. Thermal processing of legumes modifies 

its structural and functional properties suggesting increase in the digestibility of foods but 

loss of certain heat-labile nutrients is inevitable18. Interestingly, present study showed 

conventional cooking increased DPPH scavenging activity of horse gram sprouts to 

240.62 mg AA eq./g DW. Such can be attributed to either release of some bound non-

phenolic compounds in sprouts during cooking 85 or heat mediated alteration of the some 

phenolic compound structure that plays a major role in reaction mechanism between the 

antioxidants and DPPH during analysis18. Therefore, we observe a significant increase in 

DPPH scavenging activity in cooked horse gram sprouts compared to uncooked sprouts. 

Another reason suggested could be due to interaction of other phytochemicals and 

thermally altered phenolic compounds18. In a previous study 25 it was observed that 

cooking significantly reduces the polyphenol content in horse gram sprouts, however the 

loss was much less in the horse gram sprouts compared to its raw seeds subjected to 

conventional cooking suggesting cooking sprouts could be a better option over cooking 

legume seeds. Such reduction might be due to either binding of polyphenols with other 

organic substances like protein or results from alterations caused in the chemical structure 

of polyphenols that render them incapable of giving the chemical color reaction measured 

by the analytical method. Two LAB strains Lactobacillus plantarum NRRL-B-4496 and 

Lactobacillus plantarum NCDO 1193 were used to ferment horse gram sprouts, cooked 



 

38 

 

and uncooked. The two strains were chosen as they were found to efficiently ferment horse 

gram sprouts in our preliminary study when compared with two other probiotic strains 

Lactobacillus helveticus ATCC 12046 and Lactobacillus helveticus ATCC 10797. Effect 

of fermentation on free radical scavenging activity of both cooked and uncooked sprouts 

was also determined. It was observed that DPPH inhibition was significantly higher in 

lactic acid bacterial fermented cooked sprouts compared to the non-fermented cooked 

sprouts, whereas total phenolic content did not cause much change in cooked sprouts 

subjected to lactic acid bacterial fermentation (Table.1). Hence such distinct relationship 

between total phenolic content and DPPH scavenging activity in fermented cooked sprouts 

might be due to antioxidative metabolites other than phenolic compounds synthesized 

during fermentation by Lactobacillus plantarum spp. Lactic acid bacteria are commonly 

used for fermentation of legumes and sprouts, Moreover, it has been reported that lactic 

acid fermentation have diverse effect on antioxidant activity of different legumes48. In 

addition the present study some other studies have reported significant increase in the 

antioxidant activity of lupin flour, autoclaved soybean seeds fermented by Lactobacillus 

plantarum.48, 86, 87 while some studies showed no change or reduced antioxidant activity 

of Lactobacillus plantarum fermented lentil, kidney beans and soybean15, 49. Such assorted 

levels of antioxidant activity in fermented edible legumes suggest that modification of 

phytochemicals during fermentation largely depends on type of legume as well as type of 

starter culture.  

Lactobacillus plantarum is one of those influential species of probiotics which is 

capable of producing antioxidants in the growth medium, two of such antioxidants were 
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isolated and identified in a recent study that demonstrated DPPH free radical scavenging 

activity from pure Lactobacillus plantarum cultures using MS, NMR and HPLC. 3-(4-

hydroxyphenyl) lactic acid and indole-3-lactic were identified in this study, however it 

was also observed that their production by Lactobacillus plantarum is due to strain-

specific mechanism88. Therefore, it was interesting to the identify antioxidants present in 

fermented horse gram sprouts in the current study.  

Amongst both LAB fermented sprouts, uncooked sprouts fermented by Lb. 

plantarum NCDO 1193 showed highest total phenolic content (9.23 mg GAE eq./g DW) 

followed by uncooked sprouts fermented by Lb. plantarum NRRL B-4496 (7.87mg GAE 

eq./g DW), cooked sprouts fermented by Lb. plantarum NRRL B-4496 (5.8 mg GAE eq./g 

DW) and then cooked sprouts fermented by Lb. plantarum NCDO 1193 (5.4 mg GAE 

eq./g DW). Uncooked sprouts fermented using Lactobacillus plantarum showed higher 

levels of total phenolic content compared to cooked fermented sprouts, this might be due 

to nutrient depletion during thermal processing that may limits lactic acid bacterial growth 

during fermentation of cooked sprouts, leading to limited metabolic activities of LAB. 

Although no significant difference in total phenolic content was observed between two 

strains fermenting cooked sprouts, whereas both types of uncooked sprouts differed 

significantly (Table.1). Such results can be attributed to the changes occurring in phenolic 

compounds during cooking followed by different metabolic activities of two different 

strains of Lb. plantarum spp. as well as interfering microflora carrying out fermentation 

of fresh sprouts. Since this study is the first attempt of horse gram sprout fermentation, 

there are no reports available, however similar results were reported in eight common 
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edible fermented legumes including black gram, cowpea, kidney bean, lentil, rice bean, 

runner bean, black and yellow soy beans suggesting significant increase in the amount of 

phenolic compounds due fermentation by Lb. plantarum WCFS148.  

Lactic acid bacteria like Lactobacillus plantarum spp. are able to decarboxylase 

the hydroxycinnamic acids, p-coumaric and caffeic acids56. Molecular characterization 

studies on L. plantarum revealed that this bacterium species possess inducible gene 

encoding p-coumarate decarboxylase (PadA) having p-coumaric acid decarboxylase 

(PAD) activity which was found to be different in structure, specificity of substrate, 

expression and N-terminal amino acid sequence compared to other characterized 

decarboxylases from Saccharomyces cerevisiae, Bacillus pumilus and Psuedomonas 

fluorescens. A study observed an increase in the bioactive compounds of soybean (Glycine 

max cv. Merit) and mung beans (Vigna radiate [L]) due to fermentation by Lactobacillus 

plantarum CECT 748 T that converted glycosylated isoflavones into bioactive aglycones 

44. Fermentation hydrolyzes complexes of polyphenols into simpler and biologically more 

active compounds due to the ability of fermenting bacteria of deglycosylation. Since 

conjugate glycosides are not absorbed intact across the intestine of healthy adults and they 

need to be hydrolyzed, releasing aglycones which are observed to be in more bioactive 

forms that can be easily absorbed by the intestinal lining55, it is of greater importance to 

elucidate possible deglycosylation, decarboxylation during lactic acid bacterial 

fermentation in the present study. 

Traditionally natural fermentation of legumes is widely practiced to produce many 

fermented popular streets foods like smelly bean curd, broad bean pastes in China.  In this 
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study, a portion of freshly cooked and uncooked sprouts were inoculated with sterile water 

to allow natural fermentation by the microorganisms naturally inhabiting sprouts also 

showed significant differences in total phenolic content, although no significant 

differences were observed in free radical scavenging activity of cooked and uncooked 

naturally fermented sprouts. Despite of highest total phenolic content (10.97mg GAW/g 

DW) and highest antioxidant activity (356.36 mg AA eq. g DW) showed by uncooked 

naturally fermented sprouts, it contains strong stinky odor which indicates production 

certain volatile compounds during natural fermentation. Horse gram sprouts fermented 

using Lactobacillus plantarum had pleasant odor unlike sprouts fermented spontaneously. 

Such discrete aroma of two different types of fermented products in this study drives 

attention to evaluate metabolic activities involving production of volatile flavor during 

fermentation of horse gram sprouts.     

Due to probable accelerated metabolic activity during germination and 

fermentation in horse gram seeds and sprouts, it was important to further investigate the 

changes occurring in the phenolic compounds in all the samples. Therefore, horse gram 

seeds, sprouts as well as fermented sprouts extracts were subjected to HPLC-DAD-ESI-

MS analysis. In particular, changes in phenolic compounds of horse gram sprouts and 

fermented horse gram sprouts during germination and fermentation has not been described 

in literature so far, we have compared horse gram dry seeds with soaked seeds, horse gram 

sprouts, lactic acid bacterial fermented horse gram sprouts as well as naturally fermented 

sprouts. Table 2 shows the list of chromatographic peaks, retention time of tentatively 

identified compounds in the horse gram samples with molecular ions in positive ionization 
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as well as concentration of each compound in different samples. It was observed that 

chromatographic peaks remained consistent in all samples throughout the all types of 

processing except peak 10 which was observed only on horse gram fermented and non-

fermented sprouts. The chromatogram peak 2 (Figure 1.) showed molecular ion peak at 

m/z 309 [M + H]+ and fragment ion at m/z 147 in its positive ionization mass spectrum. 

The difference between the molecular ion and fragment ion (162 mass units) revealed the 

occurrence of hexose sugar (glucose/galactose) attached to aglycone therefore identified 

as probable flavonoid glucoside. Peak 3, 4, 5, 6, 7, 8 and 9 showed same molecular ion at 

MS m/z 287 or MS/MS m/z 284, 255, 227 that represents to kaempferol fragments ions 

also descried in pollen typhae and fenugreek seeds89. Hence, all the above mentioned 

compounds peaks are flavonoid kaempferol glycosides except for peak 9 which was 

identified as kaempferol aglycone based on authentic standard retention time and mass 

spectrum. Peak 3 presents a molecular ion at m/z 741 [M + H]+ followed by m/z 287 The 

MS data showed fragments ion signals in MS/MS at m/z: 284, 255, 227 [M - H]- so 

compound is tentatively identified as kaempferol-3-O-robinoside-7-O-rhamnoside. Peak 

4 showed the molecular ion peak at m/z 595 with fragments at 449, 287 in its mass 

spectrum. The difference in the mass units between fragment ions with aglycone fragment 

ions of kaempferol indicates presence of kaempferol-7-rutinoside. Similar fragment ions 

were observed for peak 5 and 6 with molecular ion at m/z 595 followed by 449, 287 

fragments that were tentatively identified as kaempferol-3-robinoside and kaempferol-3-

glucoside-7-rhamnoside respectively.
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Table 2 Changes in phenolic compounds (µg/g DW) due to soaking, sprouting, cooking and lactic fermentation of horse gram seeds. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RS-Raw Seeds, SS-Soaked Seeds, SW-Soaked water, GS-Germinated Seeds, CF4496-Cooked sprouts fermented by Lb. plantarum NRRL-B-4496, CF1193-Cooked sprouts fermented by Lb. plantarum NCDO-1193, UCF4496- Uncooked sprouts 

fermented by Lb. plantarum NRRL-B-4496, UCF1193- Uncooked sprouts fermented by Lb. plantarum NCDO-1193, CS-Cooked sprouts, CFN-Cooked sprouts fermented naturally, UCFN- Uncooked sprouts fermented naturally.  

Values are means of three independent fermentation batches ± standard error.  

Lower case superscripts indicate significant differences (p<0.05*) among samples.  

 

       Cooked Fermented Sprouts Uncooked Fermented Sprouts 

# RT Molecular ion Tentatively Identified Compounds RS SS SW GS CS CF4496 CF1193 CFN UCF4496 UCF1193 UCFN 

1 2.1 
[118.086]+ Unknown compound 

381.60 

±18.71de 

203.72 ± 

7.19ef 

8.39 ± 

1.14f 

609.677 

±52.16bcd 

718.93 

±150.81abc 

813.834 

±170.64cd 

700.189 

±134.55abc 

592.978 

±68.86cd 

647.678 

±95.27bc 

834.170 

±77.04ab 

908.152 

±108.95a 

2 3.2 [309.144]+ Unknown compound 
121.29 ± 

14.7c 

93.35 ± 

20.12c 

16.60 

± 1.96c 

766.62 ± 

89.15ab 

586.05 ± 

90.70b 

697.90 ± 

139.65b 

546.34 ± 

78.54b 

730.81 ± 

92.65b 

701.40 ± 

170.43b 

1021.22 ± 

152.43a 

1036.68 

± 124.06a 

3 9.0 [741.223]+ 
Kaempferol-3-O-robinoside-7-O-

rhamnoside 

270.93 ± 

26.10cd 

300.46 ± 

29.52c 
ND 

484.70 ± 

17.01ab 

330.41 

±27.28c 

353.58 ± 

23.50c 

261.81 

±27.38cd 

185.52 ± 

47.17d 

547.44 ± 

39.15a 

457.44 ± 

37.45ab 

446.83 ± 

56.36b 

4 12.1 [595.163]+ Kaempferol-7-rutinoside 
16.0 ± 

3.17d 

8.6 ± 

4.13 d 
ND 

2616.2 ± 

197.75ab 

2269.3 ± 

165.05b 

2621.4 ± 

129.67ab 

1717.1 ± 

161.67c 

1470.1 ± 

308.87c 

2775.3 ± 

196.33ab 

2294.2 ± 

186.34b 

2944.2 ± 

304.60a 

5 12.9 [595.167]+ Kaempferol-3-O-robinobioside 
143.53 ± 

15.26c 

189.33 ± 

18.44ab 
ND 

159.80 

±10.09bc 

94.01 ± 

10.77d 

99.50 ± 

9.48d 

70.61 ± 

13.17d 

15.24 ± 

16.45e 

216.47 ± 

15.30a 

165.86 ± 

15.11bc 

169.11 ± 

23.45bc 

6 13.5 [595.166]+ 
Kaempferol-3-glucoside-7-

rhamnoside 

46.25 ± 

4.67e 

48.74 ± 

7.65e 
ND 

332.30 ± 

15.38b 

296.63 ± 

15.01bc 

245.99 ± 

9.57c 

266.87 ± 

16.31bc 

165.86 ± 

31.78d 

459.44 ± 

35.37a 

424.23 ± 

44.00a 

436.05 ± 

52.81a 

7 14.3 [449.107]+ Kaempferol-3-O-glucoside 
25.3 ± 

3.44d 

14.5 ± 

3.93d 
ND 

1219.3 ± 

195.96a 

1226.0 ± 

179.95a 

748.1 ± 

146.29bc 

749.7 ± 

109.35bc 

492.1 ± 

102.42c 

850.6 ± 

125.56bc 

931.3 ± 

171.73ab 

934.8 

±159.21ab 

8 17.2 [549.121]+ 
Kaempferol 7-(6''-p-

succinylglucoside) 

