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ABSTRACT 

Biomass based succinic acid is gaining increasing interest as a potential platform 

chemical for replacing a large petroleum-based bulk chemical market. Biomass as a 

renewable resource has proved the economic and sustainable potential to produce 

succinic acid by fermentation method. Biobased succinic acid has yet faced with the 

challenge of becoming competitive with petrochemical method because of its higher 

production cost.  

To lower the production cost, extensive research efforts have been undertaken in 

upstream technology that involves strain development via metabolic engineering, and 

downstream technology that aims to improve efficiency of purification method. Many 

research studies have focused on either one of two technological areas, with little interest 

on interaction between them. 

This present work integrates the processing steps from upstream and downstream 

technologies using a systematic approach and presents an optimal production pathway 

from a large number of possible process configurations. The development of such a 

process pathway involves selection of bioproducts, feedstock, pre-treatment technology, 

microorganism and product separation method. Performance criteria such as titre, rate, 

yield and minimum production cost, express the optimality of production pathway.  

Optimization study indicates that succinic acid seems to be the most promising 

bioproduct among all other bioproducts. Corn stover is the suitable feedstock to produce 

succinic acid. 

Based on the findings from optimization study, experimental work was performed 

with an aim of achieving better performance criteria than it is reported in literature. This 

work selected corn stover as feedstock, and a bacterium called, Basfia 

succiniciproducens for converting corn stover-derived glucose into succinic acid. To 

date, no deliberate experiment has been done on this bacterium to improve succinic acid 

production, despite its promising features. Highest succinic acid yield of 18 g/100g total 
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sugar (glucose plus xylose) was observed in this experiment. Genetically modified strain 

of the bacterium reported a much higher yield of 71 gm succinic acid/ 100gm of glucose.  
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NOMENCLATURE 

AA  Acetic Acid 

ACE  ACEtate 

AcCoA  Acetyl Co-enzyme A  

ATP   Adenosine-Tri-Phosphate 

ADA  ADipic Acid 

ABXU Acid Birchwood Xylanase Units 

Bio   Biomass 

BDO  1-4, ButaneDiOl 

C  Concentration (g/L) 

CO2   Carbon dioxide 

CRF  Capital Recovery Factor 

DOE   Department Of Energy 

DHAP  DiHydroxyAcetone Phosphate 

EDP  Entner–Doudoroff Pathway 

EIA  Energy Information Administration 

E4P   d-Erythrose-4-Phosphate 

ETH   ETHanol 

EU  European Union 

equ.  equation 

FA  Formic Acid 

F6P   Fructose-6-Phosphate 

F1,6P  d-Fructose-1,6-isPhosphate  

FUM  FUMarate 

FOR  FORmate 

FDCA 2,5-Furan DiCarboxylic Acid 

FCI  Fixed Capital Investment  

GLC   GLUcose 
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G6P   Glucose-6-Phosphate,  

GHG  GreenHouse Gas  

GA3P  GlycerAldehyde 3-Phosphate 

HMF  Hydroxy Methyl Furfural 

HPLC High Performance Liquid Chromatography 

3 HP   3-HydroxyPropionic acid 

ISCC  International Sustainability & Carbon Certification 

LA  Lactic Acid 

LCA  Life Cycle Analysis 

MAL  MALate 

MJ  Mega Joule 

MM  million 

mM  milliMolar 

NREL  National Renewable Energy Laboratory 

na  not available  

NADH  reduced-Nicotinamide Adenine Dinucleotide  

NADPH  reduced-Nicotinamide Adenine Dinucleotide Phosphate 

NLP  Non-Linear Programming 

NREL National Renewable Energy Laboratory 

NPV  Net Profit Value 

OAA  OxAloAcetate 

OD  Optical Density 

1,3PG  3-Phospho-d-Glyceroyl phosphate 

3PG   3-Phospho-d-Glycerate 

2PG   2-Phospho-d-Glycerate 

PEP   PhosphoEnolPyruvate 

PYR   PYRuvate 

PE  Poly Ethylene 

PEP  PhosphoEnolPyruvate 
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PPP  PhosPhate Pathway 

PHB   Poly Hydroxy Butyrate 

PLA   PolyLactic Acid  

PHAs  Poly Hydroxy Alkanoates 

PNNL Pacific Northwest National Laboratory 

PTFE  PolyTetraFluoroEthylene 

RU5P  d-RibUlose-5-Phosphate 

R5P   d-Ribose-5-Phosphate 

RSB   Roundtable on Sustainable Biomaterials  

RFS2   Renewable Fuels Standard program 

SA  Succinic Acid 

SUC   SUCcinate 

S7P   d-Sedoheptulose-7-Phosphate 

SLP   Sequential Linear Programming  

TAC  Total Annualised Cost 

TACC Total Annualised Capital Cost 

TAOC Total Annualised Operating Cost 

TRL  Technology Readiness Level 

TRY   Titre, Rate, and Yield 

TCA   TriCarboxylic Acid 

TSB   Tryptone Soya Broth 

THFA TetraHydroFurfuryl Alcohol 

THF  TetraHydroFuran 

vvm   Volume of gas per Volume of liquid per Minute 

XYL   XYLose 

X5P   Xylulose-5-Phosphate 
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Parameters/ Variables 

b  index for biomass feedstock 

Bb
Bio     available total flow rate of biomass feedstock b 

Es
Prod’  cost of product s’ 

Eb
Bio   cost of biomass feedstock b 

Ebq
Cap  capital cost for the conversion of biomass feedstock b 

Esq
Cap'  capital cost for the conversion of intermediate s 

Ebq
Opr  operating cost for the conversion of biomass feedstock b 

Esq
Opr'  operating cost for the conversion of intermediate s 

FII
sq      Intermediate flowrate s of conversion pathway s  

GPTotal  gross profit 

RI
bqs     Conversion rate of conversion technology q 

RII
sq’    Conversion rate of conversion technology q’ 

s  index for intermediate product 

s’  index for product 

Ts’
Prod   Total production rate of intermediate product s’   

Ts
Inte    Total production rate of product s  

V   total Volume  

w   initial weight (g) of glucose or xylose 

q   biomass conversion technology  

q’   intermediate conversion pathway 

 

Units 

gal  gallon 

GB  GigaByte 

h  hour 

kg  kilogram 

ktpa  Kilo tons per annum 

L or l  Litre  
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m  meter 

MJ  MegaJoule 

MMBtu Metric Million British thermal unit 

MMGPY Metric Million Gallon Per Year 

MW  MegaWatt 

SCF  Standard Cubic Foot 

s  seconds 

Twa  Terra watt 

t  tonne, equal to 1,000 kilograms. 

y  year 

kWh  kilo-Watt hour 

TWa  Terra Watt 
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1. INTRODUCTION 

Succinic acid has been identified by the U.S. Department of Energy (USDOE) as 

one of the top 12 biobased platform chemicals in the year 2004. Since then, extensive 

research has been carried out to produce succinic acid by fermentation [1,2]. Main 

driving forces behind this research interest are to replace the petrochemical products 

with their equivalent biobased products, and to achieve economic benefits of 

bioproducts. Succinic acid was ranked first among all other high prioritized chemicals 

based on some key deciding factors such as market data, building block of chemical and 

commercial deployment of technology [1]. 

Succinic acid (C4H6O4. molecular weight =118.09 g/mol), a dicarboxylic acid, is a 

potential platform chemical to produce various high value-added products such as food, 

pharmaceutical products, surfactants, detergents, plastics, and ingredients to stimulate 

animal and plant growth.  

Succinic acid can also be used as a precursor for many industrial chemicals as 

shown in Figure 1. Due to its versatile applications, succinic acid is rising to a bulk 

chemical in recent years. These applications could potentially lead to a market of several 

tons of succinic acid [3,5,8].  

Green technology deals with producing biomass crops and converting them into 

products and energy. One of such technologies is the fermentation method that valorises 

biomass (green) and fixes CO2 to produce the platform chemicals. In this way, 

fermentation also creates a carbon-negative cycle, reducing CO2 emission. Green 

technology is therefore becoming a driving force in the chemical industry because of the 

declining fossil fuel reserve, and increasing concern on global climate change caused by 

pollutants from petrochemical technology. There is a necessity to replace the 

replenishing fossil-based hydrocarbon economy with renewable resource based 

economy. 
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Figure 1. Succinic acid derivatives [3,4,5] 

1.1 Sustainable potential of biomass for fuels and chemicals 

The 2016 Billion Ton Report concluded that the United States has the potential to 

sustainably produce one billion tons of biomass, while meeting food needs. As shown in 

Figure 2, the report forecasts 1 to 1.2 billion tons of sustainable biomass by 2030, and 

1.2 to 1.5 billion tons by 2040 [26]. Key biomass feedstocks include energy crops (e.g. 

miscanthus, switch grass), agricultural residue (e.g. corn stover, corn fibre, sugarcane 

bagasse) and various industrial waste and by-product streams (e.g. sugar cane molasses, 

cheese whey, crude glycerol from biodiesel production).  
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Figure 2. Biomass availability [26] 

1.2 Why bioproduct, not biofuel? 

Biomass has the potential to dramatically reduce dependence on foreign oil for 

fuels and chemicals, however it is not possible to replace the entire petroleum-based 

infrastructure with a biomass-based infrastructure. Enthalpy estimate of the annually 

produced total biomass is approximately 100 Twa [78]. This estimate considers the 

biomass derived from global photosynthetic activities.  

However, sustainably grown biomass corresponds to a smaller amount of only 

about approximately 3 Twa [78]. The annual worldwide energy consumption today is 

about 16 Twa [78]. The world energy demand is much higher than energy potential of 

biomass. Thus, the biomass production is not likely to be a primary energy source that 

could replace entire fossil fuel. 

The efficient use of biomass is therefore for a variety of specialty and commodity 

chemicals. Although 70.6 percent of a barrel of oil that is converted into fuels is worth 
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$385 billion annually, the 3.4 percent that is converted into petrochemicals is annually 

worth approximately $375 billion (Figure 3). Exploiting the enormous value of 

petrochemicals and specialty chemicals becomes the main goal of biomass utilization 

[27].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Value in a barrel of crude oil [27] 

Because of the great recession between the year 2007 and 2009, the biofuels 

industry has been shifting their product offering from fuel related technology to specialty 

chemicals production. As of 2015, up to 54% of the biofuels industry has increased its 

product offering from biofuels production and relevant technology to a mix of 

bioproducts such as di-carboxylic acids and high value alcohols, when compared with 

less than 13% of such bioproducts offerings in 2012 (Figure 4).  
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Figure 4. Proportion of biofuels & bio-products by industry’s product offering [79] 

1.3 Market potential 

In the year 2013, total succinic acid production from petrochemical and biobased 

method was approximately 76 kilotons. Global production of bio-based succinic acid 

(SA) was 38 kilotons, constituting 49% of total market (Table 1). The current market 

price of biobased succinic acid is approximately $2940/ton, while the fossil-based 

equivalent is valued at around $2860/ton. The succinic acid market is expected to reach 

600,000 tons by 2020 with a projected market size of $1 billion. 

Table 1. Estimated prices and market volumes of succinic acid in the year 2014 

Product 

Bio-based market Total market (bio+fossil) Ref. 

Price 

($/t) 

Volume 

(ktpa) 

Sales 

(m$/y) 

% of total 

market 

Price 

($/t) 

Volume 

(ktpa) 

Sales 

(m$/y) 

 

Succinic 

acid 

2,940 38 111 49% 2,860 76 191 [7 to 13] 



 

6 

 

By the year 2020, more than half of total succinic acid production finds 

applications in 1-4 butanediol (BDO) production (Figure 5).  

 

Figure 5. Forecasted global bio-succinic acid by application in the year 2020 [27] 

1,4-butanediol (BDO) is comprised of a butane chain of four carbon groups with 

an alcohol(-OH) group bound to each terminal carbon of this chain. It is an odourless, 

thick, colourless, organic compound, generally used in the production of plastics, 

solvents, sportswear, and recreational drugs among others.  

Petrochemical method produces BDO from butane, which is now replaced by two 

biological methods; 1. direct conversion of glucose into BDO using engineered E-coli, 2. 

conversion of glucose into BDO via succinic acid. Succinic acid on catalytic 

hydrogenation produces 1,4-butanediol (BDO) as shown in Figure 6. 

 
Figure 6. Process flow scheme for 1,4-butanediol 
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The market potential and advantages presented by bioprocessing have led to 

investment by several companies (Table 2). The current Technology Readiness Level 

(TRL) of succinic acid production is TRL 8 that represents commercialised status of the 

technology. Manufacturing facilities were constructed in Europe and North America [9]. 

Table 2. List of commercial companies producing bio-based succinic acid 

Company  Capacity 
t/y 

Raw 
material  

Fermentation/ 
Microorganism 

Downstream 
recovery  

Investment 
made in 

Ref. 

BioAmber 
(DNP/ard) 

3000  Wheat 
glucose 

E. coli Electrodialysis Europe, 
Pomacle, 
France 

[18, 
19] 

BioAmber, 
Mitsui 

30,000–
50,000  

Corn 
glucose 

Low pH culture 
is targeted using 
Candida krusei 

Direct succinic 
acid separation 
when low Ph 
conditions are 
used 

Sarnia, 
Ontario, 
Canada 

[9,18] 

BioAmber, 
Mitsui 

70,000–
200,000  

– – – North 
America 

[18] 

Reverdia 
(Roquette 
& DSM) 

10,000  Starch/ 
sugars 

Low pH culture 
is targeted by 
S.cerevisiae 

Direct separation 
of succinic acid 

Cassano 
Spinola, Italy 

[9,18] 

Myriant, 
ThyssenKru
pp 

1000  Glucose E. coli Ammonia 
precipitation 

Leuna, 
Germany 

[18] 

Myriant 14,000  Corn 
glucose 

E. coli Ammonia 
precipitation 

Louisiana, 
USA 

[9,18,
19] 

Succinity 
(BASF & 
Corbion-
Purac) 

10,000  Glycerol/
sugars 

B. 
succiniciproduc
ens 

Magnesium 
hydroxide as 
neutralizer 
followed by 
recycling 

Montmelo, 
Spain 

 

[9,18] 
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1.4 The limitation of traditional petrochemical processes 

Succinic acid has been traditionally produced by petrochemical technology. 

Georgius Agricola first purified succinic acid from amber (Amber is a 

fossilized tree resin, known for its colour and beauty) in 1546. Since then, succinic acid 

has been produced by microbial fermentation [3]. In the early years of 1980, the 

industrial potential of microbial fermentation was discovered to produce succinic acid on 

a commercial scale [3].  

Currently, petrochemical process provides fifty percentage of world’s succinic 

acid production. In this process, a petroleum derivative, butane is used as a starting 

material to produce succinic acid in two steps; 1. partial oxidation of butane into maleic 

anhydride (equ. 1.1), 2. hydrogenation of the maleic anhydride into succinic acid 

(equ.1.2). 

This petrochemical process is commercially well established, but the overall yield 

is less than 40% and purity of succinate is relatively low, which makes the purification 

of succinic acid expensive. 

1.5 New routes to succinic acid 

The economic potential of succinic acid drives research interest towards finding 

new conversion pathways to produce succinic acid. Among them, conversion of different 

feedstocks to succinic acid is gaining much attention towards future research studies. 

Butane Maleic anhydride 

Succinic acid Maleic anhydide 

C
4
H

10
 + 7/2 O

2 + 4H2O CH   CO  O
CH   CO 

CH   CO  O 
CH   CO 

CH2   COOH 
CH2   COOH 

+ H2O + H2 
Pd, Pt, Ru/ 
Al2O3 

V2O3/Al2O3 

Partial oxidation of butane in fluidized bed catalytic reactor 

Hydrogenation of maleic hydride at 15 bar, 150°C, followed by intensive cooling 

(1.1) 

(1.2) 
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The feedstocks include glucose (equ. 1.3), glycerol (equ. 1.4), ethanol (equ. 1.5), and a 

mixture of glucose and ethanol (equ. 1.6). 

 

 

 

 

 

 

 

 

1.6 Succinic acid production by microbial fermentation 

The fermentative production of succinic acid has been most extensively 

investigated with several bacteria that are capable of producing large amounts of 

succinic acid. The bacteria include Basfia succiniciproducens, Actinobacillus 

succinogenes, Anaerobiospirillum succiniciproducens Mannheimia succiniciproducens, 

and recombinant Escherichia coli [23,24,25]. The microbial conversion of biomass into 

succinic acid presents an environmentally friendly and energy-saving process. 

1.7 Process schematic and description 

As shown in Figure 7, Succinic acid is mainly produced in three steps: conversion 

feedstock into reduced sugar (C5, C6 sugar), fermentation of reduced sugar into crude 

succinic acid, purification of crude succinic acid. 

First, the biomass feedstock is processed thorough sequential stages of pre-

treatment; mechanical, chemical, and biochemical type of treatment. In the mechanical 

method, milling reduces size of feedstock to increase surface area which in turn 

improves efficiency of pre-treatment. After milling, the feedstock is treated by chemical 

method where smaller size feedstock is mixed with chemicals (e.g. H2SO4, NaOH). This 

prepares the biomass to be fermentable by enzymes in the downstream process. The 

Glucose 
CH

2
O + 1/7 CO

2
  + 1/7 H2O (1.3) 

(1.4) 

Succinic acid 

8/7 CH
3/2

O  

Glycerol 
CH

8/3
O + 1/3 CO

2
  + 1/3 H2O 4/3 CH

3/2
O  

Ethanol 
CH

3
O

1/2
 + 5/7 CO

2
  + 3/14 H2O 12/7 CH

3/2
O   

Glucose  
¾ CH

2
O + CH

3
O

1/2
 + 3/4 CO

2
  2 CH

3/2
O + 1/2 CH

2
O + ¼ H

2
O   

Ethanol Acetic acid 

(1.5) 

(1.6) 
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enzymatic hydrolysis converts the biomass into reduced sugar (e.g. glucose, xylose, 

arabinose).  

