
HUMAN-TOOL-INTERACTION-BASED ACTION RECOGNITION FRAMEWORK 

FOR AUTOMATIC CONSTRUCTION OPERATION MONITORING 

 

A Dissertation 

by 

YANG LIU  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

Chair of Committee,  Julian Kang 

Co-Chair of Committee,  Wei Yan 

Committee Members, Edelmiro Escamilla 

 Zofia Rybkowski 

Head of Department, Robert B. Warden 

 

August 2017 

 

Major Subject: Architecture 

 

Copyright 2017 Yang Liu



 

ii 

 

 

ABSTRACT 

 

Monitoring activities on a construction jobsite is one of the most important tasks 

that a construction management team performs every day. Construction management 

teams monitor activities to ensure that a construction project progresses as scheduled and 

that the construction crew works properly in a safe working environment. However, site 

monitoring is often time-consuming. Various automated or semi-automated tracking 

approaches such as radio frequency identification, Global Positioning System, ultrawide 

band, barcode, and laser scanning have been introduced to better monitor activities on 

the construction site. However, deploying and maintaining such techniques require a 

high level of involvement by very specific well-trained professionals and could be 

costly.  

As an alternative way to monitor sites, object recognition and tracking have the 

advantage of requiring low human involvement and intervention. However, it is still a 

challenge to recognize construction crew activities with existing methods, which have a 

high false recognition rate. This research proposes a new approach for recognizing 

construction personnel activity from still images or video frames. The new approach 

mimics the human thinking process with the assumption that a construction worker 

performs a certain activity with a specific body pose using a specific tool. The new 

approach consists of two recognition tasks, construction worker pose recognition and 
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tool recognition. The two recognition tasks are connected in sequence with an interactive 

spatial relationship.  

The proposed method was developed into a computer application using Matlab. 

It was compared against a benchmark method that only uses construction worker body 

pose for activity recognition. The benchmark method was also developed into a 

computer application with Matlab. The proposed method and the benchmark method 

were tested with the same sample set containing 500 images of over 10 different 

construction activities. The experimental results show that the proposed framework 

achieved a higher reliability (precision value), a lower sensitivity (recall value), and an 

overall better performance (F1 score) than the benchmark method.  
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NOMENCLATURE 

 

PARS Pose-Based Action Recognition System 
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1. INTRODUCTION 

 

It is a daily job for every construction management team to monitor personnel, 

equipment, and materials on the construction jobsite. Various technologies have been 

adopted for the monitoring process to improve the efficiency of human observation and 

to obtain data with minimal manual collection. Data can be collected in various formats, 

such as count, location, and trajectory of construction personnel, certain equipment, 

and/or construction materials. Such data can be used to analyze current practices on the 

jobsite and to come up with suggestions for future improvement for many diverse 

purposes, such as project progress monitoring (Golparvar-Fard, Peña-Mora, Arboleda, & 

Lee, 2009; Maalek, Lichti, & Ruwanpura, 2015), activity sequence analysis (Liu & 

Golparvar-Fard, 2015), productivity measurement (Teizer, Cheng, & Fang, 2013; Yi & 

Chan, 2013), resource location (Maalek & Sadeghpour, 2013; Teizer, 2015), and safety 

management (Park, Kim, & Cho, 2016; Seo, Han, Lee, & Kim, 2015).  

At the current stage, radio frequency identification (RFID), Global Positioning 

System (GPS), and 3D range imaging camera (LADAR) are some of the most 

commonly used automatic or semi-automatic jobsite monitoring techniques.  

RFID has been adopted in the construction industry to identify and track a large 

variety of project-related objects. For example, it has been used to track and locate 

highly customized precast concrete components to avoid late deliveries, double-

handling, and incorrect installation (Ergen, Akinci, & Sacks, 2007). Costin, Teizer, and 
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Schoner (2015) integrated RFID and Building Information Modeling to track 

construction crews in real time for safety, security, and verification of maintaining local 

hiring mandates.  

GPS has been applied on construction sites for real-time materials management 

(Caldas, Torrent, & Haas, 2004; Ergen et al., 2007) and construction equipment tracking 

(Lu, Chen, Shen, Lam, & Liu, 2007; Pradhananga & Teizer, 2013). The availability of 

this technique depends on the triangulation of groups of satellites, ground control 

stations, and signal receivers. To monitor the concrete production and delivery processes 

on and off construction sites, Lu et al. (2007) proposed a continuous real-time tracking 

system for construction vehicles by integrating GPS with vehicle navigation technology. 

Their system was tested in the urban environment of Hong Kong; the system proved  

accurate and reliable for recording the key event times of a mixer truck under practical 

site conditions.  

The LADAR system has also been used on construction sites to enhance on-site 

safety. Teizer, Caldas, and Haas (2007) proposed a methodology to model, detect, and 

track the position of static and moving objects such as construction crews and heavy 

equipment in real time, based on data obtained from video range cameras. Experimental 

results demonstrated that position, dimension, direction, and speed measurements 

acquired by the LADAR system have an accuracy level compatible with the 

requirements of active safety monitoring for construction. 
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The above studies have shown the possibility and necessity of applying different 

techniques to improve the construction management process from a large variety of 

perspectives. Replacing traditional manual processes conducted by project management 

personnel with automatic or semi-automatic systems could improve the efficiency of 

documentation, data analysis, and decision-making processes. However, on large-scale 

sites, deploying, maintaining, and removing such systems can be costly and time-

consuming. In addition, privacy issues with attached personnel tracking devices often 

limit the usability of these technologies on construction sites (Brilakis, Park, & Jog, 

2011). 

With sophisticated algorithms and powerful computing hardware made available 

in recent years, vision-based techniques have arrived as an alternative to existing 

systems. Vision-based systems are built on top of computer vision and machine learning 

technologies. By combining such technologies, vision-based systems have the following 

advantages: 

• They are highly applicable for dynamic, busy construction sites involving 

large numbers of equipment, personnel, and materials (Memarzadeh, 

Golparvar-Fard, & Niebles, 2013).  

• They are more desirable for personnel who wish to avoid being “tagged” 

with sensors (Brilakis et al., 2011). 



 

4 

 

 

• The continuous advent of vision-based tracking algorithms could 

effectively reduce the effects of illumination conditions and occlusions 

(Brilakis et al., 2011).  

• It is profitable to apply vision-based systems in construction operations 

due to simplicity, commercial availability, and low costs associated with 

video equipment (Teizer, Caldas, & Haas, 2007).  

With further development of such technologies, a vision-based system can 

contribute to a fully automated construction monitoring system. The monitoring system 

can integrate a large variety of capabilities, including but not limited to sounding an 

alarm when unsafe behavior occurs; automatically generating an optimized site layout 

for the working area, rest area, and material lay-down area; recommending an activity 

sequence; recognizing discrepancies between the current and as-planned construction 

schedule; and providing suggestions to update the management plan.  

At the current stage of research, the purposes of applying vision-based systems 

can be summarized as follows:  

•    For safety purposes: to automatically detect unsafe behavior and unsafe site 

conditions in real time (Du, Shehata, & Badawy, 2011; Seo et al., 2015);  

•    For construction progress control: to continuously compare as-built and as-

planned construction progress (Golparvar-Fard & Pena-Mora, 2007) and to provide 

construction professionals with immediate and accurate information regarding specific 
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project issues for their project control decision-making process (Yang, Park, Vela, & 

Golparvar-Fard, 2015);  

•    For construction personnel and equipment productivity control: to collect 

information, such as count, location, and moving trajectory of construction personnel 

(Brilakis et al., 2011; Park & Brilakis, 2012; Gong, Caldas, & Gordon, 2011; 

Memarzadeh et al., 2013) and certain equipment (Azar & McCabe, 2011 & 2012; Chi & 

Caldas, 2011). The information collected could be utilized to calculate and measure 

productivity and performance and to improve travel path conflicts.  

Construction personnel recognition and tracking is one of the major research 

areas in applying vision-based systems for construction monitoring. However, most 

research efforts recognize construction personnel as objects, which creates hurdles for 

revealing the full benefits of vision-based systems. It is essential for the systems to 

understand construction workers’ activities because more accurate data collection results 

in further analysis, such as workers’ productivity measurement and safety evaluation. 

However, it is still a challenge to accurately recognize construction workers’ activities 

from still images or videos (Gong et al., 2011).  
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2. MOTIVATION 

 

As previous studies have demonstrated, vision-based technologies have 

promising potential for monitoring construction personnel. However, it is still a 

challenge to recognize construction workers’ activities from the images or videos 

collected from a jobsite. Representation of activity is important because data can be 

provided for management personnel and computer systems to perform further analysis 

more accurately, such as workers’ productivity measurement and safety evaluation. Even 

though Gong et al. (2011) proposed a method of recognizing workers’ on-site activities 

from videos, their approach has a relatively high false recognition rate at 21%, and the 

recognition accuracy could be improved.   

Until now, all previous studies regarding construction worker activity recognition 

have only applied the overall features of a construction worker’s body area, only 

capturing the worker’s body pose feature. This recognition approach is referred as a 

single-layered approach (Aggarwal & Ryoo, 2011). More details on construction worker 

action recognition can be found in Chapter 6.1.2, Construction Worker Recognition. 

Single-layered approaches (Sheikh, Sheikh, & Shah, 2005; Yilmaz & Shah, 2005) are 

based on sequenced images as input data. As the nature of a single-layered approach, it 

is suitable for recognizing gestures and actions, where gestures refer to simple 

movements of a person’s body part, such as jumping or waving a hand, and actions refer 

to compositions of multiple gestures.  



