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ABSTRACT 

 

Nanotwinned (nt) metals have been intensively studied and has shown unique 

mechanical properties, including high strength and high ductility. Although twins can be 

introduced into face-centered-cubic (fcc) metals by annealing (annealing twins), 

deformation (deformation twins) and growth (growth twins), most of these twinned metals 

have low stacking fault energy (SFE). The twinnability of fcc metals remains largely 

controlled by their SFE. Consequently, the high SFE of Al typically prohibits the 

formation of twins in aluminum (Al). This dissertation focuses on the introduction of 

several innovative strategies that can introduce high density growth twins in Al and Al 

alloys and study the influence of twinnability on strengthening and plastic deformation of 

these twinned alloys.  

The growth twins were observed in a polycrystalline Al thin film fabricated by 

magnetron sputtering. And the twin formation mechanism was discussed in a 

thermodynamic view. Then, we show that high-density twin boundaries can be introduced 

in Al films by tailoring the texture of the films without any seed layers. Transmission 

Kikuchi diffraction and transmission electron microscopy studies on (111), (110) and 

(112) textured Al films. Epitaxial Al (112) film has the highest density of ITBs, because 

the twin variants (335) and (535) are separated by Al (102) islands, promoting the 

formation of ITBs. The smaller domain size can thus be achieved by introducing HAGBs 

into the twinned bicrystal structure to inhibit the abnormal growth of single variant. 

Furthermore, twin boundaries in Al appear to be stronger barriers to dislocations than 
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conventional high angle grain boundaries. Besides tailoring the twin structure by changing 

the growth orientation, alloying has been used in an Al matrix. The high strength epitaxial 

AlMg alloy has been fabricated with a high density twinned structure. The strong ITB 

barriers play an important role to strengthen the film. Combined with the solid-solution 

strengthening, the calculated flow stress correlated well with the experimental data.  

The knowledge derived from this study may facilitate the design of high-strength, 

light-weight, and ductile Al alloys.   
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NOMENCLATURE 

 

NC                              Nanocrystalline 

UFG                           Ultrafine grained 

CG                              Coarser-grained 

PVD                           Physical vapor deposition 

GMR                          Giant-magneto resistance 

CLS                            Confined layer slip 

FCC                            Face centered cubic 

CTB                           Coherent twin boundary 

ITB                            Incoherent twin boundary 

GB                             Grain boundary 

MD                            Molecular dynamics 

GSFE                         Generalized stacking fault energy 

RAP                           Random activation of partials 

CVD                          Chemical vapor deposition 

EDX                          Energy dispersive X-ray 

EELS                         Electron energy loss spectroscopy 

STEM                       Scanning transmission electron microscope  

EBSD                       Electron backscatter diffraction 

TKD                         Transmission Kikuchi Diffraction 

SEM                         Scanning electron microscope 
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𝜏                            Applied stress 

𝑣                            Poisson ratio 

𝜇                            Shear modulus 
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showing the formation of epitaxial Al (112) films. The six-fold 
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density growth twins. ...................................................................................... 115 
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CHAPTER I                                                                                               

INTRODUCTION 

 

I.1 Historical perspective        

I.1.1 Size dependent strengthening  

          The grain size dependence of strengthening in metallic materials has attracted 

significant attentions since Hall [1] and Petch [2] found the phenomenon empirically that 

smaller grains lead to greater mechanical strength. The Hall-Petch strengthening model is 

typically described by 

𝜎𝑦 = 𝜎0 + 𝑘𝑑−𝑛               Equation 1 

           Here, 𝜎𝑦 is the yield stress of the material, 𝜎0 is the friction stress,  𝑘 is the Hall-

Petch slope, 𝑑 is the grain size, and 𝑛 is a constant, typically ~ 0.5. In equation 1, 𝜎0 

represents the stress to move the dislocations along their slip plane based on the Peierls 

[3] and Nabarro’s [4] calculation, which is also known as the Peierls-Nabarro force. The 

Hall-petch slope, 𝑘 , represents the barrier strength of the grain boundary to slip 

transmission of dislocations based on the dislocation pile-up model, while the 𝑑−𝑛 

quantifies the contribution from grain boundary spacing.  

           When grain boundaries act as the dislocation obstacles, the dislocations emitted 

from a source inside the grain pile up against the grain boundaries along the slip plane. 

The number of dislocations (N) pile-up against the boundaries under an applied shear 
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stress, τ, scales with the distance between source and boundaries (L), which is shown as 

the equation 2 below [5]. 

N =
𝜋𝐿(1−𝑣)(𝜏−𝜏0)

𝜇𝑏
,   Equation 2 

Where 𝜇 is the shear modulus, 𝑣 is the Poisson ratio, 𝑏 is the magnitude of Burgers vector, 

𝜏0 is the lattice friction stress. Once the leading dislocation in the pile-up is able to pass 

through the boundaries or can trigger a glide dislocation on the other side of the boundaries, 

the pile-up stress is equal to the barrier strength 𝜏∗  of the boundaries for the slip 

transmission and can be described as 

N(𝜏 − 𝜏0) = 𝜏∗,    Equation 3 

Based on the equation 2 and 3, the applied shear stress can be rewritten as: 

τ = 𝜏0 + (
𝜏∗𝜇𝑏

𝜋(1−𝑣)𝐿
)1/2,    Equation 4 

Comparison to equation 1 yields 𝑘 = (
𝜏∗𝜇𝑏

𝜋(1−𝑣)
)1/2 . Thus, by measuring the Hall-Petch 

slope, the barrier strength 𝜏∗ can be calculated. Since the parallel dislocations (in the pile-

up) with the same sign repel with each other, the number of dislocations in the pile-up is 

confined by the grain size. 

Consequently equation 3 indicates that the less the dislocation pile-ups against the 

boundaries, the higher the applied stress, 𝜏, to trigger the slip transmission.       

A dispersed network of obstacles also can block mobile dislocations and the 

strengthening effect can be expressed by the Taylor dispersed barrier strengthening model  

       ∆𝜎𝑦 = 𝜇𝑏√𝜌,    Equation 5 
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where 𝜌 is the barrier density and the ∆𝜎𝑦  is the increment of the yield strength. The 

Taylor dispersed barrier strengthening model and Hall-petch model describe two major 

strengthening mechanisms in metallic materials, and have proved to be successful to 

predict the strength of the metal. 

 

 I.1.2 Strengthening at the nanoscale 

           Following the Hall-Petch relationship on size dependent strengthening, it is natural 

to ask is it possible to achieve high strength in metals by reaching a minimum grain size? 

Researchers employed various material fabrication methods to tailor the grain size from 

micro level to nanometer level, and successfully synthesized nanocrystalline (NC , grain 

size < 100 nm) and ultrafine grained (UFG , 100nm <grain size < 1000nm) metals. Over 

a wide range of the grain size (> 100 nm), the Hall-petch relationship in general predicates 

the strength of the materials well. Indeed, NC metals often exhibit dramatically higher 

yield strength compared to their coarser-grained (CG) counterparts [6]. However, the Hall-

Petch relationship breaks down for the smaller grains when grain size d < 20nm, because 

dislocation sources and pile-up are not expected to operate inside these tiny nanograins 

due to both grain size effect and the much higher fraction of GBs [7-11]. Hence, other than 

significant dislocation activities, GB shear, rotation, and sliding in NC metals can be 

activated to facilitate the plastic deformation. The rapid sequence of initial grain 

realignments has been observed by in-situ TEM tensile tests in NC nickel [12]. Moreover, 

using in-situ high-resolution TEM tensile studies on NC Pt shows that the dislocation 

climb is the underlying mechanism of grain rotation instead of the GB sliding or the 
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diffusional creep [13]. Recently, K. Lu et al. reported ultrahigh hardness NC NiMo alloy 

by suppressing the GB-mediated process, which confirmed the crucial role of the stable 

GBs in determining the plastic flow and hardness of NC materials [14].  

           The ultrahigh strength of NC metals is often accompanied by substantial reduction 

of ductility due to tensile or shear instability [6, 15]. Moreover, high density GBs can lead 

to the degradation of corrosion resistance, thermal stability, and the electrical conductivity 

because of the higher interfacial energies of GBs.  Therefore, grain boundary engineering 

that replaces high energy GBs by low energy interfaces attracted increasing attention. 

I.1.3 Layer interface strengthening mechanisms 

           The mechanical behaviors of multilayers fabricated by physical vapor deposition 

(PVD) techniques have drawn broad attention. The ability to fine tune the layer thickness 

as small as 1 nm is well suited for the fundamental studies on the effects of length scale 

on strengthening mechanisms in multilayer composites [16, 17]. Various vapor deposited 

multilayer systems, such as metal-metal [18-22]and metal-intermetallic [23],  have been 

investigated and prominent size effect has been reported. For example, although bulk Cu 

and Ni have low yield strength (10-50 MPa), Cu/Ni multilayers shows high flow stress, ~ 

2 GPa, when individual layer thickness is 2.5 nm [21]. Furthermore, abundant metallic 

multilayer films have shown giant-magneto resistance (GMR) [24, 25], good mechanical 

deformability and high strength [26, 27], and remarkable radiation tolerance [28, 29].  

          There are three major types of interface strengthening models for metallic 

multilayers. The schematic in Fig. 1.1 illustrates these three different strengthening 

mechanisms at different individual layer thickness (h). When h is larger than 50 nm, the 
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Hall-Petch type dislocation pile-up mechanism dominates the strength of multilayers. 

When 50nm > h > 10nm, Dislocation cannot form a pile-up in these fine layers. Instead, 

the confined layer slip (CLS) mechanism operates, which needs less applied stress to 

activate the migration of dislocations, compared with the dislocation pile-up model. In 

CLS regime, single dislocation loops propagate parallel to the interfaces. When h is less 

than 5 nm, the CLS is superseded by single dislocation dominated interface crossing 

mechanism and the maximum hardness is obtained in most of the metallic multilayer films 

at this region. The interface barrier strength for the single glide dislocation transmission 

is independent of the h, but could drop when the core size of dislocations is on the order 

of h. Multiple factors, such as Koehler stress[30, 31], twining [19, 21, 32, 33], texture [18], 

misfit dislocation [34-38], and interface shear strength [39, 40], contribute to the interface 

barrier strength in metallic multilayers.  

 

 

Figure 1.1 Schematic of the strengthening mechanisms in metallic multilayer at varying 

individual layer thickness [5]. 
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          To present a clear picture on the interface barrier strength models, the following 

section will list several factors that are major contributors to the barrier strength. The 

lattice parameter difference between multilayers can generate coherency stress or misfit 

dislocations based on the magnitude of mismatch strain. When the lattice mismatch strain 

is small (<1%), the elastic strain between the interface can accommodate the lattice 

mismatch to maintain coherency at interface. The elastic strain energy builds up with 

increase of the layer thickness. The critical layer thickness hc to form a misfit dislocation 

can be calculated by [41] 

 

ℎ𝑐 =
𝑏

2𝜋𝑓

(1−𝑣𝑐𝑜𝑠2𝛼)

(1+𝑣)𝑐𝑜𝑠𝜆[ln(
ℎ𝑐
𝑏

)+1]
,   Equation 6 

            Where 𝑓 is mismatch strain, 𝑣 is Poisson’s ratio, and 𝛼 is the angle between the 

dislocation line and Burgers vector.  If the interface mismatch strain is less than 5%, a 

semi-coherent interface can form with misfit dislocations along the interface to release the 

long range coherency stresses [42]. An interface with mismatch strain greater than 5% 

often loses coherency and results in incoherent interface without coherency stresses. 

Compared with coherent systems, incoherent interfaces are more effective to block the 

dislocation transmission due to dislocation slip discontinuity [43].  

             Koehler stress is due to the elastic modulus difference between adjacent layers 

and affect the barrier strength significantly if there is a large modulus discrepancy [30]. 

The difference in stacking fault energy (SFE) can also affect interface barrier strength, 

which is illustrated in figure 1.2. Two multilayer system, Cu/Ni and Cu/Co, are compared. 

The SFE for Cu, Ni, and Co are 45, 125, and 24 mJ/m2, respectively. In Cu/Ni system, the 
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partials transmission from Cu to Ni is difficult due to the higher SFE in Ni. To 

accommodate plastic flow by the slip of dislocations, two partials may have to constrict 

into one full dislocation before the dislocation transmission into Ni layer. Whereas in 

Cu/Co system, the partials can slip across the interface without any constriction. So the 

SFE difference can contribute to the interface barrier strength [44].  

 

 

Figure 1.2 Hypothetical schematics show the partials transmissions difference between 

Cu/Ni and Cu/Co systems. (a) In Cu/Ni, partials need to be constrained into full dislocation 

to transport through the layer interface due to the high SEF of Ni. (b) In Cu/Co system, 

partials can slip across layer interface without the constriction [44]. 

 

 

            The multilayer structure can successfully strengthen the film by introducing the 

interphase in an accurate way. However, multiple phases raise processing complexity and 

cost. The inhomogeneity of materials can trigger crack initiation and stress concentration, 

and reduce thermal conductivity. To avoid phase segregation and inhomogeneity induced 

by the disparity in chemical potentials, single-phase materials (elemental metals, solid 

solution alloys) are preferred in many applications. The emergence of new material 
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processing techniques enhances the capability on the microstructure control of single-

phase materials. Because of the versatile material processing techniques especially at 

nanoscale, high strength, ductile single-phase materials have been fabricated recently.  

 

I.1.4 Strengthening in single-phase materials  

I.1.4.1 Special grain boundary strengthening 

           As mentioned in section I.1.1, GBs provide a substantial strengthening effect for 

materials. However, dislocation transmission is a vague description without any detail on 

the process of GBs and dislocations interaction. Especially, at the atomic scale, the various 

types of GBs have different response to the dislocations caused by different energy 

barriers strength. Is there any special GB can provide high barrier strength and also prevent 

stress concentration? To answers this question, the individual GBs mechanical behavior 

need to be understood. But, it is hard to observe the mechanical behavior of individual 

GBs experimentally. The MD simulation sheds light on the understanding of the physics 

process of the dislocation- GB interaction for each specified GBs. Based on the MD result, 

the energy barriers related to the dislocation nucleation and transmission has been 

calculated and the GBs with lower interfacial energy have been identified as the effective 

interface to provide a stronger barrier for the slip transmission [45].   

            Figure 1.3 shows the calculated GB energy profile for several types of GBs in Ni. 

Three types of GBs are compared, <110> tilt boundary, <001> tilt boundary and <111> 

twist boundary. Special Ʃ GBs are defined based on the coincident site lattice (CSL) 

concept, which is derived from the ratio of the overall number of atoms at the interface to 
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the atoms that are in coincidental sites at each lattice. Ʃ3 GBs have the lowest energy, 

which can be obtained via a 60° twist along <111> axis or 109.47° tilt along <110> axis. 

These Ʃ3 GB is also known as twin boundaries (TBs).  

 

 

Figure 1.3 The grain boundary energy profile for various GBs generated by tilting along 

<110>, <001> and twisting along <111> orientations in Ni constriction [45]. 

 

 

           Face centered cubic (FCC) metals have two types of , Ʃ3 GBs, Ʃ3(111) coherent 

twin boundary (CTB) and Ʃ3(112) incoherent twin boundary (ITB). The low GB energy 

of TBs arises from their coherent structure and less free volume at the interface as shown 

in Figure 1.4(b). 
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Figure 1.4 The schematics of normal grain boundary and coherent twin boundary. (a) A 

typical grain boundary. (b) Coherent twin boundary [46].  

 

 

           CTBs, ITBs and normal GBs have dramatically different interfacial energies 

because of their different structure configurations. For instance, the interfacial energy of 

CTB and ITB in Al is 75 [47] and 223-357 mJ/m2 [48, 49] respectively, whereas a normal 

grain boundary energy is ~ 1000 mJ/ m2 [50]. The low energy of CTBs indicates that CTBs 

are thermodynamically more stable than normal GBs.  

           As shown in figure 1.5, metals with high-density twin structures (twin spacing < 

100 nm) show not only high strength, but also good ductility, resulting from the hardening 

of TBs when they continuously lose coherency under plastic deformation [51, 52]. It is 

quite different from nc metals that typically have high strength but low ductility. As shown 

in Fig. 1.5, nc Cu has higher strength but poorer ductility compared to polycrystalline 

coarse-grained Cu, due to the suppression of dislocation-mediated plasticity in small 

grains. 
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Figure 1.5 (a) Tensile test for the nanotwinned Cu, nanocrystalline Cu, and coarse-grained 

Cu; (b) electrical resistivity change with the increase of temperature for nanotwinned Cu, 

nanocrystalline Cu, and coarse-grained Cu [52].  

 

 

           Moreover, the electrical resistivity of nt Cu is nearly identical to that of coarse-

grained Cu, whereas the nc Cu has a much higher electrical resistivity due to the high 

density GBs that scatter electrons significantly [52]. Similarly, as figure 1.6 shows, 

softening also happens in nc Cu when the twin thickness is below 15 nm [53]. To 

understand the softening mechanism in nt Cu, MD simulations have been employed [54]. 

Based on the MD simulation result, the classical Hall-Petch strengthening due to the pile-

up and transmission transforms to a dislocation-nucleation-controlled softening 

phenomenon resulting from TB migration triggered by the slip of partials along TBs when 

the twin spacing is less than 10 nm. 
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Figure 1.6 Tensile test of Cu with different twin density (same grain size) [53].  

 

 

I.1.4.2 Heterogeneous nanostructured metals 

           Recently, heterogeneous nanostructures have been found promising to promote 

strength-ductility synergy due to the mixture of soft and hard regions [55, 56]. As shown 

in figure 1.7, the strength-ductility synergy is achieved via combination of coarse grains 

and nc grains. Soft regions have better ductility than hard regions with small grains, so 

that strain gradients develop during plastic deformation. To accommodate the strain 

gradients, geometrically necessary dislocations (GNDs) build up, leading to enhanced 

work hardening [57].  
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Figure 1.7 Strength-ductility synergy. The coarse-grained metals have good ductility with 

lower strength whereas the nanocrystalline metals have the opposite phenomenon. The 

similar strength-ductility trade-offs happen for random mixtures of nanograins and coarse 

grains. By introducing the gradient structure, the strength-ductility synergy is obtained) 

[55].  

 

 

           In this section, we overview the strengthening mechanisms for different interfaces 

and structures. When the grain size is less than several nanometers, the strength of nc 

metals deviated from the Hall-Petch slope due to the transformation of deformation 

mechanisms. Compared to the nc metals, the multilayer films show more details on the 

factors which can contribute to the interface barrier strength. Moreover, the Ʃ3 TBs are 

introduced as a way to achieve the strength-ductility synergy which is also can be attained 

by the gradient nc structure. In next section, we will focus on the formation mechanism of 

twin since it is a promising structure to strength the material with less loss of ductility.   
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I.2 Formation mechanisms of twin boundary  

           The term “twin” refers to a special crystal interface in which the crystal structure 

has a symmetrical relation on either side. In face-centered cubic (fcc) metals, the twin 

structures can be induced by annealing, deformation, and growth process. Since k. Lu [52] 

reported the ultrahigh strength Cu with high-density nanoscale growth twins, nt metals 

have attracted intense attention and showed various unique properties. Cu with nanotwins 

have excellent electrical conductivity [52, 58] while maintaining high mechanical 

strength. Nt metals, such as Cu and Ag [59-62], also show better thermal stability than 

monolithic NC metals [63-65]. The mechanical properties of nt metals have also been 

extensively studied, and certain nt metals have shown high strength and high ductility [52-

54, 59, 66-70]. Since these appealing mechanical properties are induced by nanotwins, it 

is critical to understand the formation mechanism of twins to guide the synthesis of nt 

metals. In the following section, the formation mechanism of growth twins in fcc metal 

will be discussed. We will focus on two types of TBs, the Ʃ3 {111} coherent twin 

boundary (CTB) and Ʃ3 {112} incoherent twin boundary (ITB). 

 

I.2.1 Formation mechanism of coherent twin boundary 

I.2.1.1 Growth twin formation mechanisms 

           In fcc metal, the atomic stacking sequence along [111] is abcabc. During the growth 

process, if atoms land in the wrong position by growth accidents, a stacking fault will 
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form. Consecutive growth accidents will lead to the formation of twin embryo, and the 

stacking sequence may become abcabc|bacb. The Capital C indicate the TB and the onset 

of wrong stacking. According to the general description of the growth process of twin, the 

stacking fault energy (γsf) plays an important role in controlling the formation probability 

of twin nucleus. The higher the SFE, the lower the twin formation probability. Thus most 

studies on nt metals have focused on the low γsf metals. From a thermodynamics point of 

view, Zhang et al. [19] postulated a model to calculate the probability of forming a twinned 

nucleus during vapor-to-solid transformation using magnetron sputtering. The twin 

formation probability is proportional to the critical radius difference between a perfect and 

twinned nucleus. If the difference is small, the twinned nucleus has a high possibility to 

survive, which means the twin fraction in the metal will increase considerably. In detail, 

the critical radius of the perfect nucleus and twinned nucleus can be expressed as:   

𝑟𝑝𝑒𝑟𝑓𝑒𝑐𝑡
∗ =

𝛾

∆𝐺𝑉
=

𝛾

(
𝑘𝑇

Ω
𝑙𝑛[

𝐽√2𝜋𝑚𝑘𝑇

𝑃𝑠
])

     Equation 7 

𝑟𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
∗ =

𝛾

∆𝐺𝑉−
𝛾𝑡
ℎ

=
𝛾

(
𝑘𝑇

Ω
𝑙𝑛[

𝐽√2𝜋𝑚𝑘𝑇

𝑃𝑠
]−

𝛾𝑡
ℎ

)
    Equation 8 

where the r and h are the respective nucleus radius and height. 𝛾 is the surface energy and 

𝐺𝑉 is the bulk free energy difference between solid and vapor per unit volume driving 

the nucleation. 𝛾𝑡 is the respective energy of CTB. k is the Boltzmann constant,  is the 

atomic volume and T is the substrate temperature, J is the deposition flux, m is the atomic 

mass of the deposited metal, PS is the vapor pressure above solid. The critical radius 

difference between the parallel (or inclined) twin nucleus and the ‘perfect’ nucleus is 

expressed as  
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∆𝛾𝑝𝑝
∗ = 𝛾𝑝𝑎𝑟𝑎

∗ − 𝛾𝑝𝑒𝑟𝑓𝑒𝑐𝑡
∗           Equation 9 

           According to the equations (7), (8), and (9), either low TB energy or high deposition 

flux promotes the formation of growth twins in metal by physical vapor deposition. Fig. 

