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ABSTRACT

This thesis work is an exploration into the application of machine learning to a cur-

rent problem relating to streams of aerial images, with application to the imaging systems

within the Texas A&M GEOSAT group and to the Texas A&M AgriLife Extension Ser-

vice. The streams of images referred to are taken by a unmanned aerial vehicle (UAV)

over some space of land.

Our problem relates to flight inconsistencies in the UAV. In an ideal scenario, our

UAV captures a set of images from a specified height, pointed normally at the ground,

with a predetermined amount of overlap between images. However, due to inconsistencies

inherent in most flights, the UAV will occasionally tilt or swing in such a way that the

images captured are not in line with adjacent images, i.e., they do not have the required

amount of overlap, and their information may be blurred. This creates a problem when

attempting image stitching afterwards, as such anomalous images will be irreconcilable

with adjacent images. A prime goal then consists of designing a system which can, in

pseudo-real-time, detect images which are out of line, through the use of feature extraction

and machine learning, so that they can be discarded and possibly recaptured.

Our research compares and evaluates a number of image features and distance metrics,

along with supervised classification learning algorithms, on the basis of their performance

in this task. After feature evaluation, pixel intensity distribution, binary robust independent

elementary features (BRIEF), and blob detection were selected as image features. The

classification models chosen include logistic regression, neural networks, decision trees,

and support vector machines (SVM).

After training and testing, the logistic regression model yields the highest performance,

with a detection rate of 95.6% and a false alarm rate of 7.7%, making this a viable option
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for this task. Neural networks and SVM yield lower levels of performance in detection

and false alarm rates, respectively. Decision trees offer a very low detection rate of 11.9%,

and are thus concluded to not be an ideal model for this task.
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NOMENCLATURE

ANN Artificial Neural Network

BD Bhattacharyya Distance

BRIEF Binary Robust Independent Elementary Features

EMD Earth Movers Distance

MSE Mean Square Error

RGB Red, Green, Blue (color image representation)

SVM Support Vector Machines

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle
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1. INTRODUCTION

1.1 Motivation

In general, this thesis deals with the application of machine learning to detection and

image segmentation tasks in the context of agricultural imagery. We consider the analysis

of streams of images, taken aerially, as well as the structure of single images, based on spa-

tial and spectral data. The streams of images are stitched together during post-processing

to create large mosaicked maps of the monitored areas. Our first task involves ensuring

that the stream of images meets the proper criteria for stitching while the images are being

taken. Due to the large amount of data involved, feature extraction and machine learning

are applied.

The broad motivation for this project is rooted in concerns that have an urgent global

impact. As current global population estimates reach 7.5 billion, with simultaneous cli-

mate change, there is a general scientific consensus that we are heading towards an im-

pending water shortage. Already, while the supply of usable fresh water has been declin-

ing, the overall demand for water has tripled since the 1950s. It is estimated that, by 2025,

up to two thirds of the world’s population could be water-stressed [1]. In fact, numerical

models that account for climate change, water needs, and socioeconomic variables show

that not only is a large percentage of the world currently experiencing water shortage, but

that demands for water are a greater factor than greenhouse warming when considering

the state of water systems over the next several years.

A somewhat promising avenue for mitigating this problem is in the area of precision

agriculture. Most estimates place the share of global water usage for irrigated agriculture

at 70%, making it by far the dominant use of water [2]. It is predicted that greater overall

yield potential will have to come from gains in net productivity of farming. Precision
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agriculture has been shown to potentially increase farm profits by a significant amount

with data collection, mapping of blackgrass weeds, and precision application of fertilizer,

without even including precision irrigation [3].