Secondly, the reduced sugar is converted into succinic acid by an anaerobic or 

aerobic microorganism through fermentation process. Many naturally producing and 

genetically modified microbes have been extensively studied to ferment various 

agricultural biomass feedstocks (Appendix E). The crude succinic acid in fermentation 

broth contains many by-products and contaminants. In the final step, purification or 

separation stage separates pure succinic acid from the undesired components and 

contaminants.  



 

 

11 

 

 

 

Figure 7. Process flow scheme of biobased succinic acid production 
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1.8 Problem statement  

Although the cost of producing succinic acid by biological method is nearly 

competitive with petrochemical method, the biological method contributes almost half of 

world’s succinic acid production (Table 1). Considering potential application of the 

succinic acid in bulk chemical market, the market demand is expected to increase at a 

rate of fifteen times the current market demand by the year 2020. The projected market 

demand considers an optimistic scenario, because production cost of $1000 per ton has 

been considered, though the current production cost is much higher, $2940 per ton [9]. 

The current biological process still needs improvement to produce succinic acid around 

$1000 per ton of succinic acid. 

To decrease the production costs of biobased succinic acid, two different research 

areas were established [20]: 

The first research area is the improvement of upstream technology which refers the 

engineering of bacterial strains to enhance product yield, and selection of a suitable 

feedstock.  

The second research direction is the development of downstream technologies 

which deals with separation of succinic acid from the aqueous fermentation broth. The 

separation cost accounts for more than 50 % of the total cost of fermentative process. 

Several methods have been evaluated to identify cost-efficient purification method. No 

single method has yet proved to be simple and efficient. Improvement is still needed in 

key performance indicators notably, titre, yield, purity, and energy consumption. Careful 

consideration should be given to select a suitable purification method. 

A systemic approach is needed to synthesize possible production pathways from 

both upstream and downstream technologies of succinic acid production, and present an 

optimal production pathway. The pathway identifies the desired products, suitable 

feedstocks, and conversion technologies. 
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1.9 Research objective  

Objectives of this research work were established to address the problems 

identified in section 1.8. The objectives are summarised as follows, 

1. Determine optimal design of a biorefinery: Given a large number of potential 

biomass feedstocks and multi bioproducts, identify an optimal production 

configuration that meets certain objectives such as maximum profit, maximum 

yield, multi-feedstocks, minimal GHG and energy use, 

2. Identify a suitable biomass feedstock that can provide better TRY (titre, rate, 

yield) to produce succinic acid. It should also present a large, sustainable 

supply at an economical cost and release lesser Greenhouse gas emission 

(GHG) than fossil based technology, 

 3. Based on theoretical studies as listed above in objectives 1 and 2, perform an 

experiment to produce succinic acid with an aim of achieving maximum titre, 

rate, and yield. 
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1.10  Thesis outline  

Overall framework as shown in Figure 8 presents the thesis work-flow. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Thesis work-flow chart 

The biorefinery development starts with a question of “what products should we 

make?”. This question sums up overall objective of this thesis: identify the potential 

bioproduct that satisfies mainly two goals, 1. replacement of petroleum based product, 2. 

enabling biorefinery to achieve economic benefits.  Though focus is towards product, 

conversion technology has been tailored depending on the structural features of 

feedstock. Therefore, feedstock selection is also an integral part of product 

identification. 

Once potential products were identified, all possible production pathways will be 

integrated in a superstructure. The superstructure will be modelled and solved using 

numerical solver of an optimization software to generate an optimal pathway. Multiple 

optimal pathways can be generated depending on objective functions and constraints.     

Feedstock selection 
(Chapter 2, 4) 

Selection of fermentation 
medium/ operating condition             

(Chapter 4, 5) 

Numerical 
programming 
solver 
(Chapter 2) 

Superstructure development:              
- Finding potential profitable 
products, feedstocks and 
conversion technology                            
(Chapter 2,3,4) 

Process design objective:  
- Maximum Profit,                       
- Maximum Yield,                          
- Minimal GHG emission and   
energy use                            
(Chapter 2,3) 

Constraints:  
- Feedstock availability,               
- Product market demand,          
- Conversion,                                  
- Selectivity,                                   
- Multi-feedstock           
(Chapter 2,3,4) 

Feedstock ranking based 
on: 
- Feedstock cost,                   
- Feedstock availability,               
- Product yield,                        
- Product concentration,                                                                                  
(Chapter 4) 

Experimental validation 
(Chapter 5) 

Product selection 
(Chapter 2) 
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2. OPTIMAL DESIGN OF A BIOREFINERY 

Many production pathways are possible to produce bioproducts using different 

types of feedstocks and conversion technologies. To identify the optimal design of a 

biorefinery, a systematic approach as proposed by Pham and El-Halwagi [30] was 

followed.  

The first step in the approach is to develop a superstructure which will show all 

possible production pathways that contain the optimal one. Using the approach, a 

superstructure (Figure 9) was developed. In this step, potential bioproducts were selected 

based on market demand and price as explained in section 2.1. The biomass feedstocks 

were selected based on ranking criteria as described in section 3. Composition of 

feedstocks (Appendix A) is one of key factors in deciding the suitability of feedstock 

because percentage of cellulose and hemicellulose in biomass determines product yield. 

Various conversion technologies were identified from literature sources. Key reactions 

of the conversion technologies are listed in Appendix B. 

After developing the biorefinery configuration as shown in Figure 9, a 

mathematical programming model was formulated to simulate the biorefinery.  The 

model was optimized with certain objectives and constraints. As a result, an optimal 

design was found out, which typically consists of preferable products, a suitable 

feedstock, and optimal conversion technologies. The optimal design was then considered 

as design case for developing a flexible biorefinery model. The flexible design can 

process more than one type of biomass feedstock to generate different optimal pathways. 
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Figure 9. General representation of integrated biorefinery (refer Appendix B for description about conversion pathways) 
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2.1 Potential bioproducts 

US DOE screened 300 potential candidates and selected 12 chemicals (Table 3) 

using an iterative review process that is based on the building blocks of petrochemical 

method, chemical data, market data, properties, and the relevant industry experience of 

the team at PNNL and NREL [9]. 

EU selected ten products (Table 3) that are at least Technology Readiness Level 

(TRL) 5, with at least one EU developer has significant potential for market expansion 

[9]. Each product is selected after a detailed review about the bioproduct production 

process, the plants and partnerships involved in its production in EU and rest of world, 

the value proposition (production economics, greenhouse gas savings), and the expected 

market growth rate. 

Table 3. List of potential products identified by US DOE and EU 

Biobased chemicals-US DOE Biobased chemicals-EU 

1,4 succinic, fumaric and malic acids Acrylic acid 

2,5 furan dicarboxylic acid Adipic acid (ADA) 

3 hydroxy propionic acid 1,4 –Butanediol (BDO) 

aspartic acid Farnesene 

glucaric acid 2,5 furan dicarboxylic acid (FDCA) 

glutamic acid Isobutene 

Itaconic acid Poly hydroxy alkanoates (PHAs) 

Levulinic acid Poly ethylene (PE) 

3-hydroxybutyrolactone Polylactic acid (PLA) 

glycerol Succinic acid 

sorbitol  

xylitol/arabinitol  
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The superstructure (Figure 9) and Table 4 selected most of the bioproducts from 

the chemicals identified by US DOE and EU (Table 3). Few other bioproducts were 

referred from literature sources based on bioproduct market potential and commercial 

application status. Due to lack of information about production cost and conversion 

technology, a small number of potential chemicals were excluded from the study. 

Table 4. Biobased chemicals-this study 

Biobased products - this study 

 1,4 succinic acid xylitol 

Adipic acid Lactic acid 

2,5 furan dicarboxylic acid Methanol, Ethanol, Propanol, Butanol, pentanol, 
pentanediol 

3 hydroxy propionic acid Ethane, propane, butane, pentane, hexane, 
heptane, octane, nonane, decane 

glucaric acid Ethylene 

levulinic acid Acetone 

glycerol Gasoline 

sorbitol Biodiesel 

THFA  

2.2 Market analysis 

To assess market prices and volumes, a plot between price and market volume are 

presented in the Figure 10. 
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Figure 10. Market price and market volume 
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Figure 10 classifies the bioproducts as commodity, specialty and fine based on the 

market volume and price as shown in Table 5. 

Table 5 Classification of potential products [62] 

Chemicals Price($/tonne) Market size (Tonne/year) 

Fine >=10000 1 to 1000 

Speciality >=1000 and <=10000 >1000 

Commodity <=1000 >1 million 

This study targets the bioproducts that has high value greater than $1000/ tonne 

and significant market demand of greater than 1000 tonnes/year. Though fine chemicals 

have high value, its low market demand makes it less attractive. Commodity chemicals 

have large market size however, it has low value and its demand is generally disrupted 

by volatile oil price. Speciality chemicals provide the benefits that fine and commodity 

chemicals lack; high value of products and significant market volume. Therefore, 

speciality chemicals were selected in this study. Table 6 presents the market volume and 

price of the selected bioproducts in the order from highest to lowest market potential of 

the bioproducts.  

Table 6 indicates that high-demand bioproducts such as ethylene, p-xylene, adipic 

acid shows no production by biological method because bioprocessing technologies of 

the bioproducts have not yet attained commercial deployment status. Biobased succinic 

acid contributed almost 50% of world’s succinic acid demand in 2013, yet it requires a 

cost-effective technology to replace the remaining quantity that is currently produced 

from petrochemical method. Few other bioproducts such as Levulinic acid, sorbitol, and 

xylitol have already reached full potential; it replaced 100% of petroleum counterpart. 
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Table 6. Market demand of biobased products [9] 

Bio-products 
Price  

Current 
supply of 

Bioproduct 
Volume 

Total market 
volume  

(Fossil + bio-
based) 

Percentage of 
bioproduct in 
total market 

volume 

Potential demand of 
bioproduct in 

existing market  

($/t) (ktpa) (ktpa) % (ktpa) 

Ethylene 
1,300-
2,000 200 127000 0.2 126800 

p-xylene 1414 1.5 35,925 0.0 35,924 

Ethylene glycol 1300 425 28,000 1.5 27,575 

Iso-butene 1850 0.01 15,000 0.0 15,000 

Acetic acid 617 1,357 13,570 10.0 12,213 

Ethanol 815 71,310 76,677 93.0 5,367 

Acetone 1400 174 5,500 3.2 5,326 

Acrylic acid 2688 0.3 5,210 0.0 5,210 

Adipic acid 2150 0.001 3,019 0.0 3,019 

BDO 3000 3 2,500 0.1 2,497 

n-butanol 1890 590 3,000 19.7 2,410 

Isoprene 2000 0.02 850 0.0 850 

Isobutanol 1721 105 500 21.0 395 

Succinic acid 2940 38 76 50.0 38 

5-HMF 2655 0.02 0.1 99.0 0 

PDO 1760 128 128 98.4 0 

Lactic acid 1450 472 472 20.0 0 

3-HPA 1100 0.04 0.04 100.0 0 

FDCA 
NA 

high) 0.045 0.045 100.0 0 

Levulinic acid 6500 3 3 100.0 0 

Farnesene 5581 12 12.2 100.0 0 

PHAs 6500 17 17 100.0 0 

Itaconic acid 1900 41 41.4 100.0 0 

Algal lipids 1000 122 122 100.0 0 

Xylitol 3900 160 160 100.0 0 

Sorbitol 650 164 164 100.0 0 

Furfural 1000 700 700 100.0 0 
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2.3 Mathematical formulation for biorefinery model 

To identify an optimal process route out of all possible options as shown in 

superstructure (Figure 9), a non-linear programming (NLP) model was developed. The 

optimal process route either generate a maximum annual after-tax net profit (AANP) or 

produce a maximum product yield. 

 

 

 

 

 

 

Figure 11. Typical representation of biorefinery for mathematical formulation [63] 

Figure 11 exhibits that biomass feedstock f can be converted into intermediate 

product p via conversion pathway q with their respective flow rate, Fbio
fq . 

Pathways q 
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In Equation (2.1), Fbio

fq is the available total flow rate of biomass feedstock f. 

After the feedstock f is passing through the biomass conversion pathway q, intermediate 

product p is generated based on conversion rate of conversion pathway q, RI
fqp. This 

results a total intermediate production rate of Tinterp , as shown in Equation (2.2). 

 
Subsequently, the intermediate product p is then further converted to product p’ 

via conversion pathway q’. The total production rate of intermediate product Ts
Inter is 

split to all possible conversion pathway q’ with flow rate FII
pq’ can be represented by 

Equation (2.3). 

 
The total production rate of final product p’, T Prod

p’ can be calculated based on 

given conversion rate of conversion pathway q’, RII
pq’p’ by equation (2.4).  

 
By following Equation (2.1) – (2.4), the material balance of the biomass, 

intermediates and final products will be performed. Objective function of maximizing 

product yield is represented by following equation, 

Maximise T Prod
p'         

Other than maximising the product yield, maximizing annual after-tax net profit 

(AANP) can also be considered as one of objective functions in the biorefinery model.  

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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Maximise AANP,  

AANP is expressed as follows, 

 

Where AANP is the annualised after-tax net profit of biorefinery configuration, 

GPtotal is the gross profit, TAC is the total annualised cost, TACC is the total annualised 

capital cost, TAOC is the total annualised operating cost, CRF is the capital recovery 

factor, Cprod
p’ is the cost of product p’, Cbio

f is the cost of biomass feedstock f, Ccap
fq is 

the capital cost for the conversion of biomass feedstock b, CCap’
pq’ is the capital cost for 

the conversion of intermediate p, Copt
fq is the operating cost for the conversion of 

biomass feedstock f, C opt'
pq’ is the operating cost for the conversion of intermediate 

product p, Ccap
nq, Ccap

nq’ are the capital cost for nominal capacity of conversion 
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technology q and q’ respectively,  Fnq,  Fnq’are the nominal flowrate of conversion 

technology q, q’ respectively.    
Annual capital cost (AOC) and annual operating cost (AOC) for each conversion 

pathway are presented in Appendix B. Capital cost means fixed capital investment (FCI) 

for nominal capacity of each conversion technology. Sixth-tenth rule was applied to 

calculate capital cost for the predicted flow rate as determined by the simulation model. 

Following equation expresses the sixth-tenths factor,  

FCIB = FCIA*(CapacityB/ CapacityA)x,  

where exponent x is 0.7, FCIB is fixed capital investment for the predicted 

capacity, CapacityB,  FCIA is fixed capital investment for the nominal capacity, CapacityA 

of similar product. Market price of bioproducts and biomass feedstocks are presented in 

Appendix C. Values are based on current market condition.  

The simulation model uses financial parameters (Table 7) to determine annual 

after-tax net profit (AANP). The financial parameters were referred from Modified 

Accelerated Cost Recovery System (MACRS) of NREL [64]. 

Table 7. Basis and assumptions of the financial parameters 

 

Parameters Values 

Plant life 20 years 

General plant depreciation 10-year linear depreciation 

Salvage value no 

After-tax discount rate 10% 

Income tax rate 39% 

Subsidy No 

Operating period 8,000 hours per year 
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2.4 Case studies 

The simulation model was run for different case studies to obtain an optimal 

design. Three case studies were considered to analyze biorefinery model from different 

objective functions (Table 8).  

Table 8. List of case studies 

Case # Objective function Case description 

1 Maximum profit 

This case determines the production pathway that can generate 

a maximum profit, given the constraints; feedstock availability, 

product demand. 

2 
Maximum succinic 

acid yield 

Case study 2 screens all possible feedstocks and selects the 

feedstock that can produce a maximum quantity of succinic 

acid. 

3 

Maximum profit 

from processing 

multi-feedstocks 

This case selects the best combination of feedstocks that can 

generate a maximum profit. 

2.4.1 Case study 1: maximum profit for biorefinery production   

Case study 1 aims to maximize profit of a biorefinery. Current market demand of 

bioproduct and current worldwide availability of feedstock are the main constraints to 

achieve the objective. This scenario assesses the maximum revenue potential of 

bioproducts market. Based on the ranking of biomass feedstocks as described in section 

3, corn stover was placed at highest ranking, therefore corn stover was considered as 

best feedstock. Simulation model was run with corn stover as feedstock.  
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Solution of the model generates an annual net (after-tax) profit of $5.84 billion and 

favours the production of high value chemicals (succinic acid, acrylic acid, adipic acid, 

BDO) and commodity chemicals (ethanol, ethylene) as presented in Table 9.  

Table 9. Case study 1 (maximum profit) results 

Objective function: Annual (after-tax) net profit, Feedstock: Corn stover,                                               

Feed flowrate= feed availability, Product flowrate=Market demand of product 

Bioproducts Annual (after-tax) net profit 
Billion$/ annum 

NPV         
MM$ 

TAC            
Billion $/ annum 

High-value products:           

succinic, acrylic, adipic, glucaric, 

BDO,  

Commodity products:            

ethylene, ethanol 

5.84  785 10 

The resulting biorefinery configuration along with its net profit and conversion 

technology are shown in Figure 12.  
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Figure 12. Production pathway of case study 1 

The synthesis problem was formulated as a Non-Linear Program (NLP) and solved 

by using Sequential Linear Programming (SLP) solver option in optimization software 

LINGO (version 16). Once the program generated an optimal solution, an integer 

constant was added into the program to exclude the first optimal solution and to generate 

new solutions. The procedure was continued till obtaining all possible optimal solutions. 