1.8 (a) shows the influence of deposition rates on the critical radius difference between 

perfect nucleus referring to the perfect crystal structure without defects and twin nucleus 

referring to CTB structure in the film. The highly twinned Ag film is shown in Fig. 

1.8(b)[60]. 

 

                       

Figure 1.8 (a) The plot of radius differences between perfect and twin nucleus at different 

deposition rates; (b) the transmission electron microscope image of highly twinned Ag 

film, the straight line indicated the TBs form edge-on view (Reprinted from [60], 

Copyright (2011), with permission from Elsevier). 

 

 

          Anderoglu [71] et al. deposited pure Cu at different deposition rates by magnetron 

sputtering. As shown in Fig. 1.9, the twin spacing decreases when the deposition rate 

increases, which correlates well with the chart in Fig. 1.8(a). Increasing the deposition rate 

can decrease the critical radius difference, and thus results in the higher twin formation 

(a) 
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possibility due to the smaller twin critical nucleus radius. If we can make the two critical 

radius comparable, the twin fraction will rise considerably. In addition to the 

thermodynamics view, the formation of twins can be interpreted from kinetics point of 

view. General speaking, at low deposition rates, incoming atoms landed on the surface of 

the film have sufficient time to diffuse to the perfect lattice sites to achieve the lowest 

potential energy. In contrast, higher deposition rate leads to reduced diffusion time for 

adatoms, and thus promote the formation of more growth defects.    

 

 

         

 

Figure 1.9 Cross-section TEM images of pure Cu with different deposition rates. (a) 0.9 

nm/s, (b) 3nm/s, (c) 4nm/s. (d)-(f) statistical distribution of twin spacing in deposited Cu 

film at different deposition rates, correspondingly [71]. 
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           For monolithic fcc metals with low SFE, magnetron sputtering works well to 

introduce high-density growth twins. However, it is difficult to induce high-density CTBs 

into metals with high SFE as indicated in Fig. 1.8(a) Al has a large critical radius 

difference even at high deposition rate (4nm/s) due to its high SFE (166 mJ/m2). The 

epitaxial growth of thin film by PVD has provided another approach to promote the 

formation of growth twin. A systematic study on various metallic multilayers leads to two 

criteria to introduce growth twins into high SFE metals [72]. The first criterion emphasizes 

the need for a low SFE buffer layer that can readily form high-density twin seeds; and the 

second criterion highlights the significance of global coherency between coherent similar 

interface (between constituents with identical planar indices) or local coherency between 

coherent dissimilar interfaces (between constituents with different planar indices) that 

allow twins to propagate across layer interfaces.  

          Liu [73] postulated the twin nucleation mechanism via shear stress induced 

Shockley partials. More specifically, in the Cu/Ni multilayer system, incoming atoms land 

on the terraces of islands and diffuse to the equilibrium sites. With the increase of film 

thickness, as shown in Fig. 1.10, there is no stress at the surface of the free edge. 

Nevertheless, the biaxial stress builds up quickly inside the island due to the mismatch 

strain between film and substrate. The mismatch stress between Cu and Ni is transferred 

by shear stress. The shear stress at the corner of the islands may facilitate the formation of 

partials and the slip of the partials. The consecutive slip of partial dislocation may promote 

the formation of a twin. The shear stress generated by the mismatch stress can be roughly 

estimated as follows [74] 
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τ ≈ σ𝑚√
𝑘ℎ𝑓

2𝜋𝑥
                 Equation 10 

where σ𝑚 is the biaxial mismatch stress in films, ℎ𝑓 is the film thickness, and 𝑥 is the 

distance from film edge. 𝑘 is the biaxial modulus ratio, it can be calculated by 

 

k =

𝐸𝑠
1−𝑣𝑠

𝐸𝑓

1−𝑣𝑓

                         Equation 11 

 where 𝐸 and v are the modulus and Poisson’s ration of substrate and film.  At the location 

away from film edge, the shear stress at the interface of Cu and Ni drop quickly compared 

with the film edge. In the Cu/Ni multilayer, the shear stress is about to be 1.3-2.2 GPa 

when 𝑥 is 1-3 times larger than the film thickness, which is high enough to initiate the slip 

of partial dislocation (540 MPa is necessary to create the Shockley partials in Cu).  

 

 

Figure 1.10 Schematics for shear stress in Cu/Ni multilayer interface [73]. 
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            Besides the epitaxial mechanism and shear stress induced nucleation of growth 

twins in high SFE Ni (125 mJ/m2), Zhang [75] et al. fabricated high-density twins in Ni 

by electrodeposition. Parallel nanotwins and parallelogram twins were formed under 

different electrodeposition conditions. However, there is still no comprehensive 

explanation of twin formation mechanism for electrodeposition process. The high 

deposition rate may contribute to the twin formation in high SFE fcc metals.   

 

I.2.1.2 Deformation twin formation mechanisms 

The dislocation slip accommodates the plastic deformation of metals in most cases. 

Deformation twinning mechanism can also operate under high strain rate [76-78] or low 

temperature [79, 80] to accomodate the plastic flow. The followings briefly summarize 

deformation induced twin nucleation mechanisms. 

      Homogeneous [81, 82] and heterogeneous [83-85] nucleation are two major 

characteristics to classify the nucleation of deformation twin. The heterogeneous twin 

nucleation needs less stress than the homogeneous nucleation [86, 87] and indirect 

experimental evidence show a good correlation of stress between heterogeneous 

nucleation models and experiments [86].   

 

I.2.1.2.1 Molecular dynamics (MD) simulations      

           For deformation twinning in fcc metals, the partial dislocation slip on consecutive 

{111} planes triggers the formation of deformation twins. The relevant energy landscape 

for the creation of fault surface is related to the rigid displacements along <112> direction, 
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also called the generalized stacking fault energy (GSFE ) profile. As shown in figure 1.11, 

the GSFE profiles for various fcc metals, to slip one-half of a crystal structure rigidly about 

the other half crystal along Burgers vector (1/6[112]), the atoms need to overcome the 

energy barrier of γ𝑈 which is the maximum energy during the atoms shuffling based on 

the Peierls dislocation slip concept [3]. γ𝐼 is the stable or intrinsic stacking fault energy 

and γ𝑈 is the unstable stacking fault energy. The formation of a stable SF is the precursor 

for the deformation twin nucleation process. Rice divided the formation of a microtwin 

into two steps [88]. First, GB emits a leading partial due to the high stress concentration 

and leave an intrinsic SF ribbon behind. Second, another leading partial is emitted from 

the GBs and slip above the slip plane of first leading partial to form the twin nucleus. After 

the third leading partial slip on the adjacent plane, a stable microtwin is formed. MD 

simulations have shown that the microtwin can grow by increasing stress [89]. However, 

at step two, the emitting of trailing partial dislocation on the identical plane of first leading 

partial will be favorable under specific circumstances, a process that is related to the SFE, 

temperature, and strain rate. Thus, the competition between the emitting the second 

leading partial on adjacent plane and the emitting the trailing partial at the same slip plane 

of first leading partial is the key criterion for the formation of a deformation twin. 
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Figure 1.11 (a) The profiles of Generalized stacking fault energy for fcc metals computed 

by density functional theory. (b) The stacking fault energy is related to the equilibrium 

width w between two partials on same slip plane [90]. 

 

 

           The criterion for the onset of deformation twining in Al under the Pierls framework 

for the dislocation emission at the crack tip has been calculated by Hai [89]. They found 

the deformation mechanisms strongly depend on both the loading mode and 

crystallographic orientation. For the specific loading mode and orientation that maximizes 

resolved shear stress along the direction of Burgers vector of a partial, the formation of 

deformation twinning is favorable, whereas the dislocation slip is initiated if the maximum 

resolved shear stress is along the direction of Burgers vector of a full dislocation. However, 

the model didn’t mention the competition between the twinning and dislocation slip. To 

quantitatively describe the process of twinning and dislocation slip, a comprehensive 

model has been built, wherein the twinning tendency is defined as T, T= 𝜆𝑐𝑟𝑖𝑡√𝛾𝑢𝑠 𝛾𝑢𝑡⁄  

[91]. In the equation, the 𝛾𝑢𝑠 is the unstable stacking fault energy and 𝛾𝑢𝑡 is the unstable 

twinning energy, which is the energy barrier for the formation of twin. 𝜆𝑐𝑟𝑖𝑡  is the 
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additional energy to emit the trailing partial compared to the leading partial, which is 

proportional to the 𝛾𝑢𝑠 𝛾𝐼⁄ . So, the metals with high 𝛾𝑢𝑠 𝛾𝐼⁄  ratio are prone to form twin 

due to the high energy of the emitting of trailing partial dislocation. The second term, 

𝛾𝑢𝑠 𝛾𝑢𝑡⁄  which delineate the difficulty of deformation twinning relative to the dislocation 

slip is less than 𝜆𝑐𝑟𝑖𝑡. It will be difficult to form twin if the ratio is small, which means the 

high 𝛾𝑢𝑡 make the second leading partial hard to emit. In general, when T > 1, the plastic 

deformation is controlled by the twinning and when T < 1, the dislocation slip dominates 

the deformation. But, two important factors, the temperature and strain rate, are not 

considered in this simulation. To correct the model, Warner et al. built a model 

incorporated the factor of the strain rate and temperature [92]. They confirmed that there 

is a transition from twining to full dislocation slip when the strain rate decreases. In detail, 

they calculated the relationship between activation energy for twinning or dislocation slip 

and strain rate at room temperature shown in figure 1.12. The x axis is the applied stress 

intensity that correlates to the strain rate, and y axis is the activation energy for trailing 

partial or twining partial. For extremely high strain rate, even the Al or Pt can form 

deformation twin instead of the full dislocation slip. If the strain rate is lower than the 

crossover of the trailing partial and twinning partial, the emitting of trailing partial is more 

favorable. For low SFE metals, the slip of trailing partials does not means the 

recombination of the partials, whereas the high SFE metals do favor the recombination of 

trailing and leading partials.  
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Figure 1.12. The chart for the relationship between the activation energy per unit length 

and applied strain rate [92]. 

 

 

          Although this model can predict the deformation mechanisms of fcc metals at 

different strain rate, the physical meaning of the transition for twinning to dislocation slip 

is still not clear. Additionally, the model only focuses on the competition of trailing partial 

slip and second leading partial slip after the emitting of the first leading partial, which is 

the precursor to form a stable twin nucleus. Kibey et al. move forward to predict the stress 

to form a stable twin nucleus in fcc metals [93] and found the monotonic dependence of 

twinning stress on 𝛾𝑢𝑡.  
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           Different from the models listed above, Yamakov et al. [8, 94, 95] used the 

separation distance of partials to characterize the twinning tendency in nc fcc metals. If 

the grain size is less than the separation distance, twinning will be favorable, whereas the 

dislocation slip will prevail if the grain size is larger than the separation distance. Based 

on the equation 12, the separation distance 𝑟𝑠𝑝𝑙𝑖𝑡 is controlled by the SFE Γ and applied 

stress 𝜎. Where b is the Burgers vector of partials, m is the Schmid factor and K is a factor 

which depends on the Schmid factor and elastic constants. By using a high strain rate 

deformation to trigger the high stress concentration on GBs, the separation distance of 

high SFE fcc metals can dramatically increase to several nanometers which is the grain 

size scale of the nc metals. During high strain rate deformation process in nc Al, a GB or 

triple junction will emit a leading partial that glides through the grain interior and leave a 

SF behind. If the grain size is smaller than the separation distance, before the emission of 

a trailing partial at same slip plane, the leading partial is already wiped out at the opposite 

GB. That is how a SF can be formed in high SFE metals under high applied stress.  

𝑟𝑠𝑝𝑙𝑖𝑡 = 𝐾
𝑏2

Γ−𝑏𝑚𝜎
            Equation 12 
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Figure 1.13. The deformation mechanism map including the influence of grain size (x axis) 

and applied stress (y axis) [8].  

 

 

 

          Figure 1.13 shows the transition map of deformation mechanisms in nc metals. In 

region three, the applied stress is less than the partial emission stress, which only triggers 

the GB-mediated deformation. In region two, the separation distance is larger than the 

grain size, and thus stable SFs form in the metal. In region one, only full dislocation can 

be observed due to the small separation distance compared to the grain size. Although the 

simulation predicts the deformation mechanism transition in nc Al metal well, still there 

is no clear physical meaning of the competition of twining and full dislocation slip.  

           Zhao et al. [96] observed the macro deformation twins in single crystal Al under 

ultra-high strain rate (∼106 s-1) via dynamic equal angular pressing. MD simulation has 

been employed to decipher the formation mechanism of deformation twin. They found 
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that the transition from full dislocation propagation to twinning only happen when 

dislocation activities experience a stagnation due to the formation of dislocation tangles. 

Then twinning is triggered to accommodate the plastic flow more efficiently based on the 

different migration velocity of dislocation slip and twinning as shown in figure 1.14. 

 

 

Figure 1.14 The dislocations and deformation twinning speed at different volumetric strain 

[96].  

 

 

 

     The speed of leading partial increases at higher strain but still below the transonic. 

An obvious strain rate burst is captured due to the transition from the dislocation slip to 

twinning. The transition results from the stress accumulation due to the discrepancy 

between the high strain rate and low slip velocity, which means the dislocation slip cannot 
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efficiently accommodate the plastic flow and is replaced by twinning, which has a higher 

propagation speed.  

     Another interesting question arises and remains unanswered. Why twinning has a 

higher velocity than dislocation slip although the essence of twinning is also the 

dislocation slip?  

I.2.1.2.2 Experimental observations of twinning mechanisms 

        To probe the deformation mechanisms in materials, a combination of MD simulations 

and experimental observation would be a better strategy than using either method alone. 

In this section, the different twinning mechanisms are presented below according to the 

result from experimental observation and MD simulations. 

         The first one is overlapping of SFs [97, 98].  Two SFs on adjacent slip planes can 

overlap to form a two atomic layer twin. Although theoretically, this twin structure can 

grow by forming more SFs on adjacent slip plane in the interior of nc grain, there is still 

no evidence to show the thicker twins more than two atomic layers. So, the overlapping 

of SFs may not play an important part in the deformation process of nc metals. The 

possible reason is the lacking of a continuous growth mechanism that relies on the 

incidental formation of SFs. The schematics of this mechanism is shown in figure 1.15 A. 

Besides the formation SFs inside the grain, another variant of the overlapping mechanism 

has been observed experimentally (Figure 1.15 B). For the B scenario, a SF first nucleates 

at GB and slipped into grain interior. Then another SF which formed inside the grain slip 

toward the SF nucleated at GB on an adjacent plane. Incidentally, they partially overlap 

to form a two atomic layer thick twin. If all the SFs were connected to GBs in two 
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scenarios, the formation mechanisms may be similar to the normal twin nucleus triggered 

by a consecutive partial slip from GBs. 

 

 

Figure 1.15. The twin formation due to the overlapping of stacking faults. The thin line 

across the grain is the {111} slip planes, and thick lines represent the stacking faults [99]. 

 

 

          The second twin formation mechanism is partial emission from GBs which has been 

illustrated in MD simulations [8, 89, 91, 95]. The phenomenon has also been confirmed 

in nc Ni experimentally [100, 101]. This twinning mechanism is the most commonly 

reported case in fcc nc metals. So, it is vital to understand the process for the partials 

emission from GBs. Experimental studies show that the non-equilibrium GB can readily 

emit partial dislocations to form deformation twin [10, 102, 103]. But, the existence of 

partials on every slip plane in the GB to grow a single twin is not possible both statistically 

and practically. Zhu et al. [100] proposed a dislocation reaction and cross-slip mechanisms 

to emit partials on successive slip plane at GBs to form deformation twins. 

          When the emitted partials have the same Burger vector (b), the formation of a 

deformation twin can introduce huge macroscopic strain (nb). However, the different 
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Burger vector of emission partials can lower the macroscopic strain generated by the 

deformation twinning.  In this section, the formation mechanism of a deformation twin 

with zero macroscopic strain is presented. 

          Figure 1.16 shows typical TEM micrographs of deformation twins in nc Al, Ni, and 

Cu processed by severe plastic deformation techniques. As indicated in white dash line, 

the GB segments sustain their original smooth shape without visible kink and distortion 

when intersected with TBs. Zhu et al. [104] postulated a partial emission sequence with 

zero sum Burger vector for the deformation twin named random activation of partials 

(RAP). It is hard to drive three different Burger vectors partials by global shear stress 

simultaneously. One possible argument is that the individual partials are triggered 

randomly due to the local shear stresses one at a time, since the local shear stress in nc 

could significantly diverge from the global shear stress. Moreover, the local stress state 

can easily alter by the GB activity like sliding and rotation [12, 105]. The zero strain 

deformation twin can raise another question: how can the global strain be conducted to 

relieve the global stress?  First, the zero strain twins do contribute to the global strain due 

to GB sliding and rotation. Second, the twinning process can dissipate the applied stress 

and accumulate energy effectively. Although the zero strain twin has no direct 

contribution to the macroscopic deformation, they can favorably reorient the crystal 

orientation to contribute to the bulk deformation. 
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Figure 1.16. High-resolution TEM micrographs of deformation twin with zero 

macroscopic strain in (a) cry-milling Al, (b) electrodeposition Ni, and (c) high-pressure 

torsion Cu [104].  

 

 

          The forth deformation twin formation mechanism is the GB splitting and migration. 

Ashby and Harper first postulated this type of deformation twin in 1967 [106]. And the 

mechanism is confirmed by MD [95] and experimental observation [107]. The GB 

segment needs to split and then migrate to form a twin and a new GB segment.  

          Recently, multifold deformation twins have been observed experimentally [108-

110]. The sequential twinning mechanism was postulated by Zhu et al. [110] to explain 

the formation process of the multifold twin structures. To form the multifold deformation 

twin, a regular twofold twin needs to form first as the precursor (figure 17a). Then, upper 

crystal emits successive partials that have b1 Burgers vector to form twin domain III, 

which converts a twofold twin to a threefold twin structure (Figure 1.17b). The coherent 

TB is TB2, and incoherent TB is TB3. And a fourfold twin can be formed by partials slip 

in threefold twin (Figure 1.17c). There is another possibility that the b3 and b4 partials 

slip simultaneously in threefold twin and form the fivefold twin directly (Figure 1.17d).  
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Figure 1.17 The schematics to show the formation of multifold twin structure based on a 

regular twofold twin structure [99]. 

 

 

I.2.2 Formation mechanism of incoherent twin boundary 

         The Ʃ3 {112} incoherent twin boundary is described as three {111}<112> partial 

dislocations with different Burgers vectors of type a/6<211> periodically occurring on 

successive {111} planes. The sum of their Burgers vectors is equal to 0. 
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Figure 1.18 An atomistic model of the Ʃ=3{112} interface in copper. The simulation 

shows the increase in 9R width predicted upon application of a shear strain parallel with 

the interface [111].  

 

 

          The dissociation of ITB can result in a narrow, several nanometer wide slabs of 9R 

phase. The stacking sequence of 9R phase can be described as a close-packed stacking of 

fcc {111} planes with inserted intrinsic stacking fault in every three atomic layers. 

Observation of the ITB dissociation have been made in gold [112], silver [113, 114], and 

copper [115, 116]. The dissociation width of ITB is determined by SFE and local stress. 

Figure 18 shows the atomistic model of ITB dissociation [116]. There are two formation 

mechanisms of ITB in fcc metals. One is the tilt GB formation due to the crystal orientation 

difference at bicrystal interface. Another is the deformation twinning via the consecutive 

slip of Shockley partials.  
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I.2.2.1 The incoherent twin formation mechanisms via growth 

           The Ʃ3 {112} boundary is one kind of <110> symmetric tilt grain boundary 

structure. Rittner [117] simulated 21 <110> symmetric tilt grain boundaries (GBs) using 

an embedded-atom method potential. According to the calculation, the different tilt angle 

between two crystals results in 21 different boundary planes. When the tilt angle is about 

70°, the Ʃ3 {112} boundary will form to lower the GB energy. The Ʃ3 {112} boundary 

dissociation mechanism (9R) involves the creation of SFs, Rittner [118] suggested that it 

only occurs in low SFE metals. Experimentally, Au shows the GB dissociation [119], 

whereas there is no GB dissociation in Al Ʃ3 {112} boundary [113]. Bufford [120] 

fabricated highly twinned epitaxial Al/Ag multilayer film using magnetron sputtering. As 

figure 1.19 shows, the domain boundaries are the Ʃ3 {112} ITBs. The formation of this 

ITB may be because of the different columns crystal orientations during growth process. 

When crystal orientation of two adjacent columns has a 60° difference, the boundary 

column prefer to form Ʃ3 {112} to decrease the potential energy of the film. Wolf [121] 

also showed the structure energy correlation for symmetrical tilt GBs in Figure 1.20.      
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Figure 1.19 Cross-section TEM micrograph of the Ag 100nm/ Al 100nm epitaxial 

multilayer film from Si <011> zone axis [120]. 

 

 

Figure 1.20 Energy for symmetrical tilt grain boundaries on planes normal to <111> [121]. 
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I.2.2.2 The formation mechanism of deformation incoherent twin boundary 

           Liu [122] reported the observation of zero-strain deformation twin in Ag. The 

movement of Ʃ3 {112} ITB facilitated the growth of CTB perpendicular to the ITB. They 

postulated a hypotheses that the GB, which is close to Ʃ3 {112} dissociated into one ITB 

and the other GB to explain the nucleation of deformation ITB based on the experimental 

observation. Ma [123] suggested that under externally applied stress, the cooperative slip 

of three Shockley partials produced the zero-strain ITB. Figure 1.7 shows the ITB 

dissociation under external stress. At stage A, GBs nucleate a twin, and a temporary near-

equilibrium ITB is generated at the twin front. They claimed that GB dissociations result 

in the formation of ITBs and the cooperative slip of Shockley particles inside the ITB 

induced the formation of CTB along the slip plane of Shockley particles.       

  

 

 

Figure 1.21. Schematic illustration of breakdown process of Ʃ3 {112} ITB in low SFE 

F.C.C. alloy [123].  

 

 

           The previous observations indicated that the formation of deformation ITB needs 

the dissociation of GBs that have similar crystal orientation to the Ʃ3 {112} boundary. 
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Under externally applied stress, the pre-existing partials inside the GBs slipped along 

(111) planes and formed the ITB and CTB spontaneously.  

I.3 Mechanical properties of twinned metals 

           There are various ways to strengthen the materials like GB strengthening, solid 

solution strengthening, second phase strengthening, strain hardening, and martensite 

strengthening. In the following section, several TB strengthening mechanisms will be 

discussed. 