Recent and continuing advances in technology and data science offer increased effi-

ciency and productivity in many areas. Of particular application to agriculture are un-

manned aircraft systems (UAS), commonly referred to as drones. UAS are simultaneously

becoming lighter and gaining increased flight times and carrying capacities. This provides

enhanced opportunity for developing automated systems for surveying and irrigating agri-

cultural areas; a UAS equipped with GPS and imaging can map a plot of land, providing

information on biomass, crop growth and quality, weed prevalence, etc. Research into

increased efficiency and productivity of these systems is vital to the correlated increased

net productivity of irrigated farming. As stated, we believe improvement to precision agri-

culture has the potential to contribute to alleviation of the current and forecasted water

scarcity.

1.2 Problem Setting and Formulation

To describe the setting of the problems addressed in this thesis, it is first necessary to

mention that these problems are part of an overall project to develop a system for quality

aerial agricultural imagery at Texas A&M University. In the current setting, members

of AgriLife determine when and where to take the images, members of the Engineering

College perform the flights, and members in the Electrical and Computer Engineering

department are assisting data cleaning and analysis as well as pertinent system design.

Once a flight time and location has been set, the UAV is flown at a height of 50 to 100

meters. Speed and image capture delay are adjusted to achieve approximately 75% overlap

between consecutive images. Once the flight is complete, the image data is transferred to

a member of the TAMU GEOSAT who, through specialized software, performs image
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stitching to create one image of the area. The creation of a single, accurate mapping of the

monitored area is the overall goal of the flight and imaging process. The map, which may

be hyperspectral or multispectral, is then used for a variety of tasks related to precision

agriculture.

It is the performance of this image stitching that we first address. For optimal per-

formance in image stitching, both in terms of time taken and output quality, the camera

should be pointed directly towards the ground and generate the desired amount of overlap

between adjacent images. However, the limits of current technology mean that the imag-

ing module on the UAV is not always pointed directly towards the ground when an image

is taken. Turbulence, swinging, and swaying of the aircraft is likely to result in images that

are not pointed directly at the ground, and hence may also not contain the desired amount

of overlap. Such images will be referred to as anomalous, and can result in large increases

in post-processing time, as well as sub-optimal output from mosaicking.

These anomalous images are difficult for the image stitching program to handle. In

general, image stitching requires predictable overlap between images, as well as nearly

identical regions of overlap, in order to locate unique features that can be matched to

determine where overlap exists. With thousands of images, the process is very computa-

tionally intensive to match all images and obtain a single map, even in an ideal scenario.

In our case, anomalous images can be thought of as images that simply do not fit in with

any other images. When the program attempts to feature-match these anomalous images

with adjacent ones, the result is that the computation time is increased while the overall

quality of the result is sacrificed.

The current system of addressing this problem is to have a human try to find these

anomalous images by hand and remove them before processing. The first issue with this

strategy is that this is a tiring and time-consuming process for the image reviewer, as well

as the potential for human error in an otherwise mostly automated process. Secondly, if
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the images are only removed afterwards, there is no chance to re-take the images, leaving

the possibility for gaps in the final output if there are large regions of anomalous images.

Our goal is to develop a system for detecting these anomalous images in pseudo-real-time,

i.e., during the flight, so that they may be re-captured if necessary.

Algorithms do exist for explicitly finding the overlap between images, based on tak-

ing convolutions and Fourier transforms. However, as stated previously, these are high-

resolution images with many bands, and therefore contain a large amount of data. Addi-

tionally, convolutions and Fourier transforms cannot be calculated in linear or sub-linear

time. In our tests, the comparison of two images to find overlap took on the order of 100

seconds using a single CPU. Given that this does not allow for a stream of images to be

processed in near-real time, our instinct is to extract features which can then be compared

and processed to predict whether the desired level of overlap is present in the images. This

process of operating on a set of extracted features rather than the entire volume of informa-

tion is called feature extraction and dimensionality reduction. A key focus of this feature

extraction/dimensionality reduction is the interplay between faster computing times and a

loss of information. Ideally, features are extracted which preserve the information relevant

to our task while, to some degree, discarding the unnecessary information. After this, the

image features between each pair of consecutive images must be compared to create a

feature vector. Each feature vector can then be associated with a label that states whether

or not the pair of images contains acceptable overlap.

