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ABSTRACT 

 

Many people believe that paying a toll to use a managed (tolled) lane will result 

in a shorter travel time than using the toll-free general-purpose lanes. However, there are 

times users pay to travel on the toll lane but go slower than the toll-free lanes. This 

research examined these “uneconomical trips” on managed lanes to discover potential 

reasons for these trips and help understand the lane choice behavior. Some potential 

factors considered were toll rate, traffic flow, and past trip experience. 

Random forest and logistic regression methods were implemented to examine the 

impact and importance of variables on the probability of a user making an uneconomical 

managed lane trip. This thesis showed toll rate, traffic flow, travel time variability, and 

trip route are key factors in predicting uneconomical managed lane trips. One challenge 

of this study was the fact that a small percentage of trips were uneconomical trips, which 

leads the model to have some bias to the major class of trips. Therefore, resampling 

approaches including undersampling and synthetic minority oversampling technique 

(SMOTE) were implemented to balance the data. This study indicated undersampling 

technique and random forest lead to the model with the highest accuracy. 

This study can help to better understand uneconomical managed lane trips and 

the main factors that cause these trips. Therefore, this study provides a better 

understanding of travel on managed lanes and general-purpose lanes. 
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1. INTRODUCTION 

 

1.1.  Overview 

Katy Freeway is a 12-mile section of Interstate 10 (I-10) connecting the City of 

Katy to Downtown Houston. It consists of up to six general-purpose lanes (GPLs) and 

two managed lanes (MLs) in each direction. Some drivers on the MLs are required to 

pay a toll, depending on the time of day and number of passengers. During Monday to 

Friday, 5 am to 11 am, and 2 pm to 8 pm, high-occupancy vehicles (HOVs) with two or 

more occupants and motorcycles can use MLs for free. However, HOVs during all other 

times and single occupancy vehicles (SOVs) have to pay the toll that varies by time of 

day. The tollrate schedule is available on Harris County Toll Road Authority (HCTRA) 

website (https://www.hctra.org/KatyManagedLanes) and is shown in Table 1.  

Table 1 Katy Managed Lanes Toll Rate Schedule 

Dates Direction Time of Day 
Toll at Eldridge 

(See Figure 1) 

Toll at both 

Wilcrest and Wirt 

(See Figure 1) 

Opening 

day (April 

2009) to 

Sept 7, 

2012 

Westbound Peak: 5-7pm 

weekdays 
$1.60 $1.20 

Shoulder: 4-5 

& 7-8 pm 

weekdays 

$0.80 $0.60 

Off-peak: all 

other times 
$0.40 $0.30 

Eastbound 

 
Peak: 7-9am 

weekdays 
$1.60 $1.20 

https://www.hctra.org/KatyManagedLanes
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Table 1 Continued 

Dates Direction Time of Day 
Toll at Eldridge 

(See Figure 1) 

Toll at both 

Wilcrest and Wirt 

(See Figure 1) 

  

Shoulder: 6-7 

& 9-10 am 

weekdays 

$0.80 $0.60 

Off-peak: all 

other times 
$0.40 $0.30 

Sept 8, 

2012 - 

Sept 7, 

2013 

Westbound Peak: 4-6 pm 

weekdays 
$2.20 $1.40 

Shoulder: 3-4 

& 6-7 pm 

weekdays 

$1.10 $0.70 

Off-peak: all 

other times 
$0.40 $0.30 

Eastbound Peak: 7-9 am 

weekdays 
$2.20 $1.40 

Shoulder: 6-7 

& 9-10 am 

weekdays 

$1.10 $0.70 

Off-peak: all 

other times 
$0.40 $0.30 

Sept 7, 

2013, to 

today 

Westbound Peak: 4-6 pm 

weekdays 
$3.20 $1.90 

Shoulder: 3-4 

& 6-7 pm 

weekdays 

$2.10 $1.20 

Off-peak: all 

other times 
$0.40 $0.30 

Eastbound High Peak: 7-

8 am 

weekdays 

$3.20 $1.90 

Low Peak: 8-9 

am weekdays 
$2.60 $1.70 
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Table 1 Continued 

Dates Direction Time of Day 
Toll at Eldridge 

(See Figure 1) 

Toll at both 

Wilcrest and Wirt 

(See Figure 1) 

  

High 

Shoulder: 6-7 

am weekdays 

$2.10 $1.20 

Low Shoulder: 

9-10 am 

weekdays 

$1.50 $1.00 

Off-peak: all 

other times 
$0.40 $0.30 
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Figure 1 Automated Vehicle Identification (AVI) Sensors along Katy Freeway (Burris et al., 2016)
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Generally, the MLs require less travel time than the GPLs, and it is advantageous 

to travel on these lanes. However, it is not always the least travel time route or the most 

economical route choice. In fact, approximately 11% of paid trips on the Katy MLs are 

'uneconomical', meaning some drivers pay but experience a longer travel time (Burris et 

al., 2016). The objective of this research is to determine factors may be common among 

drivers who make these uneconomical trips. Is it intentional or unintentional? What 

factors may impact the decision the most? How do these trips affect future managed lane 

trips? This information should be beneficial in predicting ML travel. 

Previous studies showed some possible variables that might have an impact on 

the travelers’ lane choice decision in different conditions (Burris et al., 2016). These 

variables are time of day, trip length, travel time variability, trip history, and ML trip 

frequency. In this study, additional factors are included to improve the previous analysis. 

These factors include trip route, crashes, rain, and traffic flow. To determine if these 

variables are related to U-ML trips, pattern recognition methods are implemented. 

Random forest and logistic regression are applied to find possible patterns between 

dependent (U-ML trip) and independent variables. 

1.2.  Problem Statement 

Katy Freeway has two MLs and at least four GPLs in each direction. The MLs 

generally have lower travel times than GPLs and usually save time for the traveler. 

Therefore, many drivers pay to use these MLs to save travel time. However, not all of 

these trips save travel time on the MLs. There are some trips on MLs that have a higher 

travel time than on GPLs despite paying a toll. Studies on almost three years of Katy 



 

6 

 

 

Freeway data have shown these trips account for almost 11% of total trips on the MLs 

(Burris et al., 2016). 

For this study, nearly three years of Katy Freeway data was obtained from 

TxDOT automated vehicle identification (AVI) sensors and HCTRA sensors. The 

research will investigate paid ML trips with higher travel time than corresponding GPL 

trips; namely uneconomical managed lane trips (U-ML trips). The main focus of this 

study is to look into the U-ML trips, search for commonalities among these trips to 

establish some insight into this travel choice, and find the most relevant factors using 

pattern recognition methods. 

1.3.  Research Objectives 

The main goal is to understand the U-ML trips better, leading to improved 

transportation planning models. To reach this goal, this study will: 

1. explore ML trips, and specifically U-ML trips, and their characteristics 

2. identify the most important variables affecting U-ML trips 

3. investigate into the way these variables impact U-ML trips 

4. estimate a model to predict U-ML trips. 

1.4.  Research Benefits 

The main focus of this research is identifying common factors associated with U-

ML trips. Pattern recognition methods help to recognize the factors and their ranking to 

determine the ones with the highest impact on this travel decision. As an example, the 

most important factor might be ML traffic flow. Possibly the higher the traffic flow on 

the MLs, the higher the probability of having a U-ML trip. Also, travel in the east 
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direction might show a high chance of having an uneconomical trip. Therefore, an 

eastbound ML trip taken when there is high traffic flow on the MLs would lead to an 

increased chance of a U-ML trip.  

This study can help to explain the U-ML trips better and identify them based on 

the corresponding key elements, which leads to a better ML travel prediction and travel 

behavior understanding. 
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2. LITERATURE REVIEW 

 

In this part, the existing literature on ML travel, machine learning techniques, 

and imbalanced data resampling will be provided to help with identifying the U-ML trips 

and associated parameters as well as establishing the best approach to model the U-ML 

trips. 

2.1. Managed Lanes 

As defined by the Federal Highway Administration (FHWA) publication (2012), 

managed lanes (MLs) are “designated lanes or roadways within highway rights-of-way 

where the flow of traffic is managed by restricting vehicle eligibility, limiting facility 

access, or and in some cases collecting variably priced tolls”. One type of ML is HOT 

(High-Occupancy/Toll) lanes, which enables HOVs (High-occupancy Vehicles) to use 

the managed lane for free or lower toll. Other vehicles have to pay a higher toll to use 

MLs. Electronic toll collection and informative traffic-related message signs are typical 

features of HOT lanes.  

One of the primary traffic management goals for priced MLs is congestion 

reduction, enabling the vehicles to travel at higher speeds and save travel time. That is, 

one of the main benefits of MLs is travel time saving (TTS) and people pay for this time 

saving. Also, MLs generally offer a more reliable travel time and help the environment 

by reducing the vehicle emissions and noise (FHWA, 2012). 

Nevertheless, MLs may not always have a shorter travel time than the GPLs. In 

other words, drivers may pay to use the MLs, but their travel time on MLs is longer than 
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on the GPLs. These trips with higher travel time on MLs were previously studied by 

Burris et al. (2016). They focused on the Katy MLs, which was converted to a ML 

facility in 2009. Burris et al. (2016) examined travelers’ lane choice behavior and the 

influencing factors. Also, they indicated Katy ML’s TTS for paid ML trips ranged from  

-3.3 to over 20 minutes with an average of 2.6 minutes. 

 

 

 

Figure 2 Travel Time Saved on Katy MLs (Burris et al., 2016) 

As illustrated in Figure 2, approximately 11% (11.3% in 2012, 11.5% in 2013, 

and 10.8% in 2014) of the paid ML trips had a negative travel time saving or were 

slower on the MLs than on the GPLs (termed uneconomical trips). Burris et al. (2016) 

also observed that travelers were not willing to change their lane because of a bad trip 
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experience (a trip with speed much slower than all other vehicles’ average speeds). In 

fact, travelers may not change their lane because of an uneconomical trip experience. 

Most of the ML studies center on how much these lanes would save travel time. 

Brownstone et al. (2003) studied the willingness to pay to reduce travel time on I-15. 

They concluded drivers are willing to pay up to $30 to reduce one hour of travel time. 

Also, Burris et al. (2007) conducted a survey of travelers to find their potential use of 

MLs. They concluded travel time saving and travel time reliability are the most 

important factors in choosing a toll lane. Sullivan (2000) also examined the perceived 

travel time saving along SR-91. He found the 48% (in the AM peak hour) and 23% (in 

the PM peak hour) believe in having a travel time saving of less than 15 minutes. Also, 

he noted approximately all of the respondents except a small minority in the AM peak 

hour overestimated their travel time saving. Buckeye (2012) evaluated the performance 

of I-394 in Minnesota. He used the speed as a measurement of effectiveness, and found 

the average speed for the ML is higher than the GPLs. However, he did not further study 

the days with a lower average speed for the ML. Burris et al. (2012) found a small 

difference between the ML speed and the GPL speed on I-394, and 35% of travelers paid 

for a travel time saving of less than one minute. He concluded that the small travel time 

saving obtained from this small speed increase cannot be the only reason of choosing 

ML over GPLs, and it might be as the result of avoiding a bottleneck or the higher 

reliability of ML. Kwon and Varaiya (2008) included negative travel time saving in their 

study on the effectiveness of the HOV system in California. The average travel time 
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savings between a random 10-mile HOV lane and the adjacent GPL is 1.7 minutes, and 

they noted some negative travel time savings for the random HOV facility.  

However, no studies have been undertaken to confirm travel time loss or negative 

travel time savings on toll-paid MLs. In addition, most studies find that travel time 

savings is the most important factor in choosing to use MLs. In other words, the models 

assume travelers do not take MLs if they do not save travel time. Devarasetty et al. 

(2012) found the value of travel time and travel time reliability as the main incentives in 

choosing MLs. Later, Devarasetty et al. (2014) also noted that the travel time saving is 

recognized as the most influential factor in selecting a ML over GPLs by many studies, 

and the value of time and willingness to pay is calculated based on the fact that travelers 

pay to drive faster. Lam and Small (2001) computed the value of time to be $22.78 per 

hour for SR-91 in Orange County. They acknowledged the small travel time saving. 

However, they did not conduct any further study on travelers paying the toll and going 

slower.  Gardner et al. (2013) examined the probability of a user choosing a HOT lane 

based on the cost to travel time savings ratio. However, they did not study the possibility 

of having a HOT lane trip with both monetary and time cost. This thesis focuses on the 

travel time loss of paid managed lanes users and implements various techniques to 

diagnose the pattern or relationship between the key variables and U-ML trip probability 

on the Katy Freeway. 

2.2. Machine Learning 

As stated by Bishop (2006), pattern recognition and machine learning are two 

interpretations of the same concept with separate fields of application. Pattern 
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recognition is grounded on engineering, while machine learning originated from 

computer science. They are both the effort of discovering regularities among the data or 

classifying the data by using computer algorithms. Pattern recognition and machine 

learning methods are characterized based on how they generate the output. The output 

can be either a data structure pattern or a set of variables. It is called supervised learning 

when there is a set of input data and output data to be trained. On the other hand, 

unsupervised learning attempts to find similarities among the data and classify them.  