 

7 

 

 

However, actions appearing on construction sites are more dynamic and complex 

than simple gestures and actions such as running and jumping, and construction-related 

actions usually include human interaction or operation of certain objects or tools.  
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3.  SUGGESTIONS 

 

In the community of action recognition, the concept of semantic understanding 

has been applied in the recognition process to further improve the performance of action 

recognition. Semantic understanding enables users to apply prior knowledge of certain 

activities to the recognition processes. Semantics interprets an action as a relation among 

its features. The features include all or at least two elements of pose/poselet (Ikizler & 

Duygulu, 2007; Ukita, 2013), related objects (Gupta & Davis, 2007; Yao & Fei-Fei, 

2010), scene (Marszalek & Laptev, 2009; Zhang, Qu, & Wang, 2014), and object 

attributes (Bourdev, Maji, & Malik, 2011; Farhadi, Endres, Hoiem, & Forsyth, 2009). 

The meaning of each action generally can be decomposed into the meanings of its 

features (Ziaeefard & Bergevin, 2015).  

If a human is looking at an image, the first data piece to arrive is the pose of the 

person in general, as shown in Figure 1(a). However, we cannot conclude what that 

person is doing by just looking at the pose. If we apply the concept of semantic 

understanding to recognize construction crew activity, we could look around trying to 

find clues other than body pose. In Figure 1(b), we can see that this person is holding a 

hammer in his hand. We then determine that the action being performed by this person is 

nailing.  
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(a) (b) 

Figure 1 Understanding a construction activity. (a) Only looking at the pose, (b) 

looking at both the pose and the tool. 

 

Can we apply our prior knowledge of the relationship between a construction 

worker’s body pose and certain tools to the process of worker action recognition? 

Compared with existing construction worker action recognition systems based only on 

features of the workers, does the new action recognition system integrating the human-

tool relationship perform better than existing systems?  

So far, all previous applications were developed to look only at the human 

features, never taking a closer look at any other related objects. This study proposes to 

add recognition processes to look not only at human body pose features, but also to 

recognize the co-related tools for each specific action. The proposed approach has two 

recognition tasks, pose recognition and tool recognition. By applying reversed 

recognition sequences of pose and tool, the new approach was further defined and 

developed into two frameworks, Pose-Tool Action Recognition System (PTARS) and 

Tool-Pose Action Recognition System (TPARS). Both frameworks have four major 
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steps; the only difference between PTARS and TPARS is the detection sequence of pose 

and tool—PTARS detects pose first, while TPARS detects tool first. Figure 2 illustrates 

the workflow of PTARS. Taking PTARS as an example, the four major steps are as 

follows:  

1) Applies a sliding window to go through the entire image and extract 

histogram of oriented gradients (HOG) for each image patch that the sliding 

window went through. Figure 3 gives an example of the image patches 

generated by applying a 300- × 300-pixel sliding window that moves every 

150 pixels horizontally and vertically over a 1920- ×-1080 pixel image; 

2) Classifies the HOG features of each image patch with a pretrained pose 

classifier to predict if it is the pose of an activity or if it is not a body pose;  

3) Defines a potential tool area based on the location and size of the image patch 

and the predefined interactive pose-tool relationship;  

4) Applies another sliding window within the potential tool area to detect the 

associated tool. If and only if both the pose and tool are detected, the 

framework predicts the area in the image as the activity and highlights that 

area. 

Implementation details of the frameworks are covered in Chapter 7, 

Methodology. 
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Figure 2  Workflow of PTARS.  

 

  

(a) (b) 

Figure 3 Illustration of sliding window. (a) Original image, (b) image patches. 
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4.  RESEARCH QUESTION 

 

Do the proposed frameworks, PTARS and/or TPARS, perform bettera than the 

construction personnel action recognition system based only on human pose?  

  

                                                 

 

 

 

a To define a “better result,” the evaluation metric system is introduced in Chapter 6.3, Evaluation of 

Algorithm Performance. 
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5.  RESEARCH OBJECTIVE  

 

The researcher could not find any previous work using human-tool spatial 

relationship as part of an action recognition system in the construction community. The 

objective of this study is to find out whether combining human pose recognition and tool 

recognition provides a better result for construction worker action recognition than the 

action recognition system based only on human pose.  
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6. LITERATURE REVIEW 

 

The literature review is organized in the following sequence: 

Chapter 6.1 reviews previous studies of construction personnel recognition and 

construction personnel activity recognition. 

Chapter 6.2 reviews, explains, and illustrates some of the major feature 

extraction and machine learning algorithms that have been applied in previous studies. 

Part of this chapter follows Dr. Andrew Ng’s Machine Learning class on Coursera.  

Chapter 6.3, Evaluation of Algorithm Performance, introduces object recognition 

performance evaluation methods. 

6.1 Application of Object Recognition in Construction 

6.1.1 Why Apply Object Recognition in the Construction Industry?  

Research on object recognition techniques has become more popular in recent 

years because of the demand for automatic real-time site monitoring for safety 

management, work progress control, and productivity control.  

Formerly, researchers and professionals in the construction industry relied on 

other techniques such as RFID (Jaselskis & El-Misalami, 2003; Teizer, Lao, & Sofer, 

2007), GPS (Caldas, Torrent, & Hass 2004; Ergen et al., 2007; Lu et al., 2007), and 3D 

range imaging camera, also known as flash LADAR system (Teizer et al., 2007). 
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However, the existing approaches depend heavily on manual operations to achieve high 

accuracy and precise interpretation and usually require extra equipment or tools, which 

are costly and time-consuming for most construction projects (Teizer & Vela, 2009; 

Teizer et al., 2007).  

Automated vision-based detection and tracking came as an alternative technique 

to previous techniques, and it requires very low human involvement and intervention and 

has minimum requirements for data acquisition and data analysis equipment (Chi & 

Caldas, 2011; Park & Brilakis, 2012; Teizer & Vela, 2009).  

Construction worker recognition is one of the major focus areas of previous 

research.  

6.1.2 Construction Worker Recognition 

Chi and Caldas (2011) combined moving object detection, object 

correspondence, and object classification techniques to detect construction workers.  

Moving object detection is a technique where the program continuously 

compares a series of video frames, subtracts the static “background,” and leaves the 

“foreground,” which is the moving object for further usage, as shown in Figure 4.  
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Figure 4 Illustration of a background subtraction result. (Left) Original image, (right) 

result of background subtraction/moving object detection (reprinted from Chi & 

Caldas, 2011). 

 

Object correspondence was adopted to match the detected foreground objects 

between frames. Finally, they adopted and compared two different classifiers, normal 

Bayes classifier and neural network classifier, to classify and highlight the object in the 

image, as shown in Figure 5. 

 

Figure 5 Illustration of a worker detection result. A worker was detected and circled in 

an image captured by a standard video camera on a construction jobsite (reprinted 

from Chi & Caldas, 2011). 

 

Per Park and Brilakis (2012), vision tracking is an efficient tool to monitor a 

large outdoor site because it does not require targets to be tagged as with techniques such 
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as RFID or GPS. To initiate the vision tracking process, object recognition is a 

prerequisite to locate and mark the target of tracking. However, the lack of object 

recognition methods is a major obstacle to applying the tracking process. Park and 

Brilakis (2012) employed background subtraction, HOG, and hue-saturation-value 

(HSV) color histogram to minimize detection region step by step, from moving objects 

to people and eventually to construction workers, as shown in Figure 6. The performance 

of their approach was evaluated with precision and recall. They achieved precision at 

99% and recall at 81%. Definitions of precision and recall values are introduced in 

Chapter 2.3.   

 

Figure 6 Workflow of a construction worker detection method (reprinted from Park & 

Brilakis, 2012). 

 

To deal with large variations in image illumination, weather condition, 

resolution, and scale of target objects, Memarzadeh et al. (2013) introduced multiscale 

sliding detection windows to solve the problem of changing scales of objects in images. 
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They also combined HOG and histogram of color (HOC) to handle continuously 

changing image quality. Figure 7 shows an example of HOG and HOC features for a 

human. They were also able to recognize multiple different objects from one image by 

running several classifiers together, as shown in Figure 8. They received an average 

accuracy of 98.83%. Average accuracy is defined in Chapter 6.3, Evaluation of 

Algorithm Performance.  

 

 (a) (b) (c) (d)  

Figure 7 Illustration of applying HOG and HSV features to an image of a construction 

worker. (a) Test image; (b) oriented gradients; (c) hue map; and (d) saturation map 

(reprinted from Memarzadeh et al., 2013).   

 

 

Figure 8 Detection of multiple excavators and construction workers (reprinted from 

Memarzadeh et al., 2013). 
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Even though progress has been made in the last few years for construction 

worker recognition and tracking, it has always been a challenge to classify actions of 

construction workers and equipment. To improve the action recognition process, Gong et 

al. (2011) integrated the Bag-of-Video-Feature-Words model with Bayesian learning 

methods for construction worker action analysis. Their approach is composed of four 

steps: 1) applies Harris 3D detector (Sipiran & Bustos, 2011) to locate interest corner 

points that have significantly changed between consecutive video frames; 2) applies and 

compares HOG and histogram of optical flow (HOF) (Horn & Schunck, 1981) to 

describe the surrounding regions of each interest point; 3) applies the Bag-of-Words 

technique (Niebles, Wang, & Fei-Fei, 2008) to form the features of each image category; 

and 4) applies Bayesian network models (Fergus, Perona, & Zisserman, 2003) to train a 

construction crew activities classifier. The method is illustrated in Figure 9; it achieved 

an average accuracy of 73.6%.  