The optimal solutions were then ranked from highest to lowest annual (after-tax) net 

profit and Net present value (NPV) as shown in Table 10. 
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Table 10. Sub-categories of case study 1 

Objective function: Annual (after-tax) net profit, Feedstock: Corn stover 

Feed flowrate= feed availability, Product flowrate=Market demand of product 

Rank 
# 

Product Annual (after-tax) 
net profit 

NPV 

MM$ 

TAC 

billion$/ 
annum 

Production 

million tonne/ annum  

1 acrylic, adipic, 
succinic, BDO 

4.6 billion$/ annum 734 5.6 5.2 (acrylic), 3 (adipic), 0.03 
BDO), 0.03 (succinic) 

2 Acrylic acid 2.9 billion$/ annum 380 3 5.2 

3 Adipic acid 1.6 billion$/ annum 340 2.5 3 

4 succinic, BDO 
ethanol 

1 billion$/ annum 64.5 0.05 0.03 (succinic), 0.03 (BDO), 
5.3 (ethanol) 

5 Ethanol, 
Ethylene 

1.25 billion$/ 
annum 

59 4.5 5.3 (ethanol), 5.3 (ethylene) 

6 Ethanol 1 billion$/ annum 46 0.05 5.3 (ethanol) 

7 BDO, succinic 49 MM$/annum 18.5 0.07 0.03 (succinic), 0.03 (BDO) 

8 Succinic acid 23 MM$/annum 13 0.05 0.04 

2.4.1.1 Assessment of technology development status 

The ranked bioproducts (Table 10) were further analysed from the view of 

commercial readiness of conversion technology. A key metric used to assess status of 

technology development is the TRL (Technology Readiness Level). TRL is a relative 

measure, introduced by NASA, to rank the maturity of developing technologies on a 

scale of 1 to 9. TRL 1 represents the basic research on an invention or concept, TRL 5 to 

pilot scale testing, TRL 7 to at pre-commercial scale testing, while TRL 8 corresponds to 

full commercial application of technology [9]. TRL status of various biobased products 

are shown in Figure 13.  
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Figure 13. Commercialization status of priority based bioproducts [9] 

Out of all bioproducts considered in this study, succinic acid technology has 

reached the TRL of 8; commercially proven technology. Acrylic acid, adipic acid and 

BDO have yet to develop into a commercially deployable technology. Though the high 

value chemicals such as sorbitol, xylitol, Itaconic acid have achieved TRL 9, no 

additional production is required because the bio based products have already replaced 

petrochemical equivalents.  

2.4.1.2 Results and discussions 

Because of less total annualised cost (TAC) and higher net profit, high value 

chemicals are favourable than commodity products. Within production economics of 

high value products, succinic acid is most attractive product because of commercial 

readiness of its conversion technology. Production of BDO via succinic acid expands the 

current demand of succinic acid. Significant market demand in existing as well as future 
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market condition necessitate finding a cost-effective production method in competitive 

with fossil based method. Cost of succinic acid production by different feedstocks is 

listed in Table 11. Currently, biological method ($2940/ton succinic acid) using corn 

based sugar as feedstock is nearly competitive with petrochemical method ($2860/ ton). 

Based on conceptual study, lignocellulosic produces succinic acid at a much lesser cost 

than starch (corn) based or fossil based feedstock. 

Table 11. Succinic acid value per lb of succinic acid 

Feedstock Technology Cost, $/ lb SA Cost, $/ ton SA 

Butane Petrochemical 1.3 2860 

Corn Biological 1.3 2940 

Corn stover Biological 0.8 1780 

2.4.2 Case study 2: maximum yield for production of succinic acid  

Objective of this case study is to select a technological pathway that will maximize 

succinic acid yield. Feedstocks are shown in superstructure (Figure 9). The feed rate was 

taken from worldwide availability of feedstock. Appendix B lists the key reactions 

involved in the conversion technology. 

The synthesis problem was formulated as a Non-Linear Program(NLP) and solved 

by using Sequential Linear Programming solver (SLP) option in the optimization 

software LINGO (version 16). Once a maximum yield for one type of biomass was 

obtained, an integer cut was added to exclude the first optimal solution and to generate 

another one. This process was repeated for each type of feedstock to produce succinic 

acid.  

Top three optimal pathways (Figure 14) were selected from all possible options 

generated by the simulation model. The top-three feedstocks are corn stover, rapeseed 
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and bakery waste. Among them, bakery waste produced highest succinic acid yield as 

shown in Table 12. 

 (a)   (b)           (c)                         
 

 
 

                      
 
 
 
 
 

 

Figure 14. Case study 2: production pathway for a maximum yield, (a) when the feedstock is mixed food 
waste, (b) corn stover, (c) rapeseed. 

Table 12. Case study 2 results - maximum yield of succinic acid 

Objective function: Maximum yield of succinic acid,  

Feed flowrate= feed availability 

Rank # Feed Product 
Production 

(million tonne/annum) 

1 Bakery waste Succinic acid 880 

2 Corn stover Succinic acid 391 

3 Rapeseed Succinic acid 0.6 
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2.4.2.1 Results and discussions 

Bakery waste or food waste showed highest availability among all other possible 

feedstocks such as corn stover, rapeseed, wheat straw, rice straw, sugarcane bagasse. 

Because of enormous availability, food waste can produce a maximum quantity of 

succinic acid. The technology of converting food waste into succinic acid was tested on 

a lab scale [65]. Collection and segregation of food waste are major drawbacks, 

preventing the technology to reach commercial status. Research studies should focus on 

improving supply chain of food waste and performance of conversion technology.   

2.4.3 Development of a flexible biorefinery   

To maximize usefulness of a biorefinery and minimize the total annualised cost, 

the process design should include all possible sources of uncertainty such as variation in 

availability, cost, price, composition, and environmental impact of the feedstock. A 

flexible plant should be capable to process a variety of feedstocks in a way that promotes 

sustainability and profitability. To accomplish this, case study 3 was considered. Case 

study 3 can answer the following question, 

Should feedstocks be processed as a single feedstock or multi-feedstocks? 

Case study 3 can also be explained as follows, 

Given a design case which can handle only a single feedstock (corn stover), design 

a flexible case to process different combinations of feedstocks without compromising 

production rate and profit.  

Table 13 shows composition of the feedstocks, considered in this case. Cellulose, 

hemicellulose, and lignin are main components in the feedstock. 
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Table 13. Composition of feedstocks 

Component Formula MW 
(g/gmol) 

Composition (%) 

Corn stover Wheat 
straw 

Rice straw Sugarcane 
bagasse 

Cellulose C6H10O5 162.14 37.73 36 32 38 

Hemicellulose C5H8O4 132.12 26 25 24 27 

Lignin C8H8O3 152.15 19.24 15 18 18 

Ash - - 3.79 - - - 

Other solids C8H8O3 152.15 13.24 - - - 

2.4.3.1 Case study 3: maximum profit from processing a single feedstock 

Firstly, the problem was formulated using optimization software with the objective 

of maximizing the profit for a single feedstock. This problem takes into one type of 

biomass feedstock and determines the annual after-tax net profit. 

Based on simulation results, feedstocks were ranked from highest to lowest net 

profit (Table 14 and Figure 15). Corn stover generated a maximum profit of $ 5.8 billion 

as compared to other feedstocks. The single feedstock scenario selects succinic acid and 

BDO as optimal products as shown in Figure 16.  

Ammonia explosion converts cellulose and hemicellulose in biomass into reducing 

sugar which is then converted into succinic acid by anaerobic fermentation. Catalytic 

hydrogenation of succinic acid produces BDO. 
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Table 14. Results of case study 3 - single feedstock scenario  

Objective function: maximum Annual (after-tax) net profit                                                                      

Feed flowrate = 10000 tonnes/ annum, Product flowrate = market demand of product 

Rank 
# 

Feed Product Annual (After-tax) 
net profit, MM $ 

NPV 

MM$ 

TAC 

Billion $/ annum 

1 Corn stover succinic, BDO 17.6 2.5 17.7 

2 Sugarcane bagasse succinic, BDO 11 1.7 11 

3 rice straw succinic, BDO 9.5 1.6 9.5 

4 wheat straw succinic, BDO 9.3 1.5 9.4 
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Figure 15. Single feedstock scenario for maximum profit 
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Figure 16. Production pathway for a single feedstock scenario 

The scope of optimization study was extended to all possible combinations: a 

mixture of two and three types of biomass feedstocks.  

2.4.3.2 Case study 3: maximum profit from processing a mixture of two 

feedstocks 

Optimal two-feedstock mixture was found to be a mixture of corn stover and 

sugarcane bagasse (Table 15 and Figure 17). The optimal mixture showed a maximum 

profit of 38 million$/ annum among other possible options. BDO, succinic acid, ethanol 

and ethylene were the optimal products.  

Production pathway of two-feedstock mixture is shown in Figure 18. The pathway 

is different from a single feedstock scenario. Ammonia explosion converts cellulose and 

hemicellulose in biomass into reducing sugar which is then converted into succinic acid 

and ethanol. Anaerobic fermentation converts reduced sugar into succinic acid. Catalytic 

hydrogenation of succinic acid produces BDO.  

Mixed culture fermentation is applied to convert the reduced sugar into ethanol via 

acid fermentation and ketonisation. Catalytic hydrogenation of ethanol produces 

Pathway 
# Conversion technologies 

11a Ammonia explosion + 
enzymatic - corn stover 

11c Steam explosion + enzyme- 
wheat straw 

11d Aqueous ammonia-rice straw 
11e Lime + enzymatic-sugarcane 

bagasse 

Biomass 

Lignin, Sugar 

Sugar Succinic acid 

milling 
 

11a/ 11c/ 11d/ 11e 

 

42  
Fermentation 

                            20b 
Organosolv separation  

Maximum profit case: 
Sugarcane bagasse (a) or Cornstover (b) or rice straw (c) or wheat straw (d) 

BDO 

Hydrogenation 
35  
 



 

37 

 

ethylene. In case of less feed rate, say 30,000 tons/ annum, mixed culture fermentation is 

the optimal process for ethanol production, whereas feed rate of much higher than 

30,000 tons/ annum, yeast fermentation is the optimal conversion technology.  

Table 15. Case study 3 - feedstock as a mixture of two types feedstocks 

Objective function: maximum Annual (after-tax) net profit                                                                    
Feed flowrate for each type of biomass = 10000 tonnes/annum, Product flowrate as determined by 
simulation 

Rank 
# 

Feed Product Annual (After-tax) 
net profit, MM $ 

NPV 
MM $ 

TAC 
MM $/ 
annum 

1 C + S BDO, succinic acid, ethanol, ethylene 29 5.85 46.2 

2 C + R BDO, succinic acid, ethanol, ethylene 27 5.6 43.7 

3 C + W BDO, succinic acid, ethanol, ethylene 27 5.6 43.4 

4 R + S BDO, succinic acid, ethanol, ethylene 20 4.6 33 

5 W + R BDO, succinic acid, ethanol, ethylene 19 4.3 30 

C- Corn stover, W- wheat straw, R- rice straw, S- Sugarcane bagasse 
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Figure 17. Maximum profit for a mixture of two types feedstocks 
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Figure 18. Production pathway for two-feedstocks scenario 

2.4.3.3 Case study 3: maximum profit from processing a mixture of three 

feedstocks 

In case of three-feedstocks mixture, a combination of corn stover, rice straw and 

sugarcane bagasse was found to be the optimal mixture, generating a maximum profit of 

38 million$/ annum (Table 16 and Figure 19). BDO, succinic acid, ethanol and ethylene 

were the optimal products. Production pathway is same as that of two-type feedstocks as 

shown in Figure 18. 
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42 Fermentation 
 

Biomass 

Lignin, Sugar 

Sugar 

Succinic acid Carboxylate 
salts 

milling 

 

Pretreatment 
11a/ 11c/ 11d/ 11e 

                            20b 
Organosolv separation  

Maximum profit case: 
Mixture of two feedstocks from Sugarcane bagasse, Corn stover, rice straw, wheat straw  

BDO 

35  Hydrogenation 

Ethylene 

Ketone Ethanol 

16 Mixed culture 
fermentation 
 

63 
 Ketonization 

Hydrogenation   
64  
 

36   Catalytic  
        dehydration 



 

39 

 

Table 16. Case study 3 -  feedstock as a mixture of three types of biomass  

Objective function: maximum Annual (after-tax) net profit                                                                
Feed flowrate for each type of biomass = 10000 tonnes/annum, Product flowrate as determined by 
simulation 

Rank 
# 

Feed Product Annual (After-tax) 
net profit, MM $ 

NPV 

MM $ 

TAC 

MM $/ 
annum 

1 C + R + S BDO, succinic acid, 
ethanol, ethylene 38 4.3 38.2 

2 C + W + S BDO, succinic acid, 
ethanol, ethylene 

38 4.3 38.1 

3 C + W + R BDO, succinic acid, 
ethanol, ethylene 36 

4.2 36.5 

4 R + W + S BDO, succinic acid, 
ethanol, ethylene 30 3.5 30 

C- corn stover, W- wheat straw, R- rice straw, S- sugarcane bagasse 
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Figure 19. Maximum profit for a mixture of three types feedstocks 
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2.4.3.4 Results and discussions 

Based on the simulation results of multi-feedstock studies, feedstocks can be 

prioritised in an order from highly preferable to less favourable feedstock as follows,  

- Corn stover, 

- Sugarcane bagasse 

- Rice straw 

- Wheat straw 

This sort of prioritisation would allow us to select suitable feedstock for succinic 

acid production.  

Bioproducts can also be prioritised within the list of most selective products. 

While performing optimization, simulation solver first selects succinic acid and BDO as 

optimal products to generate a maximum profit. If excess feedstocks are available, other 

high value bioproducts are selected. Based on simulation results, the bioproducts can be 

ordered from highly favourable to less promising bioproducts as follows, succinic acid, 

BDO, acrylic acid, ethanol, ethylene, adipic acid. 

2.4.4 Analysis of Greenhouse Gas (GHG) emissions and energy use 

In addition to economic benefit, biobased chemicals offer environmental 

advantage by means of reducing greenhouse gas (GHG) emissions and fossil energy use 

as compared to petrochemicals. To assess the environmental benefits, this analysis 

studied the GHG emission and energy use of the biobased chemicals as selected in this 

study (Table 4).  

2.4.4.1 Method 

Matthew et al [66] summarised the values of GHG and energy use of 

petrochemicals from a detailed review on LCAs of biobased products [66, 67], which 

forms the basis for this study. Most of LCA studies estimated the values from different 

literature sources: Renewable Fuels Standard (RFS2) program, Roundtable on 
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Sustainable Biomaterials (RSB) and the International Sustainability & Carbon 

Certification (ISCC) [66, 67]. 

Generally, energy use and GHG emission values are estimated per 1 lb of target 

product. Energy use is typically expressed in following metrics: non-renewable energy 

use (NREU), fossil fuel input and cumulative energy demand (CED). Values of GHG 

emissions and net energy use were taken from research studies [66,67]. All results are 

presented as the relative difference between biobased chemical and petrochemical 

equivalents rather than as absolute value.   

2.4.4.2 GHG emission   

GHG emission of the biobased products were plotted as percentage change in 

GHG in relative to petrochemical method. As shown in Figure 20, the relative GHG 

emissions varies from a 371% increase for p-xylene production to a 177% decrease in 

emissions for poly hydroxy butyrate (PHB) production, when compared with their 

petroleum based equivalents. PHB shows highest GHG emission reduction and the 

second highest GHG emission reduction occurs in succinic acid production (87% 

decrease).  
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2.4.4.3 Energy use 

Relative difference between energy-use values of biobased and fossil-based 

chemicals were plotted in Figure 21. Energy use was measured in terms of amount of 

energy in MJ consumed to produce 1 lb of target product. As shown in Figure 21, PHB, 

xylitol and styrene have the highest reduction in energy consumption (>85%). Succinic 

acid shows significant (>50%) reduction in energy use.  
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Figure 21. Percentage change in energy use 

2.4.4.4 Results and discussions 

Succinic acid shows higher percentage reduction in GHG and energy use as 

compared to petrochemical equivalent. 
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2.4.5 Evaluation of optimal design of succinic acid production  

After a detailed literature study on succinic acid production, an optimal pathway 

was selected. The pathway was then given as input to the simulation model of 

biorefinery.  

A systematic approach was followed to find the optimal pathway. Problem in this 

case is explained as follows: Given several potential biomass feedstocks and a desired 

product as succinic acid, find an optimal process that meets the objective functions: 

maximum yield, higher production concentration, maximum production rate, minimal 

cost of production. This task requires to find out the efficient pretretment technology, 

productive microorganism and product separation method as shown in Figure 22. 
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Figure 22. Problem statement for finding optimal pathway 
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2.4.5.1 Methodology and results 

All possible production pathways were integrated in a superstructure (Figure 23). 

With reference to literature studies, the production pathways were screened to eliminate 

the pathways that reported low product yield, higher cost of production, less production 

rate, and less availability of feedstocks. 

Main purpose of the screening is to select the suitable feedstock, pretreatment 

technology, microbe, fermentation medium and product separation method from all 

available alternatives.  

Biomass feedstock and its sugar yield for various pretreatment technologies were 

tabulated in Appendix D, Table 29. Advantages and disadvantages of each pretereatment 

technology were presented in Appendix D, Table 30. 

Various bacteria and its performance characteristics (yield, product concentration, 

production rate) on different feedstocks were shown in Appendix E. 

Based on the data collection, reaction path that reported higher yield on multiple 

experiments was selected as best production pathway. The optimal pathway was found 

out for each biomass feedstock as displayed in Figure 24.  
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Figure 23. Superstructure of succinic acid production 
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Figure 24. Optimal production pathway for succinic acid production 
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3.   IDENTIFICATION OF A SUITABLE FEEDSTOCK FOR SUCCINIC ACID 

PRODUCTION 

3.1 Selection of a suitable feedstock  

Findings from biorefinery modelling indicates that corn stover is the suitable 

feedstock to produce succinic acid. Along with the modelling, an evaluation matrix was 

developed to identify best feedstock to produce succinic acid. 

The evaluation matrix assigned weightage to key performance parameters of 

feedstock. The key performance parameters were identified as feedstock availability, 

feedstock cost, product yield and product concentration [26].  

Feedstocks were compared in terms of the key performance factors. Each factor 

was assigned with a percentage weight (Table 17), so that each weight adds up to 100%. 