           In general, when a dislocation interacts with CTBs, it may either: (1) cut through 

the TB; (2) dissociate into partials and slip along TBs. However, there are many factors 

that may alter the TB and dislocation interaction processes. To discuss the TB 

strengthening effect, we will focus on several key factors, including SFE, plastic 

anisotropy, and morphology of twins. 

           In the previous section, we discussed the influence of SFE on the formation of a 

twin. It raises another question: how does SFE impact the interaction between the 

dislocation and TBs? In this section, we will start with the monoclinic FCC metals with 

different SFE and divert to the alloys to discuss why the SFE can control the interaction 

process. 

           When a screw dislocation interacts with the CTB, it will be redirected into the TB 

and split into two partials which move along the TB in the opposite direction for Al with 

high SFE [67]. For the Cu and Ni with lower SFE, the primary interaction mode is the 

direct cutting through CTB mechanism without any slip in the TB plane. The screw 

dislocation interaction with TB in Al happens spontaneously once the dislocation 
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approaches the CTB, whereas the cutting-through mechanism needs applied stress to 

initiate for Cu and Ni. At even more complicated situation involving the interaction 

between non-screw dislocations and CTBs, the dislocation in Al still prefers to slip along 

the CTB. But, when the applied stress is high, the dislocation can also cut through the 

CTB [124]. The dislocation activity in Ni is similar to that in Al.  

            However,  partials in Cu are prone to slip along twin plane rather than TBs due to 

its low SFE. To rationalize the dislocation activity in monoclinic fcc metals for both screw 

or non-screw dislocations, a parameter is introduced in equation 13 to qualify the lattice 

resistance for the partial re-nucleation along glide planes or the TBs. The higher the R or 

R’, the larger the resistance. Based on the calculated fault energy that the authors provided 

[124], the negative R’ in Al suggests that the dominant role of relaxations when the 

dislocations arrive at the CTB. However, based on the calculated fault energy from others 

papers [91, 92, 125], the unstable TB energy should be larger than the SFE.  This 

discrepancy for Al needs more evidence to verify especially from direct observation of the 

interaction between the TB and dislocations. 

𝑅 =  
𝛾𝑢𝑠−𝛾𝑠

𝜇𝑏𝑠
 (𝑛𝑜𝑟𝑚𝑎𝑙 𝑔𝑙𝑖𝑑𝑒 𝑝𝑙𝑎𝑛𝑒),     𝑅′ =  

𝛾𝑢𝑡−𝛾𝑠

𝜇𝑏𝑠
 (𝑇𝐵)  Equation 13 
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                 Figure 1.22 The strain-stress curve of ITB in Ag, Cu, Pd and Al [49]. 

       

 

In addition to CTBs, an ITB also can act as a strong barrier for the transmission of 

dislocations. Since the ITB consists of arrays of partial dislocations, the response of pre-

existing partials under the shear stress varies for the metals with different SFE. As shown 

in figure 1.22 [49], one type (type 1) shear stress in Ag, Cu, and Pd increases gradually 

followed by a plateau, whereas Al (type 2) contains periodic load drop with linearly stress 

increment. For the type 1, the applied stress can dissociate the ITB to the 9R phase. In 

contrast, the ITB will move vertically to the slip plane of the partials to create steps 

between the matrix and twin structure.  

      Since the SFE plays an important role in the interaction of dislocation with TBs, there 

are increasing studies on tailoring the mechanical properties of twinned metals by 
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changing the SFE. Zhu et al. [126] observed high ductility and high strength Cu by 

alloying with 10 wt.% Zn (Figure 1.23). Due to low SFE in CuZn, high-density twin and 

stacking fault can form after the high-pressure torsion. More deformation twins can be 

triggered during the tensile test to block the dislocation activity resulting in the high strain 

hardening rate. Thus, the ductility has increased. High strength has been ascribed to the 

high-density twin, solid solution hardening, and the smaller grain size. 

 

 

Figure 1.23 The tensile engineering and true strain-stress curve for Cu and Cu-10wt%Zn 

[126]. 

 

 

          However, the addition of Zn in the Cu leads to significant solid solution hardening, 

making it difficult to isolate the contribution from the lower SFE. In another system, NiCo 

alloy, the influence of Co solid solution strengthening is insignificant due to the similar 
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atomic diameters of Ni and Co. Sun et al. found a higher strength and better ductility of 

NiCo alloy by adding more Co (as Co decreases the SFE of Ni) [127]. 

   

 I.4 Thin film deposition technique and growth mechanisms 

           There are various techniques to fabricate thin films. In general, all methods can be 

divided into a solution-based deposition and vapor deposition, which represents the liquid-

to-solid or vapor-to-solid phase transformations. Under the category of vapor deposition, 

there is physical vapor deposition (PVD) and chemical vapor deposition (CVD). PVD 

includes a broad range of vapor-phase deposition technologies. During PVD process, the 

solid materials are physically ejected in the form of atoms, molecules, and clusters. Then, 

all these vapors condense on a surface. During the condensation, nucleation of solid phase 

occurs, followed by the growth of solid phase. Different form the PVD, CVD uses 

chemical reactions on surfaces to despite the film. In this section, we will focus on the 

PVD and the corresponding film growth mechanisms. 

I.4.1 Physical vapor deposition 

           Different methods are used to vaporize solid materials in PVD techniques. One way 

to vaporize materials is thermal evaporation, which often melts the target at a high 

temperature to generate a vapor of atoms. Another technique is the magnetron sputtering. 

Ionized inert gasses bombard the target surface, the ejected atoms and molecules form a 

continuous stream of plasma that carry the atoms/molecules towards substrate surface. 

Reactive gasses, such as nitrogen, can be used to fabricate nitride films.  
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           Thermal evaporated has atoms have low kinetic energy. In contrast, magnetron 

sputtering can introduce high kinetic energy into vaporized atoms or clusters, which leads 

to dense films.  

I.4.2 Film growth 

           The properties of thin films fabricated by PVD are controlled by the film growth 

process, which can be tuned by the following key factors: (1) the morphology, chemistry, 

and the stability of the surface; (2) the deposition process and the configurations of system- 

e.g. the incidence angle, the deposition flux, the temperature of deposition, gaseous 

contamination, the kinetic energy of the ionic atoms; (3) film growth process – e.g. the 

mobility of the incoming adatoms on the surface, nucleation, the formation of interface, 

growth morphology of the film, the stress evolution, the formation of defects and interface; 

(4) post-deposition processing- e.g. thermal treatment, deformation, surface corrosion. To 

achieve consistent film structure, all the factors must be controlled. In this section, we will 

focus on the film growth process related to the adatoms nucleation, growth, and structure 

evolution.  

I.4.2.1 The nucleation modes 

            During condensation, atoms lose their energy by bonding to other atoms, which 

can be the atoms of the substrate or the other incoming atoms. The surface mobility 

correlates closely with the bonding energy, which can be measured by thermal desorption 

techniques. If there is a week interaction between the adatoms and surface, the adatoms 

have high surface mobility and may be trapped by preferential nucleation sites where 

strong bonding arises from a change in chemistry or the coordination number increment.  
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           According to the nature of the interaction, three nucleation mechanisms have been 

identified: (1) the Frank-van der Merwe mode, which is the layer-by-layer growth mode 

due to the growth of the low surface energy films on the high surface energy substrates; 

(2) the Volmer-Weber mode, which is in form of island growth resulting from interaction 

between high surface energy films and low surface energy substrates; and (3) Stranski-

Krastanov mode represents the combination of layer growth and island growth due to the 

similar surface energy of films and substrates. 

 

I.4.2.2 Microstructure evolution of during growth of films  

           The growth process includes the nucleation, island or layer growth, the coalescence 

of the island due to their impingement, the formation of a continuous structure, the steady-

state film growth. After nucleation, the island coalescence will trigger by the surface 

energy minimization. Thus, the islands with low surface energy will grow by consuming 

the high surface energy islands through the diffusion process. Due to the preferential 

growth during the island coalescence, a film may form preferred orientation with low 

surface energy crystal planes. Secondary nucleation also happens due to the new open 

substrate area resulted from the rapid coalescence. Coarsening processes are controlled 

both by temperature and island size. For a larger island, especially at low temperature, a 

slow coarsening process is controlled by GB migration, which will stop until the grain size 

is sufficiently large. Then the film forms a continuous structure and steps into the steady-

state growth region. To characterize the film structure evolution at different deposition 

temperature, three different regions have been identified [128]. At low deposition 
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temperature, a film forms an dense structure with a fiber texture due to the negligible 

adatom diffusion process. The columns sustain random orientation of the nuclei due to the 

poor adatom mobility. The columns contain small equiaxed grains or completely 

amorphous. At higher deposition temperature, the surface diffusion of adatom is obvious, 

causing local epitaxial growth with pronounced columnar structure. During the grain 

growth process, the competition between differently orientated grains is the primary 

feature which has been illustrated by Gimer et al. [129] for Aluminum growth.  At even 

higher deposition temperature, due to severe bulk diffusion, GB migration will not stop 

after the island coalescence. Low surface energy grain will grow at the expense of the 

grain with unfavorable orientation.  

 

 I.4.3 Epitaxial growth 

            Epitaxy means the deposited crystalline layer mimics the surface lattice structure 

of the substrate. Homoepitaxy refers to the case where the film and substrate are of the 

same material, and is widely used in the semiconductor industry to deposit Si films on the 

Si substrates. In contrast, heteroepitaxy refers to the case where epitaxial film has different 

chemical composition and/or crystal structure with the substrate. As figure 1.24 shown, 

the TaN/TiN thin film grows epitaxially on Si(100) substrate [130]. First, TiN grows on 

the Si substrate epitaxially accommodated by arrays of misfit dislocations arranged at the 

interface (Figure 1.24(c)). Subsequently a TaN layer is deposited on top of TiN. 

Heteroepitaxial growth has the advantages on electrical, mechanical, and optoelectronic 
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performance due to the improved texture of films with less detrimental GBs that deflect 

electrons.  

              To characterize mismatch between the film and substrate interface in the 

heteroepitaxial system, the mismatch strain f is defined in equation 14, where 𝑎𝑠 is the 

substrate lattice parameter and 𝑎𝑓 is the film lattice parameter. During the film growth, 

when the film is thin, the mismatch strain can be accommodated by the coherency strain. 

With the increase of film thickness, the strain energy builds up simultaneously and exceeds 

the maximum strain that coherent interface can sustain. Then a misfit dislocation forms to 

release to the misfit strain [131, 132].  

f =
𝑎𝑠−𝑎𝑓

0.5(𝑎𝑠+𝑎𝑓)
    Equation 14 

              So, the total elastic energy due to the misfit strain between the film and substrate 

can be expressed by the combination of coherency strain energy and the energy of a misfit 

dislocation. The equation 15 shows the relationship between total elastic energy and 

coherency strain and misfit dislocation energy. 

𝐸𝑡𝑜𝑡 =  𝜀𝑐
2𝐵ℎ +

𝜇𝑓𝑏

2𝜋(1−𝜐)
(𝑓 − 𝜀𝑐) [ln (

ℎ

𝑏
) + 1]  Equation 15 

             Where 𝜀𝑐 is the coherency strain. B is biaxial modulus. Using equation 15, the 

critical layer thickness to form the misfit dislocation can be calculated when 
d𝐸𝑡𝑜𝑡

d𝜀𝑐
= 0. 

              Besides the misfit dislocations, misfit twins can also form to release the elastic 

strain generated by the misfit strain between the film and substrate in Si/Ge, Ga/As and 

Pd/Ni systems [133-135]. Instead of forming perfect dislocations, twinning partial 

dislocations can form at the interface as the precursor of twin nucleus.  
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Figure 1.24 High-resolution TEM micrographs of TaN/TiN/Si(100) film. (a) the interface 

of TaN/TiN; (b) the interface of TiN/Si; (c) the enlarged micrograph of the interface 

between Si and TiN with the misfit dislocations [130]. 
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I.5 Scope and goals 

            The motivation of this thesis includes several aspects related to the growth twin 

formation in fcc metals with high SFE, the alloying effect on the twin formation of Al-

based materials, and the mechanical properties of the thin film with the different type of 

twins. We first discuss the synthesis of twinned Al film. The growth twin formation 

mechanism will be discussed. Then epitaxial nt Al films with different orientation will be 

synthesized, and the influence of the film growth orientation on twin formation will be 

studied. We apply the co-sputtering technique to deposit the Al-based alloy films with 

high-density growth twins. The doping effect on film microstructure evolution and twin 

formation ability will be studied.  

      Beside the microstructure analysis, the mechanical properties of twinned Al film and 

co-sputtered Al alloy will be examined by nanoindentation and in-situ pillar compression. 

Various factors (twin orientation, twin fraction, and domain size) that affect the strength 

and ductility of twinned films will be discussed. Al films are employed in numerous 

applications, such as movable parts in MEMS devices, as a metallization material for 

integrated circuits and flat panel LCD monitors. Therefore, Al with high strength from 

high-density twins is highly desirable.   
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CHAPTER II 

EXPERIMENTAL 

II.1 Magnetron sputtering

      All the thin films were deposited using the magnetron sputtering with four 3’’ 

circular sputtering source (TORUS® Kurt J. Lesker Company, Livermore, CA) system as 

shown in figure 2.1. The MDX1.5 KW power supply has been used for the sputtering. The 

high vacuum chamber is pumped by turbomolecular drag pump (Pfeiffer Vacuum Gmbh, 

Berliner, Germany) and cryopumps (cryo-torr cryopump, Trillium US Inc.).  

Figure 2.1 The set-up for custom-built magnetron sputtering system. 

      The base pressure of the chamber is 3-8×10-8 torr before the deposition. Ultra-high 

purity Ar gas was used as the source to generate the plasma during the deposition.  The 
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single crystal silicon substrates (Desert Silicon LLC) were used as the substrates in all 

deposition experiments. All the metal targets (Al, Ag, and Mg) have high purity (99.99%) 

with 3’’ diameter. Silicon wafers with different orientations were etched by HF to remove 

native oxide before deposition. The primary parameter of the deposition is the deposition 

rate which was controlled by the deposition power. The higher the deposition power, the 

greater the deposition rate. 

     The simplified sputtering process is described below. First, the inert Ar gas flows 

into the sputter gun. The Ar atoms are ionized due to the applied DC voltage between the 

cathodes and anode. The Ar ions and electrons form the plasma which is confined by the 

magnetic field. Inside the magnetic field, the charged and energetic Ar ions accelerate 

towards the target and strip off the atoms from the target surface. These ejected atoms or 

atom clusters fly towards the substrates and form the film on the substrates. 

II.2 X-ray diffraction (XRD)

     XRD is used to identify the phase, crystal structure, chemical bonds, and even the 

disorder of the materials. The monochromatic beam of x-rays is directed onto the thin film 

sample, based on the Bragg’s law; the crystal lattice can diffract the beam following the 

equation 16. Where 𝜆 is the incident x-ray wavelength, 𝜃 is the angle between the incident 

beam and the crystal plane which interact with the x-ray beam, d is the interplanar spacing 

and n is the order of diffraction. 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 Equation 16 

     The twin structure also can be detected by the XRD using the phi scan due to the 

symmetrical rotation between the twin crystal and matrix. Figure 2.2 shows [120] the phi 
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scan for {111} planes in different films. The [111] is a rotation axis with three-fold 

symmetry. Thus, the phi-scan ([111] rotation axis) for {111} planes shows three peaks in 

single crystal-like structure. Whereas, the twinned crystal double the number of {111} 

peak, as shown in Ag/Al films (second and third rows in figure 2.2).  

Figure 2.2 The X-ray diffraction of {111} phi-scan profiles of different films. M 

represents the matrix and T means the twin crystal [120]. 

 Conventional 2𝜃 scans were used to characterize the phase in thin films which were 

performed at PANalytical (Almelo, Netherlands) X’Pert PRO materials research 

diffractometer using Cu K𝛼 radiation (𝜆= 1.5418 angstron). 
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II.3 Transmission electron microscopy (TEM) 

           TEM is a important tool to analyze the microstructure and chemical information, 

crystallographic details of the film on a fine scale. The resolution of the microscope is 

controlled by the wavelength of the incident source. For the optical microscopes, the 

wavelength is around the several hundred nanometers.  In the case of the 200kV TEM 

microscope, the wavelength is 2.75 pm. However, the resolution in TEM is also restricted 

by the accumulated aberrations which are caused by the lenses in the TEM.  

            There are four major components in a TEM, which are the illumination system, 

electromagnetic lens, the sample holder, and the signal captured system. First, the 

illumination system provides the high energy electron beam. Usually, the electrons are 

emitted by heated tungsten or LaB6 and confined into a roughly focused beam. To form 

monochromatic electrons, the beam passes through a small hole at the center of the anode 

which can also accelerate the passing beam. After electrons going through the hole in the 

center of the anode, the beam is focused and confined by a series of condenser lenses and 

apertures to form a coherent electron beam. Then, the beam hits and transmits the 

specimen and all the signals generated during the interaction between the sample, and the 

electron beam is captured by various detectors in TEM.   

Bright field (BF) is the normal imaging technique. The contrast of the image comes 

from the intensity difference of different features which deflect the electron beam 

diversely. Dark filed imaging is an inverse of the bright field. Additionally, by controlling 

the beam and applied various detectors to collect different information. By scanning the 
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beam on a specimen and collecting the scattered electrons (also called high angle annular 

dark field scanning TEM), the micrograph can show the contrast based on the 

compositional difference. Normally, chemical analysis technique, like energy dispersive 

X-ray (EDX) spectroscopy and electron energy loss spectroscopy (EELS) is coupled with 

scanning TEM (STEM). 

     TEM and STEM were conducted by using an FEI Tecnai G2 F20 ST microscope 

equipped with a field emission Gun operated at 200 kV at Microscopy and Imaging Center. 

II.4 Nanoindentation

     The hardness of the materials can reflect the resistance of the material to the 

localized plastic deformation. Normally, the hardness of indentation is three times larger 

than the flow stress of materials. Since the thin films have a small volume that is 

insufficient for tensile test, the nanoindentation shows the superiority to probe the 

mechanical property in a small volume. Two steps are involved in the nanoindentation 

measurement. First, a diamond indenter is compressed into the materials using a pre-set 

load or displacement. Then, the indenter is retracted from the sample. During the retraction, 

the elastic deformation recovers while the plastic deformation can not recover and leave a 

residual indent on the surface. The indentation hardness is calculated by equation 17. 

Where Pmax is the peak load, and AC is the projected contact area. 

H𝐼𝑇 =  𝑃𝑚𝑎𝑥 𝐴𝐶⁄  Equation 17 

      AC is calculated based on a mathematic area function which correlates with 

indentation depth hC. Although the hardness calculation is obtained from the 
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nanoindentation load-displacement curve, it is still sensitive to different analysis methods 

like elastic contact model [136] and continuous stiffness method [137]. The elastic contact 

model is most commonly accepted method which contains three essential assumptions. 

First, it is a pure elastic deformation during the unloading process. Second, it can be 

combined with springs in series for the compliances of the specimens and indenter. Third, 

the contact between an indenter and the specimen can be modeled for the contact between 

a sphere and an isotropic elastic half-space using the equation 18. Where S is the contact 

stiffness which is the slope of unloading curve, and 𝐸𝑟 is the reduced modulus.  

s =
2𝐸𝑟√𝐴𝐶

√𝜋
    Equation 18 

           The contact depth hC can be calculated by the equation 19 found on these three 

assumptions. To illustrate the different indentation depth,  figure 2.3 shows the schematic 

of a cross-section view of indentation area and the load-displacement curve for the 

indentation [138, 139]. Where ℎ𝑚𝑎𝑥  is maximum penetration depth,  ℎ𝑐  is the contact 

depth, ℎ𝑖 is the intercept depth, and ℎ𝑓 is the depth after the unloading. 

ℎ𝑐 = ℎ𝑚𝑎𝑥 − 𝜀(ℎ𝑚𝑎𝑥 − ℎ𝑖)       Equation 19 
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Figure 2.3 The cross-section of contact area for the indentation, the loading/ unloading 

curve [138, 139]. 

     

 

           The reduced Young’s modulus (𝐸𝑟) can be expressed by the equation 20. Where 

the 𝐸𝑖 is the indenter Young’s modulus, and 𝑣𝑖 is the Poisson’s ratio of indenter, which is 

1140 GPa.  𝐸  and 𝑣  are the specimen’s Young’s modulus and Poisson’s ratio, 

respectively. Thus, to obtain the Young’s modulus and the hardness of the test specimen, 

first, the contact stiffness and contact depth can be calculated based on the equation 19. 

Then, according to the mathematic relationship, the contact area can be calculated. The 

hardness is the result of maximum load divided by the contact area. The reduced Young’s 

modulus then can be calculated by using equation 18. It is easy to get the Young’s modulus 

of specimen from equation 20. 

1

𝐸𝑟
= (

1−𝑣𝑖
2

𝐸𝑖
) + (

1−𝑣2

𝐸
)                           Equation 20 
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II.5 Electron backscatter diffraction (EBSD)  and  Transmission kikuchi diffraction 

(TKD)  

            EBSD is a crystallographic technique that can provide the information of grain 

orientations, the texture of the materials, point-to-point orientation relationship and phases 

on the surfaces of materials. This technique has been widely used in metallurgical and 

materials fields due to multiple advantages, including the simple sample preparation 

procedure, the complementary information of the microstructure, and the high acquisition 

speed. In 1928, Nishikawa and Kikuchi observed a diffraction pattern from backscattering 

mode and transmission mode [140], which shed light on the identification of crystal 

structure by using the Kikuchi pattern. The EBSD set-up normally is equipped with a 

scanning electron microscope (SEM) as the source of the electrons. To acquire the 

backscatter diffraction signal, the sample is placed in the SEM chamber inclined to the 

incident electron beam with 30 degrees. And the phosphor screen is faced to the sample 

surface to detect the backscatter signal from a volume of the material, typically 20 nm 

deep from surface. Among all the backscatter signals, only the electrons diffracted based 

on the Bragg’ law can generate the Kikuchi pattern that can be captured by the camera 

screen.  

          Normally, the minimum spatial resolution of EBSD is around 50 nm [141], which 

is caused by two reasons. First, the long working distance is a need for the sample to fulfill 

the geometry limitation regarding the SEM pole piece and the EBSD detector due to the 

large tilting angle of the sample. Second, high sample tilting also causes the enlarged 

interaction volume which also reduces the resolution. To improve the spatial resolution, 
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an alternative method which is called TKD has been used in the EBSD data acquisition. 

For the TKD, the sample must thin enough to transmit the electron beam. In this scenario, 

the diffraction happens on the lower surface of the thin sample when the electron beam 

passes the sample. Thus, it is possible to decrease the working distance based on the TKD 

set-up which is shown in figure 2.4 [142]. Due to the geometry, the specimen tilting angle 

is not required to title more than 10 degrees, which will avoid the enlarged interaction 

volume.  