 

Figure 9 Illustration of Bag-of-Video-Feature-Words model (reprinted from Gong et 

al., 2011). 
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6.2 Algorithms and Terms  

6.2.1 Feature Descriptor 

Histogram of Oriented Gradients 

Dalal and Triggs (2005) introduced HOG as a feature descriptor for human 

detection, and their experiment results showed that HOG outperforms other feature 

descriptors for human shape figures. It takes the following major steps to generate HOG 

features of an image, as shown in Figure 10.  

 

Figure 10 Workflow for generating HOG features. 

 

The first step of generating an HOG feature is preprocessing the image. HOG can 

be formed with different pixel representations, such as grayscale and red-green-blue 

(RGB), with modest effect on the performance (Dalal & Triggs, 2005). Because 

grayscale images use one value to represent each pixel and RGB images use three values 

to represent each pixel, applying HOG with grayscale images is more computationally 

reasonable for later steps.  



 

21 

 

 

It is common to use 64- × 128-pixel images for human shape figure recognition 

with the HOG feature. Previous studies have not suggested whether other image sizes 

would perform better or worse. Typically, training images and detection windows could 

be set at any size, but the width:height ratio has always been set at 1:2, and the images 

are resized to 64 × 128 during the training and testing phase. 

Once the image is preprocessed, the next step is to compute image gradient. An 

image gradient can be described with a direction, gradient orientation (θ), and its 

strength can be described by the change, gradient magnitude (g). Assuming Figure 11(a) 

is a 3- × 3-pixel area within an image and the pixel in the center is at the cth column, rth 

row of the image, the intensity of this pixel could be represented as I (c, r), the intensity 

of the right pixel as I (c + 1, r), the intensity of the left pixel as I (c – 1, r), the intensity 

of the top pixel as I (c, r – 1), and the intensity of the bottom pixel as I (c, r + 1). To 

compute the gradient orientation and magnitude of this center pixel, horizontal gradients 

and vertical gradients, as shown in Figure 11(b) and (c), can be computed as follows:  

Horizontal gradient  𝑑𝑥 = I (c + 1, r) – I (c – 1, r) = 200 – 50 = 150 Eq. 1 

 

Vertical gradient 𝑑𝑦 = I (c, r – 1) – I (c, r + 1) = 200 – 100 = 100 Eq. 2 
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(a) (b) (c) 

Figure 11 Example of an image gradient. (b) Horizontal gradient, (c) vertical gradient. 

 

Then, the gradient of the center pixel can be represented as shown in Figure 12. 

Thus, the gradient direction, θ, and gradient magnitude, g, can be computed as:  

Gradient direction θ = arctan (𝑑𝑦/𝑑𝑥) = arctan (100/150) = 33.69 Eq. 3 

 

Gradient magnitude g = √𝑑𝑦
2 + 𝑑𝑥

2 = √1002 + 1502 = 180.28 Eq. 4 

 

 

Figure 12 Gradient direction and gradient magnitude. 
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Instead of using the gradient of each pixel to represent the original image, “cell” 

was introduced to HOG as the unit for summarizing features to describe a patch of an 

image. Using the idea of a cell not only gives a more compact feature representation, but 

also makes the representation more robust in the face of noise.  

However, as shown in the example, a gradient can point in any direction. 

Practically, researchers need more control over the data, so gradient orientations are 

usually predefined. Unsigned gradients are usually applied here, meaning that the angles 

are between 0 and 180 instead of between 0 and 360, and the same numbers are used to 

represent a gradient orientation and its opposite direction. Increasing the number of 

orientation bins to nine significantly improves performance, but makes less difference 

after that (Dalal & Triggs, 2005). For example, setting the number of orientations at nine 

gives one orientation bin per 20°, and the nine orientation bins are 0°, 20°, 40°, 60°, 80°, 

100°, 120°, 140°, and 160°. Then, all the original gradients within each cell contribute to 

the nine orientations. For example, if an original gradient has a gradient orientation equal 

to 45° and a magnitude equaling 10, the original gradient could be proportionally 

contributed to its nearby directions, the 40° bin, and the 60° bin, as shown in Figure 13. 

Thus, for each cell, a 1-row × 9-column vector could be formed to summarize the 

gradients within the cell.  
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Figure 13 Contributing a gradient to selected directions.  

 

Then, all the histograms for each cell are combined to form the descriptor of the 

image. In order to achieve a better result, the histogram for each cell is contrast-

normalized (Papageorgiou et al., 1998). Contrast normalization can be done by applying 

an intensity measure across the entire block, which is a region larger than a cell, and then 

using the results to normalize every cell in that block. Figure 14 gives an example of the 

HOG feature, the red star-like shape, overlapping an image of a human figure. 

Implementation details of HOG are given in Chapter 7.5.2, Implementing Features of 

Histogram of Oriented Gradients.  
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Figure 14 HOG example of a human (reprinted from Mallick, 2016). 

 

Bag-of-Words Model  

The Bag-of-Words model, also referred as Bag-of-Features, is another type of 

commonly used feature descriptor for recognizing/classifying object categories. A 

typical Bag-of-Features classifier usually contains the following steps: interest point 

detection, interest point description, k-means clustering, and classification model 

building.  

The first step to applying the Bag-of-Features model is to detect interest points 

and descriptors around each interest point. There is no requirement or verification 

regarding which algorithms perform better than others. The selection of algorithms for 

interest point detection and descriptor varies from one case to another. There are several 

algorithms that have been commonly used for interest point detection. They are scale-
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invariant feature transform (SIFT), speeded-up robust feature (SURF), Harris, and dense 

(taking every nth pixel as interest point) methods. Once interest points have been 

selected, SIFT, HOG, or SURF is introduced as the feature descriptor to summarize the 

feature around each interest point.  

The second step is clustering patches of features together and calculating the 

occurrence frequencies of each cluster. k-means is the most common approach to 

clustering features. “k” refers to the total number of clusters, and “means” refers to the 

mean distance value of the cluster centroid to each other point in that cluster. Each 

cluster centroid is referred as a visual word.  

The k-means clustering algorithm is an unsupervised learning process, where 

each descriptor is considered a training example 𝑥(𝑖) without any label, and 

X_descriptors is a matrix summarizing all the training examples. Within the clustering 

algorithm, k cluster centroids, shown as the black crosses in Figure 15, are randomly 

selected from the training set, X_descriptors, and named 𝜇1, 𝜇2, …, 𝜇𝑘.  

The algorithm iteratively groups the descriptors, 𝑥(1), 𝑥(2), …, 𝑥(𝑛), into k 

mutually exclusive clusters. The clustering optimization process has two steps. First, it 

indexes through each descriptor and assigns an extra index value 𝑐(𝑖) to each descriptor, 

where 𝑐(𝑖) equals the index of the cluster centroid that is closest to 𝑥(𝑖). Second, it 

updates the location of all the centroids 1 to k, from the original location to the mean 

location of points assigned to each cluster. The algorithm iteratively repeats the two 

steps until it finds a partition where the objects within each cluster are as close to each 
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other as possible and as far from objects in other clusters as possible. The optimization 

problem can be summarized with Eq. 5. The clustering process can be illustrated as 

shown in Figure 15. 

𝐽(𝑐(1), 𝑐(2), … , 𝑐(𝑚), 𝜇1 , 𝜇2, … , 𝜇𝑘) =  
1

𝑚
∑||𝑥(𝑖) − 𝜇𝑐(𝑖)||

2

𝑚

𝑖=1

 

where  

𝑐(𝑖) = index of cluster (1, 2, …, k) to which example 𝑥(𝑖) is currently assigned; 

𝜇𝑘 = cluster centroid k; 

𝜇𝑐(𝑖) = cluster centroid of cluster to which example 𝑥(𝑖) has been assigned; 

||𝑥(𝑖) − 𝜇𝑐(𝑖)|| = distance between descriptor 𝑥(𝑖) and the centroid 𝜇𝑐(𝑖) that it 

has been currently assigned to. 

Eq. 5 
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Figure 15 Illustration of clustering process. 

 

The process of generating visual words and forming a feature histogram is 

illustrated in Figure 16. The Y-axis in the Histogram column represents the occurrence 

frequency of each visual word in each image.  
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Figure 16 Illustration of the process of generating visual words and forming a feature 

histogram. 

 

6.2.2 Classifier 

The terms artificial intelligence (AI), machine learning, and deep learning were 

prevalent in the media when Google’s AlphaGo defeated the South Korean board game 

master Lee Se-dol. Thinking of the relationship among the three techniques, AI is the 

broadest concept, machine learning comes second, and deep learning brings AI to the 

next level (Copeland, 2016). The relationship is illustrated in Figure 17.  
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Figure 17 Relationship between AI, machine learning, and deep learning (reprinted 

from Copeland, 2016). 

 

The result of the techniques is a classification model or classifier. A classifier is 

made with a training image dataset, where each training image may or may not be 

labeled, and with sets of machine learning algorithms. The learning process can be 

categorized as supervised learning or unsupervised learning (Joshi, Cherian, & 

Shivalingam, 2016).  

Supervised learning is being given a training image dataset of two or more 

categories, with each image in the training dataset labeled with the name of its category. 

By the end of the training process, a classifier is built that can classify the category of a 

new query image. In the real world, supervised learning has a wide range of applications, 

such as handwriting recognition, speech recognition, and computer vision.  

Unsupervised learning is being given a set of training images with no categorical 

label assigned to any image. By the end of the process, the classifier can differentiate 
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images without knowing what is in the image. Unsupervised learning has also been 

widely applied in life, such as for finding different market segmentations and for finding 

a malfunctioning computer from large computing clusters.  