16.262 ± 

4.30cde 

2.071 ± 

1.99e 
ND 

79.81 ± 

16.252e 

45.955 ± 

11.51a 

32.240 ± 

8.21bcd 

37.296 ± 

9.82bc 

7.892 ± 

11.03de 

44.480 ± 

12.148b 

1.837 ± 

14.03e 
ND 

9 22.2 [287.054]+ Kaempferol (aglycone) 
319.3 ± 

28.62e 

374.3 

±41.51e 
ND 

1180.5 ± 

71.72d 

1932.9 ± 

138.73c 

2036.1 ± 

104.30c 

2224.5 ± 

134.62bc 

2117.9 ± 

323.13bc 

2323.6 ± 

321.90bc 

2565.1 ± 

287.99b 

3750.2 ± 

187.93a 

10 27.2 
[389.082]+ Unknown compound ND ND ND 

74.95 ± 

12.5bc 

77.82 ± 

17.12bc 

110.11 ± 

29.77bc 

80.39 ± 

24.14bc 

58.24 ± 

24.07cd 

128.43 ± 

33.91ab 

93.10 ± 

18.22bc 

174.85 ± 

36.54a 
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Peak 7 showed molecular ion at m/z 449 with its fragment ions at m/z 287 which 

again represents kaempferol aglycone fragments in MS/MS m/z 284, 255, 227 [M - H]- 

tentatively identified as kaempferol-3-O-glucoside. Another probable kaempferol 

glucoside identified as kaempferol 7-(6”-p-succinylglucoside) as peak 8 with molecular 

ion at m/z 549 followed by aglycone fragment ion at m/z 287. Peak 9 was identified and 

confirmed based on authentic standard as kaempferol aglycone with molecular ion at m/z 

287 [M + H] +. Polyphenols of pulses mainly concentrated in the seed coat comprising of 

proanthocyanidins, flavonols, flavanones and hydroxycinnamic acids. The present study 

identified flavonols in horse gram seeds similar to those found in black beans, white beans 

and other beans90. Several studies have reported that qualitative as well quantitative 

phenolic compounds profile in pulses are influenced by processing conditions. 

Germination also have profound effect on polyphenols in legumes or pulses such as 

common beans (Phaseolus vulgaris L.)91. Maturity of the pod before subjecting the seeds 

to drying process for preservation purposes also significantly affects the amount of storage 

polyphenols92. With progressing stages of maturity concentration of both glucosides as 

well as aglycones increases significantly in broad bean pods. While germination or 

sprouting de novo synthesis of flavonols which in turn significantly increases the amount 

of glycosides as well as certain aglycone forms of flavonols in Mexican common beans91. 

In the present study, comparable effect of germination was also observed in horse gram 

seeds (Table 2.), where most of the kaempferol glucosides in horse gram sprouts extracts 

except for kaempferol-3-O-robinoside were higher compared to dry seed flour extracts.
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Figure 1 Chromatogram of tentatively identified phenolic compounds in horse gram sprouts using 

HPLC-DAD-ESI-MS Analysis 
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Since pulses are still considered under hard-to-cook group of foods, often 

subjected to vigorous cooking such as pressure cooking hence impact of such heat 

processing on polyphenol composition is matter of interest for several legume researchers. 

In the present study, cooked horse gram sprouts showed some of the glucosides showed 

significant increase while aglycone kaempferol reduced significantly during cooking. 

Similar increase in the kaempferol glucosides was observed in cooked common bean 

(Phaseolus vulgaris L.) whereas kaempferol aglycone observed a decrease by 5-51% 93, 

94. In contrast, fermentation of cooked sprouts although reduced the levels of some 

glucosides (Table 2.) while other increased significantly including kaempferol aglycone. 

Common dietary sources of kaempferol includes beans and soybeans apart from fruits and 

vegetables. Kaempferol exhibit anti-inflammatory, antitumor, antioxidant, antimicrobial, 

cardioprotective, neuroprotective as well as antidiabetic activities95. In particular, 

kaempferol-3-glucoside (astragalin) possesses potent neuroprotective properties against 

diseases such as Parkinson's and Alzheimer's96, 97.  

Horse gram protein content divides into albumin-globulin fraction about 75.27%-

78.76%, while glutelin around 9.93-17.52% and residual 6.96-11.30% protein98. As 

discussed before, processes like soaking, germination reduces the amount of anti-

nutritional constituents amongst which some are lectin and trypsin inhibitors. It is believed 

that proteases released during soaking and germination is responsible for such inactivation 

of proteinaceous anti-nutritional factors. There are three stages of proteolysis during 

germination. The first stage of hydrolysis describes liberation of amino acids and their 

subsequent use for the synthesis of enzymes responsible for conversion of reserves 
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substances into suitable form for transport, in the second stage bulk hydrolysis occur in 

which the reserve protein is hydrolyzed into amino acids for growing seeds. Finally, 

during the third stage, that occurs during the senescence of storage tissue, the cellular 

proteins and enzymes are broken down into amino acids which are subsequently used by 

the seedling before the onset of autotrophic growth58. In the present study, protein content 

in the precipitated fraction of soaked seeds extract showed lower protein content (23.76mg 

BSA eq./g DW) compared to raw seeds 30.54 mg BSA eq./g DW, in addition germination 

also lowered protein content (27.25mg BSA eq./g DW) compared raw seeds. Similar 

reduction in protein content was reported in mung, pea and lentil sprouts after 72 h and 

120 h of germination99.  

Scientific evidences about the sprout pertaining optimal number of nutrients are 

substantial, recommending legume sprouts consumption for maximum health benefits to 

the consumers. Germination is known to have very little effect on crude protein content. 

A study reported 1.4% increase in protein content of green gram during germination, 

whereas a study59 reported an increase of 2.5% in mung beans. Such an increase was 

attributed to biosynthesis of enzymes and protein during germination and compositional 

changes following the degradation of other constituents 35. However, such an increase in 

crude protein content during seeds germination may not be due to an increase in true 

protein as most of analysis measure total nitrogen content of the samples that can be either 

due to presence of nucleic acid, free amino acids and polypeptides in legumes. 

Interestingly, present study showed remarkable increase in the amount of free amino acids 

along with a decrease in the protein content during soaking, germination and fermentation 
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(Table.1). Therefore, compositional analysis to evaluate the changes in amino acids 

profile during germination, cooking and fermentation is of greater interest for the present 

study. Mobilization of polymerized compounds such as protein into amino acids makes 

developing sprouts beneficial for human body as those simpler nutrients are readily used 

by the body for nutritional benefits. The essential amino acids could be amongst those free 

amino acids generated during germination, depending upon the biosynthesis pathway 

carried out by the seed. In the present study, amino acid chromatographic analysis was 

performed in order to determine effect of germination and lactic acid bacterial 

fermentation on essential amino acids. It was observed that horse gram raw seed flour 

extracts contain highest amount of arginine (2714.05µg/g DW) similar amino acid 

composition reported for horse gram100.  

Amongst essential amino acids tryptophan, phenylalanine, leucine, lysine, 

isoleucine, valine and histidine were detected while other two essential amino acids were 

either in trace amounts or not detected (Table 3.). Trace amounts of all amino acids was 

also found to be present in soaked water, which indicates onset of protein degradation 

during soaking prior to germination. Soaking of raw horse gram seeds significantly 

reduced amount of arginine accompanied by an increase in the amount of serine, histidine, 

β-alanine, methionine, phenylalanine. Arginine is degraded to ornithine and urea by the 

action of enzyme arginase (EC 3.5.3.1) in seedling cotyledons urea cycle. However, 

ornithine and citruline showed an increase in its concentration but non-significant 

compared to raw seeds, which clearly indicate lack of arginase activation during soaking. 

Arginase activity during germination have been reported in cotyledons of several species 
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like pea seeds101, faba beans102, soybeans103. In the present study, most of the amino acids 

significantly increased during germination (Table 3.). Arginine concentration 

significantly decreased to 328.27µg/g DW while dramatic increase in the concentration of 

asparagine was observed (254.93 µg/g DW to 2317.43 µg/g DW). Since arginine is one 

of the predominant amino acids in angiosperm seed protein of raw horse gram seeds, its 

breakdown is critical during germination for efficient mobilization of seed nitrogen 

towards growing new organs of sprouts103. Such an increase in the amount of other amino 

acids including essential amino acids as well as arginine reduction suggests arginine to be 

temporary nitrogen storage protein component in raw horse gram seeds predominantly 

utilized in biosynthesis of other amino acids during sprouting103. Another mechanism 

suggested in a previous study104, that elucidates that dicots like legumes rely on storage 

proteins as sole nitrogen source for amino acid synthesis, nitrogen is transferred from 

arginine which is predominant in endosperm to asparagine in cotyledons which further 

aids the germinating sprouts (axis) (Figure 2). Major pathway of nitrogen flow in ASN-

ARG-ASN cycle may be one of the possible reason for asparagine to be accumulated in 

72 h germinated horse gram sprouts accompanied with significant reduction in arginine 

concentration during germination. Similar increase in the amount of asparagine was 

observed in soybean sprouts105. The proposed ASN-ARG-ASN cycle possibly will be 

mediated by enzymes like asparagine synthetase and glutamine synthetase encoded by 

gene gamily (ASN1, ASN2, ASN3 and GLN2) that are present in legumes104, 106.
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Table 3 Changes in amino acids (µg/g DW) composition due to soaking, sprouting, cooking and lactic acid bacterial fermentation of horse gram seeds.  

 

RS-Raw Seeds, SS-Soaked Seeds, SW-Soaked water, GS-Germinated Seeds, CF4496-Cooked sprouts fermented by Lb. plantarum NRRL-B-4496, CF1193-Cooked sprouts fermented by Lb. plantarum NCDO-1193, UCF4496- Uncooked sprouts fermented by 

Lb. plantarum NRRL-B-4496, UCF1193- Uncooked sprouts fermented by Lb. plantarum NCDO-1193, CS-Cooked sprouts, CFN-Cooked sprouts fermented naturally, UCFN- Uncooked sprouts fermented naturally. All values are mean of triplicate analysis. 

Different letters in same row indicate statistical significance (p<0.05). 

No. 
Amino 

Acids 
RS SS SW GS CF4496 CF1193 UCF4496 UCF1193 CS CFN UCFN 

1 ASP 53.857def 25.02ef 3.842f 180.638ab 21.641ef 21.346ef 218.285a 103.774bcd 78.611cde 26.1def 150.527abc 

2 GLU 114.129def 220.00abc 5.116g 194.803bcd 54.44fg 26.985fg 273.911ab 165.265cde 77.734efg 40.324fg 295.444a 

3 ASN 254.93fg 530.79efg 22.71g 2317.43abc 1733.54bcd 1707.57bcd 2907.16a 2558.77ab 3037.58a 1392.66cde 1014.51def 

4 GLN 84.812bcd 67.421cd 1.428d 279.441a 97.605bc 126.453bc 310.218a 174.578b 281.277a 97.228bcd 163.399b 

5 SER 32.702cd 100.481b 1.656d 220.808a 36.204cd 35.589cd 109.69b 60.07bc 97.219b 34.473cd 46.299c 

6 HIS 9.374e 138.98cd 1.823e 422.131a 70.077de 133.299cd 252.83b 186.728bc 263.575b 140.815cd 212.196bc 

7 CIT 27.181cd 72.306cd 2.053d 82.247c 45.448cd 43.766cd 215.615ab 166.789b 76.241c 55.29cd 250.209a 

8 GLY 35.631de 35.869de 0.944e 157.503bc 57.371d 67.011d 188.865ab 126.429c 125.093c 58.101d 205.6a 

9 THR 0.0489b 0.0550b 0.2099a 0.0469b 0.0310b 0.0287b 0.0291b 0.0277b 0.0372b 0.0259b 0.0289b 

10 ARG 2714.05a 1878.9a 9.32b 328.27b 158.03b 146.32b 401.12b 236.53b 293.08b 143.5b 246.45b 

11 ALA 57.911e 85.878de 4.253e 386.622bc 97.601de 90.351de 461.026ab 341.835bc 238.629cd 105.575de 580.531a 

12 BALA 28.1bc 148.10a 1.861c 44.812bc 20.25bc 32.545bc 66.533b 43.908bc 44.469bc 20.747bc 53.274b 

13 TYR 20.193ef 27.737ef 0.602f 162.824bc 50.701def 47.446def 280.828a 203.679b 104.637cd 66.749de 200.436b 

14 MET 1.1557d 14.5512b 0.0033d 6.3642bcd 0.0378d 0.0349d 3.7171cd 13.9007bc 3.1355d 2.8913d 34.4514a 

15 VAL 11.752d 36.572d 1.181d 311.217a 114.77c 115.699c 343.071a 222.655b 211.473b 118.598c 365.43a 

16 TRP 160.118ab 124.505bc 2.811d 104.7bc 44.19cd 50.343cd 137.867abc 98.549bcd 86.705bcd 71.679bcd 237.174a 

17 PHE 90.246ef 315.203cd 3.418f 609.508ab 204.676def 221.185de 722.283a 481.603bc 392.115cd 189.927def 646.022ab 

18 ILE 12.906ef 26.212def 1.168f 199.289b 70.315de 70.639de 278.679a 202.441b 138.942bc 79.35cd 271.845a 

19 LEU 20.602de 44.101cde 2.611e 173.295b 65.912cde 70.683cde 382.852a 317.076a 118.923bc 91.428cd 313.855a 

20 ORT 21.048bc 48.423b 2.714c 54.691b 33.208bc 27.704bc 65.01b 49.356b 58.405b 46.207b 139.861a 

21 LYS 18.863bc 36.547bc 1.291c 80.95b 38.299bc 47.115bc 249.246a 173.455a 71.799b 43.209bc 215.164a 
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Asparagine biosynthesis helps balancing carbon and nitrogen compounds in the 

growing sprout, which in turn is regulated by number of metabolite signals like sugar 

starvation and light. Unlike other amino acids, lack of simple sugars in the medium 

induces biosynthesis of asparagine, however presence of light during germination plays a 

key role in this pathway. Asparagine biosynthetic pathway is shutdown when germination 

is carried out under light as the enzyme asparagine synthetase is inhibited by light and also 

photosynthesis regulates sugars in the system106. Therefore, arginine and asparagine in the 

horse gram raw seeds as well as sprouts suggests not only nutritional but also agronomical 

benefits for being decent nitrogen source for the seedling before symbiosis by bacteria107. 