 

 

Figure 2.4 The schematic of the geometry for transmission Kikuchi diffraction set-

up[142]. 

 

 

           There are several parameters need to be tuned carefully to acquire a high-quality 

EBSD data regarding the high hit rate and low mean angular deviation, The working 

distance is the most important one among all the parameters, which also correlates with 
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the tilting angle of the specimen. As shown in figure 2.5 [142],  the small tilting angle and 

the short working distance can enhance the quality of the Kikuchi pattern. Another factor 

is the acceleration voltage of the electron beam, to achieve the best condition, the proper 

voltage needs to be found. If the voltage is low, it is sensitive to the very thin area but not 

enough signal for the thicker area. The acceleration voltage which the electron beam is 

applied should tune based on the sample thickness.  

 

 

Figure 2.5 The Kikuchi pattern of Al thin film at a different working distance and tilting 

angle worked at 25 KV [142]. 

 

 

           As figure 2.6 shows [143], it is obvious that good diffraction patterns can be 

captured from the specimen with the thickness between 70 nm and 400 nm using 22kV 
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acceleration voltage. But, compared with the thinner area (<100 nm), thicker area are more 

likely to generate overlapping patterns due to the tiny grain size and inclined GBs. So, the 

optimum range for good quality pattern is from 70 nm to 200 nm.   

 

 

Figure 2.6 The profile of the pattern quality change as a function of specimen thickness 

[143].    

 

 

            Based on the pioneering work from Trimby [144], Suzuki [142] and, Patrick[143], 

the parameters used in this experiment for Al thin film are listed below. The specimens 

were mounted in the Oxford TKD sample holder, which clamped the TEM specimens at 

20° tilting angles based on the horizontal plane of the sample holder. Then, the sample 

holder was mounted on the stage of Tescan FERA-3 with Schottky field emission electron 

source operated at 28 kV. There is no tilting on the SEM sample stage. Thus, the angle 

between the electron beam and the sample surface is 70°. The sample working distance is 
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5.5 mm to make sure the sample is above the level of the top of EBSD detector (Oxford 

NordlysNano high sensitivity camera). The beam spot size is 12nm and absorption current 

is around 1nA. These above are the settings for the SEM.  

           To acquire the high-quality Kikuchi diffraction patterns using Aztec 2.0 software, 

the following parameters are important. Optimized-TKD indexing mode can provide more 

accurate result compared with conventional band detection mode. The diffraction patterns 

were collected under 336 × 256 pixels image resolution, and the scan step size is 18nm. 

Indexing rates varied with the sample condition and film thickness and the range are 

between 70% and 95%. The TKD data were processed by Oxford CHANNEL software. 

The typical scan area in this experiment using TKD-EBSD is 5 × 3 micron.  
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CHAPTER III  

THE FORMATION MECHANISMS OF GROWTH TWINS IN POLYCRYSTALLINE 

ALUMINUM WITH HIGH STACKING FAULT ENERGY 

 

 

III.1 Overview 

       Growth twins are scarcely observed in metals with high stacking fault energy, such as 

pure Al. In this study, however, we report the observation of growth twins in sputtered 

polycrystalline Al films on amorphous substrates and a majority of these growth twins are 

inclined to the growth direction (inclined twins). Although the fraction of twinned grains 

is low in general, it increases monotonically with increasing film thickness, reaches a 

maximum at the film thickness of 80 nm, and decreases gradually thereafter in the thicker 

films. The nucleation mechanism for the inclined twins is compared with that of the 

parallel growth twins in Al. Different twin formation mechanisms are discussed. This 

study provides an alternative perspective to evaluate the formation of growth twins in 

metals with high stacking fault energy.    

 

                                                 

 This chapter reprinted with permission form “The Formation Mechanisms of Growth Twins in 

Polycrystalline Aluminum with High Stacking Fault Energy” by S. Xue, Z. Fan, Y. Chen, J. Li, H. Wang, 

and X. Zhang, 2015. Acta Materialia, Volume 101, pp 62-70, Copyright 2015 by Elsevier. 
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III.2 Introduction 

        Nanotwinned (nt) metals have been intensely studied and show various unique 

properties.  Cu with nanotwins have excellent electrical conductivity [52, 58] while 

maintaining high mechanical strength. Nt metals, such as Cu and Ag [59-62], also show 

better thermal stability than monolithic nanocrystalline (nc) metals [63-65]. The 

mechanical properties of nt metals have also been extensively studied [52-54, 59, 66-70, 

99, 120, 145, 146]. Nanotwins enhance the mechanical properties of metals via various 

mechanisms, some of which are briefly summarized as follows. First, molecular dynamics 

(MD) simulations have shown that glide dislocations can be blocked by the ∑ 3 (111) 

coherent twin boundary (CTB) [54, 67, 124, 147] and 3(112) incoherent twin boundary 

[49, 148, 149]. A very high stress is necessary to transmit dislocations across TBs [150, 

151]. In situ nanoindentation studies of nt Cu confirm significant interactions between 

dislocations and CTBs/ITBs [147, 152]. Second, high density dislocations can accumulate 

at the CTBs and thus enhance work hardening capability and ductility comparing with nc 

metals [53, 153, 154]. Third, TBs are mobile manifested as detwinning in nt Cu as have 

been observed experimentally by ex situ shear deformation [145, 155-157] or in situ 

nanoindentation and validated by MD simulations [69, 152]. The stress for detwinning of 

fine nanotwins can be exceptionally low, ~ 100 MPa, much lower than the yield strength 

of nt Cu [152].  

Prior studies on twins focus primarily on metals with low stacking fault energy 

(SFE), such as Cu, Ag, GaP and 330 stainless steels [19, 53, 66, 90, 120, 122, 145, 158-

164]. Because of the appealing mechanical properties induced by TBs, there are increasing 
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interest in synthesis of twinned light-weight metals, such as Al. Although twins can be 

introduced into fcc metals by annealing (annealing twins), deformation (deformation 

twins) and growth (growth twins), the twinnability of fcc metals remains largely controlled 

by their SFE [19, 99, 100, 125, 158, 165]. Consequently it is much more difficult to 

introduce twins in high SFE metals than those with low SFE. The prediction of 

deformation twin in nc Al by molecular dynamics simulation [95, 125] leads to a series of 

successful discovery that shows twins can indeed be introduced via nanoindentation [166], 

tensile test [53] or cryomilling [97] in nc Al. These evidence give us a hint that although 

the Al has an inherently high SFE barrier to form twins, other factors, such as grain size 

[8, 167], strain rate [168, 169] and high stress concentration [89], may trigger the 

formation of twins.   

Recently high-density growth twins and stacking faults have been fabricated in Al 

by introducing nt Ag buffer layers [22, 120, 170] by the magnetron sputtering technique. 

The Al film grown epitaxially on Ag replicates the microstructures including twins from 

the Ag seed layer because Ag and Al has identical lattice parameter and crystal structure. 

A systematic study on various metallic multilayers leads to two criteria for the introduction 

of growth twins into high SFE metals [72]. The first criterion emphasize the need for a 

low SFE buffer layer that can readily form high-density twinned seeds; and the second 

criterion highlights the significance of global coherency between coherent similar 

interface (between constituents with identical planar indices) or local coherency between 

coherent dissimilar interfaces (between constituents with different planar indices) that 

allow twins to propagate across layer interfaces. Although high-density growth twins have 
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been introduced into Al with the assistance of the buffer layers, whether growth twins can 

be synthesized in Al without low SFE metal buffer layers remains an unanswered question.  

In this article, we present a simple method to introduce twins into polycrystalline 

Al films by DC magnetron sputtering without low SFE metallic seed layer. By controlling 

the film thickness, the fraction of twinned grains in Al can increase to nearly 10%. We 

also investigated the inverse film thickness effect on the formation of twins in thicker Al 

films. The twin formation mechanisms, including nucleation and growth of twins, are 

discussed.     

III.3 Experimental 

Polycrystalline Al films were deposited at room temperature by DC magnetron 

sputtering using 99.99% purity Al target onto Si substrates and sample grids supported 

with carbon film for transmission electron microscopy (TEM) studies. The aluminum 

films of different thickness (20-180 nm) were deposited by controlling deposition time 

under the same deposition rate, 0.7 nm/s. The base pressure of the vacuum system prior to 

deposition was ~8× 10-8 torr or better and Ar gas pressure was ~ 2.5× 10-3 torr during 

magnetron sputtering. TEM studies were performed on an FEI Tecnai F20 ST electron 

microscope operated at 200 kV and equipped with a Fischione ultra-high resolution high-

angle annular dark field (HAADF) detector. For the statistic studies on the distributions 

of grain size and twin thickness, ~ 500 grains were measured for each specimen with 

different film thicknesses, and over 1,200 grains were counted for each film to calculate 

the fraction of twinned grains at different locations in order to establish statistical 

significance.  
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III.4 Results 

Plan-view TEM micrographs are shown in Fig. 3.1 for polycrystalline Al films 

with different film thickness (h) deposited on TEM grids. In the 20 nm thick Al films in 

Fig. 3.1a, growth twins were observed as labeled selectively by arrows. The average grain 

size (Dave) is 30 nm. The inserted selected area diffraction (SAD) pattern (collected with 

a large aperture to include numerous grains) shows numerous continuous rings, such as 

(111), (220) and (200) diffractions, arising from nc grains. When the film thickness (h) 

increases to 100 nm, the SAD pattern in Fig. 3.1e shows film texture barely changes. 

Meanwhile the grain size of the Al film increases to over 100 nm when h = 140 nm. 

Fig.3.2a shows a CTB multi-junction containing two 2-fold twins. The white dash box b 

in Fig. 3.2a is magnified in the high resolution TEM (HRTEM) micrograph in Fig. 3.2b.  

Each of the 2-fold twins contains 2 CTBs (CTB1 and 2). The two nodes are connected by 

a highly distorted boundary that is nearly parallel to the {111} plane. The fast Fourier 

transform (FFT) of Fig. 3.2b shows the relationship between the two sets of TBs in Fig. 

3.2c. The two CTBs in node 1 are identified to be (11̅1) and (1̅1̅1) plane, respectively. 

The HRTEM micrograph of the box d (in Fig. 3.2a) shows stacking faults (SF) adjacent 

to the TB (Fig. 3.2d).  

Statistical studies in Fig. 3.3a show that the average grain size (Dave) increases 

monotonically from 30 to ~110 nm with film thickness when h ≤ 80 nm; and it then 

approaches a plateau, ~140 nm, in thicker films. In parallel with the increase of film 

thickness, the average twin spacing (Tave) also increases, from 12 to 44 nm, when h ≤ 80 

nm; and approaches 57 nm when h = 180 nm.  The ratio of Tave/Dave is ~ 40% with little 
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dependence on film thickness. Fig. 3.4 summarizes the evolution of Tave and Dave with 

film thickness. Meanwhile the fraction of twinned grains rises monotonically and reaches 

a maximum of 9.5% when h = 80 nm, which is twice as much as the fraction of twinned 

grains in the 20 nm-thick films. The fraction of twinned grains then decreases thereafter 

in the thicker films. 

 

 

 

Figure 3.1 Transmission electron microscopy (TEM) micrographs of Al films with 

different film thickness showing the formation of growth twins. (a) h = 20 nm, (b) h = 40 

nm, (c) h = 60 nm, (d) h = 80 nm, (e) h = 100 nm, (f) h = 140 nm. Twins were frequently 

observed as labeled selectively by arrows in the micrographs. The inserted selected area 

diffraction (SAD) patterns indicate the formation of polycrystalline Al films. 
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Figure 3.2. Microstructure of long coherent twin boundaries (CTBs) in twinned Al films. 

(a) Low magnification TEM micrograph of the CTB multi-junction in Al film, h = 40 nm. 

(b) HRTEM micrograph showing the intersection of CTBs at the junctions. (c) The fast 

Fourier transform (FFT) of the CTB junctions confirmation the formation of two sets of 

twins. (d) HRTEM micrograph showing the CTB1 decorated with stacking faults. 
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Figure 3.3. Statistic distributions of grain size and twin thickness for Al films with various 

film thickness. (a) Statistical variation of grain size with different film thickness. The 

average grain size increases monotonically up to ~138 nm with increasing film thickness 

to 100 nm, and then reaches a plateau. (b) In parallel the average twin thickness increases 

to ~ 52-56 nm when h = 100 nm, and reaches a saturation. 
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Figure 3.4. The evolution of fraction of twinned grains, average twin thickness and 

average grain size with Al film thickness. The fraction of twinned grains increases 

continuously with increasing film thickness, reaches a maximum of ~ 9% when h = 80 

nm, and decreases thereafter in thicker films. The average twin thickness and grain sizes 

increase monotonically with film thickness and approach plateaus when h = 100 nm.  

 

 

III.5 Discussion 

III.5.1 The formation mechanisms of growth twins in Al 

Our previous studies show that the epitaxial growth of Al on highly twinned Ag 

seed layer prompts the extension of nanotwins (nucleated in Ag) into Al films [120]. In 

this study, however, the twinned polycrystalline Al thin films were synthesized by DC 

magnetron sputtering without the assistance of any Ag seed layers. From the 

thermodynamics point of view, it has been shown that an increase in deposition rate will 
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prompt the formation of growth twins in metals [19]. Such a prediction has been validated 

in Cu experimentally [171]. Bufford et al [60] used the same twin nucleation model [19] 

to illustrate that twins are rarely observed in Al films even at a very high deposition rate 

because of its high SFE. However, the previous thermodynamic model, which was 

constructed based on the assumption that the TB is parallel to the substrate (referred to as 

a parallel twin hereafter), cannot predicate the emergence of growth twins (most of which 

are inclined twins) in the current polycrystalline Al films. Parallel twins have been 

frequently observed in sputtered nt metals, such as Cu, Ag and 330 stainless steels [58, 

60, 151]. These sputtered twinned films typically have a strong {111} texture. In 

comparison, when the nt Ag films have [110] texture, inclined twins have been observed 

[60]. In the current study, nanotwins in polycrystalline Al were observed in plan-view 

TEM specimens, implying that a majority of these are inclined twins and TBs intersect the 

film surfaces.  

Cross-section TEM (XTEM) micrographs in Fig. 3.5 (for the Al films grown on Si 

substrate) show several examples where inclined twins formed. In the first case as shown 

in Fig. 3.5a, the inclined twins (manifested by CTB) nucleated from Si-film interface and 

extended into the film (to a height of ~220 nm) until it is terminated by the columnar grain 

boundary. Note that this film is thicker than most of the films that were grown on TEM 

washer. The SAD pattern of the same film in Fig.3.5b shows the formation of a {111} 

CTB. Based on the observation of these inclined twins, we will discuss the revised 

thermodynamics model to describe the formation of the inclined twins in Al.  
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III.5.2 A revised thermodynamics model for the formation of inclined twins in 

metals with high SFE 

We will compare the nucleation mechanisms of a perfect nucleus, a nucleus with a 

parallel twin and a nucleus with an inclined CTB as shown schematically in Fig. 3.6. The 

perfect nucleus in Fig. 3.6a has the {111} texture. The parallel twin nucleus in Fig. 3.6b 

has the same texture and the CTB is normal to the growth direction. For the inclined twin 

nucleus with {100} texture (the mechanism is similar for {110} texture), the {111} CTB 

formed a finite angle ( 90o) with respect to the growth direction. As shown in Fig. 3.6c, 

the CTB separates the twin nucleus into a right and left section. The right portion of the 

nucleus has essentially a coherent interface with the matrix, whereas the left portion forms 

an ITB with the matrix. The angle  between the CTB and the matrix/nucleus interface 

plane is the angle between (111) and (100) plane in this scenario. Based on the twin 

nucleation model developed by Zhang et al [19], during physical vapor deposition, the 

total Gibbs free energy of a disc-shaped ‘perfect’ nucleus (G1), the parallel twin nucleus 

(G2) and the inclined twin nucleus (G3) are given as:  

∆G1 = 2𝜋𝑟ℎ𝛾 − 𝜋𝑟2ℎ∆𝐺𝑉        Equation 21, 

∆G2 = 2𝜋𝑟ℎ𝛾 − 𝜋𝑟2ℎ∆𝐺𝑉 + 𝜋𝑟2𝛾𝐶𝑇𝐵      Equation 22, and 

∆G3 = 2𝜋𝑟ℎ𝛾 − 𝜋𝑟2ℎ∆𝐺𝑉 + 𝑙(ℎ/ sin 𝜃)𝛾𝐶𝑇𝐵 + 𝐴𝐼𝑇𝐵𝛾𝐼𝑇𝐵    Equation 23; 

where the r and h are the respective nucleus radius and height. 𝛾 is the surface energy and 

𝐺𝑉 is the bulk free energy difference between solid and vapor per unit volume driving 

the nucleation. 𝛾𝐶𝑇𝐵 and 𝛾𝐼𝑇𝐵 are the respective energy of CTB and ITB. 𝐴𝐼𝑇𝐵 is the area 

of ITB at the film-substrate interface. The CTB in the inclined twin nucleus has a truncated 
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ellipse shape, which can be approximately to be a rectangle. The area of CTB can thus can 

be calculate as lh, where 𝑙, the length of the rectangle, is the intersection between the CTB 

and matrix as shown in Fig. 6c, and the other edge of the rectangle can be estimated as 

h/sin. If the area of the ITB 𝐴𝐼𝑇𝐵 = 𝑓𝜋𝑟2, where 𝑓 is the fraction of the ITB area with 

respect to the area of the nucleus/matrix interface, then 𝑙 = 2𝑟 , where  is determined by 

𝑓. 

Then following the prior practice [19], the critical nucleation radius for different 

type of nucleus can be calculated as: 

𝑟𝑝𝑒𝑟𝑓𝑒𝑐𝑡
∗ =

𝛾

∆𝐺𝑉
=

𝛾

(
𝑘𝑇

Ω
𝑙𝑛[

𝐽√2𝜋𝑚𝑘𝑇

𝑃𝑠
])

    Equation 24 

𝑟𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
∗ =

𝛾

∆𝐺𝑉−
𝛾𝑡
ℎ

=
𝛾

(
𝑘𝑇

Ω
𝑙𝑛[

𝐽√2𝜋𝑚𝑘𝑇

𝑃𝑠
]−

𝛾𝑡
ℎ

)
    Equation 25 

𝑟𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑
∗ =

𝛾+
𝜆𝛾𝑡

𝜋 sin 𝜃

∆𝐺𝑉−
𝑓𝛾𝐼𝑇𝐵

ℎ

=
𝛾+

𝜆𝛾𝑡
𝜋 sin 𝜃

(
𝑘𝑇

Ω
𝑙𝑛[

𝐽√2𝜋𝑚𝑘𝑇

𝑃𝑠
]−

𝑓𝛾𝐼𝑇𝐵
ℎ

)
   Equation 26 

Where k is the Boltzmann constant,  is the atomic volume and T is the substrate 

temperature, J is the deposition flux, m is the atomic mass of the deposited metal, PS is the 

vapor pressure above solid.  
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Figure 3.5. Microstructure of inclined twins in Al films on Si substrate. (a) Low 

magnification cross-section TEM micrograph of the twinned Al films, the inclined twin 

nucleated at the Si surface. (b) The SAD pattern of R1 in Fig. 5a. (c) Low magnification 

cross-section TEM micrograph of the twinned Al films, the inclined twin nucleated inside 

the Al films. (d) The SAD pattern of R2 in Fig. 5c. (f) the SAD pattern of R3 in Fig. 5e. 
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Figure 3.6. Schematic diagrams comparing the nucleation of (a) a perfect nucleus, (b) a 

parallel twinned nucleus and (c) a nucleus with inclined growth twin on Al matrix. (a) The 

perfect nucleus and the matrix has the same <111> crystal orientation. (b) The parallel 

twin nucleus forms (111) CTB on the (111) matrix. (c) A nucleus contains both inclined 

CTB and incoherent twin boundary (ITB) with the matrix. Note an example of (100) 

matrix is used to illustrate the concept without losing the generality of the model. A 

fraction of the matrix-nucleation interface contains ITB with an area of AITB, whereas the 

remaining of the nucleus has the same crystal orientation as that of the matrix. 

 

 

The critical radius difference between the twin nucleus and the perfect nucleus can 

be used to gauge the possibility of forming different types of twins. The critical radius 

difference between the parallel (or inclined) twin nucleus and the ‘perfect’ nucleus is 

expressed as ∆𝛾𝑝𝑝
∗ = 𝛾𝑝𝑎𝑟𝑎

∗ − 𝛾𝑝𝑒𝑟𝑓𝑒𝑐𝑡
∗  or ∆𝛾𝑖𝑝

∗ = 𝛾𝑖𝑛𝑐𝑙𝑖𝑛𝑒𝑑
∗ − 𝛾𝑝𝑒𝑟𝑓𝑒𝑐𝑡

∗ .  The area fraction 

of the ITB in the inclined twin is an important variable that directly impacts the probability 

of nucleation of an inclined twin. By using f = 25%, 12%, 6%, we can compare the 

probability of nucleation of an inclined twin with that of a parallel twin. The following 

values were used in the calculation: γ = 1.3 J/m2, K = 1.38×10-23 J/K, T = 300 K, 𝛾𝑡 = 

0.075 J/m2 and 𝛾𝐼𝑇𝐵 = 0.3 J/m2, h = 2.33×10-10 m, Ps =1.07×10-5 Pa, and  = 1.66×10-29 
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m3/atom. J is deposition flux in units of monolayers deposited per second. Amonolayer of 

Al has an atomic area density of 1.41×1019 atom/ m2 and the deposition rate in our 

experiments is 0.705 nm/s, thus J is estimated as ~ 4.2×1019  atom/ m2s.  

As shown in Fig 7, for the Al film with parallel twins, the value of ∆𝛾𝑝𝑝
∗ /𝑟𝑝 is more 

than 22% even if the deposition rate is 10 nm/s, implying that it is difficult to form parallel 

twins. When f = 25%, ∆𝛾𝑖𝑝
∗ /𝑟𝑝  is nearly the same as that of ∆𝛾𝑝𝑝

∗ /𝑟𝑝 . However, a 

continuous decrease in f value can significantly reduce ∆𝛾𝑖𝑝
∗ /𝑟𝑝. When f = 6%, ∆𝛾𝑖𝑝

∗ /𝑟𝑝 

drops to below 10% (the horizontal dash line in Fig. 7) at a deposition rate of 0.6 nm/s, 

implying the possibility to form inclined twins may have increased significantly at the 

current deposition conditions, 0.7 nm/s. This revised thermodynamic model suggests that 

the probability for the formation of an inclined growth twin could be much greater than 

that of a parallel twin, consistent with the observation of predominantly inclined growth 

twins in polycrystalline Al with high SFE. 
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Figure 3.7 Plots of the percentage of critical radius difference between perfect nuclei and 

parallel twin nuclei ∆rpara/rp (and between perfect and inclined twin nuclei ∆rincl/rp, where 

∆rpara = rpara - rp, ∆rincl = rincl - rp , and rp, rpara, rincl represent the radius of perfect, parallel 

and inclined twin nuclei respectively. For parallel twins, rpara is at least 25% greater than 

that of rp even at a very high deposition rate, implying the nucleation of parallel growth 

twins in Al is very difficult in comparison for inclined twins, by reducing the area fraction 

of AITB to 12% (or less) of the contact area (between matrix and twin nuclei), rincl is merely 

~ 10% greater than that of rp, implying the nucleation of inclined twins in Al is easier than 

the nucleation of parallel twins. 