The feedstock cost and succinic acid yield directly influence the production cost of 

succinic acid, therefore they were given high weightage of forty and thirty percentage 

respectively whereas, feedstock availability and succinic acid concentration were 

considered as secondary criteria and assigned with twenty and ten percentage 

respectively. The total weightage expresses the level of feasibility that the biomass offers 

for industrial production of succinic acid.  

Table 17. Summary of weightage assigned to each critical factor 

 Critical factors 

Cost of feedstock yield concentration availability total 
weightage 

weightage of 
Factor  

40 30 10 20 100 
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The key performance parameters are defined as follows,  

 

 

 

 

 

 

Information about the key performance parameters were collected from various 

literature sources (Table 18). Based on the data collection, each key parameter was 

quantified using the weightage as shown in Table 17 and the parameter equations (3.1), 

(3.2), (3.3), (3.4). The total weightage was calculated for each feedstock as shown in last 

column of Table 19 and Table 20. Feedstock that has maximum total weightage is the 

most preferable feedstock. Feedstocks were positioned from highest to lowest rank based 

on the total weightage. Ranking of feedstock was done for two scenarios: worldwide 

availability of feedstock (Table 19) and feedstock availability in the USA (Table 20).  

                     yield of biomass x 40                                                                (3.2)  
                     highest yield of biomass  Yield  = 

 availability of biomass x 20                                                    (3.3)        
highest availability of biomass  

Availability  = 

concentration of product  x 10                                                 (3.4)         
highest concentration achieved  

Concentration  = 

                       (highest cost of biomass - cost of biomass per ton) x 40             (3.1) 
                  highest cost of biomass - lowest cost of biomass Cost  = 
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Table 18. Cost, yield, and availability of biomass as reported in literature [24] 

biomass 
cost of raw 
material ($ 

tonne−1) 
ref yield (g 

g−1) ref U.S./World availability 
(million tonnes y−1) ref 

corn stover/ straw 40 26 0.81 23 24/ 1015 26 

corn core/cob 40 31 0.89 23 0.8/ 84 26 

Glycerol* 219.5 55 1.33 34 0.6/ 600 35 

wheat straw  60 39  0.74  23 8/915  38,40 

cotton straw 38 41 1.23 42 3.7/ 107 43 

Rice straw 40 26 0.63 23 4.3/ 800 26,44 

rapeseed meal 324  
0.12 

(SSF)  4.9 /30.8 39 

waste bread 60  1.16  10.7/na 52 

sugar cane bagasse 23  0.89  4/73.6 26 

sugar cane molasses 140  0.96  1/56 26 

soybean meal 345  0.64  45/ 151.6 80 

wood (oak) 
hydrolysate 65  0.88  0.04/na 26 

sake lees  na  0.59  na  

food waste 0 52 0.22 51 63/ 1600 52 

switch grass 40  na  83.5/ na 53 

willow or hybrid 
poplar 40  na  61.32/ na 53 

na: not available. Number in bold indicates the highest or lowest value. 

 *U.S. Biodiesel annual production = 1.2 billion gallons. Biodiesel production will generate about 10% 
(w/w) glycerol as the main by-product. Thus, every gallon of biodiesel produced generates approximately 
1.05 pounds (0.5 kg) of glycerol. This indicates a 1.2 billion of biodiesel will generate 0.6 million ton of 
glycerine per year. 
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Table 19. Ranking of feedstocks based on biomass availability in the world 

Ranking biomass 
Scores for 

cost  
(per 40) 

Scores for 
yield  

(per 30) 

Scores for 
concentration 

(per 10) 

Scores for 
availability 

(per20) 
Total 

1 corn stover/ straw 35.4 12.2 9.6 20.0 77.1 

2 Glycerol 17.3 40 0.9 11.8 70 

3 wheat straw  33.0 11.1 3.6 18.0 65.8 

4 Rice straw 35.4 9.5 3.4 15.8 64.0 

5 sugar cane bagasse 37.3 13.4 7.5 1.5 59.7 

6 waste bread 33.0 17.4 9.0 0.0 59.5 

7 cotton straw 35.6 18.5 3.0 2.1 59.2 

8 corn core/cob 35.4 13.4 6.1 1.7 56.5 

9 wood (oak) hydrolysate 32.5 13.2 4.6 na 50.3 

10 food waste 40.0 3.3 5.7 na 49.0 

11 sugar cane molasses 23.8 14.4 8.9 1.1 48.2 

12 Glycerol 14.6 20.0 0.9 11.8 47.3 

13 switch grass 35.4 na na na 35.4 

14 willow or hybrid poplar 35.4 na na na 35.4 

15 sake lees  na 8.9 10.0 na 18.9 

16 soybean meal 0.0 9.6 2.1 3.0 14.8 

17 rapeseed meal 2.4 1.8 3.0 0.6 7.8 

As shown in Table 19, corn stover was placed at highest ranking as compared to 

all other feedstocks available in the world. This indicates that corn stover is best 

feedstock because of its less expensive cost, abundant availability, and higher yield. 

Corn stover was therefore selected for experiments on succinic acid production. 

Glycerol was ranked next to corn stover, although glycerol is expensive feedstock 

($219.5/ton). Glycerol does not require any pre-treatment technology and is highly 

available biomass. In addition, research experiments reported highest yield (1.33 g/ g) of 
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succinic acid using glycerol as feedstock. Other promising biomass feedstocks are cotton 

stalk (rank 3), wheat straw (rank 4), rice straw (rank 5). 

Table 20. Ranking of feedstocks based on biomass availability in the U.S.A  

Ranking biomass 
Scores 
for cost 
(per 40) 

Scores 
for yield 
(per 30) 

Scores for 
concentration 

(per 10) 

Scores for 
availability 

(per20) 
Total 

1 waste bread 33.0 26.2 9.0 3.4 71.6 

2 food waste 40.0 5.0 5.7 20.0 70.7 

3 cotton straw 35.6 27.7 3.0 1.2 67.5 

4 sugar cane bagasse 37.3 20.1 7.5 1.3 66.2 

5 corn stover/ straw 35.4 12.2 9.6 7.6 64.8 

6 switch grass 35.4 na na 26.5 61.9 

7 corn core/cob 35.4 20.1 6.1 0.3 61.8 

8 wood (oak) hydrolysate 32.5 19.8 4.6 0.0 56.9 

9 wheat straw  33.0 16.7 3.6 2.5 55.9 

10 willow or hybrid poplar 35.4 na na 19.5 54.8 

11 sugar cane molasses 23.8 21.7 8.9 0.3 54.6 

12 Rice straw 35.4 14.2 3.4 1.4 54.3 

13 Glycerol 14.6 30.0 0.9 0.2 45.7 

14 soybean meal 0.0 14.4 2.1 14.3 30.9 

15 sake lees  na 13.3 10.0 na 23.3 

16 rapeseed meal 2.4 2.7 3.0 1.6 9.7 

The ranking is different in case of biomass availability in the USA (Table 20); 

bakery waste was ranked first and food waste was the second preferable feedstock. 
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4.  EXPERIMENTAL STUDY OF SUCCINIC ACID PRODUCTION 

Based on simulation findings, an experimental set up was designed. As shown in 

Figure 22, the experimental design identifies the following: suitable feedstock, 

pretreatment technology, bacterium, fermentation medium, operating condition, and 

product separation method. 

4.1 Materials and methods for pretreatment process 

4.1.1 Raw material 

Samples of corn stover were obtained from Texas A&M AgriLife, the agriculture 

college at Texas A&M University. The corn stover was then washed with water to 

remove dirt particles. The washed corn stover was then dried with air and convection 

oven till the moisture content remains constant. It was stored in air-tight container to 

maintain constant moisture, and to reduce air contact.  The samples were grounded in a 

Wiley mill to obtain an average particle size of 20 mesh screen. By ensuring uniform 

particle size, performance of pretreatment was maintained. 

4.1.2 Selection of pretreatment method 

Key factors that guide the selection of pretreatment method include feedstock 

composition, sugar yield, inhibitor formation, technology cost, commercial readiness 

level, environmental impact of pretreatment technology. Based on literature survey as 

tabulated in Appendix D Table 29, dilute acid treatment, ammonia explosion and steam 

explosion seem to be the efficient and cost-effective methods. As listed in Appendix D, 

Table 30, steam explosion has many advantages: low cost, maximum glucose yield, low 

environmental impact, commercial application status. Considering equipment 

availability in the lab, this experimental work selected ultrasonic and dilute sulphuric 

acid(H2SO4) treatment. Biomass will first be treated with ultrasonic method, followed by 

dilute acid (H2SO4) treatment. 
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4.1.3  Enzymes 

Once mechanical pretreatment is complete with ultrasonic and dilute acid method, 

the hydrolysate will then be fermented with hydrolytic enzymes. The enzymes were 

provided by Genencor International. This enzyme consists of two types of commercial 

enzymes; Accellerase 1500 a cellulases complex and Accellerase XY a hemicellulases 

enzyme complex, both produced from genetically modified strains of Trichoderma 

reesei. As indicated by enzyme supplier, Accellerase 1500 provides endoglucanase 

Activity and Beta-Glucosidase Activity, while Accellerase XY presents xylanase 

activity. 

4.1.4 Hydrolysate preparation  

In this experiment, three different pretreatments (ultrasonication, dilute acid and 

enzymatic hydrolysis) were used to convert biomass to reduced sugar, mainly glucose 

and xylose. Corn stover solids were added in to a 2% dilute sulphuric acid at a loading 

rate of 10 gm corn stover per 100 gm of solution. The mixture was subject to 

ultrasonication using an ultrasonicator at 100 kHz for 30 minutes. Once the ultrasonic 

process was done, the treated biomass was heated in a hot air convection oven at 120°C 

for 45 minutes. After the acid treatment was complete, the biomass was washed with 

water until pH of filtrate reached above 4.5. As per enzyme-provider recommendation, 

the successive, enzymatic treatment generally exhibits better performance at a pH 

between 4.5 and 7.  

The acid-treated biomass was then reacted with hydrolytic enzymes (Accellerase 

1500, and Accellerase XY). These enzymatic reactions took place in 250 mL 

Erlenmeyer flasks with ACCELLERASE® 1500 dosage rate of 0.3 mL per gram 

cellulose + ACCELLERASE® XY enzyme dosage rate of 0.10 mL per gram cellulose. 

10 mL solution of 50 mM sodium acetate buffer was added to maintain pH of 5. The 

mixture was heated in a digital hot plate stirrer at 50°C. Stirrer speed, 100 rpm was 

maintained to ensure thorough mixing.  
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During enzymatic hydrolysis, samples were taken on a regular time interval. The 

samples were centrifuged at 10,000 rpm for 5 min. Using 0.5 µm hydrophilic PTFE 

syringe filters, the supernatant was filtered. This filtrate was analysed using high 

performance liquid chromatography for sugar content such as glucose, xylose, mannose, 

arabinose, galactose and cellobiose. 

The efficiency of pretereatment was measured by comparing total sugar yield 

before and after enzymatic hydrolysis. The total sugar yield represents mainly glucose 

and xylose formation. To perform the calculation, following equation [71] was used, 

 % total sugar (xylose + glucose) yield = [(c x V)/ (w x Cf] 100%, where, 

c is the concentration (g/L) of total sugars (glucose+xylose) in the hydrolysed 

sample, as determined by HPLC,  

V is the total volume (L) of hydrolysate,  

w is the initial weight (g) of glucose and xylose, determined by NREL 

protocol [64] 

Cf is the correction factor to account for addition of water molecules to the 

anhydroglucose residues in cellulose or hemicellulose (Cf is 1.11 for 

glucan and 1.14 for xylan and arabinan). 

After the pretreatment step was done, the corn stover hydrolysate was used as 

substrate for successive fermentation to produce succinic acid. 

4.2 Materials and methods for fermentation process  

4.2.1 Selection of microorganism  

Several succinic-producing microorganisms were screened to identify the most 

efficient one. Actinobacillus succinogenes has many salient features, including the 

following; fermentation capability to process a broad range of biomass based sugars 

such as arabinose, cellobiose, fructose. Also, the bacterium has good tolerance to a high 

concentration of glucose, high acid concentration. The bacterium reported a higher yield 

of 80 gm succinic acid/100gm of glucose [55, 56, 57]. 
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Many researchers have experimented with several other native and engineered 

bacteria using biomass hydrolysates (Appendix E). However, less number of research 

studies have reported for a bacterium, Basfia succiniciproducens, despite its promising 

features. 

Of the natural SA producing bacteria, Basfia succiniciproducens was isolated in 

2008 from bovine rumen [56]. B.succiniciproducens is a member of the Pasteurellaceae 

family and is characterized as non-pathogenic, gram-negative, facultative anaerobic, and 

capnophilic. For this experimental work, B.succiniciproducens was selected to ferment 

biomass hydrolysate with a future goal of engineering the strain to enhance SA 

production.  

4.2.1.1 Metabolic network of native B. succiniciproducens 

Metabolic pathway of B.succiniciproducens is comprised glycolysis, pentose 

phosphate pathway (PPP), tricarboxylic acid (TCA), Entner–Doudoroff pathway (EDP), 

cycle, anaplerotic carboxylation and decarboxylation, fermentation pathways, and 

anabolic pathway. Most natural producing bacteria synthesis succinic acid using a partial 

Tri-Carboxylic Acid (TCP) cycle. TCP carboxylates phosphoenolpyruvate (PEP) into 

succinic acid routes as shown in Figure 25. 

Glycolysis [61]: 

As listed in Table 21, Glucose is phosphorylated into glucose-6-phospate (G6P) 

with the action of a permease enzyme. G6P is further catabolized to 

phosphoenolpyruvate (PEP) through the glycolytic pathway. Phosphoenolpyruvate 

(PEP) produces succinate and other by-products through TCA cycle. 

Table 21. Chemical reactions of glycolysis 

GLC+ATP → G6P 1,3PG↔3PG + ATP 
F6P↔G6P 3PG↔2PG 
F6P+ATP→F1,6P 2PG↔PEP 
F1,6P↔DHAP+GA3P PEP↔PYR +ATP 
DHAP↔GA3P  
GA3P↔1,3PG+NADH +ATP  
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Figure 25. Metabolic network analysis of B.Succiniciproducens  [61] (Thicker arrows indicate higher flux, 
while dashed arrows indicate less or zero flux) 

TCA cycle [61]: 

PEP can take either C4 pathway to produce succinate via oxyloacetate, malate, 

fumarate or C3 pathway to produce formate, acetate and ethanol depending CO2 level 

(Table 22). In case of ample quantity of CO2, PEP takes C4 pathway; PEP consumes 

CO2 to produce succinate and ATP with action of enzyme, called PEP carboxykinase. 
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Gibbs energy of the reaction is 5.6 kJ mol-1. If there is not enough CO2, PEP prefers C3 

pathway. 

Table 22. Chemical reactions of TCA cycle 

TCA Cycle 

C4 pathway to Succinate 
(Reductive pathway) 

C3 Pathway to byproducts                                                     
(Oxidative pathway) 

PEP+CO2↔OAA+ATP 

OAA→PYR+CO2 

OAA+NADH↔MAL 

MAL→PYR+NADPH+CO2 

MAL↔FUM 

FUM+NADH+2/3 ATP↔SUC 

PEP↔PYR +ATP 

PYR→AcCoA+ NADH +FOR 

AcCoA→ACE +ATP 

AcCoA+2NADH→ETH 

ADP + GLC → 1.0 ATP + 2.0 LAC 

3.0 ADP + GLC + 2.0 NAD →2.0 AC + 3.0 ATP + 2.0 FOR + 2.0 
NADH 

3.0 ADP + GLC + 4.0 NAD → 2.0 AC + 3.0 ATP + 2.0 CO2 + 
4.0 NADH 

Xylose Catabolism: 

Xyl+ATP→X5P 

X5P↔RU5P 

 

Biomass formation:  

13.49NADPH + 0.00041G6P + 0.000126F6P + 0.000686R5P + 0.000099G3P + 0.0013703PG + 

0.000528pep + 0.002764Pyr + 0.003006AcCoA' + 0.001502OAA + 0.046930ATP → Bio + 

0.002727NADH 
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Redox reaction: 

Theoretically, 1.71 mol of succinic acid can be produced from the fixation of 1 

mol of CO2 and 1 mol of glucose or 1 mol of glycerol. 2 moles of NADH are oxidised 

through the reductive pathway of the TCA cycle during conversion of OAA to succinate 

via malate and fumarate. One mole of NADH is produced within the reductive pathway, 

but remaining one should be supplied by other parts of the metabolism such as 

glycolysis, C3 pathway. Because C4 pathway requires one mole of nicotinamide adenine 

dinucleotide (NADH), the pathway is referred as reducing branch. An oxidative branch 

in C3 pathway (pyruvate to acetyl CoA) supplies additional one mole of NADH to C4 

pathway to maintain cell’s redox.  

In addition to succinic acid, TCA cycle produces by-products: lactic acid (LA), 

formic acid (FA), and acetic acid (AA). The theoretical yield cannot be achieved due to 

biomass and by-product formation.  

Theoretically, ∼1.71 mol (1.12 gm/ gm glucose) succinate can be produced per 

mol glucose (plus CO2), based on stochiometric balance (equation 4.1): 

C6H12O6 + 0.86 HCO3
- à 1.71 (CH2)2(CO2)2

2− +1.74 H2O +2.58 H+                         (4.1) 

 (Glucose)     (succinate)         ΔGHo’ = -173 kJ/mol 
    
CO2 + H20 à HCO3

-  + H+          (4.2) 

Carbonic anhydrase, which is found within bacterium, converts CO2 and water 

into carbonic acid. Carbonic acid is dissociated into protons, and bicarbonate ions 

(equation 4.2). 

In the presence of CO2 and additional reducing power (e.g. glycerol, sorbitol, H2), 

the theoretical yield increases to 2 mol succinate per mol glucose (equation 4.3):  

C6H12O6 + 2 HCO3
- +2H2à 2 (CH2)2(CO2)2

2− +2H2O +2H+       (4.3) 

(Glucose)     (succinate)    ΔGHo’ = -317kJ/mol           

Two research works relevant to this organism demonstrated an improved succinic 

acid production via fermentation [69] and metabolic engineering [70]. In the former, 



 
 

60 

 

Basfia succiniciproducens (B.succiniciproducens) was cultivated in continuous 

fermentation using glycerol as a substrate.  