Release of proteolytic enzymes during germination leading increase in the amount of 

overall amino acids cannot be ruled out since it is one of the most important activities for 

translocation of simpler compounds to the growing sprout. Certain amino acids acts as 

antioxidants mainly aromatic amino acids like phenylalanine, tryptophan, tyrosine, 

histidine that renders about 75-80% of total antioxidative amino acids35. Increase in such 

amino acids can contribute to the total antioxidant activity, which might be the another 

reason of rise in free radical scavenging activity during germination in the present study. 

Cooking might have an adverse effect also on the levels of essential amino acids in horse 

gram sprouts, since cooked sprouts showed significantly lower amount of most of the 

amino acids compared to uncooked sprouts. During fermentation, several metabolic 

activities are carried out by the fermenting bacteria, one of them is amino acid metabolism. 

All fermented samples in the present study also showed significant differences in 

the amount of free amino acids, certain essential amino acids showed significant increase 
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Figure 2 Proposed mechanism of ARG-ASN-ARG cycle for conversion of amine nitrogen of arginine 

to amide nitrogen of asparagine. [Reprinted from 104, 107, 108].  



 

53 

 

compared to the sprouts, while some showed significant decrease mainly sprouts 

fermented by lactic acid bacteria. Certain LAB are able to biosynthesize amino acids due 

to expression of certain enzymes involved in the anabolic pathways, while rise in the 

amount of majority of the amino acids is mainly due to proteolytic activity. A significant 

amount of decrease in essential amino acid content during fermentation in cooked sprouts 

can be attributed to the ability of lactic acid bacteria to utilize amino acids for their own 

survival and optimum growth during fermentation. Moreover, comparing two LAB strains 

Lb. plantarum NRRL B-4496 showed better amino acid metabolic activity in contrast to 

Lb. plantarum NCDO 1193. Lactic acid fermentation in general, has also been known to 

positively affect the amounts of amino acids in cereals and legumes, current study is an 

addition to such evidences. Several fermented foods comprising cereals and legumes are 

predominantly fermented using yeast, however bacterial fermentation usually involves 

proteolytic activity, while yeast mainly degrades carbohydrates. Hence the changes in 

amino acids composition during bacterial and yeast fermentation differ significantly; 

therefore, bacterial fermentation must be of higher interest in order to control nutritional 

improvement of legumes. Lactic acid bacteria particularly, are equipped with protein-

degradation system, although some strains of Lb. plantarum lack genes encoding 

extracellular proteases required for primary breakdown of protein, but they possess 19 

highly expressed genes encoding intracellular peptidases and uptake systems for peptides, 

which aids in further degradation of peptides into simpler amino acids. Despite of protein 

breakdown machinery, some genomic sequencing studies52, 53 also reveals that Lb. 



 

54 

 

plantarum spp. possess genes that encodes for comprehensive pathways for biosynthesis 

of amino acids. 

Amylase act as a catalyst in hydrolysis of starch comprising mainly glyosidic 

linkages, such activity is crucial for dietary starch metabolism and energy production. 

However, under high dietary consumption of starch such breakdown due to optimum 

pancreatic amylase activity may raise blood glucose levels in human metabolism which 

over time may increase hyperglycemia linked to overall management of type-2 diabetes. 

Hence compounds that can inhibit the activity of α-amylase are of greater interests in 

regards to hyperglycemic condition management through dietary solutions18. Non-dietary 

treatment methods includes therapeutic drugs such as acarbose that effectively reduced 

intestinal absorption of sugars109. However, there are some reported side effects due to 

oral consumption of acarbose mainly abdominal distention, flatulence, meteorism and 

possibly diarrhea110. For this reason, scientists, physicians and patients tend to look for 

some alternatives to therapeutic drugs that can effectively prevent rise in the blood sugar 

level without side effects. One of the most important groups of storage proteins found in 

legumes seeds are the enzyme inhibitors. These proteins are capable of forming 

stoichiometric complexes with various hydrolytic enzymes and cause the competitive 

inhibition of catalytic functions naturally occurring in the food system. In the present 

study, α-amylase inhibitory activity of horse gram raw seeds (24.41%) significantly 

(p<0.05) increases during soaking and germination, to (66.45%) in sprouts, however 

reduced ability (47%) of inhibition was observed in cooked sprouts, which indicates loss 

of some potent α-amylase inhibitors during conventional cooking. Further fermentation of 
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cooked sprouts regains α-amylase inhibitory activity with maximum inhibition (77%) 

exhibited by cooked sprouts fermented by Lb. plantarum NCDO 1193 (Figure 3). 

Amongst uncooked sprouts that were subjected to lactic acid bacterial fermentation, Lb. 

plantarum NRRL B-4496 fermented uncooked sprouts showed highest α-amylase 

inhibitory activity (82%) which is comparatively higher than positive control Acarbose 

(76%). These results do not correlate with total phenolic content which suggests that α-

amylase inhibitory activity depends on compounds other than polyphenols. α-glucosidase 

enzyme is located in the brush border of the small intestine and is required for the 

breakdown of carbohydrates to release α-d-glucose that is readily absorbable111. 

Competitive and reversible inhibition of intestinal α-glucosidase enzyme limits the rate of 

absorption of glucose through intestine which in turn prevents hyperglycemic conditions 

in humans111. Acarbose also acts as an inhibitor of α-glucosidase enzyme, that is relevant 

for intestinal absorption of hydrolyzed glucose, but as discussed before due to adverse side 

effects natural alternatives are gaining higher importance. In the present study, we see α-

glucosidase inhibitory activity of raw horse gram seeds (24%) is similar to α-amylase 

inhibitory activity. However, both enzymes inhibitory activity estimated for raw horse 

gram seeds in the present study is comparatively less than that of reported in previous 

study on horse gram raw seeds23.  

One of the major reason could be the analysis of methanolic extracts, since 

enzymes like α-amylase operates efficiently in aqueous phase, direct enzyme-inhibitor 

interaction is expected to be impacted in alcoholic phase during post processing analysis.   
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RS-Raw Seeds, SS-Soaked Seeds, SW-Soaked water, GS-Germinated Seeds, CF4496-Cooked sprouts fermented by Lb. plantarum NRRL-

B-4496, CF1193-Cooked sprouts fermented by Lb. plantarum NCDO-1193, UCF4496- Uncooked sprouts fermented by Lb. plantarum 

NRRL-B-4496, UCF1193- Uncooked sprouts fermented by Lb. plantarum NCDO-1193, CS-Cooked sprouts, CFN-Cooked sprouts 

fermented naturally, UCFN- Uncooked sprouts fermented naturally. Data are expressed as means ± standard error of three independent 

experiments. Different letters in same column indicate statistical significance (p<0.05) 

Figure 3 Changes in α-amylase inhibition activity (A), Changes in α-glucosidase inhibition 

activity (B) during soaking, germination, cooking and fermentation
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Although we observe a rise in inhibition (43%) during germination, which suggests 

development or formation of certain compounds during germination that possess α-

glucosidase inhibitory activity. Further significant (p<0.05) increase in such activity was 

observed due to lactic acid bacterial fermentation. While comparing both LAB strains, 

unlike α-amylase inhibitory activity both the strains showed non-significant differences in 

α-glucosidase inhibition (Figure 3). Surprisingly, it was found that fresh horse gram 

sprouts and fermented horse gram sprouts did not significantly differ in α-glucosidase 

inhibitory activity. This can be due to lactic acid bacterial fermentation leading to higher 

structural changes in protein peptides compared to phenolic compounds which are majorly 

acting as inhibitors to α-glucosidase activity112.  It can be concluded that germination of 

horse gram sprouts significantly increases inhibitory potential of carbohydrates 

metabolizing enzymes compared to fermented sprouts, hence we suggest consumption of 

horse gram sprouts has relevance for dietary support for management of type 2 diabetes.  

The pH of all the samples was recorded (Table 1.) and significant (p<0.05) 

decrease was observed during fermentation of horse gram sprouts with the lowest pH in 

uncooked naturally fermented sprouts which could be attributed to production of abundant 

organic acids during fermentation. The population of viable lactic acid bacteria after 48 h 

of fermentation of horse gram sprouts was also determined (Table 1.). In spite of horse 

gram sprouts being hostile ecosystem for LAB for optimal growth, population of both the 

strains Lactobacillus plantarum NRRL-B-4496 and Lactobacillus plantarum NCDO 1193 

was higher than 7.99 log10cfu/ml without significant differences between the two strains. 

Naturally fermented sprouts showed significantly lower LAB count compared to lactic 



 

58 

 

acid bacterial intended fermented sprouts, presence might be either due to some LAB 

naturally present on sprouts or cross contamination. Such increase in the LAB count 

compared to raw seeds are consistent with decrease in the amount of protein content and 

increase in the amount of free amino acids (Table 1.). Overall population of lactic acid 

bacteria in all the LAB fermented samples suggest that horse gram sprouts can be 

considered as decent substrate to ensure high viability (>106 CFU/g) of lactic acid bacteria 

in concern and hence determines its potential to be utilized as a prebiotic in several 

functional probiotic food formulations.       

 

3.5. Conclusions 

Raw horse gram is a rich source of nutrients which are concentrated more in the 

seed coat and consumption of foods prepared with unprocessed raw horse gram seeds also 

have been reported to have health beneficial properties. However, present study 

demonstrates that the metabolic changes during germination and lactic acid bacterial 

fermentation positively affect major bioactive compounds with health promoting effects 

in addition to deliver higher nutritive value compared to raw horse gram seeds. Horse 

gram sprouts with abundant nitrogen rich amino acid like asparagine could also possibly 

help nitrogen poor soil cultivation of horse gram seeds in order for better agronomical 

acceptance of this poor man’s pulse worldwide. Through present study, horse gram sprouts 

as well as fermented sprouts have shown to possess tremendous potential to be ‘functional 

food ingredient’ in several non-dairy based probiotic products. Transforming production 

systems with traditional processing methods like soaking, cooking, germination and 
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fermentation provides wide range of opportunities to exploit the actual potential of this 

underexploited legume Horse gram (Macrotyloma uniflorum). Focusing on elimination of 

hidden hunger has always helped to identify the crucial requirements of human body, 

which in turn proves to be challenging to meet the dietary goals of world’s growing 

population. However, with the goal of making this little easier, further exploitation of this 

underutilized legume - Horse gram (Macrotyloma uniflorum) is gaining importance. 

Current research project must continue as it offers tremendous scope for future science 

and exploring diverse role of this legume in benefit of the mankind. 
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4. Lactobacillus plantarum AND NATURAL FERMENTATION-MEDIATED 

BIOTRANSFORMATION OF FLAVOR AND AROMATIC COMPOUNDS IN 

HORSE GRAM SPROUTS 

 

4.1. Abstract 

Bio-transformed volatile compounds in horse gram sprouts, Lactobacillus 

plantarum NRRL B-4496 and Lactobacillus plantarum NCDO 1193 mediated as well as 

naturally fermented horse gram sprouts were analyzed using gas chromatography-mass 

spectrometry coupled with headspace solid-phase micro extraction. A total of 40 

compounds, including acids, alcohols, aldehydes, esters, ketones, sulfur containing 

compounds were identified in sprouts fermented for 1, 2, 3, 4 and 5 days. Fermentation-

mediated volatile metabolites such as acetic acid, eugenol, benzyl alcohol, acetoin, 2,3-

butanediol and ethyl palmitate were estimated to be the prime contributors to the sensory 

attributes of fermented samples. As the contents of alcohols, ketones, esters and volatile 

phenols increased during fermentation, some aldehydes significantly decreased. For the 

first time, eugenol was detected in a fermentation processing system as in fermenting horse 

gram, paving the way for new bioprocessing strategy for production. Therefore, 

fermentation of horse gram sprouts enhances bio-transformed volatile composition 

derived from primary metabolites which has relevance for improving value-added flavor 

and nutritional benefits while integrating potential probiotic benefits. 
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4.2. Introduction 

Horse gram (Macrotyloma uniflorum) is an underutilized legume, however 

popular as an important pulse crop in poor communities of some parts of the world. It is 

empirically used in traditional therapeutic formulations for treatment of kidney stones, 

infections, obesity and diabetes 10, 11. This Fabaceae family member is also an excellent 

source of proteins, antioxidants, carbohydrates, minerals as well as other health promoting 

compounds20. 