 

 

III.5.3 Promoting the formation of growth twins during the growth of films 

Beside the twin embryo formed during the nucleation stage, the twin formation 

process in Al may also be closely related to the continuous growth of the films. Fig. 3.5b 

shows that the formation of an inclined CTB originated from the columnar grain boundary 
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in Al film. The SAD pattern in Fig.3.5d indicates the formation of the inclined growth 

twin.  

As shown in Fig. 3.8a, nuclei with different orientations formed randomly on 

substrate. Some of the nuclei may contain twins (Fig. 3.8a) and occasionally certain 

adjacent nuclei may happen to have the twinned orientation as evidenced in XTEM studies 

in Fig. 3.5e. During island coalescence, larger islands with low surface and interface 

energy may consume smaller or unfavorably orientated islands driven by the decrease in 

interface and surface energy (Fig. 3.8b). Meanwhile as shown in Fig. 3.8c, the high angle 

grain boundaries between the grain 1 and 2, and 1 and 4, could be replaced by a CTB 

between the grain 1 and 4 as the CTB has much lower energy than a high angle grain 

boundary, leading to the formation of CTBs during the subsequent growth of the film.  

III.5.4 The increase of the fraction of the twinned grains with film thickness (when h≤ 

80nm) 

As shown in Fig. 3.4, the fraction of the twinned grains rises monotonically to ~ 

9.5% when the film thickness increases to 80 nm and decreases afterwards. The fraction 

of the twinned grains is defined as the number of twinned grains per unit area (Ptwin) 

divided by the total number of grains per unit area (Pgrain). So mathematically it appears 

that either an increase in Ptwin or a decrease in Pgrain will result in a greater fraction of the 

twinned grains.  

         However our studies in Fig. 3.9 shows that both Ptwin and Pgrain decrease continuously 

with increasing film thickness. For instance, the Ptwin decreases from 46 to 18, and then to 

7 twinned grains/µm2 when h = 20, 40 and 80 nm, respectively. In parallel, the value of 
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Pgrain decreases at a greater rate, from 861 to 261 and then to 84 grains/µm2 when h = 20, 

40 and 80 nm, respectively. The reduction in the number of grains in thicker films arises 

from the island coalescence process [172]. When the island coalesced, the twins were 

terminated at the same time. However, as CTBs typically have lower energy than high 

angle grain boundaries, they are more stable and may have greater probability to survive 

during the island coalescence process. Furthermore new TBs may form during 

impingement of islands as evidenced in Fig. 3.5c and illustrated in Fig. 3.8c.  

Consequently the fraction of twinned grains increases with increasing film thickness when 

h is 80 nm or less.    

 

 

Figure 3.8. Schematics illustrating different twin formation mechanisms. In the first case, 

inclined twins may nucleate directly on the matrix as shown in (b). In the second case, two 

grains, 1 and 4, with twin orientation may impinge upon each other as shown in (c) to 

form a twin boundary during the growth of films. 
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III.5.5 The decrease of the fraction of the twinned grains with film thickness (when 

h≤ 80nm) 

When h > 80 nm, the fraction of the twinned grains decreases as shown in Fig. 3.4. 

A notable phenomenon in this regime is that the average grain size approaches a plateau 

~140 nm (or Pgrain becomes a constant), because the films have entered the regime of a 

continuous growth of the columnar grains instead of islands coalescence. 

Correspondingly, the decrease of the fraction of the twinned grains results from the 

reduction of Ptwin.   

To explain the termination of twins during continuous growth of films when grain 

size saturates, we need to consider the energetics for the growth of CTB and ITB for the 

inclined twins. As shown schematically in Fig.3.10, the length of CTBs for inclined twins 

is proportional to the film thickness and hence the continuous growth of the CTBs with 

increasing film thickness will increase the total energy of the system. As the inclined CTBs 

extends to the film surface, there is no ITBs (or there is no extra energy necessary to create 

ITBs). It is important to realize that the termination of CTBs inside the films imply the 

necessity to form ITBs within the films. In Fig. 3.10a, there are two inclined twins (thin 

vs. thick) inside the film (h > 80 nm) during the early growth stage. As shown in Fig. 

3.10b, if the total energy of the CTBs (WCTB) of the thin twin exceeds the formation energy 

of the ITB (WITB), the possibility to form an ITB will increase and the formation of the 

ITB terminates the continuous growth of the CTBs. Consequently the number of twinned 

grains (examined from plan-view TEM) will decrease. But the thick twin may continue its 

growth with the increase of film thickness because the energy WITB≥WCTB, or it is much 
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more energetically costly to terminate a thick twin inside the film. The thick twin is 

eventually terminated when WCTB ≥WITB (Fig. 3.10c).  

Foregoing discussions suggest that the growth of twins in thicker films could be 

affected by the energy minimization considering the energy difference between WITB and 

WCTB. WITB can be approximated as TtwinEITB, where  is a constant related to the inclined 

twin angle and EITB is the formation energy of an ITB per unit area. Similarly, WCTB = 

bhECTB, where b is a constant which related to the inclined twin angle and ECTB is the 

energy of the CTB per unit area. , b, EITB and ECTB are constants independent of film 

thickness. When WCTB = WITB, an inclined dash-dot line is obtained as shown in Fig. 3.11. 

As discussed previously, the energy discrepancy between the ITB and CTB suggests the 

possibility to form an ITB. When WITB > WCTB (to the left side of the straight line), it is 

energetically feasible to extend the inclined growth twins during the growth of films. 

Whereas when WITB < WCTB (to the right side of the straight line), the continuous growth 

of the CTBs becomes energetically unfavorable. Consequently, the growth of a CTB will 

be terminated, leading to a reduction of the fraction of the twinned grains.   
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Figure 3.9. Plots of twinned grain density and grain density versus film thickness. Twinned 

grain density follows the tendency of grain density with the increase of film thickness. 

The density drops quickly before film thickness reach 60 nm and goes to plateaus 

gradually. 

 

 

       The reduction of the fraction of the twinned grains may also be related to the lack of 

continuous grain growth (or a lack of island coalescence). As mentioned earlier twins may 

nucleate during island coalescence, and thus the lack of island coalescence may reduce the 

probability to form growth twins. The current study on the formation of growth twins in 

polycrystalline Al is an important forward step towards the eventual goal - the synthesis 

of high density nanotwins in Al without buffer layers. There are numerous questions that 

remain to be examined in future studies, including the peculiar constant ratio between the 

average twin thickness and average grain size observed in this study. 
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Figure 3.10. Schematics illustrating the termination of thin inclined twins and continuous 

growth of thick inclined twins in Al by using the energy balance concept. When the energy 

of CTBs is less than or equal to the formation energy of ITB, the inclined twins may grow 

continuously (a). In contrast, the growth of inclined twins become difficult when the 

opposite holds true. Thus, the growth of thinner twins terminates earlier than thicker twins 

(b-c). 
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Figure 3.11. Using the energy balance concept illustrated in Fig. 8 a dash-dot line is 

obtained when the energy of ITB is equal to the energy of CTB (WITB = WCTB). Above 

this line, WITB > WCTB, implying the growth of twins above certain thickness is stable. In 

comparison, the shadowed area indicates that the growth of CTBs is costly and it is 

energetically favorable to terminate the growth of CTBs. The superimposed average twin 

thickness data align well with the prediction (dash-dot line) when h ≤ 80 nm. However, in 

thicker films (h ≥ 100 nm), the average twin thickness falls below the threshold value, 

indicating the growth of these twins becomes increasingly difficult. 

 

III.6 Conclusions 

Sputter-deposited polycrystalline Al films contain growth twins and the fraction 

of twinned grain increased with increasing film thickness to a maximum value, ~ 9.5 %, 

when h = 80 nm, and decreased thereafter in the thicker films. An inclined twin nucleation 

model has been provided from the thermodynamics perspective to explain the formation 

mechanism of the growth twins in Al films. The termination mechanism for the growth of 
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the inclined twins in thicker films may be related to the competition between the energy 

of CTB and ITB, the elimination of fine nanotwins, and the lack of grain growth via island 

coalescence. Although the fraction of twinned grains remains low, the twin formation 

mechanisms presented in this study suggest new perspectives to tailor the formation of 

grow twins in high SFE metals, such as Al.  
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CHAPTER IV 

HIGH-VELOCITY PROJECTILE IMPACT INDUCED 9R PHASE IN ULTRAFINE 

GRAINED ALUMINUM    

IV.1 Overview

Aluminum (Al) typically deforms via full dislocations due to its high stacking fault 

energy. Twinning in Al, though difficult, may occur at low temperature and high strain 

rate. However, the 9R phase rarely occurs in Al simply because of its giant stacking fault 

energy. Here by using a laser induced projectile impact testing technique, we discover 

deformation induced giant 9R phase (tens of nm in width) in ultra-fine grained Al for the 

first time, as confirmed with extensive post-impact microscopy analyses. The stability of 

9R phase is related to the existence of sessile Frank loops. Molecular dynamics 

simulations reveal formation mechanisms of 9R phase in Al. This study sheds lights on a 

new deformation mechanism in metals with high stacking fault energy. 

IV.2 Introduction

Coarse-grained (CG) metals with face-centered-cubic (FCC) structure typically 

deform by glide of full dislocations [173]. When stacking fault energy (SFE) is low, 

deformation of FCC metals is often accommodated by abundant partial dislocations [174]. 

Furthermore, prior studies show that grain size can tailor the nature of dislocations during 

deformation. For instance, ultra-fine grained (UFG, with grain sizes of 100-1000 nm) and 
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nanocrystalline (NC with grain sizes of 100 nm or less) FCC metals can deform via slip 

(partial dislocations) or twinning (consecutive emission of partial dislocations on adjacent 

{111} planes) [54, 99], since the Frank-Read sources become more difficult to operate 

when the grain size is less than 1 µm [175, 176]. But in FCC metals with high SFE, 

deformation twinning is in general difficult to occur [177, 178]. Van Swygenhoven et al. 

show that deformation twinning tends not to occur in NC Al (with a grain size of 12 nm 

or less) with high SFE, ~ 160 mJ/m2 [125], because the high ratio of SFE vs. unstable SFE 

facilitates the nucleation and emission of trailing partials, which eliminate SFs associated 

with the glide ofleading partials. 

Meanwhile, Yamakov et al. predict that deformation twinning can occur in NC Al 

with grain sizes of 45 and 70 nm [8]. Experimental studies show that deformation twins 

indeed form, but with a very low probability, in NC and CG Al that are deformed at low 

temperature and high strain rate [166],[96, 107]. When grain size decreases to nanoscale, 

the GB-mediated deformation mechanisms may take over, reduce the probability of 

deformation twinning [12, 149].  

9R phase has been observed in FCC metals with low SFE, such as Cu (45 mJ/m2 

[111, 179]), Ag [113] and Au [118],. 9R structure is a stacking ribbon and consists of a 

repeating unit of 9 {111} atomic layers (6 stacking fault {111} planes and 3 normal 

stacking {111} planes). Thus 9R phase has much high formation energy than a twin 

(containing only two stacking fault planes). Although deformation twinning has been 

observed in high SFE metals under extreme deformation conditions, the formation of 9R 
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phase via plastic deformation has never been reported in pure Al because the 9R phase is 

difficult to nucleate and is highly unstable even if nucleated. 

In this study, we investigate the deformation mechanisms of sputter-deposited 

UFG Al thin film (containing a certain fraction of growth twins [180]) subjected to high-

velocity micro-projectile impacts by using a laser induced projectile impact test (α-LIPIT) 

technique [181-183]. 

Extensive post-mortem transmission electron microscopy (TEM) studies reveal 

several tens of nm wide giant 9R phase in the impacted UFG Al, as well as high-density 

dislocation networks, and grain rotation and fragmentation. MD simulations provide an 

in-depth understanding on the deformation mechanisms of UFG Al and the formation of 

9R phase under projectile impact. 

IV.3 Experimental

To explore the deformation mechanisms of UFG Al at high strain-rates, we used a 

recently developed LIPIT technique, where high-velocity monodispersed silica 

microspheres (~3.7 µm in diameter) impact and penetrate the UFG Al film. The Al thin 

films, 140 nm in thickness, were deposited onto a carbon film (25 nm thick) coated copper 

TEM grid. Thus, these UFG Al films are “semi” free-standing. 

Individual silica microspheres were launched, by using a laser pulse, towards Al 

films at high velocities (~600 m/s) to generate high-strain-rate (~ 108 s-1) deformation in 

a local region.  Approximately a dozen impact experiments using silica micro-projectiles 
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were performed at different grid areas (i.e. each time the projectile impacts a pristine 

portion of the UFG Al films). 

Free-standing films are used to avoid the complexity of back-stress waves that are 

typically seen in bulk shock-loaded specimens. After the projectile penetration 

experiments, the shape of the perforated holes in UFG Al film was examined using an FEI 

Quanta 600 scanning electron microscope operated at 10 kV. TEM analysis was 

performed on an FEI Tecnai F20 ST microscope operated at 200 kV to characterize the 

evolution of microstructure near the impacted zones. To further probe the impact induced 

microstructure damage in UFG Al films, high-resolution TEM (HRTEM) experiments 

were performed. 

IV.4 Result

Electron backscatter diffraction (EBSD) micrograph and the corresponding 

orientation mapping analysis (in Fig. 4.1) show that the as-deposited films have ultra-fine 

grains with high-angle GBs. The grain size of Al films (Fig. 4.3) varies from 60 to 350 

nm, with an average of ~140 nm. The red lines in Fig. 4.1a indicate the Ʃ3 {111} TBs in 

as-deposited films. 

To differentiate Ʃ3 coherent and incoherent twin boundaries (CTBs and ITBs), we 

need to examine the boundary rotation axis (BRA). As shown in Fig. 4.1b, the BRA is 

parallel to the ITB, but perpendicular to the CTB. TEM micrographs (Fig. 4.1c-d) and the 

inserted selected area diffraction (SAD) pattern confirm the formation of CTBs in the UFG 
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Al film. A plan-view TEM micrograph (Fig. 4.2a) and the inserted SAD pattern show the 

polycrystalline nature of the UFG Al film. 

A cross-sectional TEM micrograph shows the columnar grains (Fig. 4.2b). As 

shown schematically in Fig. 4.2c, individual SiO2 microspheres (3.7 m in diameter) used 

in the the α-LIPIT experiment launch to impact the free-standing UFG Al films deposited 

on TEM washer containing grids shown in a scanning electron microscopy (SEM) 

micrograph in Fig. 4.2d. Most of the perforated holes have a circular shape with a diameter 

similar to that of the SiO2 projectiles (Fig. 4.4). TEM micrograph in Fig. 4.2e shows a 

representative circular hole after microprojectile penetration. A noteworthy characteristic 

of the majority of the impacted zones is the limited number of cracks surrounding the holes 

in the high strain-rate impacted UFG Al films. 
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Fig. 4.1  Microstructures of as-deposited UFG Al thin film. (a) EBSD micrograph showing 

orientation map along the sample surface normal direction; the red lines indicate Ʃ3 twin 

boundary. (b) The boundary rotation axis (BRA) map reveals the incoherent twin 

boundary (ITB) (when BRA // TB) and coherent twin boundary (CTB) (when BRA  TB). 

(c-d) Plan-view TEM images showing growth twins in as-deposited UFG Al thin films 

(insert of (d) shows the selected area diffraction (SAD) pattern of grain containing growth 

twins). 
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Fig. 4.2 A laser induced projectile impact testing (α-LIPIT) technique for the study of 

high-strain-rate response of UFG Al films with a thickness of 140 nm. (a) A plan-view 

TEM micrograph showing the as-deposited UFG Al film. (b) The cross-section view of 

the as-deposited Al thin film showing columnar grains. (c) A schematic of the α-LIPIT 

experiment. (d) A low magnification SEM micrograph showing the perforations induced 

by microprojectiles in UFG Al film supported by Cu TEM grid. (e) A representative TEM 

image showing the morphology of a circular perforation. 
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Fig. 4.3  Microstructure of the as-deposited polycrystalline Al thin film. (a) A bright-field 

TEM image and inserted selected area diffraction (SAD) pattern showing the formation 

of high angle grain boundaries and ultra-fine grains. (b) A dark-field TEM micrograph 

showing the formation of UFGs. (c) The grain size statistic distribution showing the 

average grain size of 140 nm in as-deposited films.  
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Fig. 4.4 A selected collection of SEM gallery showing analyzed projectile perforations in 

UFG Al films. 
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       A striking phenomenon is the formation of an 80 nm wide 9R phase in the highly 

deformed regions near the edge of the perforation. Figure 4.5a shows a typical deformation 

twin formed near the edge of a hole. Inside the grain, the white dashed line indicates two 

parallel CTBs. At the end of the two TBs, a dashed orange line marks the boundary of a 

broad 9R phase bounded by the TBs. The curved phase boundaries separating the 9R phase 

from matrix are marked by PB1 and PB2, indicating the location of leading (PB1) and 

trailing (PB2) partials.  

One section of the 9R phase near the upper TB is analyzed by HRTEM. As shown 

in Fig. 4.5b, near the left side of the giant 9R phase, multiple SFs have been observed. 

Besides SFs, numerous Frank partial dislocations were also identified within the 9R phase. 

The magnified view of the 9R phase in Fig. 4.5c confirms the three-layer periodic stacking 

sequence typically observed in the 9R phase. The magnified view of box 2 (in Fig. 4.5d) 

shows the deformation induced CTB containing abundant Shockley partials. Fig. 4.5e 

shows the schematics illustrating the formation of 9R phase and CTBs to be discussed 

later.  
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Fig. 4.5 Projectile impact induced 9R phase in UFG Al films. (a) Overview of the 

microstructures of UFG Al adjacent to the edge of the perforated hole. CTBs bounding a 

giant 9R phase are identified. The forward and backward phase boundary (PB) separating 

9R from matrix are also labeled. Two white boxes outline the defects shown at higher 

magnification in Fig. 3c, 3d. Red asterisks outline a grain boundary (GB). (b) HRTEM 

micrograph reveals the formation of the giant 9R phase in UFG Al after impact. Numerous 

Frank partials are also observed in the 9R phase. (c) The HRTEM micrograph of the CTB 

from area 2. High-density Shockley partials are identified along the CTB. (d) HRTEM 

micrograph of the white box in Fig. 3b showing the 9R phase.  (e) A schematic shows the 

deformation induce 9R phase and TBs. A section of the GB has ITB nature with one 

Shockley partial on each adjacent {111} plane. High strain-rate impact triggers the 

migration of leading partials, followed by trailing partials. 9R is bounded between the 

leading and trailing partials. Sessile Frank partials also form within the 9R phase. Frank 

partials pin the trailing partials, leaving 9R phase intact after high strain-rate impact. 

 



 

95 

 

Besides the 9R phase and deformation twins, grain fragmentation is also frequently 

observed. A dark-field TEM micrograph in Fig. 4.6a shows the microstructure of films 

can be separated into two different zones: a highly deformed zone 1 adjacent to the edge 

of a circular perforation, with a width of ~ 1.5 µm, and a less impacted zone 2 outside the 

deformation zone 1. Most grains in zone 2 have well-defined GBs and relatively uniform 

interior contrast. While inside the deformation zone 1, especially near the edge of the 

perforation, much smaller grains with irregular GBs are frequently observed. Comparison 

of the grain size distributions in the two zones (Fig. 4.6b) shows that the average grain 

size is reduced in zone 1. Although grain fragmentation dominates the grain morphology 

evolution inside the highly deformed area, grain coarsening has also been observed 

occasionally. As shown in Fig. 4.6c, a large elongated grain containing a high-density of 

dislocations was observed near the edge of a penetration (in a different specimen). The 

inserted SAD pattern from the area marked by the white dash-dot line shows the single 

crystal like diffraction pattern captured along the [001] zone axis. The large misorientation 

angle (greater than 20 degrees) in the stretched {220} diffraction spots indicates subgrain 

rotation during the formation of the large grain.  
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Fig. 4.6 Grain fragmentation and coarsening near the perforations. (a) A dark-field TEM 

image of the nanograins near a perforation. The grains in area A in zone 1 (within the 1.5 

m wide impact zone ) are smaller than those in area B in zone 2 (away from the impact 

zone), indicating grain fragmentation during projectile impact. The yellow dash-dot line 

delineates the boundary between zone 1 (highly impacted zone) and zone 2 (less deformed 

area).  (b) The statistical distribution of grain sizes in Fig. 4a in zone 1 and 2. (c) A low 

magnification bright field TEM micrograph showing the morphology of an elongated 

grain containing a high density dislocations near a perforated hole. The length of the grain 

is ~ 300 nm, and its width is ~ 70 nm. The inserted diffraction pattern shows the slightly 

axisymmetric elongated {220} diffraction spots examined along <100> diffraction zone 

axis, indicating the subgrain rotation within the grain.  
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           In addition to grain fragmentation, high-density dislocations induced by high strain 

rate impact are observed in deformed grains, and defect density depends on the relative 

distance of the grains to the perforated holes. In general, high-density dislocations are 

frequently observed in grains located within zone 1 as shown in Fig. 4.7a. Furthermore, 

many grains in zone 1 have irregular shapes and complex stress contours. Fig. 4.7b shows 

tangled dislocations aligned nearly orthogonal to one another in a large grain in area B of 

zone 1. Another adjacent large grain in area C of zone1 contains high-density parallel 

dislocation networks. Extensive TEM tilting experiments were performed to examine 

dislocations in deformed grains (Fig. 4.8). Grains in zone 2 typically have fewer 

defects/dislocations and relatively straight GBs. Although grains in zone 2 typically have 

less internal defects, arrays of high-density dislocations are frequently observed in grains 

containing CTBs (growth twins). Fig. 4.7d shows the enlarged image of the box D in zone 

2, where an array of black dots was observed running straight across the entire grain. The 

black dots arise from the edge-on view of dislocation cores, and the straight line is a CTB 

of a growth twin inside the grain. Similar arrays of high-density dislocations have been 

frequently observed in numerous other grains in zone 2 containing growth twins (Fig. 4.9).  
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Fig. 4.7 The presence of dislocation networks in the deformed zone after ballistic impact. 