Succinic acid productivities and titres resulted low for commercial application. In 

the latter one, authors reported improved succinic acid yields from 0.48 to 0.71 g/g using 

genetically modified strain of B.succiniciproducens. Genetic modification deals with 

deletion of by-product producing mutants. 

4.2.2 Fermentation medium 

Fermentation media from several experiments were referred from literature 

sources. The media components were screened to prepare an optimal fermentation 

medium. Components of the selected fermentation medium are shown in Table 23. This 

fermentation medium is used in this experiment.  

Table 23. Fermentation medium selected for this study 

 Compound Concentration, g.l-1 

Organic 

Glucose (25-80) 40 

Yeast extract (5-10) 6 

Corn steep liquor (5-10) 10 

Mineral salt 

K2HPO4 3 

NaCl 1 

MgCl2.6H2O 0.2 

CaCl2.2H2O 0.2 

MgCO3 10 

Working volume, mL 450  
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4.2.3 Fermentation condition 

CO2 fixation is required to enhance succinic acid production. Therefore, CO2 (g) 

was supplied to the fermentation broth. Excessive amount of MgCO3 up to 10 g/L was 

added as a buffer medium to maintain pH between 6 and 7. MgCO3 also acts as a carbon 

source. Fermentation temperature of 37°C and agitator speed of 300 rpm were 

maintained throughout the incubation period using automatic control system of bio-

fermenter. 

4.2.4  Microorganism   

Native Basfia succiniciproducens, DSM 22022 in pellet form was purchased from 

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 

Germany. This bacterium is also named as CCUG 57335 and JF4016. 

As per bacterium supplier recommendation, inoculation medium was prepared by 

thoroughly mixing 1.5 gm of Tryptone Soya Broth (TSB) in 100 ml of distilled water. 

Composition of TSB is shown in Table 24.  

The bacterium was revived in 100 mL of inoculation medium. Cells were 

incubated at 37°C and 180 rpm for 16 hr using a hot plate stirrer. The hot plate stirrer 

was placed inside hot air convection heater. During the microbial growth, 10 mL sample 

was withdrawn from the culture medium at regular time intervals to determine optical 

density using spectrophotometer. Cells were incubated until optical density of cell 

reached 0.1 at 600 nm. Flasks were sterilized before using it for bacterial growth. 

Table 24. Components of inoculation medium 

Components  Concentration (gm/L) 

Peptone from casein 17 

Peptone from soymeal 3 

D (+) Glucose 2.5 

NaCl 5 

K2HPO4 2.5 
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4.2.5 Experimental design for batch fermentation   

Fermentation experiments were performed on a 2 L capacity of Biostat CT 

bioreactor (2 L total volume) as shown in Figure 26, with 400 mL working volume. 

 

Figure 26. Bio-fermenter 

Fermentation medium of 250 mL was prepared by mixing carbon source, nitrogen 

source and mineral salts as listed in Table 23. Pretreated-corn stover was added into the 

fermentation medium. Additional glucose was charged into the fermentation medium at 

a concentration of 40gm glucose/ litre of fermentation medium. This provides high 

substrate concentration which in turn improves microbial growth. 
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The fermentation medium was fed with 50 ml inoculation medium. The culture 

was sparged with CO2 at 0.1 vvm to maintain anaerobic condition. Temperature, 37°C 

and agitator speed 300 rpm were set using automatic controllers in bio-fermenter. pH 

between 6.5 and 7 was maintained via addition of MgCO3.  

During the fermentation, 10 mL samples were withdrawn from the reactors at 

regular time intervals. The samples were centrifuged at 10,000 rpm for 10 min. The 

supernatant was filtered through 0.5 µm hydrophilic PTFE syringe filters and analysed 

using HPLC for measuring succinic acid concentration along with other acid 

concentration such as formic acid, lactic acid, acetic acid. 

4.2.6 Analytical methods  

Texas A&M AgriLife provided samples of corn stover along with its structural 

composition as shown in Table 25 [72]. Texas A&M AgriLife applied the analytical 

protocols developed by NREL of US DOE to quantify the structural composition. The 

composition of corn stover was used to perform calculations in this experiment. 

Table 25. Composition of corn stover 

Component Formula MW (g/gmol) Composition (%) 

Cellulose C6H10O5 162.14 37.73 

Hemicellulose C5H8O4 132.12 26 

Lignin C8H8O3 152.15 19.24 

Ash - - 3.79 

Other solids C8H8O3 152.15 13.24 

To determine sugar concentration mainly, glucose, xylose, arabinose, mannose, 

galactose, the samples were injected in a high performance liquid chromatography 

(HPLC) (Waters 2690, Separations Module). HPLC is equipped with auto sampler, a 
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Shodex SP 810 packed column and a Refractive Index (RI) detector. 5 mL of 

fermentation broth was centrifuged (10,000 rpm, 3 min). The supernatant was then 

filtered through a 0.5µm syringe filter. The filtrate was then analysed in high pressure 

liquid chromatography (HPLC). 

 Bacterial growth was analysed using spectrophotometer. Optical density was 

measured at 600 nm (OD600). The OD expresses quantity of suspended cells in the 

fermentation broth. 

Concentration of succinic acid and other organic acids were measured by injecting 

5 µL of filtered sample onto the high performance liquid chromatography (HPLC). The 

specification of HPLC is listed as follows, 

Column: Acclaim HPLC Organic Acid Analysis Column, 5µm,  

Column dimension: 4 x 150 mm, 

Column temperature: 30°C, 

Mobile phase: 0.01 M sodium sulfate (Na2SO4), 

Flowrate of mobile phase: 0.6 mL/min  

Detector: Ultra Violet (UV), 

Detection wavelength: 210 nm, 

Retention time: 2.7 min – 2.9 min. 

4.3 Results and discussions 

4.3.1 Evaluation of pretreatment method for sugar production  

A combination of pretreatment methods (hydrolytic enzyme + ultrasonic + dilute 

acid) converted corn stover biomass into sugar. Table 26 and Figure 27 show the time 

course taken for the total sugar (glucose + xylose) production. The enzymes rapidly 

hydrolysed corn stover-substrates within approximately 60 hours, and produced a 

maximum glucose concentration of 2.8 gm/ litre of solution and xylose concentration of 

1 gm/L. Beyond the duration, sugar concentration began to drop. This might be due to 

decomposition of sugar molecules. Highest glucose yield up to 35 gm per 100 gm of 
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biomass, and xylose yield of 17 gm per 100 gm of biomass were calculated from the 

glucose and xylose concentration before and after pretreatment. The total sugar yield of 

25 gm per 100 gm of biomass was determined from the maximum values of glucose and 

xylose yield. 

Table 26. Results obtained in hydrolysis of corn stover 

Time,  
hr 

Glucose 
concentration,  

g/L 

Glucose 
yield, 

gm/100 
gm of corn 

stover 

Xylose 
concentration,  

g/ L 

Xylose 
yield,  

gm/100 
gm of corn 

stover 

Total 
Sugar 
yield,  

gm/100 
gm of corn 

stover 

Rate, 
gm/ L/ hr 

 

24 0.9 11 0.5 8 10 0.04 

32 1.6 19 0.6 10 15 0.05 

48 2.2 26 0.6 10 18 0.05 

56 2.6 31 0.8 13 22 0.05 

64 2.8 34 0.9 15 24 0.04 

72 2.8 34 1 17 25 0.04 

82 2.6 31 0.8 13 22 0.03 

 

 
Figure 27. Time course of total sugar yield from corn stover 
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4.3.2 Evaluation of fermentation method for succinic acid production 

B.succiniciproducen fermented corn stover hydrolysate to produce succinic acid. 

Table 27 and Figure 28 show concentration of succinic acid, produced at different 

process duration. After 48 hours of fermentation, the highest titre value of 1.6 gm 

succinic acid /litre of fermentation broth was observed. Extending the fermentation 

duration did not improve succinic acid concentration. Maximum yield of 18 gm succinic 

acid per 100 gm of total sugar, and the corresponding production rate of 0.02 g/L/hr 

were calculated from the highest succinic acid concentration.  

Table 27. Results obtained in fermentation of corn stover 

Time, hr Succinic acid concentration,  
gm/L 

Succinic acid yield,  
gm/100 gm  

Rate,  
g/ L/ hr 

18 0.3 3 0.02 

24 0.5 6 0.02 

42 0.8 9 0.02 

54 1.2 13 0.02 

72 1.6 18 0.02 

80 1.6 17 0.02 

 

 
Figure 28. Succinic acid yield as a function of time 
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4.4 Future research directions 

Highest yield of 1.08 gm succinic acid /gm glucose was reported in case of a 

fermentation that used glucose as a substrate, and a genetically modified strain of 

B.succiniciproducens to ferment the substrate. The current experiment observed a 

maximum yield 0.17 gm of succinic acid/ gm of total sugar using a wild type of the same 

bacterium. Major factors that can lower the succinic acid yield are discussed as follows,  

Fermentation requires pH between 6.0 and 7.2 with an optimal pH of 6.8 [25]. 

Though higher pH will accelerate cell growth, but will increase by-product formation. 

[4]. Below a pH of 6.0, little cell growth occurs due to increased energy demand for cell 

maintenance [4]. This current experiment was not able to maintain the optimal pH 

throughout the fermentation course. Metabolic engineering of the bacterium would 

provide a good tolerance to high acidic environment, which in turn would increase 

succinic acid yield. 

During the fermentation process, succinic acid was produced along with the by-

products such as formic, lactic, and acetic acid. The organic acids caused pH to decrease. 

Because of this, base was continuously added to the fermentation medium to keep the 

pH at or near its optimal. This was done through addition of magnesium carbonate 

(mgCO3) and CO2. If too much base is added, the osmolarity of the fermentation medium 

changes and cells will begin to flocculate; their productivity decreases as they spend 

energy on cell maintenance [31]. An optimal proportion of mgCO3 and CO2 should be 

known prior to addition. The present work did not run many experiments to find out the 

optimal proportion.  

The by-product formation can reduce product yield, because the bacterium takes 

away from the carbon source which is otherwise used by the bacteria to produce main 

product [74]. Among other by-products, formic acid is the strongest inhibitor to succinic 

acid production [7]. Metabolic engineering could help to knock out the by-product 

pathway in metabolic network of bacterium. Deletion of by-product pathways would 

result a better TRY (titre, rate, yield) of succinic acid [70]. 
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Optimum concentration of substrate or carbon source is also a concern. Initial 

glucose concentrations above a 100g/L hindered cell growth and succinate production, 

while below a 20g/L produced very less product that it was impractical to perform 

successive product separation [75]. Additional studies indicated the optimal initial 

glucose concentration between 50g/L and 60g/L [31]. In this experiment, initial glucose 

concertation of 40 g/L was used. The fermentation medium should have been fed with 

the optimal glucose concentration to achieve maximum product yield.  

4.4.1 “Starch versus lignocellulosic” feedstock  

As reported by US DOE in 2004, biobased succinic acid requires a minimum 

productivity of 2.5 g/L/hr of succinic acid to compete economically with fossil based 

succinic acid [1]. Recent studies proved the potential of bacterium to produce a much 

higher rate of 11.8 g/L/hr [77], which is now promising the economic potential of 

fermentation technology. 

Lignocellulosic biomass presents a cost-advantage to “1st generation”, food-based 

sugars. Based on conceptual and industrial data, cost of succinic acid production using 

lignocellulosic as feedstock is 28% less than fossil based, or biological method that uses 

starch based sugar as feedstock (Table 28).  

Table 28. Cost of succinic acid production 

Feedstock Technology 
Cost, 

$/ lb SA 
Cost, 

 $/ kg SA 

Butane Petrochemical 1.3 2.86 

Sugar  Biological 1.3 2.94 

Corn stover Biological 0.94 2.00 

Though the lignocellulosic biomass is competitive, purification step poses the cost 

intensive process for succinic acid production, and is identified as major area for 
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improvement [5]. Purification can account for up to 60% to 70% of production cost [74]. 

Starch based sugar generally provides a higher yield of 0.8 ton product per ton 

feedstock, whereas lignocellulosic based sugar gives a lower yield of 0.7 ton/ton. This is 

because of the highly pure, starch based feedstock that produces crude succinic acid with 

fewer impurities. The crude product with less contaminant requires less dilution water 

for washing and leads to lower product losses from purification. 

To date, starch-based sugar has been used as feedstock to produce succinic acid on 

a commercial scale. Several companies (Table 2), notably BioAmber have begun 

commercial operation of succinic acid using glucose derived from corn (starch based 

sugar). The plant is in Sarnia, Ontario, with a nameplate capacity of 30,000 tons per 

year. Technology of the company will be cost-competitive with fossil based method 

even if oil price drops down as low as $35/barrel [76]. 

Historically, the market size for succinic acid is small, with immediate use in a 

narrow range of applications such as pharmaceuticals and food ingredients. This is 

because of higher cost of producing succinic acid from petroleum feedstocks. As a 

result, the current market for petroleum-based succinic acid is only approximately 

40,000 tons/year, representing a small market size of $300 million. Industrial reports 

forecast succinic acid demand of approximately 600,000 tons by the year 2020 with a 

value of $1 billion. This significant demand makes the future price of succinic acid 

largely unknown. Simulation results, however, suggest that $2000/ton is the minimum 

acceptable price assuming current process technology. 

For such a limited applications and unpredictable price, starch based feedstock 

seems suitable than lignocellulosic because of its advantages: sufficient availability of 

feedstock, proven commercial technology and efficient separation method. Only 6% of 

the sugar produced in existing corn wet mills in the USA can produce $2 billion worth of 

succinic acid and BDO. Though Lignocellulosic is cost-advantageous, it would become 

competitive with starch based feedstock, provided that the market size of succinic acid is 

large enough to utilize abundant source of biomass. 
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5. CONCLUSION 

This thesis has aimed to identify the potential bioproducts by developing a 

biorefinery model that meet the objective function: maximizing profit while minimizing 

GHG emission and energy use. An evaluation matrix was constructed to find a suitable 

feedstock. Based on findings from modelling of superstructure, an experiment was 

designed with aim of producing succinic acid at higher titre, rate, and yield than it is 

reported in literature source. 

Optimization results indicate that speciality chemicals are highly favourable than 

commodity chemicals in case of commercialising a biorefinery. Optimization studies 

resulted with succinic acid as the preferable product, corn stover as the suitable 

feedstock and anaerobic fermentation as the optimal conversion technology. 

Though many high value chemicals such as BDO, acrylic acid, adipic acid are 

attractive, conversion technologies of those chemicals have not yet reached commercial 

deployment status. Few other bioproducts such as Levulinic acid, xylitol, sorbitol, do not 

require any additional production, because supply of those bioproducts have already met 

the total market demand; it replaced 100 percentage of petrochemical equivalents.  

Succinic acid shows many advantages as compared to other bioproducts; proven 

commercial application of technology, high product demand in existing as well as future 

market condition, significant GHG (-87%) and energy-use (-51%) reduction in relative 

to petrochemical technology. Currently, biological method contributes almost 50% of 

worldwide production of succinic acid. Fossil based method produces remaining 

quantity. Thus, there is a realistic scenario to replace the remaining quantity by biobased 

method. 

Based on optimization findings, an experiment was conducted to produce succinic 

acid by utilizing suitable pretreatment and fermentation methods. The experiment used 

corn stover as feedstock, and selected a bacterium, Basfia succiniciproducens to ferment 

the feedstock. A maximum glucose yield of 0.35 gm / gm of corn stover was observed. 

Literature sources recorded a highest glucose yield of 0.98gm / gm of corn stover [60].  
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Highest succinic yield of 0.18 g /g total sugar(glucose+xylose) was observed after 

72 hours of anaerobic fermentation. The corresponding titre value was 1.6 gm/L. 

Native bacterium, Basfia succiniciproducens can produce succinic acid at a high 

titre of 30.9 gm/L [61]. Genetically modified strain of this bacterium produced a much 

higher yield of 0.71 gm succinic acid/ gm of glucose [70]. When compared to past 

research works, this experiment shows a much lower concentration and yield. The 

maximum values of TRY (Titre, Rate, Yield) can be achieved by increasing number of 

trials in the experiment. 

 

 

 

 



 
 

72 

 

REFERENCES 

1. Werpy P, Petersen G: Top value added chemicals from biomass. Volume 1. Results 
of screening potential candidates from sugars and synthesis gas. US Department of 
Energy; 2004. 

2. Patel MK, Crank M, Dornburg V, Hermann B, Roes L, Hu¨ sing B: The BREW 
project - Medium and long-term opportunities and risks of the biotechnological 
production of bulk chemicals from renewable resources. Utrecht, The Netherlands: 
Utrecht University – Department of Science, Technology and Society 
(STS)/Copernicus Institute; 2006. 

3. Zeikus JG, Jain MK, Elankovan P: Biotechnology of succinic acid production and 
markets for derived industrial products. Appl Microbiol Biotechnol, 51:545-552, 
1999. 

4. H. Song, S.Y. Lee, Production of succinic acid by bacterial fermentation, Enzyme 
Microb. Technol. 39, 352–361, 2006. 

5. J.B. McKinlay, Y. Shachar-Hill, J.G. Zeikus, C. Vieille, Determining Actinobacillus 
succinogenes metabolic pathways and fluxes by NMR and GC–MS analyses of 13C-
labeled metabolic product isotopomers, Metab. Eng. 9 , 177–192, 2007. 

6. D.H. Park, J.G. Zeikus, Utilization of electrically reduced neutral red by 
Actinobacillus succinogenes: physiological function of neutral red in membrane-
driven fumarate reduction and energy conservation, J. Bacteriol. 181, 2403–2410, 
1999. 