Legumes are generally processed prior to consumption, such processes mainly 

leads to certain physical as well as chemical alterations of the seeds, once such process is 

germination. Germination effectively changes levels of bioactive compounds in the 

sprouts and during such course, volatile flavor and aromatic compounds are also affected 

to a small extent113. However, remarkable changes in such volatile compounds is observed 

during the fermentation, a food preservation method commonly escorted by nutrition 

enhancement113. These changes are primarily due to the metabolic activity of fermenting 

microorganisms that bio-transform primary metabolites for nutritional benefits15. Such 

metabolic activity has major influence on acidity, antioxidant activity as well as protein 

digestibility of edible seeds while liberating flavor and aromatic compounds that relatively 

influences overall organoleptic quality of the fermented foods114. Some lactic acid bacteria 

are able to effectively bio-transform amino acids (sweetness, umami), peptides (bitterness) 

and organic acids (sourness) into flavor compounds such as aldehydes, alcohols, acids and 

sulfur compounds. Such bio-transformation occurs simultaneously with lipid degradation 

that also participate for aroma development in fermented foods 114, 115. Besides 
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conventional starter cultures such as yeast, lactic acid bacteria and fungi, there is an 

increasing demand for products containing microorganisms providing additional health 

benefits viz probiotics67. Probiotics have been defined as nonpathogenic microorganisms 

that when ingested in adequate amounts exert a positive influence on  human health, 

especially in the gastrointestinal tract116. Over few decades the most popular carrier choice 

of probiotics was believed to be only dairy products but lately due to changes in the 

lifestyle, preferences as well as dietary restrictions, non-dairy based probiotic product 

demand is rising117. Although cereal based fermented products are commonly considered 

as healthy and affordable choice in field of non-dairy based fermented probiotic foods, 

some legumes such as soybeans have also been demonstrated to be pertinent substrate for 

lactic acid bacterial fermentation and its bio-transformation potential to beneficial 

products. Since horse gram is a localized and important underutilized pulse crop in 

resource limited arid regions of the world, it has potential to provide food and value added 

nutritional security in the context of climate resilient food systems. Value added 

processing applications also require more biochemically relevant scientific evidences of 

relevant volatile composition of horse gram sprouts that can be targeted for multifunction 

benefits via lactic acid bacterial fermentation. Some studies have reported potential of 

legumes to serve as prebiotics for probiotic bacteria in fermented foods43, 118. Such 

evidences indicate the potential suitability of legumes such as horse gram for lactic acid 

bacterial fermentation, which can be used for development of bio-transformed 

functionally enhanced legume-based food products. Moreover, introducing novel 

functional food products in the wholefood market for fermented foods can be improved 
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by understanding the flavor and sensory profile of such fermented foods through 

controlled targeted fermentation as a bioprocessing strategy. Such value added factors 

would directly influence dietary preferences and the consistency of healthy food 

consumption119. Therefore, with deeper understanding of the biochemical processes 

conventional processing strategies such as soaking, germination and fermentation not only 

influences the levels of bioactive compounds in the seeds but most importantly it can 

positively influence palatability of the final product 26, 28, 120, 121.  

Among the options for biotransformation of legumes natural or spontaneous 

fermentation of legumes is commonly practiced in some Asian countries to develop 

traditional fermented legumes with enhanced nutritional quality 122. The volatile 

composition in terms of flavor and aroma remarkably differs in naturally fermented 

legumes compared to targeted lactic acid bacteria (LAB) fermented legumes, due to 

presence of certain undesirable flavor and off-odor compounds in naturally fermented 

products. However targeted species specific biotransformation has made it possible to 

commercially develop such traditional fermented products with value added benefits. For 

example products fermented using LAB and yeasts delivers flavor composition and 

organoleptic properties close to those of naturally fermented products123. Such targeted 

biotransformation can also improve food quality and safety leading to wider acceptance 

of such foods compared to natural sprouted and fermented products. Therefore, targeting 

of suitable lactic acid bacteria particularly potential probiotic starter cultures can advance 

development of value added sprouts from underutilized legumes such as horse gram with 

desirable nutritional, flavor and sensory quality. Based on this rationale specifically 
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targeted LAB was investigated in the present study to enhance volatile compounds for 

value addition through germination and fermentation of promising underutilized pulse 

horse gram. 

 

4.3. Materials and Methods 

4.3.1. Materials  

Perillyl alcohol, n-alkane standards (C14-C24), acetic acid, ethanol, butyric acid, 

eugenol, ethyl palmitate, palmitic acid and 1, 3-butanediol was purchased from Sigma 

Aldrich (St. Louis, MO).  Dry horse gram (Macrotyloma uniflorum var. uniflorum Paiyur 

1) seeds were procured from supermarket (Patel Brothers, Dallas, TX).  

 

4.3.2. Germination of Horse Gram Seeds 

Cleaned horse gram seeds were washed with 70% ethanol and excess sterile water 

to remove the ethanol and soaked in sterile water (1:5) for 8 h at 25 C.  After soaking, 

seeds were placed over moist filter paper in petri dishes (150 mm) and incubated at 28 °C 

in the dark with sterile water sprayed at every 12 h for 5days period. After various known 

incubation times, germinated sprouts were crushed in mortar and transferred to 20 mL 

headspace GC-MS vails in triplicates under aseptic conditions. 

 

4.3.3. Inoculum Preparation and Fermentation 

Lactic acid bacterial (LAB) strains Lb. plantarum NRRL-B-4496 and Lb. 

plantarum NCDO-1193 were obtained from Prof. Shetty (Dept. of Plant Sciences, North 
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Dakota State University. ND).  The frozen cell culture was sub cultured thrice using MRS 

broth (Sigma Aldrich, St. Louis, MO) by incubating at 37°C for 48 h under micro-aerobic 

conditions in order to be reactivated. The active cells were harvested and re-suspended in 

sterilized water in order to obtain 8 log10 cfu/mL. This cell suspension was used as starter 

culture for horse gram sprout fermentation. Cleaned horse gram sprouts were crushed 

using sterile mortar and pestle and transferred into sterile glass vials tightly capped with 

screw on cap and silicone septum. Lactic acid bacterial cell suspension (2:3, w/v) and 

sterile water for natural fermentation was added in respective labelled vials containing 

freshly crushed sprouts. Lactic acid bacterial-mediated fermentation was carried out at 37 

°C 24 h (day 1), 48 h (day 2), 72 h (day 3), 96 h (day 4), 120 h (day 5) and immediately at 

the end of each day of the fermentation period, respective sample vials were subjected to 

GC-MS analysis.  

 

4.3.4. Extraction of Volatile Compounds from Fermented Horse Gram Sprouts 

Volatile compounds in horse gram seed flour, soaked seeds, sprouts, lactic acid 

bacterial fermented sprouts as well as naturally fermented sprout samples were subjected 

to head space solid-phase micro extraction using gray fiber. Each sample vial containing 

samples was spiked with 2 µL of perilyll alcohol as an internal standard (250 ppm in 

hexane). At the end of each fermentation period respective samples were taken out of 

incubator set at 37 °C, agitated using full speed vortex in order to reach an equilibrium 

state of headspace in each vial.   
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4.3.5. Gas Chromatography-Mass Spectrometry Analysis and Identification of Volatile 

Compounds 

The volatile constituents of samples were analyzed by HS-SPME-GC-MS 

equipped with Triplus autosampler, Trace Ultra GC, and DSQ II mass spectrometer 

(Thermo Finnigan, Thermo Fisher Scientific, Inc., San Jose, CA, USA).  Fermented 

samples containing internal standards were subjected to volatiles analysis using headspace 

– solid phase micro-extraction using 50/30 μm divinylbenzene /carboxen / 

polydimethylsiloxane (DVB/CAR/PDMS) fiber. The SPME fiber was initially 

conditioned in the GC injector at 225 °C for 1 h according to manufacturer’s 

recommendations. The vial containing sample was preheated at 60 °C while agitating for 

30 seconds. The SPME fiber was then exposed to the HS of the vial for 20 min at 60 °C 

for the adsorption of volatiles. The SPME fiber was introduced into the inlet of the GC for 

2 min at 225°C to desorb the volatile compounds in splitless mode. Volatiles were 

separated on a fused silica Zebron ZB-WAXPlus capillary column (30 m × 0.25 mm, 

0.25micron film (Phenomenex, CA, USA) coated with bonded 100% polyethylene glycol. 

Helium was used as a carrier gas at a flow rate of 1 mL/min and run time was 24 min. The 

oven temperature was programed from 60°C for 1 min, and then increased to 225 °C, at 

the rate of 15 °C/min with 5.0 min hold time at the end. The transfer line temperature and 

ion source temperature were maintained at 225 and 285°C respectively. The ionization 

voltage was 70 eV, the mass range was 45-450 amu and the scan rate was 12.82 scans/sec.  

The compounds peaks were identified by comparison of their Kovats indices (KI) relative 

to homologous alkane series (C10-C24), chemical ionization using methane gas, retention 
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times of authentic standards and matching the spectral fragmentation patterns in Wiley 

and NIST library database and published mass spectra 124-126. All the volatile compounds 

were quantified by comparing their peak areas with that of the perilyll alcohol an internal 

standard. All the experiments were conducted three times with triplicate samples for 

quantification of volatiles and results were expressed as means and standard error (SE). 

 

4.3.6. Statistical Analysis 

Principal component analysis (PCA) using MetaboAnalyst 3.0 (Xia Lab @ McGill 

http://www.metaboanalyst.ca/) was conducted to evaluate changes in the volatile 

compounds of horse gram seeds and sprouts during germination and different fermentation 

periods. The results were expressed as mean ± standard error. The mean comparison was 

performed using JMP Statistical Discovery™ (SAS) Pro. v.12.0 software package and 

processed by one-way analysis of variance (ANOVA) to evaluate significant differences 

(p<0.05). All the experiments and analysis were performed in three independent 

replications with triplicate samples and significant difference between the samples was 

determined using Student’s t test (p<0.05).   

 

4.4. Results and Discussion 

Bio-transformed volatile compounds present in dry (raw) horse gram seeds, fresh 

soaked seeds, germinated seeds as well as lactic acid bacteria Lactobacillus plantarum 

NRRL-B 4496 and Lactobacillus plantarum NCDO 1193 fermented horse gram sprouts 

and naturally fermented sprouts were analyzed by HS-SPME coupled with GC-MS. A 
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total of 40 volatile compounds were identified based on retention time of authentic 

standards, mass spectrum and Kovats retention index using n-alkanes C10-C24 as external 

standards those were consistent with literature124-126
 as well as chemical ionization 

procedure using methane (Table 4). Amongst them 7 organic acids, 8 alcohols, 3 

aldehydes, 8 esters, 6 ketones, 2 sulfur-containing compounds and certain aromatic 

compounds were detected during 24 h (day 1), 48 h (day 2), 72 h (day 3), 96 h (day 4), 

120 h (day 5) of fermentation. Lactic acid bacterial fermentation had qualitative impact 

on the volatile composition of horse gram sprouts, particularly acids, alcohols, acid esters 

and some ketones. Similar to lactic acid bacterial fermentation, naturally fermented horse 

gram sprouts also showed significant changes in the levels of imperative volatile 

compounds which adds to the overall flavor and aromatic characteristics of fermented 

sprouts. Undesired aroma producing compounds such as p-ethylguaiacol and methionol 

was detected only in naturally fermented horse gram sprouts. Moreover, acetoin, acetic 

acid, 1-hexanol, benzaldehyde, linalool, methionol, phenylethyl acetate, hexanoic acid, 2-

methanoxylphenol, phenethyl alcohol, octanoic acid as well as eugenol concentration 

considerably increased during natural fermentation of horse gram sprouts. Dry (raw) horse 

gram seeds extracts have been reported to deliver hepato-protective, diuretic, antiulcer and 

antioxidant activity in several animal study22, 127. Gas chromatography-mass spectroscopic 

analysis of such extracts of horse gram dry seeds revealed presence of n-hexadecanoic 

acid, linoleic acid, mome inositol, ethyl alpha-d-glucopyronoside, phenyl acetaldehyde, 

stigmasterol amongst which (3B)-stigmast-5-en-3-ol, linoleic acid indicated bioactive 

targets with antidiabetic,  antioxidant  and cholesterol lowering potential 128. 
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Table 4 Major identified volatile compounds detected in raw and soaked seeds, unfermented sprouts as well as fermented horse gram sprouts. 

No. RT(min) Common Name 
Chemical 

Formula 
IUPAC Name Chemical group Identification 

1 5.22 Acetoin C4H8O2 3-Hydroxybutan-2-one Ketones KI, CI 

2 5.70 1-Hexanol C6H14O 1-Hexanol Alcohols KI 

3 6.52 Acetic Acid C2H4O2 Acetic acid Acids KI, CI, S 

4 6.87 2-Ethyl-hexan-1-ol C8H18O 2-Ethylhexan-1-ol Alcohols KI 

5 7.28 Benzaldehyde C7H6O Benzaldehyde Aldehydes KI, CI 

6 7.33 Linalool C4H10O2 3,7-Dimethylocta-1,6-dien-3-ol  Alcohols KI, CI 

7 7.58 2,3-Butanediol C10H18O Butane-2,3-diol Alcohols KI, CI 

8 7.96 Butyric acid C4H8O2 Butyric acid Acids KI, S 

9 8.20 Phenylacetaldehyde C8H8O 2-Phenylacetaldehyde Aldehydes KI, CI 

10 8.33 2-Methylbutanoic Acid C5H10O2 2-Methylbutanoic acid Acids KI, CI 

11 8.42 Ethyl Benzoate C9H10O2 Ethyl benzoate Esters KI, CI 

12 8.67 1-Hexadecyne C16H30 Hexadec-1-yne Others KI, CI 

13 8.75 Methionol C4H10OS 3-Methylsulfanylpropan-1-ol Sulfur containing compounds KI, CI 

14 8.85 2-Methyl-2-butenolide C5H6O2 4-Methyl-2H-furan-5-one Ketones KI, CI 

15 9.29 Methyl Salicylate C8H8O3 Methyl 2-hydroxybenzoate Esters KI, CI 

16 9.41 2-Tridecanone C13H26O Tridecan-2-one Ketones KI, CI 

17 9.49 Dimethyl adipate C8H14O5 Dimethyl hexanedioate Esters KI, CI 

18 9.52 Phenethyl acetate C10H12O2 2-Phenylethyl acetate Esters KI, CI 

19 9.54 Ethyl Salicylate C9H10O4 Ethyl 2-hydroxybenzoate Esters KI 

18 9.52 Phenethyl acetate C10H12O2 2-Phenylethyl acetate Esters KI, CI 

19 9.54 Ethyl Salicylate C9H10O4 Ethyl 2-hydroxybenzoate Esters KI 

20 9.60 (E)-β-Damascenone C13H18O (E)-1-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)but-2-en-1-one Ketones KI, CI 

21 9.63 Geraniol C10H18O (2E)-3,7-dimethylocta-2,6-dien-1-ol Alcohols KI 

22 9.65 Hexanoic Acid C6H12O2 Hexanoic Acid Acids KI, CI 

23 9.83 Guaiacol C7H8O2 2-Methoxyphenol Volatile Phenols KI, CI 
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Table 4 Continued 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID-Identification of volatile compounds was according to as follows: KI- Kovats Retention Index were determined using n-alkanes C10-C24 as external standards, CI-Chemical Ionization, S-Authentic Standards Injection. 