(a) A low magnification TEM micrograph showing the alteration of the microstructure 

near a perforated hole in UFG Al. Grains in zone 1 (adjacent to the hole) have greater 

defect density than those in zone 2 (away from the hole). (b-c) The observation of 

dislocation networks in areas B and C (in Fig. 5a). The white arrows indicate the traces of 

dislocations in large grains examined along <112> zone axis. (d) A higher magnification 

TEM image of the area D in zone 2 showing the edge-on view of an array of dislocations 

aligned along a CTB. An array of dislocation cores, separated by ~ 20 nm, is identified.  
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Fig. 4.8 The TEM tilting experiment to examine the morphology of dislocation networks 

in grains in zone 1 (highly impacted zone near holes). (a) When tilted off the <112> zone 

axis, the dislocation density in the large grain in the impacted zone appears low. (b) In 

contrast, when titled to the <112> zone axis, a high-density of dislocations become visible.   
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Fig. 4.9 TEM images showing the accumulation of dislocations along the preexisting 

CTBs in grains in zone 2 (less impacted zone, away from the perforated holes). The CTBs 

are growth twins introduced during sputtering. The interactions of impact induced 

dislocations with CTBs lead to the storage of dislocations (manifested by their cores) 

along the CTBs. Other than dislocations along TBs, the grain interior appears to have few 

dislocations.  

IV.5 Discussion

In FCC metals with low SFE, the core of 1/2 <110> full dislocation can dissociate 

into two Shockley partial dislocations connected by a SF, which is also referred to as an 

extended dislocation [173, 184]. Abundant deformation twins or SFs have been observed 

in deformed FCC metals with low SFE [69, 70, 79, 84, 85, 90, 99]. In contrast, plastic 

deformation of monolithic CG Al typically does not lead to deformation twins or SFs due 

to its high SFE [185, 186]. However, there is increasing evidence of deformation twinning 

in NC Al both experimentally and computationally [53, 93, 95, 96, 107, 166]. MD 

simulations [95] revealed three types of deformation twinning mechanisms in NC Al, 
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including 1) the overlapping of two extended dislocations on adjacent slip planes; 2) 

successive emission of multiple Shockley partials from GBs; and 3) GB splitting and 

migration induced formation of TBs. Zhu et al. [99] reviewed various mechanisms that 

articulate the influence of small grain size on promoting the formation of deformation 

twins in NC Al, Ni, and Cu, including monotonic activation of partials (MAP) and random 

activation of partials (RAP) [104]. Wu et al. hypothesize that RAP is more favorable than 

the MAP twinning mechanism since RAP induces little macroscopic strain, alleviating the 

strain on neighboring grains [104]. Deformation twining in Al remains a difficult, high 

energy process as shown by the spontaneous detwinning during in situ tensile experiment 

under TEM [187, 188].  

Recently a growth-induced 9R phase has been observed in FCC metals with low 

SFE. Sputter-deposited Cu and Ag films both contains nanoscale growth twins and 9R 

phases [58, 60, 146]. Liu et al. [122] observed a deformation induced 9R in Ag. The 

nucleation and migration of a Ʃ3{112} ITBs facilitated the formation of 9R with zero net 

strain in Ag [49]. However a deformation induced 9R phase in Al has never been reported. 

It is natural to speculate that the lack of 9R phase in deformed Al is due to its ultra-high 

SFE. Hence the formation of giant, 80 nm wide, 9R phase regions in UFG Al is surprising.  

As shown in Fig. 4.1a-b, as-deposited UFG Al has {111} texture and contains both 

CTBs and ITBs. These twin seeds may assist the formation of the 9R phase under high 

strain-rate deformation. As shown in Fig. 4.5e, at stage 1, a portion of the GB consists of 

ITBs. Under high strain rate impact, the leading partials slip along {111} planes. As 

trailing partials lag behind, the 9R phase is formed between the leading and trailing partials 
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as shown in stage 2. To minimize the system energy due to the formation of the 9R phase, 

the trailing partials move towards the leading partials. Finally the leading partials stop 

when the shock-induced stress is insufficient to drive their further migrations (stage 3). 

The rapid propagation of ITB seeds under high strain rate deformation by the projectile 

impact may lead to the formation of 9R phase in UFG Al. Furthermore, in contrast to the 

sharp straight 9R phase reported in Ag and Cu with low SFE [49, 122], the boundaries of 

9R phase in impacted UFG Al are curved and distorted.  

Atomistic simulation methods, particularly nonequilibrium molecular dynamics 

(NEMD), offer a great and largely untapped potential for the investigation of shockwave 

processes in solids, because large-scale MD simulations can generate steady plastic (or 

split elastic-plastic) waves with a rich nanostructure. Shock induced phase transformations 

(either solid-solid or solid-melt), multiple shocks (including ramp wave loading), 

unloading processes such as rarefaction shocks, spallation, ejection, and shock-induced 

chemistry are just a few of the phenomena for which MD simulations should be able to 

provide a great deal of insight. An intensive study has been systematically conducted for 

perfect single crystals [189, 190] with isolated defects [191, 192], and in polycrystalline 

materials [189, 193, 194]. The remarkable degree of qualitative and, in many cases, 

quantitative agreement between MD and experiment (especially laser driven shock 

compression where both length and time scales are close to commensurate with MD) has 

given increased confidence in the use of such simulations as both predictive and 

interpretative tools. 

To investigate the microstructural mechanisms for the formation of 9R phase in 
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Al, we simulate the shock response of nanoscale columnar grains in Al using the plate 

spallation experiment [189]. Al samples are relaxed by energy minimization using 

quenching MD method, followed by equilibration using isothermal isobaric (NPT) 

ensemble at 300K and 0 GPa pressure for 50 ps. The time-step in NEMD simulations is 

chosen to be 0.2 fs to ensure numerical stability. The velocity-Verlet algorithm is adopted 

to solve the MD equations. The computational model for the plate impact experiment 

comprises two parts with the same material. One part is fixed (representing the impactor) 

and the other part is the target, i.e., the NC Al sample. Two dimensional periodic boundary 

conditions are used in the perpendicular directions. The target is shocked by ramming it 

at a speed of 1 km/s against the fixed impactor.  The atomic interactions in Al are described 

by an accurate embedded atom method (EAM) potential developed by Winey et al. [195]. 

The validity of the EAM potential under strong shock conditions is confirmed by 

comparing Hugoniot curves (P-V and P-T curves) and the melting curve with experimental 

data [195].  

To examine the influence of GB structures on the formation of 9R phases, we 

examined the shock response of NC Al with two different types of GBs. In the first case, 

NC Al contains four grains that have twin orientation and form Ʃ3 {112} ITBs. The 

columnar grain size is 15 nm and height is 75 nm. Topological analysis and microscopic 

characterization show that Ʃ3 {112} ITBs in FCC metals is consisted of a repeatable 

pattern involving three Shockley partial dislocations as one unit in three adjacent {111} 

atomic planes (see Supplementary Figure S6 (a1,a3)) [69, 179]. In comparison, we also 

shocked the columnar polycrystalline Al that contains Ʃ11 asymmetrical tilt grain 
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boundaries. The grain boundary plane is parallel to (2̅52) and (4̅14) in the neighboring 

grains. The grain boundary contains Shockley partial dislocations every seven {111} 

atomic planes (see Figure 4.10) [196]. Under shock at a speed of 1km/s, partial 

dislocations are nucleated at GBs and emitted into grains in two simulations (Fig 4.11). 

Most importantly, 9R phase is only observed in the columnar NC Al containing Ʃ3 {112} 

ITBs [Fig. 4.11(a3)]. The formation of the 9R phase is ascribed to the emission of pre-

existing Shockley partial dislocations. Under high shear stresses, it is expected that one 

set of partial dislocations in Al can glide along one direction away from the compacted Ʃ3 

{112} and the rest of partial dislocations that have screw components with opposite signs 

may glide towards the opposite direction if gliding force on them exceeds the Peierls force 

[49]. As a result, the 9R phase can propagate.  
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Fig. 4.10 Atomic structure of Ʃ3 ITB and Ʃ11 GB in low SFE Cu and high SFE Al. 

(a1) Dichromatic pattern of a Ʃ3 ITB, (a2) atomic structure of the Ʃ3 ITB in Cu, 

dissociation of one set of partials from ITB due to low SFE, (a3) Atomic structure of 

compacted Ʃ3 ITB in Al due to high SFE, and (b1) atomic structure of Ʃ11 GB in Cu, 

every seven {111} atomic planes contain one Shockley partial dislocations. All the partial 

dislocations are dissociated from the GB. (b2) Atomic structure of Ʃ11 GB in Al. All 

partial dislocations are constrained inside the GB due to the high SFE of Al. 
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Figure 4.11 Molecular dynamic simulation of the shock induced partials activity in Ʃ11 

GB and Ʃ3 ITB. (a1-a3) The snapshots of shock induced dissociation of partial 

dislocations from compacted Ʃ3 {112} ITB in Al. (a1) the Ʃ3 ITB with 15 nm domain 

size in Al film. (a2-a3) When the shock wave passes through the ITBs, the 9R phase forms 

due to the dissociation of ITBs by the emitting of partial dislocations from the ITBs. The 

red area bounded by the green lines is the 9R phase. (b1-b3) The snapshots of shock 

induced micro-twin and partials (nucleation and emission of partial dislocations from Ʃ11 

GB). (b1) the Ʃ11 GB with 15 nm domain size in Al film. The GB contains Shockley 

partial dislocations every seven {111} atomic planes. (b2-b3) Partial dislocations are 

emitted from the GBs due to the shock wave. 

 

 

Several factors may contribute to the stabilization of the 9R phase induced by the 

high-strain-rate deformation. Microscopy study (Fig. 4.5b) shows the formation of 

numerous Frank partials inside the 9R phase. The 9R phase regions may arise from the 

interactions among high-density Shockley partials activated on different slip systems 
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during projectile impact. These sessile Frank partials may act as barriers to block trailing 

partials and thus enhance the stability of the 9R phase.  

Besides the pinning effect from sessile dislocations, the attraction between the 

leading and trailing partials decays with increasing separation distance. After the emission 

of leading partials, the impact induced stress wave dissipates quickly. Also, the trailing 

partials are less mobile than the leading partials, increasing the separation distance 

between leading and trailing partials. The attractive force between the leading and trailing 

partials may decrease rapidly to become insufficient to go over the barrier stress resulting 

from Peierls friction stress or Frank partials, leading to the pinning of the 9R phase in 

impacted UFG Al.  

          Although deformation twins and the 9R phase are frequently observed near the 

perforations, dislocation slips and the formation of dislocation networks during projectile 

impact are ubiquitous during plastic deformation of UFG Al [96].  Grains in the highly 

deformed region can reach dislocation density on the order of 1012/cm2, similar to that in 

heavily cold worked metals. The high-density dislocation networks manifested by 

complex stress contours can effectively accommodate plastic deformation and facilitate 

energy dissipation during projectile impact. Our recent study also shows that the as-

deposited UFG Al films contain a certain fraction of growth twins [180]. These growth 

twins interact with impact induced dislocations and act as pinning centers to store 

dislocations. The impact induced grain fragmentation could be related to the formation of 

dislocation cell walls in the grains or significant shear induced grain rotation and 

refinement. 
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IV.6 Conclusion

  We report the first evidence for the formation of 9R phase in UFG Al subjected to 

high-strain-rate deformation. 9R phase arises from shock-induced rapid migration of 

leading partials from ITB seeds in as-deposited Al. The stability of the giant 9R phase is 

due to the pinning of trailing partials by abundant sessile dislocations in 9R phase. This 

study provides evidence for new deformation mechanisms of metals with high stacking 

fault energy under high strain rate. The methodology of using a novel microprojectile 

impact technique to impact TEM specimens opens a new avenue for high-throughput 

examination of high strain-rate impact induced damage and plasticity in a broad range of 

metallic materials. 
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CHAPTER V  

THE MICROSTRUCTURE AND MECHANICAL STRENGTH OF NANOTWINNED 

ALUMINUM WITH DIFFERENT TEXTURES 

 

V.1 Overview 

     Twin boundaries can enhance the strength and ductility of a variety of metallic 

materials with face centered cubic structures. However, twin boundaries are rare in 

Aluminum due to its high stacking fault energy (SFE). Deformation twins can form in Al 

via partials slip under high stress or at low temperatures. Previous studies show that the 

introduction of Ag seed layer is necessary to promote the formation of nanotwins in Al 

films. Here, we show that high-density twin boundaries can be introduced in Al films by 

tailoring the texture of films without any seed layer. Transmission Kikuchi diffraction 

and transmission electron microscopy studies on (111), (110) and (112) textured Al films 

show Al (112) films has the highest twin density. Furthermore, twin boundaries in Al 

appear to be stronger barriers to dislocations than conventional high angle grain 

boundaries. 

 

V.2 Introduction 

Twin boundaries (TBs) are low-∑ grain boundaries (GBs) with lower boundary 

energy compared to normal high-angle GBs [121]. TBs have been identified in a variety 

of materials, including TWIP (twinning induced plasticity) steel [197-200], shape memory 
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alloys [201-203], monolithic metals [52, 53, 58, 60, 166], ceramics [204-206], and certain 

biological materials[207]. The mechanical behavior of nanotwinned (nt) metals with high 

density growth twins have been intensively investigated [46, 53, 75, 146, 149, 154, 162]. 

High-density TBs not only provide high strength by blocking the propagation of 

dislocations [19, 54, 67, 124, 208-210], but also enable greater ductility [51, 53, 54, 211, 

212]. Most prior studies focused on face-centered-cubic (fcc) metals with low-to-

intermediate stacking fault energy (SFE) (less than 100 mJ/m2) [19, 53, 58, 60, 109, 145, 

156, 171]. In contrast, TBs are often prohibited in fcc metals with high SFE, such as Al 

(SFE of Al is ~ 160 mJ/m2) [125, 213]. Although deformation twins have been observed 

in Al via molecular dynamics (MD) simulations [8, 93-95, 169, 214] and deformation at 

high stress or low temperatures [96, 107, 166], the formation of high-density growth twins 

in Al remains difficult.  

Bufford et al. fabricated the twinned Al thin films by using a template method. A 

seed layer of {111} Ag was used as Ag with low SFE contains high-density nanotwin 

seeds [22, 120, 170, 215]. The subsequent deposition of Al on Ag promotes the 

propagation of twin seeds into Al because Al and Ag have identical lattice parameters. 

Using this technique, high-density incoherent twin boundaries (ITBs) can be introduced 

into Al films that have 1-2 m in thickness. A similar strategy has been used to promote 

the propagation of growth twins into Ni in Ag/Ni multilayer system [216]. Two criteria 

are identified for the formation of growth twins using the template method: a template (or 

seed layer) containing twin seeds and, a coherent interface between the template and 

deposited layers [72]. A recent study shows that growth twins can be introduced in thin 
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polycrystalline Al films without any seed layer [180]. The fraction of twinned grains 

increases with increasing film thickness, and reaches a maximum (~ 8-9%) when film 

thickness is ~ 80 nm, beyond which the twin fraction rapidly diminishes. The film 

thickness dependent formation of growth twins in Al films is related to the nucleation and 

growth of twins, which are controlled by thermodynamics [180]. 

Prior studies also suggest that crystal orientation may play a role in the formation 

of growth twins. For instance, twin density is greater in epitaxial nt (111) Ag than that in 

(110) Ag  [60].Narayanan et al. observed different twin morphology and stacking faults 

GaP with different texture deposited by chemical beam epitaxy [158]. Also high-density 

growth twins formed in highly textured (111) Cu/Ni multilayers, but not in (100) Cu/Ni 

multilayers [21].  

          However, it remains unknown if the texture of Al films can impact the formation of 

growth twins. In this study, we investigate the formation of growth twins in Al films with 

different textures, (111), (110) and (112). Extensive transmission Kikuchi diffraction - 

electron backscatter diffraction (TKD-EBSD) and transmission electron microscopy 

(TEM) studies have been performed systematically to investigate the formation of growth 

twins in Al. To our surprise, (112) Al has the greatest twin density and hardness. 

Comparison of hardness of UFG Al (films and bulk) shows that TBs (CTBs and ITBs) are 

stronger barriers to dislocations than conventional HAGBs. This study sheds light on the 

design of high-strength nt metals by tailoring the texture of crystals. 
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V.3 Experimental 

Al thin films with different texture were deposited at room temperature using direct 

current magnetron sputtering technique under 2 × 10-3 torr Ar pressure. The base pressure 

of the vacuum chamber before depositions is ~ 5× 10-8 torr. The purity of the Al target is 

99.999%. Single crystal (111), (110), and (112) Si substrates were etched by HF to remove 

the oxide layers before the deposition. The deposition rate was kept at 0.5 nm/s and the Al 

film thicknesses ( 600 nm) were measured by a Dektak 150 Veeco profilometer. X-ray 

diffraction (XRD) experiments were performed on a PANalytical X’Pert PRO Materials 

Research Diffractometer using Cu Kα radiation. For Al films grown on Si (111) and Si 

(110) substrates, the out-of-plane θ-2θ scans were performed. For the Al films deposited 

on Si (112) substrate, both the conventional out-of-plane θ-2θ scan and tilted scan (tilting 

chi to 19°) were performed.  

The TKD-EBSD technique was used to characterize the crystal orientation of 

grains in the Al films [142-144].  The TKD experiments were performed on a Tescan 

FERA-3 with Schottky field emission electron source operated at 28 kV. The TKD data 

were processed by Oxford CHANNEL software. The typical scan area in this experiment 

using TKD-EBSD is 5 × 3 m. Plan-view and cross-section TEM (XTEM) samples were 

prepared by mechanical grinding, dimpling, and low-energy ion milling. TEM specimens 

were examined by using an FEI Tecnai F20 ST transmission electron microscope operated 

at 200 kV. Mechanical properties were measured by nanoindentation technique using a 

Hysitron TI950 Trioindenter with a Berkovich diamond tip. The hardness was calculated 
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by using the Oliver-Pharr method [217] and a minimum of 35 indentations were performed 

on each specimen.  

 

V.4 Result 

V.4.1 Texture of Al films and twin density 

XRD studies show that Al films deposited on Si (111) substrate exhibit (111) 

texture, whereas a weak (110) diffraction peak appears for the Al films grown on Si (110) 

substrate (shown in Fig. 5.1). Interestingly for Al films grown on Si (112) substrate, a 

regular θ-2θ scan up to 140o yields no diffraction peak. After the chi angle was tilted to 

15° prior to θ-2θ scan (shown schematically in the insert) strong Al (111) and Si (111) 

peaks emerged, indicating that the film on Si(112) possesses strong (112) texture. The 

texture of three Al films is examined in detail via EBSD pole figure analyses. The pole 

figures of {111}, {110}, {100}, and {112} poles for Al films with 3 different textures are 

compared in Fig. 5.2. The projection plane is the sample surface plane. The {111} pole 

figures for Al (111) film (Fig. 5.2a) confirm the formation of strong {111} texture. 

Moreover, the three strong spots (arising from matrix) and three alternating weak spots 

from twins are observed. The twins have a 60° in-plane (<111>) rotation compared with 

the orientation of the matrix. The {111} single crystal type of texture is also revealed in 

all other pole figures, including {110}, {100} and {112}. The pole figures of Al (112) 

(shown in Fig. 5.2c) resemble the pole figures of Al (111), indicating the epitaxial growth 

of films, except two major differences. 
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Figure 5.1  XRD profiles of Al thin films deposited on different single crystal Si substrates. 

Basically Al (111) grows epitaxially on Si (111) substrate, (110) textured Al  forms on Si 

(110), and Al (112) grows epitaxially on Si (112) substrates. One of the XRD profiles for 

Al (112) shows no peak as the 2 for the Al (422) is 137 degree, out of the range for the 

XRD diffractometer. The XRD profile for a slightly tilted Al (112) films (out-of-plane tilt 

by 19 degree) shows the single Al (111) peak, indicating the single crystal like nature of 

the films.   
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Figure 5.2 The pole figure of Al film deposited on three different Si substrates. The 

projected plane is the sample surface. (a) The pole figures of (111) epitaxial Al film 

deposited on Si (111) substrate along four different directions. The {111} pole figure 

shows a three fold symmetry with a weak set of extra 3 spots arising from the low density 

twin boundaries. (b) The pole figures of (110) textured Al thin film on Si (110) substrate. 

The film is textured, but not epitaxial. (c) The pole figures of (112) Al thin film on Si 

(112) substrate showing the formation of epitaxial Al (112) films. The six-fold symmetry 

of {111} pole figure suggests the formation of high-density growth twins. 
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First, the twin and matrix spots in Al (112) have nearly identical intensity, 

indicative of a large twin fraction in the Al (112) film. In addition, the center (111) plane 

is not perpendicular to the film surface in Al (112). Instead, one of the {112} planes (as 

revealed in the {112} pole figure) is close to the center of the pole figure, consistent with 

the (112) film growth direction. Compared with Al (111) and Al (112), the Al (110) film 

has a weak texture. The strong spot 1 in {111} pole figure comes from the [112] crystals 

(blue color in Fig. 5.3b1, and spot 2 arises from the [110] crystals (green color in Fig. 

5.3b1), suggesting that [112] and [110] are the preferred crystal growth directions in Al 

(110) film. To acquire detailed crystallographic and microstructural information of these 

Al films, TKD-EBSD experiments were systematically performed. The orientation map 

(OM) of Al film on Si (111) from Z and Y directions are shown in Fig. 5.3a1 and Fig. 