7. S.K.C. Lin, C. Du, A.C. Blaga, M. Camarut, C. Webb, V.C. Stevens, W. Soetaert, 
Novel resin-based vacuum distillation-crystallisation method for recovery of succinic 
acid crystals from fermentation broths, Green Chem. 12, 666–671, 2010. 

8. Kurzrock T, Weuster-Botz D: Recovery of succinic acid from fermentation broth. 
Biotechnol Lett 32:331-339, 2010. 

9. R. Taylor, L. Nattrass, G. Alberts, P. Robson, C. Chudziak, A. Bauen, I.M. Libelli, 
G. Lotti, M. Prussi, R. Nistri, D. Chiaramonti, A.L. Contreras, H. Bos, G. Eggink, J. 
Springer, R. Bakker, R. van Ree, From the sugar platform to biofuels and 
biochemicals. Final report for the European Commission Directorate-General Energy 
N◦ ENER/C2/423-2012/SI2.673791, 2015. 

10. WP 8.1. Determination of market potential for selected platform chemicals, weastra, 
s.r.o, Funded by the 7th Framework Programme of the European Union, 2012.  

11. Succinic Acid Market by marketsandmarkets.com, http://www.Marketsand 
markets.com / Market-Reports/succinic-acid-market-402.html, (accessed Oct 2016). 



 
 

73 

 

12. ICIS, petrochemical market information provider - http://www.icis.com/, (accessed 
Nov 2016). 

13. weastra, s.r.o, http://www.bioconsept.eu/wp-content/uploads/BioConSepT_Market-
potential-for-selected-platform-chemicals_report1.pdf, (accessed Aug. 2016).   

14. weastra, s.r.o, http://www.bioconsept.eu/wp-content/uploads/BioConSepT_Market-
potential-for-selected-platform-chemicals_report1.pdf, (visited May 2017). 

15. Bio-amber, http://www.bio-amber.com/products/en/products, May 2017  

16. Bio-amber, http://www.european-biotechnology-news.com/news/news/2012-03/ 
evonik -and-bioamber-team-up.html, accessed Dec. 2016. 

17. Kabasci, S., “Bio-based Plastics: Materials and applications”, John Wiley & Sons, 
UK, 2014 

18. M.L.A. Jansen, W.M. van Gulik, Towards large scale fermentative production of 
succinic acid, Curr. Opin. Biotechnol. 190–197, 2014 

19. M. Carus, World-Wide Investments in Bio-based Chemicals, Nova-Institut GmbH, 
2012, http://www.bio-based.eu/policy/en/ , (visited Sep. 2016). 

20. Merten Morales, Meriç Ataman, Sara Badr,Sven Linster,Ioannis 
Kourlimpinis,Stavros Papadokonstantakis,Vassily Hatzimanikatis*b and Konrad 
Hungerbu¨hlera, Sustainability assessment of succinic acid production technologies 
from biomass using metabolic engineering, Energy Environ. Sci., (2016). 

21. Rush BJ, Fosmer AM: Methods for succinate production. US patent, 
US20140363862A1. C.krusei mutant strain was developed by Bioamber for the 
enhanced production of SA under low pHcondition, 2014. 

22. Ragauskas AJ, Williams CK, Davison BH et al, The path forward for biofuels and 
biomaterials. Science 311:484–498, 2006 

23. P. Zheng, J.J.J. Dong, Z.H.H. Sun, Y. Ni, L. Fang, Fermentative production of 
succinic acid from straw hydrolysate by Actinobacillus succinogenes, Bioresour. 
Technol. 100 2425–2429, 2009. 

24. J.P. Tan, J. Md Jahim, T.Y. Wu, S. Harun, B.H. Kim, A.W. Mohammad, Insight into 
biomass as a renewable carbon source for the production of succinic acid and the 
factors affecting the metabolic flux toward higher succinate yield, Ind. Eng. Chem. 
Res. 53, 16123–16134, 2014. 

25. Du, C., Lin, S., Koutinas, A., Wang, R., Webb, C., 2007. Succinic acid production 
from wheat using a biorefining strategy. Appl. Microbiol. Biotechnol, 2007. 



 
 

74 

 

26. U.S.Department of Energy (USDOE), 2016 Billion-ton report, Advancing Domestic 
Resources for a Thriving Bioeconomy, Volume I, July 2016. 

27. National research council, Opportunities and Obstacles in Large-Scale Biomass 
Utilization: The Role of the Chemical Sciences and Engineering Communities: A 
Workshop Summary, 2012. 

28. Chrysanthi Pateraki, Maria Patsalou, Anestis Vlysidis, Nikolaos Kopsahelis, Colin 
Webb, Apostolis. Koutinas, Michalis Koutinas, Actinobacillussuccinogenes: 
Advances on succinic acid production and prospects for development of integrated 
biorefineries, 2016. 

29. Bao B, Ng DKS, El-Halwagi MM, Tay DHS. Synthesis of technology pathways for 
an integrated biorefinery. AIChE Annual Meeting. Nashville, TN. 2009 

30. V. Pham, M. El-Halwagi. Process synthesis and optimization of biorefinery 
configurations. AIChE J., 2012. 

31. Liu, R.; Liang, L.; Li, F.; Wu, M.; Chen, K.; Ma, J.; Jiang, M.; Wei, P.; Ouyang, P. 
Efficient Succinic Acid Production from Lignocellulosic Biomass by Simultaneous 
Utilization of Glucose and Xylose in Engineered Escherichia coli. Bioresour. 
Technol., 149, 84−91, 2013. 

32. Xie, N.; Jiang, N.; Zhang, M.; Qi, W.; Su, R.; He, Z. Effect of different pretreatment 
methods of corncob on bioethanol production and enzyme recovery. Cellulose 
Chemistry and Technology, 48 (3), 313−319, 2014. 

33. Distribution of global corn production in 2013, by country. The Statistics Portal, 
2014.http://www.statista.com/statistics/254294/distribution-of-global-corn-
production-by-country-2012/ (accessed Sep 2016). 

34. Lee, P. C.; Lee, W. G.; Lee, S. Y.; Chang, H. N. Succinic acid production with 
reduced by-product formation in the fermentation of Anaerobiospirillum 
succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng., 72, 
41−48, 2001. 

35. Babajide, O. Sustaining biodiesel production via value-added applications of 
glycerol. Journal of Energy, 2013. 

36. IndexMundi.WheatDailyPrice.2014.http://www.indexmundi.com/commodities/com
modity=wheat (accessed Jan 2017). 

37. Du, C.; Lin, S. K. C.; Koutinas, A.; Wang, R.; Dorado, P.; Webb, C. A Wheat 
Biorefining Strategy Based on Solid-State Fermentation for Fermentative Production 
of Succinic Acid. Bioresour. Technol., 99, 8310−8315, 2008. 



 
 

75 

 

38. Food and Agriculture Organization of the United Nations. World cereal production 
set to reach historic high in 2013.  http: //www.fao.org/news/story/en/item/179967/ 
icode/ (accessed Feb 2017).  

39. United States Department of Agriculture. National Hey, weed and seed weekly 
summary. http://www.ams.usda.gov/mnreports/ lswfeedseed.pdf (accessed Apr 
2017). 

40. Dunford,N.T. Food and Industrial Bioproducts and Bioprocessing; Wiley-
Blackwell, 2012. 

41. Patil, P. G.; Gurjar, R. M.; Shaikh, A. J.; Balasubramanya, R. H.; Paralikar, K. M.; 
Varadarajan, R. V. Cotton Plant Stalk−An alternate Raw Material to Board Industry. 
Presented at World Cotton Research Conference−4, Lubbock, TX, Sep 10−14, 2007; 
http://wcrc.confex.com/wcrc/2007/techprogram/P1506.HTML (accessed Apr 2017). 

42. Li, Q.; Yang, M.; Wang, D.; Li, W.; Wu, Y.; Zhang, Y.; Xing, J.; Su, Z. Efficient 
Conversion of Crop Stalk Wastes into Succinic Acid Production by Actinobacillus 
succinogenes. Bioresour. Technol., 101, 3292−3294, 2010. 

43. Shaikh, A. J.; Gurjar, R. M.; Patil, P. G.; Paralikar, K. M.; Varadarajan, P. V.; 
Balasubramanya, R. H. Particle Boards from Cotton Stalk; Central Institute for 
Research on Cotton Technology: Mumbai, India, 2011. 
https://www.icac.org/tis/regional_networks/asian_network/meeting_5/documents/pa
pers/PapShaikhA.pdf (accessed Apr 2017). 

44. Suib, S. New and Future Developments in Catalysis: Catalytic Biomass Conversion; 
Elsevier, 2013. 

45. Shohei Okino & Ryoji Noburyu & Masako Suda & Toru Jojima & Masayuki Inui & 
Hideaki Yukawa , An efficient succinic acid production process in a metabolically 
engineered Corynebacterium glutamicum strain, 2008. 

46. Improved Succinic Acid Production in the Anaerobic Culture of an Escherichia coli 
pflB ldhA Double Mutant as a Result of Enhanced Anaplerotic Activities in the 
Preceding Aerobic Culture  Hui Wu, Zhi-min Li, Li Zhou, and Qin Ye, 2007. 

47. Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates 
to succinic acid David B. Hodge∗, Christian Andersson, Kris A. Berglund, Ulrika 
Rova, 2008. 

48. Edzard Scholten Æ Dirk Da¨gele, Succinic acid production by a newly isolated 
bacterium, 2008. 

49. Cimini D, Argenzio O, D'Ambrosio S, Lama L, Finore I, Finamore R, Pepe O, 
Faraco V, Schiraldi C., Production of succinic acid from Basfia succiniciproducens 
up to the pilot scale from Arundo donax hydrolysate, Elsevier Ltd , Dec 2016. 



 
 

76 

 

50. Davinia Salvachúa, Holly Smith, Peter C. St. John, Ali Mohagheghi, Darren J. 
Peterson, Brenna A. Black, Nancy Dowe, Gregg T. Beckham, Succinic acid 
production from lignocellulosic hydrolysate by Basfia succiniciproducens, Elsevier 
Ltd, May 2016. 

51. Sun Z1, Li M, Qi Q, Gao C, Lin CS. Mixed food waste as renewable feedstock in 
succinic acid fermentation, 2014. 

52. Rethink food waste, https://www.refed.com/downloads/ReFED_Report_2016.pdf, 
(accessed Oct 2016). 

53. A. Milbrandt, A Geographic Perspective on the Current Biomass Resource 
Availability in the United States, 2005. 

54. Guettler, M. V.; Jain, M. K.; Rumler, D. Method for Making Succinic Acid, 
Bacterial Variants for Use in the Process and Methods for Obtaining Variants. US 
Patent 5,573,931. 1996. 

55. Akhtar, J., Idris, A., Abd Aziz, R.. Recent advances in production of succinic acid 
from lignocellulosic biomass. Appl. Microbiol. Biotechnol., 98, 987–1000, 2014. 

56. Bradfield, M.F.A., Mohagheghi, A., Salvachúa, D., Smith, H., Black, B.A., Dowe, 
N., Beckham, G.T., Nicol, W., Continuous succinic acid production by 
Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol. Biofuel 8, 
181, 2015. 

57. Salvachúa, D., Mohagheghi, A., Smith, H., Bradfield, M.F.A., Nicol, W., Black, B., 
Biddy, M.J., Dowe, N., Beckham, G.T., Succinic acid production on xyloseenriched 
biorefinery streams by Actinobacillus succinogenes in batch fermentation. 
Biotechnol. Biofuel 9, 28, 2016. 

58. Scholten, E., Dägele, D. Succinic acid production by a newly isolated bacterium. 
Biotechnol. Lett. 30, 2143–2146, 2008. 

59. James B. McKinlay & C. Vieille & J. Gregory Zeikus, Prospects for a bio-based 
succinate industry, May 2007. 

60. K. Theerarattananoon, X. Wu, S. Staggenborg, J. Propheter, R. Madl, D. Wang, 
Evaluation and characterization of sorghum biomass as feedstock for sugar 
production, American Society of Agricultural and Biological Engineers, 2011. 

61. Davinia Salvachúa, Holly Smith, Peter C. St. John, Ali Mohagheghi, Darren J. 
Peterson, Brenna A. Black, Nancy Dowe, Gregg T. Beckham, Succinic acid 
production from lignocellulosic hydrolysate by Basfia 
succiniciproducens, Elsevier Ltd, 2016. 



 
 

77 

 

62. AV Bridgwater, R Chinthapalli, PW Smith, (2010) Identification and market analysis 
of most promising added-value products to be co-produced with the fuels, Aston 
University, May 2010.  

63. Lik Yin Ng, Viknesh Andiappan, Nishanth G. Chemmangattuvalappil, and Denny K. 
S., Novel Methodology for the Synthesis of Optimal Biochemicals in Integrated 
Biorefineries via Inverse Design Techniques, American Chemical Society, May 
2015. 

64. Walter Short, Daniel J. Packey, and Thomas Holt, NREL, A Manual for the 
Economic Evaluation of Energy Efficiency and Renewable Energy Technologies, 
March 1995. 

65. Sun Z1, Li M, Qi Q, Gao C, Lin CS, Mixed food waste as renewable feedstock in 
succinic acid fermentation, Aug 23, 2014. 

66. Mahdokht Montazeri George G. Zaimes, Vikas Khanna, and Matthew J. Eckelman, 
Meta-Analysis of Life Cycle Energy and Greenhouse Gas Emissions 
for Priority Biobased Chemicals, American Chemical Society, 2016. 

67. Felix Adom, Jennifer B. Dunn, Jeongwoo Han, and Norm Sather, Life-Cycle Fossil 
Energy Consumption and Greenhouse Gas Emissions of Bioderived Chemicals and 
Their Conventional Counterparts, American Chemical Society, 2014. 

68. Scholten, E., Dägele, D., Succinic acid production by a newly isolated 
bacterium. Biotechnol. Lett. 30, 2143–2146, 2008. 

69. Scholten, E., Renz, T., Thomas, J., Continuous cultivation approach for fermentative 
succinic acid production from crude glycerol by Basfia succiniciproducens DD1. 
Biotechnol. Lett. 31, 1947–1951, 2009. 

70. Becker, J., Reinefeld, J., Stellmacher, R., Schäfer, R., Lange, A., Meyer, H., Lalk, 
M.,Zelder, O., von Abendroth, G., Schröder, H., Haefner, S., Wittmann, C., Systems-
wide analysis and engineering of metabolic pathway fluxes in biosuccinate 
producing Basfia succiniciproducens. Biotechnol. Bioeng. 110, 3013– 
3023, 2013. 

71. Roberto Nobuyuki Maedaa, Viviane Isabel Serpa b, Vanessa Alves Lima Rochaa , 
Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium 
funiculosum and Trichoderma harzianum cellulases, Elsevier Ltd, 2011. 

72. Pratik Darvekar, Assessment of shock pretreatment of corn stover using the 
carboxylate platform, Texas a&m university, May 2016. 

73. Sergio Capareda, Introduction to Biomass Energy Conversions, July 9, 2013   



 
 

78 

 

74. Huh YS, Hong YK, Hong WH, Chang HN., Selective extraction of acetic acid from 
the fermentation broth produced by Mannheimia succiniciproducens. Biotechnology 
Letters 26:1581-1584, 2004. 

75. Datta R, Glassner DA, Jain MK, Vick Roy JR, Fermentation and purification process 
for succinic acid. US Patent 5:168,055, 1992. 

76. Doris De Guzman, http://www.icis.com/blogs/green-chemicals/2011/11/bioamber-
files-for-150m-ipo/ (accessed June 2017). 

77. Okino S, inui M, Yukawa, Production of organic acids by Corynebacterium 
glutamicum under oxygen deprivation, Sep 2005. 

78. Mustafa Akbulut, ICPE 601 Environmental Issues of Energy Systems, p.no19, 2016. 

79. Biofuels digest, http://www.biofuelsdigest.com/bdigest/2016/09/07/landmark-report-
from-bio-charts-770b-renewable-chemicals-and-materials-market-by-2020/, 
(accessed June 2017). 

80. United States Department of Agriculture. USDA ERS-Soybeans and oil crops: 
Canada.http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/canola.aspx, 
(accessed Aug 2016). 

 

 

 
 

 



 

79 

 

APPENDIX A 

COMPOSITION OF VARIOUS LIGNOCELLULOSIC BIOMASS 

Table 29 continued.    
Lignocellulosic material Lignin (%) Hemicellulose (%) Cellulose (%) 

Bamboo 21 - 31 15 - 26 26 - 43 
Banana waste 14 14.8 13.2 
Barley straw 14 - 15 24 - 29 31 - 34 
Bast fibre jute 21 - 26 18 - 21 45 - 53 
Bast fibre kenaf 15 - 19 22 - 23 31 - 39 
Black gram residue 23.14 32.48 26.80 

Coastal Bermuda grass 
6.4 

19.4 
35.7 
13.3 

25 
47.8 

Coconut coir 18 26 48 

Corn cob 
15  

4.5 -6.6 
35 

38 - 42 
45 
35 

Corn stalks 17 24 43 

Corn stover 
18 
18 

22 
20.5 

40 
41.7 

Cotton gin waste - 16 78 
Elephant grass 24 24 22 
Esparto grass 17 - 19 27 - 32 33 - 38 
Flax straw 22 27 29 
Grasses (average) 10 - 30 25 - 50 25 - 40 
Hardwood stem 18 - 25 24 - 40 40 - 55 
Leaves 0 80 - 85 15 - 20 
Millet husk 14 27 33 
Newspaper 18 - 30 25 - 40 40 - 55 
Nut shells 30 - 40 25 - 30 25 - 30 
Oat straw 16 - 19 27 - 38 31 - 37 
Orchard grass  4.7 40 32 
Pinewood 20 24 39 
Poplar wood 26 17 35 
Rice husk 14 24 31 
Rice straw 18 24 32.1 
Rye straw 16 - 19 27 - 30 33 - 35 
Sabai grass 20.88 23.72 49.90 
Softwood stem 25 - 35 25 - 35 45 - 50 

Table 29. Composition of biomass feedstocks 
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Table 29 continued.    
Lignocellulosic material Lignin (%) Hemicellulose (%) Cellulose (%) 

Sugarcane bagasse 
19 - 24 

18.4 
24 

27 - 32 
26.9 
25 

32 - 44 
38.1 
43 

Sugarcane tops 36.1 24.2 33.3 
Sunhemp residue 17.4 - 18.4 11.9 - 13 43.4 - 48 
Sweet sorghum bagasse 18 25 45 

Switchgrass 
12 
18 

31 
22 

45 
31 

Timothy grass 18 30 34 
Waste papers from 
chemical pulps 5 - 10 10 - 20 60 - 70 

Wheat bran 
3 – 10 
16 - 21 

7.7 

22 – 25 
26 - 32 

30.8 

7 – 11 
29 - 35 

41.3 

Wheat straw 
15 
17 

14.5 

50 
23 

24.8 

30 
33 
36 
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APPENDIX B 

LIST OF CONVERSION TECHNOLOGIES 

Table 30 continued. 