As mentioned by Bishop (2006), to evaluate the predictive power of the model, 

the dataset is usually divided into two groups, the training set and the test set. The 

training set is used to learn and fit the model. To assess the prediction of the model, an 

unseen dataset should be tested. This unseen dataset is called the test set. Hastie et al. 

(2001) remarked that it is problematic to find a general rule for percentages of training 

and test split. Dobbin (2011) also conducted a comprehensive review of the optimal split 

of the dataset, and stated that the training set should be 40% to 80% of the total data size. 

Consequently, this study will take 80% of the dataset as the training set to also make up 

for the loss of data in the resampling step. 

A good model is one that predicts the test set outcome accurately. Hastie et al. 

(2001) noted that the confusion matrix analysis could evaluate the model's prediction 

ability. Confusion matrices represent the predicted amounts of each class versus the 

actual amounts of each class. Table 2 shows a typical confusion matrix.  
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Table 2 Confusion Matrix 

 

Prediction Condition 

Positive Prediction Negative Prediction 

Actual 

Condition 

Positive Actual True Positive (TP) False Negative (FN) 

Negative Actual False Positive (FP) True Negative (TN) 

 

The first parameter is accuracy, which is defined as the number of true 

predictions divided by the total population as formulated in Equation 1. It is also a 

representation of the prediction error rate. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
= 1 − 𝐸𝑟𝑟𝑜𝑟 = 1 −

𝐹𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
  (1) 

Chawla (2005) argued that the accuracy is not a satisfactory parameter by itself, 

and defined other parameters to assess the model. False positive (FP) or Type I error is 

the probability of rejecting a null hypothesis when it is actually true. False negative (FN) 

or Type II error is the probability of not rejecting a null hypothesis when the alternative 

hypothesis is actually true. The FN quantity is usually more critical than the FP quantity 

because of the higher risk of not predicting a positive value. However, both of them are 

equally vital in this study. Other evaluation parameters are as follows: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (3) 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (4) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅, 𝐹𝑎𝑙𝑙 𝑜𝑢𝑡) =  
𝐹𝑃

𝑇𝑁+𝐹𝑃
  (5) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =  
𝐹𝑁

𝑇𝑃+𝐹𝑁
  (6) 
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Chawla (2005) suggested that a good approach to model a classifier is to 

maximize the true rates and minimize the false rates. This is the foundation for the main 

technique of the model assessment in this study. Receiver Operating Characteristic 

(ROC) curve is a graph which displays the errors of TPR versus FPR. Actually, ROC 

curves express a tradeoff between the TPR (benefit) and the FPR (cost) of a classifying 

model (Fawcett, 2005). 

The area under the ROC curve (AUC) is the main model evaluation parameter in 

this study. The AUC ranges from 0 to 1, and it indicates that each randomly chosen 

positive observation has this amount of probability to be classified positive truly rather 

than negative (Fawcett, 2005). The higher the AUC is, the better the classifier is. 

As noted earlier, machine learning methods fall into two categories of supervised 

and unsupervised learning. This study implements supervised learning techniques to 

predict U-ML trip likelihood. Logistic regressions and random forests are two methods 

of supervised machine learning for predicting the U-ML trips. 

2.2.1. Logistic Regression 

Logistic regression is a method of pattern recognition used in this study to predict 

the U-ML trips. As explained by Train (2003), logistic regression is a regression model 

for predicting discrete choice or categorical dependent variables. In other words, it can 

be employed for the data with binary or fail/win output, which is the focus of this study. 

The main form of the model is shown in Equation (7): 

log (
𝑝(𝑋)

1 − 𝑝(𝑋)
 ) =  𝛽0 +  𝛽1𝑋 (7) 
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Where: 

𝛽1𝑋 = Regression coefficient multiplied by the independent variables 

𝛽0 = Intercept of the linear equation 

 𝑝(𝑋)= Probability of X happening (between 0 and 1). 

Logistic regression can help this study to examine the magnitude of each variable 

impact. 

2.2.2. Random Forest 

As defined by Brieman (2001), random forest is a technique of machine learning, 

which is an ensemble of decision trees. The main concept of random forest is to create a 

strong classifier by gathering all small decision trees together. Each tree in the random 

forest gets a set of input observations and produces a set of outputs or votes for the 

random forest output. The output of the random forest model is the mode or mean of all 

decision trees’ outputs.  

Random forest includes a large number of trees, say T trees. Each tree of t ∈ 

{1,...,T} in the random forest is trained by using two-thirds of the main training set, and 

leaving one-third of the main training set out. The left-out part of the training set is 

termed “out-of-bag (OOB) data”. This tree consists of multiple nodes for splitting 

different variables. To assign a splitting variable to each node of tree, a specific number 

of variables, say m, is selected from the tree input set. The number m is consistent and 

optimized for the whole random forest modeling procedure. The node finds the best 

variable among the selected m variables to split the data. This variable selection step 
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helps random forest to include minor effective variables in the model and reduce the 

variance significantly (James et al., 2013).  

Random forests also do not need any type of model’s validation. The OOB data 

will be tested by each tree, and the error of this prediction is named the overall OOB 

error. Overall OOB error decreases as the result of increase in the number of trees 

(James et al., 2013). 

Random forests also rank the independent variables based on their importance in 

predicting the dependent variable. While testing the OOB data in each tree, the 

prediction error for the OOB data is recorded. Then, variables are permuted one by one, 

and the prediction error is computed for each permuted variable. The increase in 

normalized prediction error or decrease in accuracy is saved for each permuted variable 

and the associated tree. To rank the variables’ importance, the decrease in accuracy for 

each variable is averaged over all trees in the random forest, and a new unique value, 

named “Mean Decrease in Accuracy”, is created as an indication of the variable 

importance (Hastie et al., 2001) 

Random forests are efficient and functional in dealing with large datasets, and 

they do not overfit. This flexibility and the variable importance ranking are the two main 

reasons to benefit from random forests in this study. 

2.2.3. Applications in Transportation 

This section will examine some previous transportation studies with application 

of logit and random forest techniques. 
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Sekhar et al. (2016) applied random forest and multinomial logit model to model 

the mode choice behavior of commuters in Delhi. 5000 stratified samples were collected 

by surveying households in Delhi. The final results showed the random forest had a 

higher accuracy (98.96%) than the logit model (77.31%). 

Hagenaur and Helbich (2017) conducted a study to examine the mode choice 

classifiers. Their dataset was collected as Dutch National Travel Survey from 2010 to 

2012. They also added environmental data to include weather conditions in their study. 

Seven different classifiers including random forest and multinomial logit model were 

suggested to model the mode choice. Random forest with accuracy of 0.961 was the 

most accurate model. Multinomial logit model, which was in use by the public services 

at the time of study, had a lowest accuracy (0.561). 

Xiao et al. (2017) examined the transportation modes using Global Position 

System (GPS) data and modeling with tree-based models. They used AUC to evaluate 

the models, and found the ensemble models including random forest perform better than 

the traditional models. They also noted the ensemble models are like a black box, and 

the explanation of the final model may not be easy. 

A great number of studies has studied lane choice behavior by using logistic 

regression models (Burris et al., 2007, Burris et al., 2016, Davarasetty et al., 2012, 

Davarsetty et al., 2014). This technique makes the variables of study and their impacts 

become more clear and easier to intuitively explain.   

The current study will use both random forest and logistic regression model to 

evaluate their prediction along with finding the U-ML trip pattern. 
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2.3. Imbalanced Dataset 

An imbalanced dataset is a dataset with approximately unequally sized classes 

(Chawla, 2005). In other words, there is a great gap between the proportions of each 

class in the dataset. It is usually valid for the datasets with a “rare” or “abnormal” event, 

which is the case of this study. 

As explained by Chawla (2005), the challenge of an imbalanced dataset is that 

the models trained by this dataset will be biased to the major class. Models are generally 

developed in a way to increase accuracy. However, accuracy is not the best parameter 

for evaluation of a model. 

Considering a case where 95% of the output is 0, and 5% of the output is 1 shows 

that if all models try to predict the zero value for all data and reach an accuracy of 0.95. 

The main interest of the study is predicting the rare event, and this model is not helpful 

in predicting any rare events. This fact is called the “paradox of accuracy”. This concept 

states that there may be some predictive models with a level of accuracy and higher 

prediction capability than other predictive models with higher accuracy (Zhu, 2007). Zhu 

(2007) suggested to use other parameters including sensitivity and specificity to evaluate 

the model. Chawla (2005) finds AUC the most useful parameter to evaluate the model’s 

goodness of fit. 

To train a model, the imbalanced dataset should be resampled to develop an 

approximately equally sized classes dataset. Various techniques have been developed to 

balance the data as reviewd by Kotsiantis et al. (2006): 
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1. Undersampling: the first method aims to include all the minor class observations and 

randomly selects part of the major class observations in the dataset. In other words, 

this technique will downsize the major class. Using this approach may discard and 

lose part of the data. 

2. Oversampling: this technique will include the whole major class and minor class 

observations plus adding some randomly sampled observations from minor class to 

balance the dataset. In other words, this technique will increase the minor class 

observations by sampling observations with replacement. This method may cause an 

overfitting issue in the final models. 

3. Synthetic Minority Oversampling Technique (SMOTE): This approach increases the 

size of the minority class by creating synthetic examples rather than replicating them. 

In this method, a number of nearest neighbors is obtained by means of K-nearest 

neighbors. To create a new observation in this method, the difference of minor class 

observation and one of its nearest neighbors is computed and multiplied by a random 

number from zero to one. Later, this is added to the minor class observation to 

produce a new synthetic observation (Chawla, 2002). 

While Batista et al. (2004) suggested that the oversampling techniques especially 

SMOTE resulted in more accurate models with higher AUCs, Blagus and Lusa (2013) 

argued that undersampling method led to a more accurate model for a high-dimensional 

imbalanced dataset. Current study will implement both undersampling technique and 

SMOTE to create a balanced dataset and find the most accurate technique.    
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3. DATA 

 

In this study, a unique dataset obtained from Katy Freeway will be investigated. 

This chapter of the thesis will introduce Katy Freeway, dataset sources, and the main and 

sample dataset for this study. 

3.1. Katy Freeway 

Interstate 10 (I-10) is a major east-west interstate highway. Katy Freeway is a 

section of I-10 connecting the City of Katy to Downtown Houston. It is 12 miles with 

between four to six GPLs and two MLs in each direction (see Figure 3).  

The Katy Freeway was converted to a ML facility in 2009. Most ML travelers 

are required to pay a toll. The HCTRA is responsible for toll rates and toll collection at 

three toll plazas. Tolls are electronically collected via EZ Tag or TxTag. Toll rates vary 

by time of the day, day of the week, and number of passengers. It turns to a high-

occupancy toll lane (HOT) from Monday to Friday from 5 am to 11 am and 2 pm to 8 

pm. During these hours, HOVs with two or more occupants and motorcycles can use 

MLs for free. However, HOVs during all other times and SOVs have to pay the toll that 

varies by time of the day. The toll rate schedule is available on HCTRA website 

(https://www.hctra.org/KatyManagedLanes) and is shown in Table 1. Katy MLs provide 

a free commute for the HOV drivers and a new commuting option for toll-paying SOV 

drivers. 

 

https://www.hctra.org/KatyManagedLanes
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Figure 3 Katy Freeway (HCTRA, 2009)
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3.2. Data Sources 

The main dataset used in this study is from three main sources. The primary two 

data sources contain vehicles’ trip information. These two datasets are combined to form 

a unique dataset including travel information from most of 2012, 2013, and 2014. The 

third dataset adds daily precipitation measurements to enrich the final dataset with 

environmental effects. 

3.2.1. TxDOT AVI Data  

The first part of data is acquired from automated vehicle identification (AVI) 

sensors operated by TxDOT. There are 38 AVI sensors with unique sensor numbers 

located along GPLs and MLs as illustrated in Figure 1. When they detect a vehicle, they 

record the vehicle’s transponder ID, sensor ID, and detection time. All vehicles using 

MLs are required to have transponders. This data includes most of the trip records from 

2012, 2013, and 2014 with transponder ID, AVI number, and detection time. 

3.2.2. HCTRA Toll Data 

The second part of the data is obtained from the HCTRA. They collect data from 

12 AVI sensors at three toll plazas and use that to charge vehicles the appropriate toll 

rates. The AVI sensors are shown in Figure 1. This data also records vehicle’s 

transponder ID, toll plaza ID, lane ID, and the detection time as the vehicle passes each 

sensor.   

3.2.3. NOAA National Centers for Environmental Information 

The third dataset is attained from NOAA (National Oceanic and Atmospheric 

Administration) to include daily precipitation effect in the study examination. NOAA 
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National Center for Environmental Information website (https://www.ncdc.noaa.gov/cdo 

-web/datatools/findstation) has a valuable source of daily weather summary for several 

stations in the Houston area. This study uses daily rain measurements from the closest 

station to Katy Freeway. This station is named “HOUSTON 11.8 WNW TX, US” with 

coordination (29.8066°, -95.5607°). The exact location of this station is mapped in 

Figure 4. To coordinate this data with two other datasets, the precipitation data is 

obtained from January 2012 to September 2014. 