For example, we give different systems the same set of images containing either 

human faces or rabbits. In supervised learning, each human face and each rabbit in the 

training dataset needs to be labeled with its associated category. By the end of the 

process, the classifier can distinguish between a human face and a rabbit in the query 

image. With unsupervised learning, the classifier only learns that there are two different 

categories within the training dataset, but it is not able to tell what each is.  

For this study, it is more appropriate to apply supervised learning because 

according to the objective of this study, we would like to know what the action is in the 

query images. The following sections introduce some of the most widely used 

supervised learning methods for training a classifier.  

Support Vector Machine 

In the support vector machine (SVM) method, a hyperplane is introduced to 

separate one class from another. The best hyperplane is the one that gives the largest 

margin between the two classes. Margin means the maximal width of the slab parallel to 

the hyperplane that has no interior data points. The data points closest to the hyperplane 

and sitting on the slabs are referred as support vectors (Figure 18) (MathWorks, 2016).  



 

32 

 

 

 

Figure 18 Illustration of SVM (reprinted from MathWorks, 2016). 

 

Mathematically, if we were giving a binary classification problem with a training 

set of m examples and n features for each example, which is an m × n feature matrix as 

shown in Figure 19(a), and a corresponding categorical vector of y, which is an m × 1 

vector of 1s and 0s as shown in Figure 19(b), the objective of SVM is to train a 

hypothesis, ℎ𝜃(𝑥), that minimizes the cost function, 𝐽(𝜃). The hypothesis predicts the 

category of the query data to be either 1 or 0, and it can be described by Eq. 6.  

 

ℎ𝜃(𝑥) =  {1  𝑖𝑓 𝜃𝑇𝑥 ≥ 0
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

where x is a vector of the features of an example and  

ϴ is also a vector containing the coefficient of each element in x.  

Eq. 6 
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(a) (b) 

Figure 19 Illustration of training dataset. 

 

The optimized values of the elements in ϴ are obtained by minimizing the cost 

function of SVM, 𝐽(𝜃), illustrated in Figure 20, and iteratively updating ϴ (Eq. 7 and 

Eq. 8). 
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𝐽(𝜃) = 𝐶 ∑(𝑦(𝑖)𝑐𝑜𝑠𝑡1(𝑧) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝑧) +
1

2
∑𝜃𝑗

2

𝑛

𝑗=1

)

𝑚

𝑖=1

 

Repeat{
𝜃0 ≔ 𝜃0 − 𝛼

1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥0

𝑖𝑚
𝑖=1  

𝜃𝑗 ≔ 𝜃𝑗 − 𝛼 [
1

𝑚
∑ (ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))𝑥𝑗

𝑖𝑚
𝑖=1 +

𝜆

𝑚
𝜃𝑗]

} 

where  

z = 𝜃𝑇𝑥(𝑖); 

𝑐𝑜𝑠𝑡0(𝑧) = max (0, 𝑘(1 + 𝜃𝑇𝑥(𝑖))); 

𝑐𝑜𝑠𝑡1(𝑧) = max (0, 𝑘(1 − 𝜃𝑇𝑥(𝑖))); 

k is an arbitrary constant defining the magnitude of the slope of the line, as 

shown in Figure 20(a)(b); 

1

2
∑ 𝜃𝑗

2𝑛
𝑗=1  is the regularization term for cost function to prevent overfitting 

problem; 

𝛼 is the learning rate of gradient descent algorithm;  

𝜆 is the regularization parameter;  

𝜆

𝑚
𝜃𝑗  is the regularization term for gradient descent to prevent overfitting 

problem. 

Eq. 7 

 

Eq. 8 
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(a) (b) 

Figure 20 Illustration of SVM cost functions. (a) If 𝑧 ≥ 1, the penalty of predicting the 

category of query data to 1 is 0; (b) if 𝑧 ≤ −1, the penalty of predicting the category 

of query data to 0 is 0.   

 

More complex, non-linear classifiers can be built with the Gaussian kernel, 

which is the most commonly used kernel function. It measures the similarity between 

each example, 𝑥, and some landmarks, 𝑙(𝑖), shown in Eq. 9.  

𝑓𝑖 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑙𝑖) = exp (−
∑ (𝑥𝑗−𝑙𝑗

(𝑖)
 )2𝑛

𝑗=1

2𝜎2 )  

If 𝑥 ≈ 𝑙
(𝑖),  𝑓𝑖 ≈ 1. 

If 𝑥 𝑖𝑠 𝑓𝑎𝑟 𝑎𝑤𝑎𝑦 𝑓𝑟𝑜𝑚 𝑙
(𝑖),  𝑓𝑖 ≈ 0. 

Eq. 9 

 

In practice, the landmarks are selected as the exact locations as all the m training 

examples. Given an example 𝑥(𝑖) and applying the similarity function to measure the 

similarity between 𝑥(𝑖) and each of the landmarks, we can build a new feature vector, 

shown as Eq. 10, to substitute the original 𝑥(𝑖). 
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𝑥(𝑖)  →  

[
 
 
 
 
 
 𝑓1

(𝑖) = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥(𝑖), 𝑙(1))

𝑓2
(𝑖) = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥(𝑖), 𝑙(2))

.

.

.

𝑓𝑚
(𝑖)

= 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥(𝑖), 𝑙(𝑚))]
 
 
 
 
 
 

 

Eq. 10 

 

Thus, the original optimization problem can be rewritten as Eq. 11. By resolving 

this optimization problem, a kernel function can be built to solve a more complex, non-

linear classification problem. More illustrations and implementation details regarding 

SVM can be found in Chapter 7.5.3, Implementing Support Vector Machine. 

𝐽(𝜃) = 𝐶 ∑(𝑦(𝑖)𝑐𝑜𝑠𝑡1(𝜃
𝑇𝑓(𝑖)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃

𝑇𝑓(𝑖)) +
1

2
∑𝜃𝑗

2

𝑛

𝑗=1

)

𝑚

𝑖=1

 
Eq. 11 

 

k-Nearest Neighbor 

k-nearest neighbor (k-NN) has been widely applied as a benchmark for machine 

learning rules. With its simplicity, k-NN is easy to use and makes it easy to compare the 

results against other classification methods. The idea of k-NN is to measure the distance 

between the query data and the data in the training dataset. The distance can be 

measured with Euclidean distance:  
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𝑑 = √∑ (𝑞𝑖 − 𝑝𝑖)2
𝑛

𝑖=1
= (𝑞𝑖 − 𝑝𝑖) x (𝑞𝑖 − 𝑝𝑖)′ 

where  

d is the Euclidean distance; 

𝑞𝑖 is a 1 × n feature vector of a training example;  

𝑝𝑖 is a 1 × n feature vector of a query example;  

(𝑞𝑖 − 𝑝𝑖)×(𝑞𝑖 − 𝑝𝑖)′is the vectorization implementation to calculate the 

distance.  

Eq. 12 

 

Then, k closest points can be selected from the training dataset. The algorithm 

predicts the category of the query image as the category receiving the most votes out of 

the k closest training data. More illustrations and implementation details regarding k-NN 

can be found in Chapter 7.5.4, Implementing k-Nearest Neighbor. 

6.3 Evaluation of Algorithm Performance 

The most commonly used method to analyze the results of a classification system 

is called confusion matrix, as shown in Figure 21. The Y-axis represents the actual 

category of a testing image; the X-axis represents the predicted category of the image. 

Assuming we have developed a classification system that supposedly can 

distinguish hammer images from hammer-free images and assuming we are given two 

images, as shown in Figure 22, to classify the category for each of them, we use “1” to 

represent the positive category, “hammer,” and “0” to represent the negative category, 

“not a hammer.”  
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The actual category of each image is given by human observation results. Thus, 

the actual category of Figure 22(a) is “hammer” or “1,” and the actual category of Figure 

22(b) is “not a hammer” or “0.” The predicted category represents the system’s 

classification result. It is a true result if the predicted category of an image matches its 

actual category, and it is a false result if the predicted category of an image does not 

match its actual category.  

With the concept of the positive or negative category and the true/false result, 

four values have been widely applied in previous studies to analyze the results of a 

classification system: 

• True positive, as shown in the upper left corner in Figure 21: Figure 

22(a) has been predicted as the positive category, 1. The predicted result 

matches its actual category, which is also 1; 

• False positive, as shown in the lower left corner in Figure 21: Figure 

22(b) has been predicted as the positive category, 1. However, the 

predicted result does not match its actual category, which is 0; 

• False negative, as shown in the upper right corner in Figure 21: Figure 

22(a) has been predicted as the negative category, 0. However, the 

predicted result does not match its actual category, which is 1; 
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• True negative, as shown in the lower right corner in Figure 21: Figure 

22(b) has been predicted as the negative category, 0. The predicted result 

matches its actual category, which is also 0. 

 

Figure 21 Confusion matrix. 

 

  

(a) (b) 

Figure 22 Example image for confusion matrix.  
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Once the four values, true positive, false positive, false negative, and true 

negative, have been collected by running the classification system with the testing image 

set, two other values can be computed to evaluate the performance of the system. The 

two values are precision and recall. 

Precision measures the accuracy of the prediction result:  

Precision = True Positive / (True Positive + False Positive) Eq. 13 

 

Recall measures the sensitivity of the recognition system to its target objects: 

Recall = True Positive / (True Positive + False Negative) Eq. 14 

 

The values of both precision and recall range from 0 to 1, and the larger the 

values are, the better the system performs. However, there is a controllable trade-off 

between precision and recall. Usually, if we want to have more confidence on the 

prediction result, we can select the system with a higher precision value. But such a 

system usually has a lower recall value. Practically, the trade-off relationship between 

precision and recall can be illustrated as shown in Figure 23.  
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Figure 23 Illustration of precision and recall trade-off. 