Pathway # Conversion technologies Product 

C
on

ve
rs

io
n 

%
 

Se
le

ct
iv

ity
%

 

Annual 
capital 
cost/ 
tonne 
(U.S.$) 

Annual 
operating 
cost/ 
tonne 
(U.S.$)  

11a Ammonia explosion + 
enzymatic corn stover Sugars, Lignin 98 - 19.64 11.30 

11b 
Acid impregnation + Steam 
explosion + enzyme (corn 
stover) 

Sugars, Lignin 85 
- 

28 18 

11c Steam explosion + enzyme 
(wheat straw) Sugars, Lignin 85 - 13.90 7.97 

11d Aqueous ammonia (rice straw) Sugars, Lignin 89 - 22.3 7.97 

11e Lime +enzymatic (sugarcane 
bagasse) Sugars, Lignin 92 - 28 7.97 

12 Pyrolysis Syngas 94 - 62.86 36 

13 Gasification Syngas 90 - 86.43 55 

14 Anaerobic digestion Methane 40 - 26.23 15 

15 Water gas shift reaction Syngas 100 - 15.11 8.66 

16 Mixed culture fermentation Carboxylate salts 80 65 60 94 

17 Fermentation Succinic acid 55 - 4868 2984 

20a Organosolv separation Lignin 79 - 40.68 23.30 
20b Organosolv separation Sugars 97 - 40.68 23.30 

23 Conversion of syngas 1 
Methanol 

25.1 
2.6 

38.56 22.10 
Ethanol 61.4 

24 Conversion of syngas 2 
Methanol 

24.6 
3.9 

41.10 23.60 
Ethanol 56.1 

25 Hydrogenation of CO 

Methanol 

28.8 

20.7 

40.19 23.00 

Ethanol 23.8 

  

Propanol 14.1 

Butanol 7.5 

Table 30. List of conversion technologies and its details 
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Table 30 continued. 

Pathway # Conversion technologies Product 

C
on

ve
rs

io
n 

%
 

Se
le

ct
iv

ity
%

 

Annual 
capital 
cost/ 
tonne 
(U.S.$) 

Annual 
operating 
cost/ 
tonne 
(U.S.$)  

26 Fischer-Tropsch process 1 

Hydrocarbon 
C2-C4 

40 

16 

193.41 111 Hydrocarbon 
C5-C9 27 

HydrocarbonC10 26 

27 Fischer-Tropsch process 2 

Hydrocarbon 
C2-C4 

75 

23 

181.93 104 Hydrocarbon 
C5-C9 19 

Hydrocarbon 
C10 9.7 

28 Pyrolysis Acetylene 80 80 96 121 

31 Methanation Methane 97 92 193 267 

32 Bacterial fermentation  Adipic acid 74 - 4000 2150 

33 Catalytic oxidation (Pt)  Glucaric acid 66 - 370 253 

34 Catalytic hydrodeoxygenation Adipic acid 77 - 290 192 

35 Hydrogenation (Pt) 

1,4-Butanediol 
(BDO) 

99.7 

85 

350 397 

Tetrahydrofuran 
(THF) 8.28 

Gamma-
Butyrolactone 
(GBL) 

2 

n-Butanol 2.87 

36 Catalytic dehydration Ethylene 99 - 24 730 

37 Bacetrial fermentation Farnesene 29 - 1480 980 

41 Bacterial fermentation(blank) 
3 Hydroxy 
propionic acid 
(HP) 

72 
- 

na na 

42 Bacterial fermentation Succinic acid 84 - 675 1100 

43 Hydrogenation of glucose 
(blank) sorbitol 87.5 - 0.1 407.7 

44a 
convert cellulose/glucose to 
Levulinic acid with H2SO4 as 
catalyst 

Levulinic acid 60 
- 

117.3 259.7 

45 Bacterial fermentation Lactic acid 98 - 504 2174.4 

46 Bacterial fermentation Xylitol 93 - 573 87 
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Table 30 continued. 

Pathway # Conversion technologies Product 

C
on

ve
rs

io
n 

%
 

Se
le

ct
iv

ity
%

 

Annual 
capital 
cost/ 
tonne 
(U.S.$) 

Annual 
operating 
cost/ 
tonne 
(U.S.$)  

47 selective oxidation of 
cyclopentane (blank) Glutaric acid 92.3 - na na 

48 Autohydrolysis HMF 90.9 - 63.46 36.40 

49 Dehydration of sugars Furfural  40.9 - 27.62 15.80 

50 Hydrogenation of furfural THFA 98.2 - 30.22 17.30 

       

51 Hydrogenation of THFA 1 
Pentanediol 

99 
- 

43.52 24.90 
Pentanol - 

52 Hydrogenation of THFA 2 
Pentanediol 

60 
- 

45.45 26.00 
Pentanol - 

53 Acid fermentation  Acetic Acid 
(Acid 1)    70 - 5 43 

54 Esterification  Ethyl acetate 
(Ester) 90 - 5 43 

55 Hydrogenolysis  Ethanol  73 - 5 82 

56 Monsanto process 
Acetic or 
Ethanoic Acid 
(Acid -2) 

99 
- 

40.68 23.30 

57 Hydrogenation Ethanol 61.7 - 169 132 

58 Decarboxylation of acids Hydrocarbon 
C2 62 21.3 45.94 26.30 

59 Dehydration of alcohols 1 Hydrocarbon 
C2 67 - 40.5 23.20 

60 Dehydration of alcohols 2 
Hydrocarbon C3 

59 
28.8 

37.47 21.50 
Hydrocarbon C4 37.3 

61 Dehydration of alcohols 3 

Hydrocarbon C5 

64 

15.2 

34.45 19.70 
Hydrocarbon C6 5.5 

Hydrocarbon C7 5.6 

Hydrocarbon C8 4.2 

62 Fractional distillation of alkanes 
Hydrocarbon C8 99 - 

169.48 98.2 Hydrocarbon 
C2-C7, C9-C10 99 - 

63 Ketonization ketone 99.5 - 120 187 

64 Hydrogenation  Ethanol 98.4 - 60 94 
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Table 30 continued. 

Pathway # Conversion technologies Product 

C
on

ve
rs

io
n 

%
 

Se
le

ct
iv

ity
%

 

Annual 
capital 
cost/ 
tonne 
(U.S.$) 

Annual 
operating 
cost/ 
tonne 
(U.S.$)  

65 Grignard synthesis alcohol 88 - 60 94 

66 Hydrogeneation Ethylene 85.9 56.4 104 164 

67 Hydroformylation Acetaldehyde 95  104 164 

68 Hydrobromination Bromoethane 25 90 104 164 

69 Hydrolysis Ethanol 45 64 104 164 

70 Hydrogenation Ethanol 48 84 104 164 

71 Oligomerization Gasoline 99 1.017 104 13.3 

72 Bacterial fermentation Ethanol 41 - 31.43 18.00 

73 Yeast fermentation Ethanol 61.9 - 40.62 22 

74 ABE fermentation 

butanol 

42 

23 

137.3 590 acetone 12 

ethanol 4 

75 Purification of crude ethylene Pure ethylene 99 - 5 60 

76 Oxidation 
2,5-Furan 
dicarboxylic acid 
(FDCA) 

98 58 476 329 

80 Harvesting+Preteatment+Liquid 
Extraction+Transesterification 

Biodiesel and 
Glycerol 
 

36 
- 

1300 1970 

83 Harvesting+Preteatment+Liquid 
Extraction+Transesterification Glycerol 3 - 1000 10000 

84 Harvesting+Preteatment+Liquid 
Extraction+Transesterification 

Biodiesel 
 40 - 54 1030 

89 Bacterial fermentation of 
glycerol Succinic acid 75 - 1334 11013 

91 Dehydration  Acrylic acid 79 - 611 413 

na-not available 
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APPENDIX C 

MARKET PRICE OF BIOPRODUCTS NAD BIOMASS FEEDSTOCKS 

Table 32 continued. 

Feedstocks $/ ton Bioproducts $/ ton 

Agricultural residues (corn stover, 
wheat straw, rice straw, sugarcane 
bagasse) 

40 Glucaric 1000 

Algae 790 Glutaric acid 1000 

Bakery/ food waste 0 Heptane 470 

Rapeseed 335 Hexane 480 

HMF 2655 

Bioproducts $/ ton HP 1100 

Acetone 715 Lactic acid 1600 

Acrylic acid 1540 Levulinic acid 6500 

Adipic 1800 Methanol 314 

Butane 593 Nonane 480 

Butanediol (BDO) 1800 Octane 1000 

Butanol 1250 Pentane 1000 

Decane 2750 Pentanediol 2000 

Ethane 200 Pentanol 1200 

Ethanol 500 Propane 573 

Ethylene 800 Propanol 950 

Farnescene 5500 Sorbitol 650 

FDCA 1100 Succinic acid 3200 

Gasoline 830 Xylitol 3900 

Table 31. Market price of bioproduct and feedstocks 
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APPENDIX D 

LIST OF PRETREATMENT METHODS 

Table 32 continued. 

Substrate Pre-treatment Hydrolysis Yield of sugars* 

Corn stover Dilute acid: 140 °C, 1.0 wt% 
H2SO4, 40 min 

15FPU/g for cellulose from 
Celluclast 1.5L and 
26.25CBU/g for β-
glucosidase from Novozyme 
188. 

82.3 in 72 h 

Liquid hot water: 190 °C, 15 
min 

15 FPU/g for ellulose from 
Spezyme CP and 65 IU/g for 
β-glucosidase from 
Novozyme 188. 

69.6 in 72 h 

NaOH or Ca(OH)2: 55°C, 7.3 
wt% Ca(OH)2, 4 weeks 

15FPU/g for cellulose from 
Spezyme CP and 40CBU/g 
for β-glucosidase from 
Novozyme 188. 

98 in 96 h 

AFEX(Ammonia fiber 
expansion): 90°C, 1:1 
ammonia to biomass loading, 
60%moisturecontent, 5 min 

15FPU/g for cellulose from 
Celluclast 1.5L and 
26.25CBU/g for β-
glucosidase from Novozyme 
188 

76.6 in 72 h 

AFEX Accellerase 1000 50.6 Glucose release(%), 30.0 Xylose release 
(%) 

Spezyme CP 44 Glucose release(%), 34.4 Xylose release 
(%)  

0.25% NaOH Accellerase 1000 54 Glucose release(%), 23 Xylose release (%) 

Spezyme CP 40.7 Glucose release (%), 35.4 Xylose release 
(%)  

Alkaline peroxide Accellerase 1000 68.6 Glucose release (%), 38.0 Xylose release 
(%) 

Spezyme CP 58.4 Glucose release (%), 49.6 Xylose release 
(%) 

0.2-0.98% H2SO4, 
140-200°C,0-80min 

Maximum xylose yield of 71-85% 

Table 32. List of pretreatments and its yield for various agricultural residues 
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Table 32 continued. 

Substrate Pre-treatment Hydrolysis Yield of sugars* 

AFEX**: Anhydrous 
ammonia , 1g/g of biomass, 
90°C, 5min 

Enzymatic hydrolysis 94.4 % (glucose+xylose) release 

SO2: Enzymatic hydrolysis 93.9 % (glucose+xylose) release 

0.49% H2SO4,160°C,20min Enzymatic hydrolysis 92.4 % (glucose+xylose) release 

ARP :15% aqueous ammonia Enzymatic hydrolysis 89.4 % (glucose+xylose) release 

170°C,27.5min Liquid Hot 
Water (LHW), 190°C,15min 

Enzymatic hydrolysis 87.2 % (glucose+xylose) release 

Lime : 0.08 g/g biomass, 
55°C, 4 weeks 

Enzymatic hydrolysis 86.8%(glucose+xylose) release 

Corn straw Diluted acid 84.4(cellulose),14 (hemicellulose), 90 (lignin) 

Diluted alkaline 70.0(cellulose),62.7 (hemicellulose), 24.6 
(lignin) 

dilute-alkali enzymatic hydrolysis Total sugar(215.7 g L-1) 

Aqueous-ammonia soaking 85.4(cellulose),85.2 (hemicellulose), 71 
(lignin) 

Alkaline peroxide 81.9(cellulose),87 hemicellulose), 61 (lignin) 

2% NaOH, 80 C, 1 h Enzymatic hydrolysis by 
ellulose of Trichoderma 

reesei ZU-02 and cellobiose 
of Aspergillus niger ZU-07 

Xylose 23.6 g/L, glucose 56.7 g/L, arabinose 
5.7 g/L 

Corn-cob NH3·H2O 86.47(cellulose),42(hemicellulose),10 (lignin) 
in % 

NaOH 86.46(cellulose),47(hemicellulose),7(lignin) 
in % 

dilute-alkali enzymatic hydrolysis Total sugar(223.8 g L-1) 

H2SO4 91.39(cellulose),17(hemicellulose),76 (lignin) 
in % 

H2SO4-NH3·H2O 85.40(cellulose),79(hemicellulose),83(lignin) 
in % 

Cotton 
stalks 

2% H2SO4, 60 min, 121 C/15 
psi  

Enzymatic hydrolysis 23.85Glucanconversion(%),0.0Xylan 
conversion (%) 

2% NaOH, 60 min, 121 C/15 
psi 

Enzymatic hydrolysis 60.79 Glucan conversion (%), 62.57 Xylan 
conversion (%) 
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Table 32 continued. 

Substrate Pre-treatment Hydrolysis Yield of sugars* 

2% H2O2, 60 min, 121 C/15 
psi 

Enzymatic hydrolysis 49.82 Glucan conversion (%), 7.78 Xylan 
conversion(%),61(cellulose),5(hemicellulose), 
26 (lignin) 

Autohydrolysis, 90 min  

Ozone treatment for 30 min 

17(cellulose), 17(hemicellulose), 12 (lignin) 
% reduction from untreated cotton stalks 

Cotton 
waste 

5% Dilute acid hydrolysis 

5% Dilute alkaline hydrolysis 

Enzymatic hydrolysis 

Enzymatic hydrolysis 

90 mg/ml sugar released, 

63 mg/ml sugar released 

Cotton gin 
trash 

Steam explosion, 185-238°C, 
20-265sec 

Enzymatic hydrolysis 77-104.5% fiber recovery (low temperature, 
low residence time-higher fiber recovey) 

Sugarcane 
bagasse 

Ball milling (4 h) Enzymatic (Acremonium 
ellulose at 5 FPU/g 

substrate of ellulose and 20 
U/g substrate of xylanase 
from Optimash BG at 45 C, 
pH 5.0 for 72 h 

89.2  0.7% (glucose), 

77.2  0.9% (xylose) 

1% sulfuric acid (v/v) at 60 C, 

24 h (SLR 1:6) 

In an autoclave at 121 C for 
40 min after removing the 
excess acid (1% (v/v) sulfuric 
acid) 

Total sugar concentration of approximately 
68.0 g/L 

Wheat 
Straw 

Knife milling with 0.7e1.0 
mm rejection screen, washed 
with water and dried 

At 90 C with 1.85% (w:v) 
sulfuric acid for 18 h; liquid 
to solid ratio of 20:1. 
Suspension centrifuged and 
the residue is washed with hot 
water 

D-xylose: 12.80  0.25 g/L, D-glucose: 1.70
0.30 g/L

dilute-alkali pretreatment enzymatic hydrolysis Total sugar of 235.5 g L-1 

Steam explosion : 190°C, 10 
min 

15 FPU/g for ellulose from 
Celluclast 1.5 L 12.6 IU/g for 
β-glucosidase from 
Novozyme 188 

85 in 72 h 

Rice straw Chopped to 5e6 mm size 
range 

4.4% sulfuric acid at 1:10 
solid to liquid ratio in boiling 
water bath, 1 h, filtered and 
pH adjusted to 5.5 

Total sugar (20 g/L) 

Soaked in water at 170 C and 
7.6 kg/cm2, 30 min, finally 
cooled and pH adjusted to 5.5 

Total sugar (23 g/L) 

Chopped, steam exploded (3.5 
Mpa, 275 C, 2 min) 

Enzymatic saccharification 

(cytolase, novozyme) (50 C, 

Xylose yield (10e5 g/L) 
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Table 32 continued. 