 

 

 

Figure 4 Rain Station Location 

 

https://www.ncdc.noaa.gov/cdo%20-web/datatools/findstation
https://www.ncdc.noaa.gov/cdo%20-web/datatools/findstation
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3.3. Main Dataset 

TxDOT AVI sensors and HCTRA toll data are combined to form the vehicles’ 

travel information data, which includes their trip route, trip time, and paid toll. Daily rain 

data is also combined to form the main dataset. The main dataset is starting from January 

2012 to November 2012 and January 2013 to September 2014, and covering 7,013,587 

ML trips. In this part, a series of cleaning and processing steps are implemented. 

Firstly, the original transponder ID is changed to a random ID for each traveler to 

respect the anonymity of travelers. Next, those toll-free HOVs are excluded from the 

main dataset to focus on ML toll-paid users. Also, lane closure is the fourth dataset, 

which is derived from TxDOT for the three years of study and added to the main dataset 

to include the factor of lane closures.  

3.3.1. Alternate GPL Trip 

One key feature of this study is estimating an alternate GPL trip for each ML 

trip. This alternate GPL trip helps to compare ML trip travel time with a toll-free trip 

travel time to examine the economy of the trip. In other words, this alternate GPL trip 

travel time is the main factor in defining U-ML trips.  

Also, some other GPL trip attributes like the number of vehicles with 

transponders on GPLs can be a clue for explaining the U-ML trips. Consequently, an 

alternate GPL trip is generated for each ML trip to both define U-ML trips and examine 

their related factors. 
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To characterize the alternate GPL trip, the start time for the alternate GPL trip is 

considered the same as the actual ML trip. Other attributes of the alternate GPL trip are 

estimated using three following scenarios: 

1. Data from other vehicles on GPLs with the same start time are available to calculate 

the alternate GPL trip attributes. 

2. Data from other vehicles on GPLs with the same start time are available for a part of 

the trip. This data will help to compute the partial alternate GPL trip attributes. 

Subsequently, alternate GPL trip attributes for the rest of the trip length will be 

assessed based on the average of other vehicles’ attributes on the remainder of the 

length. 

3. There are no data from other vehicles on any segment of GPLs at the start time of the 

actual trip. Therefore, the alternate GPL trip is generated using the average speed at 

that time of day on that segment length. 

Based on this, the alternate GPL trip attributes are created. Among these 

attributes, the alternate GPL trip travel time is the main feature to detect U-ML trips.  

3.3.2. Uneconomical Managed Lane Trip Identification  

These two features indicate a U-ML trip: 

1. Vehicles that pay a toll to use the MLs (not HOVs during the peak hours and 

motorcycles). This feature is already in the main dataset because all toll-free HOVs 

are excluded from the main dataset, and the main dataset is only focusing on paid 

ML trips. 
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2. Vehicles’ actual ML trip travel time is longer than their alternate GPL trip travel 

time. 

Therefore, the first classification of a U-ML trip can be placed as a binary parameter 

termed “unecobinary”, which is: 

𝑢𝑛𝑒𝑐𝑜𝑏𝑖𝑛𝑎𝑟𝑦 = {
 1 𝑖𝑓 (𝑇𝑇𝑀𝐿 ≥ 𝑇𝑇𝐺𝑃𝐿) (𝑈𝑛𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙 𝑀𝐿 𝑡𝑟𝑖𝑝)

0 𝑖𝑓 (𝑇𝑇𝑀𝐿 < 𝑇𝑇𝐺𝑃𝐿)     (𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙 𝑀𝐿 𝑡𝑟𝑖𝑝)
             (8) 

Where: 

TTML=Actual ML trip travel time 

TTGPL=Alternate GPL trip travel time 

This classification only reflects the travel time saving or loss by the sign of the 

difference between actual ML trip and alternate GPL trip. The border between the two 

classes of this type of classification is the travel time difference of zero. In other words, 

this type of classification does not distinguish losing one minute in a two-minute trip 

from losing one minute in a ten-minute trip. Hence, another classification for U-ML trip 

identification is established to differentiate the economical and uneconomical ML trips 

with a wider margin. This new classification is defined with a variable termed 

“Unecomulticlass”. 

Unecomulticlass is a variable dividing ML trips into three groups: economical ML 

(E-ML) trips, U-ML trips, and too close to decide or middle ML trips. The final class is 

developed for the ML trips with a small travel time saving or loss. To fairly adjust the 

interval for these ML trips, the relative travel time difference is defined as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑅𝑇𝑇𝐷) = (𝑇𝑇𝑀𝐿 − 𝑇𝑇𝐺𝑃𝐿)/𝑇𝑇𝑀𝐿         (9) 
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RTTD helps estimate the travel time loss more equitably. Referring to the previous 

example, RTTD is 0.5 for losing one minute in a two-minute trip. However, it is 0.1 for 

losing one minute in a ten-minute trip. RTTD makes the distinction clearer. To justify 

the classification of ML trips, unecomulticlass is defined as Equation (10). 

 𝑢𝑛𝑒𝑐𝑜𝑚𝑢𝑙𝑡𝑖−𝑐𝑙𝑎𝑠𝑠 = {0.5    

1               𝑖𝑓 (𝑅𝑇𝑇𝐷 > 0.05) (𝑈𝑛𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙 𝑀𝐿 𝑡𝑟𝑖𝑝)

𝑖𝑓 (−0.05 ≤ 𝑅𝑇𝑇𝐷 ≤ 0.05) (𝑀𝑖𝑑𝑑𝑙𝑒 𝑀𝐿 𝑡𝑟𝑖𝑝)

0                𝑖𝑓 (𝑅𝑇𝑇𝐷 < −0.05) (𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙 𝑀𝐿 𝑡𝑟𝑖𝑝)
 

(10) 

The second set includes ML trips with a small travel time loss or saving which is not 

significantly different from 0 (considering a p-value of 0.05 in each one-tail test). 

Unecobinary and Unecomulticlass are the main response variables to be examined in 

this study. 

3.3.3. Travel Behavior and Trip Frequency 

To define the trip frequency in the ML trip examination, the number of previous 

month’s trips is computed for each traveler. To evaluate the frequency, the number of 

previous trips in a same length of time should be considered for each trip. Previous 

month is selected because it is the closest period to the studied trip. 

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑃𝑎𝑠𝑡 𝑚𝑜𝑛𝑡ℎ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠 

𝑀𝐿 𝑡𝑟𝑖𝑝 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑃𝑎𝑠𝑡 𝑚𝑜𝑛𝑡ℎ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝐿 𝑡𝑟𝑖𝑝𝑠 

Travel behavior is similarly a principal element to study ML trip classification. 

This element can be formulized as the percent ML trips (Equation 11): 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑀𝐿 𝑇𝑟𝑖𝑝𝑠 =
𝑀𝐿 𝑡𝑟𝑖𝑝 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑖𝑝 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
                                                          (11) 
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In the following step, variables of interest are selected among all available 

attributes and their type is assigned. Variables can be either numerical, measuring an 

observation’s characteristic, or categorical, assigning a class to each observation. The 

dataset is reduced to the variables defined and classified in Table 3. 

Also, an example of the dataset is shown in Table 4. 

Table 3 Dataset Variables Definitions 

Variable Description Variable Type Class 

Unecobinary 
1=U-ML trip 

0=E-ML trip 
Categorical Output 

Unecomulticlass 

1=U-ML trip 

0.5=Middle ML trip 

0=E-ML trip 

Categorical Output 

TTML Actual ML travel time Numerical Trip Length 

TTGPL Alternate GPL travel time Numerical Trip Length 

TTD Travel time difference Numerical Trip Length 

RTTD Relative travel time difference Numerical Trip Length 

Std 

Standard deviation of ML travel 

time between the start and end 

sensors during the 10-minute 

interval at the time of travel 

over 20 weekdays prior to the 

trip 

Numerical Trip Length 

Travel time 

variability 

Coefficient of variation, travel 

time variability (Std/time) 
Numerical Trip Length 

Weekday 

1=Sunday, 2=Monday,  

3= Tuesday, 4=Wednesday, 

5=Thursday, 6=Friday, 

7=Saturday 

Categorical Trip Time 

Peak 

1=1st hour of peak hour 

2=2nd hour of peak hour 

Peak Hours: Weekdays,  

7-9 am Eastbound,  

4-6 pm Westbound 

Categorical Trip Time 
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Table 3 Continued 

Variable Description Variable Type Class 

Shoulder 

1=shoulder hour before peak 

hour 

2=shoulder hour after peak hour 

Before Sep 8, 2012 

Shoulder Hours: Weekdays,  

6-7 am and 9-10 am Eastbound, 

4-5 pm and 7-8 pm Westbound 

Off-peak Hours: All other times 

After Sep 8, 2012 

Shoulder Hours: Weekdays,  

6-7 am and 9-10 am Eastbound, 

3-4 pm and 6-7pm Westbound 

Off-peak Hours: All other times 

Categorical Trip Time 

Length Travel Length of actual ML trip Numerical Trip Length 

Direction 
Direction of travel 

0= Eastbound, 1=Westbound 
Categorical Geometry 

Start sensor 
Start sensor of the actual ML 

trip 
Categorical Geometry 

End sensor End sensor of the actual ML trip Categorical Geometry 

Main lanes 

blockage 

Number of main lanes blocked 

due to incidents 
Numerical Blockage 

Frontage lanes 

blockage 

Number of frontage lanes 

blocked due to incidents 
Numerical Blockage 

HOV lanes 

blockage 

Number of HOV lanes blocked 

due to incidents 
Numerical Blockage 

Ramp lanes 

blockage 

Number of ramp lanes blocked 

due to incidents 
Numerical Blockage 

Shoulder lanes 

blockage 

Number of shoulder lanes 

blocked due to incidents 
Numerical Blockage 

Rain Daily precipitation Numerical Rain 

Total toll Total toll paid Numerical Toll 

Toll rate Toll per length Numerical Toll  
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Table 3 Continued 

Variable Description Variable Type Class 

ML traffic flow 

Number of vehicles with 

transponders on ML that were 

traveled between the start and 

end sensors during the 10-

minute interval at the time of 

travel 

Numerical Traffic 

GPL traffic flow 

Number of vehicles with 

transponders on GPL that were 

traveled between the start and 

end sensors during the 10-

minute interval at the time of 

travel 

Numerical Traffic 

ML trip 

frequency 

Number of past month’s paid 

ML trips 
Numerical Experience 

Total trip 

frequency 

Number of past month’s total 

trips 
Numerical Experience 

Percent ML trips 
Rate of past month ML trips to 

total trips 
Numerical Experience 

 

3.4. Sample Set 

The Travel Survey Manual (Tierney et al., 1996) suggests a sample size of as small 

as 1000 for travel behavior studies. However, this study samples more data in order to 

consider all levels of variables and correlations among variables. Furthermore, the 

sample would be divided into two groups of training and test sets, and training set would 

be resampled. All these facts plus the software ability to analyze higher size of sample, 

the sample size is estimated as 1 trip each seven trips.   
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Table 4 An Example of Dataset 

Trip 

number 
Randid Direction 

Week

day 
Peak Shoulder 

Main 

lanes 

blockage 

Frontage 

lanes 

blockage 

Ramp 

lanes 

blockage 

HOV 

lanes 

blockage 

Shoulder 

lanes 

blockage 

1 934594339 1 2 0 0 0 0 0 0 0 

2 934588670 0 7 0 0 0 0 0 0 0 

3 934588670 0 3 0 0 0 0 0 0 0 

4 934588670 0 5 0 0 0 0 0 0 0 

5 934588670 0 6 0 0 0 0 0 0 0 

6 934588670 0 7 0 0 0 0 0 0 0 

7 934588670 1 7 0 0 0 0 0 0 0 

8 934588670 0 4 1 0 0 0 0 0 0 

9 934588670 0 7 0 0 0 0 0 0 0 

10 934588670 0 7 0 0 0 0 0 0 0 

11 934588670 0 4 0 0 0 0 0 0 0 

12 934588377 0 4 0 0 0 0 0 0 0 

13 934585941 1 2 0 0 0 0 0 0 0 

14 934584384 1 4 0 0 0 0 0 0 0 

15 934581638 1 6 0 0 0 0 0 0 0 

16 934565133 1 7 0 0 0 0 0 0 0 

17 934565133 0 3 0 1 0 0 0 0 0 

18 934565133 0 2 0 1 0 0 0 0 0 

19 934565133 0 3 0 1 0 0 0 0 0 

20 934565133 0 4 0 1 0 0 0 0 0 
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Table 4 Continued 