 

As there is a trade-off between precision and recall, sometimes when we are 

evaluating the performance of several systems, it is not a rare situation that a system has 

a higher precision and a lower recall. This leaves the problem of which system is the 

best. Thus, in the community of machine learning, the F1 score, which is calculated from 

precision and recall, has been commonly used as a single real-number evaluation metric 

system. The F1 score measures the overall performance of the recognition system: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Eq. 15 

The F1 score is a fair way of evaluating a system because it gives the same 

weight to both precision and recall, and it is also ranges from 0 to 1. In order to have a 

large F1 score, both precision and recall need to be large. In contrast, for either precision 

or recall to be small, F1 reduces dramatically.  
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Other evaluation metric systems have been used in previous studies. For instance, 

Gong et al. (2011) applied accuracy, as shown in Eq. 16, and error, as shown in Eq. 17. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Eq. 16 

 

𝐸𝑟𝑟𝑜𝑟 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐y Eq. 17 

 

However, it is not appropriate to apply accuracy and error in this study, which is 

a typical case of skewed classes. Skewed classes means that a significant of the testing 

dataset is described in the negative category, and only a very small portion of the dataset 

is in the positive category. In this study, we applied a sliding window to recognize 

construction worker activities through every testing image or every frame of a video, 

producing a large test dataset with a very small positive category; the concept is shown 

in Figure 3. For example, assuming that the classification system has been given 500 

testing images sized 1920 × 1080 pixels, among the 500 images, 50 have a nailing 

activity, 450 do not have nailing activity, the size of the sliding window is 200 × 200 

pixels, and the sliding window moves every 10 pixels. Thus, for every image, a testing 

image set is generated of over 15,000 images, and over the 500 images, it generates over 

7.5 million images, with only 50 of them being in the positive category and the rest 

being in the negative category. 

In this case, even if the recognition system fails to recognize any nailing action, 

meaning the true positive equals 0, the accuracy is still extremely close to 100%, and the 
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error is still extremely close to 0, as calculated with Eq. 16 and Eq. 17. Thus, the 

accuracy and error evolution metric system cannot truly present the performance of the 

system, and it is not suitable for the setup of the proposed frameworks or for this study. 

Instead, this study has chosen to use precision, recall, and F1 score to measure the 

performance of the proposed frameworks.  
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7. METHODOLOGY 

 

In response to the research objective mentioned in Chapter 5, to test whether 

combining pose recognition and tool recognition provides a better result of construction 

worker action recognition than an action recognition system based only on human pose 

features, this study compares the two proposed frameworks, PTARS and TPARS, 

against a benchmark framework, Pose-Based Action Recognition System (PARS). The 

benchmark framework, PARS, only applies body pose features for construction 

personnel activity recognition, while each of the two proposed frameworks is combined 

with pose recognition, tool recognition, and the interactive relationship between the body 

pose and the tool.  

7.1 Hypotheses 

The three frameworks were compared with the three values of precision, recall, 

and F1 score because the three values have proved to be the most appropriate evaluation 

metric system for skewed-classes classification where the positive category only 

accounts for a very small portion of the total testing dataset. By summarizing the 

potential comparison results, the research hypotheses are as follows:  

Hypothesis 1: PTARS has a higher precision value than PARS, meaning that the 

recognition result of PTARS is more accurate. 
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Hypothesis 2: TPARS has a higher precision value than PARS, meaning that the 

recognition result of TPARS is more accurate.  

Hypothesis 3: PTARS has a higher recall value than PARS, meaning that PTARS 

is more sensitive than PARS.  

Hypothesis 4: TPARS has a higher recall value than PARS, meaning that TPARS 

is more sensitive than PARS. 

Hypothesis 5: PTARS has a higher F1 score than PARS, meaning that PTARS 

performs better overall than PARS. 

Hypothesis 6: TPARS has a higher F1 score than PARS, meaning that TPARS 

performs better overall than PARS. 

Null hypothesis: Neither of the proposed frameworks, PTARS or TPARS, has a 

better performance than PARS from any perspective.  

7.2 Scope of the Test 

This study used construction personnel nailing activity to test the hypotheses 

because 1) nailing is one of the most common activities in construction and 2) nailing 

was applied as the testing target activity in previous research.  

In this study, nailing activity is defined with three parts: 1) a construction worker 

with his/her upper body straight up; 2) a bent arm; and 3) a hammer within the potential 
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tool area. Detailed information regarding potential tool area is provided in the later part 

of this chapter.   

7.3 Implementation Environment 

The three frameworks, PARS, PTARS, and TPARS, were developed into three 

applications to test the hypotheses as described in Chapter 7.1, Hypotheses. The 

frameworks and applications were implemented and tested in Matlab R2016b with some 

of its toolboxes, including but not limited to Computer Vision System, Image 

Processing, and Statistics and Machine Learning. Figure 24 gives some screenshots of 

the application.  

 

 

 

(a) (b) (c) 

Figure 24 Screenshots of the application. (a) Using Classification Learner app trains a 

body pose classifier; (b) part of the code of the PTARS framework; (c) recognition 

result of PTARS framework.  

 

The programming, training, and testing were accomplished on a MacBook Pro 

computer running the Microsoft Windows 10 operating system. More specifications of 

the computer are listed in Table 1.  

The programming work of the framework was completed by the author.   
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Table 1 Computer specification 

Processor Intel Core i7-2635QM CPU @ 2.00GHz 

Memory (RAM) 4.00GB 

 

7.4 Image Datasets for Training and Testing 

Twenty video clips were collected and used for training the two classifiers, body 

pose classifier and tool classifier. Screenshots of some of the video clips are shown in 

Figure 25. The 20 video clips have a combined total duration of 142 minutes. They were 

collected from three different residential jobsites at 15 different scenes while 

construction crews were performing framing work. Video backgrounds and illumination 

conditions vary from each scene. These video clips were collected at 1080P resolution 

(1920 × 1080) at 24 frames/second.  

Testing images are free-to-use images collected from Google, Bing, and 

YouTube. The testing image set has 500 images, in which 50 are nailing activities. The 

rest of the 500 includes over nine other activities, including placing rebar, pouring 

concrete, shoveling, surveying, welding, observing, walking, climbing a ladder, and 

others. Each test image has at least one construction activity, and some of the test images 

have multiple construction workers performing various activities.  
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Figure 25 Examples of video footage. 

 

7.4.1 Preparing Images for Pose Classifier Training 

In this study, a nailing pose is defined as a construction worker with a straight-up 

upper body and a bent arm. One-thousand images of nailing poses, the positive images, 

were manually cropped from the original video frames for training purposes, as shown in 

Figure 26(a)(b)(c). The 1,000 nailing poses images were left-right reflected, as shown in 

Figure 27, to create a positive nailing pose training set of 2,000 images. In the positive 

pose training images, a nailing pose is located approximately in the center of each 

training image.  

Negative images are the training images without nailing activity. There are three 

types of negative pose training images: images that have partial nailing activity, images 

that have other activities, and images of construction background, as shown in Figure 
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26(d)(e)(f). A fixed set of 20,000 negative poses was also collected. The negative dataset 

includes 1,000 images that have partial nailing activity, as shown in Figure 26(d); 1,000 

images that have other activities, as shown in Figure 26(e); and 18,000 images of 

construction background that are randomly sampled from 1,000 nailing-activity-free 

images, as shown in Figure 26(f). 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 26 Example of training images for pose classifier. First row shows examples of 

positive image; second row shows examples of negative image.  
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(a) (b) 

Figure 27 Illustration of left-right reflection of an image. (a) Original image that has 

been manually cropped from the original video frame; (b) left-right reflection of the 

original cropped image.  

 

 

The cropped positive images and negative images have various sizes ranging 

from 100 × 100 to 1000 × 1000 pixels. To train a classifier with the positive and 

negative images, the HOG features of each image must have the same vector size. To 

ensure that each image has the same HOG feature vector size, the size of each image 

must be the same. Thus, all the training images for the pose classifier were scaled to the 

same size, 128 × 128 pixels, which has been widely used as the training image size for 

human shape recognition and has proved to perform well.  

Previous studies (Banko & Brill, 2001) have shown that increasing training 

dataset size improves classifier performance. This study tried to maximize training 

dataset size; the size is comparable to previous studies, such as Dalal and Triggs (2005) 

with 2,478 positive images and 12,180 negative images and Park and Brilakis (2012) 

with 500 positive images and 2,200 negative images. All the training images were  

converted to grayscale images to save computational cost.  
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7.4.2 Preparing Images for Tool Classifier Training 

Images of a hammer are treated as positive tool classifier training images. There 

are two types of positive tool training images: 1) 150 images of a hammer being held by 

a construction worker, as shown in Figure 28(a), and 2) 100 images of only a hammer, as 

shown in Figure 28(b). Images of the first type were selected and cropped from the 

original video frames, and images of the second type were collected from Google and 

Bing. The 250 (150 + 100 = 250) positive tool images were left-right mirrored and up-

down mirrored, as shown in Figure 29, creating a total of 1,000 images considered 

positive tool training images.  

Negative tool training images are those without a hammer; 20,000 negative tool 

images were collected. There are three types of negative tool training images: 1) 2,000 

images that have a partial hammer, as shown in Figure 28(c); 2) 5,000 images of a 

partial upper body such as head, torso, and arm, as shown in Figure 28(d); and 3) 13,000 

images of construction background, as shown in Figure 28(e). 