Mass spectrum and kovats retention index matches with the authentic compounds under similar condition (standard-S); B-mass spectrum and kovats retention index consistent with those of the literature124-126 and NIST Mass 

Spectral Database. 

 

 

 

 

 

 

 

 

No. RT (min) Common Name 
Chemical 

Formulae 
IUPAC Name Chemical Group Identification 

24 9.94 Benzenemethanol C7H8O Benzenemethanol Alcohols KI, CI 

25 10.20 2-Phenylethanol C10H8O 2-Phenylethanol Alcohols KI, CI 

26 10.43 β-Ionone C13H20O (E)-4-(2,6,6-trimethylcyclohexen-1-yl)but-3-en-2-one Ketones KI 

27 10.63 Benzothiazole C7H5NS 1,3-Benzothiazole Sulfur containing compounds KI, CI 

28 10.80 Phenol C6H6O Phenol Acids KI 

29 10.93 Pentadecanal C15H30O Pentadecanal Aldehydes KI, CI 

30 11.00 p-Ethylguaiacol C9H12O2 4-Ethyl-2-methoxyphenol Volatile Phenols KI 

31 11.04 Ethyl tetradecanoate C16H32O2 Ethyl tetradecanoate Esters KI, CI 

32 11.06 γ-Nonalactone C9H16O2 5-Pentyloxolan-2-one Ketones KI, CI 

33 11.10 Octanoic Acid C8H16O2 Octanoic Acid Acids KI, CI 

34 11.17 2-Pyrrolidinone C4H7NO Pyrrolidin-2-one Others KI, CI 

35 11.80 1-Tridecanol C13H28O Tridecan-1-ol Alcohols KI 

36 11.89 Eugenol C10H12O2 2-Methoxy-4-prop-2-enylphenol Volatile Phenols KI, CI, S 

37 12.06 4-Vinylguaiacol C9H10O2 4-Ethenyl-2-methoxyphenol Volatile Phenols KI 

38 12.11 Methyl Palmitate C17H34O2 Methyl hexadecanoate Esters KI 

39 12.35 Ethyl Palmitate C18H36O2 Ethyl hexadecanoate Esters KI, CI, S 

40 12.46 Decanoic acid C10H20O2 Decanoic acid Acids KI, CI 
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These compounds were not detected in the present study except phenyl acetaldehyde. Such 

variation can be attributed to differences in the extraction methods involved as in the 

present study freshly ground raw seed flour subjected to solid phase micro-extraction was 

analyzed whereas previous study involved defatting, ethanol extraction of raw horse gram 

seeds by soxhlation prior to GC-MS analysis. 

 

4.4.1. Effect of soaking, germination, and fermentation 

The changes in the concentration of major volatile compounds in horse gram seeds 

and fermented sprouts during germination and fermentation for 1, 3 and 5 days are 

presented in Table 5. and effect of 2 and 4 days fermentation is presented in Table 6. 

Among 40 volatile compounds identified, only 13 compounds were found in raw horse 

gram seeds, out of which 2-ethyl-hexan-1-ol, benzaldehyde, phenylacetaldehyde, 2-

methyl-2-butenolide, geraniol, benzoyl alcohol, 2-phenylethanol, β-ionone and 

benzothiazole showed significant increase during germination, while methyl salicylate 

and dimethyl adipate showed decrease in their levels during sprouting. In addition to these, 

some compounds that were not detected in raw seeds were found in soaked seeds and 

sprouts such as acetoin, benzaldehyde, 1-hexanol, acetic acid, octanoic acid and ethyl 

palmitate, while pentadecanal present only in sprouts. Soaking and germination showed 

significant changes in the levels of some volatile compounds found in raw horse gram 

seeds including 2-methyl-2-butenolide (known to be a germination stimulant), 

phenylacetaldehyde and benzoyl alcohol, 2-phenylethyl alcohol (aromatic compounds) 

and geraniol (monoterpenoid). In addition to these compounds, germination also seems to 
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Table 5 Impact of hydration, germination and fermentation on the concentration (µg/g FW) of major volatile flavors and aromatic compounds in horse gram seeds and 

sprouts fermented for 24h (day 1), 72h (day 3), 120h (day 5) by Lb. plantarum spp. and natural fermentation process. 

      Fermentation by Lb. plantarum NRRL B-4496 Fermentation by Lb. plantarum NCDO 1193 Natural Fermentation 

No. Volatile Compounds KI RS SS GS Day 1 Day 3 Day 5 Day 1 Day 3 Day 5 Day 1 Day 3 Day 5 

1 Acetoin 1226 NDd 0.57 ± 0.21a 0.23 ± 0.06bcd 0.14 ± 0.05bcd 0.33 ± 0.13abc 0.34 ± 0.18abc 0.30 ± 0.16abcd 0.22 ± 0.06bcd 0.18 ± 0.11bcd 0.23 ± 0.06bcd 0.29 ± 0.13abcd 0.19 ± 0.06bcd 

2 1-Hexanol 1308 NDf 0.21 ± 0.06ef 1.12 ± 0.28abc 0.65 ± 0.15de 0.67 ± 0.18cde 0.67 ± 0.14cd 0.67 ± 0.09cde 0.65 ± 0.08de 0.80 ± 0.11bcd 1.02 ± 0.19abcd 1.38 ± 0.26a 0.80 ± 0.23bcd 

3 Acetic Acid* 1417 NDe 1.15 ± 0.29de 0.87 ± 0.14de 3.0 ± 0.70bcd 3.94 ± 0.86bc 4.83 ± 0.87b 3.90 ± 0.78bc 4.87 ± 0.42b 5.04 ± 0.70b 2.34 ± 0.49cde 7.65 ± 1.53a 9.55 ± 1.98a 

4 2-Ethyl-hexan-1-ol 1440 0.01 ± 0.002gh 0.05 ± 0.01efg 0.09 ± 0.02bcde 0.11 ± 0.02abc 0.09 ± 0.01bcd 0.09 ± 0.01bcd 0.04 ± 0.01fgh 0.04 ± 0.01fg 0.06 ± 0.01def 0.13 ± 0.03a 0.12 ± 0.01ab NDh 

5 Benzaldehyde 1465 NDf 1.56 ± 0.29bcd 1.05 ± 0.35def 0.44 ± 0.09ef 0.31 ± 0.09ef 0.83 ± 0.18def 0.43 ± 0.12ef 0.49 ± 0.13def 0.43 ± 0.11ef 1.12 ± 0.28de 2.51 ± 0.88ab 2.26 ± 0.85abc 

6 Linalool 1468 0.07 ± 0.01e 0.64 ± 0.38cde 0.06 ± 0.03e 0.46 ± 0.14de 0.40 ± 0.10e NDe 0.23 ± 0.09e 0.13 ± 0.04e 0.17 ± 0.05e 0.74 ± 0.25bcde 1.59 ± 0.96abc 1.38 ± 0.54abcd 

7 2,3-Butanediol 1483 NDe NDe NDe 1.21 ± 0.61de 2.10 ± 0.90bcde 1.51 ± 0.75cde 0.45 ± 0.29e 0.39 ± 0.12e 0.20 ± 0.10e 2.97 ± 1.11abcd 4.21 ± 1.63ab 3.60 ± 1.13abc 

8 Butyric acid* 1606 NDh NDh NDh 0.07 ± 0.02a 0.03 ± 0.01def 0.04 ± 0.01bcdef 0.01 ± 0.01fgh 0.01 ± 0.06 gh 0.02 ± 0.004defg 0.04 ± 0.01bcde 0.05 ± 0.012abcd NDh 

9 Phenylacetaldehyde 1623 0.01 ± 0.06f 0.33 ± 0.06ab 0.18 ± 0.03de 0.12 ± 0.02e 0.16 ± 0.02e 0.21 ± 0.02cde 0.20 ± 0.04cde 0.18 ± 0.02de 0.14 ± 0.01e 0.22 ± 0.01bcde 0.21 ± 0.03bcde 0.15 ± 0.01e 

10 2-Methylbutanoic Acid 1633 NDf NDf NDf NDf 0.08 ± 0.02cde 0.08 ± 0.02cde 0.05 ± 0.02ef 0.14 ± 0.03ab 0.11 ± 0.03bcd NDf NDf NDf 

11 Ethyl Benzoate 1639 NDf NDf NDf 0.06 ± 0.02e NDf 0.14 ± 0.03a 0.09 ± 0.03bcde 0.13 ± 0.01ab 0.08 ± 0.01cde 0.13 ± 0.03ab 0.09 ± 0.02bcde 0.12 ± 0.02abc 

12 1-Hexadecyne 1656 NDc NDc NDc 0.48 ± 0.07b NDc 0.74 ± 0.11a NDc NDc NDc NDc NDc NDc 

13 Methionol 1662 NDc NDc NDc NDc NDc NDc NDc NDc NDc 0.07 ± 0.0b 0.13 ± 0.03a 0.06 ± 0.03b 

14 2-Methyl-2-butenolide 1669 0.05 ± 0.01d 0.18 ± 0.05bcd 0.20 ± 0.05bc 0.21 ± 0.04abc 0.21 ± 0.04abc 0.23 ± 0.03abc 0.19 ± 0.05bcd 0.14 ± 0.01cd 0.14 ± 0.01cd 0.27 ± 0.03abc 0.28 ± 0.09abc 0.35 ± 0.08a 

15 Methyl Salicylate 1698 0.04 ± 0.01ef NDf NDf 0.22 ± 0.05bcd 0.26 ± 0.05bc 0.24 ± 0.05bcd 0.34 ± 0.07ab 0.31 ± 0.06ab 0.24 ± 0.04bcd 0.14 ± 0.02cde 0.12 ± 0.02def 0.12 ± 0.04def 

16 2-Tridecanone 1807 NDd NDd NDd 0.12 ± 0.01bc 0.09 ± 0.02c 0.16 ± 0.02ab 0.12 ± 0.03bc 0.09 ± 0.02c 0.11 ± 0.01c 0.17 ± 0.03ab 0.13 ± 0.03c 0.13 ± 0.02bc 

17 Dimethyl adipate 1813 0.01 ± 0.002a NDb NDb NDb NDb NDb NDb NDb NDb NDb NDb NDb 

18 Phenethyl acetate 1815 NDf NDf NDf NDf 0.10 ± 0.05cde 0.16 ± 0.02abc 0.02 ± 0.01ef 0.05 ± 0.02def 0.11 ± 0.03cde 0.06 ± 0.01def 0.23 ± 0.05a 0.23 ± 0.04a 

19 Ethyl Salicylate 1817 NDe NDe NDe NDe 0.09 ± 0.05bcde 0.19 ± 0.03abcd 0.03 ± 0.01e 0.23 ± 0.11ab 0.24 ± 0.09a 0.07 ± 0.01cde 0.21 ± 0.10abcd 0.01 ± 0.01e 

20 (E)-β-Damascenone 1821 NDg NDg NDg 0.09 ± 0.04ef 0.13 ± 0.05cde 0.30 ± 0.04a 0.06 ± 0.01efg 0.20 ± 0.02bcd 0.24 ± 0.04ab 0.11 ± 0.03def 0.06 ± 0.03efg 0.06 ± 0.03efg 

21 Hexanoic Acid 1823 0.01 ± 0.003e 0.24 ± 0.06d 0.05 ± 0.03e 0.29 ± 0.04bcd 0.24 ± 0.06d 0.30 ± 0.05bcd 0.33 ± 0.04bcd 0.31 ± 0.03bcd 0.29 ± 0.06bcd 0.23 ± 0.05d 0.41 ± 0.10abc 0.42 ± 0.07ab 

22 Geraniol 1823 0.01 ± 0.06c 0.29 ± 0.05a 0.26 ± 0.04a NDc 0.01 ± 0.01c NDc 0.09 ± 0.02b 0.26 ± 0.03a 0.26 ± 0.05a NDc 0.27 ± 0.05a 0.03 ± 0.02bc 

23 Guaiacol 1838 0.09 ± 0.02c 0.14 ± 0.03c 0.08 ± 0.02c 0.14 ± 0.03c 0.20 ± 0.10c 0.16 ± 0.05c 0.11 ± 0.03c 0.14 ± 0.03c 0.10 ± 0.02c 0.36 ± 0.07c 0.96 ± 0.19ab 0.93 ± 0.19ab 

24 Benzenemethanol 1846 0.05 ± 0.02g 0.11 ± 0.03fg 1.43 ± 0.25a 0.28 ± 0.05defg 0.24 ± 0.03defg 0.31 ± 0.06defg 0.34 ± 0.11defg 0.25 ± 0.03defg 0.18 ± 0.02efg 0.39 ± 0.07cdef 0.64 ± 0.18bc 0.42 ± 0.09bcde 
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Table 5 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results are expressed as mean ±SE 

RS: Raw seeds-RS; SS: Soaked seeds; GS: Germinated seeds; ND: not detected  

Significant differences (p<0.05) among samples analyzed using Student’s t test between the samples represented with different letters 

(*) compounds are identified by comparing of retention time and mass spectrum of authenticated standards 

All compounds were identified by mass spectral data, comparing KI from literature (124-126) by EI and CI mode.