Trip 

number 
Rain TTML std 

Total 

toll 

ML traffic 

flow 
Length 

Start 

sensor 

End 

sensor 

Travel time 

variability 
TTGPL 

1 0 1.37 0.19 0.7 1 1.81 109 111 0.13 1.50 

2 0 4.97 0.40 0.6 1 5.45 103 105 0.09 4.79 

3 0 6.53 0.00 0.7 1 7.26 102 106 0.00 6.67 

4 0 5.55 0.37 1 2 7.26 101 105 0.06 6.52 

5 0 5.85 0.25 0.7 2 7.26 102 106 0.04 6.91 

6 0 6.70 0.30 0.7 2 7.26 102 106 0.05 6.73 

7 0 1.53 0.17 0.7 1 1.81 110 112 0.11 1.52 

8 0 6.90 0.00 1.2 2 7.26 102 105 0.00 9.03 

9 1.07 5.90 0.28 0.7 1 7.26 102 105 0.05 6.75 

10 1.07 6.35 0.00 0.7 2 7.26 102 105 0.00 6.50 

11 0 6.35 0.00 0.7 1 7.26 102 106 0.00 6.14 

12 0 6.08 0.00 0.7 1 7.26 102 106 0.00 6.80 

13 0 1.63 0.07 0.7 3 1.81 109 111 0.05 1.67 

14 0 6.10 0.75 1 6 7.26 107 111 0.12 6.37 

15 0 5.67 0.31 0.4 1 7.26 108 111 0.05 6.72 

16 0 5.48 0.28 1 1 7.26 108 112 0.05 6.25 

17 0 6.07 0.29 0.6 30 7.26 102 106 0.05 8.24 

18 0.39 6.65 0.00 0.8 2 7.26 101 106 0.00 7.63 

19 0 6.15 0.23 0.6 20 7.26 102 106 0.04 7.41 

20 0 6.15 0.23 0.6 46 7.26 102 106 0.04 7.90 
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Table 4 Continued 

Trip 

number 

GPL traffic 

flow 

Total trip 

frequency 

ML trip 

frequency 

Percent ML 

trips 

Toll 

rate 
TTD Unecobinary RTTD Unecomulticlass 

1 26 0 0 0 0.39 -0.14 0 -0.10 0 

2 5 3 3 1 0.11 0.18 1 0.04 0.5 

3 10 3 3 1 0.10 -0.14 0 -0.02 0.5 

4 16 3 3 1 0.14 -0.97 0 -0.17 0 

5 23 3 3 1 0.10 -1.06 0 -0.18 0 

6 12 3 3 1 0.10 -0.03 0 0.00 0.5 

7 38 3 3 1 0.39 0.02 1 0.01 0.5 

8 27 3 3 1 0.17 -2.13 0 -0.31 0 

9 12 3 3 1 0.10 -0.85 0 -0.14 0 

10 12 3 3 1 0.10 -0.15 0 -0.02 0.5 

11 0 3 3 1 0.10 0.21 1 0.03 0.5 

12 8 1 1 1 0.10 -0.72 0 -0.12 0 

13 67 0 0 0 0.39 -0.03 0 -0.02 0.5 

14 5 0 0 0 0.14 -0.27 0 -0.04 0.5 

15 12 2 2 1 0.06 -1.05 0 -0.19 0 

16 5 4 4 1 0.14 -0.77 0 -0.14 0 

17 39 4 4 1 0.08 -2.18 0 -0.36 0 

18 25 4 4 1 0.11 -0.98 0 -0.15 0 

19 43 4 4 1 0.08 -1.26 0 -0.21 0 

20 31 4 4 1 0.08 -1.75 0 -0.29 0 
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4. METHODOLOGY 

 

This study will use data acquired from four sources: AVI sensor data, toll data, 

lane blockage data, and rain data. The desired dataset is extracted from the combined 

datasets to focus on paid ML trips from January 2012 to November 2012 and January 

2013 to September 2014. In this selected dataset, each ML trip is recorded as an 

observation, and all trip characteristics including start and end sensor, traffic flows, total 

toll, and precipitation measurements are documented. An alternate GPL trip and its 

attributes are defined for each ML trip. Also, two types of classification for U-ML trips 

are represented in equations (8) and (10). 

The first classification technique for examining U-ML trips is using variable 

unecobinary, which divides ML trips into two classes of economical and uneconomical 

trips. The main benefit of implementing this variable is simplifying the problem into a 

straightforward interpretable binary model. The second classification uses unecomulticlass, 

which divides the dataset into three groups: E-ML trips, U-ML trips, and middle ML 

trips. This variable classifies trips where the travel time on the GPLs and MLs are almost 

identical into a new group. In this study, both of these classifications will be applied to 

the dataset to find the best classification. 

This study focused on discovering the consistencies among ML trip attributes 

and ML trip classifications. The first step is to recognize the related attributes that may 

lead to having a greater chance of U-ML trips. These attributes include time of the trip, 

route of the trip, rain, lane blockages, toll, traffic flow, travel behavior and trip 
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frequency. Consequently, several hypotheses are investigated to select the related 

variables associated with ML trip classifications: 

1. Day of the trip: The probability of having a U-ML trip may be diverse over the week. 

As an example, the possibility of U-ML trips may increase on the weekends because 

of the lower congestion on GPLs. 

2. Time of the trip: Peak hours may decrease the likelihood of U-ML trips as a 

consequence of congestion on GPLs. 

3. Route of the trip: Specific direction or start and end sensors may result in an 

increased probability of having a U-ML trip. 

4. Length of the trip: The travel time for short distances are small, and accordingly their 

travel time difference between GPLs and MLs is also small. Their variation because 

of the congestion and other factors can be relatively large. This travel time variation 

on MLs and GPLs may lead to a U-ML trip. Therefore, length can have an impact on 

the likelihood of U-ML trips.  

5. Safety variables, including crash and rain: Drivers may believe MLs are safer. 

Consequently, they would pay for that. Severe accidents on GPLs and weather 

conditions can cause drivers to pick safer lanes, assumedly MLs, no matter how 

much they have to pay, or how long it would take them.  

6. Toll: A low toll paid per mile might be an incentive for drivers to select MLs over 

GPLs in particular circumstances. Thus, MLs may get congested while GPLs are 

faster.  
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7. Traffic flow: the traffic flows on the GPLs and MLs are the key features in 

examining TTML and TTGPL. Higher traffic flow on MLs results in a greater 

possibility of having a U-ML trip. Similarly, lower traffic flow on GPLs leads to a 

higher likelihood of U-ML trips. 

8. Travel behavior: As previously observed by Yang (1993) and Reddy (1995), drivers' 

experiences may have an impact on their future decisions, even greater than 

advanced trip information. They may be content and used to a route, and keep it the 

same. This fact can also be useful in the lane choice study, especially ML study. 

Therefore, examining the trip history and finding the travel behavior pattern may 

help to conclude that U-ML trips are the outcome of a daily routine.  

9. Trip frequency: The number of times drivers use MLs or GPLs or Katy Freeway may 

add the concept of familiarity to the analysis. Part of U-ML trips may be as the 

consequence of unfamiliarity. 

After defining the variables of interest, it is beneficial to create a variables’ 

correlation table. It helps to discover how variables are correlated and if they are 

redundant or repetitive. At that time, a set of unique independent variables will be 

identified to be investigated by random forest and logistic regression methods. 

Before studying the variables, sampling and resampling steps will be undertaken. 

First, a random sample of the main dataset will be selected and split into two groups of 

the training set (80%) and test set (20%). The training set will be our core dataset for 

estimating the models. This dataset will be resampled to create the balanced datasets 
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using undersampling technique and SMOTE. Nevertheless, the test set will always stay 

the same unseen set for testing the predictive power of the model.  

Resampling is based on the dependent variables to be predicted. These variables 

are unecobinary in binary classification and unecomulticlass in multiclass classification. In 

other words, the size of classes is required to be resized for balancing. Also, both of the 

dependent variables show U-ML trips are a minor class with 5% to 11% of total trips. 

Therefore, they need to be resampled from the training set: 

1. Analysis of binary classification: for this part of the analysis, three training sets will 

be prepared to be examined. The first set is the imbalanced training set, which is the 

same as the training split set. It is an imbalanced data because of the small proportion 

of U-ML trips (11% of the total trips). The models based on this sample are expected 

to be bias to the major class of E-ML trips. This is why two other training samples 

are developed. The second training set is obtained by undersampling the imbalanced 

training set. Hence, the percentage of minor and major classes are 50-50. The third 

approach is to use SMOTE on the imbalanced training set. This method makes the 

training set more balanced by applying oversampling technique using K-nearest 

neighbors practice to generate new observations. However, the final U-ML trip 

percentage of the total trips may not be exactly 50%. 

2. Analysis of multiclass classification: the main training set is used as the imbalanced 

dataset in this analysis. The percentage of U-ML trips is 5% in this classification. 

Therefore, the dataset is extremely imbalanced. To resample the data, the 

undersampling method will be utilized to obtain three equally sized classes. 
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Random forest and logistic regression methods are developed for each training 

set in binary classification. The random forest can indicate the key classification factors, 

and logistic regression model shows each factor’s impact on the U-ML trip likelihood. 

For multiclass classification, the random forest will be designed for both imbalanced and 

undersampled training sets. The final step is to apply all models on the test set to find the 

best classification, resampling, and pattern recognition techniques.  

To evaluate the test models, they can be compared based on their accuracy, 

sensitivity, specificity, and ROC curve or AUC. Using this evidence, the final models 

will be constructed using the most significant independent factors and best resampling 

technique. The final models will include both random forest and logistic regression 

methods, and show the most efficient and easy to use models. 
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5. DATA ANALYSIS 

 

In this chapter, the main analysis will be conducted in details. This began with a 

preliminary data analysis and continued to sampling and resampling procedures, random 

forest and logistic regression analyses, and lastly repeating the analysis with a new set of 

key variables. 

5.1. Preliminary Data Analysis 

This section is performing some exploratory analysis of the data to provide an 

introduction to the dataset. 

The initial step is to investigate variables of study focusing on their averages and 

distributions. The total number of paid ML trips is 7,013,578 from January 2012 to 

November 2012 and January 2013 to September 2014. These trips are classified using 

either TTD or RTTD and as formulated in Equation (8) and (10).  

5.1.1. Actual ML and Alternate GPL Travel Time 

TTML and TTGPL are the chief components of this study. These variables compute 

the travel time saving or loss on MLs and help to define U-ML trips. 

TTML is the actual ML travel time, which is so diverse from less than 1 minute to 

over 35 minutes. The average TTML is 9.6 minutes. The cumulative TTML density plot is 

presented in Figure 5. TTGPL is defined as the alternate GPL travel time, and ranges from 

1 minute to over 45 minutes. The average value for TTGPL is 12.2 minutes, which is 

greater than the average TTML. This means MLs have a lower travel time on average. 

The cumulative TTGPL density plot is presented in Figure 6. 
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Figure 5 Actual ML Travel Time, TTML (min) 

 

Figure 6 Alternate GPL Travel Time, TTGPL (min) 
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5.1.2. TTD and RTTD 

TTD is the travel time difference between actual ML and alternate GPL trips, 

which divides trips into two classes of negative and positive TTD. That is, positive TTD 

shows a U-ML trip. As shown in Figure 7, TTD ranges from less than -20 minutes to 

almost 3 minutes, and the average TTD is -2.6 minutes. Nearly 11% of paid ML trips 

have a positive TTD. In other words, using unecobinary variable to classify trips results in 

786,448 U-ML trips (11% of total paid ML trips). Figure 9 shows ML trip divisions. 

RTTD is the relative travel time difference between actual ML and alternate GPL 

trips classifying trips into three clusters of RTTD less than -0.05, RTTD more than 0.05, 

and RTTD in the middle. RTTD more than 0.05 shows a U-ML trip, however, RTTD 

between -0.05 and 0.05 is an average group which has a small travel time saving or loss. 

Consequently, it may not be fair to combine this group with the other two groups. As 

shown in Figure 8, RTTD ranges from less than -2 to near 2, and the mean RTTD is -0.3. 

Unecomulticlass variable is implemented to categorize trips based on RTTD intervals. This 

leads to 360,159 U-ML trips (5% of total paid ML trips). Figure 9 shows ML trip 

classification. 
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Figure 7 Actual and Alternate Travel Time Difference (min) 

 

Figure 8 Relative Travel Time Difference between Actual and Alternate Trips 
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Figure 9 Binary and Multiclass Classes 

As illustrated, 11% of paid ML trips are classified as U-ML trip in binary 

classification. This percentage is 5% in multiclass classification. In other words, 6% of 

paid ML trips have a small travel time saving (positive TTD) and can be categorized into 

a new middle group to study. Also, these small percentages show dataset is imbalanced 

with the major class of positive travel time saving (negative TTD, E-ML trips). 

Therefore, the imbalanced dataset techniques of resampling should be applied to design 

better models. 
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5.1.3. Time of Trip 

Time of the trip can be measured using several variables. Three of the main 

elements of time of the trip can be marked as day of the week, peak hour, and shoulder 

hour.  

One theory is that the U-ML trip rate may vary by the day of the week. Figures 

10 and 11 show the distribution of binary and multiclass ML trip classes over the week. 

One key point in both types of classification is that the percentage of E-ML trips 

decreases over the weekends. This fact is more significant in multiclass ML trips with 

almost 8-14% drop of E-ML trips during the weekends. This fact is as the result of lower 

congestion during the weekend. As long as vehicles with transponders are a 

representative sample of the all vehicles using Katy Freeway, Figure 12 shows that the 

traffic flow is decreasing during the weekend. 