Both positive and negative images were scaled to the same size, 128 × 128 

pixels, to ensure that each image has the same HOG feature vector size. All the training 

images were converted to grayscale images to save computational cost. 
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(a) (b) 

   

(c) (d) (e) 

Figure 28 Example of training images for tool classifier. First row shows examples of 

positive image; second row shows examples of negative image.  
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(a) (b) 

  

(c) (d) 

Figure 29 Example of left-right and up-down reflection of an image. (a) Original 

image; (b) left-right reflection of the original image; (c) and (d) up-down reflection of 

(a) and (b). 

 

7.4.3 Testing Image Dataset 

Testing images were collected to test the performance of the frameworks. The 

process of collecting testing images was completely separate from the collection of 

training images. Images of the testing dataset were free-to-use images collected from 

Google and Bing, as well as video frames downloaded from YouTube.  

The testing image dataset has 500 images, in which 50 are nailing activities, as 

shown in the first row of Figure 30. The rest of the 500 includes over nine other 
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activities, including placing rebar, pouring concrete, shoveling, surveying, welding, 

observing, walking, climbing a ladder, and others, as shown in the second row of Figure 

30. Each test image has at least one construction activity, and some of the test images 

have multiple construction workers performing various activities. The testing images 

vary in image size, illumination condition, background environment, size of construction 

worker appearing in the image, appearance of construction worker, and appearance of a 

hammer.  

 
 

 

 

 

Figure 30 Examples of testing images. First row shows examples of nailing activity 

images; second row shows examples of images of other activities.  
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7.5 Implementation of the Algorithms  

This section gives technical details of the techniques and algorithms applied in 

the frameworks, including sliding window, feature descriptors, classification algorithms, 

and pose-tool spatial relationship. The proposed frameworks take advantage of three 

elements of a construction activity: the shape features of a construction worker’s body 

pose, the shape features of an associated tool, and the spatial relationship between the 

body pose and the tool. Regardless of the differences in detection sequence of the three 

frameworks, each of two proposed frameworks contains four major parts or techniques, 

while the benchmark framework, PARS, has two steps: sliding window and pose 

recognition. The four major parts are sliding window, pose recognition, tool recognition, 

and pose-tool spatial relationship.  

7.5.1 Sliding Window 

Sliding window was applied to scan through the testing image, the potential tool 

area, and the potential pose area. The sliding window generates overlapping patch 

images, as shown in Figure 3(b), for the image or the area. Every patch image was scaled 

to a 128- × 128-pixel grayscale image, which is the same as the training images to 

ensure the same HOG feature vector size. 

In this study, the sliding window was set to be a square area that can cover the 

entire body pose area or the hammer area, regardless of the facing direction of the 

construction worker and the rotation of the hammer. The step size, also called stride, was 



 

56 

 

 

set to be one-fifth of the sliding window’s width for nailing pose detection and 5 pixels 

for hammer detection. Starting from the original point, which is the upper left corner of a 

testing image, the sliding window moves horizontally and vertically every one-fifth of 

the sliding window’s width, or every 5 pixels for tool detection, as shown in Figure 31. 

 

Figure 31 Illustration of sliding window. The sliding window starts from the origin 

point [1, 1] located at the upper left corner of the image. The red square represents the 

first window. The window moves every stride size, and the green square represents the 

second window. The sliding window keeps moving vertically and horizontally until its 

lower right corner reaches the lower right corner of the testing image.  

 

The width of the sliding window can be set according to the size of the patch 

image of a nailing action. In this study, the size of the nailing action varies dramatically 

in the test image set, so the sliding window was set as a multiscale sliding window. For 

nailing body pose recognition in PARS and PTARS, the width starts from 100 pixels, 

with 50-pixel incrementation per iteration, until the window size is equal to the width or 

height of the image. For hammer recognition in TPARS, the width of the sliding window 
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starts from 50 pixels, with 25-pixel incrementation per iteration, until the window size is 

equal to half of the image width or height.  

By measuring 1,000 training images cropped from the video footage, the sizes of 

the original nailing action image patch range from 123 × 123 pixels to 434 × 434 pixels, 

the sizes of the original hammer image patch range from 55 × 55 pixels to 192 × 192 

pixels. The coefficient between the width of nailing pose image patch and its associated 

hammer image patch was calculated as shown in Eq. 18.  

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
∑

𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑛𝑎𝑖𝑙𝑖𝑛𝑔 𝑝𝑜𝑠𝑒 𝑖𝑚𝑎𝑔𝑒 𝑝𝑎𝑡𝑐ℎ 𝑖

𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 ℎ𝑎𝑚𝑚𝑒𝑟 𝑖𝑚𝑎𝑔𝑒 𝑝𝑎𝑡𝑐ℎ 𝑖

1,000

𝑖=0

1,000
= 0.45  Eq. 18 

  

For nailing body pose recognition in TPARS and hammer recognition in PTARS, 

the relationship between the width of the sliding windows for pose and hammer 

recognition are defined as Eq. 19 and Eq. 20.  

𝑤𝑖𝑑𝑡ℎ 𝑡𝑜𝑜𝑙 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑤𝑖𝑑𝑡ℎ 𝑝𝑜𝑠𝑒 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 × 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡   Eq. 19 

 

𝑤𝑖𝑑𝑡ℎ 𝑝𝑜𝑠𝑒 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤 =  
𝑤𝑖𝑑𝑡ℎ 𝑡𝑜𝑜𝑙 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 𝑤𝑖𝑛𝑑𝑜𝑤

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
   Eq. 20 

 

7.5.2 Implementing Features of Histogram of Oriented Gradients 

HOG was applied in this study to extract features from the patch images 

generated by the sliding window, as well as for summarizing the features of the training 

image dataset. 
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HOG has proved to be one of the most robust feature descriptors to summarize 

the shape features for an object, especially for human bodies. The HOG feature vector is 

formed by accumulating each pixel’s gradient magnitude to its corresponding bin that 

the gradient orientation falls into.  

This study applied the “extractHOGFeatures” function in Matlab. The coding 

syntax is shown as follows: 

features = extractHOGFeatures (I, Name, Value)  

For each training image, the function extracts HOG features from an input image 

“I” and returns a 1 × N vector where “N” is the HOG feature length. Repeating the 

feature extraction process for each of the images in the training set with “m” number of 

images returns the training data, which is an m × N table; the table was used in later 

steps to train a classifier.   

The function extracts HOG features from each patch image and returns a 1 × N 

vector. The vector is processed by the classifiers and classified into nailing pose or non-

nailing pose, or hammer or non-hammer.  

“Name, Value” are extra arguments that the function handles to customize the 

feature extraction process. “Name” is the name of the argument, and “Value” is the 

corresponding value. In this study, the following “Name, Value” arguments have been 

applied as shown in Table 2. 
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Table 2 Parameters for extracting HOG features 

Name Value Function 

CellSize [2-element vector] Set the size of each cell. Increasing the cell size 

could capture larger area’s spatial information. 

BlockSize [2-element vector] Set the number of cells in each block. Reducing 

block size could help capture the significance of 

local pixels and help suppress illumination 

changes. 

BlockOverLap [2-element vector] Set the number of overlapping cells between 

adjacent blocks. The overlapping area must be 

at least half of the block size to ensure adequate 

contrast normalization. Increasing its value 

could help capture more information, but also 

increases the vector size.  

NumBins Positive scalar Set the number of orientation histogram bins.  

 

Based on the experimental results of previous studies on human detection (Dalal 

& Triggs, 2005) and construction personnel detection (Park & Brilakis, 2012), CellSize 

was set as [8 8], BlockSize was set as [2 2], BlockOverLap was set as BlockSize/2, and 

NumBins was set as 9.  

The parameters for applying HOG features on tool images were also set as [8 8] 

for CellSize, [2 2] for BlockSize, BlockSize/2 for BlockOverLap, and 9 for NumBins.  

The following gives an example of the function’s input argument and output 

argument and explains how the function works. For presentation purposes, this example 

uses a 384- × 384-pixel image and [64 64] CellSize instead of a 128- ×128-pixel image 
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and [8 8] CellSize, which are the setups in the real experiments. To extract the HOG 

features, the command can be written as follows:  

TestImgFeature = extractHOGFeatures(TestImg.jpg, CellSize, [64 64], 

BlockSize, [2 2], BlockOverLap, ceiling(BlockSize/2), NumBins, 9) 

The above command extracts HOG features from an image named as 

TestImg.jpg at cell size [64 64], block size [2 2], overlapping area at half of the block 

size, and nine orientation histogram bins. The original image is shown in Figure 32(a).  

The gradient orientation and gradient magnitude of each pixel were first 

calculated as shown in Eq. 3 and Eq. 4. Then, the original 384- × 384-pixel image was 

divided into 64- × 64-pixel small cells, with 36 cells, as shown in Figure 32(b); each cell 

can be named with letters and numbers.  
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(a) (b) 

Figure 32 Original example image and illustration of cells over the original image. 

 

HOG features are extracted and summarized with each cell as a unit. Image 

gradient represents the intensity changes across pixels in an image. The intensity 

changes from lighter tones to darker shades, or conversely, can be measured along any 

direction.  

In this example, the number of orientation histogram bins was set to nine, 

meaning that the intensity changes were measured along nine unsigned orientations. As 

shown in Figure 33(b), the intensity changes along each of the nine directions are 

summarized within each cell. Figure 33(c) enlarges the feature summarized from Cell 

B6, and by comparing the content of Cell B6 in (a) and (c), it can be observed that more 

intensity changes occur along 45°; thus, the magnitude of 40° and 60° orientations are 

much stronger than the magnitudes of other directions.      
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(a) (b) (c) 

Figure 33 Illustration of HOG features summarized from each cell in the example 

image. 