      Fermentation by Lb. plantarum NRRL B-4496 Fermentation by Lb. plantarum NCDO 1193 Natural Fermentation 

No. Volatile Compounds KI RS SS GS Day 1 Day 3 Day 5 Day 1 Day 3 Day 5 Day 1 Day 3 Day 5 

25 Benzeneethanol 1865 0.04 ± 0.01c 0.80 ± 0.13c 1.14 ± 0.27c 0.94 ± 0.25c 0.97 ± 0.28c 1.29 ± 0.76c 1.30 ± 0.57c 0.69 ± 0.21c 0.78 ± 0.24c 6.92 ± 1.42b 15.66 ± 2.75a 14.88 ± 3.40a 

26 β-Ionone 1882 0.02 ± 0.01g 0.21 ± 0.04a 0.11 ± 0.03bcd 0.11 ± 0.03bcd 0.08 ± 0.02cdefg 0.03 ± 0.03fg 0.07 ± 0.02defg 0.15 ± 0.01ab 0.12 ± 0.02bcd 0.04 ± 0.004efg 0.09 ± 0.02cdefg 0.06 ± 0.03defg 

27 Benzothiazole 1895 0.03 ± 0.01e 0.20 ± 0.04abcd 0.11 ± 0.02cde 0.18 ± 0.03bcd 0.09 ± 0.03de 0.22 ± 0.03abc 0.30 ± 0.08a 0.22 ± 0.06abc 0.12 ± 0.01cde 0.15 ± 0.03cd 0.13 ± 0.04cde 0.17 ± 0.04bcd 

28 Phenol 2009 NDg 0.04 ± 0.02fg NDg 0.33 ± 0.12def 0.23 ± 0.08defg 0.40 ± 0.14bcde 0.24 ± 0.13defg 0.15 ± 0.12efg 0.06 ± 0.04fg 0.72 ± 0.13ab 0.66 ± 0.13abc 0.51 ± 0.11bcd 

29 Pentadecanal 2019 NDe NDe 2.94 ± 0.75a 0.43 ± 0.08cde 0.17 ± 0.06de 0.28 ± 0.09cde 0.26 ± 0.04cde 0.24 ± 0.10cde 0.20 ± 0.05cde 1.01 ± 0.35b 0.56 ± 0.15bcd 0.53 ± 0.12bcde 

30 p-Ethylguaiacol 2025 NDc NDc NDc NDc NDc NDc NDc NDc NDc NDc 0.07 ± 0.04bc 0.43 ± 0.13a 

31 Ethyl tetradecanoate 2028 NDh 0.18 ± 0.06bcde NDh 0.19 ± 0.06bcde 0.11 ± 0.04efgh 0.29 ± 0.05abc 0.04 ± 0.01gh 0.07 ± 0.03efgh 0.13 ± 0.04efg 0.17 ± 0.06cdef 0.30 ± 0.06ab 0.31 ± 0.06a 

32 γ-Nonalactone 2030 NDe NDe 0.02 ± 0.01e 0.20 ± 0.07abc 0.08 ± 0.02de 0.13 ± 0.04cd 0.11 ± 0.01cde 0.16 ± 0.03bcd 0.18 ± 0.03bcd 0.16 ± 0.03bcd 0.20 ± 0.11abcd 0.29 ± 0.06a 

33 Octanoic Acid 2033 NDi 0.08 ± 0.02hi 0.22 ± 0.06lh 0.36 ± 0.11jk 0.20 ± 0.05lhi 0.31 ± 0.06jkg 0.27 ± 0.07dkgh 0.29 ± 0.04jkg 0.49 ± 0.14abcd 0.13 ± 0.03ghi 0.64 ± 0.13a 0.50 ± 0.09ab 

34 2-Pyrrolidinone 2039 NDf NDf NDf NDf NDf 0.03 ± 0.01ef 0.05 ± 0.01def 0.08 ± 0.01de 0.25 ± 0.03a 0.04 ± 0.01def 0.24 ± 0.06a 0.22 ± 0.02ab 

35 1-Tridecanol 2088 NDd NDd 0.13 ± 0.04ab 0.09 ± 0.03abc 0.06 ± 0.02bcd 0.11 ± 0.03abc 0.12 ± 0.04abc 0.13 ± 0.05ab 0.12 ± 0.03abc 0.08 ± 0.02abcd 0.09 ± 0.02abc 0.08 ± 0.02abcd 

36 Eugenol* 2095 NDf NDf NDf 3.40 ± 0.83ef 4.18 ± 1.17e 5.19 ± 1.12de 3.42 ± 0.91ef 2.90 ± 0.58ef 5.30 ± 1.36de 9.36 ± 1.07c 7.83 ± 2.23cd 13.81 ± 2.37ab 

37 4-Vinylguaiacol 2208 NDb NDb NDb 0.11 ± 0.05b 0.13 ± 0.05b 0.21 ± 0.11b 0.14 ± 0.08b 0.15 ± 0.05b 0.10 ± 0.03b 1.07 ± 0.42a 1.49 ± 0.60a 0.96 ± 0.34a 

38 Methyl Palmitate 2211 NDg 0.12 ± 0.05def 0.10 ± 0.02defg 0.12 ± 0.05def 0.12 ± 0.04defg 0.13 ± 0.02def 0.11 ± 0.04defg 0.11 ± 0.03defg 0.17 ± 0.08cde 0.10 ± 0.03defg 0.31 ± 0.06ab 0.40 ± 0.08a 

39 Ethyl Palmitate* 2228 NDf 1.05 ± 0.33cde 0.23 ± 0.10ef 0.36 ± 0.10ef 0.41 ± 0.12ef 0.66 ± 0.20def 0.31 ± 0.09ef 0.49 ± 0.17def 0.46 ± 0.12ef 1.51 ± 0.54bcd 2.93 ± 0.94a 2.58 ± 0.64a 

40 Decanoic acid 2236 NDd NDd NDd 0.70 ± 0.26abc 6.0 ± 0.12bcd 0.56 ± 0.18abc 0.70 ± 0.22abc 0.56 ± 0.23abc 0.49 ± 0.09abc 0.38 ± 0.16abcd 0.27 ± 0.04bcd 1.36 ± 0.07bcd 
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Table 6 Concentration (µg/g FW) of identified volatile compounds in horse gram raw, soaked and germinated seeds in addition to 48h (Day 2) and 

96h (Day 4) fermented sprouts influenced by germination as well as Lb. plantarum and natural fermentation process. 

      Lb. plantarum NRRL B-4496 Lb. plantarum NCDO 1193 Natural Fermentation 

No. Volatile Compounds KI RS SS GS Day 2 Day 4 Day 2 Day 4 Day 2 Day 4 

1 Acetoin 1226 NDd 0.57 ± 0.21a 0.23 ± 0.06bcd 0.14 ± 0.08bcd 0.44 ± 0.19ab 0.15 ± 0.06bcd 0.10 ± 0.04cd 0.35 ± 0.15abc 0.39 ± 0.12abc 

2 1-Hexanol 1308 NDf 0.21 ± 0.06ef 1.12 ± 0.28abc 1.31 ± 0.21a 1.17 ± 0.13ab 0.67 ± 0.14cd 0.73 ± 0.09bcd 0.93 ± 0.19abcd 1.02 ± 0.21abcd 

3 Acetic Acid* 1417 NDe 1.15 ± 0.29de 0.87 ± 0.14de 4.00 ± 0.63bc 4.65 ± 0.65bc 4.23 ± 0.41bc 4.64 ± 0.21bc 4.42 ± 1.18bc 9.22 ± 1.74a 

4 2-Ethyl-hexan-1-ol 1440 0.01 ± 0.002gh 0.05 ± 0.01efg 0.09 ± 0.02bcde 0.10 ± 0.02abcd 0.11 ± 0.02abc 0.04 ± 0.01fg 0.07 ± 0.01cdef 0.08 ± 0.01bcde 0.11 ± 0.01abc 

5 Benzaldehyde 1465 NDf 1.56 ± 0.29bcd 1.05 ± 0.35def 0.41 ± 0.07ef 0.61 ± 0.20def 0.37 ± 0.07ef 0.39 ± 0.07ef 1.21 ± 0.36cde 2.83 ± 0.91a 

6 Linalool 1468 0.07 ± 0.01e 0.64 ± 0.38cde 0.06 ± 0.03e 0.41 ± 0.10de 0.28 ± 0.13e 0.14 ± 0.04e 0.15 ± 0.03e 2.12 ± 0.72a 1.71 ± 0.93ab 

7 2,3-Butanediol 1483 NDe NDe NDe 1.01 ± 0.39de 1.46 ± 0.76cde 0.18 ± 0.04e 0.29 ± 0.15e 3.14 ± 1.29abcd 4.83 ± 1.59a 

8 Butyric acid* 1606 NDh NDh NDh 0.06 ± 0.01ab 0.03 ± 0.01cdef 0.02 ± 0.01efgh 0.02 ± 0.004efgh 0.04 ± 0.01bcde 0.06 ± 0.01abc 

9 Phenylacetaldehyde 1623 0.01 ± 0.06f 0.33 ± 0.06ab 0.18 ± 0.03de 0.28 ± 0.06abcd 0.30 ± 0.06abc 0.15 ± 0.02e 0.12 ± 0.01e 0.12 ± 0.02ef 0.35 ± 0.10a 

10 2-Methylbutanoic Acid 1633 NDf NDf NDf 0.06 ± 0.01de 0.13 ± 0.04abc 0.17 ± 0.04a 0.08 ± 0.02cde NDf NDf 

11 Ethyl Benzoate 1639 NDf NDf NDf NDf 0.14 ± 0.02a 0.12 ± 0.02abc 0.09 ± 0.01bcde 0.08 ± 0.01de 0.10 ± 0.01abcd 

12 1-Hexadecyne 1656 NDc NDc NDc NDc 0.73 ± 0.17a NDc NDc NDc NDc 

13 Methionol 1662 NDc NDc NDc NDc NDc NDc NDc 0.08 ± 0.03b 0.17 ± 0.04a 

14 2-Methyl-2-butenolide 1669 0.05 ± 0.01d 0.18 ± 0.05bcd 0.20 ± 0.05bc 0.23 ± 0.05abc 0.23 ± 0.04abc 0.16 ± 0.03bcd 0.19 ± 0.03bcd 0.29 ± 0.08ab 0.18 ± 0.09bcd 

15 Methyl Salicylate 1698 0.04 ± 0.01ef NDf NDf 0.31 ± 0.07ab 0.43 ± 0.13a 0.28 ± 0.05b 0.24 ± 0.05bcd 0.07 ± 0.01ef 0.13 ± 0.02cdef 

16 2-Tridecanone 1807 NDd NDd NDd 0.13 ± 0.03bc 0.17 ± 0.02ab 0.13 ± 0.01bc 0.10 ± 0.01c 0.10 ± 0.02c 0.20 ± 0.04a 

17 Dimethyl adipate 1813 0.01 ± 0.002a NDb NDb NDb NDb NDb NDb NDb NDb 

18 Phenethyl acetate 1815 NDf NDf NDf NDf 0.22 ± 0.05ab 0.17 ± 0d.06abc 0.13 ± 0.02bcd 0.12 ± 0.03cd 0.24 ± 0.06a 

19 Ethyl Salicylate 1817 NDe NDe NDe NDe 0.21 ± 0.04abc 0.06 ± 0.01e 0.25 ± 0.10a 0.08 ± 0.03cde 0.30 ± 0.07a 

20 (E)-β-Damascenone 1821 NDg NDg NDg 0.13 ± 0.04cde 0.24 ± 0.05ab 0.19 ± 0.04bcd 0.21 ± 0.04bc 0.03 ± 0.01fg 0.19 ± 0.04bcd 

21 Hexanoic Acid 1823 0.01 ± 0.003e 0.24 ± 0.06d 0.05 ± 0.03e 0.33 ± 0.06bcd 0.37 ± 0.06bcd 0.30 ± 0.04bcd 0.25 ± 0.04cd 0.32 ± 0.08bcd 0.54 ± 0.10a 

22 Geraniol 1823 0.01 ± 0.06c 0.29 ± 0.05a 0.26 ± 0.04a NDc NDc NDc 0.29 ± 0.04a NDc 0.29 ± 0.05a 
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Table 6 Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results are expressed as mean ±SE 

RS: Raw seeds-RS; SS: Soaked seeds; GS: Germinated seeds; ND: not detected  

Significant differences (p<0.05) among samples analyzed using Student’s t test between the samples represented with different letters 

(*) compounds are identified by comparing of retention time and mass spectrum of authenticated standards 
All compounds were identified by mass spectral data, comparing KI from literature (124-126) by EI and CI mode

   Lb. plantarum NRRL B-4496 Lb. plantarum NCDO 1193 Natural Fermentation 

No. Volatile Compounds KI RS SS GS Day 2 Day 4 Day 2 Day 4 Day 2 Day 4 

23 Guaiacol 1838 0.09 ± 0.02c 0.14 ± 0.03c 0.08 ± 0.02c 0.11 ± 0.03c 0.20 ± 0.05c 0.11 ± 0.03c 0.10 ± 0.01c 0.70 ± 0.22b 1.19 ± 0.33a 

24 Benzenemethanol 1846 0.05 ± 0.02g 0.11 ± 0.03fg 1.43 ± 0.25a 0.36 ± 0.07 cdef 0.36 ± 0.05cdef 0.13 ± 0.04fg 0.18 ± 0.02efg 0.70 ± 0.23b 0.50 ± 0.10bcd 

25 2-Phenylethanol 1865 0.04 ± 0.01c 0.80 ± 0.13c 1.14 ± 0.27c 1.44 ± 0.47c 1.82 ± 0.89c 0.74 ± 0.34c 0.61 ± 0.18c 10.36 ± 1.65b 14.23 ± 3.01a 