The other variable conveying the time of the trip is the peak hour. The peak hour 

variable can be classified into three clusters of the non-peak hour, first peak hour, and 

second peak hour. Figures 13 and 14 exhibit the binary and multiclass ML trip 

distribution for three peak hour classes. It can be concluded that the percentage of U-ML 

trips increases during the non-peak hours. This factor is more outstanding in multiclass 

ML trip distribution with almost 13% drop in E-ML trips during the non-peak hours. 

This fact is also the consequence of lower traffic flow during non-peak hours, which 

may cause GPLs become faster. Nevertheless, some drivers may still choose MLs over 

GPLs and have a U-ML trip. 
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Figure 10 Binary ML Trip Classes Distribution for Weekdays 

 

Figure 11 Multiclass ML Trip Distributions for Weekdays 
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Figure 12 GPL and ML Traffic Flow over the Week 

 

Figure 13 Binary ML Trip Distributions for Peak Hours 



 

47 

 

 

 

Figure 14 Multiclass ML Trip Distributions for Peak Hours 

The third component of time of the trip is the shoulder variable. This factor 

classifies the non-peak hours into three classes of the non-shoulder hour, the shoulder 

hour before the peak hour, and the shoulder hour after the peak hour. Figures 15 and 16 

exhibit the binary and multiclass ML trip distribution for different classes of shoulder 

hour factor. Similar to the peak hour, this factor also shows a drop in E-ML trips during 

the non-shoulder hours. This fact, which is more severe in binary classification, is again 

because of the lower traffic flow during the non-shoulder hours. 
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Figure 15 Binary ML Trip Distribution for Shoulder Hours 

 

Figure 16 Multiclass ML Trip Distribution for Shoulder Hours 

5.1.4. Trip Route 

Route of the trip as well as the time of the trip can be characterized by several 

elements. Two key features are start sensor and end sensor which indicate the start and 
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end of the trip on Katy Freeway. As shown in Figures 17 and 18 for start sensors and 

Figures 19 and 20 for end sensors, the proportion of U-ML trips are wide-ranging among 

different start and end sensors. The location of these sensors and traffic flow at these 

sensors appears to impact U-ML trips. 

 

 

 

Figure 17 Binary ML Trip Distribution for Start Sensors 

 

 

Figure 18 Multiclass ML Trip Distribution for Start Sensors 
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Figure 19 Binary ML Trip Distribution for End Sensors 

 

Figure 20 Multiclass ML Trip Distribution for End Sensors 

The trip length is another feature affecting the U-ML trip ratio. Table 5 exhibits 

the average trip length for various classes of ML trips. Binary ML trip classification 

shows no significant variation between classes. However, the average trip length for 

multiclass ML trips does vary from 7.96 miles to 9.84 miles. It can be concluded that U-

ML trips are more probable to occur over shorter distances compared to E-ML trips. 

 



 

51 

 

 

Table 5 Average Trip Length for Binary and Multiclass Classes 

Class 
Binary Multiclass 

E-ML U-ML E-ML Middle ML U-ML 

Trip length (mi) 8.96 8.90 8.84 9.84 7.96 

 

5.1.5. Rain and Blockages 

Rain and blockages may cause unequal delays in travel time of MLs and GPLs. It 

may also result in some rerouting behavior, which causes drivers to change their 

routines. Table 6 shows the average rain measurement and blockages of each ML trip 

class.  

Table 6 Average Rain and Blockages of Binary and Multiclass Classes 

Class 
Binary Multiclass 

E-ML U-ML E-ML Middle ML U-ML 

Main lanes blockage 0.0021 0.0043 0.0017 0.0028 0.0055 

Frontage lanes blockage 0.0003 0.0003 0.0003 0.0004 0.0003 

 Ramp lanes blockage 0.0002 0.0003 0.0002 0.0002 0.0003 

HOV lanes blockage 0.0000 0.0001 0.0000 0.0001 0.0001 

Shoulder lanes blockage 0.0012 0.0020 0.0010 0.0016 0.0023 

Rain (in) 0.1134 0.1089 0.1139 0.1133 0.1061 

 

As indicated, only main lanes blockage and shoulder lanes blockage are largely 

varying among the various ML trip classes; they may increase up to three times. U-ML 

trips have a greater average of main lanes blockage and shoulder lanes blockage than E-

ML trips. This is as the result of rerouting behavior caused by the blockage. Drivers 
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reroute to MLs to pass a blockage. However, the GPL congestion is for a part of trip 

length, and it gets faster after the blockage. The average of precipitation is also changing 

between ML trip classes. U-ML trips have a lower average of precipitation than E-ML 

trips, which means U-ML trips are more likely during unrainy conditions. 

5.1.6. Toll 

Toll can be either total toll or toll rate per mile. Table 7 exhibits the toll factors 

for ML trip classes. It shows that the average total toll and toll rate for U-ML trips are 

less than for E-ML trips in the binary classification. It can be deduced that when the toll 

rate is lower (during the non-peak hour), U-ML trips are more likely to happen. 

However, multiclass classification indicates E-ML and U-ML trips have the same 

average toll rate. The middle class has a much lower toll rate compared to the other two 

classes, meaning drivers paying the smallest toll rate have travel times very similar to 

GPLs. 

Table 7 Average Toll Factors for ML Trip Classes 

Class 
Binary Multiclass 

E-ML U-ML E-ML Middle ML U-ML 

Total toll 2.13 1.56 2.25 1.32 1.79 

Toll rate 0.33 0.25 0.35 0.17 0.33 

 

5.1.7. Traffic Flow 

One principal element of this U-ML trip study is ML and GPL traffic flow. 

Fewer number of vehicles with transponders on the GPLs may lead to higher U-ML trips 

for drivers selecting MLs over GPLs. Conversely, congestion on MLs often results in a 
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U-ML trip for drivers on the MLs. In other words, U-ML trips may occur when a higher 

rate of vehicles with transponders using MLs comparing to E-ML trips. Table 8 shows 

the mean ML and GPL traffic flow for different ML trip classes. 

Table 8 Average ML and GPL Traffic Flow for ML Trip Classes 

Class 
Binary Multiclass 

E-ML U-ML E-ML Middle ML U-ML 

ML traffic flow (veh/10 min) 10.62 12.70 10.98 8.17 17.39 

GPL traffic flow (veh/10 min) 16.20 12.14 16.48 13.67 11.31 

Total Traffic flow (veh/10 min) 26.82 24.84 27.46 21.84 28.7 

ML usage rate 0.40 0.51 0.40 0.37 0.61 

 

5.1.8. Travel Behavior and Trip Frequency 

Travel behavior implies that drivers may select MLs habitually. Table 9 shows 

the average ML trip frequency and the percent ML trips for the ML trip classes. The 

variation among classes is not significant in binary classification. Also, multiclass 

classification indicates a 4% increase in trip frequency from E-ML trip to U-ML trip. 

Therefore, travel behavior is not expected to be among the most important variables in 

predicting U-ML trips. However, it will still be considered in the initial stage of analysis. 

Table 9 Average Travel Behavior for ML Trip Classes 

Class 
Binary Multiclass 

E-ML U-ML E-ML Middle ML U-ML 

ML Trip Frequency 6.84 6.87 6.93 6.27 7.24 

Percent ML Trips 0.42 0.40 0.42 0.39 0.41 
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5.2. Sampling and Data Partitioning 

In this section, the first sample of the dataset will be derived from the main 

dataset. Later, the training and test sets will be formed for the further analysis. 

To get the sample set, 1,001,941 trips (1 trip each seven trips) are randomly 

selected from all trips. This sample will be the main dataset to be examined in this study.  

Then, data were split into two sets to train the model and test the predictive 

power of the model. The training set, which is used to train the model and find the best 

fit for the model, includes 801,554 trips (or 80% of sample trips). Figure 21 shows the 

training set classification. The number of U-ML trips in training set is 40,906 based on 

multiclass classification and increases to 89,747 trips in binary classification. Each class 

percentage in training set is the same as the main dataset, which shows the training set is 

a good representative of the main dataset.  
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Figure 21 ML Trip Classifications 

The second subset of data includes 200,387 trips or 20% of the sample trips. The 

test set is used to estimate the predictive powers and the accuracy of the model on a new 

dataset not used in model development.  

5.3. Resampling 

There is a small percentage (5%-11%) of U-ML trips in the training set (see 

Figure 21). Therefore, any models fitted to the data will be bias to the major class of 

trips, or E-ML trips. However, the focus of this study is to examine the causes of U-ML 

trips. Therefore, the data needs to be balanced and resampled. 

Resampling of an imbalanced dataset is focused on the dependent variable to be 

predicted by the model. Therefore, the binary classification and multiclass classification 

are separated at this stage of the study, and the resampled datasets are generated for each 

of them separately. 
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5.3.1. Binary Classification 

The techniques implemented to resample the training set for the binary 

classification analysis are undersampling and SMOTE. These two approaches generate 

new balanced datasets, named “undersampled” and “SMOTEd” datasets, using the 

variable unecobinary. Table 10 shows the sizes of new developed training sets using each 

technique and the percentage of their balanced classes. 

Table 10 Datasets Used in Binary Analysis 

Class U-ML E-ML Training set Size 

Imbalanced Dataset 11.20% 88.80% 801,554 

Undersampled Dataset 50.05% 49.95% 179,320 

SMOTEd Dataset 42.86% 57.14% 628,229 

 

5.3.2. Multiclass Classification 

To resample the training set for multiclass analysis, undersampling method is 

implemented. This technique randomly decreases the size of E-ML trip and middle ML 

trip classes of variable unecomulticlass to be equal to U-ML trip class. The new training set 

size is named “undersampled dataset” and indicated in Table 11. 

Table 11 Datasets Used in Multiclass Analysis 

Class U-ML Middle ML E-ML Training set Size 

Imbalanced Dataset 5.10% 16.47% 78.43% 801,554 

Undersampled Dataset 33.33% 33.33% 33.33% 122,718 
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5.4. Variable Correlation 

The variables to be included in the model should not be highly correlated. In 

other words, predicting variables ought to be independent unique variables. In this 

section, pearson’s correlation coefficient is computed for all numerical variables within 

the dataset (see Table 12). Referring to this table, concerns regarding correlation are 

limited to the following five pairs: 

1. Shoulder and main lane blockages: These two variables are related (𝜌 = 0.486) and it 

is logical. The shoulder lanes may get impassable as an effect of main lane blockage 

or accident. 

2. Total toll and toll rate: Pearson’s correlation is calculated 0.561 for these two factors 

since the toll rate is described as the total toll per mile of trip length. Therefore, only 

one of them can be included in the model formulation. In this study, the toll rate is 

the one to be considered in the model. It is worth noting that the toll rate and the trip 

length also have  𝜌 = -0.360, which means they are moderately correlated. However, 

this correlation is not too significant to exclude one of them at the initial stage. 

3. GPL traffic flow and trip length: If the trip length is short, and the GPLs are 

congested, drivers select MLs. However, they will choose MLs in spite of the low 

GPL traffic flow for longer trips. In other words, the GPL traffic flow for short ML 

trips may be higher than long ML trips. This association has formed the correlation 

factor of -0.457 between GPL traffic flow and trip length. 

4. Toll rate and GPL traffic flow: Toll rate is increasing during the peak hours. Also, 

the number of vehicles passing all lanes are also increasing. Though, ML traffic flow 
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may increase to the capacity point, and after that other vehicles decide not to enter 

the MLs. Thus, GPL traffic flow is constantly increasing as the result of peak hour. 

This correlation between toll rate and GPL traffic flow will result in a factor of 

0.437. 

5. Percent ML trips and trip frequency: Travel behavior factors are correlated by 𝜌 = 

0.595. This correlation states that drivers who use Katy MLs frequently are more 

probable to select MLs over GPLs.  