Beyond assessing the value of various image features, we evaluate a few different

learning models for classifying the images as regular or anomalous. This setting, in which

labeled feature vectors are used to train a model, is called supervised classification. The la-

beled data is split between a training and testing set, which can be used to create predictive

models as well as evaluate their performance.
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2. METHODOLOGY

Our methodology for this research consists of several steps. First, the larger data

archive is accessed; and the datasets, selected. Next, the data is cleaned, and labeled

according to our criteria. Once the data is prepared, we perform feature evaluation: the

process of extracting image features and analyzing them for their potential use in learning

algorithms to detect anomalous images. Various distance metrics are then calculated, and

again these metrics are analyzed for their utility in distinguishing acceptable images from

anomalous ones. Finally, these metrics for each pair of consecutive images are concate-

nated, along with the previously generated labels, and used as training data in our learning

algorithms. Beyond this, various synthetic features are generated, and the parameters of

the learning models are adjusted to achieve optimal results.

2.1 Data Preparation

To obtain usable datasets for training and testing, we first access the raw data. Once

imaging flights run by the Texas A&M GEOSAT group are completed, the raw data is

pushed to a network drive. The data is ordinarily then accessed by another member of

the GEOSAT group, who performs orthomosaicking to produce a single map of the tar-

get area. As stated in the problem formulation, this raw data generally contains images

which are problematic, i.e., the camera was not pointed normally towards the ground, and

thus the images are not reconcilable with respect to the surrounding images. Our goal in

selecting data from the source is to find datasets over unique areas which are sufficiently

large, generally more than 1000 usable images, and which have a sufficient percentage of

anomalous images.

The data selection yielded four large datsets, totaling 8768 images. Since the current

imaging process has the camera taking images before and during takeoff, as well as dur-
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ing and after landing, these images have to be identified and removed. After this initial

data cleaning, our datasets totaled 4863 images. The images are then searched through

manually in order to create a list of anomalous image names which can later be used to

generate label vectors for training and testing. After this process, 244 anomalous images

were discovered among the four datasets, achieving a target rate of roughly 5%.

Finally, in accordance with most image processing standards, the images are all con-

verted to grayscale. There are a few reasons for this: the first is that luminance (i.e., the

grayscale values from a color image) is revealing enough for the vast majority of image

processing task; a secondary reason is to ease processing time by cutting the data process-

ing by 2/3, which is particularly important to our application.

2.2 Image Feature Evaluation

In this problem, we wish to find a set of features that can be quickly extracted from

images, and used to train a model to identify images that do not belong in the stream.

The first step in this process is to evaluate features to find ones that are suitable to our

needs: quickly extracted and sufficiently distinguishing between overlapping and non-

overlapping images.

Several types of image features are explored for this purpose. Pixel distributions, bi-

nary features, local binary patterns, and blob detection were all extracted for a subset of

the overall dataset and evaluated for their efficacy. Once image features are extracted,

a few distance metrics are applied to compare the features between consecutive images.

The distances are then compared between instances of acceptable pairs of images and pairs

which contain anomalies to determine if the feature is usable.

2.2.1 Distribution Distances

When thinking of the differences between overlapping and non-overlapping images,

pixel distribution was one of our first ideas. Pixel distribution is a very simple feature to
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extract: it can be done in linear time with respect to the number of pixels, and is easily dis-

tributable. Furthermore, it is clear that images with a large overlap will have fairly similar

pixel distributions (since much of their content is nearly identical), and non-overlapping

images may be dissimilar.

Once pixel distributions are extracted, a method for comparing the distributions is

needed. From the field of statistics, there are a few methods for calculating “distances”

between distributions: the higher the distance, the less similar the distributions are in some

way.