 

For each cell, the histogram, H(Cyx), can be summarized into a 1 × NumBins 

vector; in this example, NumBins equals nine.  

The HOG feature vectors of the entire image are arranged by HOG blocks. As 

the BlockSize was set as [2 2], every HOG block is composed of 2 × 2 cells, as shown in 

the highlighted area in Figure 34(a). Also, as the BlockOverLap was set as half of the 

block size, meaning for each block, half of the block area is overlapped by each adjacent 

block, as shown in Figure 34(b). Thus, the arrangement of HOG feature vector can be 

illustrated as shown in Figure 34(c).  

For each image, the function eventually outputs a 1 × N vector, where N 

represents HOG feature length. The value of N can be calculated based on the image size 

and the function parameter values discussed above.  

N =  BlocksPerImage × CellsPerBlock × NumBins Eq. 21 
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In this example, there are 25 blocks within the 384- × 384-pixel image, four cells 

per block, and nine orientations per cell. Thus, employing the extractHOGFeatures 

function on the test image returns a 1 × 900 vector. If we have a training image set of m 

images, the function returns an m × 900 matrix, which describes the entire image set. 
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(a) (b) 

 

(c) 

Figure 34 Illustration of Block, BlockOverLap, and arrangement of feature vector. 

 

7.5.3 Implementing Support Vector Machine 

The Classification Learner app in Matlab was applied in this study to train the 

classifiers, including both SVM and k-NN. The app takes the previously introduced 
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HOG feature matrix as the input and returns a classification model that can predict the 

category of the new query data or image. Using the Classification Learning app has 

several advantages, and it can reduce a lot of redundant programming work. First, the 

application can automatically reduce a multiclass classification problem into a set of 

binary classification subproblems, with one classifier for each subproblem. Second, it 

has the most commonly used options for each type of classification technique. The user 

can easily try all the options and evaluate the performance of each setup. Third, the app 

automatically separates the input training set into a training set and a validation set. 

Introducing the idea of validation can prevent the problem of data overfitting during the 

classification model selection process. In the machine learning area, the term 

“overfitting” means that a trained model fits well with the training data, but doesn’t 

perform as well with new query data. More specifically, in this study, 20% of the 

original training set was randomly selected and held out as the validation set. The app 

trains a model using all the data outside the validation set. The app tests the performance 

of the model using the data inside the validation set.  

As described in Chapter 6.2.2, Classifier, SVM classifies data from different 

categories by finding the best separating hyperplane that leaves the largest margin 

between the two categories. The data piece here is the matrix returned by the feature 

extraction functions. With the given data, the Classification Learner app can test certain 

or all different SVM options, including linear, quadratic, cubic, and Gaussian kernel 

SVM, as illustrated in Figure 35, to compare which option produces the best model that 

separates data from different categories; eventually, we could select a classifier with the 
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highest accuracy in predicting the data categories in the validation set. The SVM options 

are different shapes of the separating hyperplane, as shown in Figure 35. In the figure, 

the solid gray line represents the separating hyperplane, and the X-axis and Y-axis 

represent values Feature 1 and Feature 2 from the matrix, respectively. As shown in 

Table 3, blue dots represent Category I, orange dots represent Category II, and the dots 

on the gray dashed lines are support vectors.   

Table 3 Example of training feature table 

Row # Feature 1 Feature 2 … Feature n Category 

1 0.08 0.4 … … I 

… … … … … … 

… 0.1 0.25 … … II 

m … … … … … 
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(a) Linear SVM (b) Quadratic SVM  

  

(c) Cubic SVM (d) Gaussian SVM 

Figure 35 Illustration of SVM options. 

 

By testing the four SVM options, this study applied Gaussian SVM for training 

the pose classifier and tool classifier because of its good performance, and it also fitted 

the suggestion provided by previous studies for similar purposes. A pose classifier and a 

tool classifier were trained with the Gaussian SVM algorithm.  

During the training process, one-fifth of the training images were randomly 

selected and held out as the validation set, meaning 400 positive images and 4,000 

negative images were held out from the original pose training image set, and 200 
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positive images and 4,000 negative images were held out from the original tool training 

image set.  

The pose and tool classification models’ test results with the validation set are 

shown in Figure 36(a) and (b), respectively.       

  

(a) (b) 

Figure 36 SVM classifier validation set test results.  

 

7.5.4 Implementing k-Nearest Neighbor  

k-NN algorithms are widely used as the benchmark training technique in 

machine learning tasks. This study applied k-NN with the Classification Learner app. 

The k-NN classification algorithms categorizes the query points/features based on their 

distance to the corresponding points/features in the training dataset.  

With the Classification Learner app, there are four parameters that can be 

customized, as shown in Table 4.  
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Table 4 k-NN parameters table 

Number of 

neighbors 

Set the number of nearest neighbors to find for classifying each 

query point.  

Distance metric Set the metric to measure the distance between the query point 

and the nearest neighbors. This study selected Euclidean 

distance as the metric for distance measurement.   

Distance weight Set the weight function from the options of: 

Equal: no weight 

Inverse: weight = 1/distance 

Squared inverse: weight = 1/distance2 

Standardize data Set either scale each coordinate distance or not. If the 

predictors have widely different scales, for example, if the 

value of feature 1 ranges from 0 to 1 while feature 2 ranges 

from 2 to 1000, standardizing can improve the result.  

 

In this study, the number of neighbors, k, was set to five; distance metric was set 

to Euclidean distance, as shown in Eq. 12; distance weight was set to equal; and 

standardize data was set to true. These parameters were set up based on suggestions from 

previous studies, as well as preliminary test results of this study. A pose classifier and a 

tool classifier were trained with the k-NN algorithm.   

The same validation set was held out during the k-NN training process. The 

validation set test results are shown in Figure 37. 
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(a) (b) 

Figure 37 k-NN classifier validation set test results.  

 

Figure 38 compares the validation set test results of SVM and k-NN classifiers; it 

compares the precision and recall values of SVM and k-NN classifiers. As mentioned in 

Chapter 6.3, Evaluation of Algorithm Performance, precision measures the accuracy of 

the prediction/classification model, while recall measures the sensibility of the model. 

They represent the most appropriate evaluation metric to measure performance in this 

study.  

From the comparison results, it is not hard to conclude that SVM performs better 

than k-NN for body pose HOG features and tool HOG features. Thus, the SVM pose 

classifier and SVM tool classifier were chosen to build the frameworks.  
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Figure 38 Validation set test results comparison of SVM and k-NN classifiers.  

 

7.5.5 Pose-Tool Spatial Relationship 

The pose-tool spatial relationship was applied within PTARS, one of the 

proposed frameworks. PTARS detects a construction worker’s body pose first and then 

searches for the associated tool within the potential tool area. The potential tool area, the 

red rectangle in Figure 39, is defined with the location and size of an image patch, which 

has been recognized as body pose, shown as the green rectangle in the figure.   
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Figure 39 Pose-tool spatial relationship. 

 

The upper left corner of the image is P0(0, 0); the relationship between the width 

of the pose sliding window, BW, and the width of the tool sliding window, TW, is 

shown in Eq. 19 and Eq. 20. TW = 0.45 × BW. The potential tool area can be defined 

and calculated as follows:  

Upper left corner of potential tool 

area 

Pt(xt, yt) = P((x – TW), (y – TW)) Eq. 22 

 

Height of potential tool area Ht = BW + TW Eq. 23 

 

Width of potential tool area Wt = BW + TW × 2 Eq. 24 
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Once the potential tool area is defined, another sliding window, shown as the 

blue dashed rectangle in the figure, is applied within the area for tool detection. If and 

only if both the nailing body pose and the hammer are detected, PTARS recognizes the 

area as nailing action. 

7.5.6 Tool-Pose Spatial Relationship 

The tool-pose spatial relationship was applied within TPARS, which is a 

reversed version of pose-tool spatial relationship. Once an image patch has been 

recognized as the tool, shown as the green rectangle in Figure 40, it defines the potential 

pose area, which is shown as the red rectangle.  

 

Figure 40 Tool-body relationship. 
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The potential pose area can be defined and calculated as follows: 

Upper left corner of 

potential pose area 

Pp(xp, yp) = Pt((xt + TW – BW), (yt + TW – BW)) Eq. 25 

 

Height of potential pose 

area 
HP = BW × 2 – TW Eq. 26 

 

Width of potential pose 

area 

WP = HP Eq. 27 

 

Once the potential pose area is defined, another sliding window, shown as the 

blue dashed rectangle in the figure, is applied within the area for pose detection. If and 

only if both the hammer and the nailing body pose are detected, PTARS recognizes the 

area as nailing action. 

7.6 Results  

As discussed in Chapter 6.3, Evaluation of Algorithm Performance, precision, 

recall, and F1 score are used to measure the performance of the three frameworks, 

PARS, PTARS, and TPARS.  

To calculate precision, recall, and F1 score, three values of each framework were 

collected as raw data. The three values are true positive, false positive, and false 

negative. In this study, the two categories are nailing and non-nailing. The test results of 
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each framework were collected as a table, as shown in Figure 41. Figure 42 gives an 

example of a testing image, the red rectangle and the green rectangle represent two 

image patches predicted/recognized as nailing activity (in the real experiment, all 

highlighted rectangles are the same color). By human observation, the actual category of 

the red rectangle is non-nailing, and the actual category of the green rectangle is nailing. 