26 β-Ionone 1882 0.02 ± 0.01g 0.21 ± 0.04a 0.11 ± 0.03bcd 0.10 ± 0.01bcd 0.10 ± 0.03bcde 0.11 ± 0.02bcd 0.09 ± 0.01bcdef 0.04 ± 0.01efg 0.13 ± 0.03bc 

27 Benzothiazole 1895 0.03 ± 0.01e 0.20 ± 0.04abcd 0.11 ± 0.02cde 0.28 ± 0.10ab 0.14 ± 0.03cde 0.19 ± 0.06abcd 0.14 ± 0.03cde 0.11 ± 0.03cde 0.18 ± 0.04bcd 

28 Phenol 2009 NDg 0.04 ± 0.02fg NDg 0.16 ± 0.02efg 0.34 ± 0.14cdef 0.25 ± 0.14defg 0.34 ± 0.15cdef 0.53 ± 0.12bcd 0.99 ± 0.25a 

29 Pentadecanal 2019 NDe NDe 2.94 ± 0.75a 0.37 ± 0.12cde 0.36 ± 0.16cde 0.07 ± 0.02de NDe 0.72 ± 0.13bc 0.42 ± 0.11cde 

30 p-Ethylguaiacol 2025 NDc NDc NDc NDc NDc NDc NDc NDc 0.14 ± 0.09b 

31 Ethyl tetradecanoate 2028 NDh 0.18 ± 0.06bcde NDh 0.16 ± 0.05defg 0.13 ± 0.02efg 0.05 ± 0.02fgh 0.10 ± 0.05efgh 0.18 ± 0.04bcde 0.26 ± 0.06abcd 

32 γ-Nonalactone 2030 NDe NDe 0.02 ± 0.01e 0.11 ± 0.03cde 0.21 ± 0.05abc 0.13 ± 0.02cd 0.14 ± 0.03cd 0.17 ± 0.04bcd 0.25 ± 0.06ab 

33 Octanoic Acid 2033 NDi 0.08 ± 0.02hi 0.22 ± 0.06lh 0.23 ± 0.05fgh 0.34 ± 0.06bcdefg 0.29 ± 0.06cdefgh 0.24 ± 0.03efgh 0.45 ± 0.11abcde 0.50 ± 0.11abc 

34 2-Pyrrolidinone 2039 NDf NDf NDf 0.06 ± 0.03def 0.08 ± 0.02de 0.04 ± 0.01def 0.16 ± 0.04bc 0.03 ± 0.01ef 0.10 ± 0.04cd 

35 1-Tridecanol 2088 NDd NDd 0.13 ± 0.04ab 0.03 ± 0.003cd 0.11 ± 0.04abc 0.13 ± 0.05ab 0.16 ± 0.04a 0.09 ± 0.02abc 0.10 ± 0.02abc 

36 Eugenol* 2095 NDf NDf NDf 3.06 ± 0.49ef 4.57 ± 0.57de 3.06 ± 1.03ef 2.97 ± 0.53ef 11.25 ± 2.30bc 15.63 ± 2.80a 

37 4-Vinylguaiacol 2208 NDb NDb NDb 0.07 ± 0.02b 0.18 ± 0.04b 0.08 ± 0.04 0.11 ± 0.03b 0.95 ± 0.39a 1.20 ± 0.35a 

38 Methyl Palmitate 2211 NDg 0.12 ± 0.05def 0.10 ± 0.02defg 0.09 ± 0.02defg 0.21 ± 0.04bcd 0.04 ± 0.01fg 0.08 ± 0.01efg 0.19 ± 0.03cde 0.27 ± 0.05bc 

39 Ethyl Palmitate* 2228 NDf 1.05 ± 0.33cde 0.23 ± 0.10ef 0.53 ± 0.14def 0.61 ± 0.14def 0.33 ± 0.11ef 0.50 ± 0.16def 1.95 ± 0.54abc 2.39 ± 0.65ab 

40 Decanoic acid 2236 NDd NDd NDd 0.86 ± 0.35a 0.60 ± 0.22abc 0.71 ± 0.23ab 0.70 ± 0.25abc 0.22 ± 0.07cd  0.09d 
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affects certain organic acids, acid esters and fatty acids. Acetoin and 2,3-butanediol are 

considered as plant growth-promoting compounds while benzaldehyde is a GRAS food 

additive used as flavoring agent and in aromatic applications129. Furthermore, 

fermentation process of horse gram sprouts also showed major impact on the volatile 

composition of horse gram sprouts. With increasing relevance of probiotic fermented 

foods for providing nutritional quality and therapeutic health benefits130 targeted lactic 

acid bacterial-mediated fermentation in the current study as a bioprocessing strategy can 

ensure optimum consistent quality and potential food safety to develop acceptable 

fermented food product. In the present study, Lactobacillus plantarum NRRL-B 4496 and 

Lactobacillus plantarum NCDO 1193 were selected based on the preliminary experiments 

that determined the optimum growth parameters suitable for this legume system. 

Application of potential probiotic fermentation to dry edible seeds could be limited due to 

lack of bioconversion of key nutrients such as amino acids that are readily available in 

dairy products131. Therefore, to improve nutrients for bacterial growth soaking and 

germination prior to fermentation supports nutrients needs essential for bacterial growth 

and biotransformation. During germination, several metabolic activities such as 

proteolysis facilitates breakdown of protein into peptides and free amino acids which itself 

impart some flavor to the sprouts and also provide nutrients for lactic acid bacteria 132. 

Therefore, in the present study, germination prior to fermentation of horse gram sprouts 

facilitated optimum growth of the two LAB strains, which further led to production of 

array of flavor and aromatic compounds during fermentation. 
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4.4.2. Changes in flavor and aromatic compounds during fermentation  

GC-MS analysis of horse gram sprouts fermented by Lactobacillus plantarum 

NRRL-B 4496 and Lactobacillus plantarum NCDO 1193 showed presence of acetic acid 

and butyric acid (Table 5 and 6). Generally these aliphatic organic acids are produced 

under anaerobic condition by human gut microbiota due to degradation of dietary fibers 

133. Since human metabolic pathways lack critical enzymes to metabolize the dietary 

fibers, colonic microbial population aids such degradation and produces short chain fatty 

acids (SCFAs) mainly acetate, propionate and butyrate in the average molar ratio 

(60:25:10 mmol/l). These major SCFAs might play an important role in the prevention 

and potential management of disease conditions such as metabolic syndrome, bowel 

disorders and also certain types of cancer 134. It seems that Lb. plantarum spp. possess the 

ability to consume lactic acid and releases an equivalent amount of acetic acid under 

micro-aerobic conditions135. Accordingly, the concentration of acetic acid found in the 

fermented horse gram sprouts in the present study indicates that Lb. plantarum can 

effectively metabolize organic acids into SCFAs such as acetic acid and butyric acid. 

Other acids such as 3-methylbutanoic acid, hexanoic acid, octanoic acid and decanoic 

acids are fatty acids derived from either amino acids or carbohydrate metabolism. Some 

of these acids were not detected during the initial stage of fermentation, instead appeared 

as the fermentation proceeded. Complex metabolic activities occurring during 

fermentation led to significant changes in the concentration of each of those compounds, 

mainly acids, alcohols and esters. Among 7 acids, all the samples showed high amount of 

acetic acid and octanoic acid during lactic acid bacterial fermentation and hexanoic acid 
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increased during natural fermentation while other acids remained unchanged. Naturally 

fermented horse gram sprouts for 4 and 5 days showed highest amount of organic acids 

content, followed by Lactobacillus plantarum NCDO 1193 fermented sprouts and 

Lactobacillus plantarum NRRL-B 4496 fermented sprouts.  

On the other hand, contents of aldehydes except benzaldehyde were observed to 

be highest only during the initial stage of all types of sprouts fermentation. Phenyl 

acetaldehyde and benzaldehyde might be products of aromatic amino acid phenylalanine 

metabolism, while some sulfur-containing compounds such as methionol derived from 

methionine as nitrogen source136, 137. Microorganisms are able to reduce certain type of 

aldehydes to alcohols or oxidize to acids138. In the present study, aldehyde content 

particularly pentadecanal decreased during fermentation, possibly converted into alcohols 

and acids during the fermentation process. Most of the aldehydes decreased during Lb. 

plantarum fermentation of cherry, pineapple, carrot and tomato juices with corresponding 

increase in the level of alcohols139. Alcohols forms the largest group of volatile compounds 

identified in fermenting horse gram sprouts which suggests its importance in the 

organoleptic properties of fermented horse gram sprouts. As mentioned previously, 2,3-

butanediol plant growth promoting compound is a product of glucose fermentation by Lb. 

plantarum via acetoin reduction, stimulated by lower pH of the fermenting medium 140. 

Hence content of 2, 3-butanediol increased during Lb. plantarum fermentation of horse 

gram sprouts with corresponding effect on acetoin concentration. Other alcohols (2-

phenylethanol) are also a product of aromatic amino acid metabolism while benzyl alcohol 

impart pleasant odor to the product. In addition, 1-hexanol, 1-tridecanol and 2-
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ethylhexanol are condensation products of alcohols, whereas linalool and geraniol are 

monoterpene alcohols present as secondary metabolites in legumes141. Several ketones are 

produced during fermentation but very few have sensory significance such as acetoin. 

Some nor isoprenoid ketones such as β-damascenone that were not detected in raw, soaked 

seeds or sprouts were observed after fermentation while β-ionone, a common flavor 

constituent in wines was also detected in trace amount. These compounds are known to 

be products of carotenoid degradation142. It was also observed that the 2-methyl-2-

butenolide which increased during germination remained unchanged throughout 

fermentation period. Other ketones, such as γ-nonalactone and 2-tridecanone were not 

detected in raw, soak seeds and sprouts but were remarkably identified in fermented horse 

gram sprouts samples. Acetoin (3-hydroxy-2-butanone) was not detected in raw seeds but 

gradually increased during germination and the highest amount was found in naturally 

fermented horse gram sprouts followed by sprouts fermented by Lactobacillus plantarum 

NRRL-B 4496. Lactic acid bacteria are able to anaerobically metabolize substrates such 

as citrate and pyruvate as product of fermentation to produce acetoin and diacetyl in 

fermented cereals 143.  

Esters are widely known as most important flavor constituents of alcoholic 

beverages which impart fruity flavors to the fermented products. These are produced either 

by condensation reaction between alcohols and acids or due to enzymatic activity of 

certain microorganisms, commonly yeasts 144. In the present study, 2-phenyl ethyl alcohol 

being the most abundant alcohol formed during fermentation resulted in increasing phenyl 

ethyl acetate levels. Other acid esters such as ethyl benzoate, ethyl salicylate, methyl 
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salicylate, ethyl palmitate, methyl palmitate are volatiles imparting pleasant flavor and 

aroma to fermented products and are derived from respective acids and alcoholic 

reactions. Dimethyl adipate which is an ester of adipic acid was only detected in sprouts 

fermented by Lactobacillus plantarum NRRL-B 4496 at 5 days, whereas it was absent in 

all other samples, which explains the rare occurrence of adipic acid in foods. 

 

4.4.3. Volatile Phenols – Biosynthesis Proposed Pathways 

Volatile phenols are aromatic compounds commonly reported as major concerns 

in white and red wine sensory quality. Each of these volatile phenols such as p-

ethylguaiacol, 4-vinylguaiacol, guaiacol, 4-ethyl phenol, eugenol and vanillin imparts 

distinct aroma varying from bacon to smokey and spicy like clove to the fermented 

products. In the present study, eugenol was the second major volatile compound detected 

in fermented horse gram sprouts but only trace amounts was found in raw, soaked and 

sprouts (Table 5 and 6). This indicates biosynthesis of eugenol during fermentation that 

might be dependent either on the fermenting lactic acid bacteria or certain precursors that 

are absent in raw seeds but formed during germination. It is well known that eugenol is a 

major constituent in essential oils such as clove, nutmeg and cinnamon. Previously, L-

methyl-eugenol and eugenol was detected in extracts of soybeans and mung beans, while 

their strong antioxidant activity was also assessed145. Presence of such phenyl propenes in 

the vegetative parts of the plant represents to be a crucial part of defense mechanism 

against herbivorous, parasitic bacteria and fungi. However, when the seeds enter dormant 

stage during dehydrating stage the defense mechanism is apparently suppressed. 
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Therefore, the most likely mechanism for biosynthesis of eugenol exclusively during 

fermentation in the present study is the conversion of hydroxycinnamic acids coenzyme-

A thioesters to eugenol via products of phenyl propropanoid pathway obtained from horse 

gram sprouts (Figure 4). Based on some reported eugenol production mechanisms 146, 147, 

a brief description for the proposed biosynthesis pathway for the eugenol detected in the 

present study is as follows: when germinating horse gram seeds are metabolically active 

in the form of sprouts several accelerated metabolic pathways such as glycolysis, pentose 

phosphate pathway and shikimate pathways are expressed. These pathways in the sprouts 

produces phenylalanine and tyrosine, which are further acted upon by phenylalanine 

ammonia lyase (PAL) and tyrosine ammonia lyase (TAL), respectively as first committed 

enzymes in the pathway towards other phenypropanoids which may be then be used in 

subsequent eugenol synthesis by lactic acid bacteria. These two potential horse gram 

sprout enzymes channel the aromatic amino acids from the primary metabolic pool 

towards the biosynthesis of hydroxycinnamic acids. Such activity of PAL and TAL mainly 

occur in all the plants, certain type of fungi and some bacteria but not detected in animals 

148. It is likely that in the present study, PAL and TAL catalyzing reactions occurred during 

seed germination followed by fermentation by lactic acid bacteria as well as sprouts native 

microflora with further conversion of hydroxycinnamic acids and related precursors to 

respective coenzyme A thioester that are substrates for further condensation, reduction 

and transformation type reactions producing coniferyl alcohol, which can then be further 

reduced to coniferyl acetate or some related esters for the final stage of eugenol synthesis 