Despite these correlations, many of the variables were included in initial models 

to determine the superior variable. In subsequent models at least one, if not both, of the 

correlated variables were removed. Therefore, the binary and multiclass classification of 

ML trips is considered as the function of variables in Equation (12) at the initial stage.
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Table 12 Variable Correlation (Pearson’s Correlation Coefficient) 

 

Main lane 

blockage 

Frontage lanes 

blockage 

Ramp lanes 

blockage 

HOV lanes 

blockage 

Shoulder lanes 

blockage 
Rain 

Total 

toll 

Main lanes blockage 1.000 
 

     

Frontage lanes blockage 0.000 1.000      

Ramp lanes blockage 0.086 0.115 1.000 
 

   

HOV lanes blockage 0.006 0.000 0.000 1.000    

Shoulder lanes blockage 0.486 0.000 0.037 0.005 1.000   

Rain -0.002 0.005 0.011 -0.002 0.001 1.000  

Total toll -0.009 -0.005 -0.006 -0.005 -0.005 0.000 1.000 

ML traffic flow -0.003 -0.004 -0.003 -0.003 -0.003 -0.021 0.260 

Length 0.013 0.013 0.006 -0.003 0.011 -0.004 0.192 

Travel time variability 0.025 0.003 0.005 0.001 0.015 -0.007 0.019 

GPL traffic flow -0.006 -0.003 -0.003 0.002 -0.003 0.000 -0.053 

ML trip frequency -0.005 -0.004 -0.004 0.001 -0.004 -0.003 0.134 

Percent ML trip -0.007 -0.005 -0.006 -0.001 -0.005 -0.007 0.124 

Toll rate -0.015 -0.007 -0.007 -0.003 -0.013 0.003 0.561 
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Table 12 Continued 

 

ML traffic 

flow 
Length 

Travel time 

variability 

GPL traffic 

flow 

ML trip 

frequency 

Percent 

ML trips 

Toll 

rate 

Main lanes blockage        

Frontage lanes blockage        

Ramp lanes blockage        

HOV lanes blockage        

Shoulder lanes blockage        

Rain        

Total toll        

ML traffic flow 1.000       

Length -0.212 1.000      

Travel time variability -0.001 -0.006 1.000     

GPL traffic flow -0.016 -0.457 0.091 1.000    

ML trip frequency 0.079 -0.027 -0.028 0.004 1.000   

Percent ML trip 0.075 -0.066 -0.037 0.034 0.595 1.000  

Toll rate 0.243 -0.360 0.061 0.437 0.083 0.107 1.000 
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𝑢𝑛𝑒𝑐𝑜(𝑏𝑖𝑛𝑎𝑟𝑦, 𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠) = 𝐹(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑤𝑒𝑒𝑘𝑑𝑎𝑦, 𝑝𝑒𝑎𝑘, 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟,

𝑚𝑎𝑖𝑛 𝑙𝑎𝑛𝑒𝑠 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒, 𝑓𝑟𝑜𝑛𝑡𝑎𝑔𝑒 𝑙𝑎𝑛𝑒𝑠 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒, 𝑟𝑎𝑚𝑝 𝑙𝑎𝑛𝑒𝑠 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒,

ℎ𝑜𝑣 𝑙𝑎𝑛𝑒𝑠 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒, 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 𝑙𝑎𝑛𝑒𝑠 𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒, 𝑟𝑎𝑖𝑛, 𝑀𝐿 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑙𝑜𝑤, 𝑙𝑒𝑛𝑔𝑡ℎ,

𝑠𝑡𝑎𝑟𝑡 𝑠𝑒𝑛𝑠𝑜𝑟, 𝑒𝑛𝑑 𝑠𝑒𝑛𝑠𝑜𝑟, 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐺𝑃𝐿 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑙𝑜𝑤,

𝑀𝐿 𝑡𝑟𝑖𝑝 𝑓𝑟𝑒𝑞𝑢𝑛𝑒𝑐𝑦, 𝑇𝑟𝑖𝑝 ℎ𝑎𝑏𝑖𝑡, 𝑇𝑜𝑙𝑙 𝑅𝑎𝑡𝑒)                                                 (12) 

5.5. Initial Binary Random Forest (BRF) Model 

In this section, random forests are created for three training sets to discover the 

best training set and the best resampling technique. The number of trees developed in 

random forest method is selected to be 100 for the initial analysis. 

5.5.1. Imbalanced Data 

The training set, also known as the imbalanced dataset, is used to design a 

random forest for predicting the binary ML trip classification. This dataset consists of 

801,554 observations with 11% of total paid ML trips as U-ML trips, which is shown in 

Table 10. 

The random forest errors’ plot shows the increase in number of trees have 

reduced the overall out-of-bag (OOB) error. However, the error of U-ML trip class 

increases when number of trees increases and reaches a constant number finally. This is 

the consequence of the imbalanced data. In other words, adding more trees to the 

random forest makes the models become more bias to the major (E-ML trip) class. All 

types of error reach a constant value after a certain number of trees, which indicates a 

certain number of trees are adequate for including all types of dataset variations in the 

analysis (see Figure 22). 
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Figure 22 Errors Plot- Initial BRF for the Imbalanced Dataset 

To test the model, the model is applied for predicting the test set’s ML trip 

classification. To evaluate the model, a confusion matrix and the Receiver Operating 

Characteristic (ROC) curve were developed. As shown in Table 13, the accuracy of this 

prediction is 0.8975, which is the “paradox of accuracy” in this case. The model 

sensitivity for the test set is so high (0.992), despite the specificity is too low (0.150). In 

other words, the model predicts almost all of the U-ML trips as E-ML trips, causing the 

accuracy of the model to get close to the major class proportion (89%). This is why the 

model is not well-constructed and too bias to the major ML trip class. As indicated in 

Table 13, the AUC is a better goodness of fit measure than accuracy, and is close to 0.5, 

which shows the model has the probability of almost half to classify a positive value 

accurately. 
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Figure 23 also shows that the ROC curve is too close to the half line, which 

indicates the deficiency of this model. This model is not well-trained to examine its most 

important variables as the training set is imbalanced. Therefore, this training set is not 

good enough to build the final model.   

Table 13 Model Specifications- Initial BRF for the Imbalanced Dataset 

Accuracy Sensitivity Specificity AUC 

0.898 0.992 0.150 0.571 

 

 

 

 

Figure 23 ROC Curve- Initial BRF for the Imbalanced Dataset 
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5.5.2. Undersampled Dataset 

This dataset is generated by making the two classes of unecobinary variable equally 

sized. In other words, the major E-ML trip class is downsized to be equal to the number 

of U-ML trips in the training set, a total of 179,320 paid ML trips. The percentage of 

each ML trip class is almost 50 percent, and the dataset is well-balanced (see Table 10). 

The random forest errors’ plot displays that the all types of errors decrease by the 

increase in the number of trees, which demonstrates that the dataset is balanced and 

well-constructed. Also, the overall OOB error reaches 0.25, and the number of trees is 

adequate for the model (see Figure 24). The E-ML trip class has a higher error than U-

ML trip class, which means the model does not predict economical class as well as 

uneconomical class. In other words, the test model’s specificity is greater than its 

sensitivity. This is documented in Table 14. 
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Figure 24 Errors Plot- Initial BRF for the Undersampled Dataset 

Table 14 Model Specifications- Initial BRF for the Undersampled Dataset 

Accuracy Sensitivity Specificity AUC 

0.725 0.714 0.807 0.761 

 

As expressed in Table 14, the accuracy, specificity, and sensitivity of the test 

model are 0.72, 0.71, and 0.81 relatively. These three parameters show the model is 

well-fitted, and all of them are reasonably high. AUC, which is a better measure of 

goodness of fit, is 0.761. Correspondingly, Figure 25 displays how the ROC curve is 

covering a considerable more area than half of the square. 
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Figure 25 ROC Curve- Initial BRF for the Undersampled Dataset 

Because this model is well-trained, the chief variables are also well-ranked by the 

mean decrease in accuracy factor. The Figure 26 shows their ranking. The GPL traffic 

flow is the most important variable. Next factors are travel time variability and ML 

traffic flow. Surprisingly, blockages, precipitation, and time of the trip are not effective 

factors. Even ramp blockage has a negative accuracy, which means it would be better to 

exclude this variable from the analysis to increase the accuracy. 
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Figure 26 Variable Importance- Initial BRF for the Undersampled Dataset 

5.5.3. SMOTEd Dataset  

This dataset is established by applying SMOTE method on binary ML trip 

classification. The SMOTEd dataset is a balanced dataset with 42.86% of total paid ML 

trips as U-ML trips and the total size of 628,229 ML trips (see Table 10). 

The constructed random forest errors’ plot shows the dataset is balanced, and all 

types of errors decrease by the increase in number of trees. The overall OOB error is 0.1, 

which is less than the overall OOB error of the undersampled trained random forest. 

Nevertheless, the U-ML trip class in this model has a greater error than E-ML trip class. 

In other words, the test model’s specificity is lower than its sensitivity, and this model 

works better for identifying E-ML trips than U-ML trips. As shown in Table 15, this 

model has a high accuracy and sensitivity of 0.878 and 0.940. However, the specificity is 
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as low as 0.386. In other words, there is a great possibility for this model to fail in 

predicting some U-ML trips. AUC is 0.663 showing the model is not as good as the 

initial BRF trained by the undersampled dataset (see Figure 28). Since this resampling 

technique is inferior, further importance analysis is not conducted.  

 

 

Figure 27 Errors Plot- Initial BRF for the SMOTEd Dataset 

Table 15 Model Specifications- Initial BRF for the SMOTEd Dataset 

Accuracy Sensitivity Specificity AUC 

0.878 0.940 0.386 0.663 
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Figure 28 ROC Curve- Initial BRF for the SMOTEd Dataset 

5.6. Initial Multiclass Random Forest (MRF) Model 

5.6.1. Imbalanced Dataset 

As specified in Table 11, this dataset consists of 801,554 paid ML trips with 

5.1% of total paid ML trips as U-ML trips, 16.47% of total paid ML trips as middle ML 

trips, and 78.43% of total paid ML trips as E-ML trips. This dataset has one major class 

and two minor classes, which makes the dataset imbalanced. This issue is also 

significant in the random forest errors’ plot (see Figure 29). The overall OOB error is 

decreased to 0.2, and the major class has a slight error. However, the minor classes’ 

errors increase by the increase in number of trees. This is the imbalance effect causing 

the error become larger by adding more data to the model. 
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Figure 29 Errors Plot- Initial MRF for the Imbalanced Dataset 

The accuracy and AUC for the test model is 0.806 and 0.603 relatively (see 

Figure 30). Despite it is not very deficient, the specificity and sensitivity for each class 

shows this model does not predict classes well (see Table 16). Either specificity or 

sensitivity is low for ML trip classes. In other words, the initial MRF model trained by 

imbalanced dataset fails in predicting all classes. Again, it shows imbalanced dataset is 

not a good dataset to train the final models. 
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Figure 30 ROC Curve- Initial MRF for the Imbalanced Dataset 

Table 16 Model Specifications- Initial MRF for the Imbalanced Dataset 

Class Sensitivity Specificity 

E-ML 0.975 0.239 

Middle ML 0.203 0.968 

U-ML 0.150 0.996 

 

5.6.2. Undersampled Dataset 

The size of undersampled subset used in multiclass analysis is 122,718 paid ML 

trips with 33.33% for each paid ML trip class. This data is balanced, and all paid ML trip 

classes’ errors decline when the number of trees increases. The overall OOB error is 0.4, 

and the middle ML trip class error is greater than the other ML trip classes. 
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Subsequently, E-ML and U-ML trip classes will be better predicted by this model rather 

than the middle ML trip class (see Figure 31). 

 

 

Figure 31 Errors Plot- Initial MRF for the Undersampled Dataset 

 The accuracy and AUC are 0.626 and 0.762 relatively (see Figure 32). Both 

these parameters show this model is well-designed for predicting multiclass ML trips. 

Also, specificity and sensitivity are equally adequate for all ML trip classes (see Table 

17). Again, undersampling technique works well in training the model, and is a good 

choice for the final dataset resampling. 
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Figure 32 ROC Curve- Initial MRF for the Undersampled Dataset 

Table 17 Model Specifications- Initial MRF for the Undersampled Dataset 

Class Sensitivity Specificity 

E-ML 0.631 0.858 

Middle ML 0.586 0.757 

U-ML 0.678 0.852 

 

This model also presents the most important variables in multiclass analysis of 

ML trips by the means of the mean decrease in accuracy factor. Figure 33 shows the 

ranking of these variables. Travel time variability, GPL traffic flow, and ML traffic flow 

are the most important ones in multiclass. However, blockages and rain are not 

significant in this classification. 
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Figure 33 Variable Importance- Initial MRF for the Undersampled Dataset 

5.7. Initial Binary Logistic Regression (BLR) Model 

5.7.1. Imbalanced Dataset 

The imbalanced training set is used to train a logistic regression model for 

predicting the binary ML trip classification. The size of this dataset is 801,554 paid ML 

trips with 11% of total paid ML trips as U-ML trips (see Table 10).  

This dataset is significantly imbalanced as same as observed in section 5.5.1. In 

addition, the paradox of accuracy can be easily noticed. The accuracy and sensitivity of 

the test model in this analysis are 0.889 and 0.999 relatively, while the specificity is 

0.021 (see Table 18).  It shows that the model classifies almost all of the U-ML trips as 

the major E-ML trip class. Therefore, this model is not well-fitted. AUC is revealed as 
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0.510, which is insignificant and the model is unproductive for training the final models 

(see Figure 34). 

Table 18 Model Specifications- Initial BLR for the Imbalanced Dataset 

Accuracy Sensitivity Specificity AUC 

0.889 0.999 0.021 0.510 

 

 

 

Figure 34 ROC Curve- Initial BLR for the Imbalanced Dataset 
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5.7.2. Undersampled Dataset 

This dataset is created by random undersampling of the major E-ML trip class to 

have the same size as the U-ML trip class in the main training set. Therefore, the new 

undersampled dataset will have two equally sized classes with a total size of 179,320 

paid ML trips. The proportion of each class is almost 0.5, and the dataset is balanced 

(see Table 10). 