5.3a2. The Z direction is parallel to the surface normal direction, and the Y direction is an 

arbitrary direction perpendicular to Z and X directions in the films. The map color key 

follows the inverse pole figure convention as shown in Fig. 5.3d. All grains in the (111) 

Al film (on Si (111) substrate) have the [111] orientation along the Z direction and Ʃ3 

[111] TBs are marked by yellow lines in Fig. 5.3a1. The TBs are clearly surrounding small 

twinned islands embedded in the matrix. The Y orientation map (OM Y) in Fig. 5.3a2 also 

confirms the existence of small islands in the matrix. Furthermore, the misorientation 

angle of grain boundary is predominantly 60°, consistent with the prevalence of TBs. As 

Ʃ3(111)  CTBs and Ʃ3(112) ITBs are both affiliated with Ʃ3 [111] TBs. Therefore, CTBs 

and ITBs in Fig. 5.3a2 cannot be differentiated. According to the crystallographic 

orientation of ITBs and CTBs illustrated in Fig. 5.4, the [111] rotation axis of CTBs is 
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perpendicular to the CTBs, but parallel to ITBs. Using this strategy it is now 

straightforward to distinguish CTBs and ITBs by calculating the angle between boundary 

and boundary rotation axis. For instance, nearly all the boundaries in Fig. 5.3a3 display 

blue colors. Based on the color map key listed in Fig 5.3f, the rotation axis of boundaries 

(RAB) is parallel to the Z direction, and thus these TBs are mostly ITBs. In the Al film 

grown on Si (110) substrate, {110} texture is predominant although grains with other 

orientations are also visible as shown in Fig. 5.3b1. Interestingly TBs in the Al (110) film 

labeled by red lines typically exist between [110] grains (green color) and [221] grains (in 

blue). Although ~ 30% of grains has TBs as shown Fig. 5.3b2, high angle grain boundaries 

(HAGBs) prevail in the Al (110) film. Fig. 3b3 shows that more than 70% of the TBs are 

CTBs.  

EBSD pattern of Al (112) films is quite different from those in Al (111) and Al 

(110). A noteworthy characteristic is the long curved TBs (labeled in red) formed 

primarily between <112> (purple color) and <212> (blue) crystals as shown in Fig. 5.3c1. 

In addition to these two major orientations, small clusters of <102> crystals in yellow 

color were discovered in the film and the <102> grains are comprised of multiple 

subgrains separated by low angle GBs (Fig. 5.3c2). Although these <102> crystals do not 

directly contribute to the formation of TBs, they effectively divide the islands of <112> 

and <212> islands, so that their grain sizes are not as large as <111> crystals observed in 

Al (111) (Fig. 5.3a1). Furthermore Fig. 5.3c3 shows that ITBs exists between <112> and 

<212> islands, whereas CTBs primarily form within the <112> grains. 
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Figure 5.3 Electron backscattered diffraction (EBSD) micrograph of the as-deposited 

(111) Al thin film on Si (111) substrate. (a1) The crystal orientation map (OM) along the 

sample surface normal (Z) direction. The yellow lines indicate the Ʃ3 incoherent twin 

boundaries (ITBs). The small twin islands are embedded in the matrix. (b1) The red lines 

in OM Y indicate the misorientation angle of GBs in Al (111). (c1) The boundary rotation 

axis map reveals the method to differentiate ITBs from coherent twin boundaries (CTBs). 

For ITBs, the boundary rotation axis (RAB) // TB, and for CTBs, RAB  TBs. (a2) The 

Al (110) film OM along the Z direction  shows red lines arising from the Ʃ3 twin boundary. 

(b2) The lines in OM along Y direction indicate the misorientation angle of  GBs. (c2) 

The boundary rotation axis map reveals the co-existance of ITBs and CTBs. (a3) The as-

deposited (112) Al OM Z shows abundant red lines, due to the formation of Ʃ3 twin 

boundary. (b3) The lines in OM Y outline the misorientation angle of  GBs. (c3) The 

boundary rotation axis map reveals the dominating existance of the ITBs and a small 

population of CTBs. (d-e) The orientaiton information can be deciphered using the 

inserted inverse pole figure (IPF) in the top row. (f) The color key to visualize the 

boundary rotation axis for differentiation of ITBs from CTBs. 
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Fig. 5.4 The schematic of orientation relationship between the twin boundary and crystal 

rotation axis. (a1) Two identical Al crystal tetrahedron. (a2) To form a coherent twin 

boundary (CTB) in fcc metals, the lower crystal rotates 60° along <111> direction. The 

twin boundary (CTB) is perpendicular to the rotation axis. (b1) Two identical Al crystal 

tetrahedron. (b2) same rotation for the crystal can form the incoherent twin boundary 

(ITB), and the rotation axis is parallel to the ITB.  

 

 

To characterize the twin density in Al films with three different textures, boundary 

density (defined as the length of boundaries per unit area) is used. As ITBs and CTBs can 

be differentiated, the density of CTBs, ITBs, and overall boundary are compared for all 3 

orientations in Table 1. Al (111) appears to have primarily ITBs, and TBs exceeds 90% of 

the overall boundary density. However, it is worth mentioning the epitaxial Al (111) films 

have small isolated twin islands and the boundary density is much lower than that of other 

orientations In contrast, Al (110) has much lower twin density (only 10%) with the highest 
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boundary density among three orientations, and a majority of boundaries are conventional 

HAGBs. Al (112) has nearly 30% TBs, and the density of ITBs is twice that of CTBs.  

 

 

 

Table 1. The boundary density of Al film on different silicon substrate. The boundary 

density is defined as the total length of the boundary divided by the area. All the 

boundary lengths are calculated from the EBSD data.   

 

 

V.4.2 Microstructure characterization of thin films by TEM 

The plan-view TEM micrographs of Al (111) film in Fig. 4a show excessive Moiré 

fringes along GBs. The inserted selected area diffraction (SAD) pattern confirms the 

formation of epitaxial (111) film.  The mosaic structure inside the film suggests the 

existence of dislocation arrays formed during the island coalescing process, commonly 

observed  in epitaxial films[218, 219]. Figure 4b shows the polycrystalline Al film grown 

on Si (110). The Al film deposited on Si (112) has (112) epitaxial structure (Fig. 5.5c). 

The grain size distributions of three Al films are shown in Fig. 5.5. The average grain size, 
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dave, of Al (111) is 400 nm, followed by 350 nm in Al (112), and 160 nm in Al(110) film. 

Cross-section TEM (XTEM) experiments were also performed for all three Al films. In 

general, the Al (111) film on Si(111) substrate has giant grain sizes, and black strips (Fig. 

5.6a1) arise from either high-density threading dislocations (as revealed by SADs from 

location 1) or occasionally ITBs as shown by SAD of a stripe in region 2 marked by the 

white circles. HRTEM (Fig. 5.6a2) of box a2 (in Fig. 5.6a1) shows classical ITBs, with 

one Shockley partial on each {111} plane in the three layer periodically stacking. Al (110) 

film has polycrystalline nature and TBs are occasionally identified as confirmed by the 

SAD in Fig. 5.6b1. Two parallel CTBs are observed: one of the CTBs stems from the 

interface between Si/Al interface, and the other one appears to nucleate from column grain 

boundary. HRTEM micrograph in Fig. 5.6b2 shows CTB nucleated from the grain 

boundary.  

For the Al (112) film grown on Si (112), CTBs and ITBs are observed in adjacent 

column as shown in Fig. 5.6c1. The narrow long inclined CTB labelled by an white arrow 

stems from the Si/Al interface and reaches the film surface. An ITB is identified at location 

3, as confirmed by SAD. Another inclined CTB is shown in Fig. 5.6c2. XTEM studies 

show that most CTBs are located inside the domains while the ITBs are at domain 

boundaries, which correlates well with the EBSD data. Another noticeable feature of the 

Al (112) film is the 4° tilt between Al(112) and Si(112), as shown by HRTEM micrograph 

in Fig. 5.6c3. This observation is consistent with the {112} pole figure analysis of the Al 

(112) film (Fig. 5.2c).  The nanoindentation studies on the all three films (listed in Table 

1) show that Al (112) film has the highest hardness.  
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Figure 5.5 The plan-view transmission electron microscopy (TEM) micrographs of Al thin 

films with different orientations and grain size distribution. (a) The Al films deposited on 

Si (111) substrate appear to have large grains and the inseted selected area diffraction 

(SAD) pattern shows the formation of (111) epitaxial Al films. (b) Polycrystalline (110) 

textured Al films form on Si (110) substrates. (c) Epitaxial Al (112) films are deposited 

on Si (112) substrates. 
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Figure 5.6 The cross-section TEM (XTEM) micrographs of  Al thin film deposited on Si 

substrate. (a) Al (111) thin film deposited on Si (111) substrate examined along Al <110> 

zone axis. (a1) Two SAD patterns were taken at location 1 and  2 marked by white circles. 

The inserted SAD patterns show the formation of (111) single crystal at location 1, and 

the formation of epitaxial twins at location 2.  (a2) A high-resolution TEM (HRTEM) 

micrograph showing a sharp ITB located in the white box c in Fig. 6a1. (b) Al (110) thin 

film deposited on Si (110) substrate. (b1) The yellow dash-dot lines delineate two inclined 

CTBs as confirmed by the inserted SAD pattern.  (b2) An HRTEM micrograph shows the 

formation of a CTB from the white box b2 in Fig. 6b1. (c) (112) Al thin film deposited on 

Si (112) substrate. (c1) The XTEM image shows the evdience of CTB and ITB. The 

diffraction pattern taken at location 3 confirms the formation of an ITB. (c2) The TEM 

image shows the inclined CTB inside one column. (c3) The HRTEM micrograph shows 

the interface between Al and Si substrate. The 4° misorientation angle exists between the 

Si [112] and  Al [112] orientation. 
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V.5 Discussion 

V.5.1 Growth twin formation mechanisms 

Growth twins are in general prohibited in metals with high SFE due to the high-

energy barrier for twin formation. However, there are scattered evidence showing 

formation of growth twins in Al with high SFE by physical vapor deposition [180, 220, 

221]. Prior studies show [180] that the probability of forming parallel and incline growth 

twins is different in Al. As a starting point of the discussion, it is necessary to revisit the 

formation mechanisms of growth twin in metal film. Generally speaking, there are two 

major twin formation mechanisms during the vapor to solid phase transformation.  One is 

the consecutive fault stacking during the growth [72, 222].  It has been shown [71] that a 

high deposition rate may increase the density of growth twins in sputtered (111) Cu. And 

this phenomenon has been explained using a thermodynamic model [19]. The other 

formation mechanism is the impingement of two islands with twin orientation during the 

crystal growth [218, 223]. During the islands’ coalescence in film growth process, low 

energy TBs may form instead of the HAGB to minimize the system energy. Additionally 

Ino et al. [224] have observed particles with multiple TBs using thermal evaporation. 

Similarity among these mechanisms is that the crystal growth orientation may affect the 

twin formation ability. For example, the multi-twin particle formation model [225] works 

well for [111] or [100] orientation. Bufford et al. [60] observed the low twin density in Ag 

(110) compared to epitaxial nt Al (111). In the following section, the influence of crystal 

orientation on twin formation mechanisms will be discussed.  
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We first examine the formation of growth twins in Al (111) film with low density 

ITBs along the domain boundaries shown schematically in Fig. 5.7a1. Similar structures 

in Al have also been revealed in literatures [120, 149].  Based on the pole figure analysis, 

the twin domains have a 60° in-plane rotation along the [111] direction in comparison to 

matrix. Since the <111> axis contains a three-fold axis of symmetry, 120° in-plane rotation 

will result in the same crystal arrangement. In epitaxial Al (111), nuclei have only two 

different crystal orientations, the matrix and twin orientation (with 60 in-plane rotation). 

Due to its high SFE and the similarity between twin and matrix orientation, the growth of 

twinned islands in Al (111) is very difficult. For instance, although TBs account for more 

than 90% of the grain boundaries in Al (111), the overall boundary density is much lower 

than that in Al (110) and Al (112) (Table 1). Also, the average grain size in Al (111) is 

rather large, ~ 400 nm. Conversely, in low SFE Ag films, nearly 50% of twin domains can 

form in Ag (111) thin film. It is worth mentioning that smaller domain size and high 

density ITBs can form in Al by using Ag (111) seed layer [120]. Furthermore, the ITB Al 

columns grown on Ag have smaller domain size, ~ 200 nm, similar to the dimension of 

columnar grains in the Ag seed layer.  

Next, the Al (110) film deposited on Si (110) has fine grain size (160 nm) with 

weak [110] texture. Although the boundary density is 8.97/m, much greater than that in 

Al (111), TBs account for merely 10% of the boundaries. Also based on the EBSD 

analyses, more than 70% of TBs are CTBs. Among the CTBs, half of them are in [110] 

matrix and the rest are in [212] matrix. Fig. 5.7b1 shows the crystal orientation of two type 

of twin structures in Al (110) films. The CTB tilting angle can be calculated based on the 
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pole figure in Fig. 5.7b3, where spot one is the TB for type one and the spot two is the TB 

for type two twin. As revealed by XTEM studies, TBs may form either at the Al/Si 

interface, due to the impingement of two twin nuclei, or nucleated from the domain 

boundary. Similar twin formation mechanisms have been identified in ultra-thin 

polycrystalline Al film [180].   

Finally, we evaluate the formation of high-density growth twins in Al (112) films. 

Al (112) has the highest twin density among three orientations investigated here. Nearly 

all ITBs form between the [112] and [212] crystals and CTBs form within [112] grains 

shown in Fig. 5.2a3. Figure 5.7c1 shows the schematic of the ITB in the Al (112) film 

which has nearly identical configuration comparing to ITBs in Al (111). A major 

difference between the two schematics (Fig. 5.7c1 and Fig. 5.7a1 examined along Al 

<110> zone axis) is that the entire crystal of Al (112) appears to have a 15° rotation 

comparing to that of Al (111), consistent with the {111} pole figure analysis (comparing 

Fig. 5.2a and Fig. 5.2c). The forgoing analogy is a bit simplified. In reality, the formation 

of growth twins in Al (112) is more complicated. Based on the crystallography, the atomic 

planes parallel to the Si (112) plane are either Al (335) or Al (535). Note that these two 

orientation are very similar to the EBSD analyses, showing the formation of TBs between 

(112) and (212) islands (Fig. 3a3). The (335) / (535) orientations are unique as two types 

of boundaries can form between these two crystals, namely (112) ITBs with orientation 

nearly parallel to the film normal direction (rotated by 4° from substrate normal direction), 

and (111) CTBs that is rotated by 19° from the Si (112) surface (as shown in Fig. 5.7c1).  
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Although both Al (111) and Al (112) form growth twins, the TB density in Al 

(112) is much greater. As shown schematically in Fig. 5.7a2, only isolated twin islands 

exist in Al. This is a natural consequence of high SFE in Al. The matrix would prefer to 

“wipe out” twin seeds to minimize system energy during the island coalescence regime in 

film growth process. In contrast, as illustrated in the schematic in Fig. 5.7c2, high-density 

ITBs can form between (335) and (535) islands. None of the two orientations can take the 

predominant role, because of the existence of a third crystal orientation, Al (102). The 

cluster of these crystals form a natural barrier to stall the ITB annihilation process during 

island coalescence regime, prohibiting the excessive growth of either (335) or (535) 

variants. When the film enters steady column growth regime, the ITB annihilation process 

through island rotation triggered by the partial dislocation slip is terminated due to the 

constraint from the adjacent (102) columnar grains.  Thus, (102) crystals, though not 

directly contribute to the formation of twins, can curtail abnormal grain growth of either 

variants, thus promote indirectly the formation of high-density growth twins.  
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Figure 5.7 Orientation relationship of twin structures in Al films. (a1) The schematic of 

crystal orientation of twinned columns for (111) Al on Si (111). The vertical ITB has been 

marked as red line and the angle between (112) and (111) planes is 19°. (a2) The schematic 

of the grain distribution in Al(111) film. The twin columns are isloated islands in the 

matrix. (a3) The pole figure of twinned crystals, the triangular shape represent the {111} 

planes of matrix, whereas the square  symbols arise from the {111} planes of twins. (b1) 

The schematic of crystal orientations of major twinned columns in Al (110). Type one: a 

CTB forms between two crystals with normal directions  of [110] and [104]. The angle 

between CTB and substrate surface is 35°. Type two: a CTB forms between the two 

crystals with [536] and [205] orientation. The (536) palne is nearly parallel to (212) plane 

(with a small 5° tilt). (b2)The schematic of grain distribution. (b3) The pole figure for two 

sets of twins. For the type one twin, the CTB is at spot 1, where twin and matrix share the 

same (111) plane, and CTB of type two is at spot 2. (c1) The schematic of crystal 

orientation of twinned columns in Al(112) on Si (112), the normal direction of matrix 

crystal is [335] and the normal direciton of the twin crystal is [535]. The crystal orientation 

of twin in Al(112) is similar to that of Al(111) shown in Fig. 6a1, except that  the entire 

crystal has been tilted 15° compared with the crystal strucutre ofAl(111) in Fig. 6a1. (c2) 

The schematic of the grain distribution, all the twinned grains were marked by blue and 

red color. The dominant twinned crystals are surrounded by small grains (yellow) with 

[102] orientation. (c3) The pole figure of {111} planes for twin and matrix.   
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     The formation of growth twins in bicrystals have been observed before in  Ag[60], 

Au[226], Al [227, 228]and NiSi2 [229]. The concept developed here may be generally 

applicable for the formation of growth twins in fcc metals, especially those with high SFE. 

Basically, two major crystal variants with twin orientation are necessary; and furthermore 

small cluster of grains with different orientation is beneficial to impede the abnormal 

growth of one variant of twin structures. 

 

V.5.2 The influence of TBs on strengthening 

A 3D plot is shown in Fig. 5.8a to visualize the influence of grain size and TB 

fraction on strengthening. Besides the three pure Al films deposited in this study, the nt 

Al film with Ag seed layer [120, 149] is also added for comparison. Although Al (111) on 

Ag seed layer and Al (111) on Si have similar high TB fraction, Al (111) on Si (111) has 

low hardness, because the grain size of the film is very large ~ 400 nm, comparing to 200 

nm of Al (111) on Ag seed layer. It is worth mentioning that the Al (110) has the smallest 

grain size, ~ 160 nm, among all films, but its hardness is lower than Al (111) on Ag seed 

layer and Al (112), as the TB fraction is the lowest in the Al (110) films with randomly 

oriented HAGBs. Al (112) has larger grain size than Al (110), but has a higher TB density, 

leading to its higher hardness, exceeding 1 GPa. These comparisons, though somewhat 

scattered, suggest that ITBs are stronger barriers for the dislocation slip in Al film than 

conventional HAGBs.    
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Figure 5.8 (a) The evolution of film  hardness with grain size or twin boundary fraction. 

Twin boundary fraction are defined as the ratio betweentwin boundary length and total 

boundary length. (b) The Hall-Petch plot for several Al films [74,75] showing the 

influence of GB and TB on flow stress (H/2.7) of Al films. The red squres are from the Al 

film with high-density ITBs (this study), whereas the orange open circles show the Al with 

conventional high angle GBs (HAGBs). The flow stress of twinned Al on Si (112) and 

Si(111) are located along the same red dotted line. The flow stress of the (110) Al films 

with little twins (deposited on Si (110)) follows the Hall-petch slope of Al with 

conventinal HAGBs. The Hall-Petch slope for twinned Al is greater than that of Al with 

conventional HAGBs.  

 

 

A Hall-Petch plot of flow stress (hardness/2.7) vs. average grain size is shown in 

Fig. 5.8b The blue data indicates the high density ITBs in Al films deposited on Ag seed 

layer, dark green data are obtained from polycrystalline Al with different grain size 

processed by equal channel angular pressing [230, 231]. Red data are from this study. Two 

slopes are obtained by fitting these data. The Hall-Petch slope of Al with a significant 

fraction of CTBs or ITBs is greater than that of HAGBs, indicating that ITBs may be 
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stronger barriers to the transmission of dislocations than conventional HAGBs in the Al. 

In-situ TEM nanoindentation experiment coupled with MD simulations also suggest that 

ITBs are strong barriers to the transmission of dislocations, as ITBs can not dissociate 

during deformation, whereas ITBs dissociate in Cu with low SFE [149]. The peak strength 

of Al with two types of boundaries can be estimated by using the following formula [19].    

 

𝐾𝐻𝑃 = √𝜏∗𝜇𝑏 [𝜋(1 − 𝑣)]⁄    Equation 27 

 

where 𝜏∗ is the interface barrier strength, 𝒃 is the magnitude of Burgers vector, 𝜇 

is the shear modulus, and 𝑣 is the Poisson ratio. The 𝐾𝐻𝑃 of ITB and HAGB of Al is ~2.5 

GPa√𝑛𝑚 and 1.6 GPa√𝑛𝑚 based on the fitting of data from Fig. 5.8b. For AL, given b 

= 0.286 nm,  = 26 GPa,  = 0.33, 𝜏𝐼𝑇𝐵
∗  is estimated to be 1.76 GPa and 𝜏𝐻𝐴𝐺𝐵

∗  = 0.73 GPa. 

The maximum flow stress for Al with of ITB and HAGB are 5.3 GPa and 2.2 GPa by 

applying the Taylor factor of 3. Thus the maximum strength of Al with ITBs could be 

twice as strong as that of Al with conventional HAGBs. This analysis may serve as an 

upper bound estimation of peak strength for nanocrystalline and nanotwinned Al, which 

requires further experimental validation.   

 

V.6 Conclusion 

The influence of film texture on the formation of TBs is investigated in Al (111), 

(110) and (112) textured films. Epitaxial Al (111) has only two {111} twin variants, matrix 
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and twins, resulting in small isolated twin islands due to abnormal grain growth. Epitaxial 

Al (112) film has the highest density of ITBs, because the twin variants (335) and (535) 

are separated by Al (102) islands, promoting the formation of ITBs. The smaller domain 

size can thus be achieved by introducing HAGBs into the twinned bicrystal structure to 

inhibit the abnormal growth of single variant. These in-depth microstructure analyses 

supported by extensive TKD and TEM analysis provide an alternative way to promote the 

formation of highly twinned Al in addition to the recently reported template technique to 

refine the domain size,. Nanoindentation studies show that TBs are stronger barriers to 

block the transmission of dislocations, and hold the promise to deliver high strength 

nanotwinned Al.  
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CHAPTER VI  

MECHANICAL BEHAVIOR AND STRENGTHENING MECHANISMS OF 

NANOTWINNED ALUMINUM ALLOY 

 

VI.1 Introduction 

      Light-weight high-strength structural materials have been intensively studied due to 

the increasing requirement to improve fuel efficiency especially for automotive and 

transportation industry. Aluminum (𝜌=2.7 g/cm-3) and magnesium (𝜌=1.7 g/cm-3) are 

among the lightest monolithic metals and inevitably attract significant interest in research 

community. However, both Al and Mg have low modulus and melting point, and are 

known to have very low yield strength. Various solutes have been doped into the Al and 

Mg matrix to enhance their strength, formability and ductility. Numerous class of 

Aluminum and Mg alloys have been developed extensively and advanced Al and Mg 

alloys enable a board range of industrial applications [232, 233]. But higher strength and 

better ductility remain necessary for these alloys for more challenging requirement for 

various applications.    

Various strategies have been developed to strengthen Al alloys, including grain 

boundary and solid solution strengthening, work hardening, and precipitate strengthening. 