The first distance metric we looked at is a very common method for calculating the

distance between two sets of numbers: the mean-squared error or MSE. Essentially, the

MSE is the L-2 norm of the errors or differences between the two sets of numbers. If we

consider the vector p to be one distribution and the vector q to be another distribution,

each of length n, then the MSE is given by:

1

n

(
n∑
i=1

(pi − qi)2
)
. (2.1)

While the MSE does provide a distance between the two distributions, it is more suited

to calculating errors, as the name suggests. Another distance metric, called the Bhat-

tacharyya distance, is actually designed to measure the similarity between two continuous

or discrete probability distributions. It is calculated by taking the negative of the log of the

closely related Bhattacharyya coefficient. The Bhattacharyya coefficient was designed to

be a metric for the amount of overlap between two distributions, defined as:

BC(p,q) =
n∑
i=1

√
piqi. (2.2)
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Making the Bhattacharyya distance equal to:

BD(p,q) = − ln

(
n∑
i=1

√
piqi

)
. (2.3)

Another potential distance metric for distributions is the Earth Mover’s Distance (EMD),

known in mathematics as the Wasserstein metric. If the distributions are considered to be

two different ways of arranging piles of mass, then the EMD gives the minimum amount

of mass that needs to be moved times the distance it is moved in order to turn one set of

piles into another.

Formally, the EMD is defined as the solution to:

min
m∑
i=1

n∑
j=1

fi,jdi,j

Where fi,j is the mass moved between bin i and j in the two discrete distributions, and

di,j is the distance between bins i and j. This is subject to the constraint that the masses

moved transform one distribution into the other. This minimization can then be solved as

a linear programming problem.

It is worth noting that the Bhattacharyya distance and MSE are calculated in linear

time with respect to the number of possible intensity values, while the EMD is not.

2.2.2 Image Feature Descriptors

As stated, other features are needed in order to create a robust detection system. From

the field of image processing, there are many image features that can be calculated quickly;

our goal is to find features which can be compared and matched among consecutive images

in a stream to determine if the images are overlapping by the desired amount. In image

processing, keypoints are loosely defined as “interesting” parts of an image – locations in

which there is a spike or trough or unique pattern relative to the rest of the image. The

idea with these feature descriptors is to locate a set of keypoints in each image, create
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descriptors for those points, and then attempt to match them between images to infer that

the regions enclosed by matched descriptors are overlapping.

For our feature descriptor extraction, we use corner detection to determine the key-

points used for the descriptors. An edge in an image is defined as a series of points along

which the brightness in an image changes drastically. Generally, these are located by first

finding points at which the brightness changes, and then locating connected components

among these points. A corner, then, is a point at which two edges meet or at which there

are two edge directions very close to a point in an image.

From previous research into image classification using feature descriptors [4], we iden-

tified the SIFT feature as a potential feature which does incorporate spatial information.

This is a scale-invariant feature transform (SIFT) which can be implemented in real time

and easily matched between images using L-2 norm differences.

Further research revealed that the binary robust independent elementary features (BRIEF)

would be better suited to our purposes. First, the BRIEF is calculated in less time than

SIFT and performs similarly or better on benchmark tests[5]. Furthermore, the BRIEF

keypoints can be matched between images using a simple Hamming distance, rather than

the L-2 norm used for SIFT, which also aids in faster processing. Finally, although it is

considered a disadvantage generally, BRIEF is not scale-invariant like SIFT. Since a scale

change between images would not be expected or acceptable, scale-invariance would only

result in false matches for our purposes, so the lack of scale-invariance is an advantage.

The full derivation of BRIEF is both lengthy and irrelevant to our immediate research, so

it is not included here. The BRIEF is obtained by first splitting the image into patches

based on keypoints, and performing a set of pairwise intensity tests where the intensity of

a smoothed patch is compared to another. The BRIEF then consists of a bitstring repre-

senting the outcome of all pairwise tests between image patches.

For a given keypoint, there exists a substring of the overall BRIEF that represents the
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outcome of intensity tests between the corresponding image patch and all other patches.