(Figure 4) 149.
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Figure 4 Proposed biosynthetic pathway of eugenol in fermented horse 

gram sprouts. (PAL Phenylalanine ammonia-lyase; TAL Tyrosine 

ammonia-lyase; 4CL 4-coumarate CoA ligase; CCR cinnamoyl-CoA 

reductase; CAD cinnamyl alcohol dehydrogenase; CAAT coniferyl 

alcohol acetyl transferase; EGS eugenol synthase) [Reprinted from 147, 

150].
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Phenylpropanoids such as eugenol are integral part of plant defense mechanism 

and may also serve as the building blocks of phenolic based polymer lignin 151 but requires 

special sequestered glandular vesicles to be formed in plants. An important enzyme 

catalyzing the formation of coenzyme thioesters of hydroxycinnamic acids and 

subsequently phenylpropanoids production is 4-coumarate: CoA ligase (4CL; EC 

6.2.1.12). However, since biosynthesis of phenylpropanoids in plants such as legumes is 

strictly regulated by glandular vesicular developmental processes and by environmental 

elicitors such as microorganisms 152 also lactic acid bacteria that are involved in the horse 

gram fermentation were most likely the source of eugenol after key precursors were 

generated during the germination process Since there is no clear information about genetic 

markup of horse gram seeds, scientific evidences for closely related legume such as 

soybean seedlings provides some insights on eugenol precursor production during horse 

gram sprouts and later conversion by lactic acid bacteria during fermentation. Unlike other 

plants, isoenzymes of 4CL in soybean contain distinct substrate affinities that are catalytic 

specific that subsequently leads to branched phenylpropanoid pathway to produce 

precursors for lignin 150. Distribution of 4CL expression pattern in soybean seedling to 

some extent supports the results observed in the present study. In a previous study, it was 

reported that amongst the four 4CL mRNAs isolated from soybean seedlings (4CL1, 

4CL2, 4CL3 and 4CL4), two 4CL1 and 4CL2 mRNA amounts were maximum in 

hypocotyls, stem and young roots, while others 4CL3/4 mRNA were observed to be in 

lower amount in roots and hypocotyls of soybean seedling under study 152. Such scientific 

evidences related to the present study led to the suggestion that elicitor specific 4CL 
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catalytic activity in legume such as horse gram may play a vital role for development of 

substrates for subsequent condensation, reduction and transformation type reactions 

involved in biosynthetic pathways of phenylpropanoids such as eugenol 152.  

There is little information available related to these pathways and genomic 

information for both the strains of Lactobacillus plantarum used in the present study, 

though closely related LAB strains have been reported to possess certain enzymes 

facilitating conversion of phenylpropanoid pathway metabolites and therefore LAB could 

use the plant-based precursors to bio transform eugenol during the active fermentation 

stage 70, 139, 153. Therefore, high concentration of eugenol bio-transformed during 

fermentation could be due to the horse gram precursors from initial biosynthesis of 

aromatic amino acids such as phenylalanine via shikimate pathway during germination 

which in turn further led to production of eugenol by natural and lactic acid bacterial 

fermentation aligning to the above proposed mechanism. Phenylpropenes such as eugenol 

are potent antioxidants, also possess strong antimicrobial activity, particularly anti-fungal 

due to which it has potential application relevance as natural preservatives or flavor 

ingredients in foods. The known biochemical pathways for synthesis of eugenol is limited 

and present study potentially offers a new bioprocessing strategy for producing eugenol 

that links germination and natural fermentation. This is one of the most interesting findings 

of this study, since the highest concentration of eugenol about 80-90% which is 

approximately 125929 µg/g FW is found in clove glandular vesicular systems 154 and 

compared to this, the concentration of eugenol produced during horse gram 

germination/natural fermentation process was about 3.06 – 15.63 µg/g of fresh weight of 
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fermented horse gram sprouts. Such level of eugenol is several folds lower to the amount 

related to severe effects on hepatotoxicity due to consumption of clove oil which is rich 

in eugenol155. This creates an interesting new opportunity for further detailed 

transcriptomic and molecular studies of horse gram seeds and its products from a 

combination of germination and natural fermentation as an innovative bioprocessing 

strategy.   

 

4.4.4. Organoleptic Importance 

In the present study, acetic acid, hexanoic acid, 2, 3-butanediol, octanoic acid, 

eugenol, 4-vinylguaiacol, methyl palmitate, ethyl palmitate, decanoic acid were 

predominant in Lb. plantarum spp. fermented horse gram sprouts. These compounds have 

been previously identified as crucial aromatic compounds in foods fermented by 

Lactobacillus plantarum strains 156. It was observed that Lactobacilli strains produce high 

amount of certain volatile compounds including acetaldehyde, diacetyl, ethyl acetate, 

acetone and ethanol which can strongly affect the organoleptic qualities of the fermented 

products. While there were some important volatile compounds detected only in naturally 

fermented horse gram sprouts, such as methionol (3-(methylthio)-1-propanol) and p-

ethylguaiacol but these were not detected in LAB fermented sprouts. A volatile sulfur 

compound such as methionol is commonly found in alcoholic beverages and widely 

distributed as an aromatic compound imparting off-odor “cauliflower aroma” to fermented 

foods especially in dry wines during ageing157. The other volatile compound p-

ethylguaiacol is generally found in fungi and produced during pathogenic fungus 
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Phytophthora cactorum-mediated infection of cucurbit crops in southeastern United 

States. Its presence indicates leather rot disease in strawberry plants and gives unpleasant 

odor to strawberries affecting nearly 50% of strawberries produced in the U.S. 158. In the 

current study, presence of such undesirable volatile compounds in naturally fermented 

horse gram sprouts is reflection of unpleasant aroma. The fact that these undesirable 

volatiles are absent in targeted LAB fermented horse gram sprouts indicates potential to 

improve sensory characteristics through targeted LAB-mediated fermentation systems. 

 

4.4.5. Principal Component Analysis (PCA) 

PCA is an effective tool for compressing large data sets into a summarized form 

of variables, which can be presented as simplified and visual data 159. The volatile 

compound data from all the treatments were analyzed to understand the variation of 

principle components during germination and fermentation process (Figure 5). 

Germination distinctly differentiates volatile compounds profile of sprouts from raw and 

soaked seeds. With PC2, some volatile compounds like hexanol and linalool were located 

along the axis and these compounds were of importance during hydration of dry seeds. 

The levels of aldehydes such as pentadecanal was observed to be highest in sprouts 

(Figure 6), thus was higher at the beginning of fermentation and positioned corresponding 

to the germinated seeds. However, positioning of pentadecanal only towards initial 

fermentation stages indicate that they originated mainly from the raw materials of seeds 

or sprouts and were utilized as precursors for the subsequent fermentation by 

microorganisms (Figure 6). This corresponds to reduction in the levels of pentadecanal 
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Figure 5 The score plots of PCA: horse gram dry raw seeds (R), soaked seeds (S) and germinated 

seeds (G), horse gram sprouts fermented by Lb. plantarum NRRL B 4496 from one to five days 

(D1-D5), horse gram sprouts fermented by Lb. plantarum NCDO 1193 from one to five days (D1-

D5), horse gram sprouts naturally fermented from one to five days (D1-D5). 

PC-1 (34.8 %) PC-1 (63.1 %) 

PC-1 (30.2 %) PC-1 (42 %) 

P
C

-2
 (

1
9

 %
) 

P
C

-2
 (

1
6

.3
 %

) 

P
C

-2
 (

1
9

.1
 %

) 

Raw, soaked and germinated horse gram 

seeds 
Lb. plantarum NRRL B-4496 fermented 

horse gram sprouts 

 

Lb. plantarum NCDO-1193 fermented 

horse gram sprouts 
Naturally fermented horse gram sprouts 

P
C

-2
 (

1
9

 %
) 



 

88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 The loading plot for all the identified volatile compounds in horse gram dry raw 

seeds, soaked seeds and germinated seeds, horse gram sprouts fermented by Lb. plantarum 

NRRL B 4496 from one to five days (D1-D5), horse gram sprouts fermented by Lb. 

plantarum NCDO 1193 from one to five days (D1-D5), D-horse gram sprouts naturally 

fermented from one to five days (D1-D5). 
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with the increasing fermentation period (Table 5). Classifying the fermented sample plots 

according to fermentation time revealed that the profiles of the volatiles moved from right 

to left along the PC1 dimension with increasing fermentation time in both LAB fermented 

sprouts samples, accounting for the observed steady changes in profiles as fermentation 

proceeded. The Lb. plantarum NRRL B-4496 fermented horse gram samples could be 

differentiated primarily according to their PC1 score, with the initial fermentation period 

(day 1, 2 and 3) being positioned on the positive side of the axis, opposite to later 

fermentation period (day 4 & 5). In particular, mid-stream fermentation of about day 2 

and 3 lined along with PC2 axis in the middle similar to later fermentation stages (day 4 

and 5) being positioned close to each other on the positive side of axis. As shown in 

(Figure 5), positive axis on PC1 was highly influenced by volatile compounds such as 

acids, acid esters, volatile phenols and alcohols which exhibited marked concentration 

changes during the initial fermentation stage especially the levels of acetic acid and 

eugenol. Compounds with the highest concentration were eugenol and acetic acid 

apparently increasing during final days of fermentation (day 4 and 5) seemingly clustered 

along with other volatile compounds on the side corresponding to later fermentation 

stages. Moreover, we observed dense cluster of volatile compounds at the center of both 

axis, which signifies that most of the flavor and aromatic compounds were produced in all 

the fermented horse gram samples, irrespective of fermentation period. This also signifies 

LAB fermentation resembles natural fermentation of horse gram sprouts except for the 

production of some off-odor producing compounds such as p-ethylguaiacol in natural 

fermentation. The duration of fermentation by Lb. plantarum NRRL B 4496 and Lb. 
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plantarum NCDO 1193 mainly affects the concentration of volatile compounds rather than 

the composition.  

Certain volatile compounds such as acetoin, 2,3-butanediol, phenylethyl acetate 

and acetic acid were formed from pyruvate metabolism and contributed to the negative 

PC1 axis for naturally fermented horse gram sprouts and their concentrations increased as 

fermentation proceeded (Figure 6). These compounds were previously identified as key 

aroma compounds in Lactobacilli fermentation of barley and malt substrates 156. These 

results indicated that the horse gram sprouts fermented using Lb. plantarum spp. at 

different fermentation times could be clearly differentiated at the initial and middle 

fermentation stages (day 1, 2, 3, 4 and 5) positioned on the negative PC1 axis due to their 

relatively high contents of aldehyde compounds, and the later fermented samples 

positioned on the positive PC1 axis due to the presence of acids, alcohols, esters and 

ketones. As discussed before, HS-SPME GC-MS benefits in detection and identification 

of volatile compounds in fermented horse gra sprouts (Figure 7) with authentic standards 

injections for comparison of retention time (Figure 8).  

 

4.5. Conclusions 

The principal component analysis distinguished the raw horse gram seeds from 

soaked as well as germinated seeds. It also differentiated stages of fermentation into five 

groups divided by the concentration of volatile compounds produced enduring 

fermentation. Significant levels of pyruvate fermentation products such as acids, alcohols 

were identified in the fermented samples which were not detected in raw seed flour or 
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sprouts. Detection of ketones, esters and acids also indicates possible lipid oxidation 

during fermentation. Since horse gram seeds are rich source of proteins, germination and 

fermentation induced proteolysis potentially releasing major aromatic amino acids, along 

with those from shikimate pathway in sprout primary metabolism, and these are likely 

precursors for biosynthesis of eugenol through biotransformation by natural and lactic acid 

bacterial fermentation. In addition, to eugenol presence of off-odor producing compounds 

in naturally fermented sprouts make it unlikely choice for commercial method of 

fermentation. Therefore, strains of Lb. plantarum spp. with probiotic potential as targeted 

fermenting bacteria would advance innovative bioprocessing strategies to produce 

desirable flavor and aromatic volatile compounds including a potent antioxidant, eugenol 

that also adds to therapeutic benefits along with strong anti-fungal activity of fermented 

horse gram sprouts. 
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Figure 7 Peaks in a GC-MS chromatogram flagged with respective volatile compounds identified in 

fermented horse gram sprouts.
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Figure 8 GC-MS chromatograms of pure standards with their retention time (mins).
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5. CONCLUSIONS 

  

Horse gram traditionally grown in arid regions of the developing countries is 

wholesome food that should be added to diet on regular basis. Raw horse gram seeds have 

been studied by several researchers for various health benefits. The present study showed 

that conventional processes such as germination, cooking and fermentation significantly 

(p<0.05) influences the levels of essential amino acids, protein content, free radical 

scavenging activity, α-amylase and α-glucosidase inhibition activity as well as imperative 

volatile compounds. Germination and lactic acid fermentation significantly increases 

levels of essential amino acids, free radical scavenging activity, carbohydrates 

hydrolyzing enzymes compared to raw seeds. Heat treatments such as cooking in 

significantly reduces the levels of essential amino acids and protein content while free 

radical scavenging activity was observed to be increasing during cooking. Lactic acid 

fermentation overall increases the amount of total phenolic content corresponding to the 

increase in free radical scavenging activity of fermented horse gram sprouts. Volatile 

compounds, importantly flavor and aromatic compounds increased with increasing 

fermentation time. Amongst all the volatile compounds identified, acetic acid and eugenol 

are the major compounds quantified during lactic acid fermentation as well as natural 

fermentation. Fermented legumes are significant part of the diet of large population 

belonging to some developing countries, since it the most economical and convenient 

method of processing and preserving foods. However, lactic acid bacteria fermentation 

led to desirable changes in the bioactive compounds as well as flavor aromatic compounds. 
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Furthermore, the current study is an addition to the existing science of horse gram and it 

possibilities to be further explored beyond food and medicinal aspects for its chemo 

profile, pharmacology, biological evaluation, toxicological consequences and 

agronomical benefits.  
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