A conventional way to strengthen 7××× series Al alloys is precipitation hardening, which 

has been widely used for aerospace industry [234]. The extremely fine and homogeneous 

precipitates can block the slip of the dislocations and strengthen the materials [235]. To 

achieve the optimum precipitate strengthening condition, various heat treatment 
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procedures have been developed [236-238]. Another conventional strengthening 

mechanism for Al alloy is to use solid solution, which increases the friction stress for 

dislocation slip. Solid solution can also stabilize small grains and change stacking fault 

energy [126, 239-244]. Thus, solid solution strengthening is often tied to grain boundary 

strengthening.  

High strength nanocrystalline (nc) metals have been widely explored in the past 

decades and nanostructures can be achived by using ball milling, equal channel angular 

pressing (ECAP), and other severe plastic deformation (SPD) techniques [240, 245-247]. 

Combined with precipitation hardening, Zhao et al. reported an ultra-high tensile strength 

of 720 MPa in ultra-fine grained (UFG) 7075 Al alloys after ECAP, whereas the tensile 

strength of commercial 7075 Al is 570 MPa. Moreover, Koch et al. [240] also successfully 

synthesized 26 nm Al-5%Mg alloy with 740 MPa tensile strength by in situ consolidation. 

Even higher tensile strength (1 GPa) has been reported by Liddicoat et al. [246] for 7075 

alloys. Besides these SPD techniques, electrodeposition and physical vapor deposition 

techniques can also fabricate nc alloys [14, 248]. Although nanograins can lead to high 

strength, they also degrade the ductility [249-251]. To achieve high strength and good 

ductility, twin boundary (TB) has been identified to be a good candidate [46, 53, 162]. 

However, the high stacking fault energy (SFE) of Al makes it difficult to introduce high-

density twins.     

Recently Al with high-density growth twins has been fabricated by introducing nt 

Ag buffer layers [22, 120, 170] by the magnetron sputtering technique. The epitaxial 

growth Al on Ag seed layer permits the extension of vertical twin structure (mostly 
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incoherent twin boundaries-ITBs) into Al. A systematic study on different metallic 

multilayer systems results in two criteria to allow the formation of twins in high SFE 

metals by using the seed layers [72]. First, the low SFE metals with high-density twins act 

as buffer layers to provide twinned seeds; and the second criterion is the coherency at the 

interface between the low SFE seed layer and high SFE metals to make sure that the twin 

structure can be introduced through layer interfaces successfully.  

In this article, we use a simple method to introduce twins into AlMg films by DC 

magnetron sputtering with a low SFE metallic seed layer. By adding more Mg solute, the 

strength of the nt AlMg films raisess significantly due to the solid-solution and grain 

boundary strengthening. In-situ micropillar compression technique is also employed to 

obtain stress-strain behaviors, and the flow stress correlates well with the nanoindentation 

hardness measurement. Furthermore compression studies show nt AlMg has excellent 

strain hardening capability. Post-compression TEM analysis on the deformed pillars 

reveal distinct deformation morphology. The twin formation mechanisms, including 

nucleation and formation of broad 9R phase, are discussed.     

VI.2 Experimental 

The AlMg thin films were fabricated using DC magnetron sputtering at room 

temperature on Si substrates. The substrates were etched using HF to remove the oxidized 

layer on the surface. High purity ( 99.99% ) Al and Mg targets were used as the deposition 

sources. The base pressure before the deposition was ~ 6×10-8 torr, and ultra-high purity 

Ar gas was injected into the chamber to generate the plasma under 2×10-3 torr. The AlMg 

alloy with different Mg composition (1, 5, and 10 at.%) were deposited by tuning the 
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deposition power. To stimulate the growth of twin structure, an 80 nm thick Ag seed layer 

was deposited [120, 149]. The normal out-of-plane θ-2θ scan and pole figure studies were 

performed on all samples using PANalytical X’pert Pro material research diffractometer 

with Cu-Kα source. The chemical analysis was measured by energy dispersive 

spectroscopy (EDS) in a Tescan LYRA-3 model SEM with schottky field emission 

electron source. The TEM sample was prepared by mechanical grinding and fine polishing 

to ~ 40 µm in thickness, followed by dimpling and low-energy ion milling to get a thin 

area for plan-view and cross section TEM specimens. The microstructure of specimens 

were characterized by an FEI Tecnai F20 ST operated at 200 kV. The hardness was tested 

by instrumented nanoindentation using an FIscherscope HM200XYp nanoindenter with a 

Vickers indenter tip. A minimum of 20 indentations were employed for one sample at each 

indentation depth. Pillars were fabricated using the focus ion beam technique in FEI 

Quanta 3D dual-beam SEM. The diameter of the pillars is 500 nm, and the height of the 

pillars is 1000 nm. The taping angle is less than 2 degree to ensure reliable data analyses 

for the uniaxial compression tests. The in-situ pillar compression test has been performed 

by using a Hysitron PI 87XR Picoindenter inside the FEI Quanta 3D FEG SEM 

microscope. The force-displacement data were captured by a piezoelectric actuator on the 

high-load capacitive transducer. The average drift rate is 0.3 nm/s during the in-situ test. 

The noise of the force and displacement is less than 8 µN and 1 nm. The in-situ 

compression test has been done in 20 s to minimize the thermal drift.          
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VI.3 Results 

VI.3.1 Texture of AlMg films 

XRD profiles in Figure 6.1 show that Al99Mg1, Al95Mg5, and Al90Mg10 films have 

the same Al (111) texture. To explore the crystal orientation of the films in detail, x-ray 

pole figure analyses have been performed on all the films. As shown in figure 6.2, the 

(111) pole figures indicate the epitaxial structure for all the films together with high-

density twins as evidenced by six symmetrical peripheral spots, three weaker spots from 

twin and three strong spots from matrix. The central dot is the (111) plane shared by both 

twin and matrix along the out-of-plane direction. The pole figure of Al99Mg1 shows the 

(111) in-plane rotation, resulting in the decrease of twin density.  

 

Figure 6.1 XRD profiles of AlMg thin films deposited on single-crystal Si (111) 

substrates. All films have (111) texture.   
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Figure 6.2 The {111} plane pole figures of AlMg films. The projected plane is the sample 

surface. The six-fold symmetry of {111} pole figure suggests the formation of high-

density growth twins. 

 

VI.3.2 The microstructure of as-deposited AlMg thin films 

Figure 6.3 shows the microstructure of Al90Mg10 thin film via TEM studies. 

Homogenously distributed small domains can be observed from the plan-view TEM image 

(Figure 6.3 (a)) and the inserted selected area diffraction (SAD) pattern indicates the 

epitaxial growth of the film (examined along Al (111) zone axis). XTEM micrograph in 

Fig. 6.3(b) shows nanoscale columnar grains separated by high-density incoherent twin 

boundary (ITB), which is confirmed by the SAD pattern in Fig. 6.3(c). The dark layer 

underneath the AlMg film is the Ag seed layer.  
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Figure 6.3 TEM images of Al90Mg10 thin film. (a) the plan-view TEM micrograph. (b) the 

cross-section TEM micrograph. (c) The diffraction pattern of cross-section specimen with 

large aperture. 

 

 

 

Figure 6.4 TEM images of Al95Mg5 thin film. (a) the plan-view TEM micrograph. (b) the 

cross-section TEM micrograph. (c) The diffraction pattern of cross-section specimen with 

large aperture shows the formation of incoherent twin boundaries. 

 

 

Plan-view and XTEM micrographs (shown in figure 6.4) show a similar 

microstructure (ITB separated epitaxial nanocolumns) in the Al95Mg5 film. Cross-

sectional HRTEM micrograph in Fig. 6.5a captures an entire domain boundary. Three 

locations (I-III) were selected along a typical ITB. The width of ITB evidently changes 

through the film thickness. At the film surface (region I in Fig. 6.5 b), a broad ITB labeled 
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as 9R phase is identified. And the 9R shrinks gradually and becomes a straight narrow 

ITB as it is getting closer to the film surface. The white dash lines mark two phase 

boundary (PB) for the 9R phase, a straight PB1 and curved PB2. In region II in the middle 

of the film, a 67 nm wide 9R phase is identified in Fig 6.5(c). Figure 6.5(d) shows the 9R 

phase near the bottom of the film in region III is ~ 50 nm wide. A magnified image of the 

white box in Fig. 6.5(b) is shown in Fig. 6.5(e). It is clear to see the three-layer periodic 

stacking on {111} plane. Dislocations associated with the 9R phase were measured by 

constructing Burgers circuits around the faulted regions. The closure failure for the circuit 

for AB is a/6[211], consistent with the pure edge partial dislocation. The Burgers vector 

for the BC and CA is a/12 <211>. Based on the model of 9R phase [49, 111], they correlate 

well with the projection of a 30° or 60° mixed partial dislocations examined along the 

[011] zone axis. These analyses confirm that the 9R phase contains two mixed partial 

dislocations and one pure edge dislocation on 3 adjacent {111} planes. Statistical 

distributions in Fig. 6.6. (based on the TEM micrographs) show that the average grain 

sizes for the Al99Mg1, Al95Mg5, and Al99Mg1 films are 73, 82 and 93 nm, respectively. 
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Figure 6.5 Cross-section TEM micrograph of Al95Mg5 thin film showing the board 9R 

phase. (a) At low magnification, incoherent twin boundary grows from the interface of Ag 

and Al95Mg5. (b) A higher magnification view shows the shrinkage of 9R phase at the 

sample surface. (c) A higher magnification view shows the board 9R phase in the middle 

of the film. (d) A higher magnification view shows the termination of 9R phase at the 

bottom of the film. (e) A high magnification TEM shows the Burgers loops to identify the 

nature of the 9R phase. 
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                         Figure 6.6. Grain size distribution of AlMg thin films. 

 

VI.3.3 Mechanical properties of AlMg thin films 

      The mechanical behavior of the AlMg thin films with different Mg composition was 

tested by using nanoindentation. When adding 1 at.% Mg into Al matrix, the film hardness 

increases to 1.6 GPa, which doubles the hardness of pure Al, ~ 0.8 GPa. Adding more Mg 

leads to higher hardness, ~ 2 GPa for Al95Mg5, and 2.3 GPa for Al90Mg10 (Fig. 6.7).  
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                           Figure 6.7 Hardness as a function of Mg composition. 

 

 

In situ uniaxial compression tests have also been carried out on Al90Mg10 pillar 

with  500 nm in diameter in SEM to reveal the real-time deformation processes. Figure 

6.8a-b show pillars before and after compressive loading. Compared with the pillar before 

the compression test, the deformed pillar experienced an obvious barreling on the top 

without any crack or shear offset up to  20% strain.. The true stress-strain stress curve 

shows a high flow stress up to 750 MPa, which correlates well with the hardness test 

according to the Tabor relation [252].  
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Figure 6.8 In-situ pillar compression test result for Al90Mg10 thin film. (a-b) SEM image 

of the pillar before and after the compression test. (c) The true stress-strain curve for an 

in-situ compression test showing a flow stress of ~ 800 MPa for the film. 

 

 

TEM analysis has been performed on the deformed pillar. Pt was deposited to fill 

in the trench to protect the pillar. TEM-specimen was then prepared by using FIB, 

followed by the ion milling at low energy to perform ion polishing. Figure 6.9(a) shows 

the micrographs of the deformed Al90Mg10 pillar, where the yellow dash lines indicate the 

TBs. After the deformation, the ITB boundaries close to the surface detwinned, leaving a 

single crystal like area near the top. The depth of the top single crystal area, marked by 

red dash line, is ~ 160 nm, which is similar to the total displacement for the compression 

test.  
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Figure 6.9. TEM micrographs of the deformed Al90Mg10 pillar. (a) Cross-section of 

Al90Mg10 pillar after the compression test. (b) A high magnification micrograph shows the 

single crystal structure of area one. (c) The distorted 9R phase in area two. (d) A high 

magnification micrograph shows the board 9R phase in area three. (e, f) high 

magnification micrographs show the board 9R phase at the edge of the pillar. 

 

 

Figure 6.9(b) shows the enlarged HRTEM of single crystal structure, which is 

marked as white box b in figure 6.9(a). Although it is mostly a single crystal structure, 

high-density SFs are observed and marked. We also examined all single crystal area 

labeled by red dash line, and no boundary can be detected. Below the single crystal area, 

severely distorted TBs are observed as marked by the yellow lines. The distorted 

boundaries in area two are curved and bent to the lateral direction. As shown in figure 

6.9(c), the distorted boundary contains a triple junction, which is consisted of 9R phase 
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segments (black circles), an ITB, and a low angle grain boundary. Near the base of the 

pillars, a broad 9R phase is observed at location d in figure 6.9(a) as shown in figure 6.9(d). 

So in area three which is near the base of deformed pillar, the crystal structure is similar 

to the as-deposited films, with high density 9R phase along the domain boundary. An 

interesting observation is that the broad 9R phase also exists near the outer edge of the 

pillar as shown in figure 6.9(e). In general free surface is a nature defect sink, which can 

absorb dislocations and defects, especially under the high shear stress. However, the broad 

9R phases are observed on both sides of the pillar after plastic deformation to a true strain 

of ~ 20%. Even in the single crystal area I, the 9R phase is still stable after the deformation 

as shown in figure 6.9(f), whereas all the 9R phase and ITBs are eliminated inside the 

single crystal area.  

 

VI.4 Discussion 

VI.4.1 The formation mechanism of high-density ITBs and 9R phase 

       As mentioned in the previous chapter, monolithic Al forms giant domains with low-

density ITBs on Si (111) substrate without any seed layers. However, the Cu and Ag can 

form high-density ITBs if they have [111] growth orientation [58, 60]. From the 

crystallographic point of view, for fcc metals grow along [111] direction, adatoms have 

two possible landing sites, which have the twin orientation relationship. When small 

twinned orientation nucleuses impinge together, an ITB will form, instead of the normal 

high-angle grain boundary, to minimize the system energy. But for high SFE metals, small 
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nucleus can rotate by the partial slip to eliminate the ITB to minimize the system energy. 

This may explain why monolithic Al (without Ag seed layer) ends up with giant domains 

with less ITBs. By adding the Ag seed layer, however, the Al domain size can be curtailed 

to 200 nm [149]. The current study shows that the domain size of Al matrix decreases to 

90 nm by adding 1at.% Mg. With the increase of Mg composition, even smaller domain 

size can be achieved. 

      Several factors may play roles in the grain size reduction. First, the doping of 

substitutional elements to the matrix can cause the lattice distortion and the variation in 

bonding energy landscape. Impurity atoms can act as pinning centers to stall the movement 

of the matrix atoms, resulting in the decrease of their diffusivity. Rupert et al. [248] 

reported the nanocrystalline-to-amorphous transition when adding more W into Ni matrix 

using magnetron sputtering. Using electrodeposition,  Hu et al. [14] fabricated as small as 

3 nm grain size NiMo ally by adding 21.5% Mo into Ni-base. Using the confined channel 

die pressing, Zhao et al. [245] found the decrease of grain size by adding more Mg solute. 

For pure Al, the smallest average grain size after the processing is 10 µm, whereas the Al-

5wt.%Mg can be refined to 100 nm. In our case, during the deposition, especially at an 

early stage, the diffusion of Al bas been pinned by the Mg solute, the lateral growth of the 

nucleus is impeded by the low diffusion rate which results in a smaller domain size.  

      Another factor of grain refinement may be relate to the influence of SFE. SFE can be 

altered by changing test temperature and alloying [253]. Many researchers focus on the 

influence of alloying on SFE since low SFE metals can trigger more SFs or twin structure 

to strengthen the materials. Zhao et al. [126] reported that bronze (Cu-10wt.% Zn) with 
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an SFE of 35 mJ/m2 could form higher density of twins and wide SFs to achieve higher 

strength and ductility than that of the Cu with an SFE of 78 mJ/m2. Similarly, adding Al 

into Cu can decrease the SFE of CuAl alloys dramatically from 78 to 12 mJ/m2 when Al 

concentration is 4.5 wt.% [254, 255]. A linear relationship between the twin thickness and 

SFE was observed by Zhang et al. [256]. However, adding solutes into matrix not only 

changes the SFE but also leads to significant solid solution hardening. Thus, it is difficult 

to isolate the influence of the SFE on strengthening from solid solution strengthening in 

CuZn system [126]. To avoid the influence of solid solution hardening, the NiCo system 

has been used to study the influence of solute concentration on the SFE due to the similar 

atomic size, electronic configuration, and magnetism [239]. Sun et al. [127] observed a 

similar trend that adding more Co can increase the twin density after the high-pressure 

torsion. But, they didn’t provide a relation between the concentration of Co and SFE. 

Based on the results from both MD simulation and experiments, the SFE of NiCo alloy 

will increase and reach a peak at 3 wt.% Co and decrease gradually with more Co doping 

[239, 253, 257].  This nonlinear relationship has also been predicated in the Al-based alloy. 

Schulehess et al. [258] calculated the SFE of Al alloy with Cu, Ag, and Mg doping 

individually. Adding Ag and Cu has similar phenomenon that the SFE will increase and 

then decrease until the solute concentration exceeds 30 at.% . But, there is a continuous 

decrease of SFE of AlMg alloy with the increase of the Mg concentration. This continuous 

SFE decrease in AlMg alloy can help to stabilize the ITB at the island coalescence region 

and preserve more ITBs, resulting in the smaller domain size. However, the formation 

mechanism of broad 9R phase is still unclear. 9R phase is a consequence of the 
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dissociation of ITB. Most of the 9R phase has been observed after the plastic deformation 

in low SFE metals [49, 111, 122, 259, 260]. So, the Formation of 9R phase may be related 

to the stress state inside the film during the deposition.   

VI.4.2 Strengthening mechanisms for AlMg thin films 

      In AlMg films, Mg atoms are homogenously distributed in Al matrix due to the non-

equilibrium vapor to solid solidification process. Thus, the solid solution and boundary 

strengthening mechanisms play dominant roles to achieve the high flow stress in AlMg 

thin films. For the solid-solution strengthening, the Fleischer equation is used to estimate 

the solute induced increase of friction stress for dislocation slip [261, 262].  

∆𝜎𝑠𝑠 = 𝑀𝐺𝑏𝜀𝑠𝑠
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∆𝜎𝑠𝑠 represents the solute atoms induced increase in yield strength of the alloy, M is the 

mean orientation factor, which is 3.06 for fcc polycrystalline matrix, G is the shear 

modulus of the matrix, b is the Burgers vector, and c is the solute concentration. 𝜀𝑠𝑠 is 

called the interaction parameter which accounts for the resistance for the dislocation slip 

in local region. The 𝜀𝑠𝑠 relates to the lattice parameter and shear modulus change for the 

matrix element and can be calculated by using equation 28 [262]. 

      This is a classic theory for the solid-solution strengthening in coarse grains. The 

discrepancy has been found in the nanocrystalline material when the grain size is less than 
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30 nm due to the dislocation pinning effect at grain boundaries [248]. However, the 

minimum grain size in AlMg film is 70 nm, which is much larger than 30 nm. So, 

regarding the grain size effect, the classic theory is still applicable for our AlMg thin film 

system. Based on the equation 28 and 29, ∆𝜎𝑠𝑠 is 17 MPa for Al99Mg1 thin film, and the 

stress contribution of solid-solution strengthening in Al95Mg5 is ~ 80 MPa. The Al90Mg10 

film has the highest increase of yield stress due to the solute atoms, 170MPa. For the grain 

boundary strengthening, we will focus on the ITB strengthening because of the high-

density ITBs in all AlMg thin films. Figure 6.10 compares the GB strengthening of normal 

high-angle grain boundary and ITB for pure Al by using a classical Hall-Petch plot. Based 

on the slope, ITB seems to be a stronger barrier for the dislocation transmission than the 

conventional high angle grain boundaries. Based on the Hall-Petch slope of the ITB, the 

strength of grain boundary strengthening effect can be calculated as a function of grain 

size. Thus, the ITB strengthening contribution for Al99Mg1, Al95Mg5, and Al90Mg10 are 

around 600MPa, 620MPa, and 670MPa separately. So, the flow stress of AlMg films 

based on the grain boundary and solid-solution strengthening are 617MPa, 700 MPa, 840 

MPa for Al99Mg1, Al95Mg5, and Al90Mg10, which correlate well with our experiment 

results derived from nanoindentation measurements.   
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Figure 6.10. Flow stress as a function of d-1/2 for Al and AlMg with different grain 

boundaries. 

VI.5 Conclusion     

Epitaxial AlMg thin films with various Mg concentration have been fabricated 

using magnetron sputtering technique. Using the Ag seed layer, domains with an average 

dimension less than 100 nm have been synthesized. Furthermore these domains are 

separately primarily by ITBs. The nanoindentation and in-situ pillar compression tests 

were employed to test AlMg films with high-density ITB. A high flow stress (820 MPa) 

in certain AlMg thin films has been measured, and the strengthening mechanisms are also 

investigated. The strong ITB barriers play an important role to strengthen the film. 
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Combined with the solid-solution strengthening, the calculated flow stress correlated well 

with the experimental data.  
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CHAPTER VII                                                                                                       

SUMMARY  

   

            In conclusion, several important results stand out. First, growth twins have been 

observed in sputter-deposited polycrystalline Al films and the fraction of twinned grain 

increased with increasing film thickness and decreased thereafter in the thicker films. A 

thermodynamic twin nucleation model has been postulated to explain the formation 

mechanism of inclined growth twin in Al films. Although the thin film has low twinned 

grain fraction, the twin formation mechanisms presented in this study suggest new 

perspectives tailor the formation of growth twins in high SFE metals, such as Al. 

Most excitingly, the influence of film texture on the formation of TBs has 

investigated in Al textured films. Epitaxial Al (112) film has the highest density of ITBs 

due to the existence of HAGB introducing by the Al (102).  The smaller domain size can 

thus be achieved by introducing HAGBs into the twinned bicrystal structure to inhibit the 

abnormal growth of single variant. Nanoindentation studies show that TBs are stronger 

barriers to block the transmission of dislocations and hold the promise to deliver high 

strength nanotwinned Al.  

Besides the orientation dependence of twin formation, the high density ITBs with 

board 9R phase AlMg alloy has been fabricated using magnetron sputtering technique. By 

adding the Ag seed layer, epitaxial (111) thin film with fine domains is achieved. 

Furthermore, the nanoindentation and in-situ pillar compression tests were employed to 

test AlMg films with high-density ITB. A high flow stress (820 MPa) in certain AlMg thin 
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films has been measured, and the strengthening mechanisms are also investigated. Based 

on the work presented in this dissertation, more following questions have been developed. 

By explaining these questions, I hope to pursue a better understanding of the twin 

deformation mechanisms. 
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