As stated, matching keypoints between images can then be performed by calculating the

Hamming distances between these substrings. A set of matches for each pair of consecu-

tive images is generated, under the constraint that two matching keypoints cannot be more

than 1/4 of the image size apart in their respective locations. This ensures that keypoints

are not matched that violate the requirement of about 75% overlap in consecutive images.

As a metric for comparing the BRIEFs of two images, we look at both the number of

keypoints matched as well as the percentage of total keypoints matched. This is slightly

different than the distance metrics calculated for other features in that a higher value in-

dicates a higher probability that the images are acceptable, but nonetheless yields a single

value comparing two images.

2.2.3 Blob Detection

Blob detection is the process of identifying regions in an image that differ from the

surrounding regions. This is similar to the keypoints and descriptors described in the

previous section, but involves a continuous group of pixels rather than the single points

identified by keypoint or corner detection. More specifically, in our grayscale setting,

blobs represent relatively bright or dark spots in an image.

Blobs can be easily calculated by first convolving the target image with the Gaussian

kernel:

g(x, y, t) =
1

2πt
e−

x2+y2

2t .

Then, the Laplacian of this new image is generated, yielding strong positive values for

dark spots and strong negative values for bright spots. The values are thresholded to detect

blobs of a size relative to the size of the original Gaussian kernel. Multiple scales of

kernels are used to detect blobs of varying sizes. The result for a single image is a set of

blob locations and their corresponding radii.
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To obtain a distance metric for two consecutive images, the blobs for both images are

calculated. Then, we calculate the difference in number of blobs, as well as the difference

in total blob area between the two images.

2.2.4 Local Binary Patterns

Local binary patterns are a method of classifying texture within an image. Texture, in

image processing, refers to the relative smoothness or roughness of a section of an image.

Local binary patterns are a relatively simple way of identifying the texture of a given

pixel relative to its immediate neighbors. For a given pixel, a series of intensity tests are

performed, the results of which form a binary string which can be converted to an integer.

Then, a histogram is created based on the frequency of each of these integers in the image.

While simple, local binary patterns and their histograms are used extensively in texture

classification of images.

As a distance metric, we use the same distribution distance metrics as the general pixel

intensity distributions. The evaluation of the LBPs and distances between acceptable and

anomalous image pairs show that this metric is not suitable for classification. The values

obtained are noisy and independent of whether the pair is anomalous or not.

2.3 Learning Algorithms

As stated in the problem formulation, we approach the problem with supervised binary

classification in mind. Classification, as opposed to regression, associates a set of features

with one of a number of labels, in the binary case there are only two of these labels.

Supervised learning involves training a model with a set of features and their correct labels.

The model then attempts to learn a set of parameters such that when the training data is

passed through, the chosen cost function is minimized with respect to the correct labels.

More generally, the model attempts to adjust its own parameters to output the correct labels

for the training data. There are a large number of supervised classification algorithms
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available and well-implemented in a number of languages. Our goal is to identify a number

of these which are fundamentally different in their structure and observe the performance

of these algorithms for our task.

2.3.1 Logistic Regression

The first among these is logistic regression: one of the most widely used classification

algorithms. Logistic regression takes a labeled training set of feature vectors x(i) and

corresponding binary labels y(i). It then finds θ to minimize the cost function:

J(θ) =
1

m

m∑
i=1

1

2

(
hθ
(
x(i)
)
− y(i)

)2
(2.4)

where hθ(·) is the logistic function defined as hθ(x) = 1

1+e−θT x
.

Minimization of the cost function can be performed a number of ways, but the most

common is through the gradient descent algorithm. Gradient descent works by altering the

parameters in the direction of steepest descent at each iteration. For this, the gradient of

the cost function relative to the parameters is taken, and the parameters are altered in the

negative of this direction according to a predetermined step size. The step size or learning

rate should be chosen so that the optimization converges as close as possible to the global

minimum, while also considering that smaller step sizes take longer to converge. The

learning rate can also be chosen adaptively at each step so that the steps become smaller

as the minimum is approached.