The model’s accuracy, sensitivity, and specificity are 0.652, 0.650, and 0.671 

relatively (see Table 19), which shows the model is well-fitted. The ROC curve is also 

plotted and shows that AUC is 0.660 (see Figure 35). This model confirms the 

undersampled set is a good set for training final models. 

Table 19 Model Specifications- Initial BLR for the Undersampled Dataset 

Accuracy Sensitivity Specificity AUC 

0.652 0.650 0.671 0.660 
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Figure 35 ROC Curve- Initial BLR for the Undersampled Dataset 

5.7.3. SMOTEd Dataset 

This dataset is developed by applying SMOTE on the binary ML trip 

classification. This dataset is a balanced dataset with 42.86% of total paid ML trips as U-

ML trips and the total size of 628,229 paid ML trips (see Table 10).The model is well-

balanced, but it is not functioning well as indicated in Table 20.  

The model’s accuracy is 0.736, but the specificity is 0.408. Also, the area under 

the ROC curve, AUC, is 0.593 (see Figure 36), which shows that the model is 

inefficient, and SMOTEd set is not functional for training the final models. 
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Table 20 Model Specifications- Initial BLR for the SMOTEd Dataset 

Accuracy Sensitivity Specificity AUC 

0.736 0.777 0.408 0.593 

 

 

 

Figure 36 ROC Curve- Initial BLR for the SMOTEd Dataset 

5.8. Discussion of Initial Models 

Initial binary random forest (5.5), multiclass random forest (5.6), and binary 

logistic regression (5.7) models were trained by imbalanced, undersampled, and 

SMOTEd datasets. Then, a test set of data is analyzed by the models to test each model’s 

accuracy. All cases are discussed regarding their accuracy, sensitivity, specificity, and 

AUC. In all cases the best resampling technique was undersampling. The most unfailing 
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goodness of fit is AUC. As illustrated in Table 21, the highest AUC belongs to the 

undersampled dataset in all pattern recognition methods. 

Table 21 Initial AUC Summary 

AUC Initial BRF Initial MRF Initial BLR 

Imbalanced 0.571 0.603 0.510 

Undersampled 0.761 0.762 0.660 

SMOTEd 0.663 -- 0.593 

 

The key independent variables are shown by their importance results in the 

random forest models using the best resampling technique (undersampling). These 

variables are ranked in sections 5.5.2 and 5.6.2. 

The most important variables are computed by summing up the mean decrease in 

accuracy from initial BRF and MRF for undersampled datasets. The total decrease in 

accuracy for all variables is indicated in Figure 37. As illustrated in this graph, the first 

three factors are very important to the model. These factors are travel time variability, 

GPL traffic flow, and ML traffic flow. The next three variables are start sensor, toll rate, 

and end sensor. These six variables are selected for the final model noting that they have 

no significant correlations, and they are unique independent variables. Also, it is 

noteworthy that these six variables are a representative of time of the trip, route of the 

trip, cost of the trip, and traffic flow. 

As indicated in sections 5.5.2 and 5.6.2, an efficient number of trees to have both 

a small OOB error and not large worthless number of trees is 50. The OOB error begins 

to stay constant from this point (see Figure 24 and Figure 31). 
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Figure 37 Total Decrease in Accuracy 

5.9. Final Models 

The final models are generated for the most important variables identified from 

the initial analysis. These factors are GPL traffic flow, ML traffic flow, toll rate, start 

sensor, end sensor, and travel time variability. The main formula used in this analysis as 

indicated in Equation (13). 

𝑢𝑛𝑒𝑐𝑜(𝑏𝑖𝑛𝑎𝑟𝑦, 𝑚𝑢𝑙𝑡𝑖 − 𝑐𝑙𝑎𝑠𝑠)~  𝐹(𝑀𝐿 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑙𝑜𝑤, 𝑠𝑡𝑎𝑟𝑡𝑠𝑒𝑛𝑠𝑜𝑟, 𝑒𝑛𝑑𝑠𝑒𝑛𝑠𝑜𝑟,

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐺𝑃𝐿 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑓𝑙𝑜𝑤, 𝑇𝑜𝑙𝑙𝑅𝑎𝑡𝑒)                            (13) 

Also, these models use the undersampling technique to generate balanced 

training sets. The undersampled datasets are the same undersampled datasets from the 

initial analyses. Table 22 shows the size and class proportions of the undersampled 

datasets.  
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Table 22 Undersampled Datasets 

 
U-ML trip Middle ML E-ML trip Training set Size 

Binary 50.05% --- 49.95% 179,320 

Multiclass 33.33% 33.33% 33.33% 122,718 

           

In this section, both random forest and logistic regression models are designed to 

discover variables importance ranking and their type of impacts. 

5.9.1. Final Binary Random Forest (BRF) Model 

The number of trees established in the random forest method was 50 as 

concluded from initial analysis. 

A small fragment of a sample tree from this model is illustrated in Figure 38. The 

outcome from this tree is combined with the outcome from 49 other trees, and the mode 

of this combination will be the binary ML trip classification.  
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Figure 38 Part of a Sample Tree in the Final BRF
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By adding more trees to the model, the overall OOB error and classes’ errors 

decrease and reach 0.2 to 0.3 (see Figure 39), which has not significantly changed from 

initial BRF errors (see Figure 24). In other words, exclusion of some variables and 

limiting the model to only six variables did not increase the errors notably. It shows that 

these six variables can explain a great part of the U-ML trip pattern. The errors’ plot also 

shows that the data is balanced, and the growing number of trees would lead to a better 

model with a lower error value.  

 

 

Figure 39 Errors Plot- Final BRF  

In addition, the U-ML trip class has a lower error rate than E-ML trip class. 

Thus, U-ML trip class will be more accurate than other ML trip classes. In other words, 

the model specificity is higher than its sensitivity as indicated in Table 23. The accuracy, 
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sensitivity, and specificity are 0.717, 0.706, and 0.802. The equally high and adequate 

values of these three parameters show the model is well-constructed. Also, AUC is 0.754 

(see Figure 40), which has dropped slightly from the initial BRF value, 0.761 (see Table 

14). However, the drop is 0.8%. Therefore, the model does not decrease in accuracy 

much when excluding the many variables. 

Table 23 Model Specifications- Final BRF  

Accuracy Sensitivity Specificity AUC 

0.717 0.706 0.802 0.754 

 

 

Figure 40 ROC Curve- Final BRF  
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Also, the new importance ranking of the variables changed from the initial BRF 

model. Figure 41 shows the variables’ importance in terms of mean decrease in 

accuracy. As indicated in Figure 41, removing any of these variables would greatly 

decrease the accuracy of the model. 

 

 

Figure 41 Variables Importance- Final BRF  

The variable ranking order is the same as the initial BRF model ranking except 

for start sensor and end sensor variables. This fact shows other excluded variables have 

sort of correlation with these two factors, and omitting them made these two factors 

impact more distinct. 

This model is a simple binary and well-constructed random forest model. It 

clearly shows the ranking of each variables’ importance, and has a high accuracy in 
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predicting U-ML trips Nevertheless, the effect of each variable on the likelihood of U-

ML trip cannot be easily interpreted from this model. 

5.9.2. Final Multiclass Random Forest (MRF) Model 

This model is obtained by generating 50 trees. Increasing the number of trees 

reduces the overall OOB error and all class errors (see Figure 42). Comparing the final 

MRF error plot with initial MRF error plot (see Figure 32), it can be concluded that the 

errors do not drop remarkably by excluding many variables. In addition, the model can 

identify the extreme classes (economical and uneconomical classes) with a smaller error 

rate than when there is also a  middle class. The overall OOB error is higher than the 

final BRF model’s overall OOB error.  

The model’s specifications are illustrated in Table 24. Sensitivity of the middle 

class is 0.557, but other ML trip classes’ sensitivities and specificities are high. The 

accuracy of the model is 0.614 and AUC is 0.752 (see Figure 43). Comparing to an AUC 

of 0.762 derived from the initial MRF analysis, the model accuracy has not changed 

much. 
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Figure 42 Errors Plot- Final MRF  

Table 24 Model Specification- Final MRF  

Class Sensitivity Specificity 

E-ML 0.622 0.849 

Middle ML 0.557 0.760 

U-ML 0.676 0.839 
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Figure 43 ROC Curve- Final MRF  

The variable importance rankings (see Figure 44) show that the travel time 

variability, and GPL traffic flow, and ML traffic flow are the most important variables. 

This model is also well-constructed. However, it is difficult to measure the magnitude of 

each variable’s impact. 



 

89 

 

 

 

Figure 44 Variables Importance- Final MRF  

5.9.3. Final Binary Logistic Regression (BLR) Model 

To predict future U-ML trips and estimate their probability, the final BLR model 

may be the best model. This model’s specifications are shown in Table 25. Adequate and 

equally high values of accuracy, sensitivity, and specificity indicate that the model is 

well-designed. Also, ROC curve is showing that the model is predicting accurately (see 

Figure 45). Accuracy and AUC may have dropped comparing to the initial BLR model, 

however, the model and variable coefficients are less complicated and easier to use for 

future ML trip estimation.  

Table 25 Model Specifications- Final BLR 

Accuracy Sensitivity Specificity AUC 

0.614 0.608 0.664 0.636 
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Figure 45 ROC Curve- Final BLR 

The main advantage of the final BLR method is to easily predict future ML trip 

classifications. Table 26 illustrates how each factor affects the U-ML trip probability. In 

other words, a positive value indicates an increased likelihood of a U-ML trip by an 

increase in the associated variable. The lowest p-value suggests a strong association 

between the variable and U-ML trip likelihood. 

ML traffic flow increase the likelihood of a U-ML trip. Also, high GPL traffic 

flow shows a high number of vehicles using GPLs, which decreases the U-ML trip 

likelihood. One of the most important factors is the travel time variability as shown by 

final MRF model. The higher the travel time variability, the higher the U-ML trip 

probability. In addition, high toll rates lead to a smaller number of U-ML trips. Sensor 

469 is arbitrarily set as the base sensor, with a coefficient equal to 0.  All other sensor 
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coefficients are evaluated versus this sensor. The highest and lowest coefficients for the 

start point are for sensors 109 and 101. The sensors with highest and lowest coefficients 

for the end point are 271 and 369. A thorough look into these coefficients shows that in 

general the longer the trip is, the lower the chance to have a U-ML trip (see Figure 1). 

The lowest p-value (the strongest association) is for variables: GPL traffic flow, toll rate, 

start sensor 109, and travel time variability. 

Table 26 Parameters Estimates- Final BLR 

Variable Estimate Std. Error Z value P-Value 

(Intercept) -0.07 0.18 -0.39 6.95E-01 

MLs traffic flow 0.01 0.00 24.24 7.68E-130 

start_sensor.x6 0.91 0.04 24.34 7.97E-131 

start_sensor.x101 -1.07 0.22 -4.84 1.33E-06 

start_sensor.x102 -0.75 0.22 -3.35 8.22E-04 

start_sensor.x103 -0.69 0.22 -3.11 1.84E-03 

start_sensor.x104 -0.89 0.26 -3.44 5.74E-04 

start_sensor.x105 0.20 0.22 0.88 3.78E-01 

start_sensor.x106 -0.72 0.24 -2.99 2.75E-03 

start_sensor.x107 0.93 0.04 26.09 4.52E-150 

start_sensor.x108 1.30 0.05 27.21 4.76E-163 

start_sensor.x109 2.72 0.04 60.53 0.00E+00 

start_sensor.x110 2.09 0.09 22.74 1.91E-114 

start_sensor.x111 1.94 0.05 39.64 0.00E+00 

start_sensor.x112 -0.08 0.30 -0.27 7.88E-01 

start_sensor.x199 0.93 0.05 20.25 3.33E-91 

start_sensor.x272 0.74 0.04 17.50 1.46E-68 

start_sensor.x368 -0.91 0.22 -4.11 4.02E-05 

start_sensor.x411 -0.62 0.22 -2.76 5.77E-03 

start_sensor.x412 -0.86 0.22 -3.86 1.14E-04 

start_sensor.x413 -0.92 0.22 -4.11 4.01E-05 

start_sensor.x449 0.32 0.22 1.46 1.44E-01 
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Table 26 Continued 

Variable Estimate Std. Error Z value P-Value 

start_sensor.x453 0.10 0.23 0.42 6.78E-01 

start_sensor.x456 0.54 0.17 3.24 1.19E-03 

start_sensor.x460 0.22 0.05 4.82 1.42E-06 

start_sensor.x468 -0.90 0.23 -3.84 1.25E-04 

end_sensor.x5 0.49 0.12 4.00 6.24E-05 

end_sensor.x101 0.91 0.12 7.37 1.77E-13 

end_sensor.x102 0.17 0.16 1.06 2.87E-01 

end_sensor.x103 0.65 0.13 5.12 3.01E-07 

end_sensor.x104 0.64 0.19 3.37 7.57E-04 

end_sensor.x105 0.23 0.12 1.85 6.44E-02 

end_sensor.x106 0.33 0.13 2.59 9.53E-03 

end_sensor.x107 -0.31 0.18 -1.68 9.34E-02 

end_sensor.x108 -0.33 0.27 -1.23 2.19E-01 

end_sensor.x109 -0.64 0.18 -3.49 4.74E-04 

end_sensor.x110 -0.70 0.21 -3.33 8.76E-04 

end_sensor.x111 -0.47 0.18 -2.59 9.63E-03 

end_sensor.x112 -0.39 0.18 -2.11 3.48E-02 

end_sensor.x271 0.93 0.12 7.61 2.71E-14 

end_sensor.x369 -1.41 0.19 -7.55 4.32E-14 

end_sensor.x414 -1.08 0.18 -5.91 3.40E-09 

end_sensor.x415 -0.90 0.18 -4.95 7.33E-07 

end_sensor.x416 -0.97 0.19 -5.26 1.43E-07 

end_sensor.x453 0.44 0.45 0.99 3.20E-01 

end_sensor.x456 -0.21 0.22 -0.93 3.52E-01 

Travel time variability 4.91 0.11 43.71 0.00E+00 

GPLs traffic flow -0.02 0.00 -49.04 0.00E+00 

Toll rate -1.04 0.02 -48.72 0.00E+00 
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5.10. Discussion of Results from the Final Models 

This study found that the undersampling technique was best for balancing the 

data. The undersampled data was used to train three models: final BRF, MRF, and BLR. 