Substrate Pre-treatment Hydrolysis Yield of sugars* 

120 h) 

dilute-alkali enzymatic hydrolysis Total sugar(176.5 g L-1) 

2% NaOH, 80 C, 1 h Enzymatic hydrolysis by 
cellulose of Trichoderma 
reesei ZU-02 and cellobiose 
of Aspergillus niger ZU-07 

Xylose 23.6 g/L, glucose 

56.7 g/L, arabinose 5.7 g/L 

Olive tree Conc acid H2SO4    160°C, 30-
60 min 

56% sugar yield 

* as percentage based on dry weight of raw material, ** About 97% of ammonia can recycled back to pretreatment.
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Table 33. Lignocellulosic biomass pretreatment technologies [9] 

Technology TRL  Opportunities Barriers Mitigations  

Steam explosion 6 - 8 Cost-effective, High glucose yields 
Lignin and hemicelluloses removal  
Low environmental impact  

Often catalyst needed to optimise pre-
treatment, Formation of inhibitors and toxic, 
compounds  

Development of new catalysts Developing 
Microorganisms more tolerant to inhibitors  

Dilute acid pretreatment 5 - 7 Good removal of hemicelluloses  Degradation by-products (salts) and inhibitors 
Corrosion  

Developing Microorganisms more tolerant to 
inhibitors, Reducing intensity of pretreatment 
, New enzyme developments  

Concentrated acid 
hydrolysis  

4 - 5 No enzymes needed  
Good removal of hemicelluloses  

High chemical use and capex  
Corrosion and toxic hazard  
Degradation by-products (salts) and inhibitors  

Recovery and reuse of chemicals 
Developing new catalysts  
More tolerant microorganisms  

Auto-catalysis/ 
hydrothermal 

4 - 6 No chemical use or residues High glucose 
yields  

Higher operating temperature Inhibitor 
formation  

Develop methods to add value to lignin 

Organosolv treatment 4 - 6 Causes lignin and hemicellulose hydrolysis  High capital and operating costs Solvent may 
inhibit cell growth  

Develop methods to add value to lignin 
Recovery and reuse of chemicals  

Alkaline pre-treatment 
(e.g. dilute ammonia,  
NaOH, lime)  

5 - 7 Low capital costs  
Low inhibitor formation 
High glucose yields  

Residue formation   
Need to recycle chemicals  
Enzyme adjustment needed 

New enzyme development  
Recovery and reuse of chemicals 

Ammonia Fibre 
Explosion (AFEX) 

3 - 5 No need for small particles  
Low inhibitor formation  
High accessible surface area 

High cost due to solvent Recovery and reuse of chemicals 

Supercritical (CO2)  pre-
treatment  

2 - 4 Increases accessible surface area Low 
inhibitors or residues  

Does not affect lignin and hemicelluloses  
V. high pressure, high capex

Develop methods to add value to lignin 
Improve process technology  

Ionic liquids  2 - 3 Effective dissolution of all lignocellulose 
components Low degradation products  

Expensive technology and recovery required Develop methods to add value to lignin 
Recovery and reuse of chemicals  
Develop process technology  

Microbial/fungi 3 - 4 Low energy requirement, No corrosion, 
Suitable for lignin and hemicelluloses 
removal  

Time consuming  
Some saccharide losses  

Development of robust microorganisms 

Mechanical milling 5 - 6 Reduces cellulose crystallinity No inhibitors 
or residues  

High energy consumption Poor sugar yields  Process integration, combine with mild 
chemical treatments  
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LIST OF BIOBASED SUCCINIC ACID PRODUCTION METHODS 

 
Table 34 continued. 

Carbon source Microbial strain Nitrogen–nutrient source 
 (g/L) 

Type of fermentation, 
working volume 

SA 
concentra

tion, 
(g/L) 

SA 
productivity, 

 (g/L/h) 

Yield, 
 gsa/ 

gtotalsugars 

SA:LA: 
FA:AA, 

 (mol/mol)a 

Succinic acid production from pure carbon sources by A. succinogenes 

Glucose A.succinogenes 130Z YE (6)/CSL (10) CO2 sparging, continuous, 
0.158 L 48.5 nk 0.84 1:0:0:0.38 

Glucose A.succinogenes CGMCC 1593 YE (10)/CSL (6)/Vit CO2, sparging, fed-batch, 
bioreactor, 3L 60.2 1.3 0.75 1:0:0.13:0.31 

Glycerol A.succinogenes 130Z YE (5–10)/Vit CO2 sparging, batch, 
bottle reactors, 0.07 L 26.7 0.23 0.96 1:0:0.15:0.14 

Glycerol A.succinogenes 130 Z YE (10) CO2, sparging, fed-batch, 
bioreactor, 1.5L 49.6 0.62 0.92 1:0:0.39:0.16 

Sucrose A.succinogenes NJ113 YE (10)/CSL (5) CO2, sparging, fed-batch, 
bioreactor, 1.5L 60.4 2.16 0.72 1:0:0.55:0.29 

Cellobiose A.succinogenes NJ113 YE (10)/CSL (5) CO2, sparging, fed-batch, 
bioreactor, 0.03L 38.9 1.08 0.66 1:0:0:0.69 

Succinic acid production from crude renewable resources by A. succinogenes 

Corn fiber A.succinogenes FZ6 (mutant) YE (10), Biotin (10 g) CO2
sparging,batch,vials,0.01L 70.6 0.7 0.88 1:0:0.01:0.08:

f 

A.succinogenes NJ113 YE (10)/CSL (5) CO2 sparging, batch, 
bioreactor, 4.5 L       35.4 0.98 0.72 nk 

Corncob A.succinogenes CICC 11014 YE (11) CO2 sparging, batch 
anaerobic bottles,0.025L 23.6 0.49 0.58 nk 

Corncore A.succinogenes CGMCC 1593 YE(5)GLU(10)CSL(5) CO2 sparging, batch, 
bioreactor, 5 L       32 89.1 nk 

 Table 34. List of biobased succinic acid production methods 
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Table 34 continued. 

Carbon source Microbial strain Nitrogen–nutrient source 
 (g/L) 

Type of fermentation, 
working volume 

SA 
concentra

tion, 
(g/L) 

SA 
productivity, 

 (g/L/h) 

Yield, 
 gsa/ 

gtotalsugars 

SA:LA: 
FA:AA, 

 (mol/mol)a 

Corn stover A.succinogenes CGMCC 1593 CSL (20) CO2 sparging, batch, 
SSFb,bioreactor, 2 L  47.4 0.99 0.72c 1:0.06:0.06:0.

44 

Corn straw A.succinogenes CGMCC 1593 YE(5)GLU(10)CSL(5) CO2 sparging, batch, 
bioreactor, 5 L       33.7 81 nk 

Corn straw A.succinogenes CGMCC 1593 YE (15) CO2, sparging, fed-batch, 
bioreactor, nk 53.2 1.21 0.82 1:0:0:0.22 

Corn stalk A.succinogenes CGMCC 2650 
or BE-1 YE (30)/Urea (2) CO2 sparging, batch, nk 17.8 0.56 0.66 nk 

Wheat milling by-
products A.succinogenes 130Z YE (2.5) CO2 sparging, batch, 

bioreactor, 0.5 L       62.1 0.91 1.02 nk 

Wheat straw A.succinogenes CGMCC1593 YE(5)GLU(10)CSL(5) CO2 sparging, batch, 
bioreactor, 5 L       18.96 74.1 

Rice straw  A.succinogenes CGMCC1593 YE(5)GLU(10)CSL(5) CO2 sparging, batch, 
bioreactor, 5 L       17.64 62.8 

Waste bread A.succinogenes 130Z Bread hydrolysate ,(200 
mg/L free amino nitrogen) 

CO2 sparging, batch, 
bioreactor, nk       47.3 1.12 nk nk 

Cotton stalk A.succinogenes 130Z YE (30)/Urea (2) CO2 sparging, batch, 
SSFb,flask, nk       63 1.17 0.64 nk 

Cane molasses A.succinogenes CGMCC 1593 YE (10) CO2, sparging, fed-batch, 
bioreactor, nk 55.2 1.15 nk 1:0:0.16:0.32  

Cane molasses A.succinogenes GXAS137 YE (8.8) CO2, sparging, fed-batch, 
bioreactor, 0.8L 64.3 1.07 0.76 1:0:0:0.39 

Sugarcane bagasse 
cellulose A.succinogenes NJ113 YE (10)/CSL (5) CO2 sparging, batch, 

bioreactor, 1.5L       20 0.61 0.65 1:0:0:1.28 

Sugar cane 
bagasse A.succinogenes NJ113 YE (10)/CSL (5) CO2 sparging, batch, 

bioreactor, 1.5L       23.7 0.99 0.79 1:0:0:0.37 
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Table 34 continued. 

Carbon source Microbial strain Nitrogen–nutrient source 
 (g/L) 

Type of fermentation, 
working volume 

SA 
concentra

tion, 
(g/L) 

SA 
productivity, 

 (g/L/h) 

Yield, 
 gsa/ 

gtotalsugars 

SA:LA: 
FA:AA, 

 (mol/mol)a 

Sugarcane bagasse A.succinogenes CIP 106512 YE (2) CO2 sparging, batch, 
bioreactor, 1.5L       22.5 1.01 0.43 nk 

Corn stover 
hydrolysate A.succinogenes 56 1.08 0.73 

Macroalgal 
hydrolysate A.succinogenes 130Z YE (16.7) CO2 sparging, batch, 

bioreactor, 1.5L       33 1.27 0.75 1:0.18:0.28:0.
54:g 

Rapeseed meal A.succinogenes 130 Z YE (15) CO2 sparging, batch, 
SSFb,bioreactor, 1.2L 23.4 0.33 0.115d 1:0:0:0.71 

Whey A.succinogenes 130 Z YE (5)/Pep (10) CO2 sparging, batch, 
SSFb,bioreactor, 1.2L 21.3 0.43c 0.44 1:0.02:0.68:0.

78:h  

Sake lees 
hydrolysate A.succinogenes 130 Z SLH/YE/biotin CO2 sparging, batch, 

SSFb,bioreactor, 1.5L 52.3 1.74 0.85 1:0:0:0.30 

Sucrose + 
sugarcane 
molasses 

A.succinogenes 22 1.01 0.43 

Sugarcane 
molasses A.succinogenes 51 0.84 0.79 

Glucose A.succinogenes 130 Z 69-80 1.2-1.7 0.68-0.87 

Glucose A.succinogenes 130 Z 4.1 0.3 0.5 

Glucose A.succinogenes 130 Z 94-106 2-2.8 0.78-0.82 

Whey A.succinogenes 130 Z 70.6 0.7 0.88 

Sake lees 
hydrolysate A.succinogenes 130 Z batch 48 0.94 0.75 

Glucose A.succinogenes FZ53 batch 105.8 1.36 0.83 

Cotton stalk A.succinogenes CGMCC 2650 
or BE-1 YE (30)/Urea (2)  CO2 sparging, batch, nk 15.8 0.62 1.23 
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Table 34 continued. 

Carbon source Microbial strain Nitrogen–nutrient source 
 (g/L) 

Type of fermentation, 
working volume 

SA 
concentra

tion, 
(g/L) 

SA 
productivity, 

 (g/L/h) 

Yield, 
 gsa/ 

gtotalsugars 

SA:LA: 
FA:AA, 

 (mol/mol)a 

Succinic acid production from pure carbon sources by various strains 

Glucose A.succinogenes ATCC 53488 YE (5)/Pep (10)/(NH4)2SO4
(5) 

CO2 sparging, batch, 
bioreactor, nk       32.2 1.19 0.9 1:0:0:0.52 

Galactose A.succinogenes ATCC 29305 YE (2.5)/Pep 
(2.5)/(NH4)2SO4 (5) 

CO2 sparging, batch, 
bioreactor, 1L       15.3 1.46 0.9 1:0:0:0.60 

Glucose E coli AFP184 CSL (33)/(NH4)2SO4 (3) dual phase, batch, 
bioreactor, 8L  45.4 2.84 0.92 1:0:0:0.24 

Xylose 29.2 1.79 0.69 1:0:0:0.45 

Fructose 27.7 1.54 0.46 1:0:0:0.34 

Glucose E.coli AFP111 (NH4)2HPO4(8)/NH4Cl 
(0.2)/(NH4)2SO4   (0.8)/Vit 

dual phase, fed-batch, 
bioreactor, 3L       101 1.18 0.78 1:0:0:0.07 

Sugarcane bagasse 
hydrolysate E.coli Two-stagek 19 0.79 0.96 

Soybean meal 
hydrolysate E.coli 37 0.77 

Beechwood xylan E.coli Anaerobic 14 0.12 0.37 

Sucrose + 
sugarcane 
molasses 

E.coli Microaerobic 56 0.78 0.96 

Pure glycerol E.coli Dual phase aeration, batch 14 0.19 0.69 

Softwood dilute 
acid hydrolysate E.coli AFP184 Dual phase aeration, batch 42.2 0.78 0.72 

Sucrose E.coli W3110 Dual phase aeration, batch 24 0.81 1.2 

Sugar cane 
Molasses E.coli  W3110 Dual phase aeration, batch 26 0.87 0.52 

Bio-oil E.coli MG-PYC 11.5 
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Table 34 continued. 

Carbon source Microbial strain Nitrogen–nutrient source 
 (g/L) 

Type of fermentation, 
working volume 

SA 
concentra

tion, 
(g/L) 

SA 
productivity, 

 (g/L/h) 

Yield, 
 gsa/ 

gtotalsugars 

SA:LA: 
FA:AA, 

 (mol/mol)a 

Representative succinic acid production from crude renewable resources by various strains 

Corn stalk E.coli SD121 YE (10)/Tryp 
(20)/(NH4)2SO4·7H2O (3) 

dual phase, batch, 
bioreactor, 1L  57.8 0.87 0.96 1:0:0:0.29:i  

Whey 
A.succiniciproducens  ATCC 29305 CSL (20)/Tryptophane (0.02) CO2 sparging, fed-batch, 

bioreactor, nk       34.7 1.02 0.91 nk 

A.succiniciproducens  ATCC 29305 CSL (20)/Tryptophane (0.02) CO2 sparging, fed-batch, 
bioreactor, nk       19.8 3 0.64 nk 

Whey 

M. 
succiniciproducens  MBEL55E CSL (7.5) CO2 sparging, fed-batch, 

bioreactor, 1L       13.4 1.18 0.71 1:0.06:1.10:0.
73 

M. 
succiniciproducens  MBEL55E YE (2.5) CO2 sparging, fed-batch, 

bioreactor, 1L       13.5 1.21 0.72 1:0.05:1.11:0.
74 

M. 
succiniciproducens  MBEL55E CSL (5) CO2 sparging, continuous, 

bioreactor, 0.5L       10e 3.9e 0.69e 1:0:0.80:0.79 

Glycerol M. 
succiniciproducens  ATCC29305 Batch 19 0.15 1.6 

Glycerol E.coli MLB Two-stage fermentation 360.2mM 0.93 

Wood hydrolysate M. 
succiniciproducens  ATCC29305 Batch 24 0.74 0.88 

Galactose M. 
succiniciproducens  ATCC29305 Batch 15.3 1.46 0.87 

Wood hydrolysate M. 
succiniciproducens  ATCC29305 Continuous 8.2 3.19 0.55 

Cane molasses E. coli AFP111/pTrc
C-cscA

(NH4)2HPO4 (8)/NH4Cl 
(0.2)/(NH4)2SO4 (0.7)/Vit 

Dual phase, fed-batch, 
bioreactor, 1.5L 37.3 1.04 0.79 1:0:0:0.17:j  

Cane molasses E. coli KJ122-
pKJSUC-24T 

(NH4)2HPO4

(19.9)/NH4H2PO4 (7.5)/Vit 
CO2 sparging, batch, 
bioreactor, 7.5 L 55.8 0.77 0.96 1:0:0:0.18 
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Table 34 continued. 

Carbon source Microbial strain Nitrogen–nutrient source 
 (g/L) 

Type of fermentation, 
working volume 

SA 
concentra

tion, 
(g/L) 

SA 
productivity, 

 (g/L/h) 

Yield, 
 gsa/ 

gtotalsugars 

SA:LA: 
FA:AA, 

 (mol/mol)a 

Softwood 
hydrolysate E. coli AFP184 YE (15)/CSL (15)/(NH4)2SO4

(3.3) 
Dual phase, batch, 
bioreactor, 0.7 L 42.2 1 0.72 nk 

Pre-treated wood 
hydrolysate  

M. 
succiniciproducens  MBEL55E YE (5) CO2 sparging, batch, 

bioreactor, 1 L 11.73 1.17 0.56 1:0.23:0.45:0.
59 

Pre-treated wood 
hydrolysate  

 M. 
succiniciproducens  MBEL55E YE (5) 

CO2 sparging, 
continuous, bioreactor, 
0.5 L  

7.98 3.19 0.55 nk 

Glucose  
 E. coli NZN111 28 0.7 0.74 

E. coli AFP111/ 
pTrc99A-pyc 99 1.3 1.17 

Glucose  C. glutamicum ΔldhApCRA7
17 146 3.2 0.92 

Glucose  C. glutamicum ΔldhApCRA7
17 83 11.8 0.9 

D-glucose or 
sucrose 

Basfia 
succiniciproducens 5.8 1.5 0.6 

crude glycerol  B.succiniciproducens 8.4 0.9 1.2 

Arundo donax 
(energy crop) B.succiniciproducens 17 0.2 0.75 

Corn stover B.succiniciproducens 30 0.43 0.69 

Glucose  Genetically modified 
B.succiniciproducens  1.08 

Nitrogen Source: YE: Yeast extract, CSL: Corn steep liquor, Tryp: Tryptone, Pep: Peptone, Vit: Vitamin supplementation. 
nk: not known. 
a mol/mol ratio of fermentation by-products SA: Succinic acid, LA: Lactic acid, FA: Formic acid, AA: Acetic acid. 
b Simultaneous saccharification and fermentation. 
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Table 34 continued. 

Carbon source Microbial strain Nitrogen–nutrient source 
 (g/L) 

Type of fermentation, 
working volume 

SA 
concentra

tion, 
(g/L) 

SA 
productivity, 

 (g/L/h) 

Yield, 
 gsa/ 

gtotalsugars 

SA:LA: 
FA:AA, 

 (mol/mol)a 

c Yield: g succinic acid /g substrate 
d Yield: g succinic acid /g dry matter 
e Maximum value observed during continuous fermentation at different dilution rates. 
f propionic acid (3g/L). 
g ethanol: (2.5g/L). 
 h ethanol (3g/L). 
i ethanol (1.62g/L). 
 j pyruvic acid (1.2g/L), 
k  Aerobic growth phase followed by an anaerobic production process. 