2.3.2 Artificial Neural Networks

The next learning algorithm selected is the multi-layer perceptron (MLP) artificial neu-

ral network (ANN). An ANN is a highly connected directed graphical model, in which the

nodes are separated into layers. Each node in a given layer is connected directionally to

each node in the following layer. In the first layer, called the input layer, the observation or
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set of features is input into the nodes. From here, the information propagates from layer to

layer according to the weights of the connections between nodes in each layer. A weighted

linear summation is calculated using these weights, which is then passed to a non-linear

activation function, such as the hyperbolic tangent function.

In training, the output at the final layer is compared to the desired output, and connec-

tion weights are adjusted according to the error through a process called backpropagation.

Starting at the output node, the error is calculated for the training set, and using a gradient

descent, similar to that in logistic regression, the weight can be adjusted according to a

learning rate and the error times the derivative of the non-linear activation function. For

the hidden layers preceding the output nodes, a similar process is performed by propa-

gating the error at the output layer back to the preceding layer, essentially evaluating the

contribution of each node in this layer to the output error. A gradient descent is then per-

formed in order to update the weights in this layer, followed by propagating these errors

back to the preceding layer. This process is repeated until all hidden layers have been up-

dated, at which point another iteration of the whole process is performed until a minimum

is achieved.

ANNs have massive potential for performing at tasks which are difficult to define or

explicitly program, but often require a large amount of training data and time to become

effective. Multi-layer perceptron networks have the advantage of being able to learn non-

linear models, but suffer from a sensitivity to feature scaling and non-unique minima. As

with other ANNs, MLPs may require a great deal of tuning of hyper-parameters such as

the size and the number of layers.

The typical neural network diagram is displayed below for clarity.
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Figure 2.1: A general ANN

2.3.3 Decision Trees

Another classification algorithm considered is the decision tree. A decision tree takes

a labeled training set of feature vectors x(i) and corresponding binary labels y(i), and finds

a set of ordered thresholds to compare the features to in order to classify the vector. The

model is visualized as a binary tree in which one starts at the root node and propagates

towards the leaf nodes, which contain classification labels. Each node in the tree represents

a threshold or set of thresholds on a set of features, and the child node is selected based on

the comparison of the given features to the thresholds.

These thresholds are calculated based on the training data and a simple greedy algo-

rithm which attempts to minimize the Gini impurity of the following layer of nodes. The

Gini impurity of a set of training examples in a node is a measure of how likely an element

of that set is to be mislabeled. If a set of examples contains n classes, then consider fi

to be the percentage of elements in that set with label i. The Gini impurity can then be
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expressed as
∑

i 6=k fifk .

Decision trees are likely the simplest classification algorithm explored in this research,

but may perform well if the structure of the problem is simple as well. The decision tree

provides a good point of comparison for the other chosen learning algorithms.

2.3.4 Support Vector Machines

Support vector machines (SVMs) are the final classification algorithm explored. An

SVM model represents the feature vectors or examples as points in space, such that the

points can be separated by a hyperplane to classify the examples as belonging to one cat-

egory or another. If the examples are linearly separable, then a maximum margin hyper-

plane is generated by finding two parallel hyper-planes with a maximum distance between

them such that the examples are still separated, and taking the parallel hyperplane directly

in between these two planes. In the non-linearly separable case, a hinge loss function is

calculated as the sum of distances of incorrectly labeled examples to the hyperplane.

The optimal hyperplane is found by first parametrizing the hyperplane as f(x) = β0 +

βTx subject to |β0 + βTx| = 1 where β is the scale, and β0 is the bias. Then, the distance

between each point x and a given hyperplane can be calculated as f(x)
||β|| , which can then be

minimized by a number of methods.

2.4 Testing Methodology

The testing methodology for this problem has multiple steps. First, a subset of the

dataset is chosen for testing and evaluating the individual features. All features and dis-

tance metrics are calculated for the pairs of consecutive images in the feature testing sub-

set. For each feature, the standard deviation of the resulting distance metrics is calculated

to ensure that the feature provides a sufficient amount of information. Next, a graph of

these distance metrics is compared to a plot of the labels of the feature testing subset. The

visual comparison of these plots is utilized to determine whether the feature provides some
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level of distinction between acceptable and anomalous image pairs.

Once the features have been evaluated, and a subset of the features and distance met-

rics has been selected to use in the learning algorithms, all labeled feature vectors are

concatenated. The data is then split into an 80% training set and a 20% testing set. Each

selected learning algorithm is then iteratively trained, tested, and tuned. Synthetic features,

or non-linear combinations of existing features are added and tested for their contribution

to performance. Since most of the learning algorithms explored here operate in a linear

fashion, the addition of non-linear combinations can provide a pseudo non-linearity to the

algorithms that has the potential to increase performance drastically. Tuning each learning

algorithm involves adjusting the hyper-parameters of the model in an attempt to achieve

a higher detection rate or lower false-alarm rate. Depending on the algorithm, this may

involve adjusting class weights, learning rate, iterations, number of layers, etc., which is

detailed in the following results section.

Finally, the data is split randomly several times into training and testing sets through

random resampling or bootstrapping, and the testing scores averaged to obtain a realistic

score of performance for each algorithm given the datasets.
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3. RESULTS

The results of this research are split into the testing of features and learning algorithms,

as detailed in the preceding testing methodology.

3.1 Feature Evaluation

As stated previously, plots of the various distances metrics for features are plotted in

order to evaluate whether a feature is sufficient. The average extraction time for each

feature for a single image is also shown. These features were extracted using a single

core of an Intel i5 processor with a maximum clock speed of 2.7 GHz. Shown below are

the plots and average extraction time for pixel distribution, BRIEF descriptors, and blob

detection.

3.1.1 Pixel Distribution

Below are figures showing the MSEs (figure 3.1), EMDs (figure 3.2), and Bhattacharyya

(figure 3.3) distances between consecutive image pairs.

Spikes in the BD can be seen around the locations of the anomalous images, along with

some spikes in other areas. The MSE has fewer and lower spikes around most anomalies,

while the EMD is far noisier than other metrics. For this reason, the BD was chosen as

the distance metric for pixel distribution. The average time for histogram calculation and

Bhattacharyya distance calculation combined is 0.0473 seconds.

3.1.2 BRIEF Descriptors

Below are figures showing the number of BRIEF matches between consecutive images

(figure 3.4), as well as the percentage of keypoints matched between images (figure 3.5).

Contrary to the other metrics which are true distances, a dip can be seen in both metrics

around the anomalous images. The average time for BRIEF extraction for a single image
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Figure 3.1: Plot of MSEs between distributions of consecutive image pairs.

is 0.244 seconds. Distance metric calculation is a single operation of negligible processing

time.

3.1.3 Blob Detection

Below are figures showing the difference in number of blobs (figure 3.6) and the dif-

ference in total blob area (figure 3.7) between consecutive image pairs.

Similarly to the distribution distance plots, spikes can be seen around the anomalous

images, as well as in other places. The average time for extraction of blobs for a single

image is 1.06 seconds – the longest time for any of the considered features.

3.2 Learning Algorithm Evaluation

To evaluate the learning algorithms, these distance metrics were concatenated into

feature vectors, and fed along with the corresponding label vector to train each algorithm.

As stated in the testing methodology, the models were then tuned to increase performance,

and the final averaged values for detection rate, false alarm rate, and overall accuracy are
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Figure 3.2: Plot of Earth mover’s distances between distributions of consecutive image
pairs.

reported in table 3.1 below.

Algorithm Detection Rate False Alarm Rate Overall Accuracy
Logistic Regression 0.956 0.077 0.933
Decision Trees 0.119 0.033 0.899
Neural Network 0.75 0.038 0.959
SVM 0.924 0.258 0.743

Table 3.1: Performance of learning algorithms in anomalous image detection

The logistic regression model performed the best out of the four algorithms with a

95.6% detection rate and a 7.7% false positive rate. The decision tree predictably per-

formed poorly, as it is a simple model incapable of considering the interaction between

features. The SVM and neural network had decent performance, with the neural network

missing 25% of anomalous image pairs, and the SVM having a fairly high false alarm rate
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Figure 3.3: Plot of Bhattacharyya distances between distributions of consecutive image
pairs.

of 25.8%.
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Figure 3.4: Plot of BRIEF matches for consecutive image pairs.
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Figure 3.5: Plot of the percentage of keypoints matched between consecutive image pairs.
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Figure 3.6: Plot of the difference in number of blobs between consecutive image pairs.
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Figure 3.7: Plot of the difference in total blob area between consecutive image pairs.
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4. SUMMARY AND CONCLUSIONS

The performance of the selected learning algorithms and features is promising. All

of the selected features proved to be sufficiently discriminating, with the exception of the

local binary patterns. This is understandable, as the feature may be too local to yield much

information about the images as a whole. Furthermore, it is unclear that the texture would

necessarily change when images are out of line, or that there could not be significant tex-

ture changes in acceptable image pairs, e.g., the entrance of a body of water or a building.

The most promising of the learning algorithms was the logistic regression model,

which was able to detect 95.6% of anomalous images with a false-positive rate of 6.7%.

The neural network had a very low false-positive rate of 3.8%, but failed to identify 1/4

of the anomalous images. As stated in the methodology section, neural networks typi-

cally perform better with extremely large training sets, so there is potential for significant

improvement with more training data. The SVM tuning (mainly of the soft margin hyper-

parameter) was a balance between a high false-positive rate, and a relatively low detection

rate. Since in our problem it is important to have as high of a detection rate as possible,

we chose to increase this at the expense of also increasing the false-positive rate. The

decision tree served its purpose as a point of comparison, but did not perform adequately

in comparison to the other models. It is clear that this problem is not structured in a way

that is amenable to tree learning.

With respect to the requirement to have the system run in pseudo real-time, the results

are also acceptable, with room for improvement. All used features are able to be calculated

on the order of one second or less, with the total feature vector calculation averaging 1.35

seconds utilizing processing power similar to that of the onboard data processing units.

The imaging systems utilizing in capturing our training and testing data performed imaging
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at a rate of 40-80 images per minute. The extraction of all features has the potential to be

parallelized for performance increase. Since the model is not trained onboard the UAV, the

model training time is not under any restrictions. Passing a new feature vector into any of

the learning models amounts to a series of simple comparisons or matrix multiplications,

the processing time of which is negligible.

Overall, the performance of the system, in particular the logistic regression model,

indicates that machine learning is a viable option for the detection of anomalous images

in aerial image streams. A small set of quickly extracted features, along with a model that

is trained offline and ported to the onboard computer of a UAV is shown to have potential

to alleviate the issue of unchecked anomalous images.

4.1 Further Study

Further study in this area could primarily involve the exploration of even more image

features. As many aerial imaging systems involve multispectral or hyperspectral imagery,

a third axis of data could provide opportunity for more revealing 3-dimensional features

to be extracted. In particular, the segmentation of an image by spectral signature could

identify differences between bio-matter which appear similar in grayscale. Beyond this,

a full study into the design of a deep neural network trained with larger datasets could

potentially yield an even more robust detection system.

Another direction of study would involve extending the classification of anomalies be-

yond binary. Anomalies could be classified according to their nature (swinging in various

directions, spinning, blur, etc.), or even quantified by how anomalous they are. This would

lead to a multi-class detection system in the case of non-binary classes, and a regression

problem in the case of quantified anomalies.
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