The random forest methods provide the ranking of variables’ impacts and the logistic 

regression model provides the magnitude of variables’ impacts. 

Table 27 compares AUCs from the initial analysis and the final models. It shows 

that the exclusion of many variables did not decrease the AUC of the final model very 

much. Instead the model is now easier and more practical for future use. 

In both initial and final models, BRF and MRF models are almost equally 

accurate. However, it is easier to predict two classes instead of three classes. Therefore, 

BRF model is the focus of this discussion.  

Table 27 Final AUC Summary 

AUC BRF MRF BLR 

Initial Full Model 0.761 0.762 0.660 

Final Model 0.754 0.752 0.636 

 

Table 28 shows variable importance ranking and their significance in the final 

models. The analysis of variance (ANOVA) for BLR model is implemented. This 

analysis sequentially compares the smaller model with the next more complex model. 

This test is conducted for each variable by comparing the full model and the model 

without the variable. The Wald Chi-squared test evaluates this comparison by generating 

p-values, which shows the significance of the variable in the model. A large p-value in 
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BLR model shows that the model without the corresponding variable is essentially the 

same. As indicated, all p-values are small, and all variables have a significant impact on 

ML trip classification, but there might be slight differences in rankings. 

As indicated by random forest models, the most important variables for ML trip 

classification are GPL traffic flow, travel time variability, ML traffic flow, start sensor, 

end sensor, and toll rate. However, their impact on the U-ML trip rate (for example, does 

the variable increase or decrease the likelihood of a U-ML trip) is unclear in random 

forest models. The BLR model provides more information on a variables’ impact on U-

ML trip rate based on the estimated coefficients.  

Table 28 Final Variables' Impacts 

Variables 

Final BRF Mean 

Decrease 

Accuracy 

Final MRF Mean 

Decrease 

Accuracy 

Final BLR 

ChiSquare Test 

P-value 

GPL traffic flow 103.29 102.35 < 0.0001 

Travel time variability 91.97 133.24 < 0.0001 

ML traffic flow 84.47 76.43 < 0.0001 

Start sensor 67.26 71.90 < 0.0001 

End sensor 62.71 65.61 < 0.0001 

Toll rate 56.99 62.73 < 0.0001 

 

GPL traffic flow is the most important variable in BRF model. Also, the BLR 

model shows that the GPL traffic flow is an influential variable in predicting the trips 

(see Table 26). The decrease in GPL traffic flow will result in an increase in U-ML trip 

likelihood as the result of a shorter travel time on GPLs. 
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The next important variable in BRF model is travel time variability. This variable 

is also significantly important in the BLR model (considering the associated p-value). 

The increase in travel time variability will cause an increase in U-ML trips. 

ML traffic flow rate is the third most important variable in the BRF model and a 

significant variable of the BLR model. The increase in ML traffic flow likely indicates 

longer ML travel time does indicate a higher likelihood of a U-ML trip. 

The next two variables of importance are start sensor and end sensor. Start and 

end sensors are two categorical variables, and each class of them has a specific 

coefficient in the BLR model. To verify the BLR model, an investigation of U-ML trip 

likelihood for each sensor pair (start and end sensor) is conducted. U-ML trip likelihood 

for each sensor pair with more than 5000 U-ML trips is computed using the main 

dataset. Table 29 shows the probability of most and least likely routes for U-ML trips. 

Also, Figure 46 maps the most and least likely routes for U-ML trips. It can be observed 

that sensor 271 is the most likely end point for U-ML trips. Also, sensor 101 is the least 

likely start point for U-ML trips. These two facts were noted in the BLR model. Figure 

46 also shows the most and least number of U-ML trips are happening around a specific 

number of sensors.  

The final variable in BRF model is toll rate. This variable is also significant in 

BLR model, and the decrease in toll rate (non-peak hours) will result in a higher 

likelihood of a U-ML trip. 
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Table 29 Most and Least Likely Routes for U-ML Trips 

Sensor 

Pair 

Total 

Trips 

Economical 

Trips 

Uneconomical 

Trips 

U-ML 

Percentage 

U-ML trip 

Likelihood 

101-103 179012 173718 5294 3% 

Least likely 

101-105 594085 570433 23652 4% 

368-105 108321 103258 5063 5% 

101-5 159621 152328 7293 5% 

368-101 96886 91336 5550 6% 

449-271 22843 17683 5160 23% 

Most Likely 

449-5 30316 22300 8016 26% 

105-271 273065 197828 75237 28% 

108-112 43330 30681 12649 29% 

449-101 45320 24892 20428 45% 

 

 

 

Figure 46 Most and Least Likely Routes for U-ML Trips (Red arrows show the most 

likely routes, and green arrows show the least likely routes) 
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6. SUMMARY AND CONCLUSIONS 

 

The initial objective of this study was to identify the uneconomical managed lane 

(U-ML) trips and the factors associated with these trips. Managed Lane (ML) trips are 

expected to save travel time. However, Burris et al. (2016) showed 11% of total paid ML 

trips on the Katy Freeway had a negative travel time saving, and termed them 

“uneconomical managed lane (U-ML) trips”. 

To perform this study and examine U-ML trips and related factors, a unique 

dataset was obtained from different sources. The first set was the data collected by AVI 

sensors along the Katy Freeway and operated by TxDOT. This set includes the 

transponder ID, sensor ID, and the detection time for each vehicle passing each sensor. 

The next dataset was acquired from HCTRA. This dataset presents the collected tolls at 

toll plazas, and includes the transponder ID, toll plaza ID, lane ID, and detection time. 

The third dataset was obtained from NOAA for daily precipitation measurements in the 

Katy Freeway area. The first two datasets were combined to form a dataset containing 

vehicle ID, passed sensor IDs and detection times, and total tolls paid at different toll 

plazas. In other words, this combined set provides the route of the trip, time of the trip, 

and cost of the trip for each trip. The precipitation also added a significant measurement 

for weather conditions for each trip. This combined dataset was reduced to include only 

paid ML trips. Also, an alternate GPL trip was computed for each ML trip. The alternate 

GPL trip is an artificial trip starting at the same point and same time of the actual ML 

trip. Using GPL vehicle data, the alternate GPL trip attributes were computed. 



 

98 

 

 

To build the final dataset, ML trips were needed to be classified based on their 

travel time savings. Two forms of classification were suggested in this study. One is a 

binary classification based on TTD, and the other is multiclass classification based on 

RTTD. A preliminary analysis showed the ML travel time ranges from less than 1 

minute to over 35 minutes with an average of 9.6 minutes. Similarly, the alternative GPL 

trip may take from less than 1 minute to over 45 minutes with a mean time of 12.2 

minutes. The travel time difference (TTD) also ranges from -20 minutes to 3 minutes 

with an average of -2.6 minutes, showing most of the ML trips save travel time. 11% of 

ML trips are uneconomical. The relative travel time difference (RTTD) computes travel 

time loss on MLs relative to the ML travel time. RTTD ranges from -2 to 2 with an 

average of -0.3. RTTD helps to introduce a middle ML trip class with a negligible travel 

time saving or loss, which has different attributes from economical and U-ML trip 

classes.  

As noted earlier, the main ML trip dataset is imbalanced since there is a small 

proportion of U-ML trips (see Figure 21). The main dataset consists of 7,013,587 ML 

trips from almost every month from January 2012 to September 2014. To get a sample 

set, 1,001,941 trips, or one-seventh of all trips, were randomly selected. This sample set 

was also divided into two groups: a training and a test set. The training set accounted for 

80% of the sample size or 801,554 trips. The binary classification and multiclass 

classification of ML trips in the training set showed U-ML trips are 5-11% of total ML 

trips. Thus, new balanced training sets were generated using resampling techniques, 

undersampling or SMOTE. However, the resampling techniques are highly dependent on 
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the proportion and number of classes. Consequently, resampling was conducted for 

binary classification and multiclass classification separately (see Table 10 and 11).  

The distribution of each variable among ML trip classes was explored to find the 

type and magnitude of their influence on the percentage of U-ML trips. First, the ML 

traffic flow has a higher average for U-ML trips than E-ML trips. Conversely, the GPL 

traffic flow has a lower mean for U-ML trips. These two facts state that the congestion 

on MLs and the lower GPL traffic flow will lead to a longer ML travel time and shorter 

GPL trip, which is a U-ML trip. The next factor examined was the time of the trip, 

including weekday, peak hour, and shoulder hour. An examination of U-ML trip rate for 

each day of the week indicates 8-14% drop of U-ML trip rate over the weekends. This 

impact is as the result of a large drop in ML traffic flow over the weekends. Likewise, 

U-ML trip rate decreases by 6-13% during the non-peak and non-shoulder hours as the 

result of smaller ML traffic flow during these times. The other element of ML trips is the 

route of the trip, which is characterized by a start sensor, an end sensor, and trip length. 

ML trip classes distribution over start and end sensors showed how U-ML trip rate might 

significantly change from a sensor to sensor. Also, U-ML trip’s average length is 7.96, 

which is smaller than other ML trips, showing U-ML trips are more likely over short 

distances. Also, the average trip frequency for U-ML trips is 7.24, which is slightly 

higher than other ML trip classes. Trip frequency, percent ML trip, rain, and blockages 

did not indicate any significant variation among ML trip classes in this analysis. 

Three types of initial analysis were performed to find the most important 

variables and the best resampling technique to design the final models. Initial analyses 
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include binary random forest, multiclass random forest, and binary logistic regression. 

Each of these models is trained by imbalanced, undersampled, and SMOTEd datasets. 

The undersampled dataset with equally-sized classes performed the best overall.  

The preliminary models also provided information on the most important factors 

to include in the final models. These factors are ML traffic flow, GPL traffic flow, toll 

rate, travel time variability, start sensor, and end sensor. These variables are independent 

of each other (referring to the correlation table), and they are inclusive, adding different 

trip attributes to the final models. Therefore, the final models were built using these six 

variables and undersampled datasets.   

The final models are BRF, MRF, and BLR. The best parameter for evaluation is 

AUC, which shows almost the same AUC for both BRF and MRF models. However, 

their variable importance rankings are different. BRF model is the best model because of 

the easy binary classification and higher AUC. It can better predict future ML trip 

classes based on GPL and ML traffic flow, vehicles’ start and end sensors, toll rate, and 

travel time variability. However, if there is a need for studying the impact of each of 

these variables separately, the BLR model is superior in that the coefficient of each 

variable indicates its impact on the likelihood of U-ML trips. 

BRF model showed the most important variable is the GPL traffic flow. The next 

variables are travel time variability, ML traffic flow, toll rate, start sensor, and end 

sensor. Its AUC is 0.756, which is a high value in random forest modeling. BLR model 

has a lower AUC of 0.636 compared to BRF model. However, it provides an insight into 

each variable’s impact. As observed, high ML traffic flow will lead to congestion on 
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MLs and a higher likelihood of a U-ML trip. Also, high GPL traffic flow will lead to 

congestion on the GPLs and a lower chance of a U-ML trip.  A lower toll rate increases 

the probability of U-ML trips. This is not surprising since lower toll rates occur during 

the less congested times. Therefore, toll rate acts like a peak hour variable. Also, fewer 

people may choose to pay the higher toll rates and enter the MLs during periods with 

high toll rates. Next, an increase in the travel time variability will increase the U-ML trip 

probability as the result of the higher variance in the expected travel time. Also, the start 

sensor and end sensor are among the most important factors causing U-ML trips. 

However, they are categorical variables and their impact is not relatively positive or 

negative. Besides, their combination in the model is more critical than their individual 

impacts.  

There were some limitations in this study. The first limitation is that many 

demographic attributes likely influence U-ML trips. Drivers may select MLs regardless 

of its toll or travel time based on their wealth and income. There was no available dataset 

on drivers’ demographic characteristics.  
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