However, the framework predicts both image patches as nailing. Thus, the red rectangle 

is a false positive, the green rectangle is a true positive, and it is a false negative if the 

framework fails to predict the image patch in the green rectangle as in the nailing 

category.  

 

Figure 41 Raw data collection table.  
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Figure 42 Example test image. 

 

Based on the implementation details of each algorithm and technique, as 

mentioned in Chapter 7.5, Implementation of the Algorithms, the testing image dataset, 

as described in Chapter 7.4.3, Testing Image Dataset, was tested with the three 

frameworks. Figure 43 shows two examples of the detection result made by PARS, 

PTARS, and TPARS. In Figure 43(a), PARS successfully recognized the nailing 

activity; PTARS also successfully recognized the nailing activity; and TPARS not only 

recognized the nailing action, but also mistakenly recognized another image patch on the 

left of the image as nailing action. In Figure 43(b), PARS mistakenly recognized the 

construction worker with a bended arm on the left of the image as nailing activity; 

PTARS did not recognize any image patch as nailing activity because it did not 

recognize any hammer within the potential tool area and eliminated false detection made 

by PARS; and although TPARS mistakenly recognized two image patches as hammers, 
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it eventually did not make any false detection because it did not recognize any nailing 

body pose in the potential pose areas associated with the two detected hammers.  

The experimental results were collected as shown in Figure 44. 

PARS 

  

PTARS 

  

TPARS 

 
 

 (a) (b) 

Figure 43 Examples of detection results.  
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Figure 44 Raw data collection. 

 

Precision measures the accuracy of a framework’s prediction result; recall 

measures the sensitivity of a framework to the target activity; and F1 score measures the 

overall performance of a framework. According to Eq. 13 to Eq. 15: 

Precision = True Positive / (True Positive + False Positive) 

Recall = True Positive / (True Positive + False Negative) 

F1 Score = 2 × Precision x Recall / (Precision + Recall)  

The results and the computation time for detection of each image of each 

framework are recorded in Table 5. 
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Table 5 Table of experiment results. 

 Precision Recall F1 Score Time (s) 

PARS 21% 90% 0.3405 <0.5 

PTARS 90% 72% 0.8 0.5~1.5 

TPARS 36% 78% 0.4926 >180 
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8. CONCLUSIONS AND DISCUSSION 

 

8.1 Discussion 

From the experimental results shown in Table 5, PTARS has the highest 

precision and F1 scores, PARS has the highest recall but the smallest precision scores, 

and TPARS has moderate precision, recall, and F1 scores.  

PTARS, one of the proposed frameworks, has a much higher precision than 

PARS because it eliminated plenty of patch images of poses similar to nailing poses but 

without a hammer. As shown in Figure 44(b), a construction worker was mistakenly 

recognized as nailing activity by PARS, while PTARS successfully eliminated the patch 

image as it did not recognize any hammer within the potential tool area. However, 

because PTARS also failed to detect some of the hammers in the potential tool area, 

PTARS has a lower recall than PARS, as shown in Figure 45. 

  

(a) (b) 

Figure 45 Example of a false negative. (a) True positive made by PARS; (b) false 

negative made by PTARS because it failed to detect the hammer within the potential 

tool area.  
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TPARS has a much longer average computational time for the detection of each 

testing image because the width of its sliding window is much smaller than PARS and 

PTARS and it has a smaller stride size, making it detect many more patch images than 

the other two frameworks.  

As mentioned in Chapter 6.3, Evaluation of Algorithm Performance, human 

activity recognition from image or video is a typical case of skewed class where a 

significant portion of the testing dataset describes the negative category and only a very 

small portion of the dataset is in the positive category. In the case of this experiment, the 

positive category has 50 images of nailing activity, and the size of the negative category 

is at the multimillion level. Because of the small sliding window size and small stride 

size of TPARS, the size of its negative category is over 10 times larger than PARS and 

PTARS. Based on the multimillion-level negative category size, even the tool classifier 

has a very high accuracy, but it still generated many more false positive results than 

PTARS. Remembering Eq. 13, the equation of precision, with the very close amount of 

true positive (36 for PTARS, 39 for TPARS), TPARS has many more false positive 

results (4 for PTARS, 69 for TPARS); thus, TPARS has a lower precision value than 

PTARS.  

PTARS achieved the highest F1 score, meaning that it has the best overall 

performance compared with PARS and PTARS. However, it is necessary to take 

precision and recall into consideration while choosing a framework for practical 

purposes. As mentioned in Chapter 1, with further development, a vision-based system 
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such as a construction personnel activity recognition system has two major potential 

applications: 1) it could be used as a warning system when unsafe behavior, accident, or 

injury occurs, 2) it could be used as part of a tracking system that can collect 

information, such as count, location, and moving trajectory of construction personnel 

and equipment, for productivity and performance analysis.  

A system with a higher recall (sensitivity), such as PARS and TPARS, is more 

desirable for a warning system because we don’t want to miss any unsafe behavior, 

accident, or injury, especially those that may lead to fatality. Although an activity 

detection system with a higher recall may have a lower precision (accuracy), it is still 

worth looking into the warning and making a decision on whether to take further action 

or determining a false alarm.  

In contrast, a system with a high precision (accuracy) and a moderate recall and 

computational speed, such as PTARS, is more appropriate for a tracking system because 

it provides more accurate detection and tracking results.  

8.2 Conclusion  

Replacing traditional manual jobsite monitoring processes conducted by project 

management personnel with an automatic or semi-automatic system could improve the 

efficiency of documentation, data analyzing, and decision-making processes. The vision-

based system has proved to be one of the most cost- and time-effective approaches.  
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Until now, all previous studies regarding construction worker activity recognition 

only applied features of construction worker poses. However, actions appearing on 

construction sites are more dynamic and complex, and these construction-related actions 

are usually related to human interactions (operations) with certain types of objects 

(tools). This research developed frameworks that mimic a human’s way of 

understanding an action. It compared the recognition results of three frameworks with 

four values, including precision, recall, F1 score, and time consumption. The three 

frameworks are 1) PARS, detection based only on construction worker pose; 2) PTARS, 

which first detects construction worker pose and then detects the tool within the potential 

tool area defined by spatial relationship; and 3) TPARS, which first detects a tool and 

then detects the pose within the potential pose area defined by spatial relationship. The 

frameworks were tested with images recorded in various environments. Based on the 

experimental results and the discussion, the following conclusions can be made: 

1) PTARS has the best overall performance, and it is the most appropriate 

approach to be applied as part of a tracking system that can collect information, such as 

count, location, and trajectory of construction personnel, for productivity and 

performance analysis; 

2) At the current stage, or with the pose classifier and the tool classifier trained in 

this study, PARS is a better option than PTARS and TPARS for a warning system; 
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3) At the current stage, TPARS is not an appropriate framework to be applied

practically because of its moderate precision, recall, and F1 score and its long 

computational time.    

8.3 Limitations 

This study recognizes and acknowledges that a multitude of factors contributes to 

the results and outcomes. Because of this, it is virtually impossible to account for every 

factor or contributing nuance. The following are some of the limitations particular to this 

study. 

8.3.1 Selection of Algorithms 

There are many algorithms and methods we can select and test for generating a 

feature descriptor or training a classifier. However, the goal of this research was to test 

whether combining pose recognition with tool recognition would provide a better action 

recognition result than only using pose recognition. Therefore, the research did not test 

and compare every possible combination of feature descriptors and classifiers, but 

selected HOG feature and SVM and k-NN classifiers as the techniques for this study 

because of their extraordinary performance in previous related research. The study of 

other combinations of object recognition algorithms for action recognition offers one 

direction for future research. 
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8.3.2 Selection of the Action 

On a regular construction site, there are numerous construction crew actions 

associated with a specific body pose and a certain type of tool. This study did not test the 

hypotheses through every single action, but selected nailing action for the test. Nailing 

action was selected because 1) it is a very typical action on a daily construction site; 2) it 

has been tested in previous construction crew action recognition frameworks based only 

on crew pose; and 3) it requires a very specific body pose and a certain type of tool. 

More actions of construction workers and equipment could be tested in future studies. 

8.3.3 Training Images and Test Images 

The training and testing data influenced the results of the framework. However, it 

is not practical to visit all construction sites to collect data. Instead, this research 

collected training images at various residential construction sites and collected testing 

images of various construction activities with various backgrounds and image 

illuminations. This may have had a certain influence on the result. However, as the 

experiment was designed (three frameworks were tested with exactly the same images), 

the influence should have been minimized. 

8.4 Future Study 

This research studied the most fundamental algorithms and frameworks for 

construction worker action recognition. However, in the area of computer vision-based 
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construction operation monitoring, the study could be improved in the future in many 

different ways.   

First, more advanced classification techniques and feature descriptors could be 

applied, studied, and tested for construction operation monitoring. Many other existing 

classification models could be applied in the construction industry.  

Also, as mentioned in previous chapters, in the community of computer vision, 

there are several benchmark image datasets that have been repetitively used by different 

studies. It is necessary for the construction industry to build up its own benchmark image 

dataset with multiple construction-related categories such as construction workers, 

actions, tools, and equipment.  

As the most famous human action recognition databases, KTH (Schuldt, Laptev, 

& Caputo, 2004), UCF (Rodriguez, Ahmed, & Shah, 2008), and Hollywood2 

(Marszałek, Laptev, & Schmid, 2009) all have a much larger number of images for 

training at higher resolution. It is necessary to build a similar dataset for construction 

action recognition to provide enough data and to form a benchmark dataset for future 

studies